]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
fs: Move many prototypes to pagemap.h
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
26aa2d19 44#include <linux/migrate.h>
873b4771 45#include <linux/delayacct.h>
af936a16 46#include <linux/sysctl.h>
929bea7c 47#include <linux/oom.h>
64e3d12f 48#include <linux/pagevec.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
eb414681 52#include <linux/psi.h>
1da177e4
LT
53
54#include <asm/tlbflush.h>
55#include <asm/div64.h>
56
57#include <linux/swapops.h>
117aad1e 58#include <linux/balloon_compaction.h>
1da177e4 59
0f8053a5
NP
60#include "internal.h"
61
33906bc5
MG
62#define CREATE_TRACE_POINTS
63#include <trace/events/vmscan.h>
64
1da177e4 65struct scan_control {
22fba335
KM
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
ee814fe2
JW
69 /*
70 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 * are scanned.
72 */
73 nodemask_t *nodemask;
9e3b2f8c 74
f16015fb
JW
75 /*
76 * The memory cgroup that hit its limit and as a result is the
77 * primary target of this reclaim invocation.
78 */
79 struct mem_cgroup *target_mem_cgroup;
66e1707b 80
7cf111bc
JW
81 /*
82 * Scan pressure balancing between anon and file LRUs
83 */
84 unsigned long anon_cost;
85 unsigned long file_cost;
86
b91ac374
JW
87 /* Can active pages be deactivated as part of reclaim? */
88#define DEACTIVATE_ANON 1
89#define DEACTIVATE_FILE 2
90 unsigned int may_deactivate:2;
91 unsigned int force_deactivate:1;
92 unsigned int skipped_deactivate:1;
93
1276ad68 94 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
95 unsigned int may_writepage:1;
96
97 /* Can mapped pages be reclaimed? */
98 unsigned int may_unmap:1;
99
100 /* Can pages be swapped as part of reclaim? */
101 unsigned int may_swap:1;
102
d6622f63 103 /*
f56ce412
JW
104 * Cgroup memory below memory.low is protected as long as we
105 * don't threaten to OOM. If any cgroup is reclaimed at
106 * reduced force or passed over entirely due to its memory.low
107 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 * result, then go back for one more cycle that reclaims the protected
109 * memory (memcg_low_reclaim) to avert OOM.
d6622f63
YX
110 */
111 unsigned int memcg_low_reclaim:1;
112 unsigned int memcg_low_skipped:1;
241994ed 113
ee814fe2
JW
114 unsigned int hibernation_mode:1;
115
116 /* One of the zones is ready for compaction */
117 unsigned int compaction_ready:1;
118
b91ac374
JW
119 /* There is easily reclaimable cold cache in the current node */
120 unsigned int cache_trim_mode:1;
121
53138cea
JW
122 /* The file pages on the current node are dangerously low */
123 unsigned int file_is_tiny:1;
124
26aa2d19
DH
125 /* Always discard instead of demoting to lower tier memory */
126 unsigned int no_demotion:1;
127
bb451fdf
GT
128 /* Allocation order */
129 s8 order;
130
131 /* Scan (total_size >> priority) pages at once */
132 s8 priority;
133
134 /* The highest zone to isolate pages for reclaim from */
135 s8 reclaim_idx;
136
137 /* This context's GFP mask */
138 gfp_t gfp_mask;
139
ee814fe2
JW
140 /* Incremented by the number of inactive pages that were scanned */
141 unsigned long nr_scanned;
142
143 /* Number of pages freed so far during a call to shrink_zones() */
144 unsigned long nr_reclaimed;
d108c772
AR
145
146 struct {
147 unsigned int dirty;
148 unsigned int unqueued_dirty;
149 unsigned int congested;
150 unsigned int writeback;
151 unsigned int immediate;
152 unsigned int file_taken;
153 unsigned int taken;
154 } nr;
e5ca8071
YS
155
156 /* for recording the reclaimed slab by now */
157 struct reclaim_state reclaim_state;
1da177e4
LT
158};
159
1da177e4
LT
160#ifdef ARCH_HAS_PREFETCHW
161#define prefetchw_prev_lru_page(_page, _base, _field) \
162 do { \
163 if ((_page)->lru.prev != _base) { \
164 struct page *prev; \
165 \
166 prev = lru_to_page(&(_page->lru)); \
167 prefetchw(&prev->_field); \
168 } \
169 } while (0)
170#else
171#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172#endif
173
174/*
c843966c 175 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
176 */
177int vm_swappiness = 60;
1da177e4 178
0a432dcb
YS
179static void set_task_reclaim_state(struct task_struct *task,
180 struct reclaim_state *rs)
181{
182 /* Check for an overwrite */
183 WARN_ON_ONCE(rs && task->reclaim_state);
184
185 /* Check for the nulling of an already-nulled member */
186 WARN_ON_ONCE(!rs && !task->reclaim_state);
187
188 task->reclaim_state = rs;
189}
190
1da177e4
LT
191static LIST_HEAD(shrinker_list);
192static DECLARE_RWSEM(shrinker_rwsem);
193
0a432dcb 194#ifdef CONFIG_MEMCG
a2fb1261 195static int shrinker_nr_max;
2bfd3637 196
3c6f17e6 197/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
198static inline int shrinker_map_size(int nr_items)
199{
200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201}
2bfd3637 202
3c6f17e6
YS
203static inline int shrinker_defer_size(int nr_items)
204{
205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206}
207
468ab843
YS
208static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 int nid)
210{
211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 lockdep_is_held(&shrinker_rwsem));
213}
214
e4262c4f 215static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
216 int map_size, int defer_size,
217 int old_map_size, int old_defer_size)
2bfd3637 218{
e4262c4f 219 struct shrinker_info *new, *old;
2bfd3637
YS
220 struct mem_cgroup_per_node *pn;
221 int nid;
3c6f17e6 222 int size = map_size + defer_size;
2bfd3637 223
2bfd3637
YS
224 for_each_node(nid) {
225 pn = memcg->nodeinfo[nid];
468ab843 226 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
227 /* Not yet online memcg */
228 if (!old)
229 return 0;
230
231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 if (!new)
233 return -ENOMEM;
234
3c6f17e6
YS
235 new->nr_deferred = (atomic_long_t *)(new + 1);
236 new->map = (void *)new->nr_deferred + defer_size;
237
238 /* map: set all old bits, clear all new bits */
239 memset(new->map, (int)0xff, old_map_size);
240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 /* nr_deferred: copy old values, clear all new values */
242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 memset((void *)new->nr_deferred + old_defer_size, 0,
244 defer_size - old_defer_size);
2bfd3637 245
e4262c4f 246 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 247 kvfree_rcu(old, rcu);
2bfd3637
YS
248 }
249
250 return 0;
251}
252
e4262c4f 253void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
254{
255 struct mem_cgroup_per_node *pn;
e4262c4f 256 struct shrinker_info *info;
2bfd3637
YS
257 int nid;
258
2bfd3637
YS
259 for_each_node(nid) {
260 pn = memcg->nodeinfo[nid];
e4262c4f
YS
261 info = rcu_dereference_protected(pn->shrinker_info, true);
262 kvfree(info);
263 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
264 }
265}
266
e4262c4f 267int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 268{
e4262c4f 269 struct shrinker_info *info;
2bfd3637 270 int nid, size, ret = 0;
3c6f17e6 271 int map_size, defer_size = 0;
2bfd3637 272
d27cf2aa 273 down_write(&shrinker_rwsem);
3c6f17e6
YS
274 map_size = shrinker_map_size(shrinker_nr_max);
275 defer_size = shrinker_defer_size(shrinker_nr_max);
276 size = map_size + defer_size;
2bfd3637 277 for_each_node(nid) {
e4262c4f
YS
278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 if (!info) {
280 free_shrinker_info(memcg);
2bfd3637
YS
281 ret = -ENOMEM;
282 break;
283 }
3c6f17e6
YS
284 info->nr_deferred = (atomic_long_t *)(info + 1);
285 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 287 }
d27cf2aa 288 up_write(&shrinker_rwsem);
2bfd3637
YS
289
290 return ret;
291}
292
3c6f17e6
YS
293static inline bool need_expand(int nr_max)
294{
295 return round_up(nr_max, BITS_PER_LONG) >
296 round_up(shrinker_nr_max, BITS_PER_LONG);
297}
298
e4262c4f 299static int expand_shrinker_info(int new_id)
2bfd3637 300{
3c6f17e6 301 int ret = 0;
a2fb1261 302 int new_nr_max = new_id + 1;
3c6f17e6
YS
303 int map_size, defer_size = 0;
304 int old_map_size, old_defer_size = 0;
2bfd3637
YS
305 struct mem_cgroup *memcg;
306
3c6f17e6 307 if (!need_expand(new_nr_max))
a2fb1261 308 goto out;
2bfd3637 309
2bfd3637 310 if (!root_mem_cgroup)
d27cf2aa
YS
311 goto out;
312
313 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 314
3c6f17e6
YS
315 map_size = shrinker_map_size(new_nr_max);
316 defer_size = shrinker_defer_size(new_nr_max);
317 old_map_size = shrinker_map_size(shrinker_nr_max);
318 old_defer_size = shrinker_defer_size(shrinker_nr_max);
319
2bfd3637
YS
320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 do {
3c6f17e6
YS
322 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 old_map_size, old_defer_size);
2bfd3637
YS
324 if (ret) {
325 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 326 goto out;
2bfd3637
YS
327 }
328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 329out:
2bfd3637 330 if (!ret)
a2fb1261 331 shrinker_nr_max = new_nr_max;
d27cf2aa 332
2bfd3637
YS
333 return ret;
334}
335
336void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337{
338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 339 struct shrinker_info *info;
2bfd3637
YS
340
341 rcu_read_lock();
e4262c4f 342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
343 /* Pairs with smp mb in shrink_slab() */
344 smp_mb__before_atomic();
e4262c4f 345 set_bit(shrinker_id, info->map);
2bfd3637
YS
346 rcu_read_unlock();
347 }
348}
349
b4c2b231 350static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
351
352static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353{
354 int id, ret = -ENOMEM;
355
476b30a0
YS
356 if (mem_cgroup_disabled())
357 return -ENOSYS;
358
b4c2b231
KT
359 down_write(&shrinker_rwsem);
360 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
362 if (id < 0)
363 goto unlock;
364
0a4465d3 365 if (id >= shrinker_nr_max) {
e4262c4f 366 if (expand_shrinker_info(id)) {
0a4465d3
KT
367 idr_remove(&shrinker_idr, id);
368 goto unlock;
369 }
0a4465d3 370 }
b4c2b231
KT
371 shrinker->id = id;
372 ret = 0;
373unlock:
374 up_write(&shrinker_rwsem);
375 return ret;
376}
377
378static void unregister_memcg_shrinker(struct shrinker *shrinker)
379{
380 int id = shrinker->id;
381
382 BUG_ON(id < 0);
383
41ca668a
YS
384 lockdep_assert_held(&shrinker_rwsem);
385
b4c2b231 386 idr_remove(&shrinker_idr, id);
b4c2b231 387}
b4c2b231 388
86750830
YS
389static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 struct mem_cgroup *memcg)
391{
392 struct shrinker_info *info;
393
394 info = shrinker_info_protected(memcg, nid);
395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396}
397
398static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 struct mem_cgroup *memcg)
400{
401 struct shrinker_info *info;
402
403 info = shrinker_info_protected(memcg, nid);
404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405}
406
a178015c
YS
407void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408{
409 int i, nid;
410 long nr;
411 struct mem_cgroup *parent;
412 struct shrinker_info *child_info, *parent_info;
413
414 parent = parent_mem_cgroup(memcg);
415 if (!parent)
416 parent = root_mem_cgroup;
417
418 /* Prevent from concurrent shrinker_info expand */
419 down_read(&shrinker_rwsem);
420 for_each_node(nid) {
421 child_info = shrinker_info_protected(memcg, nid);
422 parent_info = shrinker_info_protected(parent, nid);
423 for (i = 0; i < shrinker_nr_max; i++) {
424 nr = atomic_long_read(&child_info->nr_deferred[i]);
425 atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 }
427 }
428 up_read(&shrinker_rwsem);
429}
430
b5ead35e 431static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 432{
b5ead35e 433 return sc->target_mem_cgroup;
89b5fae5 434}
97c9341f
TH
435
436/**
b5ead35e 437 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
438 * @sc: scan_control in question
439 *
440 * The normal page dirty throttling mechanism in balance_dirty_pages() is
441 * completely broken with the legacy memcg and direct stalling in
442 * shrink_page_list() is used for throttling instead, which lacks all the
443 * niceties such as fairness, adaptive pausing, bandwidth proportional
444 * allocation and configurability.
445 *
446 * This function tests whether the vmscan currently in progress can assume
447 * that the normal dirty throttling mechanism is operational.
448 */
b5ead35e 449static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 450{
b5ead35e 451 if (!cgroup_reclaim(sc))
97c9341f
TH
452 return true;
453#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
455 return true;
456#endif
457 return false;
458}
91a45470 459#else
0a432dcb
YS
460static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461{
476b30a0 462 return -ENOSYS;
0a432dcb
YS
463}
464
465static void unregister_memcg_shrinker(struct shrinker *shrinker)
466{
467}
468
86750830
YS
469static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 struct mem_cgroup *memcg)
471{
472 return 0;
473}
474
475static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 struct mem_cgroup *memcg)
477{
478 return 0;
479}
480
b5ead35e 481static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 482{
b5ead35e 483 return false;
89b5fae5 484}
97c9341f 485
b5ead35e 486static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
487{
488 return true;
489}
91a45470
KH
490#endif
491
86750830
YS
492static long xchg_nr_deferred(struct shrinker *shrinker,
493 struct shrink_control *sc)
494{
495 int nid = sc->nid;
496
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 nid = 0;
499
500 if (sc->memcg &&
501 (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 return xchg_nr_deferred_memcg(nid, shrinker,
503 sc->memcg);
504
505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506}
507
508
509static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 struct shrink_control *sc)
511{
512 int nid = sc->nid;
513
514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 nid = 0;
516
517 if (sc->memcg &&
518 (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 return add_nr_deferred_memcg(nr, nid, shrinker,
520 sc->memcg);
521
522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523}
524
26aa2d19
DH
525static bool can_demote(int nid, struct scan_control *sc)
526{
20b51af1
HY
527 if (!numa_demotion_enabled)
528 return false;
3a235693
DH
529 if (sc) {
530 if (sc->no_demotion)
531 return false;
532 /* It is pointless to do demotion in memcg reclaim */
533 if (cgroup_reclaim(sc))
534 return false;
535 }
26aa2d19
DH
536 if (next_demotion_node(nid) == NUMA_NO_NODE)
537 return false;
538
20b51af1 539 return true;
26aa2d19
DH
540}
541
a2a36488
KB
542static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 int nid,
544 struct scan_control *sc)
545{
546 if (memcg == NULL) {
547 /*
548 * For non-memcg reclaim, is there
549 * space in any swap device?
550 */
551 if (get_nr_swap_pages() > 0)
552 return true;
553 } else {
554 /* Is the memcg below its swap limit? */
555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 return true;
557 }
558
559 /*
560 * The page can not be swapped.
561 *
562 * Can it be reclaimed from this node via demotion?
563 */
564 return can_demote(nid, sc);
565}
566
5a1c84b4
MG
567/*
568 * This misses isolated pages which are not accounted for to save counters.
569 * As the data only determines if reclaim or compaction continues, it is
570 * not expected that isolated pages will be a dominating factor.
571 */
572unsigned long zone_reclaimable_pages(struct zone *zone)
573{
574 unsigned long nr;
575
576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
a2a36488 578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
5a1c84b4
MG
579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581
582 return nr;
583}
584
fd538803
MH
585/**
586 * lruvec_lru_size - Returns the number of pages on the given LRU list.
587 * @lruvec: lru vector
588 * @lru: lru to use
589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590 */
2091339d
YZ
591static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 int zone_idx)
c9f299d9 593{
de3b0150 594 unsigned long size = 0;
fd538803
MH
595 int zid;
596
de3b0150 597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
fd538803 598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 599
fd538803
MH
600 if (!managed_zone(zone))
601 continue;
602
603 if (!mem_cgroup_disabled())
de3b0150 604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 605 else
de3b0150 606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 607 }
de3b0150 608 return size;
b4536f0c
MH
609}
610
1da177e4 611/*
1d3d4437 612 * Add a shrinker callback to be called from the vm.
1da177e4 613 */
8e04944f 614int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 615{
476b30a0
YS
616 unsigned int size;
617 int err;
618
619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 err = prealloc_memcg_shrinker(shrinker);
621 if (err != -ENOSYS)
622 return err;
1d3d4437 623
476b30a0
YS
624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 }
626
627 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
628 if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 size *= nr_node_ids;
630
631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 if (!shrinker->nr_deferred)
633 return -ENOMEM;
b4c2b231 634
8e04944f
TH
635 return 0;
636}
637
638void free_prealloced_shrinker(struct shrinker *shrinker)
639{
41ca668a
YS
640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 down_write(&shrinker_rwsem);
b4c2b231 642 unregister_memcg_shrinker(shrinker);
41ca668a 643 up_write(&shrinker_rwsem);
476b30a0 644 return;
41ca668a 645 }
b4c2b231 646
8e04944f
TH
647 kfree(shrinker->nr_deferred);
648 shrinker->nr_deferred = NULL;
649}
1d3d4437 650
8e04944f
TH
651void register_shrinker_prepared(struct shrinker *shrinker)
652{
8e1f936b
RR
653 down_write(&shrinker_rwsem);
654 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 655 shrinker->flags |= SHRINKER_REGISTERED;
8e1f936b 656 up_write(&shrinker_rwsem);
8e04944f
TH
657}
658
659int register_shrinker(struct shrinker *shrinker)
660{
661 int err = prealloc_shrinker(shrinker);
662
663 if (err)
664 return err;
665 register_shrinker_prepared(shrinker);
1d3d4437 666 return 0;
1da177e4 667}
8e1f936b 668EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
669
670/*
671 * Remove one
672 */
8e1f936b 673void unregister_shrinker(struct shrinker *shrinker)
1da177e4 674{
41ca668a 675 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 676 return;
41ca668a 677
1da177e4
LT
678 down_write(&shrinker_rwsem);
679 list_del(&shrinker->list);
41ca668a
YS
680 shrinker->flags &= ~SHRINKER_REGISTERED;
681 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 unregister_memcg_shrinker(shrinker);
1da177e4 683 up_write(&shrinker_rwsem);
41ca668a 684
ae393321 685 kfree(shrinker->nr_deferred);
bb422a73 686 shrinker->nr_deferred = NULL;
1da177e4 687}
8e1f936b 688EXPORT_SYMBOL(unregister_shrinker);
1da177e4 689
880121be
CK
690/**
691 * synchronize_shrinkers - Wait for all running shrinkers to complete.
692 *
693 * This is equivalent to calling unregister_shrink() and register_shrinker(),
694 * but atomically and with less overhead. This is useful to guarantee that all
695 * shrinker invocations have seen an update, before freeing memory, similar to
696 * rcu.
697 */
698void synchronize_shrinkers(void)
699{
700 down_write(&shrinker_rwsem);
701 up_write(&shrinker_rwsem);
702}
703EXPORT_SYMBOL(synchronize_shrinkers);
704
1da177e4 705#define SHRINK_BATCH 128
1d3d4437 706
cb731d6c 707static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 708 struct shrinker *shrinker, int priority)
1d3d4437
GC
709{
710 unsigned long freed = 0;
711 unsigned long long delta;
712 long total_scan;
d5bc5fd3 713 long freeable;
1d3d4437
GC
714 long nr;
715 long new_nr;
1d3d4437
GC
716 long batch_size = shrinker->batch ? shrinker->batch
717 : SHRINK_BATCH;
5f33a080 718 long scanned = 0, next_deferred;
1d3d4437 719
d5bc5fd3 720 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
721 if (freeable == 0 || freeable == SHRINK_EMPTY)
722 return freeable;
1d3d4437
GC
723
724 /*
725 * copy the current shrinker scan count into a local variable
726 * and zero it so that other concurrent shrinker invocations
727 * don't also do this scanning work.
728 */
86750830 729 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 730
4b85afbd
JW
731 if (shrinker->seeks) {
732 delta = freeable >> priority;
733 delta *= 4;
734 do_div(delta, shrinker->seeks);
735 } else {
736 /*
737 * These objects don't require any IO to create. Trim
738 * them aggressively under memory pressure to keep
739 * them from causing refetches in the IO caches.
740 */
741 delta = freeable / 2;
742 }
172b06c3 743
18bb473e 744 total_scan = nr >> priority;
1d3d4437 745 total_scan += delta;
18bb473e 746 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
747
748 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 749 freeable, delta, total_scan, priority);
1d3d4437 750
0b1fb40a
VD
751 /*
752 * Normally, we should not scan less than batch_size objects in one
753 * pass to avoid too frequent shrinker calls, but if the slab has less
754 * than batch_size objects in total and we are really tight on memory,
755 * we will try to reclaim all available objects, otherwise we can end
756 * up failing allocations although there are plenty of reclaimable
757 * objects spread over several slabs with usage less than the
758 * batch_size.
759 *
760 * We detect the "tight on memory" situations by looking at the total
761 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 762 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
763 * scanning at high prio and therefore should try to reclaim as much as
764 * possible.
765 */
766 while (total_scan >= batch_size ||
d5bc5fd3 767 total_scan >= freeable) {
a0b02131 768 unsigned long ret;
0b1fb40a 769 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 770
0b1fb40a 771 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 772 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
773 ret = shrinker->scan_objects(shrinker, shrinkctl);
774 if (ret == SHRINK_STOP)
775 break;
776 freed += ret;
1d3d4437 777
d460acb5
CW
778 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
779 total_scan -= shrinkctl->nr_scanned;
780 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
781
782 cond_resched();
783 }
784
18bb473e
YS
785 /*
786 * The deferred work is increased by any new work (delta) that wasn't
787 * done, decreased by old deferred work that was done now.
788 *
789 * And it is capped to two times of the freeable items.
790 */
791 next_deferred = max_t(long, (nr + delta - scanned), 0);
792 next_deferred = min(next_deferred, (2 * freeable));
793
1d3d4437
GC
794 /*
795 * move the unused scan count back into the shrinker in a
86750830 796 * manner that handles concurrent updates.
1d3d4437 797 */
86750830 798 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 799
8efb4b59 800 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 801 return freed;
1495f230
YH
802}
803
0a432dcb 804#ifdef CONFIG_MEMCG
b0dedc49
KT
805static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
806 struct mem_cgroup *memcg, int priority)
807{
e4262c4f 808 struct shrinker_info *info;
b8e57efa
KT
809 unsigned long ret, freed = 0;
810 int i;
b0dedc49 811
0a432dcb 812 if (!mem_cgroup_online(memcg))
b0dedc49
KT
813 return 0;
814
815 if (!down_read_trylock(&shrinker_rwsem))
816 return 0;
817
468ab843 818 info = shrinker_info_protected(memcg, nid);
e4262c4f 819 if (unlikely(!info))
b0dedc49
KT
820 goto unlock;
821
e4262c4f 822 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
823 struct shrink_control sc = {
824 .gfp_mask = gfp_mask,
825 .nid = nid,
826 .memcg = memcg,
827 };
828 struct shrinker *shrinker;
829
830 shrinker = idr_find(&shrinker_idr, i);
41ca668a 831 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 832 if (!shrinker)
e4262c4f 833 clear_bit(i, info->map);
b0dedc49
KT
834 continue;
835 }
836
0a432dcb
YS
837 /* Call non-slab shrinkers even though kmem is disabled */
838 if (!memcg_kmem_enabled() &&
839 !(shrinker->flags & SHRINKER_NONSLAB))
840 continue;
841
b0dedc49 842 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 843 if (ret == SHRINK_EMPTY) {
e4262c4f 844 clear_bit(i, info->map);
f90280d6
KT
845 /*
846 * After the shrinker reported that it had no objects to
847 * free, but before we cleared the corresponding bit in
848 * the memcg shrinker map, a new object might have been
849 * added. To make sure, we have the bit set in this
850 * case, we invoke the shrinker one more time and reset
851 * the bit if it reports that it is not empty anymore.
852 * The memory barrier here pairs with the barrier in
2bfd3637 853 * set_shrinker_bit():
f90280d6
KT
854 *
855 * list_lru_add() shrink_slab_memcg()
856 * list_add_tail() clear_bit()
857 * <MB> <MB>
858 * set_bit() do_shrink_slab()
859 */
860 smp_mb__after_atomic();
861 ret = do_shrink_slab(&sc, shrinker, priority);
862 if (ret == SHRINK_EMPTY)
863 ret = 0;
864 else
2bfd3637 865 set_shrinker_bit(memcg, nid, i);
f90280d6 866 }
b0dedc49
KT
867 freed += ret;
868
869 if (rwsem_is_contended(&shrinker_rwsem)) {
870 freed = freed ? : 1;
871 break;
872 }
873 }
874unlock:
875 up_read(&shrinker_rwsem);
876 return freed;
877}
0a432dcb 878#else /* CONFIG_MEMCG */
b0dedc49
KT
879static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
880 struct mem_cgroup *memcg, int priority)
881{
882 return 0;
883}
0a432dcb 884#endif /* CONFIG_MEMCG */
b0dedc49 885
6b4f7799 886/**
cb731d6c 887 * shrink_slab - shrink slab caches
6b4f7799
JW
888 * @gfp_mask: allocation context
889 * @nid: node whose slab caches to target
cb731d6c 890 * @memcg: memory cgroup whose slab caches to target
9092c71b 891 * @priority: the reclaim priority
1da177e4 892 *
6b4f7799 893 * Call the shrink functions to age shrinkable caches.
1da177e4 894 *
6b4f7799
JW
895 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
896 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 897 *
aeed1d32
VD
898 * @memcg specifies the memory cgroup to target. Unaware shrinkers
899 * are called only if it is the root cgroup.
cb731d6c 900 *
9092c71b
JB
901 * @priority is sc->priority, we take the number of objects and >> by priority
902 * in order to get the scan target.
b15e0905 903 *
6b4f7799 904 * Returns the number of reclaimed slab objects.
1da177e4 905 */
cb731d6c
VD
906static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
907 struct mem_cgroup *memcg,
9092c71b 908 int priority)
1da177e4 909{
b8e57efa 910 unsigned long ret, freed = 0;
1da177e4
LT
911 struct shrinker *shrinker;
912
fa1e512f
YS
913 /*
914 * The root memcg might be allocated even though memcg is disabled
915 * via "cgroup_disable=memory" boot parameter. This could make
916 * mem_cgroup_is_root() return false, then just run memcg slab
917 * shrink, but skip global shrink. This may result in premature
918 * oom.
919 */
920 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 921 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 922
e830c63a 923 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 924 goto out;
1da177e4
LT
925
926 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
927 struct shrink_control sc = {
928 .gfp_mask = gfp_mask,
929 .nid = nid,
cb731d6c 930 .memcg = memcg,
6b4f7799 931 };
ec97097b 932
9b996468
KT
933 ret = do_shrink_slab(&sc, shrinker, priority);
934 if (ret == SHRINK_EMPTY)
935 ret = 0;
936 freed += ret;
e496612c
MK
937 /*
938 * Bail out if someone want to register a new shrinker to
55b65a57 939 * prevent the registration from being stalled for long periods
e496612c
MK
940 * by parallel ongoing shrinking.
941 */
942 if (rwsem_is_contended(&shrinker_rwsem)) {
943 freed = freed ? : 1;
944 break;
945 }
1da177e4 946 }
6b4f7799 947
1da177e4 948 up_read(&shrinker_rwsem);
f06590bd
MK
949out:
950 cond_resched();
24f7c6b9 951 return freed;
1da177e4
LT
952}
953
e4b424b7 954static void drop_slab_node(int nid)
cb731d6c
VD
955{
956 unsigned long freed;
1399af7e 957 int shift = 0;
cb731d6c
VD
958
959 do {
960 struct mem_cgroup *memcg = NULL;
961
069c411d
CZ
962 if (fatal_signal_pending(current))
963 return;
964
cb731d6c 965 freed = 0;
aeed1d32 966 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 967 do {
9092c71b 968 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c 969 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1399af7e 970 } while ((freed >> shift++) > 1);
cb731d6c
VD
971}
972
973void drop_slab(void)
974{
975 int nid;
976
977 for_each_online_node(nid)
978 drop_slab_node(nid);
979}
980
1da177e4
LT
981static inline int is_page_cache_freeable(struct page *page)
982{
ceddc3a5
JW
983 /*
984 * A freeable page cache page is referenced only by the caller
67891fff
MW
985 * that isolated the page, the page cache and optional buffer
986 * heads at page->private.
ceddc3a5 987 */
3efe62e4 988 int page_cache_pins = thp_nr_pages(page);
67891fff 989 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
990}
991
cb16556d 992static int may_write_to_inode(struct inode *inode)
1da177e4 993{
930d9152 994 if (current->flags & PF_SWAPWRITE)
1da177e4 995 return 1;
703c2708 996 if (!inode_write_congested(inode))
1da177e4 997 return 1;
703c2708 998 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
999 return 1;
1000 return 0;
1001}
1002
1003/*
1004 * We detected a synchronous write error writing a page out. Probably
1005 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1006 * fsync(), msync() or close().
1007 *
1008 * The tricky part is that after writepage we cannot touch the mapping: nothing
1009 * prevents it from being freed up. But we have a ref on the page and once
1010 * that page is locked, the mapping is pinned.
1011 *
1012 * We're allowed to run sleeping lock_page() here because we know the caller has
1013 * __GFP_FS.
1014 */
1015static void handle_write_error(struct address_space *mapping,
1016 struct page *page, int error)
1017{
7eaceacc 1018 lock_page(page);
3e9f45bd
GC
1019 if (page_mapping(page) == mapping)
1020 mapping_set_error(mapping, error);
1da177e4
LT
1021 unlock_page(page);
1022}
1023
1b4e3f26
MG
1024static bool skip_throttle_noprogress(pg_data_t *pgdat)
1025{
1026 int reclaimable = 0, write_pending = 0;
1027 int i;
1028
1029 /*
1030 * If kswapd is disabled, reschedule if necessary but do not
1031 * throttle as the system is likely near OOM.
1032 */
1033 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1034 return true;
1035
1036 /*
1037 * If there are a lot of dirty/writeback pages then do not
1038 * throttle as throttling will occur when the pages cycle
1039 * towards the end of the LRU if still under writeback.
1040 */
1041 for (i = 0; i < MAX_NR_ZONES; i++) {
1042 struct zone *zone = pgdat->node_zones + i;
1043
1044 if (!populated_zone(zone))
1045 continue;
1046
1047 reclaimable += zone_reclaimable_pages(zone);
1048 write_pending += zone_page_state_snapshot(zone,
1049 NR_ZONE_WRITE_PENDING);
1050 }
1051 if (2 * write_pending <= reclaimable)
1052 return true;
1053
1054 return false;
1055}
1056
c3f4a9a2 1057void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
8cd7c588
MG
1058{
1059 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
c3f4a9a2 1060 long timeout, ret;
8cd7c588
MG
1061 DEFINE_WAIT(wait);
1062
1063 /*
1064 * Do not throttle IO workers, kthreads other than kswapd or
1065 * workqueues. They may be required for reclaim to make
1066 * forward progress (e.g. journalling workqueues or kthreads).
1067 */
1068 if (!current_is_kswapd() &&
b485c6f1
MG
1069 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1070 cond_resched();
8cd7c588 1071 return;
b485c6f1 1072 }
8cd7c588 1073
c3f4a9a2
MG
1074 /*
1075 * These figures are pulled out of thin air.
1076 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1077 * parallel reclaimers which is a short-lived event so the timeout is
1078 * short. Failing to make progress or waiting on writeback are
1079 * potentially long-lived events so use a longer timeout. This is shaky
1080 * logic as a failure to make progress could be due to anything from
1081 * writeback to a slow device to excessive references pages at the tail
1082 * of the inactive LRU.
1083 */
1084 switch(reason) {
1085 case VMSCAN_THROTTLE_WRITEBACK:
1086 timeout = HZ/10;
1087
1088 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1089 WRITE_ONCE(pgdat->nr_reclaim_start,
1090 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1091 }
1092
1093 break;
1b4e3f26
MG
1094 case VMSCAN_THROTTLE_CONGESTED:
1095 fallthrough;
c3f4a9a2 1096 case VMSCAN_THROTTLE_NOPROGRESS:
1b4e3f26
MG
1097 if (skip_throttle_noprogress(pgdat)) {
1098 cond_resched();
1099 return;
1100 }
1101
1102 timeout = 1;
1103
c3f4a9a2
MG
1104 break;
1105 case VMSCAN_THROTTLE_ISOLATED:
1106 timeout = HZ/50;
1107 break;
1108 default:
1109 WARN_ON_ONCE(1);
1110 timeout = HZ;
1111 break;
8cd7c588
MG
1112 }
1113
1114 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1115 ret = schedule_timeout(timeout);
1116 finish_wait(wqh, &wait);
d818fca1 1117
c3f4a9a2 1118 if (reason == VMSCAN_THROTTLE_WRITEBACK)
d818fca1 1119 atomic_dec(&pgdat->nr_writeback_throttled);
8cd7c588
MG
1120
1121 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1122 jiffies_to_usecs(timeout - ret),
1123 reason);
1124}
1125
1126/*
1127 * Account for pages written if tasks are throttled waiting on dirty
1128 * pages to clean. If enough pages have been cleaned since throttling
1129 * started then wakeup the throttled tasks.
1130 */
512b7931 1131void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
8cd7c588
MG
1132 int nr_throttled)
1133{
1134 unsigned long nr_written;
1135
512b7931 1136 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
8cd7c588
MG
1137
1138 /*
1139 * This is an inaccurate read as the per-cpu deltas may not
1140 * be synchronised. However, given that the system is
1141 * writeback throttled, it is not worth taking the penalty
1142 * of getting an accurate count. At worst, the throttle
1143 * timeout guarantees forward progress.
1144 */
1145 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1146 READ_ONCE(pgdat->nr_reclaim_start);
1147
1148 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1149 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1150}
1151
04e62a29
CL
1152/* possible outcome of pageout() */
1153typedef enum {
1154 /* failed to write page out, page is locked */
1155 PAGE_KEEP,
1156 /* move page to the active list, page is locked */
1157 PAGE_ACTIVATE,
1158 /* page has been sent to the disk successfully, page is unlocked */
1159 PAGE_SUCCESS,
1160 /* page is clean and locked */
1161 PAGE_CLEAN,
1162} pageout_t;
1163
1da177e4 1164/*
1742f19f
AM
1165 * pageout is called by shrink_page_list() for each dirty page.
1166 * Calls ->writepage().
1da177e4 1167 */
cb16556d 1168static pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
1169{
1170 /*
1171 * If the page is dirty, only perform writeback if that write
1172 * will be non-blocking. To prevent this allocation from being
1173 * stalled by pagecache activity. But note that there may be
1174 * stalls if we need to run get_block(). We could test
1175 * PagePrivate for that.
1176 *
8174202b 1177 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
1178 * this page's queue, we can perform writeback even if that
1179 * will block.
1180 *
1181 * If the page is swapcache, write it back even if that would
1182 * block, for some throttling. This happens by accident, because
1183 * swap_backing_dev_info is bust: it doesn't reflect the
1184 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
1185 */
1186 if (!is_page_cache_freeable(page))
1187 return PAGE_KEEP;
1188 if (!mapping) {
1189 /*
1190 * Some data journaling orphaned pages can have
1191 * page->mapping == NULL while being dirty with clean buffers.
1192 */
266cf658 1193 if (page_has_private(page)) {
1da177e4
LT
1194 if (try_to_free_buffers(page)) {
1195 ClearPageDirty(page);
b1de0d13 1196 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
1197 return PAGE_CLEAN;
1198 }
1199 }
1200 return PAGE_KEEP;
1201 }
1202 if (mapping->a_ops->writepage == NULL)
1203 return PAGE_ACTIVATE;
cb16556d 1204 if (!may_write_to_inode(mapping->host))
1da177e4
LT
1205 return PAGE_KEEP;
1206
1207 if (clear_page_dirty_for_io(page)) {
1208 int res;
1209 struct writeback_control wbc = {
1210 .sync_mode = WB_SYNC_NONE,
1211 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1212 .range_start = 0,
1213 .range_end = LLONG_MAX,
1da177e4
LT
1214 .for_reclaim = 1,
1215 };
1216
1217 SetPageReclaim(page);
1218 res = mapping->a_ops->writepage(page, &wbc);
1219 if (res < 0)
1220 handle_write_error(mapping, page, res);
994fc28c 1221 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
1222 ClearPageReclaim(page);
1223 return PAGE_ACTIVATE;
1224 }
c661b078 1225
1da177e4
LT
1226 if (!PageWriteback(page)) {
1227 /* synchronous write or broken a_ops? */
1228 ClearPageReclaim(page);
1229 }
3aa23851 1230 trace_mm_vmscan_writepage(page);
c4a25635 1231 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
1232 return PAGE_SUCCESS;
1233 }
1234
1235 return PAGE_CLEAN;
1236}
1237
a649fd92 1238/*
e286781d
NP
1239 * Same as remove_mapping, but if the page is removed from the mapping, it
1240 * gets returned with a refcount of 0.
a649fd92 1241 */
be7c07d6 1242static int __remove_mapping(struct address_space *mapping, struct folio *folio,
b910718a 1243 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1244{
bd4c82c2 1245 int refcount;
aae466b0 1246 void *shadow = NULL;
c4843a75 1247
be7c07d6
MWO
1248 BUG_ON(!folio_test_locked(folio));
1249 BUG_ON(mapping != folio_mapping(folio));
49d2e9cc 1250
be7c07d6 1251 if (!folio_test_swapcache(folio))
51b8c1fe 1252 spin_lock(&mapping->host->i_lock);
30472509 1253 xa_lock_irq(&mapping->i_pages);
49d2e9cc 1254 /*
0fd0e6b0
NP
1255 * The non racy check for a busy page.
1256 *
1257 * Must be careful with the order of the tests. When someone has
1258 * a ref to the page, it may be possible that they dirty it then
1259 * drop the reference. So if PageDirty is tested before page_count
1260 * here, then the following race may occur:
1261 *
1262 * get_user_pages(&page);
1263 * [user mapping goes away]
1264 * write_to(page);
1265 * !PageDirty(page) [good]
1266 * SetPageDirty(page);
1267 * put_page(page);
1268 * !page_count(page) [good, discard it]
1269 *
1270 * [oops, our write_to data is lost]
1271 *
1272 * Reversing the order of the tests ensures such a situation cannot
1273 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 1274 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
1275 *
1276 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 1277 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1278 */
be7c07d6
MWO
1279 refcount = 1 + folio_nr_pages(folio);
1280 if (!folio_ref_freeze(folio, refcount))
49d2e9cc 1281 goto cannot_free;
1c4c3b99 1282 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
be7c07d6
MWO
1283 if (unlikely(folio_test_dirty(folio))) {
1284 folio_ref_unfreeze(folio, refcount);
49d2e9cc 1285 goto cannot_free;
e286781d 1286 }
49d2e9cc 1287
be7c07d6
MWO
1288 if (folio_test_swapcache(folio)) {
1289 swp_entry_t swap = folio_swap_entry(folio);
3ecb0087 1290 mem_cgroup_swapout(folio, swap);
aae466b0 1291 if (reclaimed && !mapping_exiting(mapping))
8927f647 1292 shadow = workingset_eviction(folio, target_memcg);
be7c07d6 1293 __delete_from_swap_cache(&folio->page, swap, shadow);
30472509 1294 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1295 put_swap_page(&folio->page, swap);
e286781d 1296 } else {
6072d13c
LT
1297 void (*freepage)(struct page *);
1298
1299 freepage = mapping->a_ops->freepage;
a528910e
JW
1300 /*
1301 * Remember a shadow entry for reclaimed file cache in
1302 * order to detect refaults, thus thrashing, later on.
1303 *
1304 * But don't store shadows in an address space that is
238c3046 1305 * already exiting. This is not just an optimization,
a528910e
JW
1306 * inode reclaim needs to empty out the radix tree or
1307 * the nodes are lost. Don't plant shadows behind its
1308 * back.
f9fe48be
RZ
1309 *
1310 * We also don't store shadows for DAX mappings because the
1311 * only page cache pages found in these are zero pages
1312 * covering holes, and because we don't want to mix DAX
1313 * exceptional entries and shadow exceptional entries in the
b93b0163 1314 * same address_space.
a528910e 1315 */
be7c07d6 1316 if (reclaimed && folio_is_file_lru(folio) &&
f9fe48be 1317 !mapping_exiting(mapping) && !dax_mapping(mapping))
8927f647
MWO
1318 shadow = workingset_eviction(folio, target_memcg);
1319 __filemap_remove_folio(folio, shadow);
30472509 1320 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
1321 if (mapping_shrinkable(mapping))
1322 inode_add_lru(mapping->host);
1323 spin_unlock(&mapping->host->i_lock);
6072d13c
LT
1324
1325 if (freepage != NULL)
be7c07d6 1326 freepage(&folio->page);
49d2e9cc
CL
1327 }
1328
49d2e9cc
CL
1329 return 1;
1330
1331cannot_free:
30472509 1332 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1333 if (!folio_test_swapcache(folio))
51b8c1fe 1334 spin_unlock(&mapping->host->i_lock);
49d2e9cc
CL
1335 return 0;
1336}
1337
5100da38
MWO
1338/**
1339 * remove_mapping() - Attempt to remove a folio from its mapping.
1340 * @mapping: The address space.
1341 * @folio: The folio to remove.
1342 *
1343 * If the folio is dirty, under writeback or if someone else has a ref
1344 * on it, removal will fail.
1345 * Return: The number of pages removed from the mapping. 0 if the folio
1346 * could not be removed.
1347 * Context: The caller should have a single refcount on the folio and
1348 * hold its lock.
e286781d 1349 */
5100da38 1350long remove_mapping(struct address_space *mapping, struct folio *folio)
e286781d 1351{
be7c07d6 1352 if (__remove_mapping(mapping, folio, false, NULL)) {
e286781d 1353 /*
5100da38 1354 * Unfreezing the refcount with 1 effectively
e286781d
NP
1355 * drops the pagecache ref for us without requiring another
1356 * atomic operation.
1357 */
be7c07d6 1358 folio_ref_unfreeze(folio, 1);
5100da38 1359 return folio_nr_pages(folio);
e286781d
NP
1360 }
1361 return 0;
1362}
1363
894bc310 1364/**
ca6d60f3
MWO
1365 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1366 * @folio: Folio to be returned to an LRU list.
894bc310 1367 *
ca6d60f3
MWO
1368 * Add previously isolated @folio to appropriate LRU list.
1369 * The folio may still be unevictable for other reasons.
894bc310 1370 *
ca6d60f3 1371 * Context: lru_lock must not be held, interrupts must be enabled.
894bc310 1372 */
ca6d60f3 1373void folio_putback_lru(struct folio *folio)
894bc310 1374{
ca6d60f3
MWO
1375 folio_add_lru(folio);
1376 folio_put(folio); /* drop ref from isolate */
894bc310
LS
1377}
1378
dfc8d636
JW
1379enum page_references {
1380 PAGEREF_RECLAIM,
1381 PAGEREF_RECLAIM_CLEAN,
64574746 1382 PAGEREF_KEEP,
dfc8d636
JW
1383 PAGEREF_ACTIVATE,
1384};
1385
1386static enum page_references page_check_references(struct page *page,
1387 struct scan_control *sc)
1388{
64574746 1389 int referenced_ptes, referenced_page;
dfc8d636 1390 unsigned long vm_flags;
dfc8d636 1391
c3ac9a8a
JW
1392 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1393 &vm_flags);
64574746 1394 referenced_page = TestClearPageReferenced(page);
dfc8d636 1395
dfc8d636 1396 /*
47d4f3ee
HD
1397 * The supposedly reclaimable page was found to be in a VM_LOCKED vma.
1398 * Let the page, now marked Mlocked, be moved to the unevictable list.
dfc8d636
JW
1399 */
1400 if (vm_flags & VM_LOCKED)
47d4f3ee 1401 return PAGEREF_ACTIVATE;
dfc8d636 1402
64574746 1403 if (referenced_ptes) {
64574746
JW
1404 /*
1405 * All mapped pages start out with page table
1406 * references from the instantiating fault, so we need
1407 * to look twice if a mapped file page is used more
1408 * than once.
1409 *
1410 * Mark it and spare it for another trip around the
1411 * inactive list. Another page table reference will
1412 * lead to its activation.
1413 *
1414 * Note: the mark is set for activated pages as well
1415 * so that recently deactivated but used pages are
1416 * quickly recovered.
1417 */
1418 SetPageReferenced(page);
1419
34dbc67a 1420 if (referenced_page || referenced_ptes > 1)
64574746
JW
1421 return PAGEREF_ACTIVATE;
1422
c909e993
KK
1423 /*
1424 * Activate file-backed executable pages after first usage.
1425 */
b518154e 1426 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
c909e993
KK
1427 return PAGEREF_ACTIVATE;
1428
64574746
JW
1429 return PAGEREF_KEEP;
1430 }
dfc8d636
JW
1431
1432 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1433 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1434 return PAGEREF_RECLAIM_CLEAN;
1435
1436 return PAGEREF_RECLAIM;
dfc8d636
JW
1437}
1438
e2be15f6
MG
1439/* Check if a page is dirty or under writeback */
1440static void page_check_dirty_writeback(struct page *page,
1441 bool *dirty, bool *writeback)
1442{
b4597226
MG
1443 struct address_space *mapping;
1444
e2be15f6
MG
1445 /*
1446 * Anonymous pages are not handled by flushers and must be written
1447 * from reclaim context. Do not stall reclaim based on them
1448 */
9de4f22a 1449 if (!page_is_file_lru(page) ||
802a3a92 1450 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1451 *dirty = false;
1452 *writeback = false;
1453 return;
1454 }
1455
1456 /* By default assume that the page flags are accurate */
1457 *dirty = PageDirty(page);
1458 *writeback = PageWriteback(page);
b4597226
MG
1459
1460 /* Verify dirty/writeback state if the filesystem supports it */
1461 if (!page_has_private(page))
1462 return;
1463
1464 mapping = page_mapping(page);
1465 if (mapping && mapping->a_ops->is_dirty_writeback)
1466 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1467}
1468
26aa2d19
DH
1469static struct page *alloc_demote_page(struct page *page, unsigned long node)
1470{
1471 struct migration_target_control mtc = {
1472 /*
1473 * Allocate from 'node', or fail quickly and quietly.
1474 * When this happens, 'page' will likely just be discarded
1475 * instead of migrated.
1476 */
1477 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1478 __GFP_THISNODE | __GFP_NOWARN |
1479 __GFP_NOMEMALLOC | GFP_NOWAIT,
1480 .nid = node
1481 };
1482
1483 return alloc_migration_target(page, (unsigned long)&mtc);
1484}
1485
1486/*
1487 * Take pages on @demote_list and attempt to demote them to
1488 * another node. Pages which are not demoted are left on
1489 * @demote_pages.
1490 */
1491static unsigned int demote_page_list(struct list_head *demote_pages,
1492 struct pglist_data *pgdat)
1493{
1494 int target_nid = next_demotion_node(pgdat->node_id);
1495 unsigned int nr_succeeded;
26aa2d19
DH
1496
1497 if (list_empty(demote_pages))
1498 return 0;
1499
1500 if (target_nid == NUMA_NO_NODE)
1501 return 0;
1502
1503 /* Demotion ignores all cpuset and mempolicy settings */
cb75463c 1504 migrate_pages(demote_pages, alloc_demote_page, NULL,
26aa2d19
DH
1505 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1506 &nr_succeeded);
1507
668e4147
YS
1508 if (current_is_kswapd())
1509 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1510 else
1511 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1512
26aa2d19
DH
1513 return nr_succeeded;
1514}
1515
1da177e4 1516/*
1742f19f 1517 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1518 */
730ec8c0
MS
1519static unsigned int shrink_page_list(struct list_head *page_list,
1520 struct pglist_data *pgdat,
1521 struct scan_control *sc,
730ec8c0
MS
1522 struct reclaim_stat *stat,
1523 bool ignore_references)
1da177e4
LT
1524{
1525 LIST_HEAD(ret_pages);
abe4c3b5 1526 LIST_HEAD(free_pages);
26aa2d19 1527 LIST_HEAD(demote_pages);
730ec8c0
MS
1528 unsigned int nr_reclaimed = 0;
1529 unsigned int pgactivate = 0;
26aa2d19 1530 bool do_demote_pass;
1da177e4 1531
060f005f 1532 memset(stat, 0, sizeof(*stat));
1da177e4 1533 cond_resched();
26aa2d19 1534 do_demote_pass = can_demote(pgdat->node_id, sc);
1da177e4 1535
26aa2d19 1536retry:
1da177e4
LT
1537 while (!list_empty(page_list)) {
1538 struct address_space *mapping;
1539 struct page *page;
be7c07d6 1540 struct folio *folio;
8940b34a 1541 enum page_references references = PAGEREF_RECLAIM;
4b793062 1542 bool dirty, writeback, may_enter_fs;
98879b3b 1543 unsigned int nr_pages;
1da177e4
LT
1544
1545 cond_resched();
1546
be7c07d6
MWO
1547 folio = lru_to_folio(page_list);
1548 list_del(&folio->lru);
1549 page = &folio->page;
1da177e4 1550
529ae9aa 1551 if (!trylock_page(page))
1da177e4
LT
1552 goto keep;
1553
309381fe 1554 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1555
d8c6546b 1556 nr_pages = compound_nr(page);
98879b3b
YS
1557
1558 /* Account the number of base pages even though THP */
1559 sc->nr_scanned += nr_pages;
80e43426 1560
39b5f29a 1561 if (unlikely(!page_evictable(page)))
ad6b6704 1562 goto activate_locked;
894bc310 1563
a6dc60f8 1564 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1565 goto keep_locked;
1566
c661b078
AW
1567 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1568 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1569
e2be15f6 1570 /*
894befec 1571 * The number of dirty pages determines if a node is marked
8cd7c588
MG
1572 * reclaim_congested. kswapd will stall and start writing
1573 * pages if the tail of the LRU is all dirty unqueued pages.
e2be15f6
MG
1574 */
1575 page_check_dirty_writeback(page, &dirty, &writeback);
1576 if (dirty || writeback)
060f005f 1577 stat->nr_dirty++;
e2be15f6
MG
1578
1579 if (dirty && !writeback)
060f005f 1580 stat->nr_unqueued_dirty++;
e2be15f6 1581
d04e8acd
MG
1582 /*
1583 * Treat this page as congested if the underlying BDI is or if
1584 * pages are cycling through the LRU so quickly that the
1585 * pages marked for immediate reclaim are making it to the
1586 * end of the LRU a second time.
1587 */
e2be15f6 1588 mapping = page_mapping(page);
1da58ee2 1589 if (((dirty || writeback) && mapping &&
703c2708 1590 inode_write_congested(mapping->host)) ||
d04e8acd 1591 (writeback && PageReclaim(page)))
060f005f 1592 stat->nr_congested++;
e2be15f6 1593
283aba9f
MG
1594 /*
1595 * If a page at the tail of the LRU is under writeback, there
1596 * are three cases to consider.
1597 *
1598 * 1) If reclaim is encountering an excessive number of pages
1599 * under writeback and this page is both under writeback and
1600 * PageReclaim then it indicates that pages are being queued
1601 * for IO but are being recycled through the LRU before the
1602 * IO can complete. Waiting on the page itself risks an
1603 * indefinite stall if it is impossible to writeback the
1604 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1605 * note that the LRU is being scanned too quickly and the
1606 * caller can stall after page list has been processed.
283aba9f 1607 *
97c9341f 1608 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1609 * not marked for immediate reclaim, or the caller does not
1610 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1611 * not to fs). In this case mark the page for immediate
97c9341f 1612 * reclaim and continue scanning.
283aba9f 1613 *
ecf5fc6e
MH
1614 * Require may_enter_fs because we would wait on fs, which
1615 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1616 * enter reclaim, and deadlock if it waits on a page for
1617 * which it is needed to do the write (loop masks off
1618 * __GFP_IO|__GFP_FS for this reason); but more thought
1619 * would probably show more reasons.
1620 *
7fadc820 1621 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1622 * PageReclaim. memcg does not have any dirty pages
1623 * throttling so we could easily OOM just because too many
1624 * pages are in writeback and there is nothing else to
1625 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1626 *
1627 * In cases 1) and 2) we activate the pages to get them out of
1628 * the way while we continue scanning for clean pages on the
1629 * inactive list and refilling from the active list. The
1630 * observation here is that waiting for disk writes is more
1631 * expensive than potentially causing reloads down the line.
1632 * Since they're marked for immediate reclaim, they won't put
1633 * memory pressure on the cache working set any longer than it
1634 * takes to write them to disk.
283aba9f 1635 */
c661b078 1636 if (PageWriteback(page)) {
283aba9f
MG
1637 /* Case 1 above */
1638 if (current_is_kswapd() &&
1639 PageReclaim(page) &&
599d0c95 1640 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1641 stat->nr_immediate++;
c55e8d03 1642 goto activate_locked;
283aba9f
MG
1643
1644 /* Case 2 above */
b5ead35e 1645 } else if (writeback_throttling_sane(sc) ||
ecf5fc6e 1646 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1647 /*
1648 * This is slightly racy - end_page_writeback()
1649 * might have just cleared PageReclaim, then
1650 * setting PageReclaim here end up interpreted
1651 * as PageReadahead - but that does not matter
1652 * enough to care. What we do want is for this
1653 * page to have PageReclaim set next time memcg
1654 * reclaim reaches the tests above, so it will
1655 * then wait_on_page_writeback() to avoid OOM;
1656 * and it's also appropriate in global reclaim.
1657 */
1658 SetPageReclaim(page);
060f005f 1659 stat->nr_writeback++;
c55e8d03 1660 goto activate_locked;
283aba9f
MG
1661
1662 /* Case 3 above */
1663 } else {
7fadc820 1664 unlock_page(page);
283aba9f 1665 wait_on_page_writeback(page);
7fadc820
HD
1666 /* then go back and try same page again */
1667 list_add_tail(&page->lru, page_list);
1668 continue;
e62e384e 1669 }
c661b078 1670 }
1da177e4 1671
8940b34a 1672 if (!ignore_references)
02c6de8d
MK
1673 references = page_check_references(page, sc);
1674
dfc8d636
JW
1675 switch (references) {
1676 case PAGEREF_ACTIVATE:
1da177e4 1677 goto activate_locked;
64574746 1678 case PAGEREF_KEEP:
98879b3b 1679 stat->nr_ref_keep += nr_pages;
64574746 1680 goto keep_locked;
dfc8d636
JW
1681 case PAGEREF_RECLAIM:
1682 case PAGEREF_RECLAIM_CLEAN:
1683 ; /* try to reclaim the page below */
1684 }
1da177e4 1685
26aa2d19
DH
1686 /*
1687 * Before reclaiming the page, try to relocate
1688 * its contents to another node.
1689 */
1690 if (do_demote_pass &&
1691 (thp_migration_supported() || !PageTransHuge(page))) {
1692 list_add(&page->lru, &demote_pages);
1693 unlock_page(page);
1694 continue;
1695 }
1696
1da177e4
LT
1697 /*
1698 * Anonymous process memory has backing store?
1699 * Try to allocate it some swap space here.
802a3a92 1700 * Lazyfree page could be freed directly
1da177e4 1701 */
bd4c82c2
HY
1702 if (PageAnon(page) && PageSwapBacked(page)) {
1703 if (!PageSwapCache(page)) {
1704 if (!(sc->gfp_mask & __GFP_IO))
1705 goto keep_locked;
feb889fb
LT
1706 if (page_maybe_dma_pinned(page))
1707 goto keep_locked;
bd4c82c2
HY
1708 if (PageTransHuge(page)) {
1709 /* cannot split THP, skip it */
1710 if (!can_split_huge_page(page, NULL))
1711 goto activate_locked;
1712 /*
1713 * Split pages without a PMD map right
1714 * away. Chances are some or all of the
1715 * tail pages can be freed without IO.
1716 */
1717 if (!compound_mapcount(page) &&
1718 split_huge_page_to_list(page,
1719 page_list))
1720 goto activate_locked;
1721 }
1722 if (!add_to_swap(page)) {
1723 if (!PageTransHuge(page))
98879b3b 1724 goto activate_locked_split;
bd4c82c2
HY
1725 /* Fallback to swap normal pages */
1726 if (split_huge_page_to_list(page,
1727 page_list))
1728 goto activate_locked;
fe490cc0
HY
1729#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1730 count_vm_event(THP_SWPOUT_FALLBACK);
1731#endif
bd4c82c2 1732 if (!add_to_swap(page))
98879b3b 1733 goto activate_locked_split;
bd4c82c2 1734 }
0f074658 1735
4b793062 1736 may_enter_fs = true;
1da177e4 1737
bd4c82c2
HY
1738 /* Adding to swap updated mapping */
1739 mapping = page_mapping(page);
1740 }
7751b2da
KS
1741 } else if (unlikely(PageTransHuge(page))) {
1742 /* Split file THP */
1743 if (split_huge_page_to_list(page, page_list))
1744 goto keep_locked;
e2be15f6 1745 }
1da177e4 1746
98879b3b
YS
1747 /*
1748 * THP may get split above, need minus tail pages and update
1749 * nr_pages to avoid accounting tail pages twice.
1750 *
1751 * The tail pages that are added into swap cache successfully
1752 * reach here.
1753 */
1754 if ((nr_pages > 1) && !PageTransHuge(page)) {
1755 sc->nr_scanned -= (nr_pages - 1);
1756 nr_pages = 1;
1757 }
1758
1da177e4
LT
1759 /*
1760 * The page is mapped into the page tables of one or more
1761 * processes. Try to unmap it here.
1762 */
802a3a92 1763 if (page_mapped(page)) {
013339df 1764 enum ttu_flags flags = TTU_BATCH_FLUSH;
1f318a9b 1765 bool was_swapbacked = PageSwapBacked(page);
bd4c82c2
HY
1766
1767 if (unlikely(PageTransHuge(page)))
1768 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1769
1fb08ac6
YS
1770 try_to_unmap(page, flags);
1771 if (page_mapped(page)) {
98879b3b 1772 stat->nr_unmap_fail += nr_pages;
1f318a9b
JK
1773 if (!was_swapbacked && PageSwapBacked(page))
1774 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1775 goto activate_locked;
1da177e4
LT
1776 }
1777 }
1778
1779 if (PageDirty(page)) {
ee72886d 1780 /*
4eda4823
JW
1781 * Only kswapd can writeback filesystem pages
1782 * to avoid risk of stack overflow. But avoid
1783 * injecting inefficient single-page IO into
1784 * flusher writeback as much as possible: only
1785 * write pages when we've encountered many
1786 * dirty pages, and when we've already scanned
1787 * the rest of the LRU for clean pages and see
1788 * the same dirty pages again (PageReclaim).
ee72886d 1789 */
9de4f22a 1790 if (page_is_file_lru(page) &&
4eda4823
JW
1791 (!current_is_kswapd() || !PageReclaim(page) ||
1792 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1793 /*
1794 * Immediately reclaim when written back.
1795 * Similar in principal to deactivate_page()
1796 * except we already have the page isolated
1797 * and know it's dirty
1798 */
c4a25635 1799 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1800 SetPageReclaim(page);
1801
c55e8d03 1802 goto activate_locked;
ee72886d
MG
1803 }
1804
dfc8d636 1805 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1806 goto keep_locked;
4dd4b920 1807 if (!may_enter_fs)
1da177e4 1808 goto keep_locked;
52a8363e 1809 if (!sc->may_writepage)
1da177e4
LT
1810 goto keep_locked;
1811
d950c947
MG
1812 /*
1813 * Page is dirty. Flush the TLB if a writable entry
1814 * potentially exists to avoid CPU writes after IO
1815 * starts and then write it out here.
1816 */
1817 try_to_unmap_flush_dirty();
cb16556d 1818 switch (pageout(page, mapping)) {
1da177e4
LT
1819 case PAGE_KEEP:
1820 goto keep_locked;
1821 case PAGE_ACTIVATE:
1822 goto activate_locked;
1823 case PAGE_SUCCESS:
6c357848 1824 stat->nr_pageout += thp_nr_pages(page);
96f8bf4f 1825
7d3579e8 1826 if (PageWriteback(page))
41ac1999 1827 goto keep;
7d3579e8 1828 if (PageDirty(page))
1da177e4 1829 goto keep;
7d3579e8 1830
1da177e4
LT
1831 /*
1832 * A synchronous write - probably a ramdisk. Go
1833 * ahead and try to reclaim the page.
1834 */
529ae9aa 1835 if (!trylock_page(page))
1da177e4
LT
1836 goto keep;
1837 if (PageDirty(page) || PageWriteback(page))
1838 goto keep_locked;
1839 mapping = page_mapping(page);
01359eb2 1840 fallthrough;
1da177e4
LT
1841 case PAGE_CLEAN:
1842 ; /* try to free the page below */
1843 }
1844 }
1845
1846 /*
1847 * If the page has buffers, try to free the buffer mappings
1848 * associated with this page. If we succeed we try to free
1849 * the page as well.
1850 *
1851 * We do this even if the page is PageDirty().
1852 * try_to_release_page() does not perform I/O, but it is
1853 * possible for a page to have PageDirty set, but it is actually
1854 * clean (all its buffers are clean). This happens if the
1855 * buffers were written out directly, with submit_bh(). ext3
894bc310 1856 * will do this, as well as the blockdev mapping.
1da177e4
LT
1857 * try_to_release_page() will discover that cleanness and will
1858 * drop the buffers and mark the page clean - it can be freed.
1859 *
1860 * Rarely, pages can have buffers and no ->mapping. These are
1861 * the pages which were not successfully invalidated in
d12b8951 1862 * truncate_cleanup_page(). We try to drop those buffers here
1da177e4
LT
1863 * and if that worked, and the page is no longer mapped into
1864 * process address space (page_count == 1) it can be freed.
1865 * Otherwise, leave the page on the LRU so it is swappable.
1866 */
266cf658 1867 if (page_has_private(page)) {
1da177e4
LT
1868 if (!try_to_release_page(page, sc->gfp_mask))
1869 goto activate_locked;
e286781d
NP
1870 if (!mapping && page_count(page) == 1) {
1871 unlock_page(page);
1872 if (put_page_testzero(page))
1873 goto free_it;
1874 else {
1875 /*
1876 * rare race with speculative reference.
1877 * the speculative reference will free
1878 * this page shortly, so we may
1879 * increment nr_reclaimed here (and
1880 * leave it off the LRU).
1881 */
1882 nr_reclaimed++;
1883 continue;
1884 }
1885 }
1da177e4
LT
1886 }
1887
802a3a92
SL
1888 if (PageAnon(page) && !PageSwapBacked(page)) {
1889 /* follow __remove_mapping for reference */
1890 if (!page_ref_freeze(page, 1))
1891 goto keep_locked;
d17be2d9
ML
1892 /*
1893 * The page has only one reference left, which is
1894 * from the isolation. After the caller puts the
1895 * page back on lru and drops the reference, the
1896 * page will be freed anyway. It doesn't matter
1897 * which lru it goes. So we don't bother checking
1898 * PageDirty here.
1899 */
802a3a92 1900 count_vm_event(PGLAZYFREED);
2262185c 1901 count_memcg_page_event(page, PGLAZYFREED);
be7c07d6 1902 } else if (!mapping || !__remove_mapping(mapping, folio, true,
b910718a 1903 sc->target_mem_cgroup))
802a3a92 1904 goto keep_locked;
9a1ea439
HD
1905
1906 unlock_page(page);
e286781d 1907free_it:
98879b3b
YS
1908 /*
1909 * THP may get swapped out in a whole, need account
1910 * all base pages.
1911 */
1912 nr_reclaimed += nr_pages;
abe4c3b5
MG
1913
1914 /*
1915 * Is there need to periodically free_page_list? It would
1916 * appear not as the counts should be low
1917 */
7ae88534 1918 if (unlikely(PageTransHuge(page)))
ff45fc3c 1919 destroy_compound_page(page);
7ae88534 1920 else
bd4c82c2 1921 list_add(&page->lru, &free_pages);
1da177e4
LT
1922 continue;
1923
98879b3b
YS
1924activate_locked_split:
1925 /*
1926 * The tail pages that are failed to add into swap cache
1927 * reach here. Fixup nr_scanned and nr_pages.
1928 */
1929 if (nr_pages > 1) {
1930 sc->nr_scanned -= (nr_pages - 1);
1931 nr_pages = 1;
1932 }
1da177e4 1933activate_locked:
68a22394 1934 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1935 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1936 PageMlocked(page)))
a2c43eed 1937 try_to_free_swap(page);
309381fe 1938 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1939 if (!PageMlocked(page)) {
9de4f22a 1940 int type = page_is_file_lru(page);
ad6b6704 1941 SetPageActive(page);
98879b3b 1942 stat->nr_activate[type] += nr_pages;
2262185c 1943 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1944 }
1da177e4
LT
1945keep_locked:
1946 unlock_page(page);
1947keep:
1948 list_add(&page->lru, &ret_pages);
309381fe 1949 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1950 }
26aa2d19
DH
1951 /* 'page_list' is always empty here */
1952
1953 /* Migrate pages selected for demotion */
1954 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1955 /* Pages that could not be demoted are still in @demote_pages */
1956 if (!list_empty(&demote_pages)) {
1957 /* Pages which failed to demoted go back on @page_list for retry: */
1958 list_splice_init(&demote_pages, page_list);
1959 do_demote_pass = false;
1960 goto retry;
1961 }
abe4c3b5 1962
98879b3b
YS
1963 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1964
747db954 1965 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1966 try_to_unmap_flush();
2d4894b5 1967 free_unref_page_list(&free_pages);
abe4c3b5 1968
1da177e4 1969 list_splice(&ret_pages, page_list);
886cf190 1970 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1971
05ff5137 1972 return nr_reclaimed;
1da177e4
LT
1973}
1974
730ec8c0 1975unsigned int reclaim_clean_pages_from_list(struct zone *zone,
02c6de8d
MK
1976 struct list_head *page_list)
1977{
1978 struct scan_control sc = {
1979 .gfp_mask = GFP_KERNEL,
02c6de8d
MK
1980 .may_unmap = 1,
1981 };
1f318a9b 1982 struct reclaim_stat stat;
730ec8c0 1983 unsigned int nr_reclaimed;
02c6de8d
MK
1984 struct page *page, *next;
1985 LIST_HEAD(clean_pages);
2d2b8d2b 1986 unsigned int noreclaim_flag;
02c6de8d
MK
1987
1988 list_for_each_entry_safe(page, next, page_list, lru) {
ae37c7ff
OS
1989 if (!PageHuge(page) && page_is_file_lru(page) &&
1990 !PageDirty(page) && !__PageMovable(page) &&
1991 !PageUnevictable(page)) {
02c6de8d
MK
1992 ClearPageActive(page);
1993 list_move(&page->lru, &clean_pages);
1994 }
1995 }
1996
2d2b8d2b
YZ
1997 /*
1998 * We should be safe here since we are only dealing with file pages and
1999 * we are not kswapd and therefore cannot write dirty file pages. But
2000 * call memalloc_noreclaim_save() anyway, just in case these conditions
2001 * change in the future.
2002 */
2003 noreclaim_flag = memalloc_noreclaim_save();
1f318a9b 2004 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
013339df 2005 &stat, true);
2d2b8d2b
YZ
2006 memalloc_noreclaim_restore(noreclaim_flag);
2007
02c6de8d 2008 list_splice(&clean_pages, page_list);
2da9f630
NP
2009 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2010 -(long)nr_reclaimed);
1f318a9b
JK
2011 /*
2012 * Since lazyfree pages are isolated from file LRU from the beginning,
2013 * they will rotate back to anonymous LRU in the end if it failed to
2014 * discard so isolated count will be mismatched.
2015 * Compensate the isolated count for both LRU lists.
2016 */
2017 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2018 stat.nr_lazyfree_fail);
2019 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 2020 -(long)stat.nr_lazyfree_fail);
1f318a9b 2021 return nr_reclaimed;
02c6de8d
MK
2022}
2023
5ad333eb
AW
2024/*
2025 * Attempt to remove the specified page from its LRU. Only take this page
2026 * if it is of the appropriate PageActive status. Pages which are being
2027 * freed elsewhere are also ignored.
2028 *
2029 * page: page to consider
2030 * mode: one of the LRU isolation modes defined above
2031 *
c2135f7c 2032 * returns true on success, false on failure.
5ad333eb 2033 */
c2135f7c 2034bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
5ad333eb 2035{
5ad333eb
AW
2036 /* Only take pages on the LRU. */
2037 if (!PageLRU(page))
c2135f7c 2038 return false;
5ad333eb 2039
e46a2879
MK
2040 /* Compaction should not handle unevictable pages but CMA can do so */
2041 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
c2135f7c 2042 return false;
894bc310 2043
c8244935
MG
2044 /*
2045 * To minimise LRU disruption, the caller can indicate that it only
2046 * wants to isolate pages it will be able to operate on without
2047 * blocking - clean pages for the most part.
2048 *
c8244935
MG
2049 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
2050 * that it is possible to migrate without blocking
2051 */
1276ad68 2052 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
2053 /* All the caller can do on PageWriteback is block */
2054 if (PageWriteback(page))
c2135f7c 2055 return false;
c8244935
MG
2056
2057 if (PageDirty(page)) {
2058 struct address_space *mapping;
69d763fc 2059 bool migrate_dirty;
c8244935 2060
c8244935
MG
2061 /*
2062 * Only pages without mappings or that have a
2063 * ->migratepage callback are possible to migrate
69d763fc
MG
2064 * without blocking. However, we can be racing with
2065 * truncation so it's necessary to lock the page
2066 * to stabilise the mapping as truncation holds
2067 * the page lock until after the page is removed
2068 * from the page cache.
c8244935 2069 */
69d763fc 2070 if (!trylock_page(page))
c2135f7c 2071 return false;
69d763fc 2072
c8244935 2073 mapping = page_mapping(page);
145e1a71 2074 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
2075 unlock_page(page);
2076 if (!migrate_dirty)
c2135f7c 2077 return false;
c8244935
MG
2078 }
2079 }
39deaf85 2080
f80c0673 2081 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
c2135f7c 2082 return false;
f80c0673 2083
c2135f7c 2084 return true;
5ad333eb
AW
2085}
2086
7ee36a14
MG
2087/*
2088 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 2089 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
2090 */
2091static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 2092 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 2093{
7ee36a14
MG
2094 int zid;
2095
7ee36a14
MG
2096 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2097 if (!nr_zone_taken[zid])
2098 continue;
2099
a892cb6b 2100 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
2101 }
2102
7ee36a14
MG
2103}
2104
f611fab7 2105/*
15b44736
HD
2106 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2107 *
2108 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
2109 * shrink the lists perform better by taking out a batch of pages
2110 * and working on them outside the LRU lock.
2111 *
2112 * For pagecache intensive workloads, this function is the hottest
2113 * spot in the kernel (apart from copy_*_user functions).
2114 *
15b44736 2115 * Lru_lock must be held before calling this function.
1da177e4 2116 *
791b48b6 2117 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 2118 * @lruvec: The LRU vector to pull pages from.
1da177e4 2119 * @dst: The temp list to put pages on to.
f626012d 2120 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 2121 * @sc: The scan_control struct for this reclaim session
3cb99451 2122 * @lru: LRU list id for isolating
1da177e4
LT
2123 *
2124 * returns how many pages were moved onto *@dst.
2125 */
69e05944 2126static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 2127 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 2128 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 2129 enum lru_list lru)
1da177e4 2130{
75b00af7 2131 struct list_head *src = &lruvec->lists[lru];
69e05944 2132 unsigned long nr_taken = 0;
599d0c95 2133 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 2134 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 2135 unsigned long skipped = 0;
791b48b6 2136 unsigned long scan, total_scan, nr_pages;
b2e18757 2137 LIST_HEAD(pages_skipped);
a9e7c39f 2138 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 2139
98879b3b 2140 total_scan = 0;
791b48b6 2141 scan = 0;
98879b3b 2142 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 2143 struct page *page;
5ad333eb 2144
1da177e4
LT
2145 page = lru_to_page(src);
2146 prefetchw_prev_lru_page(page, src, flags);
2147
d8c6546b 2148 nr_pages = compound_nr(page);
98879b3b
YS
2149 total_scan += nr_pages;
2150
b2e18757
MG
2151 if (page_zonenum(page) > sc->reclaim_idx) {
2152 list_move(&page->lru, &pages_skipped);
98879b3b 2153 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
2154 continue;
2155 }
2156
791b48b6
MK
2157 /*
2158 * Do not count skipped pages because that makes the function
2159 * return with no isolated pages if the LRU mostly contains
2160 * ineligible pages. This causes the VM to not reclaim any
2161 * pages, triggering a premature OOM.
98879b3b
YS
2162 *
2163 * Account all tail pages of THP. This would not cause
2164 * premature OOM since __isolate_lru_page() returns -EBUSY
2165 * only when the page is being freed somewhere else.
791b48b6 2166 */
98879b3b 2167 scan += nr_pages;
c2135f7c
AS
2168 if (!__isolate_lru_page_prepare(page, mode)) {
2169 /* It is being freed elsewhere */
2170 list_move(&page->lru, src);
2171 continue;
2172 }
2173 /*
2174 * Be careful not to clear PageLRU until after we're
2175 * sure the page is not being freed elsewhere -- the
2176 * page release code relies on it.
2177 */
2178 if (unlikely(!get_page_unless_zero(page))) {
2179 list_move(&page->lru, src);
2180 continue;
2181 }
5ad333eb 2182
c2135f7c
AS
2183 if (!TestClearPageLRU(page)) {
2184 /* Another thread is already isolating this page */
2185 put_page(page);
5ad333eb 2186 list_move(&page->lru, src);
c2135f7c 2187 continue;
5ad333eb 2188 }
c2135f7c
AS
2189
2190 nr_taken += nr_pages;
2191 nr_zone_taken[page_zonenum(page)] += nr_pages;
2192 list_move(&page->lru, dst);
1da177e4
LT
2193 }
2194
b2e18757
MG
2195 /*
2196 * Splice any skipped pages to the start of the LRU list. Note that
2197 * this disrupts the LRU order when reclaiming for lower zones but
2198 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2199 * scanning would soon rescan the same pages to skip and put the
2200 * system at risk of premature OOM.
2201 */
7cc30fcf
MG
2202 if (!list_empty(&pages_skipped)) {
2203 int zid;
2204
3db65812 2205 list_splice(&pages_skipped, src);
7cc30fcf
MG
2206 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2207 if (!nr_skipped[zid])
2208 continue;
2209
2210 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 2211 skipped += nr_skipped[zid];
7cc30fcf
MG
2212 }
2213 }
791b48b6 2214 *nr_scanned = total_scan;
1265e3a6 2215 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 2216 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 2217 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
2218 return nr_taken;
2219}
2220
62695a84 2221/**
d1d8a3b4
MWO
2222 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2223 * @folio: Folio to isolate from its LRU list.
62695a84 2224 *
d1d8a3b4
MWO
2225 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2226 * corresponding to whatever LRU list the folio was on.
62695a84 2227 *
d1d8a3b4
MWO
2228 * The folio will have its LRU flag cleared. If it was found on the
2229 * active list, it will have the Active flag set. If it was found on the
2230 * unevictable list, it will have the Unevictable flag set. These flags
894bc310 2231 * may need to be cleared by the caller before letting the page go.
62695a84 2232 *
d1d8a3b4 2233 * Context:
a5d09bed 2234 *
62695a84 2235 * (1) Must be called with an elevated refcount on the page. This is a
d1d8a3b4 2236 * fundamental difference from isolate_lru_pages() (which is called
62695a84 2237 * without a stable reference).
d1d8a3b4
MWO
2238 * (2) The lru_lock must not be held.
2239 * (3) Interrupts must be enabled.
2240 *
2241 * Return: 0 if the folio was removed from an LRU list.
2242 * -EBUSY if the folio was not on an LRU list.
62695a84 2243 */
d1d8a3b4 2244int folio_isolate_lru(struct folio *folio)
62695a84
NP
2245{
2246 int ret = -EBUSY;
2247
d1d8a3b4 2248 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
0c917313 2249
d1d8a3b4 2250 if (folio_test_clear_lru(folio)) {
fa9add64 2251 struct lruvec *lruvec;
62695a84 2252
d1d8a3b4 2253 folio_get(folio);
e809c3fe 2254 lruvec = folio_lruvec_lock_irq(folio);
d1d8a3b4 2255 lruvec_del_folio(lruvec, folio);
6168d0da 2256 unlock_page_lruvec_irq(lruvec);
d25b5bd8 2257 ret = 0;
62695a84 2258 }
d25b5bd8 2259
62695a84
NP
2260 return ret;
2261}
2262
35cd7815 2263/*
d37dd5dc 2264 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 2265 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
2266 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2267 * the LRU list will go small and be scanned faster than necessary, leading to
2268 * unnecessary swapping, thrashing and OOM.
35cd7815 2269 */
599d0c95 2270static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
2271 struct scan_control *sc)
2272{
2273 unsigned long inactive, isolated;
d818fca1 2274 bool too_many;
35cd7815
RR
2275
2276 if (current_is_kswapd())
2277 return 0;
2278
b5ead35e 2279 if (!writeback_throttling_sane(sc))
35cd7815
RR
2280 return 0;
2281
2282 if (file) {
599d0c95
MG
2283 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2284 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 2285 } else {
599d0c95
MG
2286 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2287 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
2288 }
2289
3cf23841
FW
2290 /*
2291 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2292 * won't get blocked by normal direct-reclaimers, forming a circular
2293 * deadlock.
2294 */
d0164adc 2295 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2296 inactive >>= 3;
2297
d818fca1
MG
2298 too_many = isolated > inactive;
2299
2300 /* Wake up tasks throttled due to too_many_isolated. */
2301 if (!too_many)
2302 wake_throttle_isolated(pgdat);
2303
2304 return too_many;
35cd7815
RR
2305}
2306
a222f341 2307/*
15b44736
HD
2308 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2309 * On return, @list is reused as a list of pages to be freed by the caller.
a222f341
KT
2310 *
2311 * Returns the number of pages moved to the given lruvec.
2312 */
9ef56b78
MS
2313static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2314 struct list_head *list)
66635629 2315{
a222f341 2316 int nr_pages, nr_moved = 0;
3f79768f 2317 LIST_HEAD(pages_to_free);
a222f341 2318 struct page *page;
66635629 2319
a222f341
KT
2320 while (!list_empty(list)) {
2321 page = lru_to_page(list);
309381fe 2322 VM_BUG_ON_PAGE(PageLRU(page), page);
3d06afab 2323 list_del(&page->lru);
39b5f29a 2324 if (unlikely(!page_evictable(page))) {
6168d0da 2325 spin_unlock_irq(&lruvec->lru_lock);
66635629 2326 putback_lru_page(page);
6168d0da 2327 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2328 continue;
2329 }
fa9add64 2330
3d06afab
AS
2331 /*
2332 * The SetPageLRU needs to be kept here for list integrity.
2333 * Otherwise:
2334 * #0 move_pages_to_lru #1 release_pages
2335 * if !put_page_testzero
2336 * if (put_page_testzero())
2337 * !PageLRU //skip lru_lock
2338 * SetPageLRU()
2339 * list_add(&page->lru,)
2340 * list_add(&page->lru,)
2341 */
7a608572 2342 SetPageLRU(page);
a222f341 2343
3d06afab 2344 if (unlikely(put_page_testzero(page))) {
87560179 2345 __clear_page_lru_flags(page);
2bcf8879
HD
2346
2347 if (unlikely(PageCompound(page))) {
6168d0da 2348 spin_unlock_irq(&lruvec->lru_lock);
ff45fc3c 2349 destroy_compound_page(page);
6168d0da 2350 spin_lock_irq(&lruvec->lru_lock);
2bcf8879
HD
2351 } else
2352 list_add(&page->lru, &pages_to_free);
3d06afab
AS
2353
2354 continue;
66635629 2355 }
3d06afab 2356
afca9157
AS
2357 /*
2358 * All pages were isolated from the same lruvec (and isolation
2359 * inhibits memcg migration).
2360 */
0de340cb 2361 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
3a9c9788 2362 add_page_to_lru_list(page, lruvec);
3d06afab 2363 nr_pages = thp_nr_pages(page);
3d06afab
AS
2364 nr_moved += nr_pages;
2365 if (PageActive(page))
2366 workingset_age_nonresident(lruvec, nr_pages);
66635629 2367 }
66635629 2368
3f79768f
HD
2369 /*
2370 * To save our caller's stack, now use input list for pages to free.
2371 */
a222f341
KT
2372 list_splice(&pages_to_free, list);
2373
2374 return nr_moved;
66635629
MG
2375}
2376
399ba0b9
N
2377/*
2378 * If a kernel thread (such as nfsd for loop-back mounts) services
a37b0715 2379 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
399ba0b9
N
2380 * In that case we should only throttle if the backing device it is
2381 * writing to is congested. In other cases it is safe to throttle.
2382 */
2383static int current_may_throttle(void)
2384{
a37b0715 2385 return !(current->flags & PF_LOCAL_THROTTLE) ||
399ba0b9
N
2386 current->backing_dev_info == NULL ||
2387 bdi_write_congested(current->backing_dev_info);
2388}
2389
1da177e4 2390/*
b2e18757 2391 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2392 * of reclaimed pages
1da177e4 2393 */
9ef56b78 2394static unsigned long
1a93be0e 2395shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 2396 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
2397{
2398 LIST_HEAD(page_list);
e247dbce 2399 unsigned long nr_scanned;
730ec8c0 2400 unsigned int nr_reclaimed = 0;
e247dbce 2401 unsigned long nr_taken;
060f005f 2402 struct reclaim_stat stat;
497a6c1b 2403 bool file = is_file_lru(lru);
f46b7912 2404 enum vm_event_item item;
599d0c95 2405 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2406 bool stalled = false;
78dc583d 2407
599d0c95 2408 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2409 if (stalled)
2410 return 0;
2411
2412 /* wait a bit for the reclaimer. */
db73ee0d 2413 stalled = true;
c3f4a9a2 2414 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
35cd7815
RR
2415
2416 /* We are about to die and free our memory. Return now. */
2417 if (fatal_signal_pending(current))
2418 return SWAP_CLUSTER_MAX;
2419 }
2420
1da177e4 2421 lru_add_drain();
f80c0673 2422
6168d0da 2423 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2424
5dc35979 2425 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 2426 &nr_scanned, sc, lru);
95d918fc 2427
599d0c95 2428 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2429 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2430 if (!cgroup_reclaim(sc))
f46b7912
KT
2431 __count_vm_events(item, nr_scanned);
2432 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2433 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2434
6168d0da 2435 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2436
d563c050 2437 if (nr_taken == 0)
66635629 2438 return 0;
5ad333eb 2439
013339df 2440 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 2441
6168d0da 2442 spin_lock_irq(&lruvec->lru_lock);
497a6c1b
JW
2443 move_pages_to_lru(lruvec, &page_list);
2444
2445 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2446 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2447 if (!cgroup_reclaim(sc))
f46b7912
KT
2448 __count_vm_events(item, nr_reclaimed);
2449 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2450 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2451 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2452
75cc3c91 2453 lru_note_cost(lruvec, file, stat.nr_pageout);
747db954 2454 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2455 free_unref_page_list(&page_list);
e11da5b4 2456
1c610d5f
AR
2457 /*
2458 * If dirty pages are scanned that are not queued for IO, it
2459 * implies that flushers are not doing their job. This can
2460 * happen when memory pressure pushes dirty pages to the end of
2461 * the LRU before the dirty limits are breached and the dirty
2462 * data has expired. It can also happen when the proportion of
2463 * dirty pages grows not through writes but through memory
2464 * pressure reclaiming all the clean cache. And in some cases,
2465 * the flushers simply cannot keep up with the allocation
2466 * rate. Nudge the flusher threads in case they are asleep.
2467 */
2468 if (stat.nr_unqueued_dirty == nr_taken)
2469 wakeup_flusher_threads(WB_REASON_VMSCAN);
2470
d108c772
AR
2471 sc->nr.dirty += stat.nr_dirty;
2472 sc->nr.congested += stat.nr_congested;
2473 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2474 sc->nr.writeback += stat.nr_writeback;
2475 sc->nr.immediate += stat.nr_immediate;
2476 sc->nr.taken += nr_taken;
2477 if (file)
2478 sc->nr.file_taken += nr_taken;
8e950282 2479
599d0c95 2480 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2481 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2482 return nr_reclaimed;
1da177e4
LT
2483}
2484
15b44736
HD
2485/*
2486 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2487 *
2488 * We move them the other way if the page is referenced by one or more
2489 * processes.
2490 *
2491 * If the pages are mostly unmapped, the processing is fast and it is
2492 * appropriate to hold lru_lock across the whole operation. But if
2493 * the pages are mapped, the processing is slow (page_referenced()), so
2494 * we should drop lru_lock around each page. It's impossible to balance
2495 * this, so instead we remove the pages from the LRU while processing them.
2496 * It is safe to rely on PG_active against the non-LRU pages in here because
2497 * nobody will play with that bit on a non-LRU page.
2498 *
2499 * The downside is that we have to touch page->_refcount against each page.
2500 * But we had to alter page->flags anyway.
2501 */
f626012d 2502static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2503 struct lruvec *lruvec,
f16015fb 2504 struct scan_control *sc,
9e3b2f8c 2505 enum lru_list lru)
1da177e4 2506{
44c241f1 2507 unsigned long nr_taken;
f626012d 2508 unsigned long nr_scanned;
6fe6b7e3 2509 unsigned long vm_flags;
1da177e4 2510 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2511 LIST_HEAD(l_active);
b69408e8 2512 LIST_HEAD(l_inactive);
1da177e4 2513 struct page *page;
9d998b4f
MH
2514 unsigned nr_deactivate, nr_activate;
2515 unsigned nr_rotated = 0;
3cb99451 2516 int file = is_file_lru(lru);
599d0c95 2517 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2518
2519 lru_add_drain();
f80c0673 2520
6168d0da 2521 spin_lock_irq(&lruvec->lru_lock);
925b7673 2522
5dc35979 2523 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2524 &nr_scanned, sc, lru);
89b5fae5 2525
599d0c95 2526 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2527
912c0572
SB
2528 if (!cgroup_reclaim(sc))
2529 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2530 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2531
6168d0da 2532 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2533
1da177e4
LT
2534 while (!list_empty(&l_hold)) {
2535 cond_resched();
2536 page = lru_to_page(&l_hold);
2537 list_del(&page->lru);
7e9cd484 2538
39b5f29a 2539 if (unlikely(!page_evictable(page))) {
894bc310
LS
2540 putback_lru_page(page);
2541 continue;
2542 }
2543
cc715d99
MG
2544 if (unlikely(buffer_heads_over_limit)) {
2545 if (page_has_private(page) && trylock_page(page)) {
2546 if (page_has_private(page))
2547 try_to_release_page(page, 0);
2548 unlock_page(page);
2549 }
2550 }
2551
c3ac9a8a
JW
2552 if (page_referenced(page, 0, sc->target_mem_cgroup,
2553 &vm_flags)) {
8cab4754
WF
2554 /*
2555 * Identify referenced, file-backed active pages and
2556 * give them one more trip around the active list. So
2557 * that executable code get better chances to stay in
2558 * memory under moderate memory pressure. Anon pages
2559 * are not likely to be evicted by use-once streaming
2560 * IO, plus JVM can create lots of anon VM_EXEC pages,
2561 * so we ignore them here.
2562 */
9de4f22a 2563 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
6c357848 2564 nr_rotated += thp_nr_pages(page);
8cab4754
WF
2565 list_add(&page->lru, &l_active);
2566 continue;
2567 }
2568 }
7e9cd484 2569
5205e56e 2570 ClearPageActive(page); /* we are de-activating */
1899ad18 2571 SetPageWorkingset(page);
1da177e4
LT
2572 list_add(&page->lru, &l_inactive);
2573 }
2574
b555749a 2575 /*
8cab4754 2576 * Move pages back to the lru list.
b555749a 2577 */
6168d0da 2578 spin_lock_irq(&lruvec->lru_lock);
556adecb 2579
a222f341
KT
2580 nr_activate = move_pages_to_lru(lruvec, &l_active);
2581 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2582 /* Keep all free pages in l_active list */
2583 list_splice(&l_inactive, &l_active);
9851ac13
KT
2584
2585 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2586 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2587
599d0c95 2588 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2589 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2590
f372d89e
KT
2591 mem_cgroup_uncharge_list(&l_active);
2592 free_unref_page_list(&l_active);
9d998b4f
MH
2593 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2594 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2595}
2596
1a4e58cc
MK
2597unsigned long reclaim_pages(struct list_head *page_list)
2598{
f661d007 2599 int nid = NUMA_NO_NODE;
730ec8c0 2600 unsigned int nr_reclaimed = 0;
1a4e58cc
MK
2601 LIST_HEAD(node_page_list);
2602 struct reclaim_stat dummy_stat;
2603 struct page *page;
2d2b8d2b 2604 unsigned int noreclaim_flag;
1a4e58cc
MK
2605 struct scan_control sc = {
2606 .gfp_mask = GFP_KERNEL,
1a4e58cc
MK
2607 .may_writepage = 1,
2608 .may_unmap = 1,
2609 .may_swap = 1,
26aa2d19 2610 .no_demotion = 1,
1a4e58cc
MK
2611 };
2612
2d2b8d2b
YZ
2613 noreclaim_flag = memalloc_noreclaim_save();
2614
1a4e58cc
MK
2615 while (!list_empty(page_list)) {
2616 page = lru_to_page(page_list);
f661d007 2617 if (nid == NUMA_NO_NODE) {
1a4e58cc
MK
2618 nid = page_to_nid(page);
2619 INIT_LIST_HEAD(&node_page_list);
2620 }
2621
2622 if (nid == page_to_nid(page)) {
2623 ClearPageActive(page);
2624 list_move(&page->lru, &node_page_list);
2625 continue;
2626 }
2627
2628 nr_reclaimed += shrink_page_list(&node_page_list,
2629 NODE_DATA(nid),
013339df 2630 &sc, &dummy_stat, false);
1a4e58cc
MK
2631 while (!list_empty(&node_page_list)) {
2632 page = lru_to_page(&node_page_list);
2633 list_del(&page->lru);
2634 putback_lru_page(page);
2635 }
2636
f661d007 2637 nid = NUMA_NO_NODE;
1a4e58cc
MK
2638 }
2639
2640 if (!list_empty(&node_page_list)) {
2641 nr_reclaimed += shrink_page_list(&node_page_list,
2642 NODE_DATA(nid),
013339df 2643 &sc, &dummy_stat, false);
1a4e58cc
MK
2644 while (!list_empty(&node_page_list)) {
2645 page = lru_to_page(&node_page_list);
2646 list_del(&page->lru);
2647 putback_lru_page(page);
2648 }
2649 }
2650
2d2b8d2b
YZ
2651 memalloc_noreclaim_restore(noreclaim_flag);
2652
1a4e58cc
MK
2653 return nr_reclaimed;
2654}
2655
b91ac374
JW
2656static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2657 struct lruvec *lruvec, struct scan_control *sc)
2658{
2659 if (is_active_lru(lru)) {
2660 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2661 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2662 else
2663 sc->skipped_deactivate = 1;
2664 return 0;
2665 }
2666
2667 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2668}
2669
59dc76b0
RR
2670/*
2671 * The inactive anon list should be small enough that the VM never has
2672 * to do too much work.
14797e23 2673 *
59dc76b0
RR
2674 * The inactive file list should be small enough to leave most memory
2675 * to the established workingset on the scan-resistant active list,
2676 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2677 *
59dc76b0
RR
2678 * Both inactive lists should also be large enough that each inactive
2679 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2680 *
2a2e4885
JW
2681 * If that fails and refaulting is observed, the inactive list grows.
2682 *
59dc76b0 2683 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2684 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2685 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2686 *
59dc76b0
RR
2687 * total target max
2688 * memory ratio inactive
2689 * -------------------------------------
2690 * 10MB 1 5MB
2691 * 100MB 1 50MB
2692 * 1GB 3 250MB
2693 * 10GB 10 0.9GB
2694 * 100GB 31 3GB
2695 * 1TB 101 10GB
2696 * 10TB 320 32GB
56e49d21 2697 */
b91ac374 2698static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2699{
b91ac374 2700 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2701 unsigned long inactive, active;
2702 unsigned long inactive_ratio;
59dc76b0 2703 unsigned long gb;
e3790144 2704
b91ac374
JW
2705 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2706 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2707
b91ac374 2708 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2709 if (gb)
b91ac374
JW
2710 inactive_ratio = int_sqrt(10 * gb);
2711 else
2712 inactive_ratio = 1;
fd538803 2713
59dc76b0 2714 return inactive * inactive_ratio < active;
b39415b2
RR
2715}
2716
9a265114
JW
2717enum scan_balance {
2718 SCAN_EQUAL,
2719 SCAN_FRACT,
2720 SCAN_ANON,
2721 SCAN_FILE,
2722};
2723
4f98a2fe
RR
2724/*
2725 * Determine how aggressively the anon and file LRU lists should be
2726 * scanned. The relative value of each set of LRU lists is determined
2727 * by looking at the fraction of the pages scanned we did rotate back
2728 * onto the active list instead of evict.
2729 *
be7bd59d
WL
2730 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2731 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2732 */
afaf07a6
JW
2733static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2734 unsigned long *nr)
4f98a2fe 2735{
a2a36488 2736 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
afaf07a6 2737 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2738 unsigned long anon_cost, file_cost, total_cost;
33377678 2739 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2740 u64 fraction[ANON_AND_FILE];
9a265114 2741 u64 denominator = 0; /* gcc */
9a265114 2742 enum scan_balance scan_balance;
4f98a2fe 2743 unsigned long ap, fp;
4111304d 2744 enum lru_list lru;
76a33fc3
SL
2745
2746 /* If we have no swap space, do not bother scanning anon pages. */
a2a36488 2747 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
9a265114 2748 scan_balance = SCAN_FILE;
76a33fc3
SL
2749 goto out;
2750 }
4f98a2fe 2751
10316b31
JW
2752 /*
2753 * Global reclaim will swap to prevent OOM even with no
2754 * swappiness, but memcg users want to use this knob to
2755 * disable swapping for individual groups completely when
2756 * using the memory controller's swap limit feature would be
2757 * too expensive.
2758 */
b5ead35e 2759 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2760 scan_balance = SCAN_FILE;
10316b31
JW
2761 goto out;
2762 }
2763
2764 /*
2765 * Do not apply any pressure balancing cleverness when the
2766 * system is close to OOM, scan both anon and file equally
2767 * (unless the swappiness setting disagrees with swapping).
2768 */
02695175 2769 if (!sc->priority && swappiness) {
9a265114 2770 scan_balance = SCAN_EQUAL;
10316b31
JW
2771 goto out;
2772 }
2773
62376251 2774 /*
53138cea 2775 * If the system is almost out of file pages, force-scan anon.
62376251 2776 */
b91ac374 2777 if (sc->file_is_tiny) {
53138cea
JW
2778 scan_balance = SCAN_ANON;
2779 goto out;
62376251
JW
2780 }
2781
7c5bd705 2782 /*
b91ac374
JW
2783 * If there is enough inactive page cache, we do not reclaim
2784 * anything from the anonymous working right now.
7c5bd705 2785 */
b91ac374 2786 if (sc->cache_trim_mode) {
9a265114 2787 scan_balance = SCAN_FILE;
7c5bd705
JW
2788 goto out;
2789 }
2790
9a265114 2791 scan_balance = SCAN_FRACT;
58c37f6e 2792 /*
314b57fb
JW
2793 * Calculate the pressure balance between anon and file pages.
2794 *
2795 * The amount of pressure we put on each LRU is inversely
2796 * proportional to the cost of reclaiming each list, as
2797 * determined by the share of pages that are refaulting, times
2798 * the relative IO cost of bringing back a swapped out
2799 * anonymous page vs reloading a filesystem page (swappiness).
2800 *
d483a5dd
JW
2801 * Although we limit that influence to ensure no list gets
2802 * left behind completely: at least a third of the pressure is
2803 * applied, before swappiness.
2804 *
314b57fb 2805 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2806 */
d483a5dd
JW
2807 total_cost = sc->anon_cost + sc->file_cost;
2808 anon_cost = total_cost + sc->anon_cost;
2809 file_cost = total_cost + sc->file_cost;
2810 total_cost = anon_cost + file_cost;
58c37f6e 2811
d483a5dd
JW
2812 ap = swappiness * (total_cost + 1);
2813 ap /= anon_cost + 1;
4f98a2fe 2814
d483a5dd
JW
2815 fp = (200 - swappiness) * (total_cost + 1);
2816 fp /= file_cost + 1;
4f98a2fe 2817
76a33fc3
SL
2818 fraction[0] = ap;
2819 fraction[1] = fp;
a4fe1631 2820 denominator = ap + fp;
76a33fc3 2821out:
688035f7
JW
2822 for_each_evictable_lru(lru) {
2823 int file = is_file_lru(lru);
9783aa99 2824 unsigned long lruvec_size;
f56ce412 2825 unsigned long low, min;
688035f7 2826 unsigned long scan;
9783aa99
CD
2827
2828 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
f56ce412
JW
2829 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2830 &min, &low);
9783aa99 2831
f56ce412 2832 if (min || low) {
9783aa99
CD
2833 /*
2834 * Scale a cgroup's reclaim pressure by proportioning
2835 * its current usage to its memory.low or memory.min
2836 * setting.
2837 *
2838 * This is important, as otherwise scanning aggression
2839 * becomes extremely binary -- from nothing as we
2840 * approach the memory protection threshold, to totally
2841 * nominal as we exceed it. This results in requiring
2842 * setting extremely liberal protection thresholds. It
2843 * also means we simply get no protection at all if we
2844 * set it too low, which is not ideal.
1bc63fb1
CD
2845 *
2846 * If there is any protection in place, we reduce scan
2847 * pressure by how much of the total memory used is
2848 * within protection thresholds.
9783aa99 2849 *
9de7ca46
CD
2850 * There is one special case: in the first reclaim pass,
2851 * we skip over all groups that are within their low
2852 * protection. If that fails to reclaim enough pages to
2853 * satisfy the reclaim goal, we come back and override
2854 * the best-effort low protection. However, we still
2855 * ideally want to honor how well-behaved groups are in
2856 * that case instead of simply punishing them all
2857 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2858 * memory they are using, reducing the scan pressure
2859 * again by how much of the total memory used is under
2860 * hard protection.
9783aa99 2861 */
1bc63fb1 2862 unsigned long cgroup_size = mem_cgroup_size(memcg);
f56ce412
JW
2863 unsigned long protection;
2864
2865 /* memory.low scaling, make sure we retry before OOM */
2866 if (!sc->memcg_low_reclaim && low > min) {
2867 protection = low;
2868 sc->memcg_low_skipped = 1;
2869 } else {
2870 protection = min;
2871 }
1bc63fb1
CD
2872
2873 /* Avoid TOCTOU with earlier protection check */
2874 cgroup_size = max(cgroup_size, protection);
2875
2876 scan = lruvec_size - lruvec_size * protection /
32d4f4b7 2877 (cgroup_size + 1);
9783aa99
CD
2878
2879 /*
1bc63fb1 2880 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2881 * reclaim moving forwards, avoiding decrementing
9de7ca46 2882 * sc->priority further than desirable.
9783aa99 2883 */
1bc63fb1 2884 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2885 } else {
2886 scan = lruvec_size;
2887 }
2888
2889 scan >>= sc->priority;
6b4f7799 2890
688035f7
JW
2891 /*
2892 * If the cgroup's already been deleted, make sure to
2893 * scrape out the remaining cache.
2894 */
2895 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2896 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2897
688035f7
JW
2898 switch (scan_balance) {
2899 case SCAN_EQUAL:
2900 /* Scan lists relative to size */
2901 break;
2902 case SCAN_FRACT:
9a265114 2903 /*
688035f7
JW
2904 * Scan types proportional to swappiness and
2905 * their relative recent reclaim efficiency.
76073c64
GS
2906 * Make sure we don't miss the last page on
2907 * the offlined memory cgroups because of a
2908 * round-off error.
9a265114 2909 */
76073c64
GS
2910 scan = mem_cgroup_online(memcg) ?
2911 div64_u64(scan * fraction[file], denominator) :
2912 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2913 denominator);
688035f7
JW
2914 break;
2915 case SCAN_FILE:
2916 case SCAN_ANON:
2917 /* Scan one type exclusively */
e072bff6 2918 if ((scan_balance == SCAN_FILE) != file)
688035f7 2919 scan = 0;
688035f7
JW
2920 break;
2921 default:
2922 /* Look ma, no brain */
2923 BUG();
9a265114 2924 }
688035f7 2925
688035f7 2926 nr[lru] = scan;
76a33fc3 2927 }
6e08a369 2928}
4f98a2fe 2929
2f368a9f
DH
2930/*
2931 * Anonymous LRU management is a waste if there is
2932 * ultimately no way to reclaim the memory.
2933 */
2934static bool can_age_anon_pages(struct pglist_data *pgdat,
2935 struct scan_control *sc)
2936{
2937 /* Aging the anon LRU is valuable if swap is present: */
2938 if (total_swap_pages > 0)
2939 return true;
2940
2941 /* Also valuable if anon pages can be demoted: */
2942 return can_demote(pgdat->node_id, sc);
2943}
2944
afaf07a6 2945static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2946{
2947 unsigned long nr[NR_LRU_LISTS];
e82e0561 2948 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2949 unsigned long nr_to_scan;
2950 enum lru_list lru;
2951 unsigned long nr_reclaimed = 0;
2952 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2953 struct blk_plug plug;
1a501907 2954 bool scan_adjusted;
9b4f98cd 2955
afaf07a6 2956 get_scan_count(lruvec, sc, nr);
9b4f98cd 2957
e82e0561
MG
2958 /* Record the original scan target for proportional adjustments later */
2959 memcpy(targets, nr, sizeof(nr));
2960
1a501907
MG
2961 /*
2962 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2963 * event that can occur when there is little memory pressure e.g.
2964 * multiple streaming readers/writers. Hence, we do not abort scanning
2965 * when the requested number of pages are reclaimed when scanning at
2966 * DEF_PRIORITY on the assumption that the fact we are direct
2967 * reclaiming implies that kswapd is not keeping up and it is best to
2968 * do a batch of work at once. For memcg reclaim one check is made to
2969 * abort proportional reclaim if either the file or anon lru has already
2970 * dropped to zero at the first pass.
2971 */
b5ead35e 2972 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2973 sc->priority == DEF_PRIORITY);
2974
9b4f98cd
JW
2975 blk_start_plug(&plug);
2976 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2977 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2978 unsigned long nr_anon, nr_file, percentage;
2979 unsigned long nr_scanned;
2980
9b4f98cd
JW
2981 for_each_evictable_lru(lru) {
2982 if (nr[lru]) {
2983 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2984 nr[lru] -= nr_to_scan;
2985
2986 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2987 lruvec, sc);
9b4f98cd
JW
2988 }
2989 }
e82e0561 2990
bd041733
MH
2991 cond_resched();
2992
e82e0561
MG
2993 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2994 continue;
2995
e82e0561
MG
2996 /*
2997 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2998 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2999 * proportionally what was requested by get_scan_count(). We
3000 * stop reclaiming one LRU and reduce the amount scanning
3001 * proportional to the original scan target.
3002 */
3003 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
3004 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
3005
1a501907
MG
3006 /*
3007 * It's just vindictive to attack the larger once the smaller
3008 * has gone to zero. And given the way we stop scanning the
3009 * smaller below, this makes sure that we only make one nudge
3010 * towards proportionality once we've got nr_to_reclaim.
3011 */
3012 if (!nr_file || !nr_anon)
3013 break;
3014
e82e0561
MG
3015 if (nr_file > nr_anon) {
3016 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
3017 targets[LRU_ACTIVE_ANON] + 1;
3018 lru = LRU_BASE;
3019 percentage = nr_anon * 100 / scan_target;
3020 } else {
3021 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
3022 targets[LRU_ACTIVE_FILE] + 1;
3023 lru = LRU_FILE;
3024 percentage = nr_file * 100 / scan_target;
3025 }
3026
3027 /* Stop scanning the smaller of the LRU */
3028 nr[lru] = 0;
3029 nr[lru + LRU_ACTIVE] = 0;
3030
3031 /*
3032 * Recalculate the other LRU scan count based on its original
3033 * scan target and the percentage scanning already complete
3034 */
3035 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
3036 nr_scanned = targets[lru] - nr[lru];
3037 nr[lru] = targets[lru] * (100 - percentage) / 100;
3038 nr[lru] -= min(nr[lru], nr_scanned);
3039
3040 lru += LRU_ACTIVE;
3041 nr_scanned = targets[lru] - nr[lru];
3042 nr[lru] = targets[lru] * (100 - percentage) / 100;
3043 nr[lru] -= min(nr[lru], nr_scanned);
3044
3045 scan_adjusted = true;
9b4f98cd
JW
3046 }
3047 blk_finish_plug(&plug);
3048 sc->nr_reclaimed += nr_reclaimed;
3049
3050 /*
3051 * Even if we did not try to evict anon pages at all, we want to
3052 * rebalance the anon lru active/inactive ratio.
3053 */
2f368a9f
DH
3054 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3055 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
3056 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3057 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
3058}
3059
23b9da55 3060/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 3061static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 3062{
d84da3f9 3063 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 3064 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 3065 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
3066 return true;
3067
3068 return false;
3069}
3070
3e7d3449 3071/*
23b9da55
MG
3072 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3073 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3074 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 3075 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 3076 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 3077 */
a9dd0a83 3078static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 3079 unsigned long nr_reclaimed,
3e7d3449
MG
3080 struct scan_control *sc)
3081{
3082 unsigned long pages_for_compaction;
3083 unsigned long inactive_lru_pages;
a9dd0a83 3084 int z;
3e7d3449
MG
3085
3086 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 3087 if (!in_reclaim_compaction(sc))
3e7d3449
MG
3088 return false;
3089
5ee04716
VB
3090 /*
3091 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3092 * number of pages that were scanned. This will return to the caller
3093 * with the risk reclaim/compaction and the resulting allocation attempt
3094 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3095 * allocations through requiring that the full LRU list has been scanned
3096 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3097 * scan, but that approximation was wrong, and there were corner cases
3098 * where always a non-zero amount of pages were scanned.
3099 */
3100 if (!nr_reclaimed)
3101 return false;
3e7d3449 3102
3e7d3449 3103 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
3104 for (z = 0; z <= sc->reclaim_idx; z++) {
3105 struct zone *zone = &pgdat->node_zones[z];
6aa303de 3106 if (!managed_zone(zone))
a9dd0a83
MG
3107 continue;
3108
3109 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 3110 case COMPACT_SUCCESS:
a9dd0a83
MG
3111 case COMPACT_CONTINUE:
3112 return false;
3113 default:
3114 /* check next zone */
3115 ;
3116 }
3e7d3449 3117 }
1c6c1597
HD
3118
3119 /*
3120 * If we have not reclaimed enough pages for compaction and the
3121 * inactive lists are large enough, continue reclaiming
3122 */
3123 pages_for_compaction = compact_gap(sc->order);
3124 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
a2a36488 3125 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
1c6c1597
HD
3126 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3127
5ee04716 3128 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
3129}
3130
0f6a5cff 3131static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 3132{
0f6a5cff 3133 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 3134 struct mem_cgroup *memcg;
1da177e4 3135
0f6a5cff 3136 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 3137 do {
afaf07a6 3138 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
3139 unsigned long reclaimed;
3140 unsigned long scanned;
5660048c 3141
e3336cab
XP
3142 /*
3143 * This loop can become CPU-bound when target memcgs
3144 * aren't eligible for reclaim - either because they
3145 * don't have any reclaimable pages, or because their
3146 * memory is explicitly protected. Avoid soft lockups.
3147 */
3148 cond_resched();
3149
45c7f7e1
CD
3150 mem_cgroup_calculate_protection(target_memcg, memcg);
3151
3152 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
3153 /*
3154 * Hard protection.
3155 * If there is no reclaimable memory, OOM.
3156 */
3157 continue;
45c7f7e1 3158 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
3159 /*
3160 * Soft protection.
3161 * Respect the protection only as long as
3162 * there is an unprotected supply
3163 * of reclaimable memory from other cgroups.
3164 */
3165 if (!sc->memcg_low_reclaim) {
3166 sc->memcg_low_skipped = 1;
bf8d5d52 3167 continue;
241994ed 3168 }
d2af3397 3169 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 3170 }
241994ed 3171
d2af3397
JW
3172 reclaimed = sc->nr_reclaimed;
3173 scanned = sc->nr_scanned;
afaf07a6
JW
3174
3175 shrink_lruvec(lruvec, sc);
70ddf637 3176
d2af3397
JW
3177 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3178 sc->priority);
6b4f7799 3179
d2af3397
JW
3180 /* Record the group's reclaim efficiency */
3181 vmpressure(sc->gfp_mask, memcg, false,
3182 sc->nr_scanned - scanned,
3183 sc->nr_reclaimed - reclaimed);
70ddf637 3184
0f6a5cff
JW
3185 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3186}
3187
6c9e0907 3188static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
3189{
3190 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 3191 unsigned long nr_reclaimed, nr_scanned;
1b05117d 3192 struct lruvec *target_lruvec;
0f6a5cff 3193 bool reclaimable = false;
b91ac374 3194 unsigned long file;
0f6a5cff 3195
1b05117d
JW
3196 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3197
0f6a5cff 3198again:
aa48e47e
SB
3199 /*
3200 * Flush the memory cgroup stats, so that we read accurate per-memcg
3201 * lruvec stats for heuristics.
3202 */
3203 mem_cgroup_flush_stats();
3204
0f6a5cff
JW
3205 memset(&sc->nr, 0, sizeof(sc->nr));
3206
3207 nr_reclaimed = sc->nr_reclaimed;
3208 nr_scanned = sc->nr_scanned;
3209
7cf111bc
JW
3210 /*
3211 * Determine the scan balance between anon and file LRUs.
3212 */
6168d0da 3213 spin_lock_irq(&target_lruvec->lru_lock);
7cf111bc
JW
3214 sc->anon_cost = target_lruvec->anon_cost;
3215 sc->file_cost = target_lruvec->file_cost;
6168d0da 3216 spin_unlock_irq(&target_lruvec->lru_lock);
7cf111bc 3217
b91ac374
JW
3218 /*
3219 * Target desirable inactive:active list ratios for the anon
3220 * and file LRU lists.
3221 */
3222 if (!sc->force_deactivate) {
3223 unsigned long refaults;
3224
170b04b7
JK
3225 refaults = lruvec_page_state(target_lruvec,
3226 WORKINGSET_ACTIVATE_ANON);
3227 if (refaults != target_lruvec->refaults[0] ||
3228 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
b91ac374
JW
3229 sc->may_deactivate |= DEACTIVATE_ANON;
3230 else
3231 sc->may_deactivate &= ~DEACTIVATE_ANON;
3232
3233 /*
3234 * When refaults are being observed, it means a new
3235 * workingset is being established. Deactivate to get
3236 * rid of any stale active pages quickly.
3237 */
3238 refaults = lruvec_page_state(target_lruvec,
170b04b7
JK
3239 WORKINGSET_ACTIVATE_FILE);
3240 if (refaults != target_lruvec->refaults[1] ||
b91ac374
JW
3241 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3242 sc->may_deactivate |= DEACTIVATE_FILE;
3243 else
3244 sc->may_deactivate &= ~DEACTIVATE_FILE;
3245 } else
3246 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3247
3248 /*
3249 * If we have plenty of inactive file pages that aren't
3250 * thrashing, try to reclaim those first before touching
3251 * anonymous pages.
3252 */
3253 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3254 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3255 sc->cache_trim_mode = 1;
3256 else
3257 sc->cache_trim_mode = 0;
3258
53138cea
JW
3259 /*
3260 * Prevent the reclaimer from falling into the cache trap: as
3261 * cache pages start out inactive, every cache fault will tip
3262 * the scan balance towards the file LRU. And as the file LRU
3263 * shrinks, so does the window for rotation from references.
3264 * This means we have a runaway feedback loop where a tiny
3265 * thrashing file LRU becomes infinitely more attractive than
3266 * anon pages. Try to detect this based on file LRU size.
3267 */
3268 if (!cgroup_reclaim(sc)) {
53138cea 3269 unsigned long total_high_wmark = 0;
b91ac374
JW
3270 unsigned long free, anon;
3271 int z;
53138cea
JW
3272
3273 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3274 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3275 node_page_state(pgdat, NR_INACTIVE_FILE);
3276
3277 for (z = 0; z < MAX_NR_ZONES; z++) {
3278 struct zone *zone = &pgdat->node_zones[z];
3279 if (!managed_zone(zone))
3280 continue;
3281
3282 total_high_wmark += high_wmark_pages(zone);
3283 }
3284
b91ac374
JW
3285 /*
3286 * Consider anon: if that's low too, this isn't a
3287 * runaway file reclaim problem, but rather just
3288 * extreme pressure. Reclaim as per usual then.
3289 */
3290 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3291
3292 sc->file_is_tiny =
3293 file + free <= total_high_wmark &&
3294 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3295 anon >> sc->priority;
53138cea
JW
3296 }
3297
0f6a5cff 3298 shrink_node_memcgs(pgdat, sc);
2344d7e4 3299
d2af3397
JW
3300 if (reclaim_state) {
3301 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3302 reclaim_state->reclaimed_slab = 0;
3303 }
d108c772 3304
d2af3397 3305 /* Record the subtree's reclaim efficiency */
1b05117d 3306 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
3307 sc->nr_scanned - nr_scanned,
3308 sc->nr_reclaimed - nr_reclaimed);
d108c772 3309
d2af3397
JW
3310 if (sc->nr_reclaimed - nr_reclaimed)
3311 reclaimable = true;
d108c772 3312
d2af3397
JW
3313 if (current_is_kswapd()) {
3314 /*
3315 * If reclaim is isolating dirty pages under writeback,
3316 * it implies that the long-lived page allocation rate
3317 * is exceeding the page laundering rate. Either the
3318 * global limits are not being effective at throttling
3319 * processes due to the page distribution throughout
3320 * zones or there is heavy usage of a slow backing
3321 * device. The only option is to throttle from reclaim
3322 * context which is not ideal as there is no guarantee
3323 * the dirtying process is throttled in the same way
3324 * balance_dirty_pages() manages.
3325 *
3326 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3327 * count the number of pages under pages flagged for
3328 * immediate reclaim and stall if any are encountered
3329 * in the nr_immediate check below.
3330 */
3331 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3332 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 3333
d2af3397
JW
3334 /* Allow kswapd to start writing pages during reclaim.*/
3335 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3336 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 3337
d108c772 3338 /*
1eba09c1 3339 * If kswapd scans pages marked for immediate
d2af3397
JW
3340 * reclaim and under writeback (nr_immediate), it
3341 * implies that pages are cycling through the LRU
8cd7c588
MG
3342 * faster than they are written so forcibly stall
3343 * until some pages complete writeback.
d108c772 3344 */
d2af3397 3345 if (sc->nr.immediate)
c3f4a9a2 3346 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
d2af3397
JW
3347 }
3348
3349 /*
8cd7c588
MG
3350 * Tag a node/memcg as congested if all the dirty pages were marked
3351 * for writeback and immediate reclaim (counted in nr.congested).
1b05117d 3352 *
d2af3397 3353 * Legacy memcg will stall in page writeback so avoid forcibly
8cd7c588 3354 * stalling in reclaim_throttle().
d2af3397 3355 */
1b05117d
JW
3356 if ((current_is_kswapd() ||
3357 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 3358 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 3359 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
3360
3361 /*
8cd7c588
MG
3362 * Stall direct reclaim for IO completions if the lruvec is
3363 * node is congested. Allow kswapd to continue until it
d2af3397
JW
3364 * starts encountering unqueued dirty pages or cycling through
3365 * the LRU too quickly.
3366 */
1b05117d
JW
3367 if (!current_is_kswapd() && current_may_throttle() &&
3368 !sc->hibernation_mode &&
3369 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
1b4e3f26 3370 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
d108c772 3371
d2af3397
JW
3372 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3373 sc))
3374 goto again;
2344d7e4 3375
c73322d0
JW
3376 /*
3377 * Kswapd gives up on balancing particular nodes after too
3378 * many failures to reclaim anything from them and goes to
3379 * sleep. On reclaim progress, reset the failure counter. A
3380 * successful direct reclaim run will revive a dormant kswapd.
3381 */
3382 if (reclaimable)
3383 pgdat->kswapd_failures = 0;
f16015fb
JW
3384}
3385
53853e2d 3386/*
fdd4c614
VB
3387 * Returns true if compaction should go ahead for a costly-order request, or
3388 * the allocation would already succeed without compaction. Return false if we
3389 * should reclaim first.
53853e2d 3390 */
4f588331 3391static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 3392{
31483b6a 3393 unsigned long watermark;
fdd4c614 3394 enum compact_result suitable;
fe4b1b24 3395
fdd4c614
VB
3396 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3397 if (suitable == COMPACT_SUCCESS)
3398 /* Allocation should succeed already. Don't reclaim. */
3399 return true;
3400 if (suitable == COMPACT_SKIPPED)
3401 /* Compaction cannot yet proceed. Do reclaim. */
3402 return false;
fe4b1b24 3403
53853e2d 3404 /*
fdd4c614
VB
3405 * Compaction is already possible, but it takes time to run and there
3406 * are potentially other callers using the pages just freed. So proceed
3407 * with reclaim to make a buffer of free pages available to give
3408 * compaction a reasonable chance of completing and allocating the page.
3409 * Note that we won't actually reclaim the whole buffer in one attempt
3410 * as the target watermark in should_continue_reclaim() is lower. But if
3411 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 3412 */
fdd4c614 3413 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 3414
fdd4c614 3415 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
3416}
3417
69392a40
MG
3418static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3419{
66ce520b
MG
3420 /*
3421 * If reclaim is making progress greater than 12% efficiency then
3422 * wake all the NOPROGRESS throttled tasks.
3423 */
3424 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
69392a40
MG
3425 wait_queue_head_t *wqh;
3426
3427 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3428 if (waitqueue_active(wqh))
3429 wake_up(wqh);
3430
3431 return;
3432 }
3433
3434 /*
1b4e3f26
MG
3435 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3436 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3437 * under writeback and marked for immediate reclaim at the tail of the
3438 * LRU.
69392a40 3439 */
1b4e3f26 3440 if (current_is_kswapd() || cgroup_reclaim(sc))
69392a40
MG
3441 return;
3442
3443 /* Throttle if making no progress at high prioities. */
1b4e3f26 3444 if (sc->priority == 1 && !sc->nr_reclaimed)
c3f4a9a2 3445 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
69392a40
MG
3446}
3447
1da177e4
LT
3448/*
3449 * This is the direct reclaim path, for page-allocating processes. We only
3450 * try to reclaim pages from zones which will satisfy the caller's allocation
3451 * request.
3452 *
1da177e4
LT
3453 * If a zone is deemed to be full of pinned pages then just give it a light
3454 * scan then give up on it.
3455 */
0a0337e0 3456static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 3457{
dd1a239f 3458 struct zoneref *z;
54a6eb5c 3459 struct zone *zone;
0608f43d
AM
3460 unsigned long nr_soft_reclaimed;
3461 unsigned long nr_soft_scanned;
619d0d76 3462 gfp_t orig_mask;
79dafcdc 3463 pg_data_t *last_pgdat = NULL;
1b4e3f26 3464 pg_data_t *first_pgdat = NULL;
1cfb419b 3465
cc715d99
MG
3466 /*
3467 * If the number of buffer_heads in the machine exceeds the maximum
3468 * allowed level, force direct reclaim to scan the highmem zone as
3469 * highmem pages could be pinning lowmem pages storing buffer_heads
3470 */
619d0d76 3471 orig_mask = sc->gfp_mask;
b2e18757 3472 if (buffer_heads_over_limit) {
cc715d99 3473 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 3474 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 3475 }
cc715d99 3476
d4debc66 3477 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 3478 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
3479 /*
3480 * Take care memory controller reclaiming has small influence
3481 * to global LRU.
3482 */
b5ead35e 3483 if (!cgroup_reclaim(sc)) {
344736f2
VD
3484 if (!cpuset_zone_allowed(zone,
3485 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 3486 continue;
65ec02cb 3487
0b06496a
JW
3488 /*
3489 * If we already have plenty of memory free for
3490 * compaction in this zone, don't free any more.
3491 * Even though compaction is invoked for any
3492 * non-zero order, only frequent costly order
3493 * reclamation is disruptive enough to become a
3494 * noticeable problem, like transparent huge
3495 * page allocations.
3496 */
3497 if (IS_ENABLED(CONFIG_COMPACTION) &&
3498 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 3499 compaction_ready(zone, sc)) {
0b06496a
JW
3500 sc->compaction_ready = true;
3501 continue;
e0887c19 3502 }
0b06496a 3503
79dafcdc
MG
3504 /*
3505 * Shrink each node in the zonelist once. If the
3506 * zonelist is ordered by zone (not the default) then a
3507 * node may be shrunk multiple times but in that case
3508 * the user prefers lower zones being preserved.
3509 */
3510 if (zone->zone_pgdat == last_pgdat)
3511 continue;
3512
0608f43d
AM
3513 /*
3514 * This steals pages from memory cgroups over softlimit
3515 * and returns the number of reclaimed pages and
3516 * scanned pages. This works for global memory pressure
3517 * and balancing, not for a memcg's limit.
3518 */
3519 nr_soft_scanned = 0;
ef8f2327 3520 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
3521 sc->order, sc->gfp_mask,
3522 &nr_soft_scanned);
3523 sc->nr_reclaimed += nr_soft_reclaimed;
3524 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 3525 /* need some check for avoid more shrink_zone() */
1cfb419b 3526 }
408d8544 3527
1b4e3f26
MG
3528 if (!first_pgdat)
3529 first_pgdat = zone->zone_pgdat;
3530
79dafcdc
MG
3531 /* See comment about same check for global reclaim above */
3532 if (zone->zone_pgdat == last_pgdat)
3533 continue;
3534 last_pgdat = zone->zone_pgdat;
970a39a3 3535 shrink_node(zone->zone_pgdat, sc);
1da177e4 3536 }
e0c23279 3537
80082938
MG
3538 if (first_pgdat)
3539 consider_reclaim_throttle(first_pgdat, sc);
1b4e3f26 3540
619d0d76
WY
3541 /*
3542 * Restore to original mask to avoid the impact on the caller if we
3543 * promoted it to __GFP_HIGHMEM.
3544 */
3545 sc->gfp_mask = orig_mask;
1da177e4 3546}
4f98a2fe 3547
b910718a 3548static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 3549{
b910718a
JW
3550 struct lruvec *target_lruvec;
3551 unsigned long refaults;
2a2e4885 3552
b910718a 3553 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7
JK
3554 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3555 target_lruvec->refaults[0] = refaults;
3556 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3557 target_lruvec->refaults[1] = refaults;
2a2e4885
JW
3558}
3559
1da177e4
LT
3560/*
3561 * This is the main entry point to direct page reclaim.
3562 *
3563 * If a full scan of the inactive list fails to free enough memory then we
3564 * are "out of memory" and something needs to be killed.
3565 *
3566 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3567 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3568 * caller can't do much about. We kick the writeback threads and take explicit
3569 * naps in the hope that some of these pages can be written. But if the
3570 * allocating task holds filesystem locks which prevent writeout this might not
3571 * work, and the allocation attempt will fail.
a41f24ea
NA
3572 *
3573 * returns: 0, if no pages reclaimed
3574 * else, the number of pages reclaimed
1da177e4 3575 */
dac1d27b 3576static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3577 struct scan_control *sc)
1da177e4 3578{
241994ed 3579 int initial_priority = sc->priority;
2a2e4885
JW
3580 pg_data_t *last_pgdat;
3581 struct zoneref *z;
3582 struct zone *zone;
241994ed 3583retry:
873b4771
KK
3584 delayacct_freepages_start();
3585
b5ead35e 3586 if (!cgroup_reclaim(sc))
7cc30fcf 3587 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3588
9e3b2f8c 3589 do {
70ddf637
AV
3590 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3591 sc->priority);
66e1707b 3592 sc->nr_scanned = 0;
0a0337e0 3593 shrink_zones(zonelist, sc);
c6a8a8c5 3594
bb21c7ce 3595 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3596 break;
3597
3598 if (sc->compaction_ready)
3599 break;
1da177e4 3600
0e50ce3b
MK
3601 /*
3602 * If we're getting trouble reclaiming, start doing
3603 * writepage even in laptop mode.
3604 */
3605 if (sc->priority < DEF_PRIORITY - 2)
3606 sc->may_writepage = 1;
0b06496a 3607 } while (--sc->priority >= 0);
bb21c7ce 3608
2a2e4885
JW
3609 last_pgdat = NULL;
3610 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3611 sc->nodemask) {
3612 if (zone->zone_pgdat == last_pgdat)
3613 continue;
3614 last_pgdat = zone->zone_pgdat;
1b05117d 3615
2a2e4885 3616 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3617
3618 if (cgroup_reclaim(sc)) {
3619 struct lruvec *lruvec;
3620
3621 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3622 zone->zone_pgdat);
3623 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3624 }
2a2e4885
JW
3625 }
3626
873b4771
KK
3627 delayacct_freepages_end();
3628
bb21c7ce
KM
3629 if (sc->nr_reclaimed)
3630 return sc->nr_reclaimed;
3631
0cee34fd 3632 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3633 if (sc->compaction_ready)
7335084d
MG
3634 return 1;
3635
b91ac374
JW
3636 /*
3637 * We make inactive:active ratio decisions based on the node's
3638 * composition of memory, but a restrictive reclaim_idx or a
3639 * memory.low cgroup setting can exempt large amounts of
3640 * memory from reclaim. Neither of which are very common, so
3641 * instead of doing costly eligibility calculations of the
3642 * entire cgroup subtree up front, we assume the estimates are
3643 * good, and retry with forcible deactivation if that fails.
3644 */
3645 if (sc->skipped_deactivate) {
3646 sc->priority = initial_priority;
3647 sc->force_deactivate = 1;
3648 sc->skipped_deactivate = 0;
3649 goto retry;
3650 }
3651
241994ed 3652 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3653 if (sc->memcg_low_skipped) {
241994ed 3654 sc->priority = initial_priority;
b91ac374 3655 sc->force_deactivate = 0;
d6622f63
YX
3656 sc->memcg_low_reclaim = 1;
3657 sc->memcg_low_skipped = 0;
241994ed
JW
3658 goto retry;
3659 }
3660
bb21c7ce 3661 return 0;
1da177e4
LT
3662}
3663
c73322d0 3664static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3665{
3666 struct zone *zone;
3667 unsigned long pfmemalloc_reserve = 0;
3668 unsigned long free_pages = 0;
3669 int i;
3670 bool wmark_ok;
3671
c73322d0
JW
3672 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3673 return true;
3674
5515061d
MG
3675 for (i = 0; i <= ZONE_NORMAL; i++) {
3676 zone = &pgdat->node_zones[i];
d450abd8
JW
3677 if (!managed_zone(zone))
3678 continue;
3679
3680 if (!zone_reclaimable_pages(zone))
675becce
MG
3681 continue;
3682
5515061d
MG
3683 pfmemalloc_reserve += min_wmark_pages(zone);
3684 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3685 }
3686
675becce
MG
3687 /* If there are no reserves (unexpected config) then do not throttle */
3688 if (!pfmemalloc_reserve)
3689 return true;
3690
5515061d
MG
3691 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3692
3693 /* kswapd must be awake if processes are being throttled */
3694 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3695 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3696 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3697
5515061d
MG
3698 wake_up_interruptible(&pgdat->kswapd_wait);
3699 }
3700
3701 return wmark_ok;
3702}
3703
3704/*
3705 * Throttle direct reclaimers if backing storage is backed by the network
3706 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3707 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3708 * when the low watermark is reached.
3709 *
3710 * Returns true if a fatal signal was delivered during throttling. If this
3711 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3712 */
50694c28 3713static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3714 nodemask_t *nodemask)
3715{
675becce 3716 struct zoneref *z;
5515061d 3717 struct zone *zone;
675becce 3718 pg_data_t *pgdat = NULL;
5515061d
MG
3719
3720 /*
3721 * Kernel threads should not be throttled as they may be indirectly
3722 * responsible for cleaning pages necessary for reclaim to make forward
3723 * progress. kjournald for example may enter direct reclaim while
3724 * committing a transaction where throttling it could forcing other
3725 * processes to block on log_wait_commit().
3726 */
3727 if (current->flags & PF_KTHREAD)
50694c28
MG
3728 goto out;
3729
3730 /*
3731 * If a fatal signal is pending, this process should not throttle.
3732 * It should return quickly so it can exit and free its memory
3733 */
3734 if (fatal_signal_pending(current))
3735 goto out;
5515061d 3736
675becce
MG
3737 /*
3738 * Check if the pfmemalloc reserves are ok by finding the first node
3739 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3740 * GFP_KERNEL will be required for allocating network buffers when
3741 * swapping over the network so ZONE_HIGHMEM is unusable.
3742 *
3743 * Throttling is based on the first usable node and throttled processes
3744 * wait on a queue until kswapd makes progress and wakes them. There
3745 * is an affinity then between processes waking up and where reclaim
3746 * progress has been made assuming the process wakes on the same node.
3747 * More importantly, processes running on remote nodes will not compete
3748 * for remote pfmemalloc reserves and processes on different nodes
3749 * should make reasonable progress.
3750 */
3751 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3752 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3753 if (zone_idx(zone) > ZONE_NORMAL)
3754 continue;
3755
3756 /* Throttle based on the first usable node */
3757 pgdat = zone->zone_pgdat;
c73322d0 3758 if (allow_direct_reclaim(pgdat))
675becce
MG
3759 goto out;
3760 break;
3761 }
3762
3763 /* If no zone was usable by the allocation flags then do not throttle */
3764 if (!pgdat)
50694c28 3765 goto out;
5515061d 3766
68243e76
MG
3767 /* Account for the throttling */
3768 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3769
5515061d
MG
3770 /*
3771 * If the caller cannot enter the filesystem, it's possible that it
3772 * is due to the caller holding an FS lock or performing a journal
3773 * transaction in the case of a filesystem like ext[3|4]. In this case,
3774 * it is not safe to block on pfmemalloc_wait as kswapd could be
3775 * blocked waiting on the same lock. Instead, throttle for up to a
3776 * second before continuing.
3777 */
2e786d9e 3778 if (!(gfp_mask & __GFP_FS))
5515061d 3779 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3780 allow_direct_reclaim(pgdat), HZ);
2e786d9e
ML
3781 else
3782 /* Throttle until kswapd wakes the process */
3783 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3784 allow_direct_reclaim(pgdat));
50694c28 3785
50694c28
MG
3786 if (fatal_signal_pending(current))
3787 return true;
3788
3789out:
3790 return false;
5515061d
MG
3791}
3792
dac1d27b 3793unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3794 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3795{
33906bc5 3796 unsigned long nr_reclaimed;
66e1707b 3797 struct scan_control sc = {
ee814fe2 3798 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3799 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3800 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3801 .order = order,
3802 .nodemask = nodemask,
3803 .priority = DEF_PRIORITY,
66e1707b 3804 .may_writepage = !laptop_mode,
a6dc60f8 3805 .may_unmap = 1,
2e2e4259 3806 .may_swap = 1,
66e1707b
BS
3807 };
3808
bb451fdf
GT
3809 /*
3810 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3811 * Confirm they are large enough for max values.
3812 */
3813 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3814 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3815 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3816
5515061d 3817 /*
50694c28
MG
3818 * Do not enter reclaim if fatal signal was delivered while throttled.
3819 * 1 is returned so that the page allocator does not OOM kill at this
3820 * point.
5515061d 3821 */
f2f43e56 3822 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3823 return 1;
3824
1732d2b0 3825 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3826 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3827
3115cd91 3828 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3829
3830 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3831 set_task_reclaim_state(current, NULL);
33906bc5
MG
3832
3833 return nr_reclaimed;
66e1707b
BS
3834}
3835
c255a458 3836#ifdef CONFIG_MEMCG
66e1707b 3837
d2e5fb92 3838/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3839unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3840 gfp_t gfp_mask, bool noswap,
ef8f2327 3841 pg_data_t *pgdat,
0ae5e89c 3842 unsigned long *nr_scanned)
4e416953 3843{
afaf07a6 3844 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3845 struct scan_control sc = {
b8f5c566 3846 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3847 .target_mem_cgroup = memcg,
4e416953
BS
3848 .may_writepage = !laptop_mode,
3849 .may_unmap = 1,
b2e18757 3850 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3851 .may_swap = !noswap,
4e416953 3852 };
0ae5e89c 3853
d2e5fb92
MH
3854 WARN_ON_ONCE(!current->reclaim_state);
3855
4e416953
BS
3856 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3857 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3858
9e3b2f8c 3859 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3860 sc.gfp_mask);
bdce6d9e 3861
4e416953
BS
3862 /*
3863 * NOTE: Although we can get the priority field, using it
3864 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3865 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3866 * will pick up pages from other mem cgroup's as well. We hack
3867 * the priority and make it zero.
3868 */
afaf07a6 3869 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3870
3871 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3872
0ae5e89c 3873 *nr_scanned = sc.nr_scanned;
0308f7cf 3874
4e416953
BS
3875 return sc.nr_reclaimed;
3876}
3877
72835c86 3878unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3879 unsigned long nr_pages,
a7885eb8 3880 gfp_t gfp_mask,
b70a2a21 3881 bool may_swap)
66e1707b 3882{
bdce6d9e 3883 unsigned long nr_reclaimed;
499118e9 3884 unsigned int noreclaim_flag;
66e1707b 3885 struct scan_control sc = {
b70a2a21 3886 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3887 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3888 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3889 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3890 .target_mem_cgroup = memcg,
3891 .priority = DEF_PRIORITY,
3892 .may_writepage = !laptop_mode,
3893 .may_unmap = 1,
b70a2a21 3894 .may_swap = may_swap,
a09ed5e0 3895 };
889976db 3896 /*
fa40d1ee
SB
3897 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3898 * equal pressure on all the nodes. This is based on the assumption that
3899 * the reclaim does not bail out early.
889976db 3900 */
fa40d1ee 3901 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3902
fa40d1ee 3903 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3904 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 3905 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3906
3115cd91 3907 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3908
499118e9 3909 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 3910 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3911 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3912
3913 return nr_reclaimed;
66e1707b
BS
3914}
3915#endif
3916
1d82de61 3917static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3918 struct scan_control *sc)
f16015fb 3919{
b95a2f2d 3920 struct mem_cgroup *memcg;
b91ac374 3921 struct lruvec *lruvec;
f16015fb 3922
2f368a9f 3923 if (!can_age_anon_pages(pgdat, sc))
b95a2f2d
JW
3924 return;
3925
b91ac374
JW
3926 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3927 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3928 return;
3929
b95a2f2d
JW
3930 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3931 do {
b91ac374
JW
3932 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3933 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3934 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3935 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3936 } while (memcg);
f16015fb
JW
3937}
3938
97a225e6 3939static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3940{
3941 int i;
3942 struct zone *zone;
3943
3944 /*
3945 * Check for watermark boosts top-down as the higher zones
3946 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 3947 * should not be checked at the same time as reclaim would
1c30844d
MG
3948 * start prematurely when there is no boosting and a lower
3949 * zone is balanced.
3950 */
97a225e6 3951 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3952 zone = pgdat->node_zones + i;
3953 if (!managed_zone(zone))
3954 continue;
3955
3956 if (zone->watermark_boost)
3957 return true;
3958 }
3959
3960 return false;
3961}
3962
e716f2eb
MG
3963/*
3964 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3965 * and highest_zoneidx
e716f2eb 3966 */
97a225e6 3967static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3968{
e716f2eb
MG
3969 int i;
3970 unsigned long mark = -1;
3971 struct zone *zone;
60cefed4 3972
1c30844d
MG
3973 /*
3974 * Check watermarks bottom-up as lower zones are more likely to
3975 * meet watermarks.
3976 */
97a225e6 3977 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3978 zone = pgdat->node_zones + i;
6256c6b4 3979
e716f2eb
MG
3980 if (!managed_zone(zone))
3981 continue;
3982
3983 mark = high_wmark_pages(zone);
97a225e6 3984 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3985 return true;
3986 }
3987
3988 /*
97a225e6 3989 * If a node has no populated zone within highest_zoneidx, it does not
e716f2eb
MG
3990 * need balancing by definition. This can happen if a zone-restricted
3991 * allocation tries to wake a remote kswapd.
3992 */
3993 if (mark == -1)
3994 return true;
3995
3996 return false;
60cefed4
JW
3997}
3998
631b6e08
MG
3999/* Clear pgdat state for congested, dirty or under writeback. */
4000static void clear_pgdat_congested(pg_data_t *pgdat)
4001{
1b05117d
JW
4002 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
4003
4004 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
4005 clear_bit(PGDAT_DIRTY, &pgdat->flags);
4006 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
4007}
4008
5515061d
MG
4009/*
4010 * Prepare kswapd for sleeping. This verifies that there are no processes
4011 * waiting in throttle_direct_reclaim() and that watermarks have been met.
4012 *
4013 * Returns true if kswapd is ready to sleep
4014 */
97a225e6
JK
4015static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
4016 int highest_zoneidx)
f50de2d3 4017{
5515061d 4018 /*
9e5e3661 4019 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 4020 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
4021 * race between when kswapd checks the watermarks and a process gets
4022 * throttled. There is also a potential race if processes get
4023 * throttled, kswapd wakes, a large process exits thereby balancing the
4024 * zones, which causes kswapd to exit balance_pgdat() before reaching
4025 * the wake up checks. If kswapd is going to sleep, no process should
4026 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
4027 * the wake up is premature, processes will wake kswapd and get
4028 * throttled again. The difference from wake ups in balance_pgdat() is
4029 * that here we are under prepare_to_wait().
5515061d 4030 */
9e5e3661
VB
4031 if (waitqueue_active(&pgdat->pfmemalloc_wait))
4032 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 4033
c73322d0
JW
4034 /* Hopeless node, leave it to direct reclaim */
4035 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
4036 return true;
4037
97a225e6 4038 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
4039 clear_pgdat_congested(pgdat);
4040 return true;
1d82de61
MG
4041 }
4042
333b0a45 4043 return false;
f50de2d3
MG
4044}
4045
75485363 4046/*
1d82de61
MG
4047 * kswapd shrinks a node of pages that are at or below the highest usable
4048 * zone that is currently unbalanced.
b8e83b94
MG
4049 *
4050 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
4051 * reclaim or if the lack of progress was due to pages under writeback.
4052 * This is used to determine if the scanning priority needs to be raised.
75485363 4053 */
1d82de61 4054static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 4055 struct scan_control *sc)
75485363 4056{
1d82de61
MG
4057 struct zone *zone;
4058 int z;
75485363 4059
1d82de61
MG
4060 /* Reclaim a number of pages proportional to the number of zones */
4061 sc->nr_to_reclaim = 0;
970a39a3 4062 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 4063 zone = pgdat->node_zones + z;
6aa303de 4064 if (!managed_zone(zone))
1d82de61 4065 continue;
7c954f6d 4066
1d82de61
MG
4067 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4068 }
7c954f6d
MG
4069
4070 /*
1d82de61
MG
4071 * Historically care was taken to put equal pressure on all zones but
4072 * now pressure is applied based on node LRU order.
7c954f6d 4073 */
970a39a3 4074 shrink_node(pgdat, sc);
283aba9f 4075
7c954f6d 4076 /*
1d82de61
MG
4077 * Fragmentation may mean that the system cannot be rebalanced for
4078 * high-order allocations. If twice the allocation size has been
4079 * reclaimed then recheck watermarks only at order-0 to prevent
4080 * excessive reclaim. Assume that a process requested a high-order
4081 * can direct reclaim/compact.
7c954f6d 4082 */
9861a62c 4083 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 4084 sc->order = 0;
7c954f6d 4085
b8e83b94 4086 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
4087}
4088
c49c2c47
MG
4089/* Page allocator PCP high watermark is lowered if reclaim is active. */
4090static inline void
4091update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4092{
4093 int i;
4094 struct zone *zone;
4095
4096 for (i = 0; i <= highest_zoneidx; i++) {
4097 zone = pgdat->node_zones + i;
4098
4099 if (!managed_zone(zone))
4100 continue;
4101
4102 if (active)
4103 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4104 else
4105 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4106 }
4107}
4108
4109static inline void
4110set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4111{
4112 update_reclaim_active(pgdat, highest_zoneidx, true);
4113}
4114
4115static inline void
4116clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4117{
4118 update_reclaim_active(pgdat, highest_zoneidx, false);
4119}
4120
1da177e4 4121/*
1d82de61
MG
4122 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4123 * that are eligible for use by the caller until at least one zone is
4124 * balanced.
1da177e4 4125 *
1d82de61 4126 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
4127 *
4128 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 4129 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 4130 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
4131 * or lower is eligible for reclaim until at least one usable zone is
4132 * balanced.
1da177e4 4133 */
97a225e6 4134static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 4135{
1da177e4 4136 int i;
0608f43d
AM
4137 unsigned long nr_soft_reclaimed;
4138 unsigned long nr_soft_scanned;
eb414681 4139 unsigned long pflags;
1c30844d
MG
4140 unsigned long nr_boost_reclaim;
4141 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4142 bool boosted;
1d82de61 4143 struct zone *zone;
179e9639
AM
4144 struct scan_control sc = {
4145 .gfp_mask = GFP_KERNEL,
ee814fe2 4146 .order = order,
a6dc60f8 4147 .may_unmap = 1,
179e9639 4148 };
93781325 4149
1732d2b0 4150 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 4151 psi_memstall_enter(&pflags);
4f3eaf45 4152 __fs_reclaim_acquire(_THIS_IP_);
93781325 4153
f8891e5e 4154 count_vm_event(PAGEOUTRUN);
1da177e4 4155
1c30844d
MG
4156 /*
4157 * Account for the reclaim boost. Note that the zone boost is left in
4158 * place so that parallel allocations that are near the watermark will
4159 * stall or direct reclaim until kswapd is finished.
4160 */
4161 nr_boost_reclaim = 0;
97a225e6 4162 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4163 zone = pgdat->node_zones + i;
4164 if (!managed_zone(zone))
4165 continue;
4166
4167 nr_boost_reclaim += zone->watermark_boost;
4168 zone_boosts[i] = zone->watermark_boost;
4169 }
4170 boosted = nr_boost_reclaim;
4171
4172restart:
c49c2c47 4173 set_reclaim_active(pgdat, highest_zoneidx);
1c30844d 4174 sc.priority = DEF_PRIORITY;
9e3b2f8c 4175 do {
c73322d0 4176 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 4177 bool raise_priority = true;
1c30844d 4178 bool balanced;
93781325 4179 bool ret;
b8e83b94 4180
97a225e6 4181 sc.reclaim_idx = highest_zoneidx;
1da177e4 4182
86c79f6b 4183 /*
84c7a777
MG
4184 * If the number of buffer_heads exceeds the maximum allowed
4185 * then consider reclaiming from all zones. This has a dual
4186 * purpose -- on 64-bit systems it is expected that
4187 * buffer_heads are stripped during active rotation. On 32-bit
4188 * systems, highmem pages can pin lowmem memory and shrinking
4189 * buffers can relieve lowmem pressure. Reclaim may still not
4190 * go ahead if all eligible zones for the original allocation
4191 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
4192 */
4193 if (buffer_heads_over_limit) {
4194 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4195 zone = pgdat->node_zones + i;
6aa303de 4196 if (!managed_zone(zone))
86c79f6b 4197 continue;
cc715d99 4198
970a39a3 4199 sc.reclaim_idx = i;
e1dbeda6 4200 break;
1da177e4 4201 }
1da177e4 4202 }
dafcb73e 4203
86c79f6b 4204 /*
1c30844d
MG
4205 * If the pgdat is imbalanced then ignore boosting and preserve
4206 * the watermarks for a later time and restart. Note that the
4207 * zone watermarks will be still reset at the end of balancing
4208 * on the grounds that the normal reclaim should be enough to
4209 * re-evaluate if boosting is required when kswapd next wakes.
4210 */
97a225e6 4211 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
4212 if (!balanced && nr_boost_reclaim) {
4213 nr_boost_reclaim = 0;
4214 goto restart;
4215 }
4216
4217 /*
4218 * If boosting is not active then only reclaim if there are no
4219 * eligible zones. Note that sc.reclaim_idx is not used as
4220 * buffer_heads_over_limit may have adjusted it.
86c79f6b 4221 */
1c30844d 4222 if (!nr_boost_reclaim && balanced)
e716f2eb 4223 goto out;
e1dbeda6 4224
1c30844d
MG
4225 /* Limit the priority of boosting to avoid reclaim writeback */
4226 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4227 raise_priority = false;
4228
4229 /*
4230 * Do not writeback or swap pages for boosted reclaim. The
4231 * intent is to relieve pressure not issue sub-optimal IO
4232 * from reclaim context. If no pages are reclaimed, the
4233 * reclaim will be aborted.
4234 */
4235 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4236 sc.may_swap = !nr_boost_reclaim;
1c30844d 4237
1d82de61
MG
4238 /*
4239 * Do some background aging of the anon list, to give
4240 * pages a chance to be referenced before reclaiming. All
4241 * pages are rotated regardless of classzone as this is
4242 * about consistent aging.
4243 */
ef8f2327 4244 age_active_anon(pgdat, &sc);
1d82de61 4245
b7ea3c41
MG
4246 /*
4247 * If we're getting trouble reclaiming, start doing writepage
4248 * even in laptop mode.
4249 */
047d72c3 4250 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
4251 sc.may_writepage = 1;
4252
1d82de61
MG
4253 /* Call soft limit reclaim before calling shrink_node. */
4254 sc.nr_scanned = 0;
4255 nr_soft_scanned = 0;
ef8f2327 4256 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
4257 sc.gfp_mask, &nr_soft_scanned);
4258 sc.nr_reclaimed += nr_soft_reclaimed;
4259
1da177e4 4260 /*
1d82de61
MG
4261 * There should be no need to raise the scanning priority if
4262 * enough pages are already being scanned that that high
4263 * watermark would be met at 100% efficiency.
1da177e4 4264 */
970a39a3 4265 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 4266 raise_priority = false;
5515061d
MG
4267
4268 /*
4269 * If the low watermark is met there is no need for processes
4270 * to be throttled on pfmemalloc_wait as they should not be
4271 * able to safely make forward progress. Wake them
4272 */
4273 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 4274 allow_direct_reclaim(pgdat))
cfc51155 4275 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 4276
b8e83b94 4277 /* Check if kswapd should be suspending */
4f3eaf45 4278 __fs_reclaim_release(_THIS_IP_);
93781325 4279 ret = try_to_freeze();
4f3eaf45 4280 __fs_reclaim_acquire(_THIS_IP_);
93781325 4281 if (ret || kthread_should_stop())
b8e83b94 4282 break;
8357376d 4283
73ce02e9 4284 /*
b8e83b94
MG
4285 * Raise priority if scanning rate is too low or there was no
4286 * progress in reclaiming pages
73ce02e9 4287 */
c73322d0 4288 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
4289 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4290
4291 /*
4292 * If reclaim made no progress for a boost, stop reclaim as
4293 * IO cannot be queued and it could be an infinite loop in
4294 * extreme circumstances.
4295 */
4296 if (nr_boost_reclaim && !nr_reclaimed)
4297 break;
4298
c73322d0 4299 if (raise_priority || !nr_reclaimed)
b8e83b94 4300 sc.priority--;
1d82de61 4301 } while (sc.priority >= 1);
1da177e4 4302
c73322d0
JW
4303 if (!sc.nr_reclaimed)
4304 pgdat->kswapd_failures++;
4305
b8e83b94 4306out:
c49c2c47
MG
4307 clear_reclaim_active(pgdat, highest_zoneidx);
4308
1c30844d
MG
4309 /* If reclaim was boosted, account for the reclaim done in this pass */
4310 if (boosted) {
4311 unsigned long flags;
4312
97a225e6 4313 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4314 if (!zone_boosts[i])
4315 continue;
4316
4317 /* Increments are under the zone lock */
4318 zone = pgdat->node_zones + i;
4319 spin_lock_irqsave(&zone->lock, flags);
4320 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4321 spin_unlock_irqrestore(&zone->lock, flags);
4322 }
4323
4324 /*
4325 * As there is now likely space, wakeup kcompact to defragment
4326 * pageblocks.
4327 */
97a225e6 4328 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
4329 }
4330
2a2e4885 4331 snapshot_refaults(NULL, pgdat);
4f3eaf45 4332 __fs_reclaim_release(_THIS_IP_);
eb414681 4333 psi_memstall_leave(&pflags);
1732d2b0 4334 set_task_reclaim_state(current, NULL);
e5ca8071 4335
0abdee2b 4336 /*
1d82de61
MG
4337 * Return the order kswapd stopped reclaiming at as
4338 * prepare_kswapd_sleep() takes it into account. If another caller
4339 * entered the allocator slow path while kswapd was awake, order will
4340 * remain at the higher level.
0abdee2b 4341 */
1d82de61 4342 return sc.order;
1da177e4
LT
4343}
4344
e716f2eb 4345/*
97a225e6
JK
4346 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4347 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4348 * not a valid index then either kswapd runs for first time or kswapd couldn't
4349 * sleep after previous reclaim attempt (node is still unbalanced). In that
4350 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 4351 */
97a225e6
JK
4352static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4353 enum zone_type prev_highest_zoneidx)
e716f2eb 4354{
97a225e6 4355 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4356
97a225e6 4357 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
4358}
4359
38087d9b 4360static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 4361 unsigned int highest_zoneidx)
f0bc0a60
KM
4362{
4363 long remaining = 0;
4364 DEFINE_WAIT(wait);
4365
4366 if (freezing(current) || kthread_should_stop())
4367 return;
4368
4369 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4370
333b0a45
SG
4371 /*
4372 * Try to sleep for a short interval. Note that kcompactd will only be
4373 * woken if it is possible to sleep for a short interval. This is
4374 * deliberate on the assumption that if reclaim cannot keep an
4375 * eligible zone balanced that it's also unlikely that compaction will
4376 * succeed.
4377 */
97a225e6 4378 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
4379 /*
4380 * Compaction records what page blocks it recently failed to
4381 * isolate pages from and skips them in the future scanning.
4382 * When kswapd is going to sleep, it is reasonable to assume
4383 * that pages and compaction may succeed so reset the cache.
4384 */
4385 reset_isolation_suitable(pgdat);
4386
4387 /*
4388 * We have freed the memory, now we should compact it to make
4389 * allocation of the requested order possible.
4390 */
97a225e6 4391 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 4392
f0bc0a60 4393 remaining = schedule_timeout(HZ/10);
38087d9b
MG
4394
4395 /*
97a225e6 4396 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
4397 * order. The values will either be from a wakeup request or
4398 * the previous request that slept prematurely.
4399 */
4400 if (remaining) {
97a225e6
JK
4401 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4402 kswapd_highest_zoneidx(pgdat,
4403 highest_zoneidx));
5644e1fb
QC
4404
4405 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4406 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
4407 }
4408
f0bc0a60
KM
4409 finish_wait(&pgdat->kswapd_wait, &wait);
4410 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4411 }
4412
4413 /*
4414 * After a short sleep, check if it was a premature sleep. If not, then
4415 * go fully to sleep until explicitly woken up.
4416 */
d9f21d42 4417 if (!remaining &&
97a225e6 4418 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
4419 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4420
4421 /*
4422 * vmstat counters are not perfectly accurate and the estimated
4423 * value for counters such as NR_FREE_PAGES can deviate from the
4424 * true value by nr_online_cpus * threshold. To avoid the zone
4425 * watermarks being breached while under pressure, we reduce the
4426 * per-cpu vmstat threshold while kswapd is awake and restore
4427 * them before going back to sleep.
4428 */
4429 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
4430
4431 if (!kthread_should_stop())
4432 schedule();
4433
f0bc0a60
KM
4434 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4435 } else {
4436 if (remaining)
4437 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4438 else
4439 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4440 }
4441 finish_wait(&pgdat->kswapd_wait, &wait);
4442}
4443
1da177e4
LT
4444/*
4445 * The background pageout daemon, started as a kernel thread
4f98a2fe 4446 * from the init process.
1da177e4
LT
4447 *
4448 * This basically trickles out pages so that we have _some_
4449 * free memory available even if there is no other activity
4450 * that frees anything up. This is needed for things like routing
4451 * etc, where we otherwise might have all activity going on in
4452 * asynchronous contexts that cannot page things out.
4453 *
4454 * If there are applications that are active memory-allocators
4455 * (most normal use), this basically shouldn't matter.
4456 */
4457static int kswapd(void *p)
4458{
e716f2eb 4459 unsigned int alloc_order, reclaim_order;
97a225e6 4460 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
68d68ff6 4461 pg_data_t *pgdat = (pg_data_t *)p;
1da177e4 4462 struct task_struct *tsk = current;
a70f7302 4463 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 4464
174596a0 4465 if (!cpumask_empty(cpumask))
c5f59f08 4466 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
4467
4468 /*
4469 * Tell the memory management that we're a "memory allocator",
4470 * and that if we need more memory we should get access to it
4471 * regardless (see "__alloc_pages()"). "kswapd" should
4472 * never get caught in the normal page freeing logic.
4473 *
4474 * (Kswapd normally doesn't need memory anyway, but sometimes
4475 * you need a small amount of memory in order to be able to
4476 * page out something else, and this flag essentially protects
4477 * us from recursively trying to free more memory as we're
4478 * trying to free the first piece of memory in the first place).
4479 */
930d9152 4480 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 4481 set_freezable();
1da177e4 4482
5644e1fb 4483 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4484 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
8cd7c588 4485 atomic_set(&pgdat->nr_writeback_throttled, 0);
1da177e4 4486 for ( ; ; ) {
6f6313d4 4487 bool ret;
3e1d1d28 4488
5644e1fb 4489 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4490 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4491 highest_zoneidx);
e716f2eb 4492
38087d9b
MG
4493kswapd_try_sleep:
4494 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 4495 highest_zoneidx);
215ddd66 4496
97a225e6 4497 /* Read the new order and highest_zoneidx */
2b47a24c 4498 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4499 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4500 highest_zoneidx);
5644e1fb 4501 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4502 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4503
8fe23e05
DR
4504 ret = try_to_freeze();
4505 if (kthread_should_stop())
4506 break;
4507
4508 /*
4509 * We can speed up thawing tasks if we don't call balance_pgdat
4510 * after returning from the refrigerator
4511 */
38087d9b
MG
4512 if (ret)
4513 continue;
4514
4515 /*
4516 * Reclaim begins at the requested order but if a high-order
4517 * reclaim fails then kswapd falls back to reclaiming for
4518 * order-0. If that happens, kswapd will consider sleeping
4519 * for the order it finished reclaiming at (reclaim_order)
4520 * but kcompactd is woken to compact for the original
4521 * request (alloc_order).
4522 */
97a225e6 4523 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 4524 alloc_order);
97a225e6
JK
4525 reclaim_order = balance_pgdat(pgdat, alloc_order,
4526 highest_zoneidx);
38087d9b
MG
4527 if (reclaim_order < alloc_order)
4528 goto kswapd_try_sleep;
1da177e4 4529 }
b0a8cc58 4530
71abdc15 4531 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 4532
1da177e4
LT
4533 return 0;
4534}
4535
4536/*
5ecd9d40
DR
4537 * A zone is low on free memory or too fragmented for high-order memory. If
4538 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4539 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4540 * has failed or is not needed, still wake up kcompactd if only compaction is
4541 * needed.
1da177e4 4542 */
5ecd9d40 4543void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 4544 enum zone_type highest_zoneidx)
1da177e4
LT
4545{
4546 pg_data_t *pgdat;
5644e1fb 4547 enum zone_type curr_idx;
1da177e4 4548
6aa303de 4549 if (!managed_zone(zone))
1da177e4
LT
4550 return;
4551
5ecd9d40 4552 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 4553 return;
5644e1fb 4554
88f5acf8 4555 pgdat = zone->zone_pgdat;
97a225e6 4556 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4557
97a225e6
JK
4558 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4559 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
4560
4561 if (READ_ONCE(pgdat->kswapd_order) < order)
4562 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 4563
8d0986e2 4564 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 4565 return;
e1a55637 4566
5ecd9d40
DR
4567 /* Hopeless node, leave it to direct reclaim if possible */
4568 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
4569 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4570 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
4571 /*
4572 * There may be plenty of free memory available, but it's too
4573 * fragmented for high-order allocations. Wake up kcompactd
4574 * and rely on compaction_suitable() to determine if it's
4575 * needed. If it fails, it will defer subsequent attempts to
4576 * ratelimit its work.
4577 */
4578 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 4579 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 4580 return;
5ecd9d40 4581 }
88f5acf8 4582
97a225e6 4583 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 4584 gfp_flags);
8d0986e2 4585 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
4586}
4587
c6f37f12 4588#ifdef CONFIG_HIBERNATION
1da177e4 4589/*
7b51755c 4590 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
4591 * freed pages.
4592 *
4593 * Rather than trying to age LRUs the aim is to preserve the overall
4594 * LRU order by reclaiming preferentially
4595 * inactive > active > active referenced > active mapped
1da177e4 4596 */
7b51755c 4597unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4598{
d6277db4 4599 struct scan_control sc = {
ee814fe2 4600 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4601 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4602 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4603 .priority = DEF_PRIORITY,
d6277db4 4604 .may_writepage = 1,
ee814fe2
JW
4605 .may_unmap = 1,
4606 .may_swap = 1,
7b51755c 4607 .hibernation_mode = 1,
1da177e4 4608 };
a09ed5e0 4609 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4610 unsigned long nr_reclaimed;
499118e9 4611 unsigned int noreclaim_flag;
1da177e4 4612
d92a8cfc 4613 fs_reclaim_acquire(sc.gfp_mask);
93781325 4614 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4615 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4616
3115cd91 4617 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4618
1732d2b0 4619 set_task_reclaim_state(current, NULL);
499118e9 4620 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4621 fs_reclaim_release(sc.gfp_mask);
d6277db4 4622
7b51755c 4623 return nr_reclaimed;
1da177e4 4624}
c6f37f12 4625#endif /* CONFIG_HIBERNATION */
1da177e4 4626
3218ae14
YG
4627/*
4628 * This kswapd start function will be called by init and node-hot-add.
4629 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4630 */
b87c517a 4631void kswapd_run(int nid)
3218ae14
YG
4632{
4633 pg_data_t *pgdat = NODE_DATA(nid);
3218ae14
YG
4634
4635 if (pgdat->kswapd)
b87c517a 4636 return;
3218ae14
YG
4637
4638 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4639 if (IS_ERR(pgdat->kswapd)) {
4640 /* failure at boot is fatal */
c6202adf 4641 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9 4642 pr_err("Failed to start kswapd on node %d\n", nid);
d72515b8 4643 pgdat->kswapd = NULL;
3218ae14 4644 }
3218ae14
YG
4645}
4646
8fe23e05 4647/*
d8adde17 4648 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4649 * hold mem_hotplug_begin/end().
8fe23e05
DR
4650 */
4651void kswapd_stop(int nid)
4652{
4653 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4654
d8adde17 4655 if (kswapd) {
8fe23e05 4656 kthread_stop(kswapd);
d8adde17
JL
4657 NODE_DATA(nid)->kswapd = NULL;
4658 }
8fe23e05
DR
4659}
4660
1da177e4
LT
4661static int __init kswapd_init(void)
4662{
6b700b5b 4663 int nid;
69e05944 4664
1da177e4 4665 swap_setup();
48fb2e24 4666 for_each_node_state(nid, N_MEMORY)
3218ae14 4667 kswapd_run(nid);
1da177e4
LT
4668 return 0;
4669}
4670
4671module_init(kswapd_init)
9eeff239
CL
4672
4673#ifdef CONFIG_NUMA
4674/*
a5f5f91d 4675 * Node reclaim mode
9eeff239 4676 *
a5f5f91d 4677 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4678 * the watermarks.
9eeff239 4679 */
a5f5f91d 4680int node_reclaim_mode __read_mostly;
9eeff239 4681
a92f7126 4682/*
a5f5f91d 4683 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4684 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4685 * a zone.
4686 */
a5f5f91d 4687#define NODE_RECLAIM_PRIORITY 4
a92f7126 4688
9614634f 4689/*
a5f5f91d 4690 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4691 * occur.
4692 */
4693int sysctl_min_unmapped_ratio = 1;
4694
0ff38490
CL
4695/*
4696 * If the number of slab pages in a zone grows beyond this percentage then
4697 * slab reclaim needs to occur.
4698 */
4699int sysctl_min_slab_ratio = 5;
4700
11fb9989 4701static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4702{
11fb9989
MG
4703 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4704 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4705 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4706
4707 /*
4708 * It's possible for there to be more file mapped pages than
4709 * accounted for by the pages on the file LRU lists because
4710 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4711 */
4712 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4713}
4714
4715/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4716static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4717{
d031a157
AM
4718 unsigned long nr_pagecache_reclaimable;
4719 unsigned long delta = 0;
90afa5de
MG
4720
4721 /*
95bbc0c7 4722 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4723 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4724 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4725 * a better estimate
4726 */
a5f5f91d
MG
4727 if (node_reclaim_mode & RECLAIM_UNMAP)
4728 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4729 else
a5f5f91d 4730 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4731
4732 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4733 if (!(node_reclaim_mode & RECLAIM_WRITE))
4734 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4735
4736 /* Watch for any possible underflows due to delta */
4737 if (unlikely(delta > nr_pagecache_reclaimable))
4738 delta = nr_pagecache_reclaimable;
4739
4740 return nr_pagecache_reclaimable - delta;
4741}
4742
9eeff239 4743/*
a5f5f91d 4744 * Try to free up some pages from this node through reclaim.
9eeff239 4745 */
a5f5f91d 4746static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4747{
7fb2d46d 4748 /* Minimum pages needed in order to stay on node */
69e05944 4749 const unsigned long nr_pages = 1 << order;
9eeff239 4750 struct task_struct *p = current;
499118e9 4751 unsigned int noreclaim_flag;
179e9639 4752 struct scan_control sc = {
62b726c1 4753 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4754 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4755 .order = order,
a5f5f91d
MG
4756 .priority = NODE_RECLAIM_PRIORITY,
4757 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4758 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4759 .may_swap = 1,
f2f43e56 4760 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4761 };
57f29762 4762 unsigned long pflags;
9eeff239 4763
132bb8cf
YS
4764 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4765 sc.gfp_mask);
4766
9eeff239 4767 cond_resched();
57f29762 4768 psi_memstall_enter(&pflags);
93781325 4769 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4770 /*
95bbc0c7 4771 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4772 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4773 * and RECLAIM_UNMAP.
d4f7796e 4774 */
499118e9
VB
4775 noreclaim_flag = memalloc_noreclaim_save();
4776 p->flags |= PF_SWAPWRITE;
1732d2b0 4777 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4778
a5f5f91d 4779 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4780 /*
894befec 4781 * Free memory by calling shrink node with increasing
0ff38490
CL
4782 * priorities until we have enough memory freed.
4783 */
0ff38490 4784 do {
970a39a3 4785 shrink_node(pgdat, &sc);
9e3b2f8c 4786 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4787 }
c84db23c 4788
1732d2b0 4789 set_task_reclaim_state(p, NULL);
499118e9
VB
4790 current->flags &= ~PF_SWAPWRITE;
4791 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4792 fs_reclaim_release(sc.gfp_mask);
57f29762 4793 psi_memstall_leave(&pflags);
132bb8cf
YS
4794
4795 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4796
a79311c1 4797 return sc.nr_reclaimed >= nr_pages;
9eeff239 4798}
179e9639 4799
a5f5f91d 4800int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4801{
d773ed6b 4802 int ret;
179e9639
AM
4803
4804 /*
a5f5f91d 4805 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4806 * slab pages if we are over the defined limits.
34aa1330 4807 *
9614634f
CL
4808 * A small portion of unmapped file backed pages is needed for
4809 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4810 * thrown out if the node is overallocated. So we do not reclaim
4811 * if less than a specified percentage of the node is used by
9614634f 4812 * unmapped file backed pages.
179e9639 4813 */
a5f5f91d 4814 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4815 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4816 pgdat->min_slab_pages)
a5f5f91d 4817 return NODE_RECLAIM_FULL;
179e9639
AM
4818
4819 /*
d773ed6b 4820 * Do not scan if the allocation should not be delayed.
179e9639 4821 */
d0164adc 4822 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4823 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4824
4825 /*
a5f5f91d 4826 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4827 * have associated processors. This will favor the local processor
4828 * over remote processors and spread off node memory allocations
4829 * as wide as possible.
4830 */
a5f5f91d
MG
4831 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4832 return NODE_RECLAIM_NOSCAN;
d773ed6b 4833
a5f5f91d
MG
4834 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4835 return NODE_RECLAIM_NOSCAN;
fa5e084e 4836
a5f5f91d
MG
4837 ret = __node_reclaim(pgdat, gfp_mask, order);
4838 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4839
24cf7251
MG
4840 if (!ret)
4841 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4842
d773ed6b 4843 return ret;
179e9639 4844}
9eeff239 4845#endif
894bc310 4846
89e004ea 4847/**
64e3d12f
KHY
4848 * check_move_unevictable_pages - check pages for evictability and move to
4849 * appropriate zone lru list
4850 * @pvec: pagevec with lru pages to check
89e004ea 4851 *
64e3d12f
KHY
4852 * Checks pages for evictability, if an evictable page is in the unevictable
4853 * lru list, moves it to the appropriate evictable lru list. This function
4854 * should be only used for lru pages.
89e004ea 4855 */
64e3d12f 4856void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4857{
6168d0da 4858 struct lruvec *lruvec = NULL;
24513264
HD
4859 int pgscanned = 0;
4860 int pgrescued = 0;
4861 int i;
89e004ea 4862
64e3d12f
KHY
4863 for (i = 0; i < pvec->nr; i++) {
4864 struct page *page = pvec->pages[i];
0de340cb 4865 struct folio *folio = page_folio(page);
8d8869ca
HD
4866 int nr_pages;
4867
4868 if (PageTransTail(page))
4869 continue;
4870
4871 nr_pages = thp_nr_pages(page);
4872 pgscanned += nr_pages;
89e004ea 4873
d25b5bd8
AS
4874 /* block memcg migration during page moving between lru */
4875 if (!TestClearPageLRU(page))
4876 continue;
4877
0de340cb 4878 lruvec = folio_lruvec_relock_irq(folio, lruvec);
d25b5bd8 4879 if (page_evictable(page) && PageUnevictable(page)) {
46ae6b2c 4880 del_page_from_lru_list(page, lruvec);
24513264 4881 ClearPageUnevictable(page);
3a9c9788 4882 add_page_to_lru_list(page, lruvec);
8d8869ca 4883 pgrescued += nr_pages;
89e004ea 4884 }
d25b5bd8 4885 SetPageLRU(page);
24513264 4886 }
89e004ea 4887
6168d0da 4888 if (lruvec) {
24513264
HD
4889 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4890 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 4891 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
4892 } else if (pgscanned) {
4893 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 4894 }
89e004ea 4895}
64e3d12f 4896EXPORT_SYMBOL_GPL(check_move_unevictable_pages);