]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
mm: multi-gen LRU: remove eviction fairness safeguard
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
07f67a8d 29#include <linux/buffer_head.h> /* for buffer_heads_over_limit */
1da177e4 30#include <linux/mm_inline.h>
1da177e4
LT
31#include <linux/backing-dev.h>
32#include <linux/rmap.h>
33#include <linux/topology.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
3e7d3449 36#include <linux/compaction.h>
1da177e4
LT
37#include <linux/notifier.h>
38#include <linux/rwsem.h>
248a0301 39#include <linux/delay.h>
3218ae14 40#include <linux/kthread.h>
7dfb7103 41#include <linux/freezer.h>
66e1707b 42#include <linux/memcontrol.h>
26aa2d19 43#include <linux/migrate.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
91952440 46#include <linux/memory-tiers.h>
929bea7c 47#include <linux/oom.h>
64e3d12f 48#include <linux/pagevec.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
eb414681 52#include <linux/psi.h>
bd74fdae
YZ
53#include <linux/pagewalk.h>
54#include <linux/shmem_fs.h>
354ed597 55#include <linux/ctype.h>
d6c3af7d 56#include <linux/debugfs.h>
57e9cc50 57#include <linux/khugepaged.h>
1da177e4
LT
58
59#include <asm/tlbflush.h>
60#include <asm/div64.h>
61
62#include <linux/swapops.h>
117aad1e 63#include <linux/balloon_compaction.h>
c574bbe9 64#include <linux/sched/sysctl.h>
1da177e4 65
0f8053a5 66#include "internal.h"
014bb1de 67#include "swap.h"
0f8053a5 68
33906bc5
MG
69#define CREATE_TRACE_POINTS
70#include <trace/events/vmscan.h>
71
1da177e4 72struct scan_control {
22fba335
KM
73 /* How many pages shrink_list() should reclaim */
74 unsigned long nr_to_reclaim;
75
ee814fe2
JW
76 /*
77 * Nodemask of nodes allowed by the caller. If NULL, all nodes
78 * are scanned.
79 */
80 nodemask_t *nodemask;
9e3b2f8c 81
f16015fb
JW
82 /*
83 * The memory cgroup that hit its limit and as a result is the
84 * primary target of this reclaim invocation.
85 */
86 struct mem_cgroup *target_mem_cgroup;
66e1707b 87
7cf111bc
JW
88 /*
89 * Scan pressure balancing between anon and file LRUs
90 */
91 unsigned long anon_cost;
92 unsigned long file_cost;
93
49fd9b6d 94 /* Can active folios be deactivated as part of reclaim? */
b91ac374
JW
95#define DEACTIVATE_ANON 1
96#define DEACTIVATE_FILE 2
97 unsigned int may_deactivate:2;
98 unsigned int force_deactivate:1;
99 unsigned int skipped_deactivate:1;
100
1276ad68 101 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
102 unsigned int may_writepage:1;
103
49fd9b6d 104 /* Can mapped folios be reclaimed? */
ee814fe2
JW
105 unsigned int may_unmap:1;
106
49fd9b6d 107 /* Can folios be swapped as part of reclaim? */
ee814fe2
JW
108 unsigned int may_swap:1;
109
73b73bac
YA
110 /* Proactive reclaim invoked by userspace through memory.reclaim */
111 unsigned int proactive:1;
112
d6622f63 113 /*
f56ce412
JW
114 * Cgroup memory below memory.low is protected as long as we
115 * don't threaten to OOM. If any cgroup is reclaimed at
116 * reduced force or passed over entirely due to its memory.low
117 * setting (memcg_low_skipped), and nothing is reclaimed as a
118 * result, then go back for one more cycle that reclaims the protected
119 * memory (memcg_low_reclaim) to avert OOM.
d6622f63
YX
120 */
121 unsigned int memcg_low_reclaim:1;
122 unsigned int memcg_low_skipped:1;
241994ed 123
ee814fe2
JW
124 unsigned int hibernation_mode:1;
125
126 /* One of the zones is ready for compaction */
127 unsigned int compaction_ready:1;
128
b91ac374
JW
129 /* There is easily reclaimable cold cache in the current node */
130 unsigned int cache_trim_mode:1;
131
49fd9b6d 132 /* The file folios on the current node are dangerously low */
53138cea
JW
133 unsigned int file_is_tiny:1;
134
26aa2d19
DH
135 /* Always discard instead of demoting to lower tier memory */
136 unsigned int no_demotion:1;
137
f76c8337
YZ
138#ifdef CONFIG_LRU_GEN
139 /* help kswapd make better choices among multiple memcgs */
140 unsigned int memcgs_need_aging:1;
141 unsigned long last_reclaimed;
142#endif
143
bb451fdf
GT
144 /* Allocation order */
145 s8 order;
146
147 /* Scan (total_size >> priority) pages at once */
148 s8 priority;
149
49fd9b6d 150 /* The highest zone to isolate folios for reclaim from */
bb451fdf
GT
151 s8 reclaim_idx;
152
153 /* This context's GFP mask */
154 gfp_t gfp_mask;
155
ee814fe2
JW
156 /* Incremented by the number of inactive pages that were scanned */
157 unsigned long nr_scanned;
158
159 /* Number of pages freed so far during a call to shrink_zones() */
160 unsigned long nr_reclaimed;
d108c772
AR
161
162 struct {
163 unsigned int dirty;
164 unsigned int unqueued_dirty;
165 unsigned int congested;
166 unsigned int writeback;
167 unsigned int immediate;
168 unsigned int file_taken;
169 unsigned int taken;
170 } nr;
e5ca8071
YS
171
172 /* for recording the reclaimed slab by now */
173 struct reclaim_state reclaim_state;
1da177e4
LT
174};
175
1da177e4 176#ifdef ARCH_HAS_PREFETCHW
166e3d32 177#define prefetchw_prev_lru_folio(_folio, _base, _field) \
1da177e4 178 do { \
166e3d32
MWO
179 if ((_folio)->lru.prev != _base) { \
180 struct folio *prev; \
1da177e4 181 \
166e3d32 182 prev = lru_to_folio(&(_folio->lru)); \
1da177e4
LT
183 prefetchw(&prev->_field); \
184 } \
185 } while (0)
186#else
166e3d32 187#define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
1da177e4
LT
188#endif
189
190/*
c843966c 191 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
192 */
193int vm_swappiness = 60;
1da177e4 194
0a432dcb
YS
195static void set_task_reclaim_state(struct task_struct *task,
196 struct reclaim_state *rs)
197{
198 /* Check for an overwrite */
199 WARN_ON_ONCE(rs && task->reclaim_state);
200
201 /* Check for the nulling of an already-nulled member */
202 WARN_ON_ONCE(!rs && !task->reclaim_state);
203
204 task->reclaim_state = rs;
205}
206
5035ebc6
RG
207LIST_HEAD(shrinker_list);
208DECLARE_RWSEM(shrinker_rwsem);
1da177e4 209
0a432dcb 210#ifdef CONFIG_MEMCG
a2fb1261 211static int shrinker_nr_max;
2bfd3637 212
3c6f17e6 213/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
214static inline int shrinker_map_size(int nr_items)
215{
216 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
217}
2bfd3637 218
3c6f17e6
YS
219static inline int shrinker_defer_size(int nr_items)
220{
221 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
222}
223
468ab843
YS
224static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
225 int nid)
226{
227 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
228 lockdep_is_held(&shrinker_rwsem));
229}
230
e4262c4f 231static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
232 int map_size, int defer_size,
233 int old_map_size, int old_defer_size)
2bfd3637 234{
e4262c4f 235 struct shrinker_info *new, *old;
2bfd3637
YS
236 struct mem_cgroup_per_node *pn;
237 int nid;
3c6f17e6 238 int size = map_size + defer_size;
2bfd3637 239
2bfd3637
YS
240 for_each_node(nid) {
241 pn = memcg->nodeinfo[nid];
468ab843 242 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
243 /* Not yet online memcg */
244 if (!old)
245 return 0;
246
247 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
248 if (!new)
249 return -ENOMEM;
250
3c6f17e6
YS
251 new->nr_deferred = (atomic_long_t *)(new + 1);
252 new->map = (void *)new->nr_deferred + defer_size;
253
254 /* map: set all old bits, clear all new bits */
255 memset(new->map, (int)0xff, old_map_size);
256 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
257 /* nr_deferred: copy old values, clear all new values */
258 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
259 memset((void *)new->nr_deferred + old_defer_size, 0,
260 defer_size - old_defer_size);
2bfd3637 261
e4262c4f 262 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 263 kvfree_rcu(old, rcu);
2bfd3637
YS
264 }
265
266 return 0;
267}
268
e4262c4f 269void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
270{
271 struct mem_cgroup_per_node *pn;
e4262c4f 272 struct shrinker_info *info;
2bfd3637
YS
273 int nid;
274
2bfd3637
YS
275 for_each_node(nid) {
276 pn = memcg->nodeinfo[nid];
e4262c4f
YS
277 info = rcu_dereference_protected(pn->shrinker_info, true);
278 kvfree(info);
279 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
280 }
281}
282
e4262c4f 283int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 284{
e4262c4f 285 struct shrinker_info *info;
2bfd3637 286 int nid, size, ret = 0;
3c6f17e6 287 int map_size, defer_size = 0;
2bfd3637 288
d27cf2aa 289 down_write(&shrinker_rwsem);
3c6f17e6
YS
290 map_size = shrinker_map_size(shrinker_nr_max);
291 defer_size = shrinker_defer_size(shrinker_nr_max);
292 size = map_size + defer_size;
2bfd3637 293 for_each_node(nid) {
e4262c4f
YS
294 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
295 if (!info) {
296 free_shrinker_info(memcg);
2bfd3637
YS
297 ret = -ENOMEM;
298 break;
299 }
3c6f17e6
YS
300 info->nr_deferred = (atomic_long_t *)(info + 1);
301 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 302 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 303 }
d27cf2aa 304 up_write(&shrinker_rwsem);
2bfd3637
YS
305
306 return ret;
307}
308
3c6f17e6
YS
309static inline bool need_expand(int nr_max)
310{
311 return round_up(nr_max, BITS_PER_LONG) >
312 round_up(shrinker_nr_max, BITS_PER_LONG);
313}
314
e4262c4f 315static int expand_shrinker_info(int new_id)
2bfd3637 316{
3c6f17e6 317 int ret = 0;
a2fb1261 318 int new_nr_max = new_id + 1;
3c6f17e6
YS
319 int map_size, defer_size = 0;
320 int old_map_size, old_defer_size = 0;
2bfd3637
YS
321 struct mem_cgroup *memcg;
322
3c6f17e6 323 if (!need_expand(new_nr_max))
a2fb1261 324 goto out;
2bfd3637 325
2bfd3637 326 if (!root_mem_cgroup)
d27cf2aa
YS
327 goto out;
328
329 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 330
3c6f17e6
YS
331 map_size = shrinker_map_size(new_nr_max);
332 defer_size = shrinker_defer_size(new_nr_max);
333 old_map_size = shrinker_map_size(shrinker_nr_max);
334 old_defer_size = shrinker_defer_size(shrinker_nr_max);
335
2bfd3637
YS
336 memcg = mem_cgroup_iter(NULL, NULL, NULL);
337 do {
3c6f17e6
YS
338 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
339 old_map_size, old_defer_size);
2bfd3637
YS
340 if (ret) {
341 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 342 goto out;
2bfd3637
YS
343 }
344 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 345out:
2bfd3637 346 if (!ret)
a2fb1261 347 shrinker_nr_max = new_nr_max;
d27cf2aa 348
2bfd3637
YS
349 return ret;
350}
351
352void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
353{
354 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 355 struct shrinker_info *info;
2bfd3637
YS
356
357 rcu_read_lock();
e4262c4f 358 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
359 /* Pairs with smp mb in shrink_slab() */
360 smp_mb__before_atomic();
e4262c4f 361 set_bit(shrinker_id, info->map);
2bfd3637
YS
362 rcu_read_unlock();
363 }
364}
365
b4c2b231 366static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
367
368static int prealloc_memcg_shrinker(struct shrinker *shrinker)
369{
370 int id, ret = -ENOMEM;
371
476b30a0
YS
372 if (mem_cgroup_disabled())
373 return -ENOSYS;
374
b4c2b231
KT
375 down_write(&shrinker_rwsem);
376 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 377 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
378 if (id < 0)
379 goto unlock;
380
0a4465d3 381 if (id >= shrinker_nr_max) {
e4262c4f 382 if (expand_shrinker_info(id)) {
0a4465d3
KT
383 idr_remove(&shrinker_idr, id);
384 goto unlock;
385 }
0a4465d3 386 }
b4c2b231
KT
387 shrinker->id = id;
388 ret = 0;
389unlock:
390 up_write(&shrinker_rwsem);
391 return ret;
392}
393
394static void unregister_memcg_shrinker(struct shrinker *shrinker)
395{
396 int id = shrinker->id;
397
398 BUG_ON(id < 0);
399
41ca668a
YS
400 lockdep_assert_held(&shrinker_rwsem);
401
b4c2b231 402 idr_remove(&shrinker_idr, id);
b4c2b231 403}
b4c2b231 404
86750830
YS
405static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
406 struct mem_cgroup *memcg)
407{
408 struct shrinker_info *info;
409
410 info = shrinker_info_protected(memcg, nid);
411 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
412}
413
414static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
415 struct mem_cgroup *memcg)
416{
417 struct shrinker_info *info;
418
419 info = shrinker_info_protected(memcg, nid);
420 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
421}
422
a178015c
YS
423void reparent_shrinker_deferred(struct mem_cgroup *memcg)
424{
425 int i, nid;
426 long nr;
427 struct mem_cgroup *parent;
428 struct shrinker_info *child_info, *parent_info;
429
430 parent = parent_mem_cgroup(memcg);
431 if (!parent)
432 parent = root_mem_cgroup;
433
434 /* Prevent from concurrent shrinker_info expand */
435 down_read(&shrinker_rwsem);
436 for_each_node(nid) {
437 child_info = shrinker_info_protected(memcg, nid);
438 parent_info = shrinker_info_protected(parent, nid);
439 for (i = 0; i < shrinker_nr_max; i++) {
440 nr = atomic_long_read(&child_info->nr_deferred[i]);
441 atomic_long_add(nr, &parent_info->nr_deferred[i]);
442 }
443 }
444 up_read(&shrinker_rwsem);
445}
446
b5ead35e 447static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 448{
b5ead35e 449 return sc->target_mem_cgroup;
89b5fae5 450}
97c9341f 451
a579086c
YZ
452static bool global_reclaim(struct scan_control *sc)
453{
454 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
455}
456
97c9341f 457/**
b5ead35e 458 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
459 * @sc: scan_control in question
460 *
461 * The normal page dirty throttling mechanism in balance_dirty_pages() is
462 * completely broken with the legacy memcg and direct stalling in
49fd9b6d 463 * shrink_folio_list() is used for throttling instead, which lacks all the
97c9341f
TH
464 * niceties such as fairness, adaptive pausing, bandwidth proportional
465 * allocation and configurability.
466 *
467 * This function tests whether the vmscan currently in progress can assume
468 * that the normal dirty throttling mechanism is operational.
469 */
b5ead35e 470static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 471{
b5ead35e 472 if (!cgroup_reclaim(sc))
97c9341f
TH
473 return true;
474#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 475 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
476 return true;
477#endif
478 return false;
479}
91a45470 480#else
0a432dcb
YS
481static int prealloc_memcg_shrinker(struct shrinker *shrinker)
482{
476b30a0 483 return -ENOSYS;
0a432dcb
YS
484}
485
486static void unregister_memcg_shrinker(struct shrinker *shrinker)
487{
488}
489
86750830
YS
490static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
491 struct mem_cgroup *memcg)
492{
493 return 0;
494}
495
496static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
497 struct mem_cgroup *memcg)
498{
499 return 0;
500}
501
b5ead35e 502static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 503{
b5ead35e 504 return false;
89b5fae5 505}
97c9341f 506
a579086c
YZ
507static bool global_reclaim(struct scan_control *sc)
508{
509 return true;
510}
511
b5ead35e 512static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
513{
514 return true;
515}
91a45470
KH
516#endif
517
86750830
YS
518static long xchg_nr_deferred(struct shrinker *shrinker,
519 struct shrink_control *sc)
520{
521 int nid = sc->nid;
522
523 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
524 nid = 0;
525
526 if (sc->memcg &&
527 (shrinker->flags & SHRINKER_MEMCG_AWARE))
528 return xchg_nr_deferred_memcg(nid, shrinker,
529 sc->memcg);
530
531 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
532}
533
534
535static long add_nr_deferred(long nr, struct shrinker *shrinker,
536 struct shrink_control *sc)
537{
538 int nid = sc->nid;
539
540 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
541 nid = 0;
542
543 if (sc->memcg &&
544 (shrinker->flags & SHRINKER_MEMCG_AWARE))
545 return add_nr_deferred_memcg(nr, nid, shrinker,
546 sc->memcg);
547
548 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
549}
550
26aa2d19
DH
551static bool can_demote(int nid, struct scan_control *sc)
552{
20b51af1
HY
553 if (!numa_demotion_enabled)
554 return false;
3f1509c5
JW
555 if (sc && sc->no_demotion)
556 return false;
26aa2d19
DH
557 if (next_demotion_node(nid) == NUMA_NO_NODE)
558 return false;
559
20b51af1 560 return true;
26aa2d19
DH
561}
562
a2a36488
KB
563static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
564 int nid,
565 struct scan_control *sc)
566{
567 if (memcg == NULL) {
568 /*
569 * For non-memcg reclaim, is there
570 * space in any swap device?
571 */
572 if (get_nr_swap_pages() > 0)
573 return true;
574 } else {
575 /* Is the memcg below its swap limit? */
576 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
577 return true;
578 }
579
580 /*
581 * The page can not be swapped.
582 *
583 * Can it be reclaimed from this node via demotion?
584 */
585 return can_demote(nid, sc);
586}
587
5a1c84b4 588/*
49fd9b6d 589 * This misses isolated folios which are not accounted for to save counters.
5a1c84b4 590 * As the data only determines if reclaim or compaction continues, it is
49fd9b6d 591 * not expected that isolated folios will be a dominating factor.
5a1c84b4
MG
592 */
593unsigned long zone_reclaimable_pages(struct zone *zone)
594{
595 unsigned long nr;
596
597 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
598 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
a2a36488 599 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
5a1c84b4
MG
600 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
601 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
602
603 return nr;
604}
605
fd538803
MH
606/**
607 * lruvec_lru_size - Returns the number of pages on the given LRU list.
608 * @lruvec: lru vector
609 * @lru: lru to use
8b3a899a 610 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
fd538803 611 */
2091339d
YZ
612static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
613 int zone_idx)
c9f299d9 614{
de3b0150 615 unsigned long size = 0;
fd538803
MH
616 int zid;
617
8b3a899a 618 for (zid = 0; zid <= zone_idx; zid++) {
fd538803 619 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 620
fd538803
MH
621 if (!managed_zone(zone))
622 continue;
623
624 if (!mem_cgroup_disabled())
de3b0150 625 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 626 else
de3b0150 627 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 628 }
de3b0150 629 return size;
b4536f0c
MH
630}
631
1da177e4 632/*
1d3d4437 633 * Add a shrinker callback to be called from the vm.
1da177e4 634 */
e33c267a 635static int __prealloc_shrinker(struct shrinker *shrinker)
1da177e4 636{
476b30a0
YS
637 unsigned int size;
638 int err;
639
640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 err = prealloc_memcg_shrinker(shrinker);
642 if (err != -ENOSYS)
643 return err;
1d3d4437 644
476b30a0
YS
645 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
646 }
647
648 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
649 if (shrinker->flags & SHRINKER_NUMA_AWARE)
650 size *= nr_node_ids;
651
652 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
653 if (!shrinker->nr_deferred)
654 return -ENOMEM;
b4c2b231 655
8e04944f
TH
656 return 0;
657}
658
e33c267a
RG
659#ifdef CONFIG_SHRINKER_DEBUG
660int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
661{
662 va_list ap;
663 int err;
664
665 va_start(ap, fmt);
666 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
667 va_end(ap);
668 if (!shrinker->name)
669 return -ENOMEM;
670
671 err = __prealloc_shrinker(shrinker);
14773bfa 672 if (err) {
e33c267a 673 kfree_const(shrinker->name);
14773bfa
TH
674 shrinker->name = NULL;
675 }
e33c267a
RG
676
677 return err;
678}
679#else
680int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
681{
682 return __prealloc_shrinker(shrinker);
683}
684#endif
685
8e04944f
TH
686void free_prealloced_shrinker(struct shrinker *shrinker)
687{
e33c267a
RG
688#ifdef CONFIG_SHRINKER_DEBUG
689 kfree_const(shrinker->name);
14773bfa 690 shrinker->name = NULL;
e33c267a 691#endif
41ca668a
YS
692 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
693 down_write(&shrinker_rwsem);
b4c2b231 694 unregister_memcg_shrinker(shrinker);
41ca668a 695 up_write(&shrinker_rwsem);
476b30a0 696 return;
41ca668a 697 }
b4c2b231 698
8e04944f
TH
699 kfree(shrinker->nr_deferred);
700 shrinker->nr_deferred = NULL;
701}
1d3d4437 702
8e04944f
TH
703void register_shrinker_prepared(struct shrinker *shrinker)
704{
8e1f936b
RR
705 down_write(&shrinker_rwsem);
706 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 707 shrinker->flags |= SHRINKER_REGISTERED;
5035ebc6 708 shrinker_debugfs_add(shrinker);
8e1f936b 709 up_write(&shrinker_rwsem);
8e04944f
TH
710}
711
e33c267a 712static int __register_shrinker(struct shrinker *shrinker)
8e04944f 713{
e33c267a 714 int err = __prealloc_shrinker(shrinker);
8e04944f
TH
715
716 if (err)
717 return err;
718 register_shrinker_prepared(shrinker);
1d3d4437 719 return 0;
1da177e4 720}
e33c267a
RG
721
722#ifdef CONFIG_SHRINKER_DEBUG
723int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
724{
725 va_list ap;
726 int err;
727
728 va_start(ap, fmt);
729 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
730 va_end(ap);
731 if (!shrinker->name)
732 return -ENOMEM;
733
734 err = __register_shrinker(shrinker);
14773bfa 735 if (err) {
e33c267a 736 kfree_const(shrinker->name);
14773bfa
TH
737 shrinker->name = NULL;
738 }
e33c267a
RG
739 return err;
740}
741#else
742int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
743{
744 return __register_shrinker(shrinker);
745}
746#endif
8e1f936b 747EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
748
749/*
750 * Remove one
751 */
8e1f936b 752void unregister_shrinker(struct shrinker *shrinker)
1da177e4 753{
41ca668a 754 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 755 return;
41ca668a 756
1da177e4
LT
757 down_write(&shrinker_rwsem);
758 list_del(&shrinker->list);
41ca668a
YS
759 shrinker->flags &= ~SHRINKER_REGISTERED;
760 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
761 unregister_memcg_shrinker(shrinker);
5035ebc6 762 shrinker_debugfs_remove(shrinker);
1da177e4 763 up_write(&shrinker_rwsem);
41ca668a 764
ae393321 765 kfree(shrinker->nr_deferred);
bb422a73 766 shrinker->nr_deferred = NULL;
1da177e4 767}
8e1f936b 768EXPORT_SYMBOL(unregister_shrinker);
1da177e4 769
880121be
CK
770/**
771 * synchronize_shrinkers - Wait for all running shrinkers to complete.
772 *
773 * This is equivalent to calling unregister_shrink() and register_shrinker(),
774 * but atomically and with less overhead. This is useful to guarantee that all
775 * shrinker invocations have seen an update, before freeing memory, similar to
776 * rcu.
777 */
778void synchronize_shrinkers(void)
779{
780 down_write(&shrinker_rwsem);
781 up_write(&shrinker_rwsem);
782}
783EXPORT_SYMBOL(synchronize_shrinkers);
784
1da177e4 785#define SHRINK_BATCH 128
1d3d4437 786
cb731d6c 787static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 788 struct shrinker *shrinker, int priority)
1d3d4437
GC
789{
790 unsigned long freed = 0;
791 unsigned long long delta;
792 long total_scan;
d5bc5fd3 793 long freeable;
1d3d4437
GC
794 long nr;
795 long new_nr;
1d3d4437
GC
796 long batch_size = shrinker->batch ? shrinker->batch
797 : SHRINK_BATCH;
5f33a080 798 long scanned = 0, next_deferred;
1d3d4437 799
d5bc5fd3 800 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
801 if (freeable == 0 || freeable == SHRINK_EMPTY)
802 return freeable;
1d3d4437
GC
803
804 /*
805 * copy the current shrinker scan count into a local variable
806 * and zero it so that other concurrent shrinker invocations
807 * don't also do this scanning work.
808 */
86750830 809 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 810
4b85afbd
JW
811 if (shrinker->seeks) {
812 delta = freeable >> priority;
813 delta *= 4;
814 do_div(delta, shrinker->seeks);
815 } else {
816 /*
817 * These objects don't require any IO to create. Trim
818 * them aggressively under memory pressure to keep
819 * them from causing refetches in the IO caches.
820 */
821 delta = freeable / 2;
822 }
172b06c3 823
18bb473e 824 total_scan = nr >> priority;
1d3d4437 825 total_scan += delta;
18bb473e 826 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
827
828 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 829 freeable, delta, total_scan, priority);
1d3d4437 830
0b1fb40a
VD
831 /*
832 * Normally, we should not scan less than batch_size objects in one
833 * pass to avoid too frequent shrinker calls, but if the slab has less
834 * than batch_size objects in total and we are really tight on memory,
835 * we will try to reclaim all available objects, otherwise we can end
836 * up failing allocations although there are plenty of reclaimable
837 * objects spread over several slabs with usage less than the
838 * batch_size.
839 *
840 * We detect the "tight on memory" situations by looking at the total
841 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 842 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
843 * scanning at high prio and therefore should try to reclaim as much as
844 * possible.
845 */
846 while (total_scan >= batch_size ||
d5bc5fd3 847 total_scan >= freeable) {
a0b02131 848 unsigned long ret;
0b1fb40a 849 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 850
0b1fb40a 851 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 852 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
853 ret = shrinker->scan_objects(shrinker, shrinkctl);
854 if (ret == SHRINK_STOP)
855 break;
856 freed += ret;
1d3d4437 857
d460acb5
CW
858 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
859 total_scan -= shrinkctl->nr_scanned;
860 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
861
862 cond_resched();
863 }
864
18bb473e
YS
865 /*
866 * The deferred work is increased by any new work (delta) that wasn't
867 * done, decreased by old deferred work that was done now.
868 *
869 * And it is capped to two times of the freeable items.
870 */
871 next_deferred = max_t(long, (nr + delta - scanned), 0);
872 next_deferred = min(next_deferred, (2 * freeable));
873
1d3d4437
GC
874 /*
875 * move the unused scan count back into the shrinker in a
86750830 876 * manner that handles concurrent updates.
1d3d4437 877 */
86750830 878 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 879
8efb4b59 880 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 881 return freed;
1495f230
YH
882}
883
0a432dcb 884#ifdef CONFIG_MEMCG
b0dedc49
KT
885static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
886 struct mem_cgroup *memcg, int priority)
887{
e4262c4f 888 struct shrinker_info *info;
b8e57efa
KT
889 unsigned long ret, freed = 0;
890 int i;
b0dedc49 891
0a432dcb 892 if (!mem_cgroup_online(memcg))
b0dedc49
KT
893 return 0;
894
895 if (!down_read_trylock(&shrinker_rwsem))
896 return 0;
897
468ab843 898 info = shrinker_info_protected(memcg, nid);
e4262c4f 899 if (unlikely(!info))
b0dedc49
KT
900 goto unlock;
901
e4262c4f 902 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
903 struct shrink_control sc = {
904 .gfp_mask = gfp_mask,
905 .nid = nid,
906 .memcg = memcg,
907 };
908 struct shrinker *shrinker;
909
910 shrinker = idr_find(&shrinker_idr, i);
41ca668a 911 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 912 if (!shrinker)
e4262c4f 913 clear_bit(i, info->map);
b0dedc49
KT
914 continue;
915 }
916
0a432dcb
YS
917 /* Call non-slab shrinkers even though kmem is disabled */
918 if (!memcg_kmem_enabled() &&
919 !(shrinker->flags & SHRINKER_NONSLAB))
920 continue;
921
b0dedc49 922 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 923 if (ret == SHRINK_EMPTY) {
e4262c4f 924 clear_bit(i, info->map);
f90280d6
KT
925 /*
926 * After the shrinker reported that it had no objects to
927 * free, but before we cleared the corresponding bit in
928 * the memcg shrinker map, a new object might have been
929 * added. To make sure, we have the bit set in this
930 * case, we invoke the shrinker one more time and reset
931 * the bit if it reports that it is not empty anymore.
932 * The memory barrier here pairs with the barrier in
2bfd3637 933 * set_shrinker_bit():
f90280d6
KT
934 *
935 * list_lru_add() shrink_slab_memcg()
936 * list_add_tail() clear_bit()
937 * <MB> <MB>
938 * set_bit() do_shrink_slab()
939 */
940 smp_mb__after_atomic();
941 ret = do_shrink_slab(&sc, shrinker, priority);
942 if (ret == SHRINK_EMPTY)
943 ret = 0;
944 else
2bfd3637 945 set_shrinker_bit(memcg, nid, i);
f90280d6 946 }
b0dedc49
KT
947 freed += ret;
948
949 if (rwsem_is_contended(&shrinker_rwsem)) {
950 freed = freed ? : 1;
951 break;
952 }
953 }
954unlock:
955 up_read(&shrinker_rwsem);
956 return freed;
957}
0a432dcb 958#else /* CONFIG_MEMCG */
b0dedc49
KT
959static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
960 struct mem_cgroup *memcg, int priority)
961{
962 return 0;
963}
0a432dcb 964#endif /* CONFIG_MEMCG */
b0dedc49 965
6b4f7799 966/**
cb731d6c 967 * shrink_slab - shrink slab caches
6b4f7799
JW
968 * @gfp_mask: allocation context
969 * @nid: node whose slab caches to target
cb731d6c 970 * @memcg: memory cgroup whose slab caches to target
9092c71b 971 * @priority: the reclaim priority
1da177e4 972 *
6b4f7799 973 * Call the shrink functions to age shrinkable caches.
1da177e4 974 *
6b4f7799
JW
975 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
976 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 977 *
aeed1d32
VD
978 * @memcg specifies the memory cgroup to target. Unaware shrinkers
979 * are called only if it is the root cgroup.
cb731d6c 980 *
9092c71b
JB
981 * @priority is sc->priority, we take the number of objects and >> by priority
982 * in order to get the scan target.
b15e0905 983 *
6b4f7799 984 * Returns the number of reclaimed slab objects.
1da177e4 985 */
cb731d6c
VD
986static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
987 struct mem_cgroup *memcg,
9092c71b 988 int priority)
1da177e4 989{
b8e57efa 990 unsigned long ret, freed = 0;
1da177e4
LT
991 struct shrinker *shrinker;
992
fa1e512f
YS
993 /*
994 * The root memcg might be allocated even though memcg is disabled
995 * via "cgroup_disable=memory" boot parameter. This could make
996 * mem_cgroup_is_root() return false, then just run memcg slab
997 * shrink, but skip global shrink. This may result in premature
998 * oom.
999 */
1000 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 1001 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 1002
e830c63a 1003 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 1004 goto out;
1da177e4
LT
1005
1006 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
1007 struct shrink_control sc = {
1008 .gfp_mask = gfp_mask,
1009 .nid = nid,
cb731d6c 1010 .memcg = memcg,
6b4f7799 1011 };
ec97097b 1012
9b996468
KT
1013 ret = do_shrink_slab(&sc, shrinker, priority);
1014 if (ret == SHRINK_EMPTY)
1015 ret = 0;
1016 freed += ret;
e496612c
MK
1017 /*
1018 * Bail out if someone want to register a new shrinker to
55b65a57 1019 * prevent the registration from being stalled for long periods
e496612c
MK
1020 * by parallel ongoing shrinking.
1021 */
1022 if (rwsem_is_contended(&shrinker_rwsem)) {
1023 freed = freed ? : 1;
1024 break;
1025 }
1da177e4 1026 }
6b4f7799 1027
1da177e4 1028 up_read(&shrinker_rwsem);
f06590bd
MK
1029out:
1030 cond_resched();
24f7c6b9 1031 return freed;
1da177e4
LT
1032}
1033
e83b39d6 1034static unsigned long drop_slab_node(int nid)
cb731d6c 1035{
e83b39d6
JK
1036 unsigned long freed = 0;
1037 struct mem_cgroup *memcg = NULL;
cb731d6c 1038
e83b39d6 1039 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 1040 do {
e83b39d6
JK
1041 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1042 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
069c411d 1043
e83b39d6 1044 return freed;
cb731d6c
VD
1045}
1046
1047void drop_slab(void)
1048{
1049 int nid;
e83b39d6
JK
1050 int shift = 0;
1051 unsigned long freed;
1052
1053 do {
1054 freed = 0;
1055 for_each_online_node(nid) {
1056 if (fatal_signal_pending(current))
1057 return;
cb731d6c 1058
e83b39d6
JK
1059 freed += drop_slab_node(nid);
1060 }
1061 } while ((freed >> shift++) > 1);
cb731d6c
VD
1062}
1063
57e9cc50
JW
1064static int reclaimer_offset(void)
1065{
1066 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1067 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1068 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1069 PGSCAN_DIRECT - PGSCAN_KSWAPD);
1070 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1071 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1072 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1073 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1074
1075 if (current_is_kswapd())
1076 return 0;
1077 if (current_is_khugepaged())
1078 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1079 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1080}
1081
e0cd5e7f 1082static inline int is_page_cache_freeable(struct folio *folio)
1da177e4 1083{
ceddc3a5 1084 /*
49fd9b6d
MWO
1085 * A freeable page cache folio is referenced only by the caller
1086 * that isolated the folio, the page cache and optional filesystem
1087 * private data at folio->private.
ceddc3a5 1088 */
e0cd5e7f
MWO
1089 return folio_ref_count(folio) - folio_test_private(folio) ==
1090 1 + folio_nr_pages(folio);
1da177e4
LT
1091}
1092
1da177e4 1093/*
e0cd5e7f 1094 * We detected a synchronous write error writing a folio out. Probably
1da177e4
LT
1095 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1096 * fsync(), msync() or close().
1097 *
1098 * The tricky part is that after writepage we cannot touch the mapping: nothing
e0cd5e7f
MWO
1099 * prevents it from being freed up. But we have a ref on the folio and once
1100 * that folio is locked, the mapping is pinned.
1da177e4 1101 *
e0cd5e7f 1102 * We're allowed to run sleeping folio_lock() here because we know the caller has
1da177e4
LT
1103 * __GFP_FS.
1104 */
1105static void handle_write_error(struct address_space *mapping,
e0cd5e7f 1106 struct folio *folio, int error)
1da177e4 1107{
e0cd5e7f
MWO
1108 folio_lock(folio);
1109 if (folio_mapping(folio) == mapping)
3e9f45bd 1110 mapping_set_error(mapping, error);
e0cd5e7f 1111 folio_unlock(folio);
1da177e4
LT
1112}
1113
1b4e3f26
MG
1114static bool skip_throttle_noprogress(pg_data_t *pgdat)
1115{
1116 int reclaimable = 0, write_pending = 0;
1117 int i;
1118
1119 /*
1120 * If kswapd is disabled, reschedule if necessary but do not
1121 * throttle as the system is likely near OOM.
1122 */
1123 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1124 return true;
1125
1126 /*
49fd9b6d
MWO
1127 * If there are a lot of dirty/writeback folios then do not
1128 * throttle as throttling will occur when the folios cycle
1b4e3f26
MG
1129 * towards the end of the LRU if still under writeback.
1130 */
1131 for (i = 0; i < MAX_NR_ZONES; i++) {
1132 struct zone *zone = pgdat->node_zones + i;
1133
36c26128 1134 if (!managed_zone(zone))
1b4e3f26
MG
1135 continue;
1136
1137 reclaimable += zone_reclaimable_pages(zone);
1138 write_pending += zone_page_state_snapshot(zone,
1139 NR_ZONE_WRITE_PENDING);
1140 }
1141 if (2 * write_pending <= reclaimable)
1142 return true;
1143
1144 return false;
1145}
1146
c3f4a9a2 1147void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
8cd7c588
MG
1148{
1149 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
c3f4a9a2 1150 long timeout, ret;
8cd7c588
MG
1151 DEFINE_WAIT(wait);
1152
1153 /*
1154 * Do not throttle IO workers, kthreads other than kswapd or
1155 * workqueues. They may be required for reclaim to make
1156 * forward progress (e.g. journalling workqueues or kthreads).
1157 */
1158 if (!current_is_kswapd() &&
b485c6f1
MG
1159 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1160 cond_resched();
8cd7c588 1161 return;
b485c6f1 1162 }
8cd7c588 1163
c3f4a9a2
MG
1164 /*
1165 * These figures are pulled out of thin air.
1166 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1167 * parallel reclaimers which is a short-lived event so the timeout is
1168 * short. Failing to make progress or waiting on writeback are
1169 * potentially long-lived events so use a longer timeout. This is shaky
1170 * logic as a failure to make progress could be due to anything from
49fd9b6d 1171 * writeback to a slow device to excessive referenced folios at the tail
c3f4a9a2
MG
1172 * of the inactive LRU.
1173 */
1174 switch(reason) {
1175 case VMSCAN_THROTTLE_WRITEBACK:
1176 timeout = HZ/10;
1177
1178 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1179 WRITE_ONCE(pgdat->nr_reclaim_start,
1180 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1181 }
1182
1183 break;
1b4e3f26
MG
1184 case VMSCAN_THROTTLE_CONGESTED:
1185 fallthrough;
c3f4a9a2 1186 case VMSCAN_THROTTLE_NOPROGRESS:
1b4e3f26
MG
1187 if (skip_throttle_noprogress(pgdat)) {
1188 cond_resched();
1189 return;
1190 }
1191
1192 timeout = 1;
1193
c3f4a9a2
MG
1194 break;
1195 case VMSCAN_THROTTLE_ISOLATED:
1196 timeout = HZ/50;
1197 break;
1198 default:
1199 WARN_ON_ONCE(1);
1200 timeout = HZ;
1201 break;
8cd7c588
MG
1202 }
1203
1204 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1205 ret = schedule_timeout(timeout);
1206 finish_wait(wqh, &wait);
d818fca1 1207
c3f4a9a2 1208 if (reason == VMSCAN_THROTTLE_WRITEBACK)
d818fca1 1209 atomic_dec(&pgdat->nr_writeback_throttled);
8cd7c588
MG
1210
1211 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1212 jiffies_to_usecs(timeout - ret),
1213 reason);
1214}
1215
1216/*
49fd9b6d
MWO
1217 * Account for folios written if tasks are throttled waiting on dirty
1218 * folios to clean. If enough folios have been cleaned since throttling
8cd7c588
MG
1219 * started then wakeup the throttled tasks.
1220 */
512b7931 1221void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
8cd7c588
MG
1222 int nr_throttled)
1223{
1224 unsigned long nr_written;
1225
512b7931 1226 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
8cd7c588
MG
1227
1228 /*
1229 * This is an inaccurate read as the per-cpu deltas may not
1230 * be synchronised. However, given that the system is
1231 * writeback throttled, it is not worth taking the penalty
1232 * of getting an accurate count. At worst, the throttle
1233 * timeout guarantees forward progress.
1234 */
1235 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1236 READ_ONCE(pgdat->nr_reclaim_start);
1237
1238 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1239 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1240}
1241
04e62a29
CL
1242/* possible outcome of pageout() */
1243typedef enum {
49fd9b6d 1244 /* failed to write folio out, folio is locked */
04e62a29 1245 PAGE_KEEP,
49fd9b6d 1246 /* move folio to the active list, folio is locked */
04e62a29 1247 PAGE_ACTIVATE,
49fd9b6d 1248 /* folio has been sent to the disk successfully, folio is unlocked */
04e62a29 1249 PAGE_SUCCESS,
49fd9b6d 1250 /* folio is clean and locked */
04e62a29
CL
1251 PAGE_CLEAN,
1252} pageout_t;
1253
1da177e4 1254/*
49fd9b6d 1255 * pageout is called by shrink_folio_list() for each dirty folio.
1742f19f 1256 * Calls ->writepage().
1da177e4 1257 */
2282679f
N
1258static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1259 struct swap_iocb **plug)
1da177e4
LT
1260{
1261 /*
e0cd5e7f 1262 * If the folio is dirty, only perform writeback if that write
1da177e4
LT
1263 * will be non-blocking. To prevent this allocation from being
1264 * stalled by pagecache activity. But note that there may be
1265 * stalls if we need to run get_block(). We could test
1266 * PagePrivate for that.
1267 *
8174202b 1268 * If this process is currently in __generic_file_write_iter() against
e0cd5e7f 1269 * this folio's queue, we can perform writeback even if that
1da177e4
LT
1270 * will block.
1271 *
e0cd5e7f 1272 * If the folio is swapcache, write it back even if that would
1da177e4
LT
1273 * block, for some throttling. This happens by accident, because
1274 * swap_backing_dev_info is bust: it doesn't reflect the
1275 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4 1276 */
e0cd5e7f 1277 if (!is_page_cache_freeable(folio))
1da177e4
LT
1278 return PAGE_KEEP;
1279 if (!mapping) {
1280 /*
e0cd5e7f
MWO
1281 * Some data journaling orphaned folios can have
1282 * folio->mapping == NULL while being dirty with clean buffers.
1da177e4 1283 */
e0cd5e7f 1284 if (folio_test_private(folio)) {
68189fef 1285 if (try_to_free_buffers(folio)) {
e0cd5e7f
MWO
1286 folio_clear_dirty(folio);
1287 pr_info("%s: orphaned folio\n", __func__);
1da177e4
LT
1288 return PAGE_CLEAN;
1289 }
1290 }
1291 return PAGE_KEEP;
1292 }
1293 if (mapping->a_ops->writepage == NULL)
1294 return PAGE_ACTIVATE;
1da177e4 1295
e0cd5e7f 1296 if (folio_clear_dirty_for_io(folio)) {
1da177e4
LT
1297 int res;
1298 struct writeback_control wbc = {
1299 .sync_mode = WB_SYNC_NONE,
1300 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1301 .range_start = 0,
1302 .range_end = LLONG_MAX,
1da177e4 1303 .for_reclaim = 1,
2282679f 1304 .swap_plug = plug,
1da177e4
LT
1305 };
1306
e0cd5e7f
MWO
1307 folio_set_reclaim(folio);
1308 res = mapping->a_ops->writepage(&folio->page, &wbc);
1da177e4 1309 if (res < 0)
e0cd5e7f 1310 handle_write_error(mapping, folio, res);
994fc28c 1311 if (res == AOP_WRITEPAGE_ACTIVATE) {
e0cd5e7f 1312 folio_clear_reclaim(folio);
1da177e4
LT
1313 return PAGE_ACTIVATE;
1314 }
c661b078 1315
e0cd5e7f 1316 if (!folio_test_writeback(folio)) {
1da177e4 1317 /* synchronous write or broken a_ops? */
e0cd5e7f 1318 folio_clear_reclaim(folio);
1da177e4 1319 }
e0cd5e7f
MWO
1320 trace_mm_vmscan_write_folio(folio);
1321 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1da177e4
LT
1322 return PAGE_SUCCESS;
1323 }
1324
1325 return PAGE_CLEAN;
1326}
1327
a649fd92 1328/*
49fd9b6d 1329 * Same as remove_mapping, but if the folio is removed from the mapping, it
e286781d 1330 * gets returned with a refcount of 0.
a649fd92 1331 */
be7c07d6 1332static int __remove_mapping(struct address_space *mapping, struct folio *folio,
b910718a 1333 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1334{
bd4c82c2 1335 int refcount;
aae466b0 1336 void *shadow = NULL;
c4843a75 1337
be7c07d6
MWO
1338 BUG_ON(!folio_test_locked(folio));
1339 BUG_ON(mapping != folio_mapping(folio));
49d2e9cc 1340
be7c07d6 1341 if (!folio_test_swapcache(folio))
51b8c1fe 1342 spin_lock(&mapping->host->i_lock);
30472509 1343 xa_lock_irq(&mapping->i_pages);
49d2e9cc 1344 /*
49fd9b6d 1345 * The non racy check for a busy folio.
0fd0e6b0
NP
1346 *
1347 * Must be careful with the order of the tests. When someone has
49fd9b6d
MWO
1348 * a ref to the folio, it may be possible that they dirty it then
1349 * drop the reference. So if the dirty flag is tested before the
1350 * refcount here, then the following race may occur:
0fd0e6b0
NP
1351 *
1352 * get_user_pages(&page);
1353 * [user mapping goes away]
1354 * write_to(page);
49fd9b6d
MWO
1355 * !folio_test_dirty(folio) [good]
1356 * folio_set_dirty(folio);
1357 * folio_put(folio);
1358 * !refcount(folio) [good, discard it]
0fd0e6b0
NP
1359 *
1360 * [oops, our write_to data is lost]
1361 *
1362 * Reversing the order of the tests ensures such a situation cannot
49fd9b6d
MWO
1363 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1364 * load is not satisfied before that of folio->_refcount.
0fd0e6b0 1365 *
49fd9b6d 1366 * Note that if the dirty flag is always set via folio_mark_dirty,
b93b0163 1367 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1368 */
be7c07d6
MWO
1369 refcount = 1 + folio_nr_pages(folio);
1370 if (!folio_ref_freeze(folio, refcount))
49d2e9cc 1371 goto cannot_free;
49fd9b6d 1372 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
be7c07d6
MWO
1373 if (unlikely(folio_test_dirty(folio))) {
1374 folio_ref_unfreeze(folio, refcount);
49d2e9cc 1375 goto cannot_free;
e286781d 1376 }
49d2e9cc 1377
be7c07d6
MWO
1378 if (folio_test_swapcache(folio)) {
1379 swp_entry_t swap = folio_swap_entry(folio);
ac35a490 1380
aae466b0 1381 if (reclaimed && !mapping_exiting(mapping))
8927f647 1382 shadow = workingset_eviction(folio, target_memcg);
ceff9d33 1383 __delete_from_swap_cache(folio, swap, shadow);
c449deb2 1384 mem_cgroup_swapout(folio, swap);
30472509 1385 xa_unlock_irq(&mapping->i_pages);
4081f744 1386 put_swap_folio(folio, swap);
e286781d 1387 } else {
d2329aa0 1388 void (*free_folio)(struct folio *);
6072d13c 1389
d2329aa0 1390 free_folio = mapping->a_ops->free_folio;
a528910e
JW
1391 /*
1392 * Remember a shadow entry for reclaimed file cache in
1393 * order to detect refaults, thus thrashing, later on.
1394 *
1395 * But don't store shadows in an address space that is
238c3046 1396 * already exiting. This is not just an optimization,
a528910e
JW
1397 * inode reclaim needs to empty out the radix tree or
1398 * the nodes are lost. Don't plant shadows behind its
1399 * back.
f9fe48be
RZ
1400 *
1401 * We also don't store shadows for DAX mappings because the
49fd9b6d 1402 * only page cache folios found in these are zero pages
f9fe48be
RZ
1403 * covering holes, and because we don't want to mix DAX
1404 * exceptional entries and shadow exceptional entries in the
b93b0163 1405 * same address_space.
a528910e 1406 */
be7c07d6 1407 if (reclaimed && folio_is_file_lru(folio) &&
f9fe48be 1408 !mapping_exiting(mapping) && !dax_mapping(mapping))
8927f647
MWO
1409 shadow = workingset_eviction(folio, target_memcg);
1410 __filemap_remove_folio(folio, shadow);
30472509 1411 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
1412 if (mapping_shrinkable(mapping))
1413 inode_add_lru(mapping->host);
1414 spin_unlock(&mapping->host->i_lock);
6072d13c 1415
d2329aa0
MWO
1416 if (free_folio)
1417 free_folio(folio);
49d2e9cc
CL
1418 }
1419
49d2e9cc
CL
1420 return 1;
1421
1422cannot_free:
30472509 1423 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1424 if (!folio_test_swapcache(folio))
51b8c1fe 1425 spin_unlock(&mapping->host->i_lock);
49d2e9cc
CL
1426 return 0;
1427}
1428
5100da38
MWO
1429/**
1430 * remove_mapping() - Attempt to remove a folio from its mapping.
1431 * @mapping: The address space.
1432 * @folio: The folio to remove.
1433 *
1434 * If the folio is dirty, under writeback or if someone else has a ref
1435 * on it, removal will fail.
1436 * Return: The number of pages removed from the mapping. 0 if the folio
1437 * could not be removed.
1438 * Context: The caller should have a single refcount on the folio and
1439 * hold its lock.
e286781d 1440 */
5100da38 1441long remove_mapping(struct address_space *mapping, struct folio *folio)
e286781d 1442{
be7c07d6 1443 if (__remove_mapping(mapping, folio, false, NULL)) {
e286781d 1444 /*
5100da38 1445 * Unfreezing the refcount with 1 effectively
e286781d
NP
1446 * drops the pagecache ref for us without requiring another
1447 * atomic operation.
1448 */
be7c07d6 1449 folio_ref_unfreeze(folio, 1);
5100da38 1450 return folio_nr_pages(folio);
e286781d
NP
1451 }
1452 return 0;
1453}
1454
894bc310 1455/**
ca6d60f3
MWO
1456 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1457 * @folio: Folio to be returned to an LRU list.
894bc310 1458 *
ca6d60f3
MWO
1459 * Add previously isolated @folio to appropriate LRU list.
1460 * The folio may still be unevictable for other reasons.
894bc310 1461 *
ca6d60f3 1462 * Context: lru_lock must not be held, interrupts must be enabled.
894bc310 1463 */
ca6d60f3 1464void folio_putback_lru(struct folio *folio)
894bc310 1465{
ca6d60f3
MWO
1466 folio_add_lru(folio);
1467 folio_put(folio); /* drop ref from isolate */
894bc310
LS
1468}
1469
49fd9b6d
MWO
1470enum folio_references {
1471 FOLIOREF_RECLAIM,
1472 FOLIOREF_RECLAIM_CLEAN,
1473 FOLIOREF_KEEP,
1474 FOLIOREF_ACTIVATE,
dfc8d636
JW
1475};
1476
49fd9b6d 1477static enum folio_references folio_check_references(struct folio *folio,
dfc8d636
JW
1478 struct scan_control *sc)
1479{
d92013d1 1480 int referenced_ptes, referenced_folio;
dfc8d636 1481 unsigned long vm_flags;
dfc8d636 1482
b3ac0413
MWO
1483 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1484 &vm_flags);
d92013d1 1485 referenced_folio = folio_test_clear_referenced(folio);
dfc8d636 1486
dfc8d636 1487 /*
d92013d1
MWO
1488 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1489 * Let the folio, now marked Mlocked, be moved to the unevictable list.
dfc8d636
JW
1490 */
1491 if (vm_flags & VM_LOCKED)
49fd9b6d 1492 return FOLIOREF_ACTIVATE;
dfc8d636 1493
6d4675e6
MK
1494 /* rmap lock contention: rotate */
1495 if (referenced_ptes == -1)
49fd9b6d 1496 return FOLIOREF_KEEP;
6d4675e6 1497
64574746 1498 if (referenced_ptes) {
64574746 1499 /*
d92013d1 1500 * All mapped folios start out with page table
64574746 1501 * references from the instantiating fault, so we need
9030fb0b 1502 * to look twice if a mapped file/anon folio is used more
64574746
JW
1503 * than once.
1504 *
1505 * Mark it and spare it for another trip around the
1506 * inactive list. Another page table reference will
1507 * lead to its activation.
1508 *
d92013d1
MWO
1509 * Note: the mark is set for activated folios as well
1510 * so that recently deactivated but used folios are
64574746
JW
1511 * quickly recovered.
1512 */
d92013d1 1513 folio_set_referenced(folio);
64574746 1514
d92013d1 1515 if (referenced_folio || referenced_ptes > 1)
49fd9b6d 1516 return FOLIOREF_ACTIVATE;
64574746 1517
c909e993 1518 /*
d92013d1 1519 * Activate file-backed executable folios after first usage.
c909e993 1520 */
f19a27e3 1521 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
49fd9b6d 1522 return FOLIOREF_ACTIVATE;
c909e993 1523
49fd9b6d 1524 return FOLIOREF_KEEP;
64574746 1525 }
dfc8d636 1526
d92013d1 1527 /* Reclaim if clean, defer dirty folios to writeback */
f19a27e3 1528 if (referenced_folio && folio_is_file_lru(folio))
49fd9b6d 1529 return FOLIOREF_RECLAIM_CLEAN;
64574746 1530
49fd9b6d 1531 return FOLIOREF_RECLAIM;
dfc8d636
JW
1532}
1533
49fd9b6d 1534/* Check if a folio is dirty or under writeback */
e20c41b1 1535static void folio_check_dirty_writeback(struct folio *folio,
e2be15f6
MG
1536 bool *dirty, bool *writeback)
1537{
b4597226
MG
1538 struct address_space *mapping;
1539
e2be15f6 1540 /*
49fd9b6d 1541 * Anonymous folios are not handled by flushers and must be written
32a331a7 1542 * from reclaim context. Do not stall reclaim based on them.
49fd9b6d 1543 * MADV_FREE anonymous folios are put into inactive file list too.
32a331a7
ML
1544 * They could be mistakenly treated as file lru. So further anon
1545 * test is needed.
e2be15f6 1546 */
e20c41b1
MWO
1547 if (!folio_is_file_lru(folio) ||
1548 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
e2be15f6
MG
1549 *dirty = false;
1550 *writeback = false;
1551 return;
1552 }
1553
e20c41b1
MWO
1554 /* By default assume that the folio flags are accurate */
1555 *dirty = folio_test_dirty(folio);
1556 *writeback = folio_test_writeback(folio);
b4597226
MG
1557
1558 /* Verify dirty/writeback state if the filesystem supports it */
e20c41b1 1559 if (!folio_test_private(folio))
b4597226
MG
1560 return;
1561
e20c41b1 1562 mapping = folio_mapping(folio);
b4597226 1563 if (mapping && mapping->a_ops->is_dirty_writeback)
520f301c 1564 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
e2be15f6
MG
1565}
1566
32008027 1567static struct page *alloc_demote_page(struct page *page, unsigned long private)
26aa2d19 1568{
32008027
JG
1569 struct page *target_page;
1570 nodemask_t *allowed_mask;
1571 struct migration_target_control *mtc;
1572
1573 mtc = (struct migration_target_control *)private;
1574
1575 allowed_mask = mtc->nmask;
1576 /*
1577 * make sure we allocate from the target node first also trying to
1578 * demote or reclaim pages from the target node via kswapd if we are
1579 * low on free memory on target node. If we don't do this and if
1580 * we have free memory on the slower(lower) memtier, we would start
1581 * allocating pages from slower(lower) memory tiers without even forcing
1582 * a demotion of cold pages from the target memtier. This can result
1583 * in the kernel placing hot pages in slower(lower) memory tiers.
1584 */
1585 mtc->nmask = NULL;
1586 mtc->gfp_mask |= __GFP_THISNODE;
1587 target_page = alloc_migration_target(page, (unsigned long)mtc);
1588 if (target_page)
1589 return target_page;
26aa2d19 1590
32008027
JG
1591 mtc->gfp_mask &= ~__GFP_THISNODE;
1592 mtc->nmask = allowed_mask;
1593
1594 return alloc_migration_target(page, (unsigned long)mtc);
26aa2d19
DH
1595}
1596
1597/*
49fd9b6d
MWO
1598 * Take folios on @demote_folios and attempt to demote them to another node.
1599 * Folios which are not demoted are left on @demote_folios.
26aa2d19 1600 */
49fd9b6d 1601static unsigned int demote_folio_list(struct list_head *demote_folios,
26aa2d19
DH
1602 struct pglist_data *pgdat)
1603{
1604 int target_nid = next_demotion_node(pgdat->node_id);
1605 unsigned int nr_succeeded;
32008027
JG
1606 nodemask_t allowed_mask;
1607
1608 struct migration_target_control mtc = {
1609 /*
1610 * Allocate from 'node', or fail quickly and quietly.
1611 * When this happens, 'page' will likely just be discarded
1612 * instead of migrated.
1613 */
1614 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1615 __GFP_NOMEMALLOC | GFP_NOWAIT,
1616 .nid = target_nid,
1617 .nmask = &allowed_mask
1618 };
26aa2d19 1619
49fd9b6d 1620 if (list_empty(demote_folios))
26aa2d19
DH
1621 return 0;
1622
1623 if (target_nid == NUMA_NO_NODE)
1624 return 0;
1625
32008027
JG
1626 node_get_allowed_targets(pgdat, &allowed_mask);
1627
26aa2d19 1628 /* Demotion ignores all cpuset and mempolicy settings */
49fd9b6d 1629 migrate_pages(demote_folios, alloc_demote_page, NULL,
32008027
JG
1630 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1631 &nr_succeeded);
26aa2d19 1632
57e9cc50 1633 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
668e4147 1634
26aa2d19
DH
1635 return nr_succeeded;
1636}
1637
c28a0e96 1638static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
d791ea67
N
1639{
1640 if (gfp_mask & __GFP_FS)
1641 return true;
c28a0e96 1642 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
d791ea67
N
1643 return false;
1644 /*
1645 * We can "enter_fs" for swap-cache with only __GFP_IO
1646 * providing this isn't SWP_FS_OPS.
1647 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1648 * but that will never affect SWP_FS_OPS, so the data_race
1649 * is safe.
1650 */
b98c359f 1651 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
d791ea67
N
1652}
1653
1da177e4 1654/*
49fd9b6d 1655 * shrink_folio_list() returns the number of reclaimed pages
1da177e4 1656 */
49fd9b6d
MWO
1657static unsigned int shrink_folio_list(struct list_head *folio_list,
1658 struct pglist_data *pgdat, struct scan_control *sc,
1659 struct reclaim_stat *stat, bool ignore_references)
1660{
1661 LIST_HEAD(ret_folios);
1662 LIST_HEAD(free_folios);
1663 LIST_HEAD(demote_folios);
730ec8c0
MS
1664 unsigned int nr_reclaimed = 0;
1665 unsigned int pgactivate = 0;
26aa2d19 1666 bool do_demote_pass;
2282679f 1667 struct swap_iocb *plug = NULL;
1da177e4 1668
060f005f 1669 memset(stat, 0, sizeof(*stat));
1da177e4 1670 cond_resched();
26aa2d19 1671 do_demote_pass = can_demote(pgdat->node_id, sc);
1da177e4 1672
26aa2d19 1673retry:
49fd9b6d 1674 while (!list_empty(folio_list)) {
1da177e4 1675 struct address_space *mapping;
be7c07d6 1676 struct folio *folio;
49fd9b6d 1677 enum folio_references references = FOLIOREF_RECLAIM;
d791ea67 1678 bool dirty, writeback;
98879b3b 1679 unsigned int nr_pages;
1da177e4
LT
1680
1681 cond_resched();
1682
49fd9b6d 1683 folio = lru_to_folio(folio_list);
be7c07d6 1684 list_del(&folio->lru);
1da177e4 1685
c28a0e96 1686 if (!folio_trylock(folio))
1da177e4
LT
1687 goto keep;
1688
c28a0e96 1689 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1da177e4 1690
c28a0e96 1691 nr_pages = folio_nr_pages(folio);
98879b3b 1692
c28a0e96 1693 /* Account the number of base pages */
98879b3b 1694 sc->nr_scanned += nr_pages;
80e43426 1695
c28a0e96 1696 if (unlikely(!folio_evictable(folio)))
ad6b6704 1697 goto activate_locked;
894bc310 1698
1bee2c16 1699 if (!sc->may_unmap && folio_mapped(folio))
80e43426
CL
1700 goto keep_locked;
1701
018ee47f
YZ
1702 /* folio_update_gen() tried to promote this page? */
1703 if (lru_gen_enabled() && !ignore_references &&
1704 folio_mapped(folio) && folio_test_referenced(folio))
1705 goto keep_locked;
1706
e2be15f6 1707 /*
894befec 1708 * The number of dirty pages determines if a node is marked
8cd7c588 1709 * reclaim_congested. kswapd will stall and start writing
c28a0e96 1710 * folios if the tail of the LRU is all dirty unqueued folios.
e2be15f6 1711 */
e20c41b1 1712 folio_check_dirty_writeback(folio, &dirty, &writeback);
e2be15f6 1713 if (dirty || writeback)
c79b7b96 1714 stat->nr_dirty += nr_pages;
e2be15f6
MG
1715
1716 if (dirty && !writeback)
c79b7b96 1717 stat->nr_unqueued_dirty += nr_pages;
e2be15f6 1718
d04e8acd 1719 /*
c28a0e96
MWO
1720 * Treat this folio as congested if folios are cycling
1721 * through the LRU so quickly that the folios marked
1722 * for immediate reclaim are making it to the end of
1723 * the LRU a second time.
d04e8acd 1724 */
c28a0e96 1725 if (writeback && folio_test_reclaim(folio))
c79b7b96 1726 stat->nr_congested += nr_pages;
e2be15f6 1727
283aba9f 1728 /*
d33e4e14 1729 * If a folio at the tail of the LRU is under writeback, there
283aba9f
MG
1730 * are three cases to consider.
1731 *
c28a0e96
MWO
1732 * 1) If reclaim is encountering an excessive number
1733 * of folios under writeback and this folio has both
1734 * the writeback and reclaim flags set, then it
d33e4e14
MWO
1735 * indicates that folios are being queued for I/O but
1736 * are being recycled through the LRU before the I/O
1737 * can complete. Waiting on the folio itself risks an
1738 * indefinite stall if it is impossible to writeback
1739 * the folio due to I/O error or disconnected storage
1740 * so instead note that the LRU is being scanned too
1741 * quickly and the caller can stall after the folio
1742 * list has been processed.
283aba9f 1743 *
d33e4e14 1744 * 2) Global or new memcg reclaim encounters a folio that is
ecf5fc6e
MH
1745 * not marked for immediate reclaim, or the caller does not
1746 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
d33e4e14 1747 * not to fs). In this case mark the folio for immediate
97c9341f 1748 * reclaim and continue scanning.
283aba9f 1749 *
d791ea67 1750 * Require may_enter_fs() because we would wait on fs, which
d33e4e14
MWO
1751 * may not have submitted I/O yet. And the loop driver might
1752 * enter reclaim, and deadlock if it waits on a folio for
283aba9f
MG
1753 * which it is needed to do the write (loop masks off
1754 * __GFP_IO|__GFP_FS for this reason); but more thought
1755 * would probably show more reasons.
1756 *
d33e4e14
MWO
1757 * 3) Legacy memcg encounters a folio that already has the
1758 * reclaim flag set. memcg does not have any dirty folio
283aba9f 1759 * throttling so we could easily OOM just because too many
d33e4e14 1760 * folios are in writeback and there is nothing else to
283aba9f 1761 * reclaim. Wait for the writeback to complete.
c55e8d03 1762 *
d33e4e14
MWO
1763 * In cases 1) and 2) we activate the folios to get them out of
1764 * the way while we continue scanning for clean folios on the
c55e8d03
JW
1765 * inactive list and refilling from the active list. The
1766 * observation here is that waiting for disk writes is more
1767 * expensive than potentially causing reloads down the line.
1768 * Since they're marked for immediate reclaim, they won't put
1769 * memory pressure on the cache working set any longer than it
1770 * takes to write them to disk.
283aba9f 1771 */
d33e4e14 1772 if (folio_test_writeback(folio)) {
283aba9f
MG
1773 /* Case 1 above */
1774 if (current_is_kswapd() &&
d33e4e14 1775 folio_test_reclaim(folio) &&
599d0c95 1776 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
c79b7b96 1777 stat->nr_immediate += nr_pages;
c55e8d03 1778 goto activate_locked;
283aba9f
MG
1779
1780 /* Case 2 above */
b5ead35e 1781 } else if (writeback_throttling_sane(sc) ||
d33e4e14 1782 !folio_test_reclaim(folio) ||
c28a0e96 1783 !may_enter_fs(folio, sc->gfp_mask)) {
c3b94f44 1784 /*
d33e4e14 1785 * This is slightly racy -
c28a0e96
MWO
1786 * folio_end_writeback() might have
1787 * just cleared the reclaim flag, then
1788 * setting the reclaim flag here ends up
1789 * interpreted as the readahead flag - but
1790 * that does not matter enough to care.
1791 * What we do want is for this folio to
1792 * have the reclaim flag set next time
1793 * memcg reclaim reaches the tests above,
1794 * so it will then wait for writeback to
1795 * avoid OOM; and it's also appropriate
d33e4e14 1796 * in global reclaim.
c3b94f44 1797 */
d33e4e14 1798 folio_set_reclaim(folio);
c79b7b96 1799 stat->nr_writeback += nr_pages;
c55e8d03 1800 goto activate_locked;
283aba9f
MG
1801
1802 /* Case 3 above */
1803 } else {
d33e4e14
MWO
1804 folio_unlock(folio);
1805 folio_wait_writeback(folio);
1806 /* then go back and try same folio again */
49fd9b6d 1807 list_add_tail(&folio->lru, folio_list);
7fadc820 1808 continue;
e62e384e 1809 }
c661b078 1810 }
1da177e4 1811
8940b34a 1812 if (!ignore_references)
d92013d1 1813 references = folio_check_references(folio, sc);
02c6de8d 1814
dfc8d636 1815 switch (references) {
49fd9b6d 1816 case FOLIOREF_ACTIVATE:
1da177e4 1817 goto activate_locked;
49fd9b6d 1818 case FOLIOREF_KEEP:
98879b3b 1819 stat->nr_ref_keep += nr_pages;
64574746 1820 goto keep_locked;
49fd9b6d
MWO
1821 case FOLIOREF_RECLAIM:
1822 case FOLIOREF_RECLAIM_CLEAN:
c28a0e96 1823 ; /* try to reclaim the folio below */
dfc8d636 1824 }
1da177e4 1825
26aa2d19 1826 /*
c28a0e96 1827 * Before reclaiming the folio, try to relocate
26aa2d19
DH
1828 * its contents to another node.
1829 */
1830 if (do_demote_pass &&
c28a0e96 1831 (thp_migration_supported() || !folio_test_large(folio))) {
49fd9b6d 1832 list_add(&folio->lru, &demote_folios);
c28a0e96 1833 folio_unlock(folio);
26aa2d19
DH
1834 continue;
1835 }
1836
1da177e4
LT
1837 /*
1838 * Anonymous process memory has backing store?
1839 * Try to allocate it some swap space here.
c28a0e96 1840 * Lazyfree folio could be freed directly
1da177e4 1841 */
c28a0e96
MWO
1842 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1843 if (!folio_test_swapcache(folio)) {
bd4c82c2
HY
1844 if (!(sc->gfp_mask & __GFP_IO))
1845 goto keep_locked;
d4b4084a 1846 if (folio_maybe_dma_pinned(folio))
feb889fb 1847 goto keep_locked;
c28a0e96
MWO
1848 if (folio_test_large(folio)) {
1849 /* cannot split folio, skip it */
d4b4084a 1850 if (!can_split_folio(folio, NULL))
bd4c82c2
HY
1851 goto activate_locked;
1852 /*
c28a0e96 1853 * Split folios without a PMD map right
bd4c82c2
HY
1854 * away. Chances are some or all of the
1855 * tail pages can be freed without IO.
1856 */
d4b4084a 1857 if (!folio_entire_mapcount(folio) &&
346cf613 1858 split_folio_to_list(folio,
49fd9b6d 1859 folio_list))
bd4c82c2
HY
1860 goto activate_locked;
1861 }
09c02e56
MWO
1862 if (!add_to_swap(folio)) {
1863 if (!folio_test_large(folio))
98879b3b 1864 goto activate_locked_split;
bd4c82c2 1865 /* Fallback to swap normal pages */
346cf613 1866 if (split_folio_to_list(folio,
49fd9b6d 1867 folio_list))
bd4c82c2 1868 goto activate_locked;
fe490cc0
HY
1869#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1870 count_vm_event(THP_SWPOUT_FALLBACK);
1871#endif
09c02e56 1872 if (!add_to_swap(folio))
98879b3b 1873 goto activate_locked_split;
bd4c82c2 1874 }
bd4c82c2 1875 }
c28a0e96
MWO
1876 } else if (folio_test_swapbacked(folio) &&
1877 folio_test_large(folio)) {
1878 /* Split shmem folio */
49fd9b6d 1879 if (split_folio_to_list(folio, folio_list))
7751b2da 1880 goto keep_locked;
e2be15f6 1881 }
1da177e4 1882
98879b3b 1883 /*
c28a0e96
MWO
1884 * If the folio was split above, the tail pages will make
1885 * their own pass through this function and be accounted
1886 * then.
98879b3b 1887 */
c28a0e96 1888 if ((nr_pages > 1) && !folio_test_large(folio)) {
98879b3b
YS
1889 sc->nr_scanned -= (nr_pages - 1);
1890 nr_pages = 1;
1891 }
1892
1da177e4 1893 /*
1bee2c16 1894 * The folio is mapped into the page tables of one or more
1da177e4
LT
1895 * processes. Try to unmap it here.
1896 */
1bee2c16 1897 if (folio_mapped(folio)) {
013339df 1898 enum ttu_flags flags = TTU_BATCH_FLUSH;
1bee2c16 1899 bool was_swapbacked = folio_test_swapbacked(folio);
bd4c82c2 1900
1bee2c16 1901 if (folio_test_pmd_mappable(folio))
bd4c82c2 1902 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1903
869f7ee6 1904 try_to_unmap(folio, flags);
1bee2c16 1905 if (folio_mapped(folio)) {
98879b3b 1906 stat->nr_unmap_fail += nr_pages;
1bee2c16
MWO
1907 if (!was_swapbacked &&
1908 folio_test_swapbacked(folio))
1f318a9b 1909 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1910 goto activate_locked;
1da177e4
LT
1911 }
1912 }
1913
5441d490 1914 mapping = folio_mapping(folio);
49bd2bf9 1915 if (folio_test_dirty(folio)) {
ee72886d 1916 /*
49bd2bf9 1917 * Only kswapd can writeback filesystem folios
4eda4823 1918 * to avoid risk of stack overflow. But avoid
49bd2bf9 1919 * injecting inefficient single-folio I/O into
4eda4823 1920 * flusher writeback as much as possible: only
49bd2bf9
MWO
1921 * write folios when we've encountered many
1922 * dirty folios, and when we've already scanned
1923 * the rest of the LRU for clean folios and see
1924 * the same dirty folios again (with the reclaim
1925 * flag set).
ee72886d 1926 */
49bd2bf9
MWO
1927 if (folio_is_file_lru(folio) &&
1928 (!current_is_kswapd() ||
1929 !folio_test_reclaim(folio) ||
4eda4823 1930 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1931 /*
1932 * Immediately reclaim when written back.
5a9e3474 1933 * Similar in principle to folio_deactivate()
49bd2bf9 1934 * except we already have the folio isolated
49ea7eb6
MG
1935 * and know it's dirty
1936 */
49bd2bf9
MWO
1937 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1938 nr_pages);
1939 folio_set_reclaim(folio);
49ea7eb6 1940
c55e8d03 1941 goto activate_locked;
ee72886d
MG
1942 }
1943
49fd9b6d 1944 if (references == FOLIOREF_RECLAIM_CLEAN)
1da177e4 1945 goto keep_locked;
c28a0e96 1946 if (!may_enter_fs(folio, sc->gfp_mask))
1da177e4 1947 goto keep_locked;
52a8363e 1948 if (!sc->may_writepage)
1da177e4
LT
1949 goto keep_locked;
1950
d950c947 1951 /*
49bd2bf9
MWO
1952 * Folio is dirty. Flush the TLB if a writable entry
1953 * potentially exists to avoid CPU writes after I/O
d950c947
MG
1954 * starts and then write it out here.
1955 */
1956 try_to_unmap_flush_dirty();
2282679f 1957 switch (pageout(folio, mapping, &plug)) {
1da177e4
LT
1958 case PAGE_KEEP:
1959 goto keep_locked;
1960 case PAGE_ACTIVATE:
1961 goto activate_locked;
1962 case PAGE_SUCCESS:
c79b7b96 1963 stat->nr_pageout += nr_pages;
96f8bf4f 1964
49bd2bf9 1965 if (folio_test_writeback(folio))
41ac1999 1966 goto keep;
49bd2bf9 1967 if (folio_test_dirty(folio))
1da177e4 1968 goto keep;
7d3579e8 1969
1da177e4
LT
1970 /*
1971 * A synchronous write - probably a ramdisk. Go
49bd2bf9 1972 * ahead and try to reclaim the folio.
1da177e4 1973 */
49bd2bf9 1974 if (!folio_trylock(folio))
1da177e4 1975 goto keep;
49bd2bf9
MWO
1976 if (folio_test_dirty(folio) ||
1977 folio_test_writeback(folio))
1da177e4 1978 goto keep_locked;
49bd2bf9 1979 mapping = folio_mapping(folio);
01359eb2 1980 fallthrough;
1da177e4 1981 case PAGE_CLEAN:
49bd2bf9 1982 ; /* try to free the folio below */
1da177e4
LT
1983 }
1984 }
1985
1986 /*
0a36111c
MWO
1987 * If the folio has buffers, try to free the buffer
1988 * mappings associated with this folio. If we succeed
1989 * we try to free the folio as well.
1da177e4 1990 *
0a36111c
MWO
1991 * We do this even if the folio is dirty.
1992 * filemap_release_folio() does not perform I/O, but it
1993 * is possible for a folio to have the dirty flag set,
1994 * but it is actually clean (all its buffers are clean).
1995 * This happens if the buffers were written out directly,
1996 * with submit_bh(). ext3 will do this, as well as
1997 * the blockdev mapping. filemap_release_folio() will
1998 * discover that cleanness and will drop the buffers
1999 * and mark the folio clean - it can be freed.
1da177e4 2000 *
0a36111c
MWO
2001 * Rarely, folios can have buffers and no ->mapping.
2002 * These are the folios which were not successfully
2003 * invalidated in truncate_cleanup_folio(). We try to
2004 * drop those buffers here and if that worked, and the
2005 * folio is no longer mapped into process address space
2006 * (refcount == 1) it can be freed. Otherwise, leave
2007 * the folio on the LRU so it is swappable.
1da177e4 2008 */
0a36111c
MWO
2009 if (folio_has_private(folio)) {
2010 if (!filemap_release_folio(folio, sc->gfp_mask))
1da177e4 2011 goto activate_locked;
0a36111c
MWO
2012 if (!mapping && folio_ref_count(folio) == 1) {
2013 folio_unlock(folio);
2014 if (folio_put_testzero(folio))
e286781d
NP
2015 goto free_it;
2016 else {
2017 /*
2018 * rare race with speculative reference.
2019 * the speculative reference will free
0a36111c 2020 * this folio shortly, so we may
e286781d
NP
2021 * increment nr_reclaimed here (and
2022 * leave it off the LRU).
2023 */
9aafcffc 2024 nr_reclaimed += nr_pages;
e286781d
NP
2025 continue;
2026 }
2027 }
1da177e4
LT
2028 }
2029
64daa5d8 2030 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
802a3a92 2031 /* follow __remove_mapping for reference */
64daa5d8 2032 if (!folio_ref_freeze(folio, 1))
802a3a92 2033 goto keep_locked;
d17be2d9 2034 /*
64daa5d8 2035 * The folio has only one reference left, which is
d17be2d9 2036 * from the isolation. After the caller puts the
64daa5d8
MWO
2037 * folio back on the lru and drops the reference, the
2038 * folio will be freed anyway. It doesn't matter
2039 * which lru it goes on. So we don't bother checking
2040 * the dirty flag here.
d17be2d9 2041 */
64daa5d8
MWO
2042 count_vm_events(PGLAZYFREED, nr_pages);
2043 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
be7c07d6 2044 } else if (!mapping || !__remove_mapping(mapping, folio, true,
b910718a 2045 sc->target_mem_cgroup))
802a3a92 2046 goto keep_locked;
9a1ea439 2047
c28a0e96 2048 folio_unlock(folio);
e286781d 2049free_it:
98879b3b 2050 /*
c28a0e96
MWO
2051 * Folio may get swapped out as a whole, need to account
2052 * all pages in it.
98879b3b
YS
2053 */
2054 nr_reclaimed += nr_pages;
abe4c3b5
MG
2055
2056 /*
49fd9b6d 2057 * Is there need to periodically free_folio_list? It would
abe4c3b5
MG
2058 * appear not as the counts should be low
2059 */
c28a0e96 2060 if (unlikely(folio_test_large(folio)))
5375336c 2061 destroy_large_folio(folio);
7ae88534 2062 else
49fd9b6d 2063 list_add(&folio->lru, &free_folios);
1da177e4
LT
2064 continue;
2065
98879b3b
YS
2066activate_locked_split:
2067 /*
2068 * The tail pages that are failed to add into swap cache
2069 * reach here. Fixup nr_scanned and nr_pages.
2070 */
2071 if (nr_pages > 1) {
2072 sc->nr_scanned -= (nr_pages - 1);
2073 nr_pages = 1;
2074 }
1da177e4 2075activate_locked:
68a22394 2076 /* Not a candidate for swapping, so reclaim swap space. */
246b6480 2077 if (folio_test_swapcache(folio) &&
9202d527 2078 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
bdb0ed54 2079 folio_free_swap(folio);
246b6480
MWO
2080 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2081 if (!folio_test_mlocked(folio)) {
2082 int type = folio_is_file_lru(folio);
2083 folio_set_active(folio);
98879b3b 2084 stat->nr_activate[type] += nr_pages;
246b6480 2085 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
ad6b6704 2086 }
1da177e4 2087keep_locked:
c28a0e96 2088 folio_unlock(folio);
1da177e4 2089keep:
49fd9b6d 2090 list_add(&folio->lru, &ret_folios);
c28a0e96
MWO
2091 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2092 folio_test_unevictable(folio), folio);
1da177e4 2093 }
49fd9b6d 2094 /* 'folio_list' is always empty here */
26aa2d19 2095
c28a0e96 2096 /* Migrate folios selected for demotion */
49fd9b6d
MWO
2097 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2098 /* Folios that could not be demoted are still in @demote_folios */
2099 if (!list_empty(&demote_folios)) {
6b426d07 2100 /* Folios which weren't demoted go back on @folio_list */
49fd9b6d 2101 list_splice_init(&demote_folios, folio_list);
6b426d07
MA
2102
2103 /*
2104 * goto retry to reclaim the undemoted folios in folio_list if
2105 * desired.
2106 *
2107 * Reclaiming directly from top tier nodes is not often desired
2108 * due to it breaking the LRU ordering: in general memory
2109 * should be reclaimed from lower tier nodes and demoted from
2110 * top tier nodes.
2111 *
2112 * However, disabling reclaim from top tier nodes entirely
2113 * would cause ooms in edge scenarios where lower tier memory
2114 * is unreclaimable for whatever reason, eg memory being
2115 * mlocked or too hot to reclaim. We can disable reclaim
2116 * from top tier nodes in proactive reclaim though as that is
2117 * not real memory pressure.
2118 */
2119 if (!sc->proactive) {
2120 do_demote_pass = false;
2121 goto retry;
2122 }
26aa2d19 2123 }
abe4c3b5 2124
98879b3b
YS
2125 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2126
49fd9b6d 2127 mem_cgroup_uncharge_list(&free_folios);
72b252ae 2128 try_to_unmap_flush();
49fd9b6d 2129 free_unref_page_list(&free_folios);
abe4c3b5 2130
49fd9b6d 2131 list_splice(&ret_folios, folio_list);
886cf190 2132 count_vm_events(PGACTIVATE, pgactivate);
060f005f 2133
2282679f
N
2134 if (plug)
2135 swap_write_unplug(plug);
05ff5137 2136 return nr_reclaimed;
1da177e4
LT
2137}
2138
730ec8c0 2139unsigned int reclaim_clean_pages_from_list(struct zone *zone,
49fd9b6d 2140 struct list_head *folio_list)
02c6de8d
MK
2141{
2142 struct scan_control sc = {
2143 .gfp_mask = GFP_KERNEL,
02c6de8d
MK
2144 .may_unmap = 1,
2145 };
1f318a9b 2146 struct reclaim_stat stat;
730ec8c0 2147 unsigned int nr_reclaimed;
b8cecb93
MWO
2148 struct folio *folio, *next;
2149 LIST_HEAD(clean_folios);
2d2b8d2b 2150 unsigned int noreclaim_flag;
02c6de8d 2151
b8cecb93
MWO
2152 list_for_each_entry_safe(folio, next, folio_list, lru) {
2153 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2154 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2155 !folio_test_unevictable(folio)) {
2156 folio_clear_active(folio);
2157 list_move(&folio->lru, &clean_folios);
02c6de8d
MK
2158 }
2159 }
2160
2d2b8d2b
YZ
2161 /*
2162 * We should be safe here since we are only dealing with file pages and
2163 * we are not kswapd and therefore cannot write dirty file pages. But
2164 * call memalloc_noreclaim_save() anyway, just in case these conditions
2165 * change in the future.
2166 */
2167 noreclaim_flag = memalloc_noreclaim_save();
49fd9b6d 2168 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
013339df 2169 &stat, true);
2d2b8d2b
YZ
2170 memalloc_noreclaim_restore(noreclaim_flag);
2171
b8cecb93 2172 list_splice(&clean_folios, folio_list);
2da9f630
NP
2173 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2174 -(long)nr_reclaimed);
1f318a9b
JK
2175 /*
2176 * Since lazyfree pages are isolated from file LRU from the beginning,
2177 * they will rotate back to anonymous LRU in the end if it failed to
2178 * discard so isolated count will be mismatched.
2179 * Compensate the isolated count for both LRU lists.
2180 */
2181 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2182 stat.nr_lazyfree_fail);
2183 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 2184 -(long)stat.nr_lazyfree_fail);
1f318a9b 2185 return nr_reclaimed;
02c6de8d
MK
2186}
2187
7ee36a14
MG
2188/*
2189 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 2190 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
2191 */
2192static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 2193 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 2194{
7ee36a14
MG
2195 int zid;
2196
7ee36a14
MG
2197 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2198 if (!nr_zone_taken[zid])
2199 continue;
2200
a892cb6b 2201 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
2202 }
2203
7ee36a14
MG
2204}
2205
f611fab7 2206/*
15b44736
HD
2207 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2208 *
2209 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
2210 * shrink the lists perform better by taking out a batch of pages
2211 * and working on them outside the LRU lock.
2212 *
2213 * For pagecache intensive workloads, this function is the hottest
2214 * spot in the kernel (apart from copy_*_user functions).
2215 *
15b44736 2216 * Lru_lock must be held before calling this function.
1da177e4 2217 *
791b48b6 2218 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 2219 * @lruvec: The LRU vector to pull pages from.
1da177e4 2220 * @dst: The temp list to put pages on to.
f626012d 2221 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 2222 * @sc: The scan_control struct for this reclaim session
3cb99451 2223 * @lru: LRU list id for isolating
1da177e4
LT
2224 *
2225 * returns how many pages were moved onto *@dst.
2226 */
49fd9b6d 2227static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
5dc35979 2228 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 2229 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 2230 enum lru_list lru)
1da177e4 2231{
75b00af7 2232 struct list_head *src = &lruvec->lists[lru];
69e05944 2233 unsigned long nr_taken = 0;
599d0c95 2234 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 2235 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 2236 unsigned long skipped = 0;
791b48b6 2237 unsigned long scan, total_scan, nr_pages;
166e3d32 2238 LIST_HEAD(folios_skipped);
1da177e4 2239
98879b3b 2240 total_scan = 0;
791b48b6 2241 scan = 0;
98879b3b 2242 while (scan < nr_to_scan && !list_empty(src)) {
89f6c88a 2243 struct list_head *move_to = src;
166e3d32 2244 struct folio *folio;
5ad333eb 2245
166e3d32
MWO
2246 folio = lru_to_folio(src);
2247 prefetchw_prev_lru_folio(folio, src, flags);
1da177e4 2248
166e3d32 2249 nr_pages = folio_nr_pages(folio);
98879b3b
YS
2250 total_scan += nr_pages;
2251
166e3d32
MWO
2252 if (folio_zonenum(folio) > sc->reclaim_idx) {
2253 nr_skipped[folio_zonenum(folio)] += nr_pages;
2254 move_to = &folios_skipped;
89f6c88a 2255 goto move;
b2e18757
MG
2256 }
2257
791b48b6 2258 /*
166e3d32
MWO
2259 * Do not count skipped folios because that makes the function
2260 * return with no isolated folios if the LRU mostly contains
2261 * ineligible folios. This causes the VM to not reclaim any
2262 * folios, triggering a premature OOM.
2263 * Account all pages in a folio.
791b48b6 2264 */
98879b3b 2265 scan += nr_pages;
89f6c88a 2266
166e3d32 2267 if (!folio_test_lru(folio))
89f6c88a 2268 goto move;
166e3d32 2269 if (!sc->may_unmap && folio_mapped(folio))
89f6c88a
HD
2270 goto move;
2271
c2135f7c 2272 /*
166e3d32
MWO
2273 * Be careful not to clear the lru flag until after we're
2274 * sure the folio is not being freed elsewhere -- the
2275 * folio release code relies on it.
c2135f7c 2276 */
166e3d32 2277 if (unlikely(!folio_try_get(folio)))
89f6c88a 2278 goto move;
5ad333eb 2279
166e3d32
MWO
2280 if (!folio_test_clear_lru(folio)) {
2281 /* Another thread is already isolating this folio */
2282 folio_put(folio);
89f6c88a 2283 goto move;
5ad333eb 2284 }
c2135f7c
AS
2285
2286 nr_taken += nr_pages;
166e3d32 2287 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
89f6c88a
HD
2288 move_to = dst;
2289move:
166e3d32 2290 list_move(&folio->lru, move_to);
1da177e4
LT
2291 }
2292
b2e18757 2293 /*
166e3d32 2294 * Splice any skipped folios to the start of the LRU list. Note that
b2e18757
MG
2295 * this disrupts the LRU order when reclaiming for lower zones but
2296 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
166e3d32 2297 * scanning would soon rescan the same folios to skip and waste lots
b2cb6826 2298 * of cpu cycles.
b2e18757 2299 */
166e3d32 2300 if (!list_empty(&folios_skipped)) {
7cc30fcf
MG
2301 int zid;
2302
166e3d32 2303 list_splice(&folios_skipped, src);
7cc30fcf
MG
2304 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2305 if (!nr_skipped[zid])
2306 continue;
2307
2308 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 2309 skipped += nr_skipped[zid];
7cc30fcf
MG
2310 }
2311 }
791b48b6 2312 *nr_scanned = total_scan;
1265e3a6 2313 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
89f6c88a
HD
2314 total_scan, skipped, nr_taken,
2315 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
b4536f0c 2316 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
2317 return nr_taken;
2318}
2319
62695a84 2320/**
d1d8a3b4
MWO
2321 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2322 * @folio: Folio to isolate from its LRU list.
62695a84 2323 *
d1d8a3b4
MWO
2324 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2325 * corresponding to whatever LRU list the folio was on.
62695a84 2326 *
d1d8a3b4
MWO
2327 * The folio will have its LRU flag cleared. If it was found on the
2328 * active list, it will have the Active flag set. If it was found on the
2329 * unevictable list, it will have the Unevictable flag set. These flags
894bc310 2330 * may need to be cleared by the caller before letting the page go.
62695a84 2331 *
d1d8a3b4 2332 * Context:
a5d09bed 2333 *
49fd9b6d
MWO
2334 * (1) Must be called with an elevated refcount on the folio. This is a
2335 * fundamental difference from isolate_lru_folios() (which is called
62695a84 2336 * without a stable reference).
d1d8a3b4
MWO
2337 * (2) The lru_lock must not be held.
2338 * (3) Interrupts must be enabled.
2339 *
2340 * Return: 0 if the folio was removed from an LRU list.
2341 * -EBUSY if the folio was not on an LRU list.
62695a84 2342 */
d1d8a3b4 2343int folio_isolate_lru(struct folio *folio)
62695a84
NP
2344{
2345 int ret = -EBUSY;
2346
d1d8a3b4 2347 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
0c917313 2348
d1d8a3b4 2349 if (folio_test_clear_lru(folio)) {
fa9add64 2350 struct lruvec *lruvec;
62695a84 2351
d1d8a3b4 2352 folio_get(folio);
e809c3fe 2353 lruvec = folio_lruvec_lock_irq(folio);
d1d8a3b4 2354 lruvec_del_folio(lruvec, folio);
6168d0da 2355 unlock_page_lruvec_irq(lruvec);
d25b5bd8 2356 ret = 0;
62695a84 2357 }
d25b5bd8 2358
62695a84
NP
2359 return ret;
2360}
2361
35cd7815 2362/*
d37dd5dc 2363 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 2364 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
2365 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2366 * the LRU list will go small and be scanned faster than necessary, leading to
2367 * unnecessary swapping, thrashing and OOM.
35cd7815 2368 */
599d0c95 2369static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
2370 struct scan_control *sc)
2371{
2372 unsigned long inactive, isolated;
d818fca1 2373 bool too_many;
35cd7815
RR
2374
2375 if (current_is_kswapd())
2376 return 0;
2377
b5ead35e 2378 if (!writeback_throttling_sane(sc))
35cd7815
RR
2379 return 0;
2380
2381 if (file) {
599d0c95
MG
2382 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2383 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 2384 } else {
599d0c95
MG
2385 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2386 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
2387 }
2388
3cf23841
FW
2389 /*
2390 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2391 * won't get blocked by normal direct-reclaimers, forming a circular
2392 * deadlock.
2393 */
d0164adc 2394 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2395 inactive >>= 3;
2396
d818fca1
MG
2397 too_many = isolated > inactive;
2398
2399 /* Wake up tasks throttled due to too_many_isolated. */
2400 if (!too_many)
2401 wake_throttle_isolated(pgdat);
2402
2403 return too_many;
35cd7815
RR
2404}
2405
a222f341 2406/*
49fd9b6d 2407 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
ff00a170 2408 * On return, @list is reused as a list of folios to be freed by the caller.
a222f341
KT
2409 *
2410 * Returns the number of pages moved to the given lruvec.
2411 */
49fd9b6d
MWO
2412static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2413 struct list_head *list)
66635629 2414{
a222f341 2415 int nr_pages, nr_moved = 0;
ff00a170 2416 LIST_HEAD(folios_to_free);
66635629 2417
a222f341 2418 while (!list_empty(list)) {
ff00a170
MWO
2419 struct folio *folio = lru_to_folio(list);
2420
2421 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2422 list_del(&folio->lru);
2423 if (unlikely(!folio_evictable(folio))) {
6168d0da 2424 spin_unlock_irq(&lruvec->lru_lock);
ff00a170 2425 folio_putback_lru(folio);
6168d0da 2426 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2427 continue;
2428 }
fa9add64 2429
3d06afab 2430 /*
ff00a170 2431 * The folio_set_lru needs to be kept here for list integrity.
3d06afab 2432 * Otherwise:
49fd9b6d 2433 * #0 move_folios_to_lru #1 release_pages
ff00a170
MWO
2434 * if (!folio_put_testzero())
2435 * if (folio_put_testzero())
2436 * !lru //skip lru_lock
2437 * folio_set_lru()
2438 * list_add(&folio->lru,)
2439 * list_add(&folio->lru,)
3d06afab 2440 */
ff00a170 2441 folio_set_lru(folio);
a222f341 2442
ff00a170
MWO
2443 if (unlikely(folio_put_testzero(folio))) {
2444 __folio_clear_lru_flags(folio);
2bcf8879 2445
ff00a170 2446 if (unlikely(folio_test_large(folio))) {
6168d0da 2447 spin_unlock_irq(&lruvec->lru_lock);
5375336c 2448 destroy_large_folio(folio);
6168d0da 2449 spin_lock_irq(&lruvec->lru_lock);
2bcf8879 2450 } else
ff00a170 2451 list_add(&folio->lru, &folios_to_free);
3d06afab
AS
2452
2453 continue;
66635629 2454 }
3d06afab 2455
afca9157
AS
2456 /*
2457 * All pages were isolated from the same lruvec (and isolation
2458 * inhibits memcg migration).
2459 */
ff00a170
MWO
2460 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2461 lruvec_add_folio(lruvec, folio);
2462 nr_pages = folio_nr_pages(folio);
3d06afab 2463 nr_moved += nr_pages;
ff00a170 2464 if (folio_test_active(folio))
3d06afab 2465 workingset_age_nonresident(lruvec, nr_pages);
66635629 2466 }
66635629 2467
3f79768f
HD
2468 /*
2469 * To save our caller's stack, now use input list for pages to free.
2470 */
ff00a170 2471 list_splice(&folios_to_free, list);
a222f341
KT
2472
2473 return nr_moved;
66635629
MG
2474}
2475
399ba0b9 2476/*
5829f7db
ML
2477 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2478 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2479 * we should not throttle. Otherwise it is safe to do so.
399ba0b9
N
2480 */
2481static int current_may_throttle(void)
2482{
b9b1335e 2483 return !(current->flags & PF_LOCAL_THROTTLE);
399ba0b9
N
2484}
2485
1da177e4 2486/*
b2e18757 2487 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2488 * of reclaimed pages
1da177e4 2489 */
49fd9b6d
MWO
2490static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2491 struct lruvec *lruvec, struct scan_control *sc,
2492 enum lru_list lru)
1da177e4 2493{
49fd9b6d 2494 LIST_HEAD(folio_list);
e247dbce 2495 unsigned long nr_scanned;
730ec8c0 2496 unsigned int nr_reclaimed = 0;
e247dbce 2497 unsigned long nr_taken;
060f005f 2498 struct reclaim_stat stat;
497a6c1b 2499 bool file = is_file_lru(lru);
f46b7912 2500 enum vm_event_item item;
599d0c95 2501 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2502 bool stalled = false;
78dc583d 2503
599d0c95 2504 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2505 if (stalled)
2506 return 0;
2507
2508 /* wait a bit for the reclaimer. */
db73ee0d 2509 stalled = true;
c3f4a9a2 2510 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
35cd7815
RR
2511
2512 /* We are about to die and free our memory. Return now. */
2513 if (fatal_signal_pending(current))
2514 return SWAP_CLUSTER_MAX;
2515 }
2516
1da177e4 2517 lru_add_drain();
f80c0673 2518
6168d0da 2519 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2520
49fd9b6d 2521 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
a9e7c39f 2522 &nr_scanned, sc, lru);
95d918fc 2523
599d0c95 2524 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
57e9cc50 2525 item = PGSCAN_KSWAPD + reclaimer_offset();
b5ead35e 2526 if (!cgroup_reclaim(sc))
f46b7912
KT
2527 __count_vm_events(item, nr_scanned);
2528 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2529 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2530
6168d0da 2531 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2532
d563c050 2533 if (nr_taken == 0)
66635629 2534 return 0;
5ad333eb 2535
49fd9b6d 2536 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
c661b078 2537
6168d0da 2538 spin_lock_irq(&lruvec->lru_lock);
49fd9b6d 2539 move_folios_to_lru(lruvec, &folio_list);
497a6c1b
JW
2540
2541 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
57e9cc50 2542 item = PGSTEAL_KSWAPD + reclaimer_offset();
b5ead35e 2543 if (!cgroup_reclaim(sc))
f46b7912
KT
2544 __count_vm_events(item, nr_reclaimed);
2545 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2546 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2547 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2548
0538a82c 2549 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
49fd9b6d
MWO
2550 mem_cgroup_uncharge_list(&folio_list);
2551 free_unref_page_list(&folio_list);
e11da5b4 2552
1c610d5f 2553 /*
49fd9b6d 2554 * If dirty folios are scanned that are not queued for IO, it
1c610d5f 2555 * implies that flushers are not doing their job. This can
49fd9b6d 2556 * happen when memory pressure pushes dirty folios to the end of
1c610d5f
AR
2557 * the LRU before the dirty limits are breached and the dirty
2558 * data has expired. It can also happen when the proportion of
49fd9b6d 2559 * dirty folios grows not through writes but through memory
1c610d5f
AR
2560 * pressure reclaiming all the clean cache. And in some cases,
2561 * the flushers simply cannot keep up with the allocation
2562 * rate. Nudge the flusher threads in case they are asleep.
2563 */
81a70c21 2564 if (stat.nr_unqueued_dirty == nr_taken) {
1c610d5f 2565 wakeup_flusher_threads(WB_REASON_VMSCAN);
81a70c21
AK
2566 /*
2567 * For cgroupv1 dirty throttling is achieved by waking up
2568 * the kernel flusher here and later waiting on folios
2569 * which are in writeback to finish (see shrink_folio_list()).
2570 *
2571 * Flusher may not be able to issue writeback quickly
2572 * enough for cgroupv1 writeback throttling to work
2573 * on a large system.
2574 */
2575 if (!writeback_throttling_sane(sc))
2576 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2577 }
1c610d5f 2578
d108c772
AR
2579 sc->nr.dirty += stat.nr_dirty;
2580 sc->nr.congested += stat.nr_congested;
2581 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2582 sc->nr.writeback += stat.nr_writeback;
2583 sc->nr.immediate += stat.nr_immediate;
2584 sc->nr.taken += nr_taken;
2585 if (file)
2586 sc->nr.file_taken += nr_taken;
8e950282 2587
599d0c95 2588 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2589 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2590 return nr_reclaimed;
1da177e4
LT
2591}
2592
15b44736 2593/*
07f67a8d 2594 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
15b44736 2595 *
07f67a8d 2596 * We move them the other way if the folio is referenced by one or more
15b44736
HD
2597 * processes.
2598 *
07f67a8d 2599 * If the folios are mostly unmapped, the processing is fast and it is
15b44736 2600 * appropriate to hold lru_lock across the whole operation. But if
07f67a8d
MWO
2601 * the folios are mapped, the processing is slow (folio_referenced()), so
2602 * we should drop lru_lock around each folio. It's impossible to balance
2603 * this, so instead we remove the folios from the LRU while processing them.
2604 * It is safe to rely on the active flag against the non-LRU folios in here
2605 * because nobody will play with that bit on a non-LRU folio.
15b44736 2606 *
07f67a8d
MWO
2607 * The downside is that we have to touch folio->_refcount against each folio.
2608 * But we had to alter folio->flags anyway.
15b44736 2609 */
f626012d 2610static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2611 struct lruvec *lruvec,
f16015fb 2612 struct scan_control *sc,
9e3b2f8c 2613 enum lru_list lru)
1da177e4 2614{
44c241f1 2615 unsigned long nr_taken;
f626012d 2616 unsigned long nr_scanned;
6fe6b7e3 2617 unsigned long vm_flags;
07f67a8d 2618 LIST_HEAD(l_hold); /* The folios which were snipped off */
8cab4754 2619 LIST_HEAD(l_active);
b69408e8 2620 LIST_HEAD(l_inactive);
9d998b4f
MH
2621 unsigned nr_deactivate, nr_activate;
2622 unsigned nr_rotated = 0;
3cb99451 2623 int file = is_file_lru(lru);
599d0c95 2624 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2625
2626 lru_add_drain();
f80c0673 2627
6168d0da 2628 spin_lock_irq(&lruvec->lru_lock);
925b7673 2629
49fd9b6d 2630 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2631 &nr_scanned, sc, lru);
89b5fae5 2632
599d0c95 2633 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2634
912c0572
SB
2635 if (!cgroup_reclaim(sc))
2636 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2637 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2638
6168d0da 2639 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2640
1da177e4 2641 while (!list_empty(&l_hold)) {
b3ac0413 2642 struct folio *folio;
b3ac0413 2643
1da177e4 2644 cond_resched();
b3ac0413
MWO
2645 folio = lru_to_folio(&l_hold);
2646 list_del(&folio->lru);
7e9cd484 2647
07f67a8d
MWO
2648 if (unlikely(!folio_evictable(folio))) {
2649 folio_putback_lru(folio);
894bc310
LS
2650 continue;
2651 }
2652
cc715d99 2653 if (unlikely(buffer_heads_over_limit)) {
36a3b14b
MWO
2654 if (folio_test_private(folio) && folio_trylock(folio)) {
2655 if (folio_test_private(folio))
07f67a8d
MWO
2656 filemap_release_folio(folio, 0);
2657 folio_unlock(folio);
cc715d99
MG
2658 }
2659 }
2660
6d4675e6 2661 /* Referenced or rmap lock contention: rotate */
b3ac0413 2662 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
6d4675e6 2663 &vm_flags) != 0) {
8cab4754 2664 /*
07f67a8d 2665 * Identify referenced, file-backed active folios and
8cab4754
WF
2666 * give them one more trip around the active list. So
2667 * that executable code get better chances to stay in
07f67a8d 2668 * memory under moderate memory pressure. Anon folios
8cab4754 2669 * are not likely to be evicted by use-once streaming
07f67a8d 2670 * IO, plus JVM can create lots of anon VM_EXEC folios,
8cab4754
WF
2671 * so we ignore them here.
2672 */
07f67a8d
MWO
2673 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2674 nr_rotated += folio_nr_pages(folio);
2675 list_add(&folio->lru, &l_active);
8cab4754
WF
2676 continue;
2677 }
2678 }
7e9cd484 2679
07f67a8d
MWO
2680 folio_clear_active(folio); /* we are de-activating */
2681 folio_set_workingset(folio);
2682 list_add(&folio->lru, &l_inactive);
1da177e4
LT
2683 }
2684
b555749a 2685 /*
07f67a8d 2686 * Move folios back to the lru list.
b555749a 2687 */
6168d0da 2688 spin_lock_irq(&lruvec->lru_lock);
556adecb 2689
49fd9b6d
MWO
2690 nr_activate = move_folios_to_lru(lruvec, &l_active);
2691 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
07f67a8d 2692 /* Keep all free folios in l_active list */
f372d89e 2693 list_splice(&l_inactive, &l_active);
9851ac13
KT
2694
2695 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2696 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2697
599d0c95 2698 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2699 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2700
0538a82c
JW
2701 if (nr_rotated)
2702 lru_note_cost(lruvec, file, 0, nr_rotated);
f372d89e
KT
2703 mem_cgroup_uncharge_list(&l_active);
2704 free_unref_page_list(&l_active);
9d998b4f
MH
2705 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2706 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2707}
2708
49fd9b6d 2709static unsigned int reclaim_folio_list(struct list_head *folio_list,
1fe47c0b 2710 struct pglist_data *pgdat)
1a4e58cc 2711{
1a4e58cc 2712 struct reclaim_stat dummy_stat;
1fe47c0b
ML
2713 unsigned int nr_reclaimed;
2714 struct folio *folio;
1a4e58cc
MK
2715 struct scan_control sc = {
2716 .gfp_mask = GFP_KERNEL,
1a4e58cc
MK
2717 .may_writepage = 1,
2718 .may_unmap = 1,
2719 .may_swap = 1,
26aa2d19 2720 .no_demotion = 1,
1a4e58cc
MK
2721 };
2722
49fd9b6d
MWO
2723 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2724 while (!list_empty(folio_list)) {
2725 folio = lru_to_folio(folio_list);
1fe47c0b
ML
2726 list_del(&folio->lru);
2727 folio_putback_lru(folio);
2728 }
2729
2730 return nr_reclaimed;
2731}
2732
a83f0551 2733unsigned long reclaim_pages(struct list_head *folio_list)
1fe47c0b 2734{
ed657e55 2735 int nid;
1fe47c0b 2736 unsigned int nr_reclaimed = 0;
a83f0551 2737 LIST_HEAD(node_folio_list);
1fe47c0b
ML
2738 unsigned int noreclaim_flag;
2739
a83f0551 2740 if (list_empty(folio_list))
1ae65e27
WY
2741 return nr_reclaimed;
2742
2d2b8d2b
YZ
2743 noreclaim_flag = memalloc_noreclaim_save();
2744
a83f0551 2745 nid = folio_nid(lru_to_folio(folio_list));
1ae65e27 2746 do {
a83f0551 2747 struct folio *folio = lru_to_folio(folio_list);
1a4e58cc 2748
a83f0551
MWO
2749 if (nid == folio_nid(folio)) {
2750 folio_clear_active(folio);
2751 list_move(&folio->lru, &node_folio_list);
1a4e58cc
MK
2752 continue;
2753 }
2754
49fd9b6d 2755 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
a83f0551
MWO
2756 nid = folio_nid(lru_to_folio(folio_list));
2757 } while (!list_empty(folio_list));
1a4e58cc 2758
49fd9b6d 2759 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
1a4e58cc 2760
2d2b8d2b
YZ
2761 memalloc_noreclaim_restore(noreclaim_flag);
2762
1a4e58cc
MK
2763 return nr_reclaimed;
2764}
2765
b91ac374
JW
2766static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2767 struct lruvec *lruvec, struct scan_control *sc)
2768{
2769 if (is_active_lru(lru)) {
2770 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2771 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2772 else
2773 sc->skipped_deactivate = 1;
2774 return 0;
2775 }
2776
2777 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2778}
2779
59dc76b0
RR
2780/*
2781 * The inactive anon list should be small enough that the VM never has
2782 * to do too much work.
14797e23 2783 *
59dc76b0
RR
2784 * The inactive file list should be small enough to leave most memory
2785 * to the established workingset on the scan-resistant active list,
2786 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2787 *
59dc76b0 2788 * Both inactive lists should also be large enough that each inactive
49fd9b6d 2789 * folio has a chance to be referenced again before it is reclaimed.
56e49d21 2790 *
2a2e4885
JW
2791 * If that fails and refaulting is observed, the inactive list grows.
2792 *
49fd9b6d 2793 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
3a50d14d 2794 * on this LRU, maintained by the pageout code. An inactive_ratio
49fd9b6d 2795 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
56e49d21 2796 *
59dc76b0
RR
2797 * total target max
2798 * memory ratio inactive
2799 * -------------------------------------
2800 * 10MB 1 5MB
2801 * 100MB 1 50MB
2802 * 1GB 3 250MB
2803 * 10GB 10 0.9GB
2804 * 100GB 31 3GB
2805 * 1TB 101 10GB
2806 * 10TB 320 32GB
56e49d21 2807 */
b91ac374 2808static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2809{
b91ac374 2810 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2811 unsigned long inactive, active;
2812 unsigned long inactive_ratio;
59dc76b0 2813 unsigned long gb;
e3790144 2814
b91ac374
JW
2815 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2816 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2817
b91ac374 2818 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2819 if (gb)
b91ac374
JW
2820 inactive_ratio = int_sqrt(10 * gb);
2821 else
2822 inactive_ratio = 1;
fd538803 2823
59dc76b0 2824 return inactive * inactive_ratio < active;
b39415b2
RR
2825}
2826
9a265114
JW
2827enum scan_balance {
2828 SCAN_EQUAL,
2829 SCAN_FRACT,
2830 SCAN_ANON,
2831 SCAN_FILE,
2832};
2833
f1e1a7be
YZ
2834static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2835{
2836 unsigned long file;
2837 struct lruvec *target_lruvec;
2838
ac35a490
YZ
2839 if (lru_gen_enabled())
2840 return;
2841
f1e1a7be
YZ
2842 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2843
2844 /*
2845 * Flush the memory cgroup stats, so that we read accurate per-memcg
2846 * lruvec stats for heuristics.
2847 */
2848 mem_cgroup_flush_stats();
2849
2850 /*
2851 * Determine the scan balance between anon and file LRUs.
2852 */
2853 spin_lock_irq(&target_lruvec->lru_lock);
2854 sc->anon_cost = target_lruvec->anon_cost;
2855 sc->file_cost = target_lruvec->file_cost;
2856 spin_unlock_irq(&target_lruvec->lru_lock);
2857
2858 /*
2859 * Target desirable inactive:active list ratios for the anon
2860 * and file LRU lists.
2861 */
2862 if (!sc->force_deactivate) {
2863 unsigned long refaults;
2864
2865 /*
2866 * When refaults are being observed, it means a new
2867 * workingset is being established. Deactivate to get
2868 * rid of any stale active pages quickly.
2869 */
2870 refaults = lruvec_page_state(target_lruvec,
2871 WORKINGSET_ACTIVATE_ANON);
2872 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2873 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2874 sc->may_deactivate |= DEACTIVATE_ANON;
2875 else
2876 sc->may_deactivate &= ~DEACTIVATE_ANON;
2877
2878 refaults = lruvec_page_state(target_lruvec,
2879 WORKINGSET_ACTIVATE_FILE);
2880 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2881 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2882 sc->may_deactivate |= DEACTIVATE_FILE;
2883 else
2884 sc->may_deactivate &= ~DEACTIVATE_FILE;
2885 } else
2886 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2887
2888 /*
2889 * If we have plenty of inactive file pages that aren't
2890 * thrashing, try to reclaim those first before touching
2891 * anonymous pages.
2892 */
2893 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2894 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2895 sc->cache_trim_mode = 1;
2896 else
2897 sc->cache_trim_mode = 0;
2898
2899 /*
2900 * Prevent the reclaimer from falling into the cache trap: as
2901 * cache pages start out inactive, every cache fault will tip
2902 * the scan balance towards the file LRU. And as the file LRU
2903 * shrinks, so does the window for rotation from references.
2904 * This means we have a runaway feedback loop where a tiny
2905 * thrashing file LRU becomes infinitely more attractive than
2906 * anon pages. Try to detect this based on file LRU size.
2907 */
2908 if (!cgroup_reclaim(sc)) {
2909 unsigned long total_high_wmark = 0;
2910 unsigned long free, anon;
2911 int z;
2912
2913 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2914 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2915 node_page_state(pgdat, NR_INACTIVE_FILE);
2916
2917 for (z = 0; z < MAX_NR_ZONES; z++) {
2918 struct zone *zone = &pgdat->node_zones[z];
2919
2920 if (!managed_zone(zone))
2921 continue;
2922
2923 total_high_wmark += high_wmark_pages(zone);
2924 }
2925
2926 /*
2927 * Consider anon: if that's low too, this isn't a
2928 * runaway file reclaim problem, but rather just
2929 * extreme pressure. Reclaim as per usual then.
2930 */
2931 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2932
2933 sc->file_is_tiny =
2934 file + free <= total_high_wmark &&
2935 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2936 anon >> sc->priority;
2937 }
2938}
2939
4f98a2fe
RR
2940/*
2941 * Determine how aggressively the anon and file LRU lists should be
02e458d8 2942 * scanned.
4f98a2fe 2943 *
49fd9b6d
MWO
2944 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2945 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
4f98a2fe 2946 */
afaf07a6
JW
2947static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2948 unsigned long *nr)
4f98a2fe 2949{
a2a36488 2950 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
afaf07a6 2951 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2952 unsigned long anon_cost, file_cost, total_cost;
33377678 2953 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2954 u64 fraction[ANON_AND_FILE];
9a265114 2955 u64 denominator = 0; /* gcc */
9a265114 2956 enum scan_balance scan_balance;
4f98a2fe 2957 unsigned long ap, fp;
4111304d 2958 enum lru_list lru;
76a33fc3 2959
49fd9b6d 2960 /* If we have no swap space, do not bother scanning anon folios. */
a2a36488 2961 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
9a265114 2962 scan_balance = SCAN_FILE;
76a33fc3
SL
2963 goto out;
2964 }
4f98a2fe 2965
10316b31
JW
2966 /*
2967 * Global reclaim will swap to prevent OOM even with no
2968 * swappiness, but memcg users want to use this knob to
2969 * disable swapping for individual groups completely when
2970 * using the memory controller's swap limit feature would be
2971 * too expensive.
2972 */
b5ead35e 2973 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2974 scan_balance = SCAN_FILE;
10316b31
JW
2975 goto out;
2976 }
2977
2978 /*
2979 * Do not apply any pressure balancing cleverness when the
2980 * system is close to OOM, scan both anon and file equally
2981 * (unless the swappiness setting disagrees with swapping).
2982 */
02695175 2983 if (!sc->priority && swappiness) {
9a265114 2984 scan_balance = SCAN_EQUAL;
10316b31
JW
2985 goto out;
2986 }
2987
62376251 2988 /*
53138cea 2989 * If the system is almost out of file pages, force-scan anon.
62376251 2990 */
b91ac374 2991 if (sc->file_is_tiny) {
53138cea
JW
2992 scan_balance = SCAN_ANON;
2993 goto out;
62376251
JW
2994 }
2995
7c5bd705 2996 /*
b91ac374
JW
2997 * If there is enough inactive page cache, we do not reclaim
2998 * anything from the anonymous working right now.
7c5bd705 2999 */
b91ac374 3000 if (sc->cache_trim_mode) {
9a265114 3001 scan_balance = SCAN_FILE;
7c5bd705
JW
3002 goto out;
3003 }
3004
9a265114 3005 scan_balance = SCAN_FRACT;
58c37f6e 3006 /*
314b57fb
JW
3007 * Calculate the pressure balance between anon and file pages.
3008 *
3009 * The amount of pressure we put on each LRU is inversely
3010 * proportional to the cost of reclaiming each list, as
3011 * determined by the share of pages that are refaulting, times
3012 * the relative IO cost of bringing back a swapped out
3013 * anonymous page vs reloading a filesystem page (swappiness).
3014 *
d483a5dd
JW
3015 * Although we limit that influence to ensure no list gets
3016 * left behind completely: at least a third of the pressure is
3017 * applied, before swappiness.
3018 *
314b57fb 3019 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 3020 */
d483a5dd
JW
3021 total_cost = sc->anon_cost + sc->file_cost;
3022 anon_cost = total_cost + sc->anon_cost;
3023 file_cost = total_cost + sc->file_cost;
3024 total_cost = anon_cost + file_cost;
58c37f6e 3025
d483a5dd
JW
3026 ap = swappiness * (total_cost + 1);
3027 ap /= anon_cost + 1;
4f98a2fe 3028
d483a5dd
JW
3029 fp = (200 - swappiness) * (total_cost + 1);
3030 fp /= file_cost + 1;
4f98a2fe 3031
76a33fc3
SL
3032 fraction[0] = ap;
3033 fraction[1] = fp;
a4fe1631 3034 denominator = ap + fp;
76a33fc3 3035out:
688035f7
JW
3036 for_each_evictable_lru(lru) {
3037 int file = is_file_lru(lru);
9783aa99 3038 unsigned long lruvec_size;
f56ce412 3039 unsigned long low, min;
688035f7 3040 unsigned long scan;
9783aa99
CD
3041
3042 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
f56ce412
JW
3043 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3044 &min, &low);
9783aa99 3045
f56ce412 3046 if (min || low) {
9783aa99
CD
3047 /*
3048 * Scale a cgroup's reclaim pressure by proportioning
3049 * its current usage to its memory.low or memory.min
3050 * setting.
3051 *
3052 * This is important, as otherwise scanning aggression
3053 * becomes extremely binary -- from nothing as we
3054 * approach the memory protection threshold, to totally
3055 * nominal as we exceed it. This results in requiring
3056 * setting extremely liberal protection thresholds. It
3057 * also means we simply get no protection at all if we
3058 * set it too low, which is not ideal.
1bc63fb1
CD
3059 *
3060 * If there is any protection in place, we reduce scan
3061 * pressure by how much of the total memory used is
3062 * within protection thresholds.
9783aa99 3063 *
9de7ca46
CD
3064 * There is one special case: in the first reclaim pass,
3065 * we skip over all groups that are within their low
3066 * protection. If that fails to reclaim enough pages to
3067 * satisfy the reclaim goal, we come back and override
3068 * the best-effort low protection. However, we still
3069 * ideally want to honor how well-behaved groups are in
3070 * that case instead of simply punishing them all
3071 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
3072 * memory they are using, reducing the scan pressure
3073 * again by how much of the total memory used is under
3074 * hard protection.
9783aa99 3075 */
1bc63fb1 3076 unsigned long cgroup_size = mem_cgroup_size(memcg);
f56ce412
JW
3077 unsigned long protection;
3078
3079 /* memory.low scaling, make sure we retry before OOM */
3080 if (!sc->memcg_low_reclaim && low > min) {
3081 protection = low;
3082 sc->memcg_low_skipped = 1;
3083 } else {
3084 protection = min;
3085 }
1bc63fb1
CD
3086
3087 /* Avoid TOCTOU with earlier protection check */
3088 cgroup_size = max(cgroup_size, protection);
3089
3090 scan = lruvec_size - lruvec_size * protection /
32d4f4b7 3091 (cgroup_size + 1);
9783aa99
CD
3092
3093 /*
1bc63fb1 3094 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 3095 * reclaim moving forwards, avoiding decrementing
9de7ca46 3096 * sc->priority further than desirable.
9783aa99 3097 */
1bc63fb1 3098 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
3099 } else {
3100 scan = lruvec_size;
3101 }
3102
3103 scan >>= sc->priority;
6b4f7799 3104
688035f7
JW
3105 /*
3106 * If the cgroup's already been deleted, make sure to
3107 * scrape out the remaining cache.
3108 */
3109 if (!scan && !mem_cgroup_online(memcg))
9783aa99 3110 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 3111
688035f7
JW
3112 switch (scan_balance) {
3113 case SCAN_EQUAL:
3114 /* Scan lists relative to size */
3115 break;
3116 case SCAN_FRACT:
9a265114 3117 /*
688035f7
JW
3118 * Scan types proportional to swappiness and
3119 * their relative recent reclaim efficiency.
76073c64
GS
3120 * Make sure we don't miss the last page on
3121 * the offlined memory cgroups because of a
3122 * round-off error.
9a265114 3123 */
76073c64
GS
3124 scan = mem_cgroup_online(memcg) ?
3125 div64_u64(scan * fraction[file], denominator) :
3126 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 3127 denominator);
688035f7
JW
3128 break;
3129 case SCAN_FILE:
3130 case SCAN_ANON:
3131 /* Scan one type exclusively */
e072bff6 3132 if ((scan_balance == SCAN_FILE) != file)
688035f7 3133 scan = 0;
688035f7
JW
3134 break;
3135 default:
3136 /* Look ma, no brain */
3137 BUG();
9a265114 3138 }
688035f7 3139
688035f7 3140 nr[lru] = scan;
76a33fc3 3141 }
6e08a369 3142}
4f98a2fe 3143
2f368a9f
DH
3144/*
3145 * Anonymous LRU management is a waste if there is
3146 * ultimately no way to reclaim the memory.
3147 */
3148static bool can_age_anon_pages(struct pglist_data *pgdat,
3149 struct scan_control *sc)
3150{
3151 /* Aging the anon LRU is valuable if swap is present: */
3152 if (total_swap_pages > 0)
3153 return true;
3154
3155 /* Also valuable if anon pages can be demoted: */
3156 return can_demote(pgdat->node_id, sc);
3157}
3158
ec1c86b2
YZ
3159#ifdef CONFIG_LRU_GEN
3160
354ed597
YZ
3161#ifdef CONFIG_LRU_GEN_ENABLED
3162DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3163#define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
3164#else
3165DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3166#define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
3167#endif
3168
ec1c86b2
YZ
3169/******************************************************************************
3170 * shorthand helpers
3171 ******************************************************************************/
3172
ac35a490
YZ
3173#define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
3174
3175#define DEFINE_MAX_SEQ(lruvec) \
3176 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3177
3178#define DEFINE_MIN_SEQ(lruvec) \
3179 unsigned long min_seq[ANON_AND_FILE] = { \
3180 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
3181 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
3182 }
3183
ec1c86b2
YZ
3184#define for_each_gen_type_zone(gen, type, zone) \
3185 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
3186 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
3187 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3188
bd74fdae 3189static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
ec1c86b2
YZ
3190{
3191 struct pglist_data *pgdat = NODE_DATA(nid);
3192
3193#ifdef CONFIG_MEMCG
3194 if (memcg) {
3195 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3196
931b6a8b 3197 /* see the comment in mem_cgroup_lruvec() */
ec1c86b2
YZ
3198 if (!lruvec->pgdat)
3199 lruvec->pgdat = pgdat;
3200
3201 return lruvec;
3202 }
3203#endif
3204 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3205
931b6a8b 3206 return &pgdat->__lruvec;
ec1c86b2
YZ
3207}
3208
ac35a490
YZ
3209static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3210{
3211 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3212 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3213
3214 if (!can_demote(pgdat->node_id, sc) &&
3215 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3216 return 0;
3217
3218 return mem_cgroup_swappiness(memcg);
3219}
3220
3221static int get_nr_gens(struct lruvec *lruvec, int type)
3222{
3223 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3224}
3225
3226static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3227{
391655fe 3228 /* see the comment on lru_gen_folio */
ac35a490
YZ
3229 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3230 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3231 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3232}
3233
bd74fdae
YZ
3234/******************************************************************************
3235 * mm_struct list
3236 ******************************************************************************/
3237
3238static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3239{
3240 static struct lru_gen_mm_list mm_list = {
3241 .fifo = LIST_HEAD_INIT(mm_list.fifo),
3242 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3243 };
3244
3245#ifdef CONFIG_MEMCG
3246 if (memcg)
3247 return &memcg->mm_list;
3248#endif
3249 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3250
3251 return &mm_list;
3252}
3253
3254void lru_gen_add_mm(struct mm_struct *mm)
3255{
3256 int nid;
3257 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3258 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3259
3260 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3261#ifdef CONFIG_MEMCG
3262 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3263 mm->lru_gen.memcg = memcg;
3264#endif
3265 spin_lock(&mm_list->lock);
3266
3267 for_each_node_state(nid, N_MEMORY) {
3268 struct lruvec *lruvec = get_lruvec(memcg, nid);
3269
bd74fdae
YZ
3270 /* the first addition since the last iteration */
3271 if (lruvec->mm_state.tail == &mm_list->fifo)
3272 lruvec->mm_state.tail = &mm->lru_gen.list;
3273 }
3274
3275 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3276
3277 spin_unlock(&mm_list->lock);
3278}
3279
3280void lru_gen_del_mm(struct mm_struct *mm)
3281{
3282 int nid;
3283 struct lru_gen_mm_list *mm_list;
3284 struct mem_cgroup *memcg = NULL;
3285
3286 if (list_empty(&mm->lru_gen.list))
3287 return;
3288
3289#ifdef CONFIG_MEMCG
3290 memcg = mm->lru_gen.memcg;
3291#endif
3292 mm_list = get_mm_list(memcg);
3293
3294 spin_lock(&mm_list->lock);
3295
3296 for_each_node(nid) {
3297 struct lruvec *lruvec = get_lruvec(memcg, nid);
3298
bd74fdae
YZ
3299 /* where the last iteration ended (exclusive) */
3300 if (lruvec->mm_state.tail == &mm->lru_gen.list)
3301 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3302
3303 /* where the current iteration continues (inclusive) */
3304 if (lruvec->mm_state.head != &mm->lru_gen.list)
3305 continue;
3306
3307 lruvec->mm_state.head = lruvec->mm_state.head->next;
3308 /* the deletion ends the current iteration */
3309 if (lruvec->mm_state.head == &mm_list->fifo)
3310 WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3311 }
3312
3313 list_del_init(&mm->lru_gen.list);
3314
3315 spin_unlock(&mm_list->lock);
3316
3317#ifdef CONFIG_MEMCG
3318 mem_cgroup_put(mm->lru_gen.memcg);
3319 mm->lru_gen.memcg = NULL;
3320#endif
3321}
3322
3323#ifdef CONFIG_MEMCG
3324void lru_gen_migrate_mm(struct mm_struct *mm)
3325{
3326 struct mem_cgroup *memcg;
3327 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3328
3329 VM_WARN_ON_ONCE(task->mm != mm);
3330 lockdep_assert_held(&task->alloc_lock);
3331
3332 /* for mm_update_next_owner() */
3333 if (mem_cgroup_disabled())
3334 return;
3335
3336 rcu_read_lock();
3337 memcg = mem_cgroup_from_task(task);
3338 rcu_read_unlock();
3339 if (memcg == mm->lru_gen.memcg)
3340 return;
3341
3342 VM_WARN_ON_ONCE(!mm->lru_gen.memcg);
3343 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3344
3345 lru_gen_del_mm(mm);
3346 lru_gen_add_mm(mm);
3347}
3348#endif
3349
3350/*
3351 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3352 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3353 * bits in a bitmap, k is the number of hash functions and n is the number of
3354 * inserted items.
3355 *
3356 * Page table walkers use one of the two filters to reduce their search space.
3357 * To get rid of non-leaf entries that no longer have enough leaf entries, the
3358 * aging uses the double-buffering technique to flip to the other filter each
3359 * time it produces a new generation. For non-leaf entries that have enough
3360 * leaf entries, the aging carries them over to the next generation in
3361 * walk_pmd_range(); the eviction also report them when walking the rmap
3362 * in lru_gen_look_around().
3363 *
3364 * For future optimizations:
3365 * 1. It's not necessary to keep both filters all the time. The spare one can be
3366 * freed after the RCU grace period and reallocated if needed again.
3367 * 2. And when reallocating, it's worth scaling its size according to the number
3368 * of inserted entries in the other filter, to reduce the memory overhead on
3369 * small systems and false positives on large systems.
3370 * 3. Jenkins' hash function is an alternative to Knuth's.
3371 */
3372#define BLOOM_FILTER_SHIFT 15
3373
3374static inline int filter_gen_from_seq(unsigned long seq)
3375{
3376 return seq % NR_BLOOM_FILTERS;
3377}
3378
3379static void get_item_key(void *item, int *key)
3380{
3381 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3382
3383 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3384
3385 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3386 key[1] = hash >> BLOOM_FILTER_SHIFT;
3387}
3388
3389static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3390{
3391 unsigned long *filter;
3392 int gen = filter_gen_from_seq(seq);
3393
3394 filter = lruvec->mm_state.filters[gen];
3395 if (filter) {
3396 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3397 return;
3398 }
3399
3400 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3401 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3402 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3403}
3404
3405static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3406{
3407 int key[2];
3408 unsigned long *filter;
3409 int gen = filter_gen_from_seq(seq);
3410
3411 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3412 if (!filter)
3413 return;
3414
3415 get_item_key(item, key);
3416
3417 if (!test_bit(key[0], filter))
3418 set_bit(key[0], filter);
3419 if (!test_bit(key[1], filter))
3420 set_bit(key[1], filter);
3421}
3422
3423static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3424{
3425 int key[2];
3426 unsigned long *filter;
3427 int gen = filter_gen_from_seq(seq);
3428
3429 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3430 if (!filter)
3431 return true;
3432
3433 get_item_key(item, key);
3434
3435 return test_bit(key[0], filter) && test_bit(key[1], filter);
3436}
3437
3438static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3439{
3440 int i;
3441 int hist;
3442
3443 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3444
3445 if (walk) {
3446 hist = lru_hist_from_seq(walk->max_seq);
3447
3448 for (i = 0; i < NR_MM_STATS; i++) {
3449 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3450 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3451 walk->mm_stats[i] = 0;
3452 }
3453 }
3454
3455 if (NR_HIST_GENS > 1 && last) {
3456 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3457
3458 for (i = 0; i < NR_MM_STATS; i++)
3459 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3460 }
3461}
3462
3463static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3464{
3465 int type;
3466 unsigned long size = 0;
3467 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3468 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3469
3470 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3471 return true;
3472
3473 clear_bit(key, &mm->lru_gen.bitmap);
3474
3475 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3476 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3477 get_mm_counter(mm, MM_ANONPAGES) +
3478 get_mm_counter(mm, MM_SHMEMPAGES);
3479 }
3480
3481 if (size < MIN_LRU_BATCH)
3482 return true;
3483
3484 return !mmget_not_zero(mm);
3485}
3486
3487static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3488 struct mm_struct **iter)
3489{
3490 bool first = false;
3491 bool last = true;
3492 struct mm_struct *mm = NULL;
3493 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3494 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3495 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3496
3497 /*
3498 * There are four interesting cases for this page table walker:
3499 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3500 * there is nothing left to do.
3501 * 2. It's the first of the current generation, and it needs to reset
3502 * the Bloom filter for the next generation.
3503 * 3. It reaches the end of mm_list, and it needs to increment
3504 * mm_state->seq; the iteration is done.
3505 * 4. It's the last of the current generation, and it needs to reset the
3506 * mm stats counters for the next generation.
3507 */
3508 spin_lock(&mm_list->lock);
3509
3510 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3511 VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3512 VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3513
3514 if (walk->max_seq <= mm_state->seq) {
3515 if (!*iter)
3516 last = false;
3517 goto done;
3518 }
3519
3520 if (!mm_state->nr_walkers) {
3521 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3522
3523 mm_state->head = mm_list->fifo.next;
3524 first = true;
3525 }
3526
3527 while (!mm && mm_state->head != &mm_list->fifo) {
3528 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3529
3530 mm_state->head = mm_state->head->next;
3531
3532 /* force scan for those added after the last iteration */
3533 if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3534 mm_state->tail = mm_state->head;
3535 walk->force_scan = true;
3536 }
3537
3538 if (should_skip_mm(mm, walk))
3539 mm = NULL;
3540 }
3541
3542 if (mm_state->head == &mm_list->fifo)
3543 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3544done:
3545 if (*iter && !mm)
3546 mm_state->nr_walkers--;
3547 if (!*iter && mm)
3548 mm_state->nr_walkers++;
3549
3550 if (mm_state->nr_walkers)
3551 last = false;
3552
3553 if (*iter || last)
3554 reset_mm_stats(lruvec, walk, last);
3555
3556 spin_unlock(&mm_list->lock);
3557
3558 if (mm && first)
3559 reset_bloom_filter(lruvec, walk->max_seq + 1);
3560
3561 if (*iter)
3562 mmput_async(*iter);
3563
3564 *iter = mm;
3565
3566 return last;
3567}
3568
3569static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3570{
3571 bool success = false;
3572 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3573 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3574 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3575
3576 spin_lock(&mm_list->lock);
3577
3578 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3579
3580 if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3581 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3582
3583 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3584 reset_mm_stats(lruvec, NULL, true);
3585 success = true;
3586 }
3587
3588 spin_unlock(&mm_list->lock);
3589
3590 return success;
3591}
3592
ac35a490
YZ
3593/******************************************************************************
3594 * refault feedback loop
3595 ******************************************************************************/
3596
3597/*
3598 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3599 *
3600 * The P term is refaulted/(evicted+protected) from a tier in the generation
3601 * currently being evicted; the I term is the exponential moving average of the
3602 * P term over the generations previously evicted, using the smoothing factor
3603 * 1/2; the D term isn't supported.
3604 *
3605 * The setpoint (SP) is always the first tier of one type; the process variable
3606 * (PV) is either any tier of the other type or any other tier of the same
3607 * type.
3608 *
3609 * The error is the difference between the SP and the PV; the correction is to
3610 * turn off protection when SP>PV or turn on protection when SP<PV.
3611 *
3612 * For future optimizations:
3613 * 1. The D term may discount the other two terms over time so that long-lived
3614 * generations can resist stale information.
3615 */
3616struct ctrl_pos {
3617 unsigned long refaulted;
3618 unsigned long total;
3619 int gain;
3620};
3621
3622static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3623 struct ctrl_pos *pos)
3624{
391655fe 3625 struct lru_gen_folio *lrugen = &lruvec->lrugen;
ac35a490
YZ
3626 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3627
3628 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3629 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3630 pos->total = lrugen->avg_total[type][tier] +
3631 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3632 if (tier)
3633 pos->total += lrugen->protected[hist][type][tier - 1];
3634 pos->gain = gain;
3635}
3636
3637static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3638{
3639 int hist, tier;
391655fe 3640 struct lru_gen_folio *lrugen = &lruvec->lrugen;
ac35a490
YZ
3641 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3642 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3643
3644 lockdep_assert_held(&lruvec->lru_lock);
3645
3646 if (!carryover && !clear)
3647 return;
3648
3649 hist = lru_hist_from_seq(seq);
3650
3651 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3652 if (carryover) {
3653 unsigned long sum;
3654
3655 sum = lrugen->avg_refaulted[type][tier] +
3656 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3657 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3658
3659 sum = lrugen->avg_total[type][tier] +
3660 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3661 if (tier)
3662 sum += lrugen->protected[hist][type][tier - 1];
3663 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3664 }
3665
3666 if (clear) {
3667 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3668 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3669 if (tier)
3670 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3671 }
3672 }
3673}
3674
3675static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3676{
3677 /*
3678 * Return true if the PV has a limited number of refaults or a lower
3679 * refaulted/total than the SP.
3680 */
3681 return pv->refaulted < MIN_LRU_BATCH ||
3682 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3683 (sp->refaulted + 1) * pv->total * pv->gain;
3684}
3685
3686/******************************************************************************
3687 * the aging
3688 ******************************************************************************/
3689
018ee47f
YZ
3690/* promote pages accessed through page tables */
3691static int folio_update_gen(struct folio *folio, int gen)
3692{
3693 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3694
3695 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3696 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3697
3698 do {
3699 /* lru_gen_del_folio() has isolated this page? */
3700 if (!(old_flags & LRU_GEN_MASK)) {
49fd9b6d 3701 /* for shrink_folio_list() */
018ee47f
YZ
3702 new_flags = old_flags | BIT(PG_referenced);
3703 continue;
3704 }
3705
3706 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3707 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3708 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3709
3710 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3711}
3712
ac35a490
YZ
3713/* protect pages accessed multiple times through file descriptors */
3714static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3715{
3716 int type = folio_is_file_lru(folio);
391655fe 3717 struct lru_gen_folio *lrugen = &lruvec->lrugen;
ac35a490
YZ
3718 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3719 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3720
3721 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3722
3723 do {
018ee47f
YZ
3724 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3725 /* folio_update_gen() has promoted this page? */
3726 if (new_gen >= 0 && new_gen != old_gen)
3727 return new_gen;
3728
ac35a490
YZ
3729 new_gen = (old_gen + 1) % MAX_NR_GENS;
3730
3731 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3732 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3733 /* for folio_end_writeback() */
3734 if (reclaiming)
3735 new_flags |= BIT(PG_reclaim);
3736 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3737
3738 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3739
3740 return new_gen;
3741}
3742
bd74fdae
YZ
3743static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3744 int old_gen, int new_gen)
3745{
3746 int type = folio_is_file_lru(folio);
3747 int zone = folio_zonenum(folio);
3748 int delta = folio_nr_pages(folio);
3749
3750 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3751 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3752
3753 walk->batched++;
3754
3755 walk->nr_pages[old_gen][type][zone] -= delta;
3756 walk->nr_pages[new_gen][type][zone] += delta;
3757}
3758
3759static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3760{
3761 int gen, type, zone;
391655fe 3762 struct lru_gen_folio *lrugen = &lruvec->lrugen;
bd74fdae
YZ
3763
3764 walk->batched = 0;
3765
3766 for_each_gen_type_zone(gen, type, zone) {
3767 enum lru_list lru = type * LRU_INACTIVE_FILE;
3768 int delta = walk->nr_pages[gen][type][zone];
3769
3770 if (!delta)
3771 continue;
3772
3773 walk->nr_pages[gen][type][zone] = 0;
3774 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3775 lrugen->nr_pages[gen][type][zone] + delta);
3776
3777 if (lru_gen_is_active(lruvec, gen))
3778 lru += LRU_ACTIVE;
3779 __update_lru_size(lruvec, lru, zone, delta);
3780 }
3781}
3782
3783static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3784{
3785 struct address_space *mapping;
3786 struct vm_area_struct *vma = args->vma;
3787 struct lru_gen_mm_walk *walk = args->private;
3788
3789 if (!vma_is_accessible(vma))
3790 return true;
3791
3792 if (is_vm_hugetlb_page(vma))
3793 return true;
3794
3795 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ))
3796 return true;
3797
3798 if (vma == get_gate_vma(vma->vm_mm))
3799 return true;
3800
3801 if (vma_is_anonymous(vma))
3802 return !walk->can_swap;
3803
3804 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3805 return true;
3806
3807 mapping = vma->vm_file->f_mapping;
3808 if (mapping_unevictable(mapping))
3809 return true;
3810
3811 if (shmem_mapping(mapping))
3812 return !walk->can_swap;
3813
3814 /* to exclude special mappings like dax, etc. */
3815 return !mapping->a_ops->read_folio;
3816}
3817
3818/*
3819 * Some userspace memory allocators map many single-page VMAs. Instead of
3820 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3821 * table to reduce zigzags and improve cache performance.
3822 */
3823static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3824 unsigned long *vm_start, unsigned long *vm_end)
3825{
3826 unsigned long start = round_up(*vm_end, size);
3827 unsigned long end = (start | ~mask) + 1;
78ba531f 3828 VMA_ITERATOR(vmi, args->mm, start);
bd74fdae
YZ
3829
3830 VM_WARN_ON_ONCE(mask & size);
3831 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3832
78ba531f 3833 for_each_vma(vmi, args->vma) {
bd74fdae
YZ
3834 if (end && end <= args->vma->vm_start)
3835 return false;
3836
78ba531f 3837 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
bd74fdae 3838 continue;
bd74fdae
YZ
3839
3840 *vm_start = max(start, args->vma->vm_start);
3841 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3842
3843 return true;
3844 }
3845
3846 return false;
3847}
3848
018ee47f
YZ
3849static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3850{
3851 unsigned long pfn = pte_pfn(pte);
3852
3853 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3854
3855 if (!pte_present(pte) || is_zero_pfn(pfn))
3856 return -1;
3857
3858 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3859 return -1;
3860
3861 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3862 return -1;
3863
3864 return pfn;
3865}
3866
bd74fdae
YZ
3867#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3868static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3869{
3870 unsigned long pfn = pmd_pfn(pmd);
3871
3872 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3873
3874 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3875 return -1;
3876
3877 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3878 return -1;
3879
3880 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3881 return -1;
3882
3883 return pfn;
3884}
3885#endif
3886
018ee47f 3887static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
bd74fdae 3888 struct pglist_data *pgdat, bool can_swap)
018ee47f
YZ
3889{
3890 struct folio *folio;
3891
3892 /* try to avoid unnecessary memory loads */
3893 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3894 return NULL;
3895
3896 folio = pfn_folio(pfn);
3897 if (folio_nid(folio) != pgdat->node_id)
3898 return NULL;
3899
3900 if (folio_memcg_rcu(folio) != memcg)
3901 return NULL;
3902
bd74fdae
YZ
3903 /* file VMAs can contain anon pages from COW */
3904 if (!folio_is_file_lru(folio) && !can_swap)
3905 return NULL;
3906
018ee47f
YZ
3907 return folio;
3908}
3909
bd74fdae
YZ
3910static bool suitable_to_scan(int total, int young)
3911{
3912 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3913
3914 /* suitable if the average number of young PTEs per cacheline is >=1 */
3915 return young * n >= total;
3916}
3917
3918static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3919 struct mm_walk *args)
3920{
3921 int i;
3922 pte_t *pte;
3923 spinlock_t *ptl;
3924 unsigned long addr;
3925 int total = 0;
3926 int young = 0;
3927 struct lru_gen_mm_walk *walk = args->private;
3928 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3929 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3930 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3931
3932 VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3933
3934 ptl = pte_lockptr(args->mm, pmd);
3935 if (!spin_trylock(ptl))
3936 return false;
3937
3938 arch_enter_lazy_mmu_mode();
3939
3940 pte = pte_offset_map(pmd, start & PMD_MASK);
3941restart:
3942 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3943 unsigned long pfn;
3944 struct folio *folio;
3945
3946 total++;
3947 walk->mm_stats[MM_LEAF_TOTAL]++;
3948
3949 pfn = get_pte_pfn(pte[i], args->vma, addr);
3950 if (pfn == -1)
3951 continue;
3952
3953 if (!pte_young(pte[i])) {
3954 walk->mm_stats[MM_LEAF_OLD]++;
3955 continue;
3956 }
3957
3958 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3959 if (!folio)
3960 continue;
3961
3962 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3963 VM_WARN_ON_ONCE(true);
3964
3965 young++;
3966 walk->mm_stats[MM_LEAF_YOUNG]++;
3967
3968 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
3969 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3970 !folio_test_swapcache(folio)))
3971 folio_mark_dirty(folio);
3972
3973 old_gen = folio_update_gen(folio, new_gen);
3974 if (old_gen >= 0 && old_gen != new_gen)
3975 update_batch_size(walk, folio, old_gen, new_gen);
3976 }
3977
3978 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3979 goto restart;
3980
3981 pte_unmap(pte);
3982
3983 arch_leave_lazy_mmu_mode();
3984 spin_unlock(ptl);
3985
3986 return suitable_to_scan(total, young);
3987}
3988
3989#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3990static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3991 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3992{
3993 int i;
3994 pmd_t *pmd;
3995 spinlock_t *ptl;
3996 struct lru_gen_mm_walk *walk = args->private;
3997 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3998 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3999 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4000
4001 VM_WARN_ON_ONCE(pud_leaf(*pud));
4002
4003 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4004 if (*start == -1) {
4005 *start = next;
4006 return;
4007 }
4008
4009 i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
4010 if (i && i <= MIN_LRU_BATCH) {
4011 __set_bit(i - 1, bitmap);
4012 return;
4013 }
4014
4015 pmd = pmd_offset(pud, *start);
4016
4017 ptl = pmd_lockptr(args->mm, pmd);
4018 if (!spin_trylock(ptl))
4019 goto done;
4020
4021 arch_enter_lazy_mmu_mode();
4022
4023 do {
4024 unsigned long pfn;
4025 struct folio *folio;
4026 unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
4027
4028 pfn = get_pmd_pfn(pmd[i], vma, addr);
4029 if (pfn == -1)
4030 goto next;
4031
4032 if (!pmd_trans_huge(pmd[i])) {
4aaf269c 4033 if (arch_has_hw_nonleaf_pmd_young() &&
354ed597 4034 get_cap(LRU_GEN_NONLEAF_YOUNG))
bd74fdae
YZ
4035 pmdp_test_and_clear_young(vma, addr, pmd + i);
4036 goto next;
4037 }
4038
4039 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4040 if (!folio)
4041 goto next;
4042
4043 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4044 goto next;
4045
4046 walk->mm_stats[MM_LEAF_YOUNG]++;
4047
4048 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4049 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4050 !folio_test_swapcache(folio)))
4051 folio_mark_dirty(folio);
4052
4053 old_gen = folio_update_gen(folio, new_gen);
4054 if (old_gen >= 0 && old_gen != new_gen)
4055 update_batch_size(walk, folio, old_gen, new_gen);
4056next:
4057 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4058 } while (i <= MIN_LRU_BATCH);
4059
4060 arch_leave_lazy_mmu_mode();
4061 spin_unlock(ptl);
4062done:
4063 *start = -1;
4064 bitmap_zero(bitmap, MIN_LRU_BATCH);
4065}
4066#else
4067static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
4068 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
4069{
4070}
4071#endif
4072
4073static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4074 struct mm_walk *args)
4075{
4076 int i;
4077 pmd_t *pmd;
4078 unsigned long next;
4079 unsigned long addr;
4080 struct vm_area_struct *vma;
4081 unsigned long pos = -1;
4082 struct lru_gen_mm_walk *walk = args->private;
4083 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4084
4085 VM_WARN_ON_ONCE(pud_leaf(*pud));
4086
4087 /*
4088 * Finish an entire PMD in two passes: the first only reaches to PTE
4089 * tables to avoid taking the PMD lock; the second, if necessary, takes
4090 * the PMD lock to clear the accessed bit in PMD entries.
4091 */
4092 pmd = pmd_offset(pud, start & PUD_MASK);
4093restart:
4094 /* walk_pte_range() may call get_next_vma() */
4095 vma = args->vma;
4096 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
dab6e717 4097 pmd_t val = pmdp_get_lockless(pmd + i);
bd74fdae
YZ
4098
4099 next = pmd_addr_end(addr, end);
4100
4101 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4102 walk->mm_stats[MM_LEAF_TOTAL]++;
4103 continue;
4104 }
4105
4106#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4107 if (pmd_trans_huge(val)) {
4108 unsigned long pfn = pmd_pfn(val);
4109 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4110
4111 walk->mm_stats[MM_LEAF_TOTAL]++;
4112
4113 if (!pmd_young(val)) {
4114 walk->mm_stats[MM_LEAF_OLD]++;
4115 continue;
4116 }
4117
4118 /* try to avoid unnecessary memory loads */
4119 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4120 continue;
4121
4122 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4123 continue;
4124 }
4125#endif
4126 walk->mm_stats[MM_NONLEAF_TOTAL]++;
4127
4aaf269c
JG
4128 if (arch_has_hw_nonleaf_pmd_young() &&
4129 get_cap(LRU_GEN_NONLEAF_YOUNG)) {
354ed597
YZ
4130 if (!pmd_young(val))
4131 continue;
bd74fdae 4132
354ed597
YZ
4133 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4134 }
4aaf269c 4135
bd74fdae
YZ
4136 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4137 continue;
4138
4139 walk->mm_stats[MM_NONLEAF_FOUND]++;
4140
4141 if (!walk_pte_range(&val, addr, next, args))
4142 continue;
4143
4144 walk->mm_stats[MM_NONLEAF_ADDED]++;
4145
4146 /* carry over to the next generation */
4147 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4148 }
4149
4150 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
4151
4152 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4153 goto restart;
4154}
4155
4156static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4157 struct mm_walk *args)
4158{
4159 int i;
4160 pud_t *pud;
4161 unsigned long addr;
4162 unsigned long next;
4163 struct lru_gen_mm_walk *walk = args->private;
4164
4165 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4166
4167 pud = pud_offset(p4d, start & P4D_MASK);
4168restart:
4169 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4170 pud_t val = READ_ONCE(pud[i]);
4171
4172 next = pud_addr_end(addr, end);
4173
4174 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4175 continue;
4176
4177 walk_pmd_range(&val, addr, next, args);
4178
4179 /* a racy check to curtail the waiting time */
4180 if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4181 return 1;
4182
4183 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4184 end = (addr | ~PUD_MASK) + 1;
4185 goto done;
4186 }
4187 }
4188
4189 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4190 goto restart;
4191
4192 end = round_up(end, P4D_SIZE);
4193done:
4194 if (!end || !args->vma)
4195 return 1;
4196
4197 walk->next_addr = max(end, args->vma->vm_start);
4198
4199 return -EAGAIN;
4200}
4201
4202static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4203{
4204 static const struct mm_walk_ops mm_walk_ops = {
4205 .test_walk = should_skip_vma,
4206 .p4d_entry = walk_pud_range,
4207 };
4208
4209 int err;
4210 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4211
4212 walk->next_addr = FIRST_USER_ADDRESS;
4213
4214 do {
4215 err = -EBUSY;
4216
4217 /* folio_update_gen() requires stable folio_memcg() */
4218 if (!mem_cgroup_trylock_pages(memcg))
4219 break;
4220
4221 /* the caller might be holding the lock for write */
4222 if (mmap_read_trylock(mm)) {
4223 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4224
4225 mmap_read_unlock(mm);
4226 }
4227
4228 mem_cgroup_unlock_pages();
4229
4230 if (walk->batched) {
4231 spin_lock_irq(&lruvec->lru_lock);
4232 reset_batch_size(lruvec, walk);
4233 spin_unlock_irq(&lruvec->lru_lock);
4234 }
4235
4236 cond_resched();
4237 } while (err == -EAGAIN);
4238}
4239
4240static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat)
4241{
4242 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4243
4244 if (pgdat && current_is_kswapd()) {
4245 VM_WARN_ON_ONCE(walk);
4246
4247 walk = &pgdat->mm_walk;
4248 } else if (!pgdat && !walk) {
4249 VM_WARN_ON_ONCE(current_is_kswapd());
4250
4251 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4252 }
4253
4254 current->reclaim_state->mm_walk = walk;
4255
4256 return walk;
4257}
4258
4259static void clear_mm_walk(void)
4260{
4261 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4262
4263 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4264 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4265
4266 current->reclaim_state->mm_walk = NULL;
4267
4268 if (!current_is_kswapd())
4269 kfree(walk);
4270}
4271
d6c3af7d 4272static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
ac35a490 4273{
d6c3af7d
YZ
4274 int zone;
4275 int remaining = MAX_LRU_BATCH;
391655fe 4276 struct lru_gen_folio *lrugen = &lruvec->lrugen;
d6c3af7d
YZ
4277 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4278
4279 if (type == LRU_GEN_ANON && !can_swap)
4280 goto done;
4281
4282 /* prevent cold/hot inversion if force_scan is true */
4283 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6df1b221 4284 struct list_head *head = &lrugen->folios[old_gen][type][zone];
d6c3af7d
YZ
4285
4286 while (!list_empty(head)) {
4287 struct folio *folio = lru_to_folio(head);
4288
4289 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4290 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4291 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4292 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
ac35a490 4293
d6c3af7d 4294 new_gen = folio_inc_gen(lruvec, folio, false);
6df1b221 4295 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
d6c3af7d
YZ
4296
4297 if (!--remaining)
4298 return false;
4299 }
4300 }
4301done:
ac35a490
YZ
4302 reset_ctrl_pos(lruvec, type, true);
4303 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
d6c3af7d
YZ
4304
4305 return true;
ac35a490
YZ
4306}
4307
4308static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4309{
4310 int gen, type, zone;
4311 bool success = false;
391655fe 4312 struct lru_gen_folio *lrugen = &lruvec->lrugen;
ac35a490
YZ
4313 DEFINE_MIN_SEQ(lruvec);
4314
4315 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4316
4317 /* find the oldest populated generation */
4318 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4319 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4320 gen = lru_gen_from_seq(min_seq[type]);
4321
4322 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6df1b221 4323 if (!list_empty(&lrugen->folios[gen][type][zone]))
ac35a490
YZ
4324 goto next;
4325 }
4326
4327 min_seq[type]++;
4328 }
4329next:
4330 ;
4331 }
4332
391655fe 4333 /* see the comment on lru_gen_folio */
ac35a490
YZ
4334 if (can_swap) {
4335 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4336 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4337 }
4338
4339 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4340 if (min_seq[type] == lrugen->min_seq[type])
4341 continue;
4342
4343 reset_ctrl_pos(lruvec, type, true);
4344 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4345 success = true;
4346 }
4347
4348 return success;
4349}
4350
d6c3af7d 4351static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
ac35a490
YZ
4352{
4353 int prev, next;
4354 int type, zone;
391655fe 4355 struct lru_gen_folio *lrugen = &lruvec->lrugen;
ac35a490
YZ
4356
4357 spin_lock_irq(&lruvec->lru_lock);
4358
4359 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4360
ac35a490
YZ
4361 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4362 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4363 continue;
4364
d6c3af7d 4365 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
ac35a490 4366
d6c3af7d
YZ
4367 while (!inc_min_seq(lruvec, type, can_swap)) {
4368 spin_unlock_irq(&lruvec->lru_lock);
4369 cond_resched();
4370 spin_lock_irq(&lruvec->lru_lock);
4371 }
ac35a490
YZ
4372 }
4373
4374 /*
4375 * Update the active/inactive LRU sizes for compatibility. Both sides of
4376 * the current max_seq need to be covered, since max_seq+1 can overlap
4377 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4378 * overlap, cold/hot inversion happens.
4379 */
4380 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4381 next = lru_gen_from_seq(lrugen->max_seq + 1);
4382
4383 for (type = 0; type < ANON_AND_FILE; type++) {
4384 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4385 enum lru_list lru = type * LRU_INACTIVE_FILE;
4386 long delta = lrugen->nr_pages[prev][type][zone] -
4387 lrugen->nr_pages[next][type][zone];
4388
4389 if (!delta)
4390 continue;
4391
4392 __update_lru_size(lruvec, lru, zone, delta);
4393 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4394 }
4395 }
4396
4397 for (type = 0; type < ANON_AND_FILE; type++)
4398 reset_ctrl_pos(lruvec, type, false);
4399
1332a809 4400 WRITE_ONCE(lrugen->timestamps[next], jiffies);
ac35a490
YZ
4401 /* make sure preceding modifications appear */
4402 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
bd74fdae 4403
ac35a490
YZ
4404 spin_unlock_irq(&lruvec->lru_lock);
4405}
4406
bd74fdae 4407static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
d6c3af7d 4408 struct scan_control *sc, bool can_swap, bool force_scan)
bd74fdae
YZ
4409{
4410 bool success;
4411 struct lru_gen_mm_walk *walk;
4412 struct mm_struct *mm = NULL;
391655fe 4413 struct lru_gen_folio *lrugen = &lruvec->lrugen;
bd74fdae
YZ
4414
4415 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4416
4417 /* see the comment in iterate_mm_list() */
4418 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4419 success = false;
4420 goto done;
4421 }
4422
4423 /*
4424 * If the hardware doesn't automatically set the accessed bit, fallback
4425 * to lru_gen_look_around(), which only clears the accessed bit in a
4426 * handful of PTEs. Spreading the work out over a period of time usually
4427 * is less efficient, but it avoids bursty page faults.
4428 */
d6c3af7d 4429 if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) {
bd74fdae
YZ
4430 success = iterate_mm_list_nowalk(lruvec, max_seq);
4431 goto done;
4432 }
4433
4434 walk = set_mm_walk(NULL);
4435 if (!walk) {
4436 success = iterate_mm_list_nowalk(lruvec, max_seq);
4437 goto done;
4438 }
4439
4440 walk->lruvec = lruvec;
4441 walk->max_seq = max_seq;
4442 walk->can_swap = can_swap;
d6c3af7d 4443 walk->force_scan = force_scan;
bd74fdae
YZ
4444
4445 do {
4446 success = iterate_mm_list(lruvec, walk, &mm);
4447 if (mm)
4448 walk_mm(lruvec, mm, walk);
4449
4450 cond_resched();
4451 } while (mm);
4452done:
4453 if (!success) {
4454 if (sc->priority <= DEF_PRIORITY - 2)
4455 wait_event_killable(lruvec->mm_state.wait,
4456 max_seq < READ_ONCE(lrugen->max_seq));
4457
4458 return max_seq < READ_ONCE(lrugen->max_seq);
4459 }
4460
4461 VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4462
d6c3af7d 4463 inc_max_seq(lruvec, can_swap, force_scan);
bd74fdae
YZ
4464 /* either this sees any waiters or they will see updated max_seq */
4465 if (wq_has_sleeper(&lruvec->mm_state.wait))
4466 wake_up_all(&lruvec->mm_state.wait);
4467
bd74fdae
YZ
4468 return true;
4469}
4470
ac35a490
YZ
4471static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq,
4472 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4473{
4474 int gen, type, zone;
4475 unsigned long old = 0;
4476 unsigned long young = 0;
4477 unsigned long total = 0;
391655fe 4478 struct lru_gen_folio *lrugen = &lruvec->lrugen;
ac35a490
YZ
4479 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4480
4481 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4482 unsigned long seq;
4483
4484 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4485 unsigned long size = 0;
4486
4487 gen = lru_gen_from_seq(seq);
4488
4489 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4490 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4491
4492 total += size;
4493 if (seq == max_seq)
4494 young += size;
4495 else if (seq + MIN_NR_GENS == max_seq)
4496 old += size;
4497 }
4498 }
4499
4500 /* try to scrape all its memory if this memcg was deleted */
4501 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4502
4503 /*
4504 * The aging tries to be lazy to reduce the overhead, while the eviction
4505 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4506 * ideal number of generations is MIN_NR_GENS+1.
4507 */
4508 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq)
4509 return true;
4510 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4511 return false;
4512
4513 /*
4514 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4515 * of the total number of pages for each generation. A reasonable range
4516 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4517 * aging cares about the upper bound of hot pages, while the eviction
4518 * cares about the lower bound of cold pages.
4519 */
4520 if (young * MIN_NR_GENS > total)
4521 return true;
4522 if (old * (MIN_NR_GENS + 2) < total)
4523 return true;
4524
4525 return false;
4526}
4527
1332a809 4528static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl)
ac35a490
YZ
4529{
4530 bool need_aging;
4531 unsigned long nr_to_scan;
4532 int swappiness = get_swappiness(lruvec, sc);
4533 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4534 DEFINE_MAX_SEQ(lruvec);
4535 DEFINE_MIN_SEQ(lruvec);
4536
4537 VM_WARN_ON_ONCE(sc->memcg_low_reclaim);
4538
4539 mem_cgroup_calculate_protection(NULL, memcg);
4540
adb82130 4541 if (mem_cgroup_below_min(NULL, memcg))
1332a809 4542 return false;
ac35a490
YZ
4543
4544 need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan);
1332a809
YZ
4545
4546 if (min_ttl) {
4547 int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4548 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4549
4550 if (time_is_after_jiffies(birth + min_ttl))
4551 return false;
4552
4553 /* the size is likely too small to be helpful */
4554 if (!nr_to_scan && sc->priority != DEF_PRIORITY)
4555 return false;
4556 }
4557
ac35a490 4558 if (need_aging)
d6c3af7d 4559 try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false);
1332a809
YZ
4560
4561 return true;
ac35a490
YZ
4562}
4563
1332a809
YZ
4564/* to protect the working set of the last N jiffies */
4565static unsigned long lru_gen_min_ttl __read_mostly;
4566
ac35a490
YZ
4567static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4568{
4569 struct mem_cgroup *memcg;
1332a809
YZ
4570 bool success = false;
4571 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
ac35a490
YZ
4572
4573 VM_WARN_ON_ONCE(!current_is_kswapd());
4574
f76c8337
YZ
4575 sc->last_reclaimed = sc->nr_reclaimed;
4576
4577 /*
4578 * To reduce the chance of going into the aging path, which can be
4579 * costly, optimistically skip it if the flag below was cleared in the
4580 * eviction path. This improves the overall performance when multiple
4581 * memcgs are available.
4582 */
4583 if (!sc->memcgs_need_aging) {
4584 sc->memcgs_need_aging = true;
4585 return;
4586 }
4587
bd74fdae
YZ
4588 set_mm_walk(pgdat);
4589
ac35a490
YZ
4590 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4591 do {
4592 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4593
1332a809
YZ
4594 if (age_lruvec(lruvec, sc, min_ttl))
4595 success = true;
ac35a490
YZ
4596
4597 cond_resched();
4598 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
bd74fdae
YZ
4599
4600 clear_mm_walk();
1332a809
YZ
4601
4602 /* check the order to exclude compaction-induced reclaim */
4603 if (success || !min_ttl || sc->order)
4604 return;
4605
4606 /*
4607 * The main goal is to OOM kill if every generation from all memcgs is
4608 * younger than min_ttl. However, another possibility is all memcgs are
4609 * either below min or empty.
4610 */
4611 if (mutex_trylock(&oom_lock)) {
4612 struct oom_control oc = {
4613 .gfp_mask = sc->gfp_mask,
4614 };
4615
4616 out_of_memory(&oc);
4617
4618 mutex_unlock(&oom_lock);
4619 }
ac35a490
YZ
4620}
4621
018ee47f 4622/*
49fd9b6d 4623 * This function exploits spatial locality when shrink_folio_list() walks the
bd74fdae
YZ
4624 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4625 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4626 * the PTE table to the Bloom filter. This forms a feedback loop between the
4627 * eviction and the aging.
018ee47f
YZ
4628 */
4629void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4630{
4631 int i;
4632 pte_t *pte;
4633 unsigned long start;
4634 unsigned long end;
4635 unsigned long addr;
bd74fdae
YZ
4636 struct lru_gen_mm_walk *walk;
4637 int young = 0;
018ee47f
YZ
4638 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4639 struct folio *folio = pfn_folio(pvmw->pfn);
4640 struct mem_cgroup *memcg = folio_memcg(folio);
4641 struct pglist_data *pgdat = folio_pgdat(folio);
4642 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4643 DEFINE_MAX_SEQ(lruvec);
4644 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4645
4646 lockdep_assert_held(pvmw->ptl);
4647 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4648
4649 if (spin_is_contended(pvmw->ptl))
4650 return;
4651
bd74fdae
YZ
4652 /* avoid taking the LRU lock under the PTL when possible */
4653 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4654
018ee47f
YZ
4655 start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
4656 end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4657
4658 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4659 if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4660 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4661 else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
4662 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4663 else {
4664 start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
4665 end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
4666 }
4667 }
4668
4669 pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
4670
4671 rcu_read_lock();
4672 arch_enter_lazy_mmu_mode();
4673
4674 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4675 unsigned long pfn;
4676
4677 pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4678 if (pfn == -1)
4679 continue;
4680
4681 if (!pte_young(pte[i]))
4682 continue;
4683
bd74fdae 4684 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
018ee47f
YZ
4685 if (!folio)
4686 continue;
4687
4688 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4689 VM_WARN_ON_ONCE(true);
4690
bd74fdae
YZ
4691 young++;
4692
018ee47f
YZ
4693 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4694 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4695 !folio_test_swapcache(folio)))
4696 folio_mark_dirty(folio);
4697
4698 old_gen = folio_lru_gen(folio);
4699 if (old_gen < 0)
4700 folio_set_referenced(folio);
4701 else if (old_gen != new_gen)
4702 __set_bit(i, bitmap);
4703 }
4704
4705 arch_leave_lazy_mmu_mode();
4706 rcu_read_unlock();
4707
bd74fdae
YZ
4708 /* feedback from rmap walkers to page table walkers */
4709 if (suitable_to_scan(i, young))
4710 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4711
4712 if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
018ee47f
YZ
4713 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4714 folio = pfn_folio(pte_pfn(pte[i]));
4715 folio_activate(folio);
4716 }
4717 return;
4718 }
4719
4720 /* folio_update_gen() requires stable folio_memcg() */
4721 if (!mem_cgroup_trylock_pages(memcg))
4722 return;
4723
bd74fdae
YZ
4724 if (!walk) {
4725 spin_lock_irq(&lruvec->lru_lock);
4726 new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
4727 }
018ee47f
YZ
4728
4729 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4730 folio = pfn_folio(pte_pfn(pte[i]));
4731 if (folio_memcg_rcu(folio) != memcg)
4732 continue;
4733
4734 old_gen = folio_update_gen(folio, new_gen);
4735 if (old_gen < 0 || old_gen == new_gen)
4736 continue;
4737
bd74fdae
YZ
4738 if (walk)
4739 update_batch_size(walk, folio, old_gen, new_gen);
4740 else
4741 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
018ee47f
YZ
4742 }
4743
bd74fdae
YZ
4744 if (!walk)
4745 spin_unlock_irq(&lruvec->lru_lock);
018ee47f
YZ
4746
4747 mem_cgroup_unlock_pages();
4748}
4749
ac35a490
YZ
4750/******************************************************************************
4751 * the eviction
4752 ******************************************************************************/
4753
4754static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4755{
4756 bool success;
4757 int gen = folio_lru_gen(folio);
4758 int type = folio_is_file_lru(folio);
4759 int zone = folio_zonenum(folio);
4760 int delta = folio_nr_pages(folio);
4761 int refs = folio_lru_refs(folio);
4762 int tier = lru_tier_from_refs(refs);
391655fe 4763 struct lru_gen_folio *lrugen = &lruvec->lrugen;
ac35a490
YZ
4764
4765 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4766
4767 /* unevictable */
4768 if (!folio_evictable(folio)) {
4769 success = lru_gen_del_folio(lruvec, folio, true);
4770 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4771 folio_set_unevictable(folio);
4772 lruvec_add_folio(lruvec, folio);
4773 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4774 return true;
4775 }
4776
4777 /* dirty lazyfree */
4778 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4779 success = lru_gen_del_folio(lruvec, folio, true);
4780 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4781 folio_set_swapbacked(folio);
4782 lruvec_add_folio_tail(lruvec, folio);
4783 return true;
4784 }
4785
018ee47f
YZ
4786 /* promoted */
4787 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
6df1b221 4788 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
018ee47f
YZ
4789 return true;
4790 }
4791
ac35a490
YZ
4792 /* protected */
4793 if (tier > tier_idx) {
4794 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4795
4796 gen = folio_inc_gen(lruvec, folio, false);
6df1b221 4797 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
ac35a490
YZ
4798
4799 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4800 lrugen->protected[hist][type][tier - 1] + delta);
4801 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4802 return true;
4803 }
4804
4805 /* waiting for writeback */
4806 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4807 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4808 gen = folio_inc_gen(lruvec, folio, true);
6df1b221 4809 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
ac35a490
YZ
4810 return true;
4811 }
4812
4813 return false;
4814}
4815
4816static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4817{
4818 bool success;
4819
4820 /* unmapping inhibited */
4821 if (!sc->may_unmap && folio_mapped(folio))
4822 return false;
4823
4824 /* swapping inhibited */
4825 if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) &&
4826 (folio_test_dirty(folio) ||
4827 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4828 return false;
4829
4830 /* raced with release_pages() */
4831 if (!folio_try_get(folio))
4832 return false;
4833
4834 /* raced with another isolation */
4835 if (!folio_test_clear_lru(folio)) {
4836 folio_put(folio);
4837 return false;
4838 }
4839
4840 /* see the comment on MAX_NR_TIERS */
4841 if (!folio_test_referenced(folio))
4842 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4843
49fd9b6d 4844 /* for shrink_folio_list() */
ac35a490
YZ
4845 folio_clear_reclaim(folio);
4846 folio_clear_referenced(folio);
4847
4848 success = lru_gen_del_folio(lruvec, folio, true);
4849 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4850
4851 return true;
4852}
4853
4854static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4855 int type, int tier, struct list_head *list)
4856{
4857 int gen, zone;
4858 enum vm_event_item item;
4859 int sorted = 0;
4860 int scanned = 0;
4861 int isolated = 0;
4862 int remaining = MAX_LRU_BATCH;
391655fe 4863 struct lru_gen_folio *lrugen = &lruvec->lrugen;
ac35a490
YZ
4864 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4865
4866 VM_WARN_ON_ONCE(!list_empty(list));
4867
4868 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4869 return 0;
4870
4871 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4872
4873 for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4874 LIST_HEAD(moved);
4875 int skipped = 0;
6df1b221 4876 struct list_head *head = &lrugen->folios[gen][type][zone];
ac35a490
YZ
4877
4878 while (!list_empty(head)) {
4879 struct folio *folio = lru_to_folio(head);
4880 int delta = folio_nr_pages(folio);
4881
4882 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4883 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4884 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4885 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4886
4887 scanned += delta;
4888
4889 if (sort_folio(lruvec, folio, tier))
4890 sorted += delta;
4891 else if (isolate_folio(lruvec, folio, sc)) {
4892 list_add(&folio->lru, list);
4893 isolated += delta;
4894 } else {
4895 list_move(&folio->lru, &moved);
4896 skipped += delta;
4897 }
4898
4899 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4900 break;
4901 }
4902
4903 if (skipped) {
4904 list_splice(&moved, head);
4905 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4906 }
4907
4908 if (!remaining || isolated >= MIN_LRU_BATCH)
4909 break;
4910 }
4911
57e9cc50 4912 item = PGSCAN_KSWAPD + reclaimer_offset();
ac35a490
YZ
4913 if (!cgroup_reclaim(sc)) {
4914 __count_vm_events(item, isolated);
4915 __count_vm_events(PGREFILL, sorted);
4916 }
4917 __count_memcg_events(memcg, item, isolated);
4918 __count_memcg_events(memcg, PGREFILL, sorted);
4919 __count_vm_events(PGSCAN_ANON + type, isolated);
4920
4921 /*
4922 * There might not be eligible pages due to reclaim_idx, may_unmap and
4923 * may_writepage. Check the remaining to prevent livelock if it's not
4924 * making progress.
4925 */
4926 return isolated || !remaining ? scanned : 0;
4927}
4928
4929static int get_tier_idx(struct lruvec *lruvec, int type)
4930{
4931 int tier;
4932 struct ctrl_pos sp, pv;
4933
4934 /*
4935 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4936 * This value is chosen because any other tier would have at least twice
4937 * as many refaults as the first tier.
4938 */
4939 read_ctrl_pos(lruvec, type, 0, 1, &sp);
4940 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4941 read_ctrl_pos(lruvec, type, tier, 2, &pv);
4942 if (!positive_ctrl_err(&sp, &pv))
4943 break;
4944 }
4945
4946 return tier - 1;
4947}
4948
4949static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4950{
4951 int type, tier;
4952 struct ctrl_pos sp, pv;
4953 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4954
4955 /*
4956 * Compare the first tier of anon with that of file to determine which
4957 * type to scan. Also need to compare other tiers of the selected type
4958 * with the first tier of the other type to determine the last tier (of
4959 * the selected type) to evict.
4960 */
4961 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4962 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4963 type = positive_ctrl_err(&sp, &pv);
4964
4965 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4966 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4967 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4968 if (!positive_ctrl_err(&sp, &pv))
4969 break;
4970 }
4971
4972 *tier_idx = tier - 1;
4973
4974 return type;
4975}
4976
4977static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4978 int *type_scanned, struct list_head *list)
4979{
4980 int i;
4981 int type;
4982 int scanned;
4983 int tier = -1;
4984 DEFINE_MIN_SEQ(lruvec);
4985
4986 /*
4987 * Try to make the obvious choice first. When anon and file are both
4988 * available from the same generation, interpret swappiness 1 as file
4989 * first and 200 as anon first.
4990 */
4991 if (!swappiness)
4992 type = LRU_GEN_FILE;
4993 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4994 type = LRU_GEN_ANON;
4995 else if (swappiness == 1)
4996 type = LRU_GEN_FILE;
4997 else if (swappiness == 200)
4998 type = LRU_GEN_ANON;
4999 else
5000 type = get_type_to_scan(lruvec, swappiness, &tier);
5001
5002 for (i = !swappiness; i < ANON_AND_FILE; i++) {
5003 if (tier < 0)
5004 tier = get_tier_idx(lruvec, type);
5005
5006 scanned = scan_folios(lruvec, sc, type, tier, list);
5007 if (scanned)
5008 break;
5009
5010 type = !type;
5011 tier = -1;
5012 }
5013
5014 *type_scanned = type;
5015
5016 return scanned;
5017}
5018
a579086c 5019static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
ac35a490
YZ
5020{
5021 int type;
5022 int scanned;
5023 int reclaimed;
5024 LIST_HEAD(list);
359a5e14 5025 LIST_HEAD(clean);
ac35a490 5026 struct folio *folio;
359a5e14 5027 struct folio *next;
ac35a490
YZ
5028 enum vm_event_item item;
5029 struct reclaim_stat stat;
bd74fdae 5030 struct lru_gen_mm_walk *walk;
359a5e14 5031 bool skip_retry = false;
ac35a490
YZ
5032 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5033 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5034
5035 spin_lock_irq(&lruvec->lru_lock);
5036
5037 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5038
5039 scanned += try_to_inc_min_seq(lruvec, swappiness);
5040
5041 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5042 scanned = 0;
5043
5044 spin_unlock_irq(&lruvec->lru_lock);
5045
5046 if (list_empty(&list))
5047 return scanned;
359a5e14 5048retry:
49fd9b6d 5049 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
359a5e14 5050 sc->nr_reclaimed += reclaimed;
ac35a490 5051
359a5e14
YZ
5052 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5053 if (!folio_evictable(folio)) {
5054 list_del(&folio->lru);
5055 folio_putback_lru(folio);
5056 continue;
5057 }
ac35a490 5058
ac35a490 5059 if (folio_test_reclaim(folio) &&
359a5e14
YZ
5060 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5061 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5062 if (folio_test_workingset(folio))
5063 folio_set_referenced(folio);
5064 continue;
5065 }
5066
5067 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5068 folio_mapped(folio) || folio_test_locked(folio) ||
5069 folio_test_dirty(folio) || folio_test_writeback(folio)) {
5070 /* don't add rejected folios to the oldest generation */
5071 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5072 BIT(PG_active));
5073 continue;
5074 }
5075
5076 /* retry folios that may have missed folio_rotate_reclaimable() */
5077 list_move(&folio->lru, &clean);
5078 sc->nr_scanned -= folio_nr_pages(folio);
ac35a490
YZ
5079 }
5080
5081 spin_lock_irq(&lruvec->lru_lock);
5082
49fd9b6d 5083 move_folios_to_lru(lruvec, &list);
ac35a490 5084
bd74fdae
YZ
5085 walk = current->reclaim_state->mm_walk;
5086 if (walk && walk->batched)
5087 reset_batch_size(lruvec, walk);
5088
57e9cc50 5089 item = PGSTEAL_KSWAPD + reclaimer_offset();
ac35a490
YZ
5090 if (!cgroup_reclaim(sc))
5091 __count_vm_events(item, reclaimed);
5092 __count_memcg_events(memcg, item, reclaimed);
5093 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
5094
5095 spin_unlock_irq(&lruvec->lru_lock);
5096
5097 mem_cgroup_uncharge_list(&list);
5098 free_unref_page_list(&list);
5099
359a5e14
YZ
5100 INIT_LIST_HEAD(&list);
5101 list_splice_init(&clean, &list);
5102
5103 if (!list_empty(&list)) {
5104 skip_retry = true;
5105 goto retry;
5106 }
ac35a490
YZ
5107
5108 return scanned;
5109}
5110
bd74fdae
YZ
5111/*
5112 * For future optimizations:
5113 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5114 * reclaim.
5115 */
ac35a490 5116static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc,
f76c8337 5117 bool can_swap, bool *need_aging)
ac35a490 5118{
ac35a490
YZ
5119 unsigned long nr_to_scan;
5120 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5121 DEFINE_MAX_SEQ(lruvec);
5122 DEFINE_MIN_SEQ(lruvec);
5123
adb82130
YA
5124 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg) ||
5125 (mem_cgroup_below_low(sc->target_mem_cgroup, memcg) &&
5126 !sc->memcg_low_reclaim))
ac35a490
YZ
5127 return 0;
5128
f76c8337
YZ
5129 *need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan);
5130 if (!*need_aging)
ac35a490
YZ
5131 return nr_to_scan;
5132
5133 /* skip the aging path at the default priority */
5134 if (sc->priority == DEF_PRIORITY)
5135 goto done;
5136
5137 /* leave the work to lru_gen_age_node() */
5138 if (current_is_kswapd())
5139 return 0;
5140
d6c3af7d 5141 if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false))
bd74fdae 5142 return nr_to_scan;
ac35a490
YZ
5143done:
5144 return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0;
5145}
5146
a579086c 5147static unsigned long get_nr_to_reclaim(struct scan_control *sc)
f76c8337 5148{
a579086c
YZ
5149 /* don't abort memcg reclaim to ensure fairness */
5150 if (!global_reclaim(sc))
5151 return -1;
f76c8337 5152
a579086c
YZ
5153 /* discount the previous progress for kswapd */
5154 if (current_is_kswapd())
5155 return sc->nr_to_reclaim + sc->last_reclaimed;
f76c8337 5156
a579086c 5157 return max(sc->nr_to_reclaim, compact_gap(sc->order));
f76c8337
YZ
5158}
5159
ac35a490
YZ
5160static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5161{
5162 struct blk_plug plug;
f76c8337 5163 bool need_aging = false;
ac35a490 5164 unsigned long scanned = 0;
f76c8337 5165 unsigned long reclaimed = sc->nr_reclaimed;
a579086c 5166 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
ac35a490
YZ
5167
5168 lru_add_drain();
5169
5170 blk_start_plug(&plug);
5171
bd74fdae
YZ
5172 set_mm_walk(lruvec_pgdat(lruvec));
5173
ac35a490
YZ
5174 while (true) {
5175 int delta;
5176 int swappiness;
5177 unsigned long nr_to_scan;
5178
5179 if (sc->may_swap)
5180 swappiness = get_swappiness(lruvec, sc);
5181 else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc))
5182 swappiness = 1;
5183 else
5184 swappiness = 0;
5185
f76c8337 5186 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging);
ac35a490 5187 if (!nr_to_scan)
f76c8337 5188 goto done;
ac35a490 5189
a579086c 5190 delta = evict_folios(lruvec, sc, swappiness);
ac35a490 5191 if (!delta)
f76c8337 5192 goto done;
ac35a490
YZ
5193
5194 scanned += delta;
5195 if (scanned >= nr_to_scan)
5196 break;
5197
a579086c 5198 if (sc->nr_reclaimed >= nr_to_reclaim)
f76c8337
YZ
5199 break;
5200
ac35a490
YZ
5201 cond_resched();
5202 }
5203
f76c8337
YZ
5204 /* see the comment in lru_gen_age_node() */
5205 if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging)
5206 sc->memcgs_need_aging = false;
5207done:
bd74fdae
YZ
5208 clear_mm_walk();
5209
ac35a490
YZ
5210 blk_finish_plug(&plug);
5211}
5212
354ed597
YZ
5213/******************************************************************************
5214 * state change
5215 ******************************************************************************/
5216
5217static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5218{
391655fe 5219 struct lru_gen_folio *lrugen = &lruvec->lrugen;
354ed597
YZ
5220
5221 if (lrugen->enabled) {
5222 enum lru_list lru;
5223
5224 for_each_evictable_lru(lru) {
5225 if (!list_empty(&lruvec->lists[lru]))
5226 return false;
5227 }
5228 } else {
5229 int gen, type, zone;
5230
5231 for_each_gen_type_zone(gen, type, zone) {
6df1b221 5232 if (!list_empty(&lrugen->folios[gen][type][zone]))
354ed597
YZ
5233 return false;
5234 }
5235 }
5236
5237 return true;
5238}
5239
5240static bool fill_evictable(struct lruvec *lruvec)
5241{
5242 enum lru_list lru;
5243 int remaining = MAX_LRU_BATCH;
5244
5245 for_each_evictable_lru(lru) {
5246 int type = is_file_lru(lru);
5247 bool active = is_active_lru(lru);
5248 struct list_head *head = &lruvec->lists[lru];
5249
5250 while (!list_empty(head)) {
5251 bool success;
5252 struct folio *folio = lru_to_folio(head);
5253
5254 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5255 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5256 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5257 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5258
5259 lruvec_del_folio(lruvec, folio);
5260 success = lru_gen_add_folio(lruvec, folio, false);
5261 VM_WARN_ON_ONCE(!success);
5262
5263 if (!--remaining)
5264 return false;
5265 }
5266 }
5267
5268 return true;
5269}
5270
5271static bool drain_evictable(struct lruvec *lruvec)
5272{
5273 int gen, type, zone;
5274 int remaining = MAX_LRU_BATCH;
5275
5276 for_each_gen_type_zone(gen, type, zone) {
6df1b221 5277 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
354ed597
YZ
5278
5279 while (!list_empty(head)) {
5280 bool success;
5281 struct folio *folio = lru_to_folio(head);
5282
5283 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5284 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5285 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5286 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5287
5288 success = lru_gen_del_folio(lruvec, folio, false);
5289 VM_WARN_ON_ONCE(!success);
5290 lruvec_add_folio(lruvec, folio);
5291
5292 if (!--remaining)
5293 return false;
5294 }
5295 }
5296
5297 return true;
5298}
5299
5300static void lru_gen_change_state(bool enabled)
5301{
5302 static DEFINE_MUTEX(state_mutex);
5303
5304 struct mem_cgroup *memcg;
5305
5306 cgroup_lock();
5307 cpus_read_lock();
5308 get_online_mems();
5309 mutex_lock(&state_mutex);
5310
5311 if (enabled == lru_gen_enabled())
5312 goto unlock;
5313
5314 if (enabled)
5315 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5316 else
5317 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5318
5319 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5320 do {
5321 int nid;
5322
5323 for_each_node(nid) {
5324 struct lruvec *lruvec = get_lruvec(memcg, nid);
5325
354ed597
YZ
5326 spin_lock_irq(&lruvec->lru_lock);
5327
5328 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5329 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5330
5331 lruvec->lrugen.enabled = enabled;
5332
5333 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5334 spin_unlock_irq(&lruvec->lru_lock);
5335 cond_resched();
5336 spin_lock_irq(&lruvec->lru_lock);
5337 }
5338
5339 spin_unlock_irq(&lruvec->lru_lock);
5340 }
5341
5342 cond_resched();
5343 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5344unlock:
5345 mutex_unlock(&state_mutex);
5346 put_online_mems();
5347 cpus_read_unlock();
5348 cgroup_unlock();
5349}
5350
5351/******************************************************************************
5352 * sysfs interface
5353 ******************************************************************************/
5354
1332a809
YZ
5355static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5356{
5357 return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5358}
5359
07017acb 5360/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
1332a809
YZ
5361static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5362 const char *buf, size_t len)
5363{
5364 unsigned int msecs;
5365
5366 if (kstrtouint(buf, 0, &msecs))
5367 return -EINVAL;
5368
5369 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5370
5371 return len;
5372}
5373
5374static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5375 min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5376);
5377
354ed597
YZ
5378static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5379{
5380 unsigned int caps = 0;
5381
5382 if (get_cap(LRU_GEN_CORE))
5383 caps |= BIT(LRU_GEN_CORE);
5384
5385 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5386 caps |= BIT(LRU_GEN_MM_WALK);
5387
4aaf269c 5388 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
354ed597
YZ
5389 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5390
8ef9c32a 5391 return sysfs_emit(buf, "0x%04x\n", caps);
354ed597
YZ
5392}
5393
07017acb 5394/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
354ed597
YZ
5395static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5396 const char *buf, size_t len)
5397{
5398 int i;
5399 unsigned int caps;
5400
5401 if (tolower(*buf) == 'n')
5402 caps = 0;
5403 else if (tolower(*buf) == 'y')
5404 caps = -1;
5405 else if (kstrtouint(buf, 0, &caps))
5406 return -EINVAL;
5407
5408 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5409 bool enabled = caps & BIT(i);
5410
5411 if (i == LRU_GEN_CORE)
5412 lru_gen_change_state(enabled);
5413 else if (enabled)
5414 static_branch_enable(&lru_gen_caps[i]);
5415 else
5416 static_branch_disable(&lru_gen_caps[i]);
5417 }
5418
5419 return len;
5420}
5421
5422static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5423 enabled, 0644, show_enabled, store_enabled
5424);
5425
5426static struct attribute *lru_gen_attrs[] = {
1332a809 5427 &lru_gen_min_ttl_attr.attr,
354ed597
YZ
5428 &lru_gen_enabled_attr.attr,
5429 NULL
5430};
5431
5432static struct attribute_group lru_gen_attr_group = {
5433 .name = "lru_gen",
5434 .attrs = lru_gen_attrs,
5435};
5436
d6c3af7d
YZ
5437/******************************************************************************
5438 * debugfs interface
5439 ******************************************************************************/
5440
5441static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5442{
5443 struct mem_cgroup *memcg;
5444 loff_t nr_to_skip = *pos;
5445
5446 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5447 if (!m->private)
5448 return ERR_PTR(-ENOMEM);
5449
5450 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5451 do {
5452 int nid;
5453
5454 for_each_node_state(nid, N_MEMORY) {
5455 if (!nr_to_skip--)
5456 return get_lruvec(memcg, nid);
5457 }
5458 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5459
5460 return NULL;
5461}
5462
5463static void lru_gen_seq_stop(struct seq_file *m, void *v)
5464{
5465 if (!IS_ERR_OR_NULL(v))
5466 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5467
5468 kvfree(m->private);
5469 m->private = NULL;
5470}
5471
5472static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5473{
5474 int nid = lruvec_pgdat(v)->node_id;
5475 struct mem_cgroup *memcg = lruvec_memcg(v);
5476
5477 ++*pos;
5478
5479 nid = next_memory_node(nid);
5480 if (nid == MAX_NUMNODES) {
5481 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5482 if (!memcg)
5483 return NULL;
5484
5485 nid = first_memory_node;
5486 }
5487
5488 return get_lruvec(memcg, nid);
5489}
5490
5491static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5492 unsigned long max_seq, unsigned long *min_seq,
5493 unsigned long seq)
5494{
5495 int i;
5496 int type, tier;
5497 int hist = lru_hist_from_seq(seq);
391655fe 5498 struct lru_gen_folio *lrugen = &lruvec->lrugen;
d6c3af7d
YZ
5499
5500 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5501 seq_printf(m, " %10d", tier);
5502 for (type = 0; type < ANON_AND_FILE; type++) {
5503 const char *s = " ";
5504 unsigned long n[3] = {};
5505
5506 if (seq == max_seq) {
5507 s = "RT ";
5508 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5509 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5510 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5511 s = "rep";
5512 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5513 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5514 if (tier)
5515 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5516 }
5517
5518 for (i = 0; i < 3; i++)
5519 seq_printf(m, " %10lu%c", n[i], s[i]);
5520 }
5521 seq_putc(m, '\n');
5522 }
5523
5524 seq_puts(m, " ");
5525 for (i = 0; i < NR_MM_STATS; i++) {
5526 const char *s = " ";
5527 unsigned long n = 0;
5528
5529 if (seq == max_seq && NR_HIST_GENS == 1) {
5530 s = "LOYNFA";
5531 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5532 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5533 s = "loynfa";
5534 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5535 }
5536
5537 seq_printf(m, " %10lu%c", n, s[i]);
5538 }
5539 seq_putc(m, '\n');
5540}
5541
07017acb 5542/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
d6c3af7d
YZ
5543static int lru_gen_seq_show(struct seq_file *m, void *v)
5544{
5545 unsigned long seq;
5546 bool full = !debugfs_real_fops(m->file)->write;
5547 struct lruvec *lruvec = v;
391655fe 5548 struct lru_gen_folio *lrugen = &lruvec->lrugen;
d6c3af7d
YZ
5549 int nid = lruvec_pgdat(lruvec)->node_id;
5550 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5551 DEFINE_MAX_SEQ(lruvec);
5552 DEFINE_MIN_SEQ(lruvec);
5553
5554 if (nid == first_memory_node) {
5555 const char *path = memcg ? m->private : "";
5556
5557#ifdef CONFIG_MEMCG
5558 if (memcg)
5559 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5560#endif
5561 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5562 }
5563
5564 seq_printf(m, " node %5d\n", nid);
5565
5566 if (!full)
5567 seq = min_seq[LRU_GEN_ANON];
5568 else if (max_seq >= MAX_NR_GENS)
5569 seq = max_seq - MAX_NR_GENS + 1;
5570 else
5571 seq = 0;
5572
5573 for (; seq <= max_seq; seq++) {
5574 int type, zone;
5575 int gen = lru_gen_from_seq(seq);
5576 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5577
5578 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5579
5580 for (type = 0; type < ANON_AND_FILE; type++) {
5581 unsigned long size = 0;
5582 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5583
5584 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5585 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5586
5587 seq_printf(m, " %10lu%c", size, mark);
5588 }
5589
5590 seq_putc(m, '\n');
5591
5592 if (full)
5593 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5594 }
5595
5596 return 0;
5597}
5598
5599static const struct seq_operations lru_gen_seq_ops = {
5600 .start = lru_gen_seq_start,
5601 .stop = lru_gen_seq_stop,
5602 .next = lru_gen_seq_next,
5603 .show = lru_gen_seq_show,
5604};
5605
5606static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5607 bool can_swap, bool force_scan)
5608{
5609 DEFINE_MAX_SEQ(lruvec);
5610 DEFINE_MIN_SEQ(lruvec);
5611
5612 if (seq < max_seq)
5613 return 0;
5614
5615 if (seq > max_seq)
5616 return -EINVAL;
5617
5618 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5619 return -ERANGE;
5620
5621 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5622
5623 return 0;
5624}
5625
5626static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5627 int swappiness, unsigned long nr_to_reclaim)
5628{
5629 DEFINE_MAX_SEQ(lruvec);
5630
5631 if (seq + MIN_NR_GENS > max_seq)
5632 return -EINVAL;
5633
5634 sc->nr_reclaimed = 0;
5635
5636 while (!signal_pending(current)) {
5637 DEFINE_MIN_SEQ(lruvec);
5638
5639 if (seq < min_seq[!swappiness])
5640 return 0;
5641
5642 if (sc->nr_reclaimed >= nr_to_reclaim)
5643 return 0;
5644
a579086c 5645 if (!evict_folios(lruvec, sc, swappiness))
d6c3af7d
YZ
5646 return 0;
5647
5648 cond_resched();
5649 }
5650
5651 return -EINTR;
5652}
5653
5654static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5655 struct scan_control *sc, int swappiness, unsigned long opt)
5656{
5657 struct lruvec *lruvec;
5658 int err = -EINVAL;
5659 struct mem_cgroup *memcg = NULL;
5660
5661 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5662 return -EINVAL;
5663
5664 if (!mem_cgroup_disabled()) {
5665 rcu_read_lock();
5666 memcg = mem_cgroup_from_id(memcg_id);
5667#ifdef CONFIG_MEMCG
5668 if (memcg && !css_tryget(&memcg->css))
5669 memcg = NULL;
5670#endif
5671 rcu_read_unlock();
5672
5673 if (!memcg)
5674 return -EINVAL;
5675 }
5676
5677 if (memcg_id != mem_cgroup_id(memcg))
5678 goto done;
5679
5680 lruvec = get_lruvec(memcg, nid);
5681
5682 if (swappiness < 0)
5683 swappiness = get_swappiness(lruvec, sc);
5684 else if (swappiness > 200)
5685 goto done;
5686
5687 switch (cmd) {
5688 case '+':
5689 err = run_aging(lruvec, seq, sc, swappiness, opt);
5690 break;
5691 case '-':
5692 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5693 break;
5694 }
5695done:
5696 mem_cgroup_put(memcg);
5697
5698 return err;
5699}
5700
07017acb 5701/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
d6c3af7d
YZ
5702static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5703 size_t len, loff_t *pos)
5704{
5705 void *buf;
5706 char *cur, *next;
5707 unsigned int flags;
5708 struct blk_plug plug;
5709 int err = -EINVAL;
5710 struct scan_control sc = {
5711 .may_writepage = true,
5712 .may_unmap = true,
5713 .may_swap = true,
5714 .reclaim_idx = MAX_NR_ZONES - 1,
5715 .gfp_mask = GFP_KERNEL,
5716 };
5717
5718 buf = kvmalloc(len + 1, GFP_KERNEL);
5719 if (!buf)
5720 return -ENOMEM;
5721
5722 if (copy_from_user(buf, src, len)) {
5723 kvfree(buf);
5724 return -EFAULT;
5725 }
5726
5727 set_task_reclaim_state(current, &sc.reclaim_state);
5728 flags = memalloc_noreclaim_save();
5729 blk_start_plug(&plug);
5730 if (!set_mm_walk(NULL)) {
5731 err = -ENOMEM;
5732 goto done;
5733 }
5734
5735 next = buf;
5736 next[len] = '\0';
5737
5738 while ((cur = strsep(&next, ",;\n"))) {
5739 int n;
5740 int end;
5741 char cmd;
5742 unsigned int memcg_id;
5743 unsigned int nid;
5744 unsigned long seq;
5745 unsigned int swappiness = -1;
5746 unsigned long opt = -1;
5747
5748 cur = skip_spaces(cur);
5749 if (!*cur)
5750 continue;
5751
5752 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5753 &seq, &end, &swappiness, &end, &opt, &end);
5754 if (n < 4 || cur[end]) {
5755 err = -EINVAL;
5756 break;
5757 }
5758
5759 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5760 if (err)
5761 break;
5762 }
5763done:
5764 clear_mm_walk();
5765 blk_finish_plug(&plug);
5766 memalloc_noreclaim_restore(flags);
5767 set_task_reclaim_state(current, NULL);
5768
5769 kvfree(buf);
5770
5771 return err ? : len;
5772}
5773
5774static int lru_gen_seq_open(struct inode *inode, struct file *file)
5775{
5776 return seq_open(file, &lru_gen_seq_ops);
5777}
5778
5779static const struct file_operations lru_gen_rw_fops = {
5780 .open = lru_gen_seq_open,
5781 .read = seq_read,
5782 .write = lru_gen_seq_write,
5783 .llseek = seq_lseek,
5784 .release = seq_release,
5785};
5786
5787static const struct file_operations lru_gen_ro_fops = {
5788 .open = lru_gen_seq_open,
5789 .read = seq_read,
5790 .llseek = seq_lseek,
5791 .release = seq_release,
5792};
5793
ec1c86b2
YZ
5794/******************************************************************************
5795 * initialization
5796 ******************************************************************************/
5797
5798void lru_gen_init_lruvec(struct lruvec *lruvec)
5799{
1332a809 5800 int i;
ec1c86b2 5801 int gen, type, zone;
391655fe 5802 struct lru_gen_folio *lrugen = &lruvec->lrugen;
ec1c86b2
YZ
5803
5804 lrugen->max_seq = MIN_NR_GENS + 1;
354ed597 5805 lrugen->enabled = lru_gen_enabled();
ec1c86b2 5806
1332a809
YZ
5807 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5808 lrugen->timestamps[i] = jiffies;
5809
ec1c86b2 5810 for_each_gen_type_zone(gen, type, zone)
6df1b221 5811 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
bd74fdae
YZ
5812
5813 lruvec->mm_state.seq = MIN_NR_GENS;
5814 init_waitqueue_head(&lruvec->mm_state.wait);
ec1c86b2
YZ
5815}
5816
5817#ifdef CONFIG_MEMCG
5818void lru_gen_init_memcg(struct mem_cgroup *memcg)
5819{
bd74fdae
YZ
5820 INIT_LIST_HEAD(&memcg->mm_list.fifo);
5821 spin_lock_init(&memcg->mm_list.lock);
ec1c86b2
YZ
5822}
5823
5824void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5825{
bd74fdae 5826 int i;
ec1c86b2
YZ
5827 int nid;
5828
5829 for_each_node(nid) {
5830 struct lruvec *lruvec = get_lruvec(memcg, nid);
5831
5832 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5833 sizeof(lruvec->lrugen.nr_pages)));
bd74fdae
YZ
5834
5835 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5836 bitmap_free(lruvec->mm_state.filters[i]);
5837 lruvec->mm_state.filters[i] = NULL;
5838 }
ec1c86b2
YZ
5839 }
5840}
5841#endif
5842
5843static int __init init_lru_gen(void)
5844{
5845 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5846 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5847
354ed597
YZ
5848 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5849 pr_err("lru_gen: failed to create sysfs group\n");
5850
d6c3af7d
YZ
5851 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5852 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5853
ec1c86b2
YZ
5854 return 0;
5855};
5856late_initcall(init_lru_gen);
5857
ac35a490
YZ
5858#else /* !CONFIG_LRU_GEN */
5859
5860static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5861{
5862}
5863
5864static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5865{
5866}
5867
ec1c86b2
YZ
5868#endif /* CONFIG_LRU_GEN */
5869
afaf07a6 5870static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
5871{
5872 unsigned long nr[NR_LRU_LISTS];
e82e0561 5873 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
5874 unsigned long nr_to_scan;
5875 enum lru_list lru;
5876 unsigned long nr_reclaimed = 0;
5877 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
f53af428 5878 bool proportional_reclaim;
9b4f98cd
JW
5879 struct blk_plug plug;
5880
ac35a490
YZ
5881 if (lru_gen_enabled()) {
5882 lru_gen_shrink_lruvec(lruvec, sc);
5883 return;
5884 }
5885
afaf07a6 5886 get_scan_count(lruvec, sc, nr);
9b4f98cd 5887
e82e0561
MG
5888 /* Record the original scan target for proportional adjustments later */
5889 memcpy(targets, nr, sizeof(nr));
5890
1a501907
MG
5891 /*
5892 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5893 * event that can occur when there is little memory pressure e.g.
5894 * multiple streaming readers/writers. Hence, we do not abort scanning
5895 * when the requested number of pages are reclaimed when scanning at
5896 * DEF_PRIORITY on the assumption that the fact we are direct
5897 * reclaiming implies that kswapd is not keeping up and it is best to
5898 * do a batch of work at once. For memcg reclaim one check is made to
5899 * abort proportional reclaim if either the file or anon lru has already
5900 * dropped to zero at the first pass.
5901 */
f53af428
JW
5902 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5903 sc->priority == DEF_PRIORITY);
1a501907 5904
9b4f98cd
JW
5905 blk_start_plug(&plug);
5906 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5907 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
5908 unsigned long nr_anon, nr_file, percentage;
5909 unsigned long nr_scanned;
5910
9b4f98cd
JW
5911 for_each_evictable_lru(lru) {
5912 if (nr[lru]) {
5913 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5914 nr[lru] -= nr_to_scan;
5915
5916 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 5917 lruvec, sc);
9b4f98cd
JW
5918 }
5919 }
e82e0561 5920
bd041733
MH
5921 cond_resched();
5922
f53af428 5923 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
e82e0561
MG
5924 continue;
5925
e82e0561
MG
5926 /*
5927 * For kswapd and memcg, reclaim at least the number of pages
1a501907 5928 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
5929 * proportionally what was requested by get_scan_count(). We
5930 * stop reclaiming one LRU and reduce the amount scanning
5931 * proportional to the original scan target.
5932 */
5933 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5934 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5935
1a501907
MG
5936 /*
5937 * It's just vindictive to attack the larger once the smaller
5938 * has gone to zero. And given the way we stop scanning the
5939 * smaller below, this makes sure that we only make one nudge
5940 * towards proportionality once we've got nr_to_reclaim.
5941 */
5942 if (!nr_file || !nr_anon)
5943 break;
5944
e82e0561
MG
5945 if (nr_file > nr_anon) {
5946 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5947 targets[LRU_ACTIVE_ANON] + 1;
5948 lru = LRU_BASE;
5949 percentage = nr_anon * 100 / scan_target;
5950 } else {
5951 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5952 targets[LRU_ACTIVE_FILE] + 1;
5953 lru = LRU_FILE;
5954 percentage = nr_file * 100 / scan_target;
5955 }
5956
5957 /* Stop scanning the smaller of the LRU */
5958 nr[lru] = 0;
5959 nr[lru + LRU_ACTIVE] = 0;
5960
5961 /*
5962 * Recalculate the other LRU scan count based on its original
5963 * scan target and the percentage scanning already complete
5964 */
5965 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5966 nr_scanned = targets[lru] - nr[lru];
5967 nr[lru] = targets[lru] * (100 - percentage) / 100;
5968 nr[lru] -= min(nr[lru], nr_scanned);
5969
5970 lru += LRU_ACTIVE;
5971 nr_scanned = targets[lru] - nr[lru];
5972 nr[lru] = targets[lru] * (100 - percentage) / 100;
5973 nr[lru] -= min(nr[lru], nr_scanned);
9b4f98cd
JW
5974 }
5975 blk_finish_plug(&plug);
5976 sc->nr_reclaimed += nr_reclaimed;
5977
5978 /*
5979 * Even if we did not try to evict anon pages at all, we want to
5980 * rebalance the anon lru active/inactive ratio.
5981 */
2f368a9f
DH
5982 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5983 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
5984 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5985 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
5986}
5987
23b9da55 5988/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 5989static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 5990{
d84da3f9 5991 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 5992 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 5993 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
5994 return true;
5995
5996 return false;
5997}
5998
3e7d3449 5999/*
23b9da55
MG
6000 * Reclaim/compaction is used for high-order allocation requests. It reclaims
6001 * order-0 pages before compacting the zone. should_continue_reclaim() returns
6002 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 6003 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 6004 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 6005 */
a9dd0a83 6006static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 6007 unsigned long nr_reclaimed,
3e7d3449
MG
6008 struct scan_control *sc)
6009{
6010 unsigned long pages_for_compaction;
6011 unsigned long inactive_lru_pages;
a9dd0a83 6012 int z;
3e7d3449
MG
6013
6014 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 6015 if (!in_reclaim_compaction(sc))
3e7d3449
MG
6016 return false;
6017
5ee04716
VB
6018 /*
6019 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6020 * number of pages that were scanned. This will return to the caller
6021 * with the risk reclaim/compaction and the resulting allocation attempt
6022 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6023 * allocations through requiring that the full LRU list has been scanned
6024 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6025 * scan, but that approximation was wrong, and there were corner cases
6026 * where always a non-zero amount of pages were scanned.
6027 */
6028 if (!nr_reclaimed)
6029 return false;
3e7d3449 6030
3e7d3449 6031 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
6032 for (z = 0; z <= sc->reclaim_idx; z++) {
6033 struct zone *zone = &pgdat->node_zones[z];
6aa303de 6034 if (!managed_zone(zone))
a9dd0a83
MG
6035 continue;
6036
6037 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 6038 case COMPACT_SUCCESS:
a9dd0a83
MG
6039 case COMPACT_CONTINUE:
6040 return false;
6041 default:
6042 /* check next zone */
6043 ;
6044 }
3e7d3449 6045 }
1c6c1597
HD
6046
6047 /*
6048 * If we have not reclaimed enough pages for compaction and the
6049 * inactive lists are large enough, continue reclaiming
6050 */
6051 pages_for_compaction = compact_gap(sc->order);
6052 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
a2a36488 6053 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
1c6c1597
HD
6054 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6055
5ee04716 6056 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
6057}
6058
0f6a5cff 6059static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 6060{
0f6a5cff 6061 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 6062 struct mem_cgroup *memcg;
1da177e4 6063
0f6a5cff 6064 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 6065 do {
afaf07a6 6066 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
6067 unsigned long reclaimed;
6068 unsigned long scanned;
5660048c 6069
e3336cab
XP
6070 /*
6071 * This loop can become CPU-bound when target memcgs
6072 * aren't eligible for reclaim - either because they
6073 * don't have any reclaimable pages, or because their
6074 * memory is explicitly protected. Avoid soft lockups.
6075 */
6076 cond_resched();
6077
45c7f7e1
CD
6078 mem_cgroup_calculate_protection(target_memcg, memcg);
6079
adb82130 6080 if (mem_cgroup_below_min(target_memcg, memcg)) {
d2af3397
JW
6081 /*
6082 * Hard protection.
6083 * If there is no reclaimable memory, OOM.
6084 */
6085 continue;
adb82130 6086 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
d2af3397
JW
6087 /*
6088 * Soft protection.
6089 * Respect the protection only as long as
6090 * there is an unprotected supply
6091 * of reclaimable memory from other cgroups.
6092 */
6093 if (!sc->memcg_low_reclaim) {
6094 sc->memcg_low_skipped = 1;
bf8d5d52 6095 continue;
241994ed 6096 }
d2af3397 6097 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 6098 }
241994ed 6099
d2af3397
JW
6100 reclaimed = sc->nr_reclaimed;
6101 scanned = sc->nr_scanned;
afaf07a6
JW
6102
6103 shrink_lruvec(lruvec, sc);
70ddf637 6104
d2af3397
JW
6105 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6106 sc->priority);
6b4f7799 6107
d2af3397 6108 /* Record the group's reclaim efficiency */
73b73bac
YA
6109 if (!sc->proactive)
6110 vmpressure(sc->gfp_mask, memcg, false,
6111 sc->nr_scanned - scanned,
6112 sc->nr_reclaimed - reclaimed);
70ddf637 6113
0f6a5cff
JW
6114 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6115}
6116
6c9e0907 6117static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
6118{
6119 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 6120 unsigned long nr_reclaimed, nr_scanned;
1b05117d 6121 struct lruvec *target_lruvec;
0f6a5cff
JW
6122 bool reclaimable = false;
6123
1b05117d
JW
6124 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6125
0f6a5cff
JW
6126again:
6127 memset(&sc->nr, 0, sizeof(sc->nr));
6128
6129 nr_reclaimed = sc->nr_reclaimed;
6130 nr_scanned = sc->nr_scanned;
6131
f1e1a7be 6132 prepare_scan_count(pgdat, sc);
53138cea 6133
0f6a5cff 6134 shrink_node_memcgs(pgdat, sc);
2344d7e4 6135
d2af3397
JW
6136 if (reclaim_state) {
6137 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6138 reclaim_state->reclaimed_slab = 0;
6139 }
d108c772 6140
d2af3397 6141 /* Record the subtree's reclaim efficiency */
73b73bac
YA
6142 if (!sc->proactive)
6143 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6144 sc->nr_scanned - nr_scanned,
6145 sc->nr_reclaimed - nr_reclaimed);
d108c772 6146
d2af3397
JW
6147 if (sc->nr_reclaimed - nr_reclaimed)
6148 reclaimable = true;
d108c772 6149
d2af3397
JW
6150 if (current_is_kswapd()) {
6151 /*
6152 * If reclaim is isolating dirty pages under writeback,
6153 * it implies that the long-lived page allocation rate
6154 * is exceeding the page laundering rate. Either the
6155 * global limits are not being effective at throttling
6156 * processes due to the page distribution throughout
6157 * zones or there is heavy usage of a slow backing
6158 * device. The only option is to throttle from reclaim
6159 * context which is not ideal as there is no guarantee
6160 * the dirtying process is throttled in the same way
6161 * balance_dirty_pages() manages.
6162 *
6163 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6164 * count the number of pages under pages flagged for
6165 * immediate reclaim and stall if any are encountered
6166 * in the nr_immediate check below.
6167 */
6168 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6169 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 6170
d2af3397
JW
6171 /* Allow kswapd to start writing pages during reclaim.*/
6172 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6173 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 6174
d108c772 6175 /*
1eba09c1 6176 * If kswapd scans pages marked for immediate
d2af3397
JW
6177 * reclaim and under writeback (nr_immediate), it
6178 * implies that pages are cycling through the LRU
8cd7c588
MG
6179 * faster than they are written so forcibly stall
6180 * until some pages complete writeback.
d108c772 6181 */
d2af3397 6182 if (sc->nr.immediate)
c3f4a9a2 6183 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
d2af3397
JW
6184 }
6185
6186 /*
8cd7c588
MG
6187 * Tag a node/memcg as congested if all the dirty pages were marked
6188 * for writeback and immediate reclaim (counted in nr.congested).
1b05117d 6189 *
d2af3397 6190 * Legacy memcg will stall in page writeback so avoid forcibly
8cd7c588 6191 * stalling in reclaim_throttle().
d2af3397 6192 */
1b05117d
JW
6193 if ((current_is_kswapd() ||
6194 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 6195 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 6196 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
6197
6198 /*
8cd7c588
MG
6199 * Stall direct reclaim for IO completions if the lruvec is
6200 * node is congested. Allow kswapd to continue until it
d2af3397
JW
6201 * starts encountering unqueued dirty pages or cycling through
6202 * the LRU too quickly.
6203 */
1b05117d
JW
6204 if (!current_is_kswapd() && current_may_throttle() &&
6205 !sc->hibernation_mode &&
6206 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
1b4e3f26 6207 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
d108c772 6208
d2af3397
JW
6209 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6210 sc))
6211 goto again;
2344d7e4 6212
c73322d0
JW
6213 /*
6214 * Kswapd gives up on balancing particular nodes after too
6215 * many failures to reclaim anything from them and goes to
6216 * sleep. On reclaim progress, reset the failure counter. A
6217 * successful direct reclaim run will revive a dormant kswapd.
6218 */
6219 if (reclaimable)
6220 pgdat->kswapd_failures = 0;
f16015fb
JW
6221}
6222
53853e2d 6223/*
fdd4c614
VB
6224 * Returns true if compaction should go ahead for a costly-order request, or
6225 * the allocation would already succeed without compaction. Return false if we
6226 * should reclaim first.
53853e2d 6227 */
4f588331 6228static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 6229{
31483b6a 6230 unsigned long watermark;
fdd4c614 6231 enum compact_result suitable;
fe4b1b24 6232
fdd4c614
VB
6233 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6234 if (suitable == COMPACT_SUCCESS)
6235 /* Allocation should succeed already. Don't reclaim. */
6236 return true;
6237 if (suitable == COMPACT_SKIPPED)
6238 /* Compaction cannot yet proceed. Do reclaim. */
6239 return false;
fe4b1b24 6240
53853e2d 6241 /*
fdd4c614
VB
6242 * Compaction is already possible, but it takes time to run and there
6243 * are potentially other callers using the pages just freed. So proceed
6244 * with reclaim to make a buffer of free pages available to give
6245 * compaction a reasonable chance of completing and allocating the page.
6246 * Note that we won't actually reclaim the whole buffer in one attempt
6247 * as the target watermark in should_continue_reclaim() is lower. But if
6248 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 6249 */
fdd4c614 6250 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 6251
fdd4c614 6252 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
6253}
6254
69392a40
MG
6255static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6256{
66ce520b
MG
6257 /*
6258 * If reclaim is making progress greater than 12% efficiency then
6259 * wake all the NOPROGRESS throttled tasks.
6260 */
6261 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
69392a40
MG
6262 wait_queue_head_t *wqh;
6263
6264 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6265 if (waitqueue_active(wqh))
6266 wake_up(wqh);
6267
6268 return;
6269 }
6270
6271 /*
1b4e3f26
MG
6272 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6273 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6274 * under writeback and marked for immediate reclaim at the tail of the
6275 * LRU.
69392a40 6276 */
1b4e3f26 6277 if (current_is_kswapd() || cgroup_reclaim(sc))
69392a40
MG
6278 return;
6279
6280 /* Throttle if making no progress at high prioities. */
1b4e3f26 6281 if (sc->priority == 1 && !sc->nr_reclaimed)
c3f4a9a2 6282 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
69392a40
MG
6283}
6284
1da177e4
LT
6285/*
6286 * This is the direct reclaim path, for page-allocating processes. We only
6287 * try to reclaim pages from zones which will satisfy the caller's allocation
6288 * request.
6289 *
1da177e4
LT
6290 * If a zone is deemed to be full of pinned pages then just give it a light
6291 * scan then give up on it.
6292 */
0a0337e0 6293static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 6294{
dd1a239f 6295 struct zoneref *z;
54a6eb5c 6296 struct zone *zone;
0608f43d
AM
6297 unsigned long nr_soft_reclaimed;
6298 unsigned long nr_soft_scanned;
619d0d76 6299 gfp_t orig_mask;
79dafcdc 6300 pg_data_t *last_pgdat = NULL;
1b4e3f26 6301 pg_data_t *first_pgdat = NULL;
1cfb419b 6302
cc715d99
MG
6303 /*
6304 * If the number of buffer_heads in the machine exceeds the maximum
6305 * allowed level, force direct reclaim to scan the highmem zone as
6306 * highmem pages could be pinning lowmem pages storing buffer_heads
6307 */
619d0d76 6308 orig_mask = sc->gfp_mask;
b2e18757 6309 if (buffer_heads_over_limit) {
cc715d99 6310 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 6311 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 6312 }
cc715d99 6313
d4debc66 6314 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 6315 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
6316 /*
6317 * Take care memory controller reclaiming has small influence
6318 * to global LRU.
6319 */
b5ead35e 6320 if (!cgroup_reclaim(sc)) {
344736f2
VD
6321 if (!cpuset_zone_allowed(zone,
6322 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 6323 continue;
65ec02cb 6324
0b06496a
JW
6325 /*
6326 * If we already have plenty of memory free for
6327 * compaction in this zone, don't free any more.
6328 * Even though compaction is invoked for any
6329 * non-zero order, only frequent costly order
6330 * reclamation is disruptive enough to become a
6331 * noticeable problem, like transparent huge
6332 * page allocations.
6333 */
6334 if (IS_ENABLED(CONFIG_COMPACTION) &&
6335 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 6336 compaction_ready(zone, sc)) {
0b06496a
JW
6337 sc->compaction_ready = true;
6338 continue;
e0887c19 6339 }
0b06496a 6340
79dafcdc
MG
6341 /*
6342 * Shrink each node in the zonelist once. If the
6343 * zonelist is ordered by zone (not the default) then a
6344 * node may be shrunk multiple times but in that case
6345 * the user prefers lower zones being preserved.
6346 */
6347 if (zone->zone_pgdat == last_pgdat)
6348 continue;
6349
0608f43d
AM
6350 /*
6351 * This steals pages from memory cgroups over softlimit
6352 * and returns the number of reclaimed pages and
6353 * scanned pages. This works for global memory pressure
6354 * and balancing, not for a memcg's limit.
6355 */
6356 nr_soft_scanned = 0;
ef8f2327 6357 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
6358 sc->order, sc->gfp_mask,
6359 &nr_soft_scanned);
6360 sc->nr_reclaimed += nr_soft_reclaimed;
6361 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 6362 /* need some check for avoid more shrink_zone() */
1cfb419b 6363 }
408d8544 6364
1b4e3f26
MG
6365 if (!first_pgdat)
6366 first_pgdat = zone->zone_pgdat;
6367
79dafcdc
MG
6368 /* See comment about same check for global reclaim above */
6369 if (zone->zone_pgdat == last_pgdat)
6370 continue;
6371 last_pgdat = zone->zone_pgdat;
970a39a3 6372 shrink_node(zone->zone_pgdat, sc);
1da177e4 6373 }
e0c23279 6374
80082938
MG
6375 if (first_pgdat)
6376 consider_reclaim_throttle(first_pgdat, sc);
1b4e3f26 6377
619d0d76
WY
6378 /*
6379 * Restore to original mask to avoid the impact on the caller if we
6380 * promoted it to __GFP_HIGHMEM.
6381 */
6382 sc->gfp_mask = orig_mask;
1da177e4 6383}
4f98a2fe 6384
b910718a 6385static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 6386{
b910718a
JW
6387 struct lruvec *target_lruvec;
6388 unsigned long refaults;
2a2e4885 6389
ac35a490
YZ
6390 if (lru_gen_enabled())
6391 return;
6392
b910718a 6393 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7 6394 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
e9c2dbc8 6395 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
170b04b7 6396 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
e9c2dbc8 6397 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
2a2e4885
JW
6398}
6399
1da177e4
LT
6400/*
6401 * This is the main entry point to direct page reclaim.
6402 *
6403 * If a full scan of the inactive list fails to free enough memory then we
6404 * are "out of memory" and something needs to be killed.
6405 *
6406 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6407 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
6408 * caller can't do much about. We kick the writeback threads and take explicit
6409 * naps in the hope that some of these pages can be written. But if the
6410 * allocating task holds filesystem locks which prevent writeout this might not
6411 * work, and the allocation attempt will fail.
a41f24ea
NA
6412 *
6413 * returns: 0, if no pages reclaimed
6414 * else, the number of pages reclaimed
1da177e4 6415 */
dac1d27b 6416static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 6417 struct scan_control *sc)
1da177e4 6418{
241994ed 6419 int initial_priority = sc->priority;
2a2e4885
JW
6420 pg_data_t *last_pgdat;
6421 struct zoneref *z;
6422 struct zone *zone;
241994ed 6423retry:
873b4771
KK
6424 delayacct_freepages_start();
6425
b5ead35e 6426 if (!cgroup_reclaim(sc))
7cc30fcf 6427 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 6428
9e3b2f8c 6429 do {
73b73bac
YA
6430 if (!sc->proactive)
6431 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6432 sc->priority);
66e1707b 6433 sc->nr_scanned = 0;
0a0337e0 6434 shrink_zones(zonelist, sc);
c6a8a8c5 6435
bb21c7ce 6436 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
6437 break;
6438
6439 if (sc->compaction_ready)
6440 break;
1da177e4 6441
0e50ce3b
MK
6442 /*
6443 * If we're getting trouble reclaiming, start doing
6444 * writepage even in laptop mode.
6445 */
6446 if (sc->priority < DEF_PRIORITY - 2)
6447 sc->may_writepage = 1;
0b06496a 6448 } while (--sc->priority >= 0);
bb21c7ce 6449
2a2e4885
JW
6450 last_pgdat = NULL;
6451 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6452 sc->nodemask) {
6453 if (zone->zone_pgdat == last_pgdat)
6454 continue;
6455 last_pgdat = zone->zone_pgdat;
1b05117d 6456
2a2e4885 6457 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
6458
6459 if (cgroup_reclaim(sc)) {
6460 struct lruvec *lruvec;
6461
6462 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6463 zone->zone_pgdat);
6464 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6465 }
2a2e4885
JW
6466 }
6467
873b4771
KK
6468 delayacct_freepages_end();
6469
bb21c7ce
KM
6470 if (sc->nr_reclaimed)
6471 return sc->nr_reclaimed;
6472
0cee34fd 6473 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 6474 if (sc->compaction_ready)
7335084d
MG
6475 return 1;
6476
b91ac374
JW
6477 /*
6478 * We make inactive:active ratio decisions based on the node's
6479 * composition of memory, but a restrictive reclaim_idx or a
6480 * memory.low cgroup setting can exempt large amounts of
6481 * memory from reclaim. Neither of which are very common, so
6482 * instead of doing costly eligibility calculations of the
6483 * entire cgroup subtree up front, we assume the estimates are
6484 * good, and retry with forcible deactivation if that fails.
6485 */
6486 if (sc->skipped_deactivate) {
6487 sc->priority = initial_priority;
6488 sc->force_deactivate = 1;
6489 sc->skipped_deactivate = 0;
6490 goto retry;
6491 }
6492
241994ed 6493 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 6494 if (sc->memcg_low_skipped) {
241994ed 6495 sc->priority = initial_priority;
b91ac374 6496 sc->force_deactivate = 0;
d6622f63
YX
6497 sc->memcg_low_reclaim = 1;
6498 sc->memcg_low_skipped = 0;
241994ed
JW
6499 goto retry;
6500 }
6501
bb21c7ce 6502 return 0;
1da177e4
LT
6503}
6504
c73322d0 6505static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
6506{
6507 struct zone *zone;
6508 unsigned long pfmemalloc_reserve = 0;
6509 unsigned long free_pages = 0;
6510 int i;
6511 bool wmark_ok;
6512
c73322d0
JW
6513 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6514 return true;
6515
5515061d
MG
6516 for (i = 0; i <= ZONE_NORMAL; i++) {
6517 zone = &pgdat->node_zones[i];
d450abd8
JW
6518 if (!managed_zone(zone))
6519 continue;
6520
6521 if (!zone_reclaimable_pages(zone))
675becce
MG
6522 continue;
6523
5515061d
MG
6524 pfmemalloc_reserve += min_wmark_pages(zone);
6525 free_pages += zone_page_state(zone, NR_FREE_PAGES);
6526 }
6527
675becce
MG
6528 /* If there are no reserves (unexpected config) then do not throttle */
6529 if (!pfmemalloc_reserve)
6530 return true;
6531
5515061d
MG
6532 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6533
6534 /* kswapd must be awake if processes are being throttled */
6535 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
6536 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6537 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 6538
5515061d
MG
6539 wake_up_interruptible(&pgdat->kswapd_wait);
6540 }
6541
6542 return wmark_ok;
6543}
6544
6545/*
6546 * Throttle direct reclaimers if backing storage is backed by the network
6547 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6548 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
6549 * when the low watermark is reached.
6550 *
6551 * Returns true if a fatal signal was delivered during throttling. If this
6552 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 6553 */
50694c28 6554static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
6555 nodemask_t *nodemask)
6556{
675becce 6557 struct zoneref *z;
5515061d 6558 struct zone *zone;
675becce 6559 pg_data_t *pgdat = NULL;
5515061d
MG
6560
6561 /*
6562 * Kernel threads should not be throttled as they may be indirectly
6563 * responsible for cleaning pages necessary for reclaim to make forward
6564 * progress. kjournald for example may enter direct reclaim while
6565 * committing a transaction where throttling it could forcing other
6566 * processes to block on log_wait_commit().
6567 */
6568 if (current->flags & PF_KTHREAD)
50694c28
MG
6569 goto out;
6570
6571 /*
6572 * If a fatal signal is pending, this process should not throttle.
6573 * It should return quickly so it can exit and free its memory
6574 */
6575 if (fatal_signal_pending(current))
6576 goto out;
5515061d 6577
675becce
MG
6578 /*
6579 * Check if the pfmemalloc reserves are ok by finding the first node
6580 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6581 * GFP_KERNEL will be required for allocating network buffers when
6582 * swapping over the network so ZONE_HIGHMEM is unusable.
6583 *
6584 * Throttling is based on the first usable node and throttled processes
6585 * wait on a queue until kswapd makes progress and wakes them. There
6586 * is an affinity then between processes waking up and where reclaim
6587 * progress has been made assuming the process wakes on the same node.
6588 * More importantly, processes running on remote nodes will not compete
6589 * for remote pfmemalloc reserves and processes on different nodes
6590 * should make reasonable progress.
6591 */
6592 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 6593 gfp_zone(gfp_mask), nodemask) {
675becce
MG
6594 if (zone_idx(zone) > ZONE_NORMAL)
6595 continue;
6596
6597 /* Throttle based on the first usable node */
6598 pgdat = zone->zone_pgdat;
c73322d0 6599 if (allow_direct_reclaim(pgdat))
675becce
MG
6600 goto out;
6601 break;
6602 }
6603
6604 /* If no zone was usable by the allocation flags then do not throttle */
6605 if (!pgdat)
50694c28 6606 goto out;
5515061d 6607
68243e76
MG
6608 /* Account for the throttling */
6609 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6610
5515061d
MG
6611 /*
6612 * If the caller cannot enter the filesystem, it's possible that it
6613 * is due to the caller holding an FS lock or performing a journal
6614 * transaction in the case of a filesystem like ext[3|4]. In this case,
6615 * it is not safe to block on pfmemalloc_wait as kswapd could be
6616 * blocked waiting on the same lock. Instead, throttle for up to a
6617 * second before continuing.
6618 */
2e786d9e 6619 if (!(gfp_mask & __GFP_FS))
5515061d 6620 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 6621 allow_direct_reclaim(pgdat), HZ);
2e786d9e
ML
6622 else
6623 /* Throttle until kswapd wakes the process */
6624 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6625 allow_direct_reclaim(pgdat));
50694c28 6626
50694c28
MG
6627 if (fatal_signal_pending(current))
6628 return true;
6629
6630out:
6631 return false;
5515061d
MG
6632}
6633
dac1d27b 6634unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 6635 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 6636{
33906bc5 6637 unsigned long nr_reclaimed;
66e1707b 6638 struct scan_control sc = {
ee814fe2 6639 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 6640 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 6641 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
6642 .order = order,
6643 .nodemask = nodemask,
6644 .priority = DEF_PRIORITY,
66e1707b 6645 .may_writepage = !laptop_mode,
a6dc60f8 6646 .may_unmap = 1,
2e2e4259 6647 .may_swap = 1,
66e1707b
BS
6648 };
6649
bb451fdf
GT
6650 /*
6651 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6652 * Confirm they are large enough for max values.
6653 */
6654 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6655 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6656 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6657
5515061d 6658 /*
50694c28
MG
6659 * Do not enter reclaim if fatal signal was delivered while throttled.
6660 * 1 is returned so that the page allocator does not OOM kill at this
6661 * point.
5515061d 6662 */
f2f43e56 6663 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
6664 return 1;
6665
1732d2b0 6666 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 6667 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 6668
3115cd91 6669 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
6670
6671 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 6672 set_task_reclaim_state(current, NULL);
33906bc5
MG
6673
6674 return nr_reclaimed;
66e1707b
BS
6675}
6676
c255a458 6677#ifdef CONFIG_MEMCG
66e1707b 6678
d2e5fb92 6679/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 6680unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 6681 gfp_t gfp_mask, bool noswap,
ef8f2327 6682 pg_data_t *pgdat,
0ae5e89c 6683 unsigned long *nr_scanned)
4e416953 6684{
afaf07a6 6685 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 6686 struct scan_control sc = {
b8f5c566 6687 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 6688 .target_mem_cgroup = memcg,
4e416953
BS
6689 .may_writepage = !laptop_mode,
6690 .may_unmap = 1,
b2e18757 6691 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 6692 .may_swap = !noswap,
4e416953 6693 };
0ae5e89c 6694
d2e5fb92
MH
6695 WARN_ON_ONCE(!current->reclaim_state);
6696
4e416953
BS
6697 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6698 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 6699
9e3b2f8c 6700 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 6701 sc.gfp_mask);
bdce6d9e 6702
4e416953
BS
6703 /*
6704 * NOTE: Although we can get the priority field, using it
6705 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 6706 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
6707 * will pick up pages from other mem cgroup's as well. We hack
6708 * the priority and make it zero.
6709 */
afaf07a6 6710 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
6711
6712 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6713
0ae5e89c 6714 *nr_scanned = sc.nr_scanned;
0308f7cf 6715
4e416953
BS
6716 return sc.nr_reclaimed;
6717}
6718
72835c86 6719unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 6720 unsigned long nr_pages,
a7885eb8 6721 gfp_t gfp_mask,
12a5d395
MA
6722 unsigned int reclaim_options,
6723 nodemask_t *nodemask)
66e1707b 6724{
bdce6d9e 6725 unsigned long nr_reclaimed;
499118e9 6726 unsigned int noreclaim_flag;
66e1707b 6727 struct scan_control sc = {
b70a2a21 6728 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 6729 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 6730 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 6731 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
6732 .target_mem_cgroup = memcg,
6733 .priority = DEF_PRIORITY,
6734 .may_writepage = !laptop_mode,
6735 .may_unmap = 1,
73b73bac
YA
6736 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6737 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
12a5d395 6738 .nodemask = nodemask,
a09ed5e0 6739 };
889976db 6740 /*
fa40d1ee
SB
6741 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6742 * equal pressure on all the nodes. This is based on the assumption that
6743 * the reclaim does not bail out early.
889976db 6744 */
fa40d1ee 6745 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 6746
fa40d1ee 6747 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 6748 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 6749 noreclaim_flag = memalloc_noreclaim_save();
eb414681 6750
3115cd91 6751 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 6752
499118e9 6753 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 6754 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 6755 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
6756
6757 return nr_reclaimed;
66e1707b
BS
6758}
6759#endif
6760
ac35a490 6761static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
f16015fb 6762{
b95a2f2d 6763 struct mem_cgroup *memcg;
b91ac374 6764 struct lruvec *lruvec;
f16015fb 6765
ac35a490
YZ
6766 if (lru_gen_enabled()) {
6767 lru_gen_age_node(pgdat, sc);
6768 return;
6769 }
6770
2f368a9f 6771 if (!can_age_anon_pages(pgdat, sc))
b95a2f2d
JW
6772 return;
6773
b91ac374
JW
6774 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6775 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6776 return;
6777
b95a2f2d
JW
6778 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6779 do {
b91ac374
JW
6780 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6781 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6782 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
6783 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6784 } while (memcg);
f16015fb
JW
6785}
6786
97a225e6 6787static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
6788{
6789 int i;
6790 struct zone *zone;
6791
6792 /*
6793 * Check for watermark boosts top-down as the higher zones
6794 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 6795 * should not be checked at the same time as reclaim would
1c30844d
MG
6796 * start prematurely when there is no boosting and a lower
6797 * zone is balanced.
6798 */
97a225e6 6799 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
6800 zone = pgdat->node_zones + i;
6801 if (!managed_zone(zone))
6802 continue;
6803
6804 if (zone->watermark_boost)
6805 return true;
6806 }
6807
6808 return false;
6809}
6810
e716f2eb
MG
6811/*
6812 * Returns true if there is an eligible zone balanced for the request order
97a225e6 6813 * and highest_zoneidx
e716f2eb 6814 */
97a225e6 6815static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 6816{
e716f2eb
MG
6817 int i;
6818 unsigned long mark = -1;
6819 struct zone *zone;
60cefed4 6820
1c30844d
MG
6821 /*
6822 * Check watermarks bottom-up as lower zones are more likely to
6823 * meet watermarks.
6824 */
97a225e6 6825 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 6826 zone = pgdat->node_zones + i;
6256c6b4 6827
e716f2eb
MG
6828 if (!managed_zone(zone))
6829 continue;
6830
c574bbe9
HY
6831 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6832 mark = wmark_pages(zone, WMARK_PROMO);
6833 else
6834 mark = high_wmark_pages(zone);
97a225e6 6835 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
6836 return true;
6837 }
6838
6839 /*
36c26128 6840 * If a node has no managed zone within highest_zoneidx, it does not
e716f2eb
MG
6841 * need balancing by definition. This can happen if a zone-restricted
6842 * allocation tries to wake a remote kswapd.
6843 */
6844 if (mark == -1)
6845 return true;
6846
6847 return false;
60cefed4
JW
6848}
6849
631b6e08
MG
6850/* Clear pgdat state for congested, dirty or under writeback. */
6851static void clear_pgdat_congested(pg_data_t *pgdat)
6852{
1b05117d
JW
6853 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6854
6855 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
6856 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6857 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6858}
6859
5515061d
MG
6860/*
6861 * Prepare kswapd for sleeping. This verifies that there are no processes
6862 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6863 *
6864 * Returns true if kswapd is ready to sleep
6865 */
97a225e6
JK
6866static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6867 int highest_zoneidx)
f50de2d3 6868{
5515061d 6869 /*
9e5e3661 6870 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 6871 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
6872 * race between when kswapd checks the watermarks and a process gets
6873 * throttled. There is also a potential race if processes get
6874 * throttled, kswapd wakes, a large process exits thereby balancing the
6875 * zones, which causes kswapd to exit balance_pgdat() before reaching
6876 * the wake up checks. If kswapd is going to sleep, no process should
6877 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6878 * the wake up is premature, processes will wake kswapd and get
6879 * throttled again. The difference from wake ups in balance_pgdat() is
6880 * that here we are under prepare_to_wait().
5515061d 6881 */
9e5e3661
VB
6882 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6883 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 6884
c73322d0
JW
6885 /* Hopeless node, leave it to direct reclaim */
6886 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6887 return true;
6888
97a225e6 6889 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
6890 clear_pgdat_congested(pgdat);
6891 return true;
1d82de61
MG
6892 }
6893
333b0a45 6894 return false;
f50de2d3
MG
6895}
6896
75485363 6897/*
1d82de61
MG
6898 * kswapd shrinks a node of pages that are at or below the highest usable
6899 * zone that is currently unbalanced.
b8e83b94
MG
6900 *
6901 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
6902 * reclaim or if the lack of progress was due to pages under writeback.
6903 * This is used to determine if the scanning priority needs to be raised.
75485363 6904 */
1d82de61 6905static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 6906 struct scan_control *sc)
75485363 6907{
1d82de61
MG
6908 struct zone *zone;
6909 int z;
75485363 6910
1d82de61
MG
6911 /* Reclaim a number of pages proportional to the number of zones */
6912 sc->nr_to_reclaim = 0;
970a39a3 6913 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 6914 zone = pgdat->node_zones + z;
6aa303de 6915 if (!managed_zone(zone))
1d82de61 6916 continue;
7c954f6d 6917
1d82de61
MG
6918 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6919 }
7c954f6d
MG
6920
6921 /*
1d82de61
MG
6922 * Historically care was taken to put equal pressure on all zones but
6923 * now pressure is applied based on node LRU order.
7c954f6d 6924 */
970a39a3 6925 shrink_node(pgdat, sc);
283aba9f 6926
7c954f6d 6927 /*
1d82de61
MG
6928 * Fragmentation may mean that the system cannot be rebalanced for
6929 * high-order allocations. If twice the allocation size has been
6930 * reclaimed then recheck watermarks only at order-0 to prevent
6931 * excessive reclaim. Assume that a process requested a high-order
6932 * can direct reclaim/compact.
7c954f6d 6933 */
9861a62c 6934 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 6935 sc->order = 0;
7c954f6d 6936
b8e83b94 6937 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
6938}
6939
c49c2c47
MG
6940/* Page allocator PCP high watermark is lowered if reclaim is active. */
6941static inline void
6942update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6943{
6944 int i;
6945 struct zone *zone;
6946
6947 for (i = 0; i <= highest_zoneidx; i++) {
6948 zone = pgdat->node_zones + i;
6949
6950 if (!managed_zone(zone))
6951 continue;
6952
6953 if (active)
6954 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6955 else
6956 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6957 }
6958}
6959
6960static inline void
6961set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6962{
6963 update_reclaim_active(pgdat, highest_zoneidx, true);
6964}
6965
6966static inline void
6967clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6968{
6969 update_reclaim_active(pgdat, highest_zoneidx, false);
6970}
6971
1da177e4 6972/*
1d82de61
MG
6973 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6974 * that are eligible for use by the caller until at least one zone is
6975 * balanced.
1da177e4 6976 *
1d82de61 6977 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
6978 *
6979 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 6980 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 6981 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
6982 * or lower is eligible for reclaim until at least one usable zone is
6983 * balanced.
1da177e4 6984 */
97a225e6 6985static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 6986{
1da177e4 6987 int i;
0608f43d
AM
6988 unsigned long nr_soft_reclaimed;
6989 unsigned long nr_soft_scanned;
eb414681 6990 unsigned long pflags;
1c30844d
MG
6991 unsigned long nr_boost_reclaim;
6992 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6993 bool boosted;
1d82de61 6994 struct zone *zone;
179e9639
AM
6995 struct scan_control sc = {
6996 .gfp_mask = GFP_KERNEL,
ee814fe2 6997 .order = order,
a6dc60f8 6998 .may_unmap = 1,
179e9639 6999 };
93781325 7000
1732d2b0 7001 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 7002 psi_memstall_enter(&pflags);
4f3eaf45 7003 __fs_reclaim_acquire(_THIS_IP_);
93781325 7004
f8891e5e 7005 count_vm_event(PAGEOUTRUN);
1da177e4 7006
1c30844d
MG
7007 /*
7008 * Account for the reclaim boost. Note that the zone boost is left in
7009 * place so that parallel allocations that are near the watermark will
7010 * stall or direct reclaim until kswapd is finished.
7011 */
7012 nr_boost_reclaim = 0;
97a225e6 7013 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
7014 zone = pgdat->node_zones + i;
7015 if (!managed_zone(zone))
7016 continue;
7017
7018 nr_boost_reclaim += zone->watermark_boost;
7019 zone_boosts[i] = zone->watermark_boost;
7020 }
7021 boosted = nr_boost_reclaim;
7022
7023restart:
c49c2c47 7024 set_reclaim_active(pgdat, highest_zoneidx);
1c30844d 7025 sc.priority = DEF_PRIORITY;
9e3b2f8c 7026 do {
c73322d0 7027 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 7028 bool raise_priority = true;
1c30844d 7029 bool balanced;
93781325 7030 bool ret;
b8e83b94 7031
97a225e6 7032 sc.reclaim_idx = highest_zoneidx;
1da177e4 7033
86c79f6b 7034 /*
84c7a777
MG
7035 * If the number of buffer_heads exceeds the maximum allowed
7036 * then consider reclaiming from all zones. This has a dual
7037 * purpose -- on 64-bit systems it is expected that
7038 * buffer_heads are stripped during active rotation. On 32-bit
7039 * systems, highmem pages can pin lowmem memory and shrinking
7040 * buffers can relieve lowmem pressure. Reclaim may still not
7041 * go ahead if all eligible zones for the original allocation
7042 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
7043 */
7044 if (buffer_heads_over_limit) {
7045 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7046 zone = pgdat->node_zones + i;
6aa303de 7047 if (!managed_zone(zone))
86c79f6b 7048 continue;
cc715d99 7049
970a39a3 7050 sc.reclaim_idx = i;
e1dbeda6 7051 break;
1da177e4 7052 }
1da177e4 7053 }
dafcb73e 7054
86c79f6b 7055 /*
1c30844d
MG
7056 * If the pgdat is imbalanced then ignore boosting and preserve
7057 * the watermarks for a later time and restart. Note that the
7058 * zone watermarks will be still reset at the end of balancing
7059 * on the grounds that the normal reclaim should be enough to
7060 * re-evaluate if boosting is required when kswapd next wakes.
7061 */
97a225e6 7062 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
7063 if (!balanced && nr_boost_reclaim) {
7064 nr_boost_reclaim = 0;
7065 goto restart;
7066 }
7067
7068 /*
7069 * If boosting is not active then only reclaim if there are no
7070 * eligible zones. Note that sc.reclaim_idx is not used as
7071 * buffer_heads_over_limit may have adjusted it.
86c79f6b 7072 */
1c30844d 7073 if (!nr_boost_reclaim && balanced)
e716f2eb 7074 goto out;
e1dbeda6 7075
1c30844d
MG
7076 /* Limit the priority of boosting to avoid reclaim writeback */
7077 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7078 raise_priority = false;
7079
7080 /*
7081 * Do not writeback or swap pages for boosted reclaim. The
7082 * intent is to relieve pressure not issue sub-optimal IO
7083 * from reclaim context. If no pages are reclaimed, the
7084 * reclaim will be aborted.
7085 */
7086 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7087 sc.may_swap = !nr_boost_reclaim;
1c30844d 7088
1d82de61 7089 /*
ac35a490
YZ
7090 * Do some background aging, to give pages a chance to be
7091 * referenced before reclaiming. All pages are rotated
7092 * regardless of classzone as this is about consistent aging.
1d82de61 7093 */
ac35a490 7094 kswapd_age_node(pgdat, &sc);
1d82de61 7095
b7ea3c41
MG
7096 /*
7097 * If we're getting trouble reclaiming, start doing writepage
7098 * even in laptop mode.
7099 */
047d72c3 7100 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
7101 sc.may_writepage = 1;
7102
1d82de61
MG
7103 /* Call soft limit reclaim before calling shrink_node. */
7104 sc.nr_scanned = 0;
7105 nr_soft_scanned = 0;
ef8f2327 7106 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
7107 sc.gfp_mask, &nr_soft_scanned);
7108 sc.nr_reclaimed += nr_soft_reclaimed;
7109
1da177e4 7110 /*
1d82de61
MG
7111 * There should be no need to raise the scanning priority if
7112 * enough pages are already being scanned that that high
7113 * watermark would be met at 100% efficiency.
1da177e4 7114 */
970a39a3 7115 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 7116 raise_priority = false;
5515061d
MG
7117
7118 /*
7119 * If the low watermark is met there is no need for processes
7120 * to be throttled on pfmemalloc_wait as they should not be
7121 * able to safely make forward progress. Wake them
7122 */
7123 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 7124 allow_direct_reclaim(pgdat))
cfc51155 7125 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 7126
b8e83b94 7127 /* Check if kswapd should be suspending */
4f3eaf45 7128 __fs_reclaim_release(_THIS_IP_);
93781325 7129 ret = try_to_freeze();
4f3eaf45 7130 __fs_reclaim_acquire(_THIS_IP_);
93781325 7131 if (ret || kthread_should_stop())
b8e83b94 7132 break;
8357376d 7133
73ce02e9 7134 /*
b8e83b94
MG
7135 * Raise priority if scanning rate is too low or there was no
7136 * progress in reclaiming pages
73ce02e9 7137 */
c73322d0 7138 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
7139 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7140
7141 /*
7142 * If reclaim made no progress for a boost, stop reclaim as
7143 * IO cannot be queued and it could be an infinite loop in
7144 * extreme circumstances.
7145 */
7146 if (nr_boost_reclaim && !nr_reclaimed)
7147 break;
7148
c73322d0 7149 if (raise_priority || !nr_reclaimed)
b8e83b94 7150 sc.priority--;
1d82de61 7151 } while (sc.priority >= 1);
1da177e4 7152
c73322d0
JW
7153 if (!sc.nr_reclaimed)
7154 pgdat->kswapd_failures++;
7155
b8e83b94 7156out:
c49c2c47
MG
7157 clear_reclaim_active(pgdat, highest_zoneidx);
7158
1c30844d
MG
7159 /* If reclaim was boosted, account for the reclaim done in this pass */
7160 if (boosted) {
7161 unsigned long flags;
7162
97a225e6 7163 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
7164 if (!zone_boosts[i])
7165 continue;
7166
7167 /* Increments are under the zone lock */
7168 zone = pgdat->node_zones + i;
7169 spin_lock_irqsave(&zone->lock, flags);
7170 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7171 spin_unlock_irqrestore(&zone->lock, flags);
7172 }
7173
7174 /*
7175 * As there is now likely space, wakeup kcompact to defragment
7176 * pageblocks.
7177 */
97a225e6 7178 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
7179 }
7180
2a2e4885 7181 snapshot_refaults(NULL, pgdat);
4f3eaf45 7182 __fs_reclaim_release(_THIS_IP_);
eb414681 7183 psi_memstall_leave(&pflags);
1732d2b0 7184 set_task_reclaim_state(current, NULL);
e5ca8071 7185
0abdee2b 7186 /*
1d82de61
MG
7187 * Return the order kswapd stopped reclaiming at as
7188 * prepare_kswapd_sleep() takes it into account. If another caller
7189 * entered the allocator slow path while kswapd was awake, order will
7190 * remain at the higher level.
0abdee2b 7191 */
1d82de61 7192 return sc.order;
1da177e4
LT
7193}
7194
e716f2eb 7195/*
97a225e6
JK
7196 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7197 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7198 * not a valid index then either kswapd runs for first time or kswapd couldn't
7199 * sleep after previous reclaim attempt (node is still unbalanced). In that
7200 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 7201 */
97a225e6
JK
7202static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7203 enum zone_type prev_highest_zoneidx)
e716f2eb 7204{
97a225e6 7205 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 7206
97a225e6 7207 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
7208}
7209
38087d9b 7210static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 7211 unsigned int highest_zoneidx)
f0bc0a60
KM
7212{
7213 long remaining = 0;
7214 DEFINE_WAIT(wait);
7215
7216 if (freezing(current) || kthread_should_stop())
7217 return;
7218
7219 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7220
333b0a45
SG
7221 /*
7222 * Try to sleep for a short interval. Note that kcompactd will only be
7223 * woken if it is possible to sleep for a short interval. This is
7224 * deliberate on the assumption that if reclaim cannot keep an
7225 * eligible zone balanced that it's also unlikely that compaction will
7226 * succeed.
7227 */
97a225e6 7228 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
7229 /*
7230 * Compaction records what page blocks it recently failed to
7231 * isolate pages from and skips them in the future scanning.
7232 * When kswapd is going to sleep, it is reasonable to assume
7233 * that pages and compaction may succeed so reset the cache.
7234 */
7235 reset_isolation_suitable(pgdat);
7236
7237 /*
7238 * We have freed the memory, now we should compact it to make
7239 * allocation of the requested order possible.
7240 */
97a225e6 7241 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 7242
f0bc0a60 7243 remaining = schedule_timeout(HZ/10);
38087d9b
MG
7244
7245 /*
97a225e6 7246 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
7247 * order. The values will either be from a wakeup request or
7248 * the previous request that slept prematurely.
7249 */
7250 if (remaining) {
97a225e6
JK
7251 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7252 kswapd_highest_zoneidx(pgdat,
7253 highest_zoneidx));
5644e1fb
QC
7254
7255 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7256 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
7257 }
7258
f0bc0a60
KM
7259 finish_wait(&pgdat->kswapd_wait, &wait);
7260 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7261 }
7262
7263 /*
7264 * After a short sleep, check if it was a premature sleep. If not, then
7265 * go fully to sleep until explicitly woken up.
7266 */
d9f21d42 7267 if (!remaining &&
97a225e6 7268 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
7269 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7270
7271 /*
7272 * vmstat counters are not perfectly accurate and the estimated
7273 * value for counters such as NR_FREE_PAGES can deviate from the
7274 * true value by nr_online_cpus * threshold. To avoid the zone
7275 * watermarks being breached while under pressure, we reduce the
7276 * per-cpu vmstat threshold while kswapd is awake and restore
7277 * them before going back to sleep.
7278 */
7279 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
7280
7281 if (!kthread_should_stop())
7282 schedule();
7283
f0bc0a60
KM
7284 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7285 } else {
7286 if (remaining)
7287 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7288 else
7289 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7290 }
7291 finish_wait(&pgdat->kswapd_wait, &wait);
7292}
7293
1da177e4
LT
7294/*
7295 * The background pageout daemon, started as a kernel thread
4f98a2fe 7296 * from the init process.
1da177e4
LT
7297 *
7298 * This basically trickles out pages so that we have _some_
7299 * free memory available even if there is no other activity
7300 * that frees anything up. This is needed for things like routing
7301 * etc, where we otherwise might have all activity going on in
7302 * asynchronous contexts that cannot page things out.
7303 *
7304 * If there are applications that are active memory-allocators
7305 * (most normal use), this basically shouldn't matter.
7306 */
7307static int kswapd(void *p)
7308{
e716f2eb 7309 unsigned int alloc_order, reclaim_order;
97a225e6 7310 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
68d68ff6 7311 pg_data_t *pgdat = (pg_data_t *)p;
1da177e4 7312 struct task_struct *tsk = current;
a70f7302 7313 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 7314
174596a0 7315 if (!cpumask_empty(cpumask))
c5f59f08 7316 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
7317
7318 /*
7319 * Tell the memory management that we're a "memory allocator",
7320 * and that if we need more memory we should get access to it
7321 * regardless (see "__alloc_pages()"). "kswapd" should
7322 * never get caught in the normal page freeing logic.
7323 *
7324 * (Kswapd normally doesn't need memory anyway, but sometimes
7325 * you need a small amount of memory in order to be able to
7326 * page out something else, and this flag essentially protects
7327 * us from recursively trying to free more memory as we're
7328 * trying to free the first piece of memory in the first place).
7329 */
b698f0a1 7330 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
83144186 7331 set_freezable();
1da177e4 7332
5644e1fb 7333 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 7334 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
8cd7c588 7335 atomic_set(&pgdat->nr_writeback_throttled, 0);
1da177e4 7336 for ( ; ; ) {
6f6313d4 7337 bool ret;
3e1d1d28 7338
5644e1fb 7339 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
7340 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7341 highest_zoneidx);
e716f2eb 7342
38087d9b
MG
7343kswapd_try_sleep:
7344 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 7345 highest_zoneidx);
215ddd66 7346
97a225e6 7347 /* Read the new order and highest_zoneidx */
2b47a24c 7348 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
7349 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7350 highest_zoneidx);
5644e1fb 7351 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 7352 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 7353
8fe23e05
DR
7354 ret = try_to_freeze();
7355 if (kthread_should_stop())
7356 break;
7357
7358 /*
7359 * We can speed up thawing tasks if we don't call balance_pgdat
7360 * after returning from the refrigerator
7361 */
38087d9b
MG
7362 if (ret)
7363 continue;
7364
7365 /*
7366 * Reclaim begins at the requested order but if a high-order
7367 * reclaim fails then kswapd falls back to reclaiming for
7368 * order-0. If that happens, kswapd will consider sleeping
7369 * for the order it finished reclaiming at (reclaim_order)
7370 * but kcompactd is woken to compact for the original
7371 * request (alloc_order).
7372 */
97a225e6 7373 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 7374 alloc_order);
97a225e6
JK
7375 reclaim_order = balance_pgdat(pgdat, alloc_order,
7376 highest_zoneidx);
38087d9b
MG
7377 if (reclaim_order < alloc_order)
7378 goto kswapd_try_sleep;
1da177e4 7379 }
b0a8cc58 7380
b698f0a1 7381 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
71abdc15 7382
1da177e4
LT
7383 return 0;
7384}
7385
7386/*
5ecd9d40
DR
7387 * A zone is low on free memory or too fragmented for high-order memory. If
7388 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7389 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7390 * has failed or is not needed, still wake up kcompactd if only compaction is
7391 * needed.
1da177e4 7392 */
5ecd9d40 7393void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 7394 enum zone_type highest_zoneidx)
1da177e4
LT
7395{
7396 pg_data_t *pgdat;
5644e1fb 7397 enum zone_type curr_idx;
1da177e4 7398
6aa303de 7399 if (!managed_zone(zone))
1da177e4
LT
7400 return;
7401
5ecd9d40 7402 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 7403 return;
5644e1fb 7404
88f5acf8 7405 pgdat = zone->zone_pgdat;
97a225e6 7406 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 7407
97a225e6
JK
7408 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7409 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
7410
7411 if (READ_ONCE(pgdat->kswapd_order) < order)
7412 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 7413
8d0986e2 7414 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 7415 return;
e1a55637 7416
5ecd9d40
DR
7417 /* Hopeless node, leave it to direct reclaim if possible */
7418 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
7419 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7420 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
7421 /*
7422 * There may be plenty of free memory available, but it's too
7423 * fragmented for high-order allocations. Wake up kcompactd
7424 * and rely on compaction_suitable() to determine if it's
7425 * needed. If it fails, it will defer subsequent attempts to
7426 * ratelimit its work.
7427 */
7428 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 7429 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 7430 return;
5ecd9d40 7431 }
88f5acf8 7432
97a225e6 7433 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 7434 gfp_flags);
8d0986e2 7435 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
7436}
7437
c6f37f12 7438#ifdef CONFIG_HIBERNATION
1da177e4 7439/*
7b51755c 7440 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
7441 * freed pages.
7442 *
7443 * Rather than trying to age LRUs the aim is to preserve the overall
7444 * LRU order by reclaiming preferentially
7445 * inactive > active > active referenced > active mapped
1da177e4 7446 */
7b51755c 7447unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 7448{
d6277db4 7449 struct scan_control sc = {
ee814fe2 7450 .nr_to_reclaim = nr_to_reclaim,
7b51755c 7451 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 7452 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 7453 .priority = DEF_PRIORITY,
d6277db4 7454 .may_writepage = 1,
ee814fe2
JW
7455 .may_unmap = 1,
7456 .may_swap = 1,
7b51755c 7457 .hibernation_mode = 1,
1da177e4 7458 };
a09ed5e0 7459 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 7460 unsigned long nr_reclaimed;
499118e9 7461 unsigned int noreclaim_flag;
1da177e4 7462
d92a8cfc 7463 fs_reclaim_acquire(sc.gfp_mask);
93781325 7464 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 7465 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 7466
3115cd91 7467 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 7468
1732d2b0 7469 set_task_reclaim_state(current, NULL);
499118e9 7470 memalloc_noreclaim_restore(noreclaim_flag);
93781325 7471 fs_reclaim_release(sc.gfp_mask);
d6277db4 7472
7b51755c 7473 return nr_reclaimed;
1da177e4 7474}
c6f37f12 7475#endif /* CONFIG_HIBERNATION */
1da177e4 7476
3218ae14
YG
7477/*
7478 * This kswapd start function will be called by init and node-hot-add.
3218ae14 7479 */
b87c517a 7480void kswapd_run(int nid)
3218ae14
YG
7481{
7482 pg_data_t *pgdat = NODE_DATA(nid);
3218ae14 7483
b4a0215e
KW
7484 pgdat_kswapd_lock(pgdat);
7485 if (!pgdat->kswapd) {
7486 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7487 if (IS_ERR(pgdat->kswapd)) {
7488 /* failure at boot is fatal */
7489 BUG_ON(system_state < SYSTEM_RUNNING);
7490 pr_err("Failed to start kswapd on node %d\n", nid);
7491 pgdat->kswapd = NULL;
7492 }
3218ae14 7493 }
b4a0215e 7494 pgdat_kswapd_unlock(pgdat);
3218ae14
YG
7495}
7496
8fe23e05 7497/*
d8adde17 7498 * Called by memory hotplug when all memory in a node is offlined. Caller must
e8da368a 7499 * be holding mem_hotplug_begin/done().
8fe23e05
DR
7500 */
7501void kswapd_stop(int nid)
7502{
b4a0215e
KW
7503 pg_data_t *pgdat = NODE_DATA(nid);
7504 struct task_struct *kswapd;
8fe23e05 7505
b4a0215e
KW
7506 pgdat_kswapd_lock(pgdat);
7507 kswapd = pgdat->kswapd;
d8adde17 7508 if (kswapd) {
8fe23e05 7509 kthread_stop(kswapd);
b4a0215e 7510 pgdat->kswapd = NULL;
d8adde17 7511 }
b4a0215e 7512 pgdat_kswapd_unlock(pgdat);
8fe23e05
DR
7513}
7514
1da177e4
LT
7515static int __init kswapd_init(void)
7516{
6b700b5b 7517 int nid;
69e05944 7518
1da177e4 7519 swap_setup();
48fb2e24 7520 for_each_node_state(nid, N_MEMORY)
3218ae14 7521 kswapd_run(nid);
1da177e4
LT
7522 return 0;
7523}
7524
7525module_init(kswapd_init)
9eeff239
CL
7526
7527#ifdef CONFIG_NUMA
7528/*
a5f5f91d 7529 * Node reclaim mode
9eeff239 7530 *
a5f5f91d 7531 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 7532 * the watermarks.
9eeff239 7533 */
a5f5f91d 7534int node_reclaim_mode __read_mostly;
9eeff239 7535
a92f7126 7536/*
a5f5f91d 7537 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
7538 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7539 * a zone.
7540 */
a5f5f91d 7541#define NODE_RECLAIM_PRIORITY 4
a92f7126 7542
9614634f 7543/*
a5f5f91d 7544 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
7545 * occur.
7546 */
7547int sysctl_min_unmapped_ratio = 1;
7548
0ff38490
CL
7549/*
7550 * If the number of slab pages in a zone grows beyond this percentage then
7551 * slab reclaim needs to occur.
7552 */
7553int sysctl_min_slab_ratio = 5;
7554
11fb9989 7555static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 7556{
11fb9989
MG
7557 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7558 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7559 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
7560
7561 /*
7562 * It's possible for there to be more file mapped pages than
7563 * accounted for by the pages on the file LRU lists because
7564 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7565 */
7566 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7567}
7568
7569/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 7570static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 7571{
d031a157
AM
7572 unsigned long nr_pagecache_reclaimable;
7573 unsigned long delta = 0;
90afa5de
MG
7574
7575 /*
95bbc0c7 7576 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 7577 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 7578 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
7579 * a better estimate
7580 */
a5f5f91d
MG
7581 if (node_reclaim_mode & RECLAIM_UNMAP)
7582 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 7583 else
a5f5f91d 7584 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
7585
7586 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
7587 if (!(node_reclaim_mode & RECLAIM_WRITE))
7588 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
7589
7590 /* Watch for any possible underflows due to delta */
7591 if (unlikely(delta > nr_pagecache_reclaimable))
7592 delta = nr_pagecache_reclaimable;
7593
7594 return nr_pagecache_reclaimable - delta;
7595}
7596
9eeff239 7597/*
a5f5f91d 7598 * Try to free up some pages from this node through reclaim.
9eeff239 7599 */
a5f5f91d 7600static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 7601{
7fb2d46d 7602 /* Minimum pages needed in order to stay on node */
69e05944 7603 const unsigned long nr_pages = 1 << order;
9eeff239 7604 struct task_struct *p = current;
499118e9 7605 unsigned int noreclaim_flag;
179e9639 7606 struct scan_control sc = {
62b726c1 7607 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 7608 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 7609 .order = order,
a5f5f91d
MG
7610 .priority = NODE_RECLAIM_PRIORITY,
7611 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7612 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 7613 .may_swap = 1,
f2f43e56 7614 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 7615 };
57f29762 7616 unsigned long pflags;
9eeff239 7617
132bb8cf
YS
7618 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7619 sc.gfp_mask);
7620
9eeff239 7621 cond_resched();
57f29762 7622 psi_memstall_enter(&pflags);
93781325 7623 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 7624 /*
95bbc0c7 7625 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 7626 */
499118e9 7627 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 7628 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 7629
d8ff6fde
ML
7630 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7631 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
0ff38490 7632 /*
894befec 7633 * Free memory by calling shrink node with increasing
0ff38490
CL
7634 * priorities until we have enough memory freed.
7635 */
0ff38490 7636 do {
970a39a3 7637 shrink_node(pgdat, &sc);
9e3b2f8c 7638 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 7639 }
c84db23c 7640
1732d2b0 7641 set_task_reclaim_state(p, NULL);
499118e9 7642 memalloc_noreclaim_restore(noreclaim_flag);
93781325 7643 fs_reclaim_release(sc.gfp_mask);
57f29762 7644 psi_memstall_leave(&pflags);
132bb8cf
YS
7645
7646 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7647
a79311c1 7648 return sc.nr_reclaimed >= nr_pages;
9eeff239 7649}
179e9639 7650
a5f5f91d 7651int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 7652{
d773ed6b 7653 int ret;
179e9639
AM
7654
7655 /*
a5f5f91d 7656 * Node reclaim reclaims unmapped file backed pages and
0ff38490 7657 * slab pages if we are over the defined limits.
34aa1330 7658 *
9614634f
CL
7659 * A small portion of unmapped file backed pages is needed for
7660 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
7661 * thrown out if the node is overallocated. So we do not reclaim
7662 * if less than a specified percentage of the node is used by
9614634f 7663 * unmapped file backed pages.
179e9639 7664 */
a5f5f91d 7665 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
7666 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7667 pgdat->min_slab_pages)
a5f5f91d 7668 return NODE_RECLAIM_FULL;
179e9639
AM
7669
7670 /*
d773ed6b 7671 * Do not scan if the allocation should not be delayed.
179e9639 7672 */
d0164adc 7673 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 7674 return NODE_RECLAIM_NOSCAN;
179e9639
AM
7675
7676 /*
a5f5f91d 7677 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
7678 * have associated processors. This will favor the local processor
7679 * over remote processors and spread off node memory allocations
7680 * as wide as possible.
7681 */
a5f5f91d
MG
7682 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7683 return NODE_RECLAIM_NOSCAN;
d773ed6b 7684
a5f5f91d
MG
7685 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7686 return NODE_RECLAIM_NOSCAN;
fa5e084e 7687
a5f5f91d
MG
7688 ret = __node_reclaim(pgdat, gfp_mask, order);
7689 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 7690
24cf7251
MG
7691 if (!ret)
7692 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7693
d773ed6b 7694 return ret;
179e9639 7695}
9eeff239 7696#endif
894bc310 7697
77414d19
MWO
7698void check_move_unevictable_pages(struct pagevec *pvec)
7699{
7700 struct folio_batch fbatch;
7701 unsigned i;
7702
7703 folio_batch_init(&fbatch);
7704 for (i = 0; i < pvec->nr; i++) {
7705 struct page *page = pvec->pages[i];
7706
7707 if (PageTransTail(page))
7708 continue;
7709 folio_batch_add(&fbatch, page_folio(page));
7710 }
7711 check_move_unevictable_folios(&fbatch);
7712}
7713EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
7714
89e004ea 7715/**
77414d19
MWO
7716 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7717 * lru list
7718 * @fbatch: Batch of lru folios to check.
89e004ea 7719 *
77414d19 7720 * Checks folios for evictability, if an evictable folio is in the unevictable
64e3d12f 7721 * lru list, moves it to the appropriate evictable lru list. This function
77414d19 7722 * should be only used for lru folios.
89e004ea 7723 */
77414d19 7724void check_move_unevictable_folios(struct folio_batch *fbatch)
89e004ea 7725{
6168d0da 7726 struct lruvec *lruvec = NULL;
24513264
HD
7727 int pgscanned = 0;
7728 int pgrescued = 0;
7729 int i;
89e004ea 7730
77414d19
MWO
7731 for (i = 0; i < fbatch->nr; i++) {
7732 struct folio *folio = fbatch->folios[i];
7733 int nr_pages = folio_nr_pages(folio);
8d8869ca 7734
8d8869ca 7735 pgscanned += nr_pages;
89e004ea 7736
77414d19
MWO
7737 /* block memcg migration while the folio moves between lrus */
7738 if (!folio_test_clear_lru(folio))
d25b5bd8
AS
7739 continue;
7740
0de340cb 7741 lruvec = folio_lruvec_relock_irq(folio, lruvec);
77414d19
MWO
7742 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7743 lruvec_del_folio(lruvec, folio);
7744 folio_clear_unevictable(folio);
7745 lruvec_add_folio(lruvec, folio);
8d8869ca 7746 pgrescued += nr_pages;
89e004ea 7747 }
77414d19 7748 folio_set_lru(folio);
24513264 7749 }
89e004ea 7750
6168d0da 7751 if (lruvec) {
24513264
HD
7752 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7753 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 7754 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
7755 } else if (pgscanned) {
7756 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 7757 }
89e004ea 7758}
77414d19 7759EXPORT_SYMBOL_GPL(check_move_unevictable_folios);