]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
mm/vmscan: convert reclaim_clean_pages_from_list() to folios
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
26aa2d19 44#include <linux/migrate.h>
873b4771 45#include <linux/delayacct.h>
af936a16 46#include <linux/sysctl.h>
929bea7c 47#include <linux/oom.h>
64e3d12f 48#include <linux/pagevec.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
eb414681 52#include <linux/psi.h>
1da177e4
LT
53
54#include <asm/tlbflush.h>
55#include <asm/div64.h>
56
57#include <linux/swapops.h>
117aad1e 58#include <linux/balloon_compaction.h>
c574bbe9 59#include <linux/sched/sysctl.h>
1da177e4 60
0f8053a5 61#include "internal.h"
014bb1de 62#include "swap.h"
0f8053a5 63
33906bc5
MG
64#define CREATE_TRACE_POINTS
65#include <trace/events/vmscan.h>
66
1da177e4 67struct scan_control {
22fba335
KM
68 /* How many pages shrink_list() should reclaim */
69 unsigned long nr_to_reclaim;
70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
7cf111bc
JW
83 /*
84 * Scan pressure balancing between anon and file LRUs
85 */
86 unsigned long anon_cost;
87 unsigned long file_cost;
88
b91ac374
JW
89 /* Can active pages be deactivated as part of reclaim? */
90#define DEACTIVATE_ANON 1
91#define DEACTIVATE_FILE 2
92 unsigned int may_deactivate:2;
93 unsigned int force_deactivate:1;
94 unsigned int skipped_deactivate:1;
95
1276ad68 96 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
97 unsigned int may_writepage:1;
98
99 /* Can mapped pages be reclaimed? */
100 unsigned int may_unmap:1;
101
102 /* Can pages be swapped as part of reclaim? */
103 unsigned int may_swap:1;
104
d6622f63 105 /*
f56ce412
JW
106 * Cgroup memory below memory.low is protected as long as we
107 * don't threaten to OOM. If any cgroup is reclaimed at
108 * reduced force or passed over entirely due to its memory.low
109 * setting (memcg_low_skipped), and nothing is reclaimed as a
110 * result, then go back for one more cycle that reclaims the protected
111 * memory (memcg_low_reclaim) to avert OOM.
d6622f63
YX
112 */
113 unsigned int memcg_low_reclaim:1;
114 unsigned int memcg_low_skipped:1;
241994ed 115
ee814fe2
JW
116 unsigned int hibernation_mode:1;
117
118 /* One of the zones is ready for compaction */
119 unsigned int compaction_ready:1;
120
b91ac374
JW
121 /* There is easily reclaimable cold cache in the current node */
122 unsigned int cache_trim_mode:1;
123
53138cea
JW
124 /* The file pages on the current node are dangerously low */
125 unsigned int file_is_tiny:1;
126
26aa2d19
DH
127 /* Always discard instead of demoting to lower tier memory */
128 unsigned int no_demotion:1;
129
bb451fdf
GT
130 /* Allocation order */
131 s8 order;
132
133 /* Scan (total_size >> priority) pages at once */
134 s8 priority;
135
136 /* The highest zone to isolate pages for reclaim from */
137 s8 reclaim_idx;
138
139 /* This context's GFP mask */
140 gfp_t gfp_mask;
141
ee814fe2
JW
142 /* Incremented by the number of inactive pages that were scanned */
143 unsigned long nr_scanned;
144
145 /* Number of pages freed so far during a call to shrink_zones() */
146 unsigned long nr_reclaimed;
d108c772
AR
147
148 struct {
149 unsigned int dirty;
150 unsigned int unqueued_dirty;
151 unsigned int congested;
152 unsigned int writeback;
153 unsigned int immediate;
154 unsigned int file_taken;
155 unsigned int taken;
156 } nr;
e5ca8071
YS
157
158 /* for recording the reclaimed slab by now */
159 struct reclaim_state reclaim_state;
1da177e4
LT
160};
161
1da177e4
LT
162#ifdef ARCH_HAS_PREFETCHW
163#define prefetchw_prev_lru_page(_page, _base, _field) \
164 do { \
165 if ((_page)->lru.prev != _base) { \
166 struct page *prev; \
167 \
168 prev = lru_to_page(&(_page->lru)); \
169 prefetchw(&prev->_field); \
170 } \
171 } while (0)
172#else
173#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
174#endif
175
176/*
c843966c 177 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
178 */
179int vm_swappiness = 60;
1da177e4 180
0a432dcb
YS
181static void set_task_reclaim_state(struct task_struct *task,
182 struct reclaim_state *rs)
183{
184 /* Check for an overwrite */
185 WARN_ON_ONCE(rs && task->reclaim_state);
186
187 /* Check for the nulling of an already-nulled member */
188 WARN_ON_ONCE(!rs && !task->reclaim_state);
189
190 task->reclaim_state = rs;
191}
192
5035ebc6
RG
193LIST_HEAD(shrinker_list);
194DECLARE_RWSEM(shrinker_rwsem);
1da177e4 195
0a432dcb 196#ifdef CONFIG_MEMCG
a2fb1261 197static int shrinker_nr_max;
2bfd3637 198
3c6f17e6 199/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
200static inline int shrinker_map_size(int nr_items)
201{
202 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
203}
2bfd3637 204
3c6f17e6
YS
205static inline int shrinker_defer_size(int nr_items)
206{
207 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
208}
209
468ab843
YS
210static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
211 int nid)
212{
213 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
214 lockdep_is_held(&shrinker_rwsem));
215}
216
e4262c4f 217static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
218 int map_size, int defer_size,
219 int old_map_size, int old_defer_size)
2bfd3637 220{
e4262c4f 221 struct shrinker_info *new, *old;
2bfd3637
YS
222 struct mem_cgroup_per_node *pn;
223 int nid;
3c6f17e6 224 int size = map_size + defer_size;
2bfd3637 225
2bfd3637
YS
226 for_each_node(nid) {
227 pn = memcg->nodeinfo[nid];
468ab843 228 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
229 /* Not yet online memcg */
230 if (!old)
231 return 0;
232
233 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
234 if (!new)
235 return -ENOMEM;
236
3c6f17e6
YS
237 new->nr_deferred = (atomic_long_t *)(new + 1);
238 new->map = (void *)new->nr_deferred + defer_size;
239
240 /* map: set all old bits, clear all new bits */
241 memset(new->map, (int)0xff, old_map_size);
242 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
243 /* nr_deferred: copy old values, clear all new values */
244 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
245 memset((void *)new->nr_deferred + old_defer_size, 0,
246 defer_size - old_defer_size);
2bfd3637 247
e4262c4f 248 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 249 kvfree_rcu(old, rcu);
2bfd3637
YS
250 }
251
252 return 0;
253}
254
e4262c4f 255void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
256{
257 struct mem_cgroup_per_node *pn;
e4262c4f 258 struct shrinker_info *info;
2bfd3637
YS
259 int nid;
260
2bfd3637
YS
261 for_each_node(nid) {
262 pn = memcg->nodeinfo[nid];
e4262c4f
YS
263 info = rcu_dereference_protected(pn->shrinker_info, true);
264 kvfree(info);
265 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
266 }
267}
268
e4262c4f 269int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 270{
e4262c4f 271 struct shrinker_info *info;
2bfd3637 272 int nid, size, ret = 0;
3c6f17e6 273 int map_size, defer_size = 0;
2bfd3637 274
d27cf2aa 275 down_write(&shrinker_rwsem);
3c6f17e6
YS
276 map_size = shrinker_map_size(shrinker_nr_max);
277 defer_size = shrinker_defer_size(shrinker_nr_max);
278 size = map_size + defer_size;
2bfd3637 279 for_each_node(nid) {
e4262c4f
YS
280 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
281 if (!info) {
282 free_shrinker_info(memcg);
2bfd3637
YS
283 ret = -ENOMEM;
284 break;
285 }
3c6f17e6
YS
286 info->nr_deferred = (atomic_long_t *)(info + 1);
287 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 288 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 289 }
d27cf2aa 290 up_write(&shrinker_rwsem);
2bfd3637
YS
291
292 return ret;
293}
294
3c6f17e6
YS
295static inline bool need_expand(int nr_max)
296{
297 return round_up(nr_max, BITS_PER_LONG) >
298 round_up(shrinker_nr_max, BITS_PER_LONG);
299}
300
e4262c4f 301static int expand_shrinker_info(int new_id)
2bfd3637 302{
3c6f17e6 303 int ret = 0;
a2fb1261 304 int new_nr_max = new_id + 1;
3c6f17e6
YS
305 int map_size, defer_size = 0;
306 int old_map_size, old_defer_size = 0;
2bfd3637
YS
307 struct mem_cgroup *memcg;
308
3c6f17e6 309 if (!need_expand(new_nr_max))
a2fb1261 310 goto out;
2bfd3637 311
2bfd3637 312 if (!root_mem_cgroup)
d27cf2aa
YS
313 goto out;
314
315 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 316
3c6f17e6
YS
317 map_size = shrinker_map_size(new_nr_max);
318 defer_size = shrinker_defer_size(new_nr_max);
319 old_map_size = shrinker_map_size(shrinker_nr_max);
320 old_defer_size = shrinker_defer_size(shrinker_nr_max);
321
2bfd3637
YS
322 memcg = mem_cgroup_iter(NULL, NULL, NULL);
323 do {
3c6f17e6
YS
324 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
325 old_map_size, old_defer_size);
2bfd3637
YS
326 if (ret) {
327 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 328 goto out;
2bfd3637
YS
329 }
330 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 331out:
2bfd3637 332 if (!ret)
a2fb1261 333 shrinker_nr_max = new_nr_max;
d27cf2aa 334
2bfd3637
YS
335 return ret;
336}
337
338void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
339{
340 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 341 struct shrinker_info *info;
2bfd3637
YS
342
343 rcu_read_lock();
e4262c4f 344 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
345 /* Pairs with smp mb in shrink_slab() */
346 smp_mb__before_atomic();
e4262c4f 347 set_bit(shrinker_id, info->map);
2bfd3637
YS
348 rcu_read_unlock();
349 }
350}
351
b4c2b231 352static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
353
354static int prealloc_memcg_shrinker(struct shrinker *shrinker)
355{
356 int id, ret = -ENOMEM;
357
476b30a0
YS
358 if (mem_cgroup_disabled())
359 return -ENOSYS;
360
b4c2b231
KT
361 down_write(&shrinker_rwsem);
362 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 363 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
364 if (id < 0)
365 goto unlock;
366
0a4465d3 367 if (id >= shrinker_nr_max) {
e4262c4f 368 if (expand_shrinker_info(id)) {
0a4465d3
KT
369 idr_remove(&shrinker_idr, id);
370 goto unlock;
371 }
0a4465d3 372 }
b4c2b231
KT
373 shrinker->id = id;
374 ret = 0;
375unlock:
376 up_write(&shrinker_rwsem);
377 return ret;
378}
379
380static void unregister_memcg_shrinker(struct shrinker *shrinker)
381{
382 int id = shrinker->id;
383
384 BUG_ON(id < 0);
385
41ca668a
YS
386 lockdep_assert_held(&shrinker_rwsem);
387
b4c2b231 388 idr_remove(&shrinker_idr, id);
b4c2b231 389}
b4c2b231 390
86750830
YS
391static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
392 struct mem_cgroup *memcg)
393{
394 struct shrinker_info *info;
395
396 info = shrinker_info_protected(memcg, nid);
397 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
398}
399
400static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
401 struct mem_cgroup *memcg)
402{
403 struct shrinker_info *info;
404
405 info = shrinker_info_protected(memcg, nid);
406 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
407}
408
a178015c
YS
409void reparent_shrinker_deferred(struct mem_cgroup *memcg)
410{
411 int i, nid;
412 long nr;
413 struct mem_cgroup *parent;
414 struct shrinker_info *child_info, *parent_info;
415
416 parent = parent_mem_cgroup(memcg);
417 if (!parent)
418 parent = root_mem_cgroup;
419
420 /* Prevent from concurrent shrinker_info expand */
421 down_read(&shrinker_rwsem);
422 for_each_node(nid) {
423 child_info = shrinker_info_protected(memcg, nid);
424 parent_info = shrinker_info_protected(parent, nid);
425 for (i = 0; i < shrinker_nr_max; i++) {
426 nr = atomic_long_read(&child_info->nr_deferred[i]);
427 atomic_long_add(nr, &parent_info->nr_deferred[i]);
428 }
429 }
430 up_read(&shrinker_rwsem);
431}
432
b5ead35e 433static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 434{
b5ead35e 435 return sc->target_mem_cgroup;
89b5fae5 436}
97c9341f
TH
437
438/**
b5ead35e 439 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
440 * @sc: scan_control in question
441 *
442 * The normal page dirty throttling mechanism in balance_dirty_pages() is
443 * completely broken with the legacy memcg and direct stalling in
444 * shrink_page_list() is used for throttling instead, which lacks all the
445 * niceties such as fairness, adaptive pausing, bandwidth proportional
446 * allocation and configurability.
447 *
448 * This function tests whether the vmscan currently in progress can assume
449 * that the normal dirty throttling mechanism is operational.
450 */
b5ead35e 451static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 452{
b5ead35e 453 if (!cgroup_reclaim(sc))
97c9341f
TH
454 return true;
455#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 456 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
457 return true;
458#endif
459 return false;
460}
91a45470 461#else
0a432dcb
YS
462static int prealloc_memcg_shrinker(struct shrinker *shrinker)
463{
476b30a0 464 return -ENOSYS;
0a432dcb
YS
465}
466
467static void unregister_memcg_shrinker(struct shrinker *shrinker)
468{
469}
470
86750830
YS
471static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
472 struct mem_cgroup *memcg)
473{
474 return 0;
475}
476
477static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
478 struct mem_cgroup *memcg)
479{
480 return 0;
481}
482
b5ead35e 483static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 484{
b5ead35e 485 return false;
89b5fae5 486}
97c9341f 487
b5ead35e 488static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
489{
490 return true;
491}
91a45470
KH
492#endif
493
86750830
YS
494static long xchg_nr_deferred(struct shrinker *shrinker,
495 struct shrink_control *sc)
496{
497 int nid = sc->nid;
498
499 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
500 nid = 0;
501
502 if (sc->memcg &&
503 (shrinker->flags & SHRINKER_MEMCG_AWARE))
504 return xchg_nr_deferred_memcg(nid, shrinker,
505 sc->memcg);
506
507 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
508}
509
510
511static long add_nr_deferred(long nr, struct shrinker *shrinker,
512 struct shrink_control *sc)
513{
514 int nid = sc->nid;
515
516 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
517 nid = 0;
518
519 if (sc->memcg &&
520 (shrinker->flags & SHRINKER_MEMCG_AWARE))
521 return add_nr_deferred_memcg(nr, nid, shrinker,
522 sc->memcg);
523
524 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
525}
526
26aa2d19
DH
527static bool can_demote(int nid, struct scan_control *sc)
528{
20b51af1
HY
529 if (!numa_demotion_enabled)
530 return false;
3f1509c5
JW
531 if (sc && sc->no_demotion)
532 return false;
26aa2d19
DH
533 if (next_demotion_node(nid) == NUMA_NO_NODE)
534 return false;
535
20b51af1 536 return true;
26aa2d19
DH
537}
538
a2a36488
KB
539static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
540 int nid,
541 struct scan_control *sc)
542{
543 if (memcg == NULL) {
544 /*
545 * For non-memcg reclaim, is there
546 * space in any swap device?
547 */
548 if (get_nr_swap_pages() > 0)
549 return true;
550 } else {
551 /* Is the memcg below its swap limit? */
552 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
553 return true;
554 }
555
556 /*
557 * The page can not be swapped.
558 *
559 * Can it be reclaimed from this node via demotion?
560 */
561 return can_demote(nid, sc);
562}
563
5a1c84b4
MG
564/*
565 * This misses isolated pages which are not accounted for to save counters.
566 * As the data only determines if reclaim or compaction continues, it is
567 * not expected that isolated pages will be a dominating factor.
568 */
569unsigned long zone_reclaimable_pages(struct zone *zone)
570{
571 unsigned long nr;
572
573 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
574 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
a2a36488 575 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
5a1c84b4
MG
576 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
578
579 return nr;
580}
581
fd538803
MH
582/**
583 * lruvec_lru_size - Returns the number of pages on the given LRU list.
584 * @lruvec: lru vector
585 * @lru: lru to use
8b3a899a 586 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
fd538803 587 */
2091339d
YZ
588static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
589 int zone_idx)
c9f299d9 590{
de3b0150 591 unsigned long size = 0;
fd538803
MH
592 int zid;
593
8b3a899a 594 for (zid = 0; zid <= zone_idx; zid++) {
fd538803 595 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 596
fd538803
MH
597 if (!managed_zone(zone))
598 continue;
599
600 if (!mem_cgroup_disabled())
de3b0150 601 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 602 else
de3b0150 603 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 604 }
de3b0150 605 return size;
b4536f0c
MH
606}
607
1da177e4 608/*
1d3d4437 609 * Add a shrinker callback to be called from the vm.
1da177e4 610 */
e33c267a 611static int __prealloc_shrinker(struct shrinker *shrinker)
1da177e4 612{
476b30a0
YS
613 unsigned int size;
614 int err;
615
616 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
617 err = prealloc_memcg_shrinker(shrinker);
618 if (err != -ENOSYS)
619 return err;
1d3d4437 620
476b30a0
YS
621 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
622 }
623
624 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
625 if (shrinker->flags & SHRINKER_NUMA_AWARE)
626 size *= nr_node_ids;
627
628 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
629 if (!shrinker->nr_deferred)
630 return -ENOMEM;
b4c2b231 631
8e04944f
TH
632 return 0;
633}
634
e33c267a
RG
635#ifdef CONFIG_SHRINKER_DEBUG
636int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
637{
638 va_list ap;
639 int err;
640
641 va_start(ap, fmt);
642 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
643 va_end(ap);
644 if (!shrinker->name)
645 return -ENOMEM;
646
647 err = __prealloc_shrinker(shrinker);
648 if (err)
649 kfree_const(shrinker->name);
650
651 return err;
652}
653#else
654int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
655{
656 return __prealloc_shrinker(shrinker);
657}
658#endif
659
8e04944f
TH
660void free_prealloced_shrinker(struct shrinker *shrinker)
661{
e33c267a
RG
662#ifdef CONFIG_SHRINKER_DEBUG
663 kfree_const(shrinker->name);
664#endif
41ca668a
YS
665 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
666 down_write(&shrinker_rwsem);
b4c2b231 667 unregister_memcg_shrinker(shrinker);
41ca668a 668 up_write(&shrinker_rwsem);
476b30a0 669 return;
41ca668a 670 }
b4c2b231 671
8e04944f
TH
672 kfree(shrinker->nr_deferred);
673 shrinker->nr_deferred = NULL;
674}
1d3d4437 675
8e04944f
TH
676void register_shrinker_prepared(struct shrinker *shrinker)
677{
8e1f936b
RR
678 down_write(&shrinker_rwsem);
679 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 680 shrinker->flags |= SHRINKER_REGISTERED;
5035ebc6 681 shrinker_debugfs_add(shrinker);
8e1f936b 682 up_write(&shrinker_rwsem);
8e04944f
TH
683}
684
e33c267a 685static int __register_shrinker(struct shrinker *shrinker)
8e04944f 686{
e33c267a 687 int err = __prealloc_shrinker(shrinker);
8e04944f
TH
688
689 if (err)
690 return err;
691 register_shrinker_prepared(shrinker);
1d3d4437 692 return 0;
1da177e4 693}
e33c267a
RG
694
695#ifdef CONFIG_SHRINKER_DEBUG
696int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
697{
698 va_list ap;
699 int err;
700
701 va_start(ap, fmt);
702 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
703 va_end(ap);
704 if (!shrinker->name)
705 return -ENOMEM;
706
707 err = __register_shrinker(shrinker);
708 if (err)
709 kfree_const(shrinker->name);
710 return err;
711}
712#else
713int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
714{
715 return __register_shrinker(shrinker);
716}
717#endif
8e1f936b 718EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
719
720/*
721 * Remove one
722 */
8e1f936b 723void unregister_shrinker(struct shrinker *shrinker)
1da177e4 724{
41ca668a 725 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 726 return;
41ca668a 727
1da177e4
LT
728 down_write(&shrinker_rwsem);
729 list_del(&shrinker->list);
41ca668a
YS
730 shrinker->flags &= ~SHRINKER_REGISTERED;
731 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
732 unregister_memcg_shrinker(shrinker);
5035ebc6 733 shrinker_debugfs_remove(shrinker);
1da177e4 734 up_write(&shrinker_rwsem);
41ca668a 735
ae393321 736 kfree(shrinker->nr_deferred);
bb422a73 737 shrinker->nr_deferred = NULL;
1da177e4 738}
8e1f936b 739EXPORT_SYMBOL(unregister_shrinker);
1da177e4 740
880121be
CK
741/**
742 * synchronize_shrinkers - Wait for all running shrinkers to complete.
743 *
744 * This is equivalent to calling unregister_shrink() and register_shrinker(),
745 * but atomically and with less overhead. This is useful to guarantee that all
746 * shrinker invocations have seen an update, before freeing memory, similar to
747 * rcu.
748 */
749void synchronize_shrinkers(void)
750{
751 down_write(&shrinker_rwsem);
752 up_write(&shrinker_rwsem);
753}
754EXPORT_SYMBOL(synchronize_shrinkers);
755
1da177e4 756#define SHRINK_BATCH 128
1d3d4437 757
cb731d6c 758static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 759 struct shrinker *shrinker, int priority)
1d3d4437
GC
760{
761 unsigned long freed = 0;
762 unsigned long long delta;
763 long total_scan;
d5bc5fd3 764 long freeable;
1d3d4437
GC
765 long nr;
766 long new_nr;
1d3d4437
GC
767 long batch_size = shrinker->batch ? shrinker->batch
768 : SHRINK_BATCH;
5f33a080 769 long scanned = 0, next_deferred;
1d3d4437 770
d5bc5fd3 771 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
772 if (freeable == 0 || freeable == SHRINK_EMPTY)
773 return freeable;
1d3d4437
GC
774
775 /*
776 * copy the current shrinker scan count into a local variable
777 * and zero it so that other concurrent shrinker invocations
778 * don't also do this scanning work.
779 */
86750830 780 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 781
4b85afbd
JW
782 if (shrinker->seeks) {
783 delta = freeable >> priority;
784 delta *= 4;
785 do_div(delta, shrinker->seeks);
786 } else {
787 /*
788 * These objects don't require any IO to create. Trim
789 * them aggressively under memory pressure to keep
790 * them from causing refetches in the IO caches.
791 */
792 delta = freeable / 2;
793 }
172b06c3 794
18bb473e 795 total_scan = nr >> priority;
1d3d4437 796 total_scan += delta;
18bb473e 797 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
798
799 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 800 freeable, delta, total_scan, priority);
1d3d4437 801
0b1fb40a
VD
802 /*
803 * Normally, we should not scan less than batch_size objects in one
804 * pass to avoid too frequent shrinker calls, but if the slab has less
805 * than batch_size objects in total and we are really tight on memory,
806 * we will try to reclaim all available objects, otherwise we can end
807 * up failing allocations although there are plenty of reclaimable
808 * objects spread over several slabs with usage less than the
809 * batch_size.
810 *
811 * We detect the "tight on memory" situations by looking at the total
812 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 813 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
814 * scanning at high prio and therefore should try to reclaim as much as
815 * possible.
816 */
817 while (total_scan >= batch_size ||
d5bc5fd3 818 total_scan >= freeable) {
a0b02131 819 unsigned long ret;
0b1fb40a 820 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 821
0b1fb40a 822 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 823 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
824 ret = shrinker->scan_objects(shrinker, shrinkctl);
825 if (ret == SHRINK_STOP)
826 break;
827 freed += ret;
1d3d4437 828
d460acb5
CW
829 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
830 total_scan -= shrinkctl->nr_scanned;
831 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
832
833 cond_resched();
834 }
835
18bb473e
YS
836 /*
837 * The deferred work is increased by any new work (delta) that wasn't
838 * done, decreased by old deferred work that was done now.
839 *
840 * And it is capped to two times of the freeable items.
841 */
842 next_deferred = max_t(long, (nr + delta - scanned), 0);
843 next_deferred = min(next_deferred, (2 * freeable));
844
1d3d4437
GC
845 /*
846 * move the unused scan count back into the shrinker in a
86750830 847 * manner that handles concurrent updates.
1d3d4437 848 */
86750830 849 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 850
8efb4b59 851 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 852 return freed;
1495f230
YH
853}
854
0a432dcb 855#ifdef CONFIG_MEMCG
b0dedc49
KT
856static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
857 struct mem_cgroup *memcg, int priority)
858{
e4262c4f 859 struct shrinker_info *info;
b8e57efa
KT
860 unsigned long ret, freed = 0;
861 int i;
b0dedc49 862
0a432dcb 863 if (!mem_cgroup_online(memcg))
b0dedc49
KT
864 return 0;
865
866 if (!down_read_trylock(&shrinker_rwsem))
867 return 0;
868
468ab843 869 info = shrinker_info_protected(memcg, nid);
e4262c4f 870 if (unlikely(!info))
b0dedc49
KT
871 goto unlock;
872
e4262c4f 873 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
874 struct shrink_control sc = {
875 .gfp_mask = gfp_mask,
876 .nid = nid,
877 .memcg = memcg,
878 };
879 struct shrinker *shrinker;
880
881 shrinker = idr_find(&shrinker_idr, i);
41ca668a 882 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 883 if (!shrinker)
e4262c4f 884 clear_bit(i, info->map);
b0dedc49
KT
885 continue;
886 }
887
0a432dcb
YS
888 /* Call non-slab shrinkers even though kmem is disabled */
889 if (!memcg_kmem_enabled() &&
890 !(shrinker->flags & SHRINKER_NONSLAB))
891 continue;
892
b0dedc49 893 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 894 if (ret == SHRINK_EMPTY) {
e4262c4f 895 clear_bit(i, info->map);
f90280d6
KT
896 /*
897 * After the shrinker reported that it had no objects to
898 * free, but before we cleared the corresponding bit in
899 * the memcg shrinker map, a new object might have been
900 * added. To make sure, we have the bit set in this
901 * case, we invoke the shrinker one more time and reset
902 * the bit if it reports that it is not empty anymore.
903 * The memory barrier here pairs with the barrier in
2bfd3637 904 * set_shrinker_bit():
f90280d6
KT
905 *
906 * list_lru_add() shrink_slab_memcg()
907 * list_add_tail() clear_bit()
908 * <MB> <MB>
909 * set_bit() do_shrink_slab()
910 */
911 smp_mb__after_atomic();
912 ret = do_shrink_slab(&sc, shrinker, priority);
913 if (ret == SHRINK_EMPTY)
914 ret = 0;
915 else
2bfd3637 916 set_shrinker_bit(memcg, nid, i);
f90280d6 917 }
b0dedc49
KT
918 freed += ret;
919
920 if (rwsem_is_contended(&shrinker_rwsem)) {
921 freed = freed ? : 1;
922 break;
923 }
924 }
925unlock:
926 up_read(&shrinker_rwsem);
927 return freed;
928}
0a432dcb 929#else /* CONFIG_MEMCG */
b0dedc49
KT
930static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
931 struct mem_cgroup *memcg, int priority)
932{
933 return 0;
934}
0a432dcb 935#endif /* CONFIG_MEMCG */
b0dedc49 936
6b4f7799 937/**
cb731d6c 938 * shrink_slab - shrink slab caches
6b4f7799
JW
939 * @gfp_mask: allocation context
940 * @nid: node whose slab caches to target
cb731d6c 941 * @memcg: memory cgroup whose slab caches to target
9092c71b 942 * @priority: the reclaim priority
1da177e4 943 *
6b4f7799 944 * Call the shrink functions to age shrinkable caches.
1da177e4 945 *
6b4f7799
JW
946 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
947 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 948 *
aeed1d32
VD
949 * @memcg specifies the memory cgroup to target. Unaware shrinkers
950 * are called only if it is the root cgroup.
cb731d6c 951 *
9092c71b
JB
952 * @priority is sc->priority, we take the number of objects and >> by priority
953 * in order to get the scan target.
b15e0905 954 *
6b4f7799 955 * Returns the number of reclaimed slab objects.
1da177e4 956 */
cb731d6c
VD
957static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
958 struct mem_cgroup *memcg,
9092c71b 959 int priority)
1da177e4 960{
b8e57efa 961 unsigned long ret, freed = 0;
1da177e4
LT
962 struct shrinker *shrinker;
963
fa1e512f
YS
964 /*
965 * The root memcg might be allocated even though memcg is disabled
966 * via "cgroup_disable=memory" boot parameter. This could make
967 * mem_cgroup_is_root() return false, then just run memcg slab
968 * shrink, but skip global shrink. This may result in premature
969 * oom.
970 */
971 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 972 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 973
e830c63a 974 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 975 goto out;
1da177e4
LT
976
977 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
978 struct shrink_control sc = {
979 .gfp_mask = gfp_mask,
980 .nid = nid,
cb731d6c 981 .memcg = memcg,
6b4f7799 982 };
ec97097b 983
9b996468
KT
984 ret = do_shrink_slab(&sc, shrinker, priority);
985 if (ret == SHRINK_EMPTY)
986 ret = 0;
987 freed += ret;
e496612c
MK
988 /*
989 * Bail out if someone want to register a new shrinker to
55b65a57 990 * prevent the registration from being stalled for long periods
e496612c
MK
991 * by parallel ongoing shrinking.
992 */
993 if (rwsem_is_contended(&shrinker_rwsem)) {
994 freed = freed ? : 1;
995 break;
996 }
1da177e4 997 }
6b4f7799 998
1da177e4 999 up_read(&shrinker_rwsem);
f06590bd
MK
1000out:
1001 cond_resched();
24f7c6b9 1002 return freed;
1da177e4
LT
1003}
1004
e4b424b7 1005static void drop_slab_node(int nid)
cb731d6c
VD
1006{
1007 unsigned long freed;
1399af7e 1008 int shift = 0;
cb731d6c
VD
1009
1010 do {
1011 struct mem_cgroup *memcg = NULL;
1012
069c411d
CZ
1013 if (fatal_signal_pending(current))
1014 return;
1015
cb731d6c 1016 freed = 0;
aeed1d32 1017 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 1018 do {
9092c71b 1019 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c 1020 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1399af7e 1021 } while ((freed >> shift++) > 1);
cb731d6c
VD
1022}
1023
1024void drop_slab(void)
1025{
1026 int nid;
1027
1028 for_each_online_node(nid)
1029 drop_slab_node(nid);
1030}
1031
e0cd5e7f 1032static inline int is_page_cache_freeable(struct folio *folio)
1da177e4 1033{
ceddc3a5
JW
1034 /*
1035 * A freeable page cache page is referenced only by the caller
67891fff
MW
1036 * that isolated the page, the page cache and optional buffer
1037 * heads at page->private.
ceddc3a5 1038 */
e0cd5e7f
MWO
1039 return folio_ref_count(folio) - folio_test_private(folio) ==
1040 1 + folio_nr_pages(folio);
1da177e4
LT
1041}
1042
1da177e4 1043/*
e0cd5e7f 1044 * We detected a synchronous write error writing a folio out. Probably
1da177e4
LT
1045 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1046 * fsync(), msync() or close().
1047 *
1048 * The tricky part is that after writepage we cannot touch the mapping: nothing
e0cd5e7f
MWO
1049 * prevents it from being freed up. But we have a ref on the folio and once
1050 * that folio is locked, the mapping is pinned.
1da177e4 1051 *
e0cd5e7f 1052 * We're allowed to run sleeping folio_lock() here because we know the caller has
1da177e4
LT
1053 * __GFP_FS.
1054 */
1055static void handle_write_error(struct address_space *mapping,
e0cd5e7f 1056 struct folio *folio, int error)
1da177e4 1057{
e0cd5e7f
MWO
1058 folio_lock(folio);
1059 if (folio_mapping(folio) == mapping)
3e9f45bd 1060 mapping_set_error(mapping, error);
e0cd5e7f 1061 folio_unlock(folio);
1da177e4
LT
1062}
1063
1b4e3f26
MG
1064static bool skip_throttle_noprogress(pg_data_t *pgdat)
1065{
1066 int reclaimable = 0, write_pending = 0;
1067 int i;
1068
1069 /*
1070 * If kswapd is disabled, reschedule if necessary but do not
1071 * throttle as the system is likely near OOM.
1072 */
1073 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1074 return true;
1075
1076 /*
1077 * If there are a lot of dirty/writeback pages then do not
1078 * throttle as throttling will occur when the pages cycle
1079 * towards the end of the LRU if still under writeback.
1080 */
1081 for (i = 0; i < MAX_NR_ZONES; i++) {
1082 struct zone *zone = pgdat->node_zones + i;
1083
36c26128 1084 if (!managed_zone(zone))
1b4e3f26
MG
1085 continue;
1086
1087 reclaimable += zone_reclaimable_pages(zone);
1088 write_pending += zone_page_state_snapshot(zone,
1089 NR_ZONE_WRITE_PENDING);
1090 }
1091 if (2 * write_pending <= reclaimable)
1092 return true;
1093
1094 return false;
1095}
1096
c3f4a9a2 1097void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
8cd7c588
MG
1098{
1099 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
c3f4a9a2 1100 long timeout, ret;
8cd7c588
MG
1101 DEFINE_WAIT(wait);
1102
1103 /*
1104 * Do not throttle IO workers, kthreads other than kswapd or
1105 * workqueues. They may be required for reclaim to make
1106 * forward progress (e.g. journalling workqueues or kthreads).
1107 */
1108 if (!current_is_kswapd() &&
b485c6f1
MG
1109 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1110 cond_resched();
8cd7c588 1111 return;
b485c6f1 1112 }
8cd7c588 1113
c3f4a9a2
MG
1114 /*
1115 * These figures are pulled out of thin air.
1116 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1117 * parallel reclaimers which is a short-lived event so the timeout is
1118 * short. Failing to make progress or waiting on writeback are
1119 * potentially long-lived events so use a longer timeout. This is shaky
1120 * logic as a failure to make progress could be due to anything from
1121 * writeback to a slow device to excessive references pages at the tail
1122 * of the inactive LRU.
1123 */
1124 switch(reason) {
1125 case VMSCAN_THROTTLE_WRITEBACK:
1126 timeout = HZ/10;
1127
1128 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1129 WRITE_ONCE(pgdat->nr_reclaim_start,
1130 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1131 }
1132
1133 break;
1b4e3f26
MG
1134 case VMSCAN_THROTTLE_CONGESTED:
1135 fallthrough;
c3f4a9a2 1136 case VMSCAN_THROTTLE_NOPROGRESS:
1b4e3f26
MG
1137 if (skip_throttle_noprogress(pgdat)) {
1138 cond_resched();
1139 return;
1140 }
1141
1142 timeout = 1;
1143
c3f4a9a2
MG
1144 break;
1145 case VMSCAN_THROTTLE_ISOLATED:
1146 timeout = HZ/50;
1147 break;
1148 default:
1149 WARN_ON_ONCE(1);
1150 timeout = HZ;
1151 break;
8cd7c588
MG
1152 }
1153
1154 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1155 ret = schedule_timeout(timeout);
1156 finish_wait(wqh, &wait);
d818fca1 1157
c3f4a9a2 1158 if (reason == VMSCAN_THROTTLE_WRITEBACK)
d818fca1 1159 atomic_dec(&pgdat->nr_writeback_throttled);
8cd7c588
MG
1160
1161 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1162 jiffies_to_usecs(timeout - ret),
1163 reason);
1164}
1165
1166/*
1167 * Account for pages written if tasks are throttled waiting on dirty
1168 * pages to clean. If enough pages have been cleaned since throttling
1169 * started then wakeup the throttled tasks.
1170 */
512b7931 1171void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
8cd7c588
MG
1172 int nr_throttled)
1173{
1174 unsigned long nr_written;
1175
512b7931 1176 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
8cd7c588
MG
1177
1178 /*
1179 * This is an inaccurate read as the per-cpu deltas may not
1180 * be synchronised. However, given that the system is
1181 * writeback throttled, it is not worth taking the penalty
1182 * of getting an accurate count. At worst, the throttle
1183 * timeout guarantees forward progress.
1184 */
1185 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1186 READ_ONCE(pgdat->nr_reclaim_start);
1187
1188 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1189 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1190}
1191
04e62a29
CL
1192/* possible outcome of pageout() */
1193typedef enum {
1194 /* failed to write page out, page is locked */
1195 PAGE_KEEP,
1196 /* move page to the active list, page is locked */
1197 PAGE_ACTIVATE,
1198 /* page has been sent to the disk successfully, page is unlocked */
1199 PAGE_SUCCESS,
1200 /* page is clean and locked */
1201 PAGE_CLEAN,
1202} pageout_t;
1203
1da177e4 1204/*
1742f19f
AM
1205 * pageout is called by shrink_page_list() for each dirty page.
1206 * Calls ->writepage().
1da177e4 1207 */
2282679f
N
1208static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1209 struct swap_iocb **plug)
1da177e4
LT
1210{
1211 /*
e0cd5e7f 1212 * If the folio is dirty, only perform writeback if that write
1da177e4
LT
1213 * will be non-blocking. To prevent this allocation from being
1214 * stalled by pagecache activity. But note that there may be
1215 * stalls if we need to run get_block(). We could test
1216 * PagePrivate for that.
1217 *
8174202b 1218 * If this process is currently in __generic_file_write_iter() against
e0cd5e7f 1219 * this folio's queue, we can perform writeback even if that
1da177e4
LT
1220 * will block.
1221 *
e0cd5e7f 1222 * If the folio is swapcache, write it back even if that would
1da177e4
LT
1223 * block, for some throttling. This happens by accident, because
1224 * swap_backing_dev_info is bust: it doesn't reflect the
1225 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4 1226 */
e0cd5e7f 1227 if (!is_page_cache_freeable(folio))
1da177e4
LT
1228 return PAGE_KEEP;
1229 if (!mapping) {
1230 /*
e0cd5e7f
MWO
1231 * Some data journaling orphaned folios can have
1232 * folio->mapping == NULL while being dirty with clean buffers.
1da177e4 1233 */
e0cd5e7f 1234 if (folio_test_private(folio)) {
68189fef 1235 if (try_to_free_buffers(folio)) {
e0cd5e7f
MWO
1236 folio_clear_dirty(folio);
1237 pr_info("%s: orphaned folio\n", __func__);
1da177e4
LT
1238 return PAGE_CLEAN;
1239 }
1240 }
1241 return PAGE_KEEP;
1242 }
1243 if (mapping->a_ops->writepage == NULL)
1244 return PAGE_ACTIVATE;
1da177e4 1245
e0cd5e7f 1246 if (folio_clear_dirty_for_io(folio)) {
1da177e4
LT
1247 int res;
1248 struct writeback_control wbc = {
1249 .sync_mode = WB_SYNC_NONE,
1250 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1251 .range_start = 0,
1252 .range_end = LLONG_MAX,
1da177e4 1253 .for_reclaim = 1,
2282679f 1254 .swap_plug = plug,
1da177e4
LT
1255 };
1256
e0cd5e7f
MWO
1257 folio_set_reclaim(folio);
1258 res = mapping->a_ops->writepage(&folio->page, &wbc);
1da177e4 1259 if (res < 0)
e0cd5e7f 1260 handle_write_error(mapping, folio, res);
994fc28c 1261 if (res == AOP_WRITEPAGE_ACTIVATE) {
e0cd5e7f 1262 folio_clear_reclaim(folio);
1da177e4
LT
1263 return PAGE_ACTIVATE;
1264 }
c661b078 1265
e0cd5e7f 1266 if (!folio_test_writeback(folio)) {
1da177e4 1267 /* synchronous write or broken a_ops? */
e0cd5e7f 1268 folio_clear_reclaim(folio);
1da177e4 1269 }
e0cd5e7f
MWO
1270 trace_mm_vmscan_write_folio(folio);
1271 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1da177e4
LT
1272 return PAGE_SUCCESS;
1273 }
1274
1275 return PAGE_CLEAN;
1276}
1277
a649fd92 1278/*
e286781d
NP
1279 * Same as remove_mapping, but if the page is removed from the mapping, it
1280 * gets returned with a refcount of 0.
a649fd92 1281 */
be7c07d6 1282static int __remove_mapping(struct address_space *mapping, struct folio *folio,
b910718a 1283 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1284{
bd4c82c2 1285 int refcount;
aae466b0 1286 void *shadow = NULL;
c4843a75 1287
be7c07d6
MWO
1288 BUG_ON(!folio_test_locked(folio));
1289 BUG_ON(mapping != folio_mapping(folio));
49d2e9cc 1290
be7c07d6 1291 if (!folio_test_swapcache(folio))
51b8c1fe 1292 spin_lock(&mapping->host->i_lock);
30472509 1293 xa_lock_irq(&mapping->i_pages);
49d2e9cc 1294 /*
0fd0e6b0
NP
1295 * The non racy check for a busy page.
1296 *
1297 * Must be careful with the order of the tests. When someone has
1298 * a ref to the page, it may be possible that they dirty it then
1299 * drop the reference. So if PageDirty is tested before page_count
1300 * here, then the following race may occur:
1301 *
1302 * get_user_pages(&page);
1303 * [user mapping goes away]
1304 * write_to(page);
1305 * !PageDirty(page) [good]
1306 * SetPageDirty(page);
1307 * put_page(page);
1308 * !page_count(page) [good, discard it]
1309 *
1310 * [oops, our write_to data is lost]
1311 *
1312 * Reversing the order of the tests ensures such a situation cannot
1313 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 1314 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
1315 *
1316 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 1317 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1318 */
be7c07d6
MWO
1319 refcount = 1 + folio_nr_pages(folio);
1320 if (!folio_ref_freeze(folio, refcount))
49d2e9cc 1321 goto cannot_free;
1c4c3b99 1322 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
be7c07d6
MWO
1323 if (unlikely(folio_test_dirty(folio))) {
1324 folio_ref_unfreeze(folio, refcount);
49d2e9cc 1325 goto cannot_free;
e286781d 1326 }
49d2e9cc 1327
be7c07d6
MWO
1328 if (folio_test_swapcache(folio)) {
1329 swp_entry_t swap = folio_swap_entry(folio);
3ecb0087 1330 mem_cgroup_swapout(folio, swap);
aae466b0 1331 if (reclaimed && !mapping_exiting(mapping))
8927f647 1332 shadow = workingset_eviction(folio, target_memcg);
be7c07d6 1333 __delete_from_swap_cache(&folio->page, swap, shadow);
30472509 1334 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1335 put_swap_page(&folio->page, swap);
e286781d 1336 } else {
d2329aa0 1337 void (*free_folio)(struct folio *);
6072d13c 1338
d2329aa0 1339 free_folio = mapping->a_ops->free_folio;
a528910e
JW
1340 /*
1341 * Remember a shadow entry for reclaimed file cache in
1342 * order to detect refaults, thus thrashing, later on.
1343 *
1344 * But don't store shadows in an address space that is
238c3046 1345 * already exiting. This is not just an optimization,
a528910e
JW
1346 * inode reclaim needs to empty out the radix tree or
1347 * the nodes are lost. Don't plant shadows behind its
1348 * back.
f9fe48be
RZ
1349 *
1350 * We also don't store shadows for DAX mappings because the
1351 * only page cache pages found in these are zero pages
1352 * covering holes, and because we don't want to mix DAX
1353 * exceptional entries and shadow exceptional entries in the
b93b0163 1354 * same address_space.
a528910e 1355 */
be7c07d6 1356 if (reclaimed && folio_is_file_lru(folio) &&
f9fe48be 1357 !mapping_exiting(mapping) && !dax_mapping(mapping))
8927f647
MWO
1358 shadow = workingset_eviction(folio, target_memcg);
1359 __filemap_remove_folio(folio, shadow);
30472509 1360 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
1361 if (mapping_shrinkable(mapping))
1362 inode_add_lru(mapping->host);
1363 spin_unlock(&mapping->host->i_lock);
6072d13c 1364
d2329aa0
MWO
1365 if (free_folio)
1366 free_folio(folio);
49d2e9cc
CL
1367 }
1368
49d2e9cc
CL
1369 return 1;
1370
1371cannot_free:
30472509 1372 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1373 if (!folio_test_swapcache(folio))
51b8c1fe 1374 spin_unlock(&mapping->host->i_lock);
49d2e9cc
CL
1375 return 0;
1376}
1377
5100da38
MWO
1378/**
1379 * remove_mapping() - Attempt to remove a folio from its mapping.
1380 * @mapping: The address space.
1381 * @folio: The folio to remove.
1382 *
1383 * If the folio is dirty, under writeback or if someone else has a ref
1384 * on it, removal will fail.
1385 * Return: The number of pages removed from the mapping. 0 if the folio
1386 * could not be removed.
1387 * Context: The caller should have a single refcount on the folio and
1388 * hold its lock.
e286781d 1389 */
5100da38 1390long remove_mapping(struct address_space *mapping, struct folio *folio)
e286781d 1391{
be7c07d6 1392 if (__remove_mapping(mapping, folio, false, NULL)) {
e286781d 1393 /*
5100da38 1394 * Unfreezing the refcount with 1 effectively
e286781d
NP
1395 * drops the pagecache ref for us without requiring another
1396 * atomic operation.
1397 */
be7c07d6 1398 folio_ref_unfreeze(folio, 1);
5100da38 1399 return folio_nr_pages(folio);
e286781d
NP
1400 }
1401 return 0;
1402}
1403
894bc310 1404/**
ca6d60f3
MWO
1405 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1406 * @folio: Folio to be returned to an LRU list.
894bc310 1407 *
ca6d60f3
MWO
1408 * Add previously isolated @folio to appropriate LRU list.
1409 * The folio may still be unevictable for other reasons.
894bc310 1410 *
ca6d60f3 1411 * Context: lru_lock must not be held, interrupts must be enabled.
894bc310 1412 */
ca6d60f3 1413void folio_putback_lru(struct folio *folio)
894bc310 1414{
ca6d60f3
MWO
1415 folio_add_lru(folio);
1416 folio_put(folio); /* drop ref from isolate */
894bc310
LS
1417}
1418
dfc8d636
JW
1419enum page_references {
1420 PAGEREF_RECLAIM,
1421 PAGEREF_RECLAIM_CLEAN,
64574746 1422 PAGEREF_KEEP,
dfc8d636
JW
1423 PAGEREF_ACTIVATE,
1424};
1425
d92013d1 1426static enum page_references folio_check_references(struct folio *folio,
dfc8d636
JW
1427 struct scan_control *sc)
1428{
d92013d1 1429 int referenced_ptes, referenced_folio;
dfc8d636 1430 unsigned long vm_flags;
dfc8d636 1431
b3ac0413
MWO
1432 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1433 &vm_flags);
d92013d1 1434 referenced_folio = folio_test_clear_referenced(folio);
dfc8d636 1435
dfc8d636 1436 /*
d92013d1
MWO
1437 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1438 * Let the folio, now marked Mlocked, be moved to the unevictable list.
dfc8d636
JW
1439 */
1440 if (vm_flags & VM_LOCKED)
47d4f3ee 1441 return PAGEREF_ACTIVATE;
dfc8d636 1442
6d4675e6
MK
1443 /* rmap lock contention: rotate */
1444 if (referenced_ptes == -1)
1445 return PAGEREF_KEEP;
1446
64574746 1447 if (referenced_ptes) {
64574746 1448 /*
d92013d1 1449 * All mapped folios start out with page table
64574746 1450 * references from the instantiating fault, so we need
9030fb0b 1451 * to look twice if a mapped file/anon folio is used more
64574746
JW
1452 * than once.
1453 *
1454 * Mark it and spare it for another trip around the
1455 * inactive list. Another page table reference will
1456 * lead to its activation.
1457 *
d92013d1
MWO
1458 * Note: the mark is set for activated folios as well
1459 * so that recently deactivated but used folios are
64574746
JW
1460 * quickly recovered.
1461 */
d92013d1 1462 folio_set_referenced(folio);
64574746 1463
d92013d1 1464 if (referenced_folio || referenced_ptes > 1)
64574746
JW
1465 return PAGEREF_ACTIVATE;
1466
c909e993 1467 /*
d92013d1 1468 * Activate file-backed executable folios after first usage.
c909e993 1469 */
f19a27e3 1470 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
c909e993
KK
1471 return PAGEREF_ACTIVATE;
1472
64574746
JW
1473 return PAGEREF_KEEP;
1474 }
dfc8d636 1475
d92013d1 1476 /* Reclaim if clean, defer dirty folios to writeback */
f19a27e3 1477 if (referenced_folio && folio_is_file_lru(folio))
64574746
JW
1478 return PAGEREF_RECLAIM_CLEAN;
1479
1480 return PAGEREF_RECLAIM;
dfc8d636
JW
1481}
1482
e2be15f6 1483/* Check if a page is dirty or under writeback */
e20c41b1 1484static void folio_check_dirty_writeback(struct folio *folio,
e2be15f6
MG
1485 bool *dirty, bool *writeback)
1486{
b4597226
MG
1487 struct address_space *mapping;
1488
e2be15f6
MG
1489 /*
1490 * Anonymous pages are not handled by flushers and must be written
32a331a7
ML
1491 * from reclaim context. Do not stall reclaim based on them.
1492 * MADV_FREE anonymous pages are put into inactive file list too.
1493 * They could be mistakenly treated as file lru. So further anon
1494 * test is needed.
e2be15f6 1495 */
e20c41b1
MWO
1496 if (!folio_is_file_lru(folio) ||
1497 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
e2be15f6
MG
1498 *dirty = false;
1499 *writeback = false;
1500 return;
1501 }
1502
e20c41b1
MWO
1503 /* By default assume that the folio flags are accurate */
1504 *dirty = folio_test_dirty(folio);
1505 *writeback = folio_test_writeback(folio);
b4597226
MG
1506
1507 /* Verify dirty/writeback state if the filesystem supports it */
e20c41b1 1508 if (!folio_test_private(folio))
b4597226
MG
1509 return;
1510
e20c41b1 1511 mapping = folio_mapping(folio);
b4597226 1512 if (mapping && mapping->a_ops->is_dirty_writeback)
520f301c 1513 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
e2be15f6
MG
1514}
1515
26aa2d19
DH
1516static struct page *alloc_demote_page(struct page *page, unsigned long node)
1517{
1518 struct migration_target_control mtc = {
1519 /*
1520 * Allocate from 'node', or fail quickly and quietly.
1521 * When this happens, 'page' will likely just be discarded
1522 * instead of migrated.
1523 */
1524 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1525 __GFP_THISNODE | __GFP_NOWARN |
1526 __GFP_NOMEMALLOC | GFP_NOWAIT,
1527 .nid = node
1528 };
1529
1530 return alloc_migration_target(page, (unsigned long)&mtc);
1531}
1532
1533/*
1534 * Take pages on @demote_list and attempt to demote them to
1535 * another node. Pages which are not demoted are left on
1536 * @demote_pages.
1537 */
1538static unsigned int demote_page_list(struct list_head *demote_pages,
1539 struct pglist_data *pgdat)
1540{
1541 int target_nid = next_demotion_node(pgdat->node_id);
1542 unsigned int nr_succeeded;
26aa2d19
DH
1543
1544 if (list_empty(demote_pages))
1545 return 0;
1546
1547 if (target_nid == NUMA_NO_NODE)
1548 return 0;
1549
1550 /* Demotion ignores all cpuset and mempolicy settings */
cb75463c 1551 migrate_pages(demote_pages, alloc_demote_page, NULL,
26aa2d19
DH
1552 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1553 &nr_succeeded);
1554
668e4147
YS
1555 if (current_is_kswapd())
1556 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1557 else
1558 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1559
26aa2d19
DH
1560 return nr_succeeded;
1561}
1562
c28a0e96 1563static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
d791ea67
N
1564{
1565 if (gfp_mask & __GFP_FS)
1566 return true;
c28a0e96 1567 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
d791ea67
N
1568 return false;
1569 /*
1570 * We can "enter_fs" for swap-cache with only __GFP_IO
1571 * providing this isn't SWP_FS_OPS.
1572 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1573 * but that will never affect SWP_FS_OPS, so the data_race
1574 * is safe.
1575 */
c28a0e96 1576 return !data_race(page_swap_flags(&folio->page) & SWP_FS_OPS);
d791ea67
N
1577}
1578
1da177e4 1579/*
1742f19f 1580 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1581 */
730ec8c0
MS
1582static unsigned int shrink_page_list(struct list_head *page_list,
1583 struct pglist_data *pgdat,
1584 struct scan_control *sc,
730ec8c0
MS
1585 struct reclaim_stat *stat,
1586 bool ignore_references)
1da177e4
LT
1587{
1588 LIST_HEAD(ret_pages);
abe4c3b5 1589 LIST_HEAD(free_pages);
26aa2d19 1590 LIST_HEAD(demote_pages);
730ec8c0
MS
1591 unsigned int nr_reclaimed = 0;
1592 unsigned int pgactivate = 0;
26aa2d19 1593 bool do_demote_pass;
2282679f 1594 struct swap_iocb *plug = NULL;
1da177e4 1595
060f005f 1596 memset(stat, 0, sizeof(*stat));
1da177e4 1597 cond_resched();
26aa2d19 1598 do_demote_pass = can_demote(pgdat->node_id, sc);
1da177e4 1599
26aa2d19 1600retry:
1da177e4
LT
1601 while (!list_empty(page_list)) {
1602 struct address_space *mapping;
be7c07d6 1603 struct folio *folio;
8940b34a 1604 enum page_references references = PAGEREF_RECLAIM;
d791ea67 1605 bool dirty, writeback;
98879b3b 1606 unsigned int nr_pages;
1da177e4
LT
1607
1608 cond_resched();
1609
be7c07d6
MWO
1610 folio = lru_to_folio(page_list);
1611 list_del(&folio->lru);
1da177e4 1612
c28a0e96 1613 if (!folio_trylock(folio))
1da177e4
LT
1614 goto keep;
1615
c28a0e96 1616 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1da177e4 1617
c28a0e96 1618 nr_pages = folio_nr_pages(folio);
98879b3b 1619
c28a0e96 1620 /* Account the number of base pages */
98879b3b 1621 sc->nr_scanned += nr_pages;
80e43426 1622
c28a0e96 1623 if (unlikely(!folio_evictable(folio)))
ad6b6704 1624 goto activate_locked;
894bc310 1625
1bee2c16 1626 if (!sc->may_unmap && folio_mapped(folio))
80e43426
CL
1627 goto keep_locked;
1628
e2be15f6 1629 /*
894befec 1630 * The number of dirty pages determines if a node is marked
8cd7c588 1631 * reclaim_congested. kswapd will stall and start writing
c28a0e96 1632 * folios if the tail of the LRU is all dirty unqueued folios.
e2be15f6 1633 */
e20c41b1 1634 folio_check_dirty_writeback(folio, &dirty, &writeback);
e2be15f6 1635 if (dirty || writeback)
c79b7b96 1636 stat->nr_dirty += nr_pages;
e2be15f6
MG
1637
1638 if (dirty && !writeback)
c79b7b96 1639 stat->nr_unqueued_dirty += nr_pages;
e2be15f6 1640
d04e8acd 1641 /*
c28a0e96
MWO
1642 * Treat this folio as congested if folios are cycling
1643 * through the LRU so quickly that the folios marked
1644 * for immediate reclaim are making it to the end of
1645 * the LRU a second time.
d04e8acd 1646 */
c28a0e96 1647 if (writeback && folio_test_reclaim(folio))
c79b7b96 1648 stat->nr_congested += nr_pages;
e2be15f6 1649
283aba9f 1650 /*
d33e4e14 1651 * If a folio at the tail of the LRU is under writeback, there
283aba9f
MG
1652 * are three cases to consider.
1653 *
c28a0e96
MWO
1654 * 1) If reclaim is encountering an excessive number
1655 * of folios under writeback and this folio has both
1656 * the writeback and reclaim flags set, then it
d33e4e14
MWO
1657 * indicates that folios are being queued for I/O but
1658 * are being recycled through the LRU before the I/O
1659 * can complete. Waiting on the folio itself risks an
1660 * indefinite stall if it is impossible to writeback
1661 * the folio due to I/O error or disconnected storage
1662 * so instead note that the LRU is being scanned too
1663 * quickly and the caller can stall after the folio
1664 * list has been processed.
283aba9f 1665 *
d33e4e14 1666 * 2) Global or new memcg reclaim encounters a folio that is
ecf5fc6e
MH
1667 * not marked for immediate reclaim, or the caller does not
1668 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
d33e4e14 1669 * not to fs). In this case mark the folio for immediate
97c9341f 1670 * reclaim and continue scanning.
283aba9f 1671 *
d791ea67 1672 * Require may_enter_fs() because we would wait on fs, which
d33e4e14
MWO
1673 * may not have submitted I/O yet. And the loop driver might
1674 * enter reclaim, and deadlock if it waits on a folio for
283aba9f
MG
1675 * which it is needed to do the write (loop masks off
1676 * __GFP_IO|__GFP_FS for this reason); but more thought
1677 * would probably show more reasons.
1678 *
d33e4e14
MWO
1679 * 3) Legacy memcg encounters a folio that already has the
1680 * reclaim flag set. memcg does not have any dirty folio
283aba9f 1681 * throttling so we could easily OOM just because too many
d33e4e14 1682 * folios are in writeback and there is nothing else to
283aba9f 1683 * reclaim. Wait for the writeback to complete.
c55e8d03 1684 *
d33e4e14
MWO
1685 * In cases 1) and 2) we activate the folios to get them out of
1686 * the way while we continue scanning for clean folios on the
c55e8d03
JW
1687 * inactive list and refilling from the active list. The
1688 * observation here is that waiting for disk writes is more
1689 * expensive than potentially causing reloads down the line.
1690 * Since they're marked for immediate reclaim, they won't put
1691 * memory pressure on the cache working set any longer than it
1692 * takes to write them to disk.
283aba9f 1693 */
d33e4e14 1694 if (folio_test_writeback(folio)) {
283aba9f
MG
1695 /* Case 1 above */
1696 if (current_is_kswapd() &&
d33e4e14 1697 folio_test_reclaim(folio) &&
599d0c95 1698 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
c79b7b96 1699 stat->nr_immediate += nr_pages;
c55e8d03 1700 goto activate_locked;
283aba9f
MG
1701
1702 /* Case 2 above */
b5ead35e 1703 } else if (writeback_throttling_sane(sc) ||
d33e4e14 1704 !folio_test_reclaim(folio) ||
c28a0e96 1705 !may_enter_fs(folio, sc->gfp_mask)) {
c3b94f44 1706 /*
d33e4e14 1707 * This is slightly racy -
c28a0e96
MWO
1708 * folio_end_writeback() might have
1709 * just cleared the reclaim flag, then
1710 * setting the reclaim flag here ends up
1711 * interpreted as the readahead flag - but
1712 * that does not matter enough to care.
1713 * What we do want is for this folio to
1714 * have the reclaim flag set next time
1715 * memcg reclaim reaches the tests above,
1716 * so it will then wait for writeback to
1717 * avoid OOM; and it's also appropriate
d33e4e14 1718 * in global reclaim.
c3b94f44 1719 */
d33e4e14 1720 folio_set_reclaim(folio);
c79b7b96 1721 stat->nr_writeback += nr_pages;
c55e8d03 1722 goto activate_locked;
283aba9f
MG
1723
1724 /* Case 3 above */
1725 } else {
d33e4e14
MWO
1726 folio_unlock(folio);
1727 folio_wait_writeback(folio);
1728 /* then go back and try same folio again */
1729 list_add_tail(&folio->lru, page_list);
7fadc820 1730 continue;
e62e384e 1731 }
c661b078 1732 }
1da177e4 1733
8940b34a 1734 if (!ignore_references)
d92013d1 1735 references = folio_check_references(folio, sc);
02c6de8d 1736
dfc8d636
JW
1737 switch (references) {
1738 case PAGEREF_ACTIVATE:
1da177e4 1739 goto activate_locked;
64574746 1740 case PAGEREF_KEEP:
98879b3b 1741 stat->nr_ref_keep += nr_pages;
64574746 1742 goto keep_locked;
dfc8d636
JW
1743 case PAGEREF_RECLAIM:
1744 case PAGEREF_RECLAIM_CLEAN:
c28a0e96 1745 ; /* try to reclaim the folio below */
dfc8d636 1746 }
1da177e4 1747
26aa2d19 1748 /*
c28a0e96 1749 * Before reclaiming the folio, try to relocate
26aa2d19
DH
1750 * its contents to another node.
1751 */
1752 if (do_demote_pass &&
c28a0e96
MWO
1753 (thp_migration_supported() || !folio_test_large(folio))) {
1754 list_add(&folio->lru, &demote_pages);
1755 folio_unlock(folio);
26aa2d19
DH
1756 continue;
1757 }
1758
1da177e4
LT
1759 /*
1760 * Anonymous process memory has backing store?
1761 * Try to allocate it some swap space here.
c28a0e96 1762 * Lazyfree folio could be freed directly
1da177e4 1763 */
c28a0e96
MWO
1764 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1765 if (!folio_test_swapcache(folio)) {
bd4c82c2
HY
1766 if (!(sc->gfp_mask & __GFP_IO))
1767 goto keep_locked;
d4b4084a 1768 if (folio_maybe_dma_pinned(folio))
feb889fb 1769 goto keep_locked;
c28a0e96
MWO
1770 if (folio_test_large(folio)) {
1771 /* cannot split folio, skip it */
d4b4084a 1772 if (!can_split_folio(folio, NULL))
bd4c82c2
HY
1773 goto activate_locked;
1774 /*
c28a0e96 1775 * Split folios without a PMD map right
bd4c82c2
HY
1776 * away. Chances are some or all of the
1777 * tail pages can be freed without IO.
1778 */
d4b4084a 1779 if (!folio_entire_mapcount(folio) &&
346cf613
MWO
1780 split_folio_to_list(folio,
1781 page_list))
bd4c82c2
HY
1782 goto activate_locked;
1783 }
09c02e56
MWO
1784 if (!add_to_swap(folio)) {
1785 if (!folio_test_large(folio))
98879b3b 1786 goto activate_locked_split;
bd4c82c2 1787 /* Fallback to swap normal pages */
346cf613
MWO
1788 if (split_folio_to_list(folio,
1789 page_list))
bd4c82c2 1790 goto activate_locked;
fe490cc0
HY
1791#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1792 count_vm_event(THP_SWPOUT_FALLBACK);
1793#endif
09c02e56 1794 if (!add_to_swap(folio))
98879b3b 1795 goto activate_locked_split;
bd4c82c2 1796 }
bd4c82c2 1797 }
c28a0e96
MWO
1798 } else if (folio_test_swapbacked(folio) &&
1799 folio_test_large(folio)) {
1800 /* Split shmem folio */
346cf613 1801 if (split_folio_to_list(folio, page_list))
7751b2da 1802 goto keep_locked;
e2be15f6 1803 }
1da177e4 1804
98879b3b 1805 /*
c28a0e96
MWO
1806 * If the folio was split above, the tail pages will make
1807 * their own pass through this function and be accounted
1808 * then.
98879b3b 1809 */
c28a0e96 1810 if ((nr_pages > 1) && !folio_test_large(folio)) {
98879b3b
YS
1811 sc->nr_scanned -= (nr_pages - 1);
1812 nr_pages = 1;
1813 }
1814
1da177e4 1815 /*
1bee2c16 1816 * The folio is mapped into the page tables of one or more
1da177e4
LT
1817 * processes. Try to unmap it here.
1818 */
1bee2c16 1819 if (folio_mapped(folio)) {
013339df 1820 enum ttu_flags flags = TTU_BATCH_FLUSH;
1bee2c16 1821 bool was_swapbacked = folio_test_swapbacked(folio);
bd4c82c2 1822
1bee2c16 1823 if (folio_test_pmd_mappable(folio))
bd4c82c2 1824 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1825
869f7ee6 1826 try_to_unmap(folio, flags);
1bee2c16 1827 if (folio_mapped(folio)) {
98879b3b 1828 stat->nr_unmap_fail += nr_pages;
1bee2c16
MWO
1829 if (!was_swapbacked &&
1830 folio_test_swapbacked(folio))
1f318a9b 1831 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1832 goto activate_locked;
1da177e4
LT
1833 }
1834 }
1835
5441d490 1836 mapping = folio_mapping(folio);
49bd2bf9 1837 if (folio_test_dirty(folio)) {
ee72886d 1838 /*
49bd2bf9 1839 * Only kswapd can writeback filesystem folios
4eda4823 1840 * to avoid risk of stack overflow. But avoid
49bd2bf9 1841 * injecting inefficient single-folio I/O into
4eda4823 1842 * flusher writeback as much as possible: only
49bd2bf9
MWO
1843 * write folios when we've encountered many
1844 * dirty folios, and when we've already scanned
1845 * the rest of the LRU for clean folios and see
1846 * the same dirty folios again (with the reclaim
1847 * flag set).
ee72886d 1848 */
49bd2bf9
MWO
1849 if (folio_is_file_lru(folio) &&
1850 (!current_is_kswapd() ||
1851 !folio_test_reclaim(folio) ||
4eda4823 1852 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1853 /*
1854 * Immediately reclaim when written back.
49bd2bf9
MWO
1855 * Similar in principle to deactivate_page()
1856 * except we already have the folio isolated
49ea7eb6
MG
1857 * and know it's dirty
1858 */
49bd2bf9
MWO
1859 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1860 nr_pages);
1861 folio_set_reclaim(folio);
49ea7eb6 1862
c55e8d03 1863 goto activate_locked;
ee72886d
MG
1864 }
1865
dfc8d636 1866 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1867 goto keep_locked;
c28a0e96 1868 if (!may_enter_fs(folio, sc->gfp_mask))
1da177e4 1869 goto keep_locked;
52a8363e 1870 if (!sc->may_writepage)
1da177e4
LT
1871 goto keep_locked;
1872
d950c947 1873 /*
49bd2bf9
MWO
1874 * Folio is dirty. Flush the TLB if a writable entry
1875 * potentially exists to avoid CPU writes after I/O
d950c947
MG
1876 * starts and then write it out here.
1877 */
1878 try_to_unmap_flush_dirty();
2282679f 1879 switch (pageout(folio, mapping, &plug)) {
1da177e4
LT
1880 case PAGE_KEEP:
1881 goto keep_locked;
1882 case PAGE_ACTIVATE:
1883 goto activate_locked;
1884 case PAGE_SUCCESS:
c79b7b96 1885 stat->nr_pageout += nr_pages;
96f8bf4f 1886
49bd2bf9 1887 if (folio_test_writeback(folio))
41ac1999 1888 goto keep;
49bd2bf9 1889 if (folio_test_dirty(folio))
1da177e4 1890 goto keep;
7d3579e8 1891
1da177e4
LT
1892 /*
1893 * A synchronous write - probably a ramdisk. Go
49bd2bf9 1894 * ahead and try to reclaim the folio.
1da177e4 1895 */
49bd2bf9 1896 if (!folio_trylock(folio))
1da177e4 1897 goto keep;
49bd2bf9
MWO
1898 if (folio_test_dirty(folio) ||
1899 folio_test_writeback(folio))
1da177e4 1900 goto keep_locked;
49bd2bf9 1901 mapping = folio_mapping(folio);
01359eb2 1902 fallthrough;
1da177e4 1903 case PAGE_CLEAN:
49bd2bf9 1904 ; /* try to free the folio below */
1da177e4
LT
1905 }
1906 }
1907
1908 /*
0a36111c
MWO
1909 * If the folio has buffers, try to free the buffer
1910 * mappings associated with this folio. If we succeed
1911 * we try to free the folio as well.
1da177e4 1912 *
0a36111c
MWO
1913 * We do this even if the folio is dirty.
1914 * filemap_release_folio() does not perform I/O, but it
1915 * is possible for a folio to have the dirty flag set,
1916 * but it is actually clean (all its buffers are clean).
1917 * This happens if the buffers were written out directly,
1918 * with submit_bh(). ext3 will do this, as well as
1919 * the blockdev mapping. filemap_release_folio() will
1920 * discover that cleanness and will drop the buffers
1921 * and mark the folio clean - it can be freed.
1da177e4 1922 *
0a36111c
MWO
1923 * Rarely, folios can have buffers and no ->mapping.
1924 * These are the folios which were not successfully
1925 * invalidated in truncate_cleanup_folio(). We try to
1926 * drop those buffers here and if that worked, and the
1927 * folio is no longer mapped into process address space
1928 * (refcount == 1) it can be freed. Otherwise, leave
1929 * the folio on the LRU so it is swappable.
1da177e4 1930 */
0a36111c
MWO
1931 if (folio_has_private(folio)) {
1932 if (!filemap_release_folio(folio, sc->gfp_mask))
1da177e4 1933 goto activate_locked;
0a36111c
MWO
1934 if (!mapping && folio_ref_count(folio) == 1) {
1935 folio_unlock(folio);
1936 if (folio_put_testzero(folio))
e286781d
NP
1937 goto free_it;
1938 else {
1939 /*
1940 * rare race with speculative reference.
1941 * the speculative reference will free
0a36111c 1942 * this folio shortly, so we may
e286781d
NP
1943 * increment nr_reclaimed here (and
1944 * leave it off the LRU).
1945 */
9aafcffc 1946 nr_reclaimed += nr_pages;
e286781d
NP
1947 continue;
1948 }
1949 }
1da177e4
LT
1950 }
1951
64daa5d8 1952 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
802a3a92 1953 /* follow __remove_mapping for reference */
64daa5d8 1954 if (!folio_ref_freeze(folio, 1))
802a3a92 1955 goto keep_locked;
d17be2d9 1956 /*
64daa5d8 1957 * The folio has only one reference left, which is
d17be2d9 1958 * from the isolation. After the caller puts the
64daa5d8
MWO
1959 * folio back on the lru and drops the reference, the
1960 * folio will be freed anyway. It doesn't matter
1961 * which lru it goes on. So we don't bother checking
1962 * the dirty flag here.
d17be2d9 1963 */
64daa5d8
MWO
1964 count_vm_events(PGLAZYFREED, nr_pages);
1965 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
be7c07d6 1966 } else if (!mapping || !__remove_mapping(mapping, folio, true,
b910718a 1967 sc->target_mem_cgroup))
802a3a92 1968 goto keep_locked;
9a1ea439 1969
c28a0e96 1970 folio_unlock(folio);
e286781d 1971free_it:
98879b3b 1972 /*
c28a0e96
MWO
1973 * Folio may get swapped out as a whole, need to account
1974 * all pages in it.
98879b3b
YS
1975 */
1976 nr_reclaimed += nr_pages;
abe4c3b5
MG
1977
1978 /*
1979 * Is there need to periodically free_page_list? It would
1980 * appear not as the counts should be low
1981 */
c28a0e96
MWO
1982 if (unlikely(folio_test_large(folio)))
1983 destroy_compound_page(&folio->page);
7ae88534 1984 else
c28a0e96 1985 list_add(&folio->lru, &free_pages);
1da177e4
LT
1986 continue;
1987
98879b3b
YS
1988activate_locked_split:
1989 /*
1990 * The tail pages that are failed to add into swap cache
1991 * reach here. Fixup nr_scanned and nr_pages.
1992 */
1993 if (nr_pages > 1) {
1994 sc->nr_scanned -= (nr_pages - 1);
1995 nr_pages = 1;
1996 }
1da177e4 1997activate_locked:
68a22394 1998 /* Not a candidate for swapping, so reclaim swap space. */
246b6480
MWO
1999 if (folio_test_swapcache(folio) &&
2000 (mem_cgroup_swap_full(&folio->page) ||
2001 folio_test_mlocked(folio)))
2002 try_to_free_swap(&folio->page);
2003 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2004 if (!folio_test_mlocked(folio)) {
2005 int type = folio_is_file_lru(folio);
2006 folio_set_active(folio);
98879b3b 2007 stat->nr_activate[type] += nr_pages;
246b6480 2008 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
ad6b6704 2009 }
1da177e4 2010keep_locked:
c28a0e96 2011 folio_unlock(folio);
1da177e4 2012keep:
c28a0e96
MWO
2013 list_add(&folio->lru, &ret_pages);
2014 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2015 folio_test_unevictable(folio), folio);
1da177e4 2016 }
26aa2d19
DH
2017 /* 'page_list' is always empty here */
2018
c28a0e96 2019 /* Migrate folios selected for demotion */
26aa2d19 2020 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
c28a0e96 2021 /* Folios that could not be demoted are still in @demote_pages */
26aa2d19 2022 if (!list_empty(&demote_pages)) {
c28a0e96 2023 /* Folios which weren't demoted go back on @page_list for retry: */
26aa2d19
DH
2024 list_splice_init(&demote_pages, page_list);
2025 do_demote_pass = false;
2026 goto retry;
2027 }
abe4c3b5 2028
98879b3b
YS
2029 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2030
747db954 2031 mem_cgroup_uncharge_list(&free_pages);
72b252ae 2032 try_to_unmap_flush();
2d4894b5 2033 free_unref_page_list(&free_pages);
abe4c3b5 2034
1da177e4 2035 list_splice(&ret_pages, page_list);
886cf190 2036 count_vm_events(PGACTIVATE, pgactivate);
060f005f 2037
2282679f
N
2038 if (plug)
2039 swap_write_unplug(plug);
05ff5137 2040 return nr_reclaimed;
1da177e4
LT
2041}
2042
730ec8c0 2043unsigned int reclaim_clean_pages_from_list(struct zone *zone,
b8cecb93 2044 struct list_head *folio_list)
02c6de8d
MK
2045{
2046 struct scan_control sc = {
2047 .gfp_mask = GFP_KERNEL,
02c6de8d
MK
2048 .may_unmap = 1,
2049 };
1f318a9b 2050 struct reclaim_stat stat;
730ec8c0 2051 unsigned int nr_reclaimed;
b8cecb93
MWO
2052 struct folio *folio, *next;
2053 LIST_HEAD(clean_folios);
2d2b8d2b 2054 unsigned int noreclaim_flag;
02c6de8d 2055
b8cecb93
MWO
2056 list_for_each_entry_safe(folio, next, folio_list, lru) {
2057 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2058 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2059 !folio_test_unevictable(folio)) {
2060 folio_clear_active(folio);
2061 list_move(&folio->lru, &clean_folios);
02c6de8d
MK
2062 }
2063 }
2064
2d2b8d2b
YZ
2065 /*
2066 * We should be safe here since we are only dealing with file pages and
2067 * we are not kswapd and therefore cannot write dirty file pages. But
2068 * call memalloc_noreclaim_save() anyway, just in case these conditions
2069 * change in the future.
2070 */
2071 noreclaim_flag = memalloc_noreclaim_save();
b8cecb93 2072 nr_reclaimed = shrink_page_list(&clean_folios, zone->zone_pgdat, &sc,
013339df 2073 &stat, true);
2d2b8d2b
YZ
2074 memalloc_noreclaim_restore(noreclaim_flag);
2075
b8cecb93 2076 list_splice(&clean_folios, folio_list);
2da9f630
NP
2077 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2078 -(long)nr_reclaimed);
1f318a9b
JK
2079 /*
2080 * Since lazyfree pages are isolated from file LRU from the beginning,
2081 * they will rotate back to anonymous LRU in the end if it failed to
2082 * discard so isolated count will be mismatched.
2083 * Compensate the isolated count for both LRU lists.
2084 */
2085 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2086 stat.nr_lazyfree_fail);
2087 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 2088 -(long)stat.nr_lazyfree_fail);
1f318a9b 2089 return nr_reclaimed;
02c6de8d
MK
2090}
2091
7ee36a14
MG
2092/*
2093 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 2094 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
2095 */
2096static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 2097 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 2098{
7ee36a14
MG
2099 int zid;
2100
7ee36a14
MG
2101 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2102 if (!nr_zone_taken[zid])
2103 continue;
2104
a892cb6b 2105 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
2106 }
2107
7ee36a14
MG
2108}
2109
f611fab7 2110/*
15b44736
HD
2111 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2112 *
2113 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
2114 * shrink the lists perform better by taking out a batch of pages
2115 * and working on them outside the LRU lock.
2116 *
2117 * For pagecache intensive workloads, this function is the hottest
2118 * spot in the kernel (apart from copy_*_user functions).
2119 *
15b44736 2120 * Lru_lock must be held before calling this function.
1da177e4 2121 *
791b48b6 2122 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 2123 * @lruvec: The LRU vector to pull pages from.
1da177e4 2124 * @dst: The temp list to put pages on to.
f626012d 2125 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 2126 * @sc: The scan_control struct for this reclaim session
3cb99451 2127 * @lru: LRU list id for isolating
1da177e4
LT
2128 *
2129 * returns how many pages were moved onto *@dst.
2130 */
69e05944 2131static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 2132 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 2133 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 2134 enum lru_list lru)
1da177e4 2135{
75b00af7 2136 struct list_head *src = &lruvec->lists[lru];
69e05944 2137 unsigned long nr_taken = 0;
599d0c95 2138 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 2139 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 2140 unsigned long skipped = 0;
791b48b6 2141 unsigned long scan, total_scan, nr_pages;
b2e18757 2142 LIST_HEAD(pages_skipped);
1da177e4 2143
98879b3b 2144 total_scan = 0;
791b48b6 2145 scan = 0;
98879b3b 2146 while (scan < nr_to_scan && !list_empty(src)) {
89f6c88a 2147 struct list_head *move_to = src;
5ad333eb 2148 struct page *page;
5ad333eb 2149
1da177e4
LT
2150 page = lru_to_page(src);
2151 prefetchw_prev_lru_page(page, src, flags);
2152
d8c6546b 2153 nr_pages = compound_nr(page);
98879b3b
YS
2154 total_scan += nr_pages;
2155
b2e18757 2156 if (page_zonenum(page) > sc->reclaim_idx) {
98879b3b 2157 nr_skipped[page_zonenum(page)] += nr_pages;
89f6c88a
HD
2158 move_to = &pages_skipped;
2159 goto move;
b2e18757
MG
2160 }
2161
791b48b6
MK
2162 /*
2163 * Do not count skipped pages because that makes the function
2164 * return with no isolated pages if the LRU mostly contains
2165 * ineligible pages. This causes the VM to not reclaim any
2166 * pages, triggering a premature OOM.
89f6c88a 2167 * Account all tail pages of THP.
791b48b6 2168 */
98879b3b 2169 scan += nr_pages;
89f6c88a
HD
2170
2171 if (!PageLRU(page))
2172 goto move;
2173 if (!sc->may_unmap && page_mapped(page))
2174 goto move;
2175
c2135f7c
AS
2176 /*
2177 * Be careful not to clear PageLRU until after we're
2178 * sure the page is not being freed elsewhere -- the
2179 * page release code relies on it.
2180 */
89f6c88a
HD
2181 if (unlikely(!get_page_unless_zero(page)))
2182 goto move;
5ad333eb 2183
c2135f7c
AS
2184 if (!TestClearPageLRU(page)) {
2185 /* Another thread is already isolating this page */
2186 put_page(page);
89f6c88a 2187 goto move;
5ad333eb 2188 }
c2135f7c
AS
2189
2190 nr_taken += nr_pages;
2191 nr_zone_taken[page_zonenum(page)] += nr_pages;
89f6c88a
HD
2192 move_to = dst;
2193move:
2194 list_move(&page->lru, move_to);
1da177e4
LT
2195 }
2196
b2e18757
MG
2197 /*
2198 * Splice any skipped pages to the start of the LRU list. Note that
2199 * this disrupts the LRU order when reclaiming for lower zones but
2200 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
b2cb6826
ML
2201 * scanning would soon rescan the same pages to skip and waste lots
2202 * of cpu cycles.
b2e18757 2203 */
7cc30fcf
MG
2204 if (!list_empty(&pages_skipped)) {
2205 int zid;
2206
3db65812 2207 list_splice(&pages_skipped, src);
7cc30fcf
MG
2208 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2209 if (!nr_skipped[zid])
2210 continue;
2211
2212 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 2213 skipped += nr_skipped[zid];
7cc30fcf
MG
2214 }
2215 }
791b48b6 2216 *nr_scanned = total_scan;
1265e3a6 2217 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
89f6c88a
HD
2218 total_scan, skipped, nr_taken,
2219 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
b4536f0c 2220 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
2221 return nr_taken;
2222}
2223
62695a84 2224/**
d1d8a3b4
MWO
2225 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2226 * @folio: Folio to isolate from its LRU list.
62695a84 2227 *
d1d8a3b4
MWO
2228 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2229 * corresponding to whatever LRU list the folio was on.
62695a84 2230 *
d1d8a3b4
MWO
2231 * The folio will have its LRU flag cleared. If it was found on the
2232 * active list, it will have the Active flag set. If it was found on the
2233 * unevictable list, it will have the Unevictable flag set. These flags
894bc310 2234 * may need to be cleared by the caller before letting the page go.
62695a84 2235 *
d1d8a3b4 2236 * Context:
a5d09bed 2237 *
62695a84 2238 * (1) Must be called with an elevated refcount on the page. This is a
d1d8a3b4 2239 * fundamental difference from isolate_lru_pages() (which is called
62695a84 2240 * without a stable reference).
d1d8a3b4
MWO
2241 * (2) The lru_lock must not be held.
2242 * (3) Interrupts must be enabled.
2243 *
2244 * Return: 0 if the folio was removed from an LRU list.
2245 * -EBUSY if the folio was not on an LRU list.
62695a84 2246 */
d1d8a3b4 2247int folio_isolate_lru(struct folio *folio)
62695a84
NP
2248{
2249 int ret = -EBUSY;
2250
d1d8a3b4 2251 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
0c917313 2252
d1d8a3b4 2253 if (folio_test_clear_lru(folio)) {
fa9add64 2254 struct lruvec *lruvec;
62695a84 2255
d1d8a3b4 2256 folio_get(folio);
e809c3fe 2257 lruvec = folio_lruvec_lock_irq(folio);
d1d8a3b4 2258 lruvec_del_folio(lruvec, folio);
6168d0da 2259 unlock_page_lruvec_irq(lruvec);
d25b5bd8 2260 ret = 0;
62695a84 2261 }
d25b5bd8 2262
62695a84
NP
2263 return ret;
2264}
2265
35cd7815 2266/*
d37dd5dc 2267 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 2268 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
2269 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2270 * the LRU list will go small and be scanned faster than necessary, leading to
2271 * unnecessary swapping, thrashing and OOM.
35cd7815 2272 */
599d0c95 2273static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
2274 struct scan_control *sc)
2275{
2276 unsigned long inactive, isolated;
d818fca1 2277 bool too_many;
35cd7815
RR
2278
2279 if (current_is_kswapd())
2280 return 0;
2281
b5ead35e 2282 if (!writeback_throttling_sane(sc))
35cd7815
RR
2283 return 0;
2284
2285 if (file) {
599d0c95
MG
2286 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2287 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 2288 } else {
599d0c95
MG
2289 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2290 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
2291 }
2292
3cf23841
FW
2293 /*
2294 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2295 * won't get blocked by normal direct-reclaimers, forming a circular
2296 * deadlock.
2297 */
d0164adc 2298 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2299 inactive >>= 3;
2300
d818fca1
MG
2301 too_many = isolated > inactive;
2302
2303 /* Wake up tasks throttled due to too_many_isolated. */
2304 if (!too_many)
2305 wake_throttle_isolated(pgdat);
2306
2307 return too_many;
35cd7815
RR
2308}
2309
a222f341 2310/*
15b44736
HD
2311 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2312 * On return, @list is reused as a list of pages to be freed by the caller.
a222f341
KT
2313 *
2314 * Returns the number of pages moved to the given lruvec.
2315 */
9ef56b78
MS
2316static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2317 struct list_head *list)
66635629 2318{
a222f341 2319 int nr_pages, nr_moved = 0;
3f79768f 2320 LIST_HEAD(pages_to_free);
a222f341 2321 struct page *page;
66635629 2322
a222f341
KT
2323 while (!list_empty(list)) {
2324 page = lru_to_page(list);
309381fe 2325 VM_BUG_ON_PAGE(PageLRU(page), page);
3d06afab 2326 list_del(&page->lru);
39b5f29a 2327 if (unlikely(!page_evictable(page))) {
6168d0da 2328 spin_unlock_irq(&lruvec->lru_lock);
66635629 2329 putback_lru_page(page);
6168d0da 2330 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2331 continue;
2332 }
fa9add64 2333
3d06afab
AS
2334 /*
2335 * The SetPageLRU needs to be kept here for list integrity.
2336 * Otherwise:
2337 * #0 move_pages_to_lru #1 release_pages
2338 * if !put_page_testzero
2339 * if (put_page_testzero())
2340 * !PageLRU //skip lru_lock
2341 * SetPageLRU()
2342 * list_add(&page->lru,)
2343 * list_add(&page->lru,)
2344 */
7a608572 2345 SetPageLRU(page);
a222f341 2346
3d06afab 2347 if (unlikely(put_page_testzero(page))) {
87560179 2348 __clear_page_lru_flags(page);
2bcf8879
HD
2349
2350 if (unlikely(PageCompound(page))) {
6168d0da 2351 spin_unlock_irq(&lruvec->lru_lock);
ff45fc3c 2352 destroy_compound_page(page);
6168d0da 2353 spin_lock_irq(&lruvec->lru_lock);
2bcf8879
HD
2354 } else
2355 list_add(&page->lru, &pages_to_free);
3d06afab
AS
2356
2357 continue;
66635629 2358 }
3d06afab 2359
afca9157
AS
2360 /*
2361 * All pages were isolated from the same lruvec (and isolation
2362 * inhibits memcg migration).
2363 */
0de340cb 2364 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
3a9c9788 2365 add_page_to_lru_list(page, lruvec);
3d06afab 2366 nr_pages = thp_nr_pages(page);
3d06afab
AS
2367 nr_moved += nr_pages;
2368 if (PageActive(page))
2369 workingset_age_nonresident(lruvec, nr_pages);
66635629 2370 }
66635629 2371
3f79768f
HD
2372 /*
2373 * To save our caller's stack, now use input list for pages to free.
2374 */
a222f341
KT
2375 list_splice(&pages_to_free, list);
2376
2377 return nr_moved;
66635629
MG
2378}
2379
399ba0b9 2380/*
5829f7db
ML
2381 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2382 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2383 * we should not throttle. Otherwise it is safe to do so.
399ba0b9
N
2384 */
2385static int current_may_throttle(void)
2386{
b9b1335e 2387 return !(current->flags & PF_LOCAL_THROTTLE);
399ba0b9
N
2388}
2389
1da177e4 2390/*
b2e18757 2391 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2392 * of reclaimed pages
1da177e4 2393 */
9ef56b78 2394static unsigned long
1a93be0e 2395shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 2396 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
2397{
2398 LIST_HEAD(page_list);
e247dbce 2399 unsigned long nr_scanned;
730ec8c0 2400 unsigned int nr_reclaimed = 0;
e247dbce 2401 unsigned long nr_taken;
060f005f 2402 struct reclaim_stat stat;
497a6c1b 2403 bool file = is_file_lru(lru);
f46b7912 2404 enum vm_event_item item;
599d0c95 2405 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2406 bool stalled = false;
78dc583d 2407
599d0c95 2408 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2409 if (stalled)
2410 return 0;
2411
2412 /* wait a bit for the reclaimer. */
db73ee0d 2413 stalled = true;
c3f4a9a2 2414 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
35cd7815
RR
2415
2416 /* We are about to die and free our memory. Return now. */
2417 if (fatal_signal_pending(current))
2418 return SWAP_CLUSTER_MAX;
2419 }
2420
1da177e4 2421 lru_add_drain();
f80c0673 2422
6168d0da 2423 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2424
5dc35979 2425 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 2426 &nr_scanned, sc, lru);
95d918fc 2427
599d0c95 2428 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2429 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2430 if (!cgroup_reclaim(sc))
f46b7912
KT
2431 __count_vm_events(item, nr_scanned);
2432 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2433 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2434
6168d0da 2435 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2436
d563c050 2437 if (nr_taken == 0)
66635629 2438 return 0;
5ad333eb 2439
013339df 2440 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 2441
6168d0da 2442 spin_lock_irq(&lruvec->lru_lock);
497a6c1b
JW
2443 move_pages_to_lru(lruvec, &page_list);
2444
2445 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2446 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2447 if (!cgroup_reclaim(sc))
f46b7912
KT
2448 __count_vm_events(item, nr_reclaimed);
2449 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2450 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2451 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2452
75cc3c91 2453 lru_note_cost(lruvec, file, stat.nr_pageout);
747db954 2454 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2455 free_unref_page_list(&page_list);
e11da5b4 2456
1c610d5f
AR
2457 /*
2458 * If dirty pages are scanned that are not queued for IO, it
2459 * implies that flushers are not doing their job. This can
2460 * happen when memory pressure pushes dirty pages to the end of
2461 * the LRU before the dirty limits are breached and the dirty
2462 * data has expired. It can also happen when the proportion of
2463 * dirty pages grows not through writes but through memory
2464 * pressure reclaiming all the clean cache. And in some cases,
2465 * the flushers simply cannot keep up with the allocation
2466 * rate. Nudge the flusher threads in case they are asleep.
2467 */
2468 if (stat.nr_unqueued_dirty == nr_taken)
2469 wakeup_flusher_threads(WB_REASON_VMSCAN);
2470
d108c772
AR
2471 sc->nr.dirty += stat.nr_dirty;
2472 sc->nr.congested += stat.nr_congested;
2473 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2474 sc->nr.writeback += stat.nr_writeback;
2475 sc->nr.immediate += stat.nr_immediate;
2476 sc->nr.taken += nr_taken;
2477 if (file)
2478 sc->nr.file_taken += nr_taken;
8e950282 2479
599d0c95 2480 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2481 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2482 return nr_reclaimed;
1da177e4
LT
2483}
2484
15b44736
HD
2485/*
2486 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2487 *
2488 * We move them the other way if the page is referenced by one or more
2489 * processes.
2490 *
2491 * If the pages are mostly unmapped, the processing is fast and it is
2492 * appropriate to hold lru_lock across the whole operation. But if
b3ac0413 2493 * the pages are mapped, the processing is slow (folio_referenced()), so
15b44736
HD
2494 * we should drop lru_lock around each page. It's impossible to balance
2495 * this, so instead we remove the pages from the LRU while processing them.
2496 * It is safe to rely on PG_active against the non-LRU pages in here because
2497 * nobody will play with that bit on a non-LRU page.
2498 *
2499 * The downside is that we have to touch page->_refcount against each page.
2500 * But we had to alter page->flags anyway.
2501 */
f626012d 2502static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2503 struct lruvec *lruvec,
f16015fb 2504 struct scan_control *sc,
9e3b2f8c 2505 enum lru_list lru)
1da177e4 2506{
44c241f1 2507 unsigned long nr_taken;
f626012d 2508 unsigned long nr_scanned;
6fe6b7e3 2509 unsigned long vm_flags;
1da177e4 2510 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2511 LIST_HEAD(l_active);
b69408e8 2512 LIST_HEAD(l_inactive);
9d998b4f
MH
2513 unsigned nr_deactivate, nr_activate;
2514 unsigned nr_rotated = 0;
3cb99451 2515 int file = is_file_lru(lru);
599d0c95 2516 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2517
2518 lru_add_drain();
f80c0673 2519
6168d0da 2520 spin_lock_irq(&lruvec->lru_lock);
925b7673 2521
5dc35979 2522 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2523 &nr_scanned, sc, lru);
89b5fae5 2524
599d0c95 2525 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2526
912c0572
SB
2527 if (!cgroup_reclaim(sc))
2528 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2529 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2530
6168d0da 2531 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2532
1da177e4 2533 while (!list_empty(&l_hold)) {
b3ac0413
MWO
2534 struct folio *folio;
2535 struct page *page;
2536
1da177e4 2537 cond_resched();
b3ac0413
MWO
2538 folio = lru_to_folio(&l_hold);
2539 list_del(&folio->lru);
2540 page = &folio->page;
7e9cd484 2541
39b5f29a 2542 if (unlikely(!page_evictable(page))) {
894bc310
LS
2543 putback_lru_page(page);
2544 continue;
2545 }
2546
cc715d99
MG
2547 if (unlikely(buffer_heads_over_limit)) {
2548 if (page_has_private(page) && trylock_page(page)) {
2549 if (page_has_private(page))
2550 try_to_release_page(page, 0);
2551 unlock_page(page);
2552 }
2553 }
2554
6d4675e6 2555 /* Referenced or rmap lock contention: rotate */
b3ac0413 2556 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
6d4675e6 2557 &vm_flags) != 0) {
8cab4754
WF
2558 /*
2559 * Identify referenced, file-backed active pages and
2560 * give them one more trip around the active list. So
2561 * that executable code get better chances to stay in
2562 * memory under moderate memory pressure. Anon pages
2563 * are not likely to be evicted by use-once streaming
2564 * IO, plus JVM can create lots of anon VM_EXEC pages,
2565 * so we ignore them here.
2566 */
9de4f22a 2567 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
6c357848 2568 nr_rotated += thp_nr_pages(page);
8cab4754
WF
2569 list_add(&page->lru, &l_active);
2570 continue;
2571 }
2572 }
7e9cd484 2573
5205e56e 2574 ClearPageActive(page); /* we are de-activating */
1899ad18 2575 SetPageWorkingset(page);
1da177e4
LT
2576 list_add(&page->lru, &l_inactive);
2577 }
2578
b555749a 2579 /*
8cab4754 2580 * Move pages back to the lru list.
b555749a 2581 */
6168d0da 2582 spin_lock_irq(&lruvec->lru_lock);
556adecb 2583
a222f341
KT
2584 nr_activate = move_pages_to_lru(lruvec, &l_active);
2585 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2586 /* Keep all free pages in l_active list */
2587 list_splice(&l_inactive, &l_active);
9851ac13
KT
2588
2589 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2590 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2591
599d0c95 2592 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2593 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2594
f372d89e
KT
2595 mem_cgroup_uncharge_list(&l_active);
2596 free_unref_page_list(&l_active);
9d998b4f
MH
2597 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2598 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2599}
2600
1fe47c0b
ML
2601static unsigned int reclaim_page_list(struct list_head *page_list,
2602 struct pglist_data *pgdat)
1a4e58cc 2603{
1a4e58cc 2604 struct reclaim_stat dummy_stat;
1fe47c0b
ML
2605 unsigned int nr_reclaimed;
2606 struct folio *folio;
1a4e58cc
MK
2607 struct scan_control sc = {
2608 .gfp_mask = GFP_KERNEL,
1a4e58cc
MK
2609 .may_writepage = 1,
2610 .may_unmap = 1,
2611 .may_swap = 1,
26aa2d19 2612 .no_demotion = 1,
1a4e58cc
MK
2613 };
2614
1fe47c0b
ML
2615 nr_reclaimed = shrink_page_list(page_list, pgdat, &sc, &dummy_stat, false);
2616 while (!list_empty(page_list)) {
2617 folio = lru_to_folio(page_list);
2618 list_del(&folio->lru);
2619 folio_putback_lru(folio);
2620 }
2621
2622 return nr_reclaimed;
2623}
2624
2625unsigned long reclaim_pages(struct list_head *page_list)
2626{
ed657e55 2627 int nid;
1fe47c0b
ML
2628 unsigned int nr_reclaimed = 0;
2629 LIST_HEAD(node_page_list);
2630 struct page *page;
2631 unsigned int noreclaim_flag;
2632
1ae65e27
WY
2633 if (list_empty(page_list))
2634 return nr_reclaimed;
2635
2d2b8d2b
YZ
2636 noreclaim_flag = memalloc_noreclaim_save();
2637
ed657e55 2638 nid = page_to_nid(lru_to_page(page_list));
1ae65e27 2639 do {
1a4e58cc 2640 page = lru_to_page(page_list);
1a4e58cc
MK
2641
2642 if (nid == page_to_nid(page)) {
2643 ClearPageActive(page);
2644 list_move(&page->lru, &node_page_list);
2645 continue;
2646 }
2647
1fe47c0b 2648 nr_reclaimed += reclaim_page_list(&node_page_list, NODE_DATA(nid));
ed657e55 2649 nid = page_to_nid(lru_to_page(page_list));
1ae65e27 2650 } while (!list_empty(page_list));
1a4e58cc 2651
1ae65e27 2652 nr_reclaimed += reclaim_page_list(&node_page_list, NODE_DATA(nid));
1a4e58cc 2653
2d2b8d2b
YZ
2654 memalloc_noreclaim_restore(noreclaim_flag);
2655
1a4e58cc
MK
2656 return nr_reclaimed;
2657}
2658
b91ac374
JW
2659static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2660 struct lruvec *lruvec, struct scan_control *sc)
2661{
2662 if (is_active_lru(lru)) {
2663 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2664 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2665 else
2666 sc->skipped_deactivate = 1;
2667 return 0;
2668 }
2669
2670 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2671}
2672
59dc76b0
RR
2673/*
2674 * The inactive anon list should be small enough that the VM never has
2675 * to do too much work.
14797e23 2676 *
59dc76b0
RR
2677 * The inactive file list should be small enough to leave most memory
2678 * to the established workingset on the scan-resistant active list,
2679 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2680 *
59dc76b0
RR
2681 * Both inactive lists should also be large enough that each inactive
2682 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2683 *
2a2e4885
JW
2684 * If that fails and refaulting is observed, the inactive list grows.
2685 *
59dc76b0 2686 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2687 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2688 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2689 *
59dc76b0
RR
2690 * total target max
2691 * memory ratio inactive
2692 * -------------------------------------
2693 * 10MB 1 5MB
2694 * 100MB 1 50MB
2695 * 1GB 3 250MB
2696 * 10GB 10 0.9GB
2697 * 100GB 31 3GB
2698 * 1TB 101 10GB
2699 * 10TB 320 32GB
56e49d21 2700 */
b91ac374 2701static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2702{
b91ac374 2703 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2704 unsigned long inactive, active;
2705 unsigned long inactive_ratio;
59dc76b0 2706 unsigned long gb;
e3790144 2707
b91ac374
JW
2708 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2709 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2710
b91ac374 2711 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2712 if (gb)
b91ac374
JW
2713 inactive_ratio = int_sqrt(10 * gb);
2714 else
2715 inactive_ratio = 1;
fd538803 2716
59dc76b0 2717 return inactive * inactive_ratio < active;
b39415b2
RR
2718}
2719
9a265114
JW
2720enum scan_balance {
2721 SCAN_EQUAL,
2722 SCAN_FRACT,
2723 SCAN_ANON,
2724 SCAN_FILE,
2725};
2726
4f98a2fe
RR
2727/*
2728 * Determine how aggressively the anon and file LRU lists should be
02e458d8 2729 * scanned.
4f98a2fe 2730 *
be7bd59d
WL
2731 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2732 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2733 */
afaf07a6
JW
2734static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2735 unsigned long *nr)
4f98a2fe 2736{
a2a36488 2737 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
afaf07a6 2738 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2739 unsigned long anon_cost, file_cost, total_cost;
33377678 2740 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2741 u64 fraction[ANON_AND_FILE];
9a265114 2742 u64 denominator = 0; /* gcc */
9a265114 2743 enum scan_balance scan_balance;
4f98a2fe 2744 unsigned long ap, fp;
4111304d 2745 enum lru_list lru;
76a33fc3
SL
2746
2747 /* If we have no swap space, do not bother scanning anon pages. */
a2a36488 2748 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
9a265114 2749 scan_balance = SCAN_FILE;
76a33fc3
SL
2750 goto out;
2751 }
4f98a2fe 2752
10316b31
JW
2753 /*
2754 * Global reclaim will swap to prevent OOM even with no
2755 * swappiness, but memcg users want to use this knob to
2756 * disable swapping for individual groups completely when
2757 * using the memory controller's swap limit feature would be
2758 * too expensive.
2759 */
b5ead35e 2760 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2761 scan_balance = SCAN_FILE;
10316b31
JW
2762 goto out;
2763 }
2764
2765 /*
2766 * Do not apply any pressure balancing cleverness when the
2767 * system is close to OOM, scan both anon and file equally
2768 * (unless the swappiness setting disagrees with swapping).
2769 */
02695175 2770 if (!sc->priority && swappiness) {
9a265114 2771 scan_balance = SCAN_EQUAL;
10316b31
JW
2772 goto out;
2773 }
2774
62376251 2775 /*
53138cea 2776 * If the system is almost out of file pages, force-scan anon.
62376251 2777 */
b91ac374 2778 if (sc->file_is_tiny) {
53138cea
JW
2779 scan_balance = SCAN_ANON;
2780 goto out;
62376251
JW
2781 }
2782
7c5bd705 2783 /*
b91ac374
JW
2784 * If there is enough inactive page cache, we do not reclaim
2785 * anything from the anonymous working right now.
7c5bd705 2786 */
b91ac374 2787 if (sc->cache_trim_mode) {
9a265114 2788 scan_balance = SCAN_FILE;
7c5bd705
JW
2789 goto out;
2790 }
2791
9a265114 2792 scan_balance = SCAN_FRACT;
58c37f6e 2793 /*
314b57fb
JW
2794 * Calculate the pressure balance between anon and file pages.
2795 *
2796 * The amount of pressure we put on each LRU is inversely
2797 * proportional to the cost of reclaiming each list, as
2798 * determined by the share of pages that are refaulting, times
2799 * the relative IO cost of bringing back a swapped out
2800 * anonymous page vs reloading a filesystem page (swappiness).
2801 *
d483a5dd
JW
2802 * Although we limit that influence to ensure no list gets
2803 * left behind completely: at least a third of the pressure is
2804 * applied, before swappiness.
2805 *
314b57fb 2806 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2807 */
d483a5dd
JW
2808 total_cost = sc->anon_cost + sc->file_cost;
2809 anon_cost = total_cost + sc->anon_cost;
2810 file_cost = total_cost + sc->file_cost;
2811 total_cost = anon_cost + file_cost;
58c37f6e 2812
d483a5dd
JW
2813 ap = swappiness * (total_cost + 1);
2814 ap /= anon_cost + 1;
4f98a2fe 2815
d483a5dd
JW
2816 fp = (200 - swappiness) * (total_cost + 1);
2817 fp /= file_cost + 1;
4f98a2fe 2818
76a33fc3
SL
2819 fraction[0] = ap;
2820 fraction[1] = fp;
a4fe1631 2821 denominator = ap + fp;
76a33fc3 2822out:
688035f7
JW
2823 for_each_evictable_lru(lru) {
2824 int file = is_file_lru(lru);
9783aa99 2825 unsigned long lruvec_size;
f56ce412 2826 unsigned long low, min;
688035f7 2827 unsigned long scan;
9783aa99
CD
2828
2829 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
f56ce412
JW
2830 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2831 &min, &low);
9783aa99 2832
f56ce412 2833 if (min || low) {
9783aa99
CD
2834 /*
2835 * Scale a cgroup's reclaim pressure by proportioning
2836 * its current usage to its memory.low or memory.min
2837 * setting.
2838 *
2839 * This is important, as otherwise scanning aggression
2840 * becomes extremely binary -- from nothing as we
2841 * approach the memory protection threshold, to totally
2842 * nominal as we exceed it. This results in requiring
2843 * setting extremely liberal protection thresholds. It
2844 * also means we simply get no protection at all if we
2845 * set it too low, which is not ideal.
1bc63fb1
CD
2846 *
2847 * If there is any protection in place, we reduce scan
2848 * pressure by how much of the total memory used is
2849 * within protection thresholds.
9783aa99 2850 *
9de7ca46
CD
2851 * There is one special case: in the first reclaim pass,
2852 * we skip over all groups that are within their low
2853 * protection. If that fails to reclaim enough pages to
2854 * satisfy the reclaim goal, we come back and override
2855 * the best-effort low protection. However, we still
2856 * ideally want to honor how well-behaved groups are in
2857 * that case instead of simply punishing them all
2858 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2859 * memory they are using, reducing the scan pressure
2860 * again by how much of the total memory used is under
2861 * hard protection.
9783aa99 2862 */
1bc63fb1 2863 unsigned long cgroup_size = mem_cgroup_size(memcg);
f56ce412
JW
2864 unsigned long protection;
2865
2866 /* memory.low scaling, make sure we retry before OOM */
2867 if (!sc->memcg_low_reclaim && low > min) {
2868 protection = low;
2869 sc->memcg_low_skipped = 1;
2870 } else {
2871 protection = min;
2872 }
1bc63fb1
CD
2873
2874 /* Avoid TOCTOU with earlier protection check */
2875 cgroup_size = max(cgroup_size, protection);
2876
2877 scan = lruvec_size - lruvec_size * protection /
32d4f4b7 2878 (cgroup_size + 1);
9783aa99
CD
2879
2880 /*
1bc63fb1 2881 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2882 * reclaim moving forwards, avoiding decrementing
9de7ca46 2883 * sc->priority further than desirable.
9783aa99 2884 */
1bc63fb1 2885 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2886 } else {
2887 scan = lruvec_size;
2888 }
2889
2890 scan >>= sc->priority;
6b4f7799 2891
688035f7
JW
2892 /*
2893 * If the cgroup's already been deleted, make sure to
2894 * scrape out the remaining cache.
2895 */
2896 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2897 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2898
688035f7
JW
2899 switch (scan_balance) {
2900 case SCAN_EQUAL:
2901 /* Scan lists relative to size */
2902 break;
2903 case SCAN_FRACT:
9a265114 2904 /*
688035f7
JW
2905 * Scan types proportional to swappiness and
2906 * their relative recent reclaim efficiency.
76073c64
GS
2907 * Make sure we don't miss the last page on
2908 * the offlined memory cgroups because of a
2909 * round-off error.
9a265114 2910 */
76073c64
GS
2911 scan = mem_cgroup_online(memcg) ?
2912 div64_u64(scan * fraction[file], denominator) :
2913 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2914 denominator);
688035f7
JW
2915 break;
2916 case SCAN_FILE:
2917 case SCAN_ANON:
2918 /* Scan one type exclusively */
e072bff6 2919 if ((scan_balance == SCAN_FILE) != file)
688035f7 2920 scan = 0;
688035f7
JW
2921 break;
2922 default:
2923 /* Look ma, no brain */
2924 BUG();
9a265114 2925 }
688035f7 2926
688035f7 2927 nr[lru] = scan;
76a33fc3 2928 }
6e08a369 2929}
4f98a2fe 2930
2f368a9f
DH
2931/*
2932 * Anonymous LRU management is a waste if there is
2933 * ultimately no way to reclaim the memory.
2934 */
2935static bool can_age_anon_pages(struct pglist_data *pgdat,
2936 struct scan_control *sc)
2937{
2938 /* Aging the anon LRU is valuable if swap is present: */
2939 if (total_swap_pages > 0)
2940 return true;
2941
2942 /* Also valuable if anon pages can be demoted: */
2943 return can_demote(pgdat->node_id, sc);
2944}
2945
afaf07a6 2946static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2947{
2948 unsigned long nr[NR_LRU_LISTS];
e82e0561 2949 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2950 unsigned long nr_to_scan;
2951 enum lru_list lru;
2952 unsigned long nr_reclaimed = 0;
2953 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2954 struct blk_plug plug;
1a501907 2955 bool scan_adjusted;
9b4f98cd 2956
afaf07a6 2957 get_scan_count(lruvec, sc, nr);
9b4f98cd 2958
e82e0561
MG
2959 /* Record the original scan target for proportional adjustments later */
2960 memcpy(targets, nr, sizeof(nr));
2961
1a501907
MG
2962 /*
2963 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2964 * event that can occur when there is little memory pressure e.g.
2965 * multiple streaming readers/writers. Hence, we do not abort scanning
2966 * when the requested number of pages are reclaimed when scanning at
2967 * DEF_PRIORITY on the assumption that the fact we are direct
2968 * reclaiming implies that kswapd is not keeping up and it is best to
2969 * do a batch of work at once. For memcg reclaim one check is made to
2970 * abort proportional reclaim if either the file or anon lru has already
2971 * dropped to zero at the first pass.
2972 */
b5ead35e 2973 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2974 sc->priority == DEF_PRIORITY);
2975
9b4f98cd
JW
2976 blk_start_plug(&plug);
2977 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2978 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2979 unsigned long nr_anon, nr_file, percentage;
2980 unsigned long nr_scanned;
2981
9b4f98cd
JW
2982 for_each_evictable_lru(lru) {
2983 if (nr[lru]) {
2984 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2985 nr[lru] -= nr_to_scan;
2986
2987 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2988 lruvec, sc);
9b4f98cd
JW
2989 }
2990 }
e82e0561 2991
bd041733
MH
2992 cond_resched();
2993
e82e0561
MG
2994 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2995 continue;
2996
e82e0561
MG
2997 /*
2998 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2999 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
3000 * proportionally what was requested by get_scan_count(). We
3001 * stop reclaiming one LRU and reduce the amount scanning
3002 * proportional to the original scan target.
3003 */
3004 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
3005 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
3006
1a501907
MG
3007 /*
3008 * It's just vindictive to attack the larger once the smaller
3009 * has gone to zero. And given the way we stop scanning the
3010 * smaller below, this makes sure that we only make one nudge
3011 * towards proportionality once we've got nr_to_reclaim.
3012 */
3013 if (!nr_file || !nr_anon)
3014 break;
3015
e82e0561
MG
3016 if (nr_file > nr_anon) {
3017 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
3018 targets[LRU_ACTIVE_ANON] + 1;
3019 lru = LRU_BASE;
3020 percentage = nr_anon * 100 / scan_target;
3021 } else {
3022 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
3023 targets[LRU_ACTIVE_FILE] + 1;
3024 lru = LRU_FILE;
3025 percentage = nr_file * 100 / scan_target;
3026 }
3027
3028 /* Stop scanning the smaller of the LRU */
3029 nr[lru] = 0;
3030 nr[lru + LRU_ACTIVE] = 0;
3031
3032 /*
3033 * Recalculate the other LRU scan count based on its original
3034 * scan target and the percentage scanning already complete
3035 */
3036 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
3037 nr_scanned = targets[lru] - nr[lru];
3038 nr[lru] = targets[lru] * (100 - percentage) / 100;
3039 nr[lru] -= min(nr[lru], nr_scanned);
3040
3041 lru += LRU_ACTIVE;
3042 nr_scanned = targets[lru] - nr[lru];
3043 nr[lru] = targets[lru] * (100 - percentage) / 100;
3044 nr[lru] -= min(nr[lru], nr_scanned);
3045
3046 scan_adjusted = true;
9b4f98cd
JW
3047 }
3048 blk_finish_plug(&plug);
3049 sc->nr_reclaimed += nr_reclaimed;
3050
3051 /*
3052 * Even if we did not try to evict anon pages at all, we want to
3053 * rebalance the anon lru active/inactive ratio.
3054 */
2f368a9f
DH
3055 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3056 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
3057 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3058 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
3059}
3060
23b9da55 3061/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 3062static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 3063{
d84da3f9 3064 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 3065 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 3066 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
3067 return true;
3068
3069 return false;
3070}
3071
3e7d3449 3072/*
23b9da55
MG
3073 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3074 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3075 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 3076 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 3077 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 3078 */
a9dd0a83 3079static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 3080 unsigned long nr_reclaimed,
3e7d3449
MG
3081 struct scan_control *sc)
3082{
3083 unsigned long pages_for_compaction;
3084 unsigned long inactive_lru_pages;
a9dd0a83 3085 int z;
3e7d3449
MG
3086
3087 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 3088 if (!in_reclaim_compaction(sc))
3e7d3449
MG
3089 return false;
3090
5ee04716
VB
3091 /*
3092 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3093 * number of pages that were scanned. This will return to the caller
3094 * with the risk reclaim/compaction and the resulting allocation attempt
3095 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3096 * allocations through requiring that the full LRU list has been scanned
3097 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3098 * scan, but that approximation was wrong, and there were corner cases
3099 * where always a non-zero amount of pages were scanned.
3100 */
3101 if (!nr_reclaimed)
3102 return false;
3e7d3449 3103
3e7d3449 3104 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
3105 for (z = 0; z <= sc->reclaim_idx; z++) {
3106 struct zone *zone = &pgdat->node_zones[z];
6aa303de 3107 if (!managed_zone(zone))
a9dd0a83
MG
3108 continue;
3109
3110 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 3111 case COMPACT_SUCCESS:
a9dd0a83
MG
3112 case COMPACT_CONTINUE:
3113 return false;
3114 default:
3115 /* check next zone */
3116 ;
3117 }
3e7d3449 3118 }
1c6c1597
HD
3119
3120 /*
3121 * If we have not reclaimed enough pages for compaction and the
3122 * inactive lists are large enough, continue reclaiming
3123 */
3124 pages_for_compaction = compact_gap(sc->order);
3125 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
a2a36488 3126 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
1c6c1597
HD
3127 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3128
5ee04716 3129 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
3130}
3131
0f6a5cff 3132static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 3133{
0f6a5cff 3134 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 3135 struct mem_cgroup *memcg;
1da177e4 3136
0f6a5cff 3137 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 3138 do {
afaf07a6 3139 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
3140 unsigned long reclaimed;
3141 unsigned long scanned;
5660048c 3142
e3336cab
XP
3143 /*
3144 * This loop can become CPU-bound when target memcgs
3145 * aren't eligible for reclaim - either because they
3146 * don't have any reclaimable pages, or because their
3147 * memory is explicitly protected. Avoid soft lockups.
3148 */
3149 cond_resched();
3150
45c7f7e1
CD
3151 mem_cgroup_calculate_protection(target_memcg, memcg);
3152
3153 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
3154 /*
3155 * Hard protection.
3156 * If there is no reclaimable memory, OOM.
3157 */
3158 continue;
45c7f7e1 3159 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
3160 /*
3161 * Soft protection.
3162 * Respect the protection only as long as
3163 * there is an unprotected supply
3164 * of reclaimable memory from other cgroups.
3165 */
3166 if (!sc->memcg_low_reclaim) {
3167 sc->memcg_low_skipped = 1;
bf8d5d52 3168 continue;
241994ed 3169 }
d2af3397 3170 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 3171 }
241994ed 3172
d2af3397
JW
3173 reclaimed = sc->nr_reclaimed;
3174 scanned = sc->nr_scanned;
afaf07a6
JW
3175
3176 shrink_lruvec(lruvec, sc);
70ddf637 3177
d2af3397
JW
3178 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3179 sc->priority);
6b4f7799 3180
d2af3397
JW
3181 /* Record the group's reclaim efficiency */
3182 vmpressure(sc->gfp_mask, memcg, false,
3183 sc->nr_scanned - scanned,
3184 sc->nr_reclaimed - reclaimed);
70ddf637 3185
0f6a5cff
JW
3186 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3187}
3188
6c9e0907 3189static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
3190{
3191 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 3192 unsigned long nr_reclaimed, nr_scanned;
1b05117d 3193 struct lruvec *target_lruvec;
0f6a5cff 3194 bool reclaimable = false;
b91ac374 3195 unsigned long file;
0f6a5cff 3196
1b05117d
JW
3197 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3198
0f6a5cff 3199again:
aa48e47e
SB
3200 /*
3201 * Flush the memory cgroup stats, so that we read accurate per-memcg
3202 * lruvec stats for heuristics.
3203 */
3204 mem_cgroup_flush_stats();
3205
0f6a5cff
JW
3206 memset(&sc->nr, 0, sizeof(sc->nr));
3207
3208 nr_reclaimed = sc->nr_reclaimed;
3209 nr_scanned = sc->nr_scanned;
3210
7cf111bc
JW
3211 /*
3212 * Determine the scan balance between anon and file LRUs.
3213 */
6168d0da 3214 spin_lock_irq(&target_lruvec->lru_lock);
7cf111bc
JW
3215 sc->anon_cost = target_lruvec->anon_cost;
3216 sc->file_cost = target_lruvec->file_cost;
6168d0da 3217 spin_unlock_irq(&target_lruvec->lru_lock);
7cf111bc 3218
b91ac374
JW
3219 /*
3220 * Target desirable inactive:active list ratios for the anon
3221 * and file LRU lists.
3222 */
3223 if (!sc->force_deactivate) {
3224 unsigned long refaults;
3225
170b04b7
JK
3226 refaults = lruvec_page_state(target_lruvec,
3227 WORKINGSET_ACTIVATE_ANON);
3228 if (refaults != target_lruvec->refaults[0] ||
3229 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
b91ac374
JW
3230 sc->may_deactivate |= DEACTIVATE_ANON;
3231 else
3232 sc->may_deactivate &= ~DEACTIVATE_ANON;
3233
3234 /*
3235 * When refaults are being observed, it means a new
3236 * workingset is being established. Deactivate to get
3237 * rid of any stale active pages quickly.
3238 */
3239 refaults = lruvec_page_state(target_lruvec,
170b04b7
JK
3240 WORKINGSET_ACTIVATE_FILE);
3241 if (refaults != target_lruvec->refaults[1] ||
b91ac374
JW
3242 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3243 sc->may_deactivate |= DEACTIVATE_FILE;
3244 else
3245 sc->may_deactivate &= ~DEACTIVATE_FILE;
3246 } else
3247 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3248
3249 /*
3250 * If we have plenty of inactive file pages that aren't
3251 * thrashing, try to reclaim those first before touching
3252 * anonymous pages.
3253 */
3254 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3255 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3256 sc->cache_trim_mode = 1;
3257 else
3258 sc->cache_trim_mode = 0;
3259
53138cea
JW
3260 /*
3261 * Prevent the reclaimer from falling into the cache trap: as
3262 * cache pages start out inactive, every cache fault will tip
3263 * the scan balance towards the file LRU. And as the file LRU
3264 * shrinks, so does the window for rotation from references.
3265 * This means we have a runaway feedback loop where a tiny
3266 * thrashing file LRU becomes infinitely more attractive than
3267 * anon pages. Try to detect this based on file LRU size.
3268 */
3269 if (!cgroup_reclaim(sc)) {
53138cea 3270 unsigned long total_high_wmark = 0;
b91ac374
JW
3271 unsigned long free, anon;
3272 int z;
53138cea
JW
3273
3274 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3275 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3276 node_page_state(pgdat, NR_INACTIVE_FILE);
3277
3278 for (z = 0; z < MAX_NR_ZONES; z++) {
3279 struct zone *zone = &pgdat->node_zones[z];
3280 if (!managed_zone(zone))
3281 continue;
3282
3283 total_high_wmark += high_wmark_pages(zone);
3284 }
3285
b91ac374
JW
3286 /*
3287 * Consider anon: if that's low too, this isn't a
3288 * runaway file reclaim problem, but rather just
3289 * extreme pressure. Reclaim as per usual then.
3290 */
3291 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3292
3293 sc->file_is_tiny =
3294 file + free <= total_high_wmark &&
3295 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3296 anon >> sc->priority;
53138cea
JW
3297 }
3298
0f6a5cff 3299 shrink_node_memcgs(pgdat, sc);
2344d7e4 3300
d2af3397
JW
3301 if (reclaim_state) {
3302 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3303 reclaim_state->reclaimed_slab = 0;
3304 }
d108c772 3305
d2af3397 3306 /* Record the subtree's reclaim efficiency */
1b05117d 3307 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
3308 sc->nr_scanned - nr_scanned,
3309 sc->nr_reclaimed - nr_reclaimed);
d108c772 3310
d2af3397
JW
3311 if (sc->nr_reclaimed - nr_reclaimed)
3312 reclaimable = true;
d108c772 3313
d2af3397
JW
3314 if (current_is_kswapd()) {
3315 /*
3316 * If reclaim is isolating dirty pages under writeback,
3317 * it implies that the long-lived page allocation rate
3318 * is exceeding the page laundering rate. Either the
3319 * global limits are not being effective at throttling
3320 * processes due to the page distribution throughout
3321 * zones or there is heavy usage of a slow backing
3322 * device. The only option is to throttle from reclaim
3323 * context which is not ideal as there is no guarantee
3324 * the dirtying process is throttled in the same way
3325 * balance_dirty_pages() manages.
3326 *
3327 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3328 * count the number of pages under pages flagged for
3329 * immediate reclaim and stall if any are encountered
3330 * in the nr_immediate check below.
3331 */
3332 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3333 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 3334
d2af3397
JW
3335 /* Allow kswapd to start writing pages during reclaim.*/
3336 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3337 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 3338
d108c772 3339 /*
1eba09c1 3340 * If kswapd scans pages marked for immediate
d2af3397
JW
3341 * reclaim and under writeback (nr_immediate), it
3342 * implies that pages are cycling through the LRU
8cd7c588
MG
3343 * faster than they are written so forcibly stall
3344 * until some pages complete writeback.
d108c772 3345 */
d2af3397 3346 if (sc->nr.immediate)
c3f4a9a2 3347 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
d2af3397
JW
3348 }
3349
3350 /*
8cd7c588
MG
3351 * Tag a node/memcg as congested if all the dirty pages were marked
3352 * for writeback and immediate reclaim (counted in nr.congested).
1b05117d 3353 *
d2af3397 3354 * Legacy memcg will stall in page writeback so avoid forcibly
8cd7c588 3355 * stalling in reclaim_throttle().
d2af3397 3356 */
1b05117d
JW
3357 if ((current_is_kswapd() ||
3358 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 3359 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 3360 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
3361
3362 /*
8cd7c588
MG
3363 * Stall direct reclaim for IO completions if the lruvec is
3364 * node is congested. Allow kswapd to continue until it
d2af3397
JW
3365 * starts encountering unqueued dirty pages or cycling through
3366 * the LRU too quickly.
3367 */
1b05117d
JW
3368 if (!current_is_kswapd() && current_may_throttle() &&
3369 !sc->hibernation_mode &&
3370 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
1b4e3f26 3371 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
d108c772 3372
d2af3397
JW
3373 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3374 sc))
3375 goto again;
2344d7e4 3376
c73322d0
JW
3377 /*
3378 * Kswapd gives up on balancing particular nodes after too
3379 * many failures to reclaim anything from them and goes to
3380 * sleep. On reclaim progress, reset the failure counter. A
3381 * successful direct reclaim run will revive a dormant kswapd.
3382 */
3383 if (reclaimable)
3384 pgdat->kswapd_failures = 0;
f16015fb
JW
3385}
3386
53853e2d 3387/*
fdd4c614
VB
3388 * Returns true if compaction should go ahead for a costly-order request, or
3389 * the allocation would already succeed without compaction. Return false if we
3390 * should reclaim first.
53853e2d 3391 */
4f588331 3392static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 3393{
31483b6a 3394 unsigned long watermark;
fdd4c614 3395 enum compact_result suitable;
fe4b1b24 3396
fdd4c614
VB
3397 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3398 if (suitable == COMPACT_SUCCESS)
3399 /* Allocation should succeed already. Don't reclaim. */
3400 return true;
3401 if (suitable == COMPACT_SKIPPED)
3402 /* Compaction cannot yet proceed. Do reclaim. */
3403 return false;
fe4b1b24 3404
53853e2d 3405 /*
fdd4c614
VB
3406 * Compaction is already possible, but it takes time to run and there
3407 * are potentially other callers using the pages just freed. So proceed
3408 * with reclaim to make a buffer of free pages available to give
3409 * compaction a reasonable chance of completing and allocating the page.
3410 * Note that we won't actually reclaim the whole buffer in one attempt
3411 * as the target watermark in should_continue_reclaim() is lower. But if
3412 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 3413 */
fdd4c614 3414 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 3415
fdd4c614 3416 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
3417}
3418
69392a40
MG
3419static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3420{
66ce520b
MG
3421 /*
3422 * If reclaim is making progress greater than 12% efficiency then
3423 * wake all the NOPROGRESS throttled tasks.
3424 */
3425 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
69392a40
MG
3426 wait_queue_head_t *wqh;
3427
3428 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3429 if (waitqueue_active(wqh))
3430 wake_up(wqh);
3431
3432 return;
3433 }
3434
3435 /*
1b4e3f26
MG
3436 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3437 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3438 * under writeback and marked for immediate reclaim at the tail of the
3439 * LRU.
69392a40 3440 */
1b4e3f26 3441 if (current_is_kswapd() || cgroup_reclaim(sc))
69392a40
MG
3442 return;
3443
3444 /* Throttle if making no progress at high prioities. */
1b4e3f26 3445 if (sc->priority == 1 && !sc->nr_reclaimed)
c3f4a9a2 3446 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
69392a40
MG
3447}
3448
1da177e4
LT
3449/*
3450 * This is the direct reclaim path, for page-allocating processes. We only
3451 * try to reclaim pages from zones which will satisfy the caller's allocation
3452 * request.
3453 *
1da177e4
LT
3454 * If a zone is deemed to be full of pinned pages then just give it a light
3455 * scan then give up on it.
3456 */
0a0337e0 3457static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 3458{
dd1a239f 3459 struct zoneref *z;
54a6eb5c 3460 struct zone *zone;
0608f43d
AM
3461 unsigned long nr_soft_reclaimed;
3462 unsigned long nr_soft_scanned;
619d0d76 3463 gfp_t orig_mask;
79dafcdc 3464 pg_data_t *last_pgdat = NULL;
1b4e3f26 3465 pg_data_t *first_pgdat = NULL;
1cfb419b 3466
cc715d99
MG
3467 /*
3468 * If the number of buffer_heads in the machine exceeds the maximum
3469 * allowed level, force direct reclaim to scan the highmem zone as
3470 * highmem pages could be pinning lowmem pages storing buffer_heads
3471 */
619d0d76 3472 orig_mask = sc->gfp_mask;
b2e18757 3473 if (buffer_heads_over_limit) {
cc715d99 3474 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 3475 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 3476 }
cc715d99 3477
d4debc66 3478 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 3479 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
3480 /*
3481 * Take care memory controller reclaiming has small influence
3482 * to global LRU.
3483 */
b5ead35e 3484 if (!cgroup_reclaim(sc)) {
344736f2
VD
3485 if (!cpuset_zone_allowed(zone,
3486 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 3487 continue;
65ec02cb 3488
0b06496a
JW
3489 /*
3490 * If we already have plenty of memory free for
3491 * compaction in this zone, don't free any more.
3492 * Even though compaction is invoked for any
3493 * non-zero order, only frequent costly order
3494 * reclamation is disruptive enough to become a
3495 * noticeable problem, like transparent huge
3496 * page allocations.
3497 */
3498 if (IS_ENABLED(CONFIG_COMPACTION) &&
3499 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 3500 compaction_ready(zone, sc)) {
0b06496a
JW
3501 sc->compaction_ready = true;
3502 continue;
e0887c19 3503 }
0b06496a 3504
79dafcdc
MG
3505 /*
3506 * Shrink each node in the zonelist once. If the
3507 * zonelist is ordered by zone (not the default) then a
3508 * node may be shrunk multiple times but in that case
3509 * the user prefers lower zones being preserved.
3510 */
3511 if (zone->zone_pgdat == last_pgdat)
3512 continue;
3513
0608f43d
AM
3514 /*
3515 * This steals pages from memory cgroups over softlimit
3516 * and returns the number of reclaimed pages and
3517 * scanned pages. This works for global memory pressure
3518 * and balancing, not for a memcg's limit.
3519 */
3520 nr_soft_scanned = 0;
ef8f2327 3521 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
3522 sc->order, sc->gfp_mask,
3523 &nr_soft_scanned);
3524 sc->nr_reclaimed += nr_soft_reclaimed;
3525 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 3526 /* need some check for avoid more shrink_zone() */
1cfb419b 3527 }
408d8544 3528
1b4e3f26
MG
3529 if (!first_pgdat)
3530 first_pgdat = zone->zone_pgdat;
3531
79dafcdc
MG
3532 /* See comment about same check for global reclaim above */
3533 if (zone->zone_pgdat == last_pgdat)
3534 continue;
3535 last_pgdat = zone->zone_pgdat;
970a39a3 3536 shrink_node(zone->zone_pgdat, sc);
1da177e4 3537 }
e0c23279 3538
80082938
MG
3539 if (first_pgdat)
3540 consider_reclaim_throttle(first_pgdat, sc);
1b4e3f26 3541
619d0d76
WY
3542 /*
3543 * Restore to original mask to avoid the impact on the caller if we
3544 * promoted it to __GFP_HIGHMEM.
3545 */
3546 sc->gfp_mask = orig_mask;
1da177e4 3547}
4f98a2fe 3548
b910718a 3549static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 3550{
b910718a
JW
3551 struct lruvec *target_lruvec;
3552 unsigned long refaults;
2a2e4885 3553
b910718a 3554 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7
JK
3555 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3556 target_lruvec->refaults[0] = refaults;
3557 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3558 target_lruvec->refaults[1] = refaults;
2a2e4885
JW
3559}
3560
1da177e4
LT
3561/*
3562 * This is the main entry point to direct page reclaim.
3563 *
3564 * If a full scan of the inactive list fails to free enough memory then we
3565 * are "out of memory" and something needs to be killed.
3566 *
3567 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3568 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3569 * caller can't do much about. We kick the writeback threads and take explicit
3570 * naps in the hope that some of these pages can be written. But if the
3571 * allocating task holds filesystem locks which prevent writeout this might not
3572 * work, and the allocation attempt will fail.
a41f24ea
NA
3573 *
3574 * returns: 0, if no pages reclaimed
3575 * else, the number of pages reclaimed
1da177e4 3576 */
dac1d27b 3577static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3578 struct scan_control *sc)
1da177e4 3579{
241994ed 3580 int initial_priority = sc->priority;
2a2e4885
JW
3581 pg_data_t *last_pgdat;
3582 struct zoneref *z;
3583 struct zone *zone;
241994ed 3584retry:
873b4771
KK
3585 delayacct_freepages_start();
3586
b5ead35e 3587 if (!cgroup_reclaim(sc))
7cc30fcf 3588 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3589
9e3b2f8c 3590 do {
70ddf637
AV
3591 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3592 sc->priority);
66e1707b 3593 sc->nr_scanned = 0;
0a0337e0 3594 shrink_zones(zonelist, sc);
c6a8a8c5 3595
bb21c7ce 3596 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3597 break;
3598
3599 if (sc->compaction_ready)
3600 break;
1da177e4 3601
0e50ce3b
MK
3602 /*
3603 * If we're getting trouble reclaiming, start doing
3604 * writepage even in laptop mode.
3605 */
3606 if (sc->priority < DEF_PRIORITY - 2)
3607 sc->may_writepage = 1;
0b06496a 3608 } while (--sc->priority >= 0);
bb21c7ce 3609
2a2e4885
JW
3610 last_pgdat = NULL;
3611 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3612 sc->nodemask) {
3613 if (zone->zone_pgdat == last_pgdat)
3614 continue;
3615 last_pgdat = zone->zone_pgdat;
1b05117d 3616
2a2e4885 3617 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3618
3619 if (cgroup_reclaim(sc)) {
3620 struct lruvec *lruvec;
3621
3622 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3623 zone->zone_pgdat);
3624 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3625 }
2a2e4885
JW
3626 }
3627
873b4771
KK
3628 delayacct_freepages_end();
3629
bb21c7ce
KM
3630 if (sc->nr_reclaimed)
3631 return sc->nr_reclaimed;
3632
0cee34fd 3633 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3634 if (sc->compaction_ready)
7335084d
MG
3635 return 1;
3636
b91ac374
JW
3637 /*
3638 * We make inactive:active ratio decisions based on the node's
3639 * composition of memory, but a restrictive reclaim_idx or a
3640 * memory.low cgroup setting can exempt large amounts of
3641 * memory from reclaim. Neither of which are very common, so
3642 * instead of doing costly eligibility calculations of the
3643 * entire cgroup subtree up front, we assume the estimates are
3644 * good, and retry with forcible deactivation if that fails.
3645 */
3646 if (sc->skipped_deactivate) {
3647 sc->priority = initial_priority;
3648 sc->force_deactivate = 1;
3649 sc->skipped_deactivate = 0;
3650 goto retry;
3651 }
3652
241994ed 3653 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3654 if (sc->memcg_low_skipped) {
241994ed 3655 sc->priority = initial_priority;
b91ac374 3656 sc->force_deactivate = 0;
d6622f63
YX
3657 sc->memcg_low_reclaim = 1;
3658 sc->memcg_low_skipped = 0;
241994ed
JW
3659 goto retry;
3660 }
3661
bb21c7ce 3662 return 0;
1da177e4
LT
3663}
3664
c73322d0 3665static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3666{
3667 struct zone *zone;
3668 unsigned long pfmemalloc_reserve = 0;
3669 unsigned long free_pages = 0;
3670 int i;
3671 bool wmark_ok;
3672
c73322d0
JW
3673 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3674 return true;
3675
5515061d
MG
3676 for (i = 0; i <= ZONE_NORMAL; i++) {
3677 zone = &pgdat->node_zones[i];
d450abd8
JW
3678 if (!managed_zone(zone))
3679 continue;
3680
3681 if (!zone_reclaimable_pages(zone))
675becce
MG
3682 continue;
3683
5515061d
MG
3684 pfmemalloc_reserve += min_wmark_pages(zone);
3685 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3686 }
3687
675becce
MG
3688 /* If there are no reserves (unexpected config) then do not throttle */
3689 if (!pfmemalloc_reserve)
3690 return true;
3691
5515061d
MG
3692 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3693
3694 /* kswapd must be awake if processes are being throttled */
3695 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3696 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3697 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3698
5515061d
MG
3699 wake_up_interruptible(&pgdat->kswapd_wait);
3700 }
3701
3702 return wmark_ok;
3703}
3704
3705/*
3706 * Throttle direct reclaimers if backing storage is backed by the network
3707 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3708 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3709 * when the low watermark is reached.
3710 *
3711 * Returns true if a fatal signal was delivered during throttling. If this
3712 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3713 */
50694c28 3714static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3715 nodemask_t *nodemask)
3716{
675becce 3717 struct zoneref *z;
5515061d 3718 struct zone *zone;
675becce 3719 pg_data_t *pgdat = NULL;
5515061d
MG
3720
3721 /*
3722 * Kernel threads should not be throttled as they may be indirectly
3723 * responsible for cleaning pages necessary for reclaim to make forward
3724 * progress. kjournald for example may enter direct reclaim while
3725 * committing a transaction where throttling it could forcing other
3726 * processes to block on log_wait_commit().
3727 */
3728 if (current->flags & PF_KTHREAD)
50694c28
MG
3729 goto out;
3730
3731 /*
3732 * If a fatal signal is pending, this process should not throttle.
3733 * It should return quickly so it can exit and free its memory
3734 */
3735 if (fatal_signal_pending(current))
3736 goto out;
5515061d 3737
675becce
MG
3738 /*
3739 * Check if the pfmemalloc reserves are ok by finding the first node
3740 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3741 * GFP_KERNEL will be required for allocating network buffers when
3742 * swapping over the network so ZONE_HIGHMEM is unusable.
3743 *
3744 * Throttling is based on the first usable node and throttled processes
3745 * wait on a queue until kswapd makes progress and wakes them. There
3746 * is an affinity then between processes waking up and where reclaim
3747 * progress has been made assuming the process wakes on the same node.
3748 * More importantly, processes running on remote nodes will not compete
3749 * for remote pfmemalloc reserves and processes on different nodes
3750 * should make reasonable progress.
3751 */
3752 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3753 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3754 if (zone_idx(zone) > ZONE_NORMAL)
3755 continue;
3756
3757 /* Throttle based on the first usable node */
3758 pgdat = zone->zone_pgdat;
c73322d0 3759 if (allow_direct_reclaim(pgdat))
675becce
MG
3760 goto out;
3761 break;
3762 }
3763
3764 /* If no zone was usable by the allocation flags then do not throttle */
3765 if (!pgdat)
50694c28 3766 goto out;
5515061d 3767
68243e76
MG
3768 /* Account for the throttling */
3769 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3770
5515061d
MG
3771 /*
3772 * If the caller cannot enter the filesystem, it's possible that it
3773 * is due to the caller holding an FS lock or performing a journal
3774 * transaction in the case of a filesystem like ext[3|4]. In this case,
3775 * it is not safe to block on pfmemalloc_wait as kswapd could be
3776 * blocked waiting on the same lock. Instead, throttle for up to a
3777 * second before continuing.
3778 */
2e786d9e 3779 if (!(gfp_mask & __GFP_FS))
5515061d 3780 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3781 allow_direct_reclaim(pgdat), HZ);
2e786d9e
ML
3782 else
3783 /* Throttle until kswapd wakes the process */
3784 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3785 allow_direct_reclaim(pgdat));
50694c28 3786
50694c28
MG
3787 if (fatal_signal_pending(current))
3788 return true;
3789
3790out:
3791 return false;
5515061d
MG
3792}
3793
dac1d27b 3794unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3795 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3796{
33906bc5 3797 unsigned long nr_reclaimed;
66e1707b 3798 struct scan_control sc = {
ee814fe2 3799 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3800 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3801 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3802 .order = order,
3803 .nodemask = nodemask,
3804 .priority = DEF_PRIORITY,
66e1707b 3805 .may_writepage = !laptop_mode,
a6dc60f8 3806 .may_unmap = 1,
2e2e4259 3807 .may_swap = 1,
66e1707b
BS
3808 };
3809
bb451fdf
GT
3810 /*
3811 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3812 * Confirm they are large enough for max values.
3813 */
3814 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3815 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3816 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3817
5515061d 3818 /*
50694c28
MG
3819 * Do not enter reclaim if fatal signal was delivered while throttled.
3820 * 1 is returned so that the page allocator does not OOM kill at this
3821 * point.
5515061d 3822 */
f2f43e56 3823 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3824 return 1;
3825
1732d2b0 3826 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3827 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3828
3115cd91 3829 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3830
3831 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3832 set_task_reclaim_state(current, NULL);
33906bc5
MG
3833
3834 return nr_reclaimed;
66e1707b
BS
3835}
3836
c255a458 3837#ifdef CONFIG_MEMCG
66e1707b 3838
d2e5fb92 3839/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3840unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3841 gfp_t gfp_mask, bool noswap,
ef8f2327 3842 pg_data_t *pgdat,
0ae5e89c 3843 unsigned long *nr_scanned)
4e416953 3844{
afaf07a6 3845 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3846 struct scan_control sc = {
b8f5c566 3847 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3848 .target_mem_cgroup = memcg,
4e416953
BS
3849 .may_writepage = !laptop_mode,
3850 .may_unmap = 1,
b2e18757 3851 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3852 .may_swap = !noswap,
4e416953 3853 };
0ae5e89c 3854
d2e5fb92
MH
3855 WARN_ON_ONCE(!current->reclaim_state);
3856
4e416953
BS
3857 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3858 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3859
9e3b2f8c 3860 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3861 sc.gfp_mask);
bdce6d9e 3862
4e416953
BS
3863 /*
3864 * NOTE: Although we can get the priority field, using it
3865 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3866 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3867 * will pick up pages from other mem cgroup's as well. We hack
3868 * the priority and make it zero.
3869 */
afaf07a6 3870 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3871
3872 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3873
0ae5e89c 3874 *nr_scanned = sc.nr_scanned;
0308f7cf 3875
4e416953
BS
3876 return sc.nr_reclaimed;
3877}
3878
72835c86 3879unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3880 unsigned long nr_pages,
a7885eb8 3881 gfp_t gfp_mask,
b70a2a21 3882 bool may_swap)
66e1707b 3883{
bdce6d9e 3884 unsigned long nr_reclaimed;
499118e9 3885 unsigned int noreclaim_flag;
66e1707b 3886 struct scan_control sc = {
b70a2a21 3887 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3888 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3889 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3890 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3891 .target_mem_cgroup = memcg,
3892 .priority = DEF_PRIORITY,
3893 .may_writepage = !laptop_mode,
3894 .may_unmap = 1,
b70a2a21 3895 .may_swap = may_swap,
a09ed5e0 3896 };
889976db 3897 /*
fa40d1ee
SB
3898 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3899 * equal pressure on all the nodes. This is based on the assumption that
3900 * the reclaim does not bail out early.
889976db 3901 */
fa40d1ee 3902 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3903
fa40d1ee 3904 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3905 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 3906 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3907
3115cd91 3908 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3909
499118e9 3910 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 3911 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3912 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3913
3914 return nr_reclaimed;
66e1707b
BS
3915}
3916#endif
3917
1d82de61 3918static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3919 struct scan_control *sc)
f16015fb 3920{
b95a2f2d 3921 struct mem_cgroup *memcg;
b91ac374 3922 struct lruvec *lruvec;
f16015fb 3923
2f368a9f 3924 if (!can_age_anon_pages(pgdat, sc))
b95a2f2d
JW
3925 return;
3926
b91ac374
JW
3927 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3928 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3929 return;
3930
b95a2f2d
JW
3931 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3932 do {
b91ac374
JW
3933 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3934 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3935 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3936 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3937 } while (memcg);
f16015fb
JW
3938}
3939
97a225e6 3940static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3941{
3942 int i;
3943 struct zone *zone;
3944
3945 /*
3946 * Check for watermark boosts top-down as the higher zones
3947 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 3948 * should not be checked at the same time as reclaim would
1c30844d
MG
3949 * start prematurely when there is no boosting and a lower
3950 * zone is balanced.
3951 */
97a225e6 3952 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3953 zone = pgdat->node_zones + i;
3954 if (!managed_zone(zone))
3955 continue;
3956
3957 if (zone->watermark_boost)
3958 return true;
3959 }
3960
3961 return false;
3962}
3963
e716f2eb
MG
3964/*
3965 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3966 * and highest_zoneidx
e716f2eb 3967 */
97a225e6 3968static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3969{
e716f2eb
MG
3970 int i;
3971 unsigned long mark = -1;
3972 struct zone *zone;
60cefed4 3973
1c30844d
MG
3974 /*
3975 * Check watermarks bottom-up as lower zones are more likely to
3976 * meet watermarks.
3977 */
97a225e6 3978 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3979 zone = pgdat->node_zones + i;
6256c6b4 3980
e716f2eb
MG
3981 if (!managed_zone(zone))
3982 continue;
3983
c574bbe9
HY
3984 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3985 mark = wmark_pages(zone, WMARK_PROMO);
3986 else
3987 mark = high_wmark_pages(zone);
97a225e6 3988 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3989 return true;
3990 }
3991
3992 /*
36c26128 3993 * If a node has no managed zone within highest_zoneidx, it does not
e716f2eb
MG
3994 * need balancing by definition. This can happen if a zone-restricted
3995 * allocation tries to wake a remote kswapd.
3996 */
3997 if (mark == -1)
3998 return true;
3999
4000 return false;
60cefed4
JW
4001}
4002
631b6e08
MG
4003/* Clear pgdat state for congested, dirty or under writeback. */
4004static void clear_pgdat_congested(pg_data_t *pgdat)
4005{
1b05117d
JW
4006 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
4007
4008 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
4009 clear_bit(PGDAT_DIRTY, &pgdat->flags);
4010 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
4011}
4012
5515061d
MG
4013/*
4014 * Prepare kswapd for sleeping. This verifies that there are no processes
4015 * waiting in throttle_direct_reclaim() and that watermarks have been met.
4016 *
4017 * Returns true if kswapd is ready to sleep
4018 */
97a225e6
JK
4019static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
4020 int highest_zoneidx)
f50de2d3 4021{
5515061d 4022 /*
9e5e3661 4023 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 4024 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
4025 * race between when kswapd checks the watermarks and a process gets
4026 * throttled. There is also a potential race if processes get
4027 * throttled, kswapd wakes, a large process exits thereby balancing the
4028 * zones, which causes kswapd to exit balance_pgdat() before reaching
4029 * the wake up checks. If kswapd is going to sleep, no process should
4030 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
4031 * the wake up is premature, processes will wake kswapd and get
4032 * throttled again. The difference from wake ups in balance_pgdat() is
4033 * that here we are under prepare_to_wait().
5515061d 4034 */
9e5e3661
VB
4035 if (waitqueue_active(&pgdat->pfmemalloc_wait))
4036 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 4037
c73322d0
JW
4038 /* Hopeless node, leave it to direct reclaim */
4039 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
4040 return true;
4041
97a225e6 4042 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
4043 clear_pgdat_congested(pgdat);
4044 return true;
1d82de61
MG
4045 }
4046
333b0a45 4047 return false;
f50de2d3
MG
4048}
4049
75485363 4050/*
1d82de61
MG
4051 * kswapd shrinks a node of pages that are at or below the highest usable
4052 * zone that is currently unbalanced.
b8e83b94
MG
4053 *
4054 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
4055 * reclaim or if the lack of progress was due to pages under writeback.
4056 * This is used to determine if the scanning priority needs to be raised.
75485363 4057 */
1d82de61 4058static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 4059 struct scan_control *sc)
75485363 4060{
1d82de61
MG
4061 struct zone *zone;
4062 int z;
75485363 4063
1d82de61
MG
4064 /* Reclaim a number of pages proportional to the number of zones */
4065 sc->nr_to_reclaim = 0;
970a39a3 4066 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 4067 zone = pgdat->node_zones + z;
6aa303de 4068 if (!managed_zone(zone))
1d82de61 4069 continue;
7c954f6d 4070
1d82de61
MG
4071 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4072 }
7c954f6d
MG
4073
4074 /*
1d82de61
MG
4075 * Historically care was taken to put equal pressure on all zones but
4076 * now pressure is applied based on node LRU order.
7c954f6d 4077 */
970a39a3 4078 shrink_node(pgdat, sc);
283aba9f 4079
7c954f6d 4080 /*
1d82de61
MG
4081 * Fragmentation may mean that the system cannot be rebalanced for
4082 * high-order allocations. If twice the allocation size has been
4083 * reclaimed then recheck watermarks only at order-0 to prevent
4084 * excessive reclaim. Assume that a process requested a high-order
4085 * can direct reclaim/compact.
7c954f6d 4086 */
9861a62c 4087 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 4088 sc->order = 0;
7c954f6d 4089
b8e83b94 4090 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
4091}
4092
c49c2c47
MG
4093/* Page allocator PCP high watermark is lowered if reclaim is active. */
4094static inline void
4095update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4096{
4097 int i;
4098 struct zone *zone;
4099
4100 for (i = 0; i <= highest_zoneidx; i++) {
4101 zone = pgdat->node_zones + i;
4102
4103 if (!managed_zone(zone))
4104 continue;
4105
4106 if (active)
4107 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4108 else
4109 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4110 }
4111}
4112
4113static inline void
4114set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4115{
4116 update_reclaim_active(pgdat, highest_zoneidx, true);
4117}
4118
4119static inline void
4120clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4121{
4122 update_reclaim_active(pgdat, highest_zoneidx, false);
4123}
4124
1da177e4 4125/*
1d82de61
MG
4126 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4127 * that are eligible for use by the caller until at least one zone is
4128 * balanced.
1da177e4 4129 *
1d82de61 4130 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
4131 *
4132 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 4133 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 4134 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
4135 * or lower is eligible for reclaim until at least one usable zone is
4136 * balanced.
1da177e4 4137 */
97a225e6 4138static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 4139{
1da177e4 4140 int i;
0608f43d
AM
4141 unsigned long nr_soft_reclaimed;
4142 unsigned long nr_soft_scanned;
eb414681 4143 unsigned long pflags;
1c30844d
MG
4144 unsigned long nr_boost_reclaim;
4145 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4146 bool boosted;
1d82de61 4147 struct zone *zone;
179e9639
AM
4148 struct scan_control sc = {
4149 .gfp_mask = GFP_KERNEL,
ee814fe2 4150 .order = order,
a6dc60f8 4151 .may_unmap = 1,
179e9639 4152 };
93781325 4153
1732d2b0 4154 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 4155 psi_memstall_enter(&pflags);
4f3eaf45 4156 __fs_reclaim_acquire(_THIS_IP_);
93781325 4157
f8891e5e 4158 count_vm_event(PAGEOUTRUN);
1da177e4 4159
1c30844d
MG
4160 /*
4161 * Account for the reclaim boost. Note that the zone boost is left in
4162 * place so that parallel allocations that are near the watermark will
4163 * stall or direct reclaim until kswapd is finished.
4164 */
4165 nr_boost_reclaim = 0;
97a225e6 4166 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4167 zone = pgdat->node_zones + i;
4168 if (!managed_zone(zone))
4169 continue;
4170
4171 nr_boost_reclaim += zone->watermark_boost;
4172 zone_boosts[i] = zone->watermark_boost;
4173 }
4174 boosted = nr_boost_reclaim;
4175
4176restart:
c49c2c47 4177 set_reclaim_active(pgdat, highest_zoneidx);
1c30844d 4178 sc.priority = DEF_PRIORITY;
9e3b2f8c 4179 do {
c73322d0 4180 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 4181 bool raise_priority = true;
1c30844d 4182 bool balanced;
93781325 4183 bool ret;
b8e83b94 4184
97a225e6 4185 sc.reclaim_idx = highest_zoneidx;
1da177e4 4186
86c79f6b 4187 /*
84c7a777
MG
4188 * If the number of buffer_heads exceeds the maximum allowed
4189 * then consider reclaiming from all zones. This has a dual
4190 * purpose -- on 64-bit systems it is expected that
4191 * buffer_heads are stripped during active rotation. On 32-bit
4192 * systems, highmem pages can pin lowmem memory and shrinking
4193 * buffers can relieve lowmem pressure. Reclaim may still not
4194 * go ahead if all eligible zones for the original allocation
4195 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
4196 */
4197 if (buffer_heads_over_limit) {
4198 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4199 zone = pgdat->node_zones + i;
6aa303de 4200 if (!managed_zone(zone))
86c79f6b 4201 continue;
cc715d99 4202
970a39a3 4203 sc.reclaim_idx = i;
e1dbeda6 4204 break;
1da177e4 4205 }
1da177e4 4206 }
dafcb73e 4207
86c79f6b 4208 /*
1c30844d
MG
4209 * If the pgdat is imbalanced then ignore boosting and preserve
4210 * the watermarks for a later time and restart. Note that the
4211 * zone watermarks will be still reset at the end of balancing
4212 * on the grounds that the normal reclaim should be enough to
4213 * re-evaluate if boosting is required when kswapd next wakes.
4214 */
97a225e6 4215 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
4216 if (!balanced && nr_boost_reclaim) {
4217 nr_boost_reclaim = 0;
4218 goto restart;
4219 }
4220
4221 /*
4222 * If boosting is not active then only reclaim if there are no
4223 * eligible zones. Note that sc.reclaim_idx is not used as
4224 * buffer_heads_over_limit may have adjusted it.
86c79f6b 4225 */
1c30844d 4226 if (!nr_boost_reclaim && balanced)
e716f2eb 4227 goto out;
e1dbeda6 4228
1c30844d
MG
4229 /* Limit the priority of boosting to avoid reclaim writeback */
4230 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4231 raise_priority = false;
4232
4233 /*
4234 * Do not writeback or swap pages for boosted reclaim. The
4235 * intent is to relieve pressure not issue sub-optimal IO
4236 * from reclaim context. If no pages are reclaimed, the
4237 * reclaim will be aborted.
4238 */
4239 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4240 sc.may_swap = !nr_boost_reclaim;
1c30844d 4241
1d82de61
MG
4242 /*
4243 * Do some background aging of the anon list, to give
4244 * pages a chance to be referenced before reclaiming. All
4245 * pages are rotated regardless of classzone as this is
4246 * about consistent aging.
4247 */
ef8f2327 4248 age_active_anon(pgdat, &sc);
1d82de61 4249
b7ea3c41
MG
4250 /*
4251 * If we're getting trouble reclaiming, start doing writepage
4252 * even in laptop mode.
4253 */
047d72c3 4254 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
4255 sc.may_writepage = 1;
4256
1d82de61
MG
4257 /* Call soft limit reclaim before calling shrink_node. */
4258 sc.nr_scanned = 0;
4259 nr_soft_scanned = 0;
ef8f2327 4260 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
4261 sc.gfp_mask, &nr_soft_scanned);
4262 sc.nr_reclaimed += nr_soft_reclaimed;
4263
1da177e4 4264 /*
1d82de61
MG
4265 * There should be no need to raise the scanning priority if
4266 * enough pages are already being scanned that that high
4267 * watermark would be met at 100% efficiency.
1da177e4 4268 */
970a39a3 4269 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 4270 raise_priority = false;
5515061d
MG
4271
4272 /*
4273 * If the low watermark is met there is no need for processes
4274 * to be throttled on pfmemalloc_wait as they should not be
4275 * able to safely make forward progress. Wake them
4276 */
4277 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 4278 allow_direct_reclaim(pgdat))
cfc51155 4279 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 4280
b8e83b94 4281 /* Check if kswapd should be suspending */
4f3eaf45 4282 __fs_reclaim_release(_THIS_IP_);
93781325 4283 ret = try_to_freeze();
4f3eaf45 4284 __fs_reclaim_acquire(_THIS_IP_);
93781325 4285 if (ret || kthread_should_stop())
b8e83b94 4286 break;
8357376d 4287
73ce02e9 4288 /*
b8e83b94
MG
4289 * Raise priority if scanning rate is too low or there was no
4290 * progress in reclaiming pages
73ce02e9 4291 */
c73322d0 4292 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
4293 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4294
4295 /*
4296 * If reclaim made no progress for a boost, stop reclaim as
4297 * IO cannot be queued and it could be an infinite loop in
4298 * extreme circumstances.
4299 */
4300 if (nr_boost_reclaim && !nr_reclaimed)
4301 break;
4302
c73322d0 4303 if (raise_priority || !nr_reclaimed)
b8e83b94 4304 sc.priority--;
1d82de61 4305 } while (sc.priority >= 1);
1da177e4 4306
c73322d0
JW
4307 if (!sc.nr_reclaimed)
4308 pgdat->kswapd_failures++;
4309
b8e83b94 4310out:
c49c2c47
MG
4311 clear_reclaim_active(pgdat, highest_zoneidx);
4312
1c30844d
MG
4313 /* If reclaim was boosted, account for the reclaim done in this pass */
4314 if (boosted) {
4315 unsigned long flags;
4316
97a225e6 4317 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4318 if (!zone_boosts[i])
4319 continue;
4320
4321 /* Increments are under the zone lock */
4322 zone = pgdat->node_zones + i;
4323 spin_lock_irqsave(&zone->lock, flags);
4324 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4325 spin_unlock_irqrestore(&zone->lock, flags);
4326 }
4327
4328 /*
4329 * As there is now likely space, wakeup kcompact to defragment
4330 * pageblocks.
4331 */
97a225e6 4332 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
4333 }
4334
2a2e4885 4335 snapshot_refaults(NULL, pgdat);
4f3eaf45 4336 __fs_reclaim_release(_THIS_IP_);
eb414681 4337 psi_memstall_leave(&pflags);
1732d2b0 4338 set_task_reclaim_state(current, NULL);
e5ca8071 4339
0abdee2b 4340 /*
1d82de61
MG
4341 * Return the order kswapd stopped reclaiming at as
4342 * prepare_kswapd_sleep() takes it into account. If another caller
4343 * entered the allocator slow path while kswapd was awake, order will
4344 * remain at the higher level.
0abdee2b 4345 */
1d82de61 4346 return sc.order;
1da177e4
LT
4347}
4348
e716f2eb 4349/*
97a225e6
JK
4350 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4351 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4352 * not a valid index then either kswapd runs for first time or kswapd couldn't
4353 * sleep after previous reclaim attempt (node is still unbalanced). In that
4354 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 4355 */
97a225e6
JK
4356static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4357 enum zone_type prev_highest_zoneidx)
e716f2eb 4358{
97a225e6 4359 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4360
97a225e6 4361 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
4362}
4363
38087d9b 4364static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 4365 unsigned int highest_zoneidx)
f0bc0a60
KM
4366{
4367 long remaining = 0;
4368 DEFINE_WAIT(wait);
4369
4370 if (freezing(current) || kthread_should_stop())
4371 return;
4372
4373 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4374
333b0a45
SG
4375 /*
4376 * Try to sleep for a short interval. Note that kcompactd will only be
4377 * woken if it is possible to sleep for a short interval. This is
4378 * deliberate on the assumption that if reclaim cannot keep an
4379 * eligible zone balanced that it's also unlikely that compaction will
4380 * succeed.
4381 */
97a225e6 4382 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
4383 /*
4384 * Compaction records what page blocks it recently failed to
4385 * isolate pages from and skips them in the future scanning.
4386 * When kswapd is going to sleep, it is reasonable to assume
4387 * that pages and compaction may succeed so reset the cache.
4388 */
4389 reset_isolation_suitable(pgdat);
4390
4391 /*
4392 * We have freed the memory, now we should compact it to make
4393 * allocation of the requested order possible.
4394 */
97a225e6 4395 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 4396
f0bc0a60 4397 remaining = schedule_timeout(HZ/10);
38087d9b
MG
4398
4399 /*
97a225e6 4400 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
4401 * order. The values will either be from a wakeup request or
4402 * the previous request that slept prematurely.
4403 */
4404 if (remaining) {
97a225e6
JK
4405 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4406 kswapd_highest_zoneidx(pgdat,
4407 highest_zoneidx));
5644e1fb
QC
4408
4409 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4410 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
4411 }
4412
f0bc0a60
KM
4413 finish_wait(&pgdat->kswapd_wait, &wait);
4414 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4415 }
4416
4417 /*
4418 * After a short sleep, check if it was a premature sleep. If not, then
4419 * go fully to sleep until explicitly woken up.
4420 */
d9f21d42 4421 if (!remaining &&
97a225e6 4422 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
4423 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4424
4425 /*
4426 * vmstat counters are not perfectly accurate and the estimated
4427 * value for counters such as NR_FREE_PAGES can deviate from the
4428 * true value by nr_online_cpus * threshold. To avoid the zone
4429 * watermarks being breached while under pressure, we reduce the
4430 * per-cpu vmstat threshold while kswapd is awake and restore
4431 * them before going back to sleep.
4432 */
4433 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
4434
4435 if (!kthread_should_stop())
4436 schedule();
4437
f0bc0a60
KM
4438 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4439 } else {
4440 if (remaining)
4441 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4442 else
4443 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4444 }
4445 finish_wait(&pgdat->kswapd_wait, &wait);
4446}
4447
1da177e4
LT
4448/*
4449 * The background pageout daemon, started as a kernel thread
4f98a2fe 4450 * from the init process.
1da177e4
LT
4451 *
4452 * This basically trickles out pages so that we have _some_
4453 * free memory available even if there is no other activity
4454 * that frees anything up. This is needed for things like routing
4455 * etc, where we otherwise might have all activity going on in
4456 * asynchronous contexts that cannot page things out.
4457 *
4458 * If there are applications that are active memory-allocators
4459 * (most normal use), this basically shouldn't matter.
4460 */
4461static int kswapd(void *p)
4462{
e716f2eb 4463 unsigned int alloc_order, reclaim_order;
97a225e6 4464 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
68d68ff6 4465 pg_data_t *pgdat = (pg_data_t *)p;
1da177e4 4466 struct task_struct *tsk = current;
a70f7302 4467 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 4468
174596a0 4469 if (!cpumask_empty(cpumask))
c5f59f08 4470 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
4471
4472 /*
4473 * Tell the memory management that we're a "memory allocator",
4474 * and that if we need more memory we should get access to it
4475 * regardless (see "__alloc_pages()"). "kswapd" should
4476 * never get caught in the normal page freeing logic.
4477 *
4478 * (Kswapd normally doesn't need memory anyway, but sometimes
4479 * you need a small amount of memory in order to be able to
4480 * page out something else, and this flag essentially protects
4481 * us from recursively trying to free more memory as we're
4482 * trying to free the first piece of memory in the first place).
4483 */
b698f0a1 4484 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
83144186 4485 set_freezable();
1da177e4 4486
5644e1fb 4487 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4488 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
8cd7c588 4489 atomic_set(&pgdat->nr_writeback_throttled, 0);
1da177e4 4490 for ( ; ; ) {
6f6313d4 4491 bool ret;
3e1d1d28 4492
5644e1fb 4493 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4494 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4495 highest_zoneidx);
e716f2eb 4496
38087d9b
MG
4497kswapd_try_sleep:
4498 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 4499 highest_zoneidx);
215ddd66 4500
97a225e6 4501 /* Read the new order and highest_zoneidx */
2b47a24c 4502 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4503 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4504 highest_zoneidx);
5644e1fb 4505 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4506 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4507
8fe23e05
DR
4508 ret = try_to_freeze();
4509 if (kthread_should_stop())
4510 break;
4511
4512 /*
4513 * We can speed up thawing tasks if we don't call balance_pgdat
4514 * after returning from the refrigerator
4515 */
38087d9b
MG
4516 if (ret)
4517 continue;
4518
4519 /*
4520 * Reclaim begins at the requested order but if a high-order
4521 * reclaim fails then kswapd falls back to reclaiming for
4522 * order-0. If that happens, kswapd will consider sleeping
4523 * for the order it finished reclaiming at (reclaim_order)
4524 * but kcompactd is woken to compact for the original
4525 * request (alloc_order).
4526 */
97a225e6 4527 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 4528 alloc_order);
97a225e6
JK
4529 reclaim_order = balance_pgdat(pgdat, alloc_order,
4530 highest_zoneidx);
38087d9b
MG
4531 if (reclaim_order < alloc_order)
4532 goto kswapd_try_sleep;
1da177e4 4533 }
b0a8cc58 4534
b698f0a1 4535 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
71abdc15 4536
1da177e4
LT
4537 return 0;
4538}
4539
4540/*
5ecd9d40
DR
4541 * A zone is low on free memory or too fragmented for high-order memory. If
4542 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4543 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4544 * has failed or is not needed, still wake up kcompactd if only compaction is
4545 * needed.
1da177e4 4546 */
5ecd9d40 4547void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 4548 enum zone_type highest_zoneidx)
1da177e4
LT
4549{
4550 pg_data_t *pgdat;
5644e1fb 4551 enum zone_type curr_idx;
1da177e4 4552
6aa303de 4553 if (!managed_zone(zone))
1da177e4
LT
4554 return;
4555
5ecd9d40 4556 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 4557 return;
5644e1fb 4558
88f5acf8 4559 pgdat = zone->zone_pgdat;
97a225e6 4560 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4561
97a225e6
JK
4562 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4563 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
4564
4565 if (READ_ONCE(pgdat->kswapd_order) < order)
4566 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 4567
8d0986e2 4568 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 4569 return;
e1a55637 4570
5ecd9d40
DR
4571 /* Hopeless node, leave it to direct reclaim if possible */
4572 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
4573 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4574 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
4575 /*
4576 * There may be plenty of free memory available, but it's too
4577 * fragmented for high-order allocations. Wake up kcompactd
4578 * and rely on compaction_suitable() to determine if it's
4579 * needed. If it fails, it will defer subsequent attempts to
4580 * ratelimit its work.
4581 */
4582 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 4583 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 4584 return;
5ecd9d40 4585 }
88f5acf8 4586
97a225e6 4587 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 4588 gfp_flags);
8d0986e2 4589 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
4590}
4591
c6f37f12 4592#ifdef CONFIG_HIBERNATION
1da177e4 4593/*
7b51755c 4594 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
4595 * freed pages.
4596 *
4597 * Rather than trying to age LRUs the aim is to preserve the overall
4598 * LRU order by reclaiming preferentially
4599 * inactive > active > active referenced > active mapped
1da177e4 4600 */
7b51755c 4601unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4602{
d6277db4 4603 struct scan_control sc = {
ee814fe2 4604 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4605 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4606 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4607 .priority = DEF_PRIORITY,
d6277db4 4608 .may_writepage = 1,
ee814fe2
JW
4609 .may_unmap = 1,
4610 .may_swap = 1,
7b51755c 4611 .hibernation_mode = 1,
1da177e4 4612 };
a09ed5e0 4613 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4614 unsigned long nr_reclaimed;
499118e9 4615 unsigned int noreclaim_flag;
1da177e4 4616
d92a8cfc 4617 fs_reclaim_acquire(sc.gfp_mask);
93781325 4618 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4619 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4620
3115cd91 4621 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4622
1732d2b0 4623 set_task_reclaim_state(current, NULL);
499118e9 4624 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4625 fs_reclaim_release(sc.gfp_mask);
d6277db4 4626
7b51755c 4627 return nr_reclaimed;
1da177e4 4628}
c6f37f12 4629#endif /* CONFIG_HIBERNATION */
1da177e4 4630
3218ae14
YG
4631/*
4632 * This kswapd start function will be called by init and node-hot-add.
3218ae14 4633 */
b87c517a 4634void kswapd_run(int nid)
3218ae14
YG
4635{
4636 pg_data_t *pgdat = NODE_DATA(nid);
3218ae14
YG
4637
4638 if (pgdat->kswapd)
b87c517a 4639 return;
3218ae14
YG
4640
4641 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4642 if (IS_ERR(pgdat->kswapd)) {
4643 /* failure at boot is fatal */
c6202adf 4644 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9 4645 pr_err("Failed to start kswapd on node %d\n", nid);
d72515b8 4646 pgdat->kswapd = NULL;
3218ae14 4647 }
3218ae14
YG
4648}
4649
8fe23e05 4650/*
d8adde17 4651 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4652 * hold mem_hotplug_begin/end().
8fe23e05
DR
4653 */
4654void kswapd_stop(int nid)
4655{
4656 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4657
d8adde17 4658 if (kswapd) {
8fe23e05 4659 kthread_stop(kswapd);
d8adde17
JL
4660 NODE_DATA(nid)->kswapd = NULL;
4661 }
8fe23e05
DR
4662}
4663
1da177e4
LT
4664static int __init kswapd_init(void)
4665{
6b700b5b 4666 int nid;
69e05944 4667
1da177e4 4668 swap_setup();
48fb2e24 4669 for_each_node_state(nid, N_MEMORY)
3218ae14 4670 kswapd_run(nid);
1da177e4
LT
4671 return 0;
4672}
4673
4674module_init(kswapd_init)
9eeff239
CL
4675
4676#ifdef CONFIG_NUMA
4677/*
a5f5f91d 4678 * Node reclaim mode
9eeff239 4679 *
a5f5f91d 4680 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4681 * the watermarks.
9eeff239 4682 */
a5f5f91d 4683int node_reclaim_mode __read_mostly;
9eeff239 4684
a92f7126 4685/*
a5f5f91d 4686 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4687 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4688 * a zone.
4689 */
a5f5f91d 4690#define NODE_RECLAIM_PRIORITY 4
a92f7126 4691
9614634f 4692/*
a5f5f91d 4693 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4694 * occur.
4695 */
4696int sysctl_min_unmapped_ratio = 1;
4697
0ff38490
CL
4698/*
4699 * If the number of slab pages in a zone grows beyond this percentage then
4700 * slab reclaim needs to occur.
4701 */
4702int sysctl_min_slab_ratio = 5;
4703
11fb9989 4704static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4705{
11fb9989
MG
4706 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4707 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4708 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4709
4710 /*
4711 * It's possible for there to be more file mapped pages than
4712 * accounted for by the pages on the file LRU lists because
4713 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4714 */
4715 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4716}
4717
4718/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4719static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4720{
d031a157
AM
4721 unsigned long nr_pagecache_reclaimable;
4722 unsigned long delta = 0;
90afa5de
MG
4723
4724 /*
95bbc0c7 4725 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4726 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4727 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4728 * a better estimate
4729 */
a5f5f91d
MG
4730 if (node_reclaim_mode & RECLAIM_UNMAP)
4731 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4732 else
a5f5f91d 4733 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4734
4735 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4736 if (!(node_reclaim_mode & RECLAIM_WRITE))
4737 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4738
4739 /* Watch for any possible underflows due to delta */
4740 if (unlikely(delta > nr_pagecache_reclaimable))
4741 delta = nr_pagecache_reclaimable;
4742
4743 return nr_pagecache_reclaimable - delta;
4744}
4745
9eeff239 4746/*
a5f5f91d 4747 * Try to free up some pages from this node through reclaim.
9eeff239 4748 */
a5f5f91d 4749static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4750{
7fb2d46d 4751 /* Minimum pages needed in order to stay on node */
69e05944 4752 const unsigned long nr_pages = 1 << order;
9eeff239 4753 struct task_struct *p = current;
499118e9 4754 unsigned int noreclaim_flag;
179e9639 4755 struct scan_control sc = {
62b726c1 4756 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4757 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4758 .order = order,
a5f5f91d
MG
4759 .priority = NODE_RECLAIM_PRIORITY,
4760 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4761 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4762 .may_swap = 1,
f2f43e56 4763 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4764 };
57f29762 4765 unsigned long pflags;
9eeff239 4766
132bb8cf
YS
4767 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4768 sc.gfp_mask);
4769
9eeff239 4770 cond_resched();
57f29762 4771 psi_memstall_enter(&pflags);
93781325 4772 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4773 /*
95bbc0c7 4774 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4775 */
499118e9 4776 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4777 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4778
d8ff6fde
ML
4779 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
4780 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
0ff38490 4781 /*
894befec 4782 * Free memory by calling shrink node with increasing
0ff38490
CL
4783 * priorities until we have enough memory freed.
4784 */
0ff38490 4785 do {
970a39a3 4786 shrink_node(pgdat, &sc);
9e3b2f8c 4787 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4788 }
c84db23c 4789
1732d2b0 4790 set_task_reclaim_state(p, NULL);
499118e9 4791 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4792 fs_reclaim_release(sc.gfp_mask);
57f29762 4793 psi_memstall_leave(&pflags);
132bb8cf
YS
4794
4795 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4796
a79311c1 4797 return sc.nr_reclaimed >= nr_pages;
9eeff239 4798}
179e9639 4799
a5f5f91d 4800int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4801{
d773ed6b 4802 int ret;
179e9639
AM
4803
4804 /*
a5f5f91d 4805 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4806 * slab pages if we are over the defined limits.
34aa1330 4807 *
9614634f
CL
4808 * A small portion of unmapped file backed pages is needed for
4809 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4810 * thrown out if the node is overallocated. So we do not reclaim
4811 * if less than a specified percentage of the node is used by
9614634f 4812 * unmapped file backed pages.
179e9639 4813 */
a5f5f91d 4814 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4815 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4816 pgdat->min_slab_pages)
a5f5f91d 4817 return NODE_RECLAIM_FULL;
179e9639
AM
4818
4819 /*
d773ed6b 4820 * Do not scan if the allocation should not be delayed.
179e9639 4821 */
d0164adc 4822 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4823 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4824
4825 /*
a5f5f91d 4826 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4827 * have associated processors. This will favor the local processor
4828 * over remote processors and spread off node memory allocations
4829 * as wide as possible.
4830 */
a5f5f91d
MG
4831 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4832 return NODE_RECLAIM_NOSCAN;
d773ed6b 4833
a5f5f91d
MG
4834 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4835 return NODE_RECLAIM_NOSCAN;
fa5e084e 4836
a5f5f91d
MG
4837 ret = __node_reclaim(pgdat, gfp_mask, order);
4838 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4839
24cf7251
MG
4840 if (!ret)
4841 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4842
d773ed6b 4843 return ret;
179e9639 4844}
9eeff239 4845#endif
894bc310 4846
89e004ea 4847/**
64e3d12f
KHY
4848 * check_move_unevictable_pages - check pages for evictability and move to
4849 * appropriate zone lru list
4850 * @pvec: pagevec with lru pages to check
89e004ea 4851 *
64e3d12f
KHY
4852 * Checks pages for evictability, if an evictable page is in the unevictable
4853 * lru list, moves it to the appropriate evictable lru list. This function
4854 * should be only used for lru pages.
89e004ea 4855 */
64e3d12f 4856void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4857{
6168d0da 4858 struct lruvec *lruvec = NULL;
24513264
HD
4859 int pgscanned = 0;
4860 int pgrescued = 0;
4861 int i;
89e004ea 4862
64e3d12f
KHY
4863 for (i = 0; i < pvec->nr; i++) {
4864 struct page *page = pvec->pages[i];
0de340cb 4865 struct folio *folio = page_folio(page);
8d8869ca
HD
4866 int nr_pages;
4867
4868 if (PageTransTail(page))
4869 continue;
4870
4871 nr_pages = thp_nr_pages(page);
4872 pgscanned += nr_pages;
89e004ea 4873
d25b5bd8
AS
4874 /* block memcg migration during page moving between lru */
4875 if (!TestClearPageLRU(page))
4876 continue;
4877
0de340cb 4878 lruvec = folio_lruvec_relock_irq(folio, lruvec);
d25b5bd8 4879 if (page_evictable(page) && PageUnevictable(page)) {
46ae6b2c 4880 del_page_from_lru_list(page, lruvec);
24513264 4881 ClearPageUnevictable(page);
3a9c9788 4882 add_page_to_lru_list(page, lruvec);
8d8869ca 4883 pgrescued += nr_pages;
89e004ea 4884 }
d25b5bd8 4885 SetPageLRU(page);
24513264 4886 }
89e004ea 4887
6168d0da 4888 if (lruvec) {
24513264
HD
4889 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4890 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 4891 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
4892 } else if (pgscanned) {
4893 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 4894 }
89e004ea 4895}
64e3d12f 4896EXPORT_SYMBOL_GPL(check_move_unevictable_pages);