]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/vmscan.c
mm: remove lru type checks from __isolate_lru_page()
[thirdparty/kernel/stable.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
1da177e4
LT
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
3e7d3449 34#include <linux/compaction.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
929bea7c 43#include <linux/oom.h>
268bb0ce 44#include <linux/prefetch.h>
1da177e4
LT
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48
49#include <linux/swapops.h>
50
0f8053a5
NP
51#include "internal.h"
52
33906bc5
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/vmscan.h>
55
1da177e4 56struct scan_control {
1da177e4
LT
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
a79311c1
RR
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
7b51755c
KM
66 unsigned long hibernation_mode;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4
LT
70
71 int may_writepage;
72
a6dc60f8
JW
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
f1fd1067 75
2e2e4259
KM
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
5ad333eb 79 int order;
66e1707b 80
f16015fb
JW
81 /*
82 * The memory cgroup that hit its limit and as a result is the
83 * primary target of this reclaim invocation.
84 */
85 struct mem_cgroup *target_mem_cgroup;
66e1707b 86
327c0e96
KH
87 /*
88 * Nodemask of nodes allowed by the caller. If NULL, all nodes
89 * are scanned.
90 */
91 nodemask_t *nodemask;
1da177e4
LT
92};
93
f16015fb
JW
94struct mem_cgroup_zone {
95 struct mem_cgroup *mem_cgroup;
96 struct zone *zone;
97};
98
1da177e4
LT
99#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101#ifdef ARCH_HAS_PREFETCH
102#define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
109 } \
110 } while (0)
111#else
112#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113#endif
114
115#ifdef ARCH_HAS_PREFETCHW
116#define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
123 } \
124 } while (0)
125#else
126#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127#endif
128
129/*
130 * From 0 .. 100. Higher means more swappy.
131 */
132int vm_swappiness = 60;
bd1e22b8 133long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
134
135static LIST_HEAD(shrinker_list);
136static DECLARE_RWSEM(shrinker_rwsem);
137
00f0b825 138#ifdef CONFIG_CGROUP_MEM_RES_CTLR
89b5fae5
JW
139static bool global_reclaim(struct scan_control *sc)
140{
f16015fb 141 return !sc->target_mem_cgroup;
89b5fae5 142}
91a45470 143#else
89b5fae5
JW
144static bool global_reclaim(struct scan_control *sc)
145{
146 return true;
147}
91a45470
KH
148#endif
149
f16015fb 150static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
6e901571 151{
89abfab1 152 return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
6e901571
KM
153}
154
f16015fb
JW
155static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
156 enum lru_list lru)
c9f299d9 157{
c3c787e8 158 if (!mem_cgroup_disabled())
f16015fb
JW
159 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
160 zone_to_nid(mz->zone),
161 zone_idx(mz->zone),
162 BIT(lru));
a3d8e054 163
f16015fb 164 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
c9f299d9
KM
165}
166
167
1da177e4
LT
168/*
169 * Add a shrinker callback to be called from the vm
170 */
8e1f936b 171void register_shrinker(struct shrinker *shrinker)
1da177e4 172{
83aeeada 173 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
174 down_write(&shrinker_rwsem);
175 list_add_tail(&shrinker->list, &shrinker_list);
176 up_write(&shrinker_rwsem);
1da177e4 177}
8e1f936b 178EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
179
180/*
181 * Remove one
182 */
8e1f936b 183void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
184{
185 down_write(&shrinker_rwsem);
186 list_del(&shrinker->list);
187 up_write(&shrinker_rwsem);
1da177e4 188}
8e1f936b 189EXPORT_SYMBOL(unregister_shrinker);
1da177e4 190
1495f230
YH
191static inline int do_shrinker_shrink(struct shrinker *shrinker,
192 struct shrink_control *sc,
193 unsigned long nr_to_scan)
194{
195 sc->nr_to_scan = nr_to_scan;
196 return (*shrinker->shrink)(shrinker, sc);
197}
198
1da177e4
LT
199#define SHRINK_BATCH 128
200/*
201 * Call the shrink functions to age shrinkable caches
202 *
203 * Here we assume it costs one seek to replace a lru page and that it also
204 * takes a seek to recreate a cache object. With this in mind we age equal
205 * percentages of the lru and ageable caches. This should balance the seeks
206 * generated by these structures.
207 *
183ff22b 208 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
209 * slab to avoid swapping.
210 *
211 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
212 *
213 * `lru_pages' represents the number of on-LRU pages in all the zones which
214 * are eligible for the caller's allocation attempt. It is used for balancing
215 * slab reclaim versus page reclaim.
b15e0905 216 *
217 * Returns the number of slab objects which we shrunk.
1da177e4 218 */
a09ed5e0 219unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 220 unsigned long nr_pages_scanned,
a09ed5e0 221 unsigned long lru_pages)
1da177e4
LT
222{
223 struct shrinker *shrinker;
69e05944 224 unsigned long ret = 0;
1da177e4 225
1495f230
YH
226 if (nr_pages_scanned == 0)
227 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 228
f06590bd
MK
229 if (!down_read_trylock(&shrinker_rwsem)) {
230 /* Assume we'll be able to shrink next time */
231 ret = 1;
232 goto out;
233 }
1da177e4
LT
234
235 list_for_each_entry(shrinker, &shrinker_list, list) {
236 unsigned long long delta;
635697c6
KK
237 long total_scan;
238 long max_pass;
09576073 239 int shrink_ret = 0;
acf92b48
DC
240 long nr;
241 long new_nr;
e9299f50
DC
242 long batch_size = shrinker->batch ? shrinker->batch
243 : SHRINK_BATCH;
1da177e4 244
635697c6
KK
245 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
246 if (max_pass <= 0)
247 continue;
248
acf92b48
DC
249 /*
250 * copy the current shrinker scan count into a local variable
251 * and zero it so that other concurrent shrinker invocations
252 * don't also do this scanning work.
253 */
83aeeada 254 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
255
256 total_scan = nr;
1495f230 257 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 258 delta *= max_pass;
1da177e4 259 do_div(delta, lru_pages + 1);
acf92b48
DC
260 total_scan += delta;
261 if (total_scan < 0) {
88c3bd70
DR
262 printk(KERN_ERR "shrink_slab: %pF negative objects to "
263 "delete nr=%ld\n",
acf92b48
DC
264 shrinker->shrink, total_scan);
265 total_scan = max_pass;
ea164d73
AA
266 }
267
3567b59a
DC
268 /*
269 * We need to avoid excessive windup on filesystem shrinkers
270 * due to large numbers of GFP_NOFS allocations causing the
271 * shrinkers to return -1 all the time. This results in a large
272 * nr being built up so when a shrink that can do some work
273 * comes along it empties the entire cache due to nr >>>
274 * max_pass. This is bad for sustaining a working set in
275 * memory.
276 *
277 * Hence only allow the shrinker to scan the entire cache when
278 * a large delta change is calculated directly.
279 */
280 if (delta < max_pass / 4)
281 total_scan = min(total_scan, max_pass / 2);
282
ea164d73
AA
283 /*
284 * Avoid risking looping forever due to too large nr value:
285 * never try to free more than twice the estimate number of
286 * freeable entries.
287 */
acf92b48
DC
288 if (total_scan > max_pass * 2)
289 total_scan = max_pass * 2;
1da177e4 290
acf92b48 291 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
292 nr_pages_scanned, lru_pages,
293 max_pass, delta, total_scan);
294
e9299f50 295 while (total_scan >= batch_size) {
b15e0905 296 int nr_before;
1da177e4 297
1495f230
YH
298 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
299 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 300 batch_size);
1da177e4
LT
301 if (shrink_ret == -1)
302 break;
b15e0905 303 if (shrink_ret < nr_before)
304 ret += nr_before - shrink_ret;
e9299f50
DC
305 count_vm_events(SLABS_SCANNED, batch_size);
306 total_scan -= batch_size;
1da177e4
LT
307
308 cond_resched();
309 }
310
acf92b48
DC
311 /*
312 * move the unused scan count back into the shrinker in a
313 * manner that handles concurrent updates. If we exhausted the
314 * scan, there is no need to do an update.
315 */
83aeeada
KK
316 if (total_scan > 0)
317 new_nr = atomic_long_add_return(total_scan,
318 &shrinker->nr_in_batch);
319 else
320 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
321
322 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
323 }
324 up_read(&shrinker_rwsem);
f06590bd
MK
325out:
326 cond_resched();
b15e0905 327 return ret;
1da177e4
LT
328}
329
1da177e4
LT
330static inline int is_page_cache_freeable(struct page *page)
331{
ceddc3a5
JW
332 /*
333 * A freeable page cache page is referenced only by the caller
334 * that isolated the page, the page cache radix tree and
335 * optional buffer heads at page->private.
336 */
edcf4748 337 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
338}
339
7d3579e8
KM
340static int may_write_to_queue(struct backing_dev_info *bdi,
341 struct scan_control *sc)
1da177e4 342{
930d9152 343 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
344 return 1;
345 if (!bdi_write_congested(bdi))
346 return 1;
347 if (bdi == current->backing_dev_info)
348 return 1;
349 return 0;
350}
351
352/*
353 * We detected a synchronous write error writing a page out. Probably
354 * -ENOSPC. We need to propagate that into the address_space for a subsequent
355 * fsync(), msync() or close().
356 *
357 * The tricky part is that after writepage we cannot touch the mapping: nothing
358 * prevents it from being freed up. But we have a ref on the page and once
359 * that page is locked, the mapping is pinned.
360 *
361 * We're allowed to run sleeping lock_page() here because we know the caller has
362 * __GFP_FS.
363 */
364static void handle_write_error(struct address_space *mapping,
365 struct page *page, int error)
366{
7eaceacc 367 lock_page(page);
3e9f45bd
GC
368 if (page_mapping(page) == mapping)
369 mapping_set_error(mapping, error);
1da177e4
LT
370 unlock_page(page);
371}
372
04e62a29
CL
373/* possible outcome of pageout() */
374typedef enum {
375 /* failed to write page out, page is locked */
376 PAGE_KEEP,
377 /* move page to the active list, page is locked */
378 PAGE_ACTIVATE,
379 /* page has been sent to the disk successfully, page is unlocked */
380 PAGE_SUCCESS,
381 /* page is clean and locked */
382 PAGE_CLEAN,
383} pageout_t;
384
1da177e4 385/*
1742f19f
AM
386 * pageout is called by shrink_page_list() for each dirty page.
387 * Calls ->writepage().
1da177e4 388 */
c661b078 389static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 390 struct scan_control *sc)
1da177e4
LT
391{
392 /*
393 * If the page is dirty, only perform writeback if that write
394 * will be non-blocking. To prevent this allocation from being
395 * stalled by pagecache activity. But note that there may be
396 * stalls if we need to run get_block(). We could test
397 * PagePrivate for that.
398 *
6aceb53b 399 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
400 * this page's queue, we can perform writeback even if that
401 * will block.
402 *
403 * If the page is swapcache, write it back even if that would
404 * block, for some throttling. This happens by accident, because
405 * swap_backing_dev_info is bust: it doesn't reflect the
406 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
407 */
408 if (!is_page_cache_freeable(page))
409 return PAGE_KEEP;
410 if (!mapping) {
411 /*
412 * Some data journaling orphaned pages can have
413 * page->mapping == NULL while being dirty with clean buffers.
414 */
266cf658 415 if (page_has_private(page)) {
1da177e4
LT
416 if (try_to_free_buffers(page)) {
417 ClearPageDirty(page);
d40cee24 418 printk("%s: orphaned page\n", __func__);
1da177e4
LT
419 return PAGE_CLEAN;
420 }
421 }
422 return PAGE_KEEP;
423 }
424 if (mapping->a_ops->writepage == NULL)
425 return PAGE_ACTIVATE;
0e093d99 426 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
427 return PAGE_KEEP;
428
429 if (clear_page_dirty_for_io(page)) {
430 int res;
431 struct writeback_control wbc = {
432 .sync_mode = WB_SYNC_NONE,
433 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
434 .range_start = 0,
435 .range_end = LLONG_MAX,
1da177e4
LT
436 .for_reclaim = 1,
437 };
438
439 SetPageReclaim(page);
440 res = mapping->a_ops->writepage(page, &wbc);
441 if (res < 0)
442 handle_write_error(mapping, page, res);
994fc28c 443 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
444 ClearPageReclaim(page);
445 return PAGE_ACTIVATE;
446 }
c661b078 447
1da177e4
LT
448 if (!PageWriteback(page)) {
449 /* synchronous write or broken a_ops? */
450 ClearPageReclaim(page);
451 }
23b9da55 452 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 453 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
454 return PAGE_SUCCESS;
455 }
456
457 return PAGE_CLEAN;
458}
459
a649fd92 460/*
e286781d
NP
461 * Same as remove_mapping, but if the page is removed from the mapping, it
462 * gets returned with a refcount of 0.
a649fd92 463 */
e286781d 464static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 465{
28e4d965
NP
466 BUG_ON(!PageLocked(page));
467 BUG_ON(mapping != page_mapping(page));
49d2e9cc 468
19fd6231 469 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 470 /*
0fd0e6b0
NP
471 * The non racy check for a busy page.
472 *
473 * Must be careful with the order of the tests. When someone has
474 * a ref to the page, it may be possible that they dirty it then
475 * drop the reference. So if PageDirty is tested before page_count
476 * here, then the following race may occur:
477 *
478 * get_user_pages(&page);
479 * [user mapping goes away]
480 * write_to(page);
481 * !PageDirty(page) [good]
482 * SetPageDirty(page);
483 * put_page(page);
484 * !page_count(page) [good, discard it]
485 *
486 * [oops, our write_to data is lost]
487 *
488 * Reversing the order of the tests ensures such a situation cannot
489 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
490 * load is not satisfied before that of page->_count.
491 *
492 * Note that if SetPageDirty is always performed via set_page_dirty,
493 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 494 */
e286781d 495 if (!page_freeze_refs(page, 2))
49d2e9cc 496 goto cannot_free;
e286781d
NP
497 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
498 if (unlikely(PageDirty(page))) {
499 page_unfreeze_refs(page, 2);
49d2e9cc 500 goto cannot_free;
e286781d 501 }
49d2e9cc
CL
502
503 if (PageSwapCache(page)) {
504 swp_entry_t swap = { .val = page_private(page) };
505 __delete_from_swap_cache(page);
19fd6231 506 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 507 swapcache_free(swap, page);
e286781d 508 } else {
6072d13c
LT
509 void (*freepage)(struct page *);
510
511 freepage = mapping->a_ops->freepage;
512
e64a782f 513 __delete_from_page_cache(page);
19fd6231 514 spin_unlock_irq(&mapping->tree_lock);
e767e056 515 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
516
517 if (freepage != NULL)
518 freepage(page);
49d2e9cc
CL
519 }
520
49d2e9cc
CL
521 return 1;
522
523cannot_free:
19fd6231 524 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
525 return 0;
526}
527
e286781d
NP
528/*
529 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
530 * someone else has a ref on the page, abort and return 0. If it was
531 * successfully detached, return 1. Assumes the caller has a single ref on
532 * this page.
533 */
534int remove_mapping(struct address_space *mapping, struct page *page)
535{
536 if (__remove_mapping(mapping, page)) {
537 /*
538 * Unfreezing the refcount with 1 rather than 2 effectively
539 * drops the pagecache ref for us without requiring another
540 * atomic operation.
541 */
542 page_unfreeze_refs(page, 1);
543 return 1;
544 }
545 return 0;
546}
547
894bc310
LS
548/**
549 * putback_lru_page - put previously isolated page onto appropriate LRU list
550 * @page: page to be put back to appropriate lru list
551 *
552 * Add previously isolated @page to appropriate LRU list.
553 * Page may still be unevictable for other reasons.
554 *
555 * lru_lock must not be held, interrupts must be enabled.
556 */
894bc310
LS
557void putback_lru_page(struct page *page)
558{
559 int lru;
560 int active = !!TestClearPageActive(page);
bbfd28ee 561 int was_unevictable = PageUnevictable(page);
894bc310
LS
562
563 VM_BUG_ON(PageLRU(page));
564
565redo:
566 ClearPageUnevictable(page);
567
568 if (page_evictable(page, NULL)) {
569 /*
570 * For evictable pages, we can use the cache.
571 * In event of a race, worst case is we end up with an
572 * unevictable page on [in]active list.
573 * We know how to handle that.
574 */
401a8e1c 575 lru = active + page_lru_base_type(page);
894bc310
LS
576 lru_cache_add_lru(page, lru);
577 } else {
578 /*
579 * Put unevictable pages directly on zone's unevictable
580 * list.
581 */
582 lru = LRU_UNEVICTABLE;
583 add_page_to_unevictable_list(page);
6a7b9548 584 /*
21ee9f39
MK
585 * When racing with an mlock or AS_UNEVICTABLE clearing
586 * (page is unlocked) make sure that if the other thread
587 * does not observe our setting of PG_lru and fails
24513264 588 * isolation/check_move_unevictable_pages,
21ee9f39 589 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
590 * the page back to the evictable list.
591 *
21ee9f39 592 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
593 */
594 smp_mb();
894bc310 595 }
894bc310
LS
596
597 /*
598 * page's status can change while we move it among lru. If an evictable
599 * page is on unevictable list, it never be freed. To avoid that,
600 * check after we added it to the list, again.
601 */
602 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
603 if (!isolate_lru_page(page)) {
604 put_page(page);
605 goto redo;
606 }
607 /* This means someone else dropped this page from LRU
608 * So, it will be freed or putback to LRU again. There is
609 * nothing to do here.
610 */
611 }
612
bbfd28ee
LS
613 if (was_unevictable && lru != LRU_UNEVICTABLE)
614 count_vm_event(UNEVICTABLE_PGRESCUED);
615 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
616 count_vm_event(UNEVICTABLE_PGCULLED);
617
894bc310
LS
618 put_page(page); /* drop ref from isolate */
619}
620
dfc8d636
JW
621enum page_references {
622 PAGEREF_RECLAIM,
623 PAGEREF_RECLAIM_CLEAN,
64574746 624 PAGEREF_KEEP,
dfc8d636
JW
625 PAGEREF_ACTIVATE,
626};
627
628static enum page_references page_check_references(struct page *page,
f16015fb 629 struct mem_cgroup_zone *mz,
dfc8d636
JW
630 struct scan_control *sc)
631{
64574746 632 int referenced_ptes, referenced_page;
dfc8d636 633 unsigned long vm_flags;
dfc8d636 634
c3ac9a8a
JW
635 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
636 &vm_flags);
64574746 637 referenced_page = TestClearPageReferenced(page);
dfc8d636 638
dfc8d636
JW
639 /*
640 * Mlock lost the isolation race with us. Let try_to_unmap()
641 * move the page to the unevictable list.
642 */
643 if (vm_flags & VM_LOCKED)
644 return PAGEREF_RECLAIM;
645
64574746 646 if (referenced_ptes) {
e4898273 647 if (PageSwapBacked(page))
64574746
JW
648 return PAGEREF_ACTIVATE;
649 /*
650 * All mapped pages start out with page table
651 * references from the instantiating fault, so we need
652 * to look twice if a mapped file page is used more
653 * than once.
654 *
655 * Mark it and spare it for another trip around the
656 * inactive list. Another page table reference will
657 * lead to its activation.
658 *
659 * Note: the mark is set for activated pages as well
660 * so that recently deactivated but used pages are
661 * quickly recovered.
662 */
663 SetPageReferenced(page);
664
34dbc67a 665 if (referenced_page || referenced_ptes > 1)
64574746
JW
666 return PAGEREF_ACTIVATE;
667
c909e993
KK
668 /*
669 * Activate file-backed executable pages after first usage.
670 */
671 if (vm_flags & VM_EXEC)
672 return PAGEREF_ACTIVATE;
673
64574746
JW
674 return PAGEREF_KEEP;
675 }
dfc8d636
JW
676
677 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 678 if (referenced_page && !PageSwapBacked(page))
64574746
JW
679 return PAGEREF_RECLAIM_CLEAN;
680
681 return PAGEREF_RECLAIM;
dfc8d636
JW
682}
683
1da177e4 684/*
1742f19f 685 * shrink_page_list() returns the number of reclaimed pages
1da177e4 686 */
1742f19f 687static unsigned long shrink_page_list(struct list_head *page_list,
f16015fb 688 struct mem_cgroup_zone *mz,
f84f6e2b 689 struct scan_control *sc,
92df3a72
MG
690 int priority,
691 unsigned long *ret_nr_dirty,
692 unsigned long *ret_nr_writeback)
1da177e4
LT
693{
694 LIST_HEAD(ret_pages);
abe4c3b5 695 LIST_HEAD(free_pages);
1da177e4 696 int pgactivate = 0;
0e093d99
MG
697 unsigned long nr_dirty = 0;
698 unsigned long nr_congested = 0;
05ff5137 699 unsigned long nr_reclaimed = 0;
92df3a72 700 unsigned long nr_writeback = 0;
1da177e4
LT
701
702 cond_resched();
703
1da177e4 704 while (!list_empty(page_list)) {
dfc8d636 705 enum page_references references;
1da177e4
LT
706 struct address_space *mapping;
707 struct page *page;
708 int may_enter_fs;
1da177e4
LT
709
710 cond_resched();
711
712 page = lru_to_page(page_list);
713 list_del(&page->lru);
714
529ae9aa 715 if (!trylock_page(page))
1da177e4
LT
716 goto keep;
717
725d704e 718 VM_BUG_ON(PageActive(page));
f16015fb 719 VM_BUG_ON(page_zone(page) != mz->zone);
1da177e4
LT
720
721 sc->nr_scanned++;
80e43426 722
b291f000
NP
723 if (unlikely(!page_evictable(page, NULL)))
724 goto cull_mlocked;
894bc310 725
a6dc60f8 726 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
727 goto keep_locked;
728
1da177e4
LT
729 /* Double the slab pressure for mapped and swapcache pages */
730 if (page_mapped(page) || PageSwapCache(page))
731 sc->nr_scanned++;
732
c661b078
AW
733 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
734 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
735
736 if (PageWriteback(page)) {
92df3a72 737 nr_writeback++;
41ac1999
MG
738 unlock_page(page);
739 goto keep;
c661b078 740 }
1da177e4 741
f16015fb 742 references = page_check_references(page, mz, sc);
dfc8d636
JW
743 switch (references) {
744 case PAGEREF_ACTIVATE:
1da177e4 745 goto activate_locked;
64574746
JW
746 case PAGEREF_KEEP:
747 goto keep_locked;
dfc8d636
JW
748 case PAGEREF_RECLAIM:
749 case PAGEREF_RECLAIM_CLEAN:
750 ; /* try to reclaim the page below */
751 }
1da177e4 752
1da177e4
LT
753 /*
754 * Anonymous process memory has backing store?
755 * Try to allocate it some swap space here.
756 */
b291f000 757 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
758 if (!(sc->gfp_mask & __GFP_IO))
759 goto keep_locked;
ac47b003 760 if (!add_to_swap(page))
1da177e4 761 goto activate_locked;
63eb6b93 762 may_enter_fs = 1;
b291f000 763 }
1da177e4
LT
764
765 mapping = page_mapping(page);
1da177e4
LT
766
767 /*
768 * The page is mapped into the page tables of one or more
769 * processes. Try to unmap it here.
770 */
771 if (page_mapped(page) && mapping) {
14fa31b8 772 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
773 case SWAP_FAIL:
774 goto activate_locked;
775 case SWAP_AGAIN:
776 goto keep_locked;
b291f000
NP
777 case SWAP_MLOCK:
778 goto cull_mlocked;
1da177e4
LT
779 case SWAP_SUCCESS:
780 ; /* try to free the page below */
781 }
782 }
783
784 if (PageDirty(page)) {
0e093d99
MG
785 nr_dirty++;
786
ee72886d
MG
787 /*
788 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
789 * avoid risk of stack overflow but do not writeback
790 * unless under significant pressure.
ee72886d 791 */
f84f6e2b
MG
792 if (page_is_file_cache(page) &&
793 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
794 /*
795 * Immediately reclaim when written back.
796 * Similar in principal to deactivate_page()
797 * except we already have the page isolated
798 * and know it's dirty
799 */
800 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
801 SetPageReclaim(page);
802
ee72886d
MG
803 goto keep_locked;
804 }
805
dfc8d636 806 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 807 goto keep_locked;
4dd4b920 808 if (!may_enter_fs)
1da177e4 809 goto keep_locked;
52a8363e 810 if (!sc->may_writepage)
1da177e4
LT
811 goto keep_locked;
812
813 /* Page is dirty, try to write it out here */
7d3579e8 814 switch (pageout(page, mapping, sc)) {
1da177e4 815 case PAGE_KEEP:
0e093d99 816 nr_congested++;
1da177e4
LT
817 goto keep_locked;
818 case PAGE_ACTIVATE:
819 goto activate_locked;
820 case PAGE_SUCCESS:
7d3579e8 821 if (PageWriteback(page))
41ac1999 822 goto keep;
7d3579e8 823 if (PageDirty(page))
1da177e4 824 goto keep;
7d3579e8 825
1da177e4
LT
826 /*
827 * A synchronous write - probably a ramdisk. Go
828 * ahead and try to reclaim the page.
829 */
529ae9aa 830 if (!trylock_page(page))
1da177e4
LT
831 goto keep;
832 if (PageDirty(page) || PageWriteback(page))
833 goto keep_locked;
834 mapping = page_mapping(page);
835 case PAGE_CLEAN:
836 ; /* try to free the page below */
837 }
838 }
839
840 /*
841 * If the page has buffers, try to free the buffer mappings
842 * associated with this page. If we succeed we try to free
843 * the page as well.
844 *
845 * We do this even if the page is PageDirty().
846 * try_to_release_page() does not perform I/O, but it is
847 * possible for a page to have PageDirty set, but it is actually
848 * clean (all its buffers are clean). This happens if the
849 * buffers were written out directly, with submit_bh(). ext3
894bc310 850 * will do this, as well as the blockdev mapping.
1da177e4
LT
851 * try_to_release_page() will discover that cleanness and will
852 * drop the buffers and mark the page clean - it can be freed.
853 *
854 * Rarely, pages can have buffers and no ->mapping. These are
855 * the pages which were not successfully invalidated in
856 * truncate_complete_page(). We try to drop those buffers here
857 * and if that worked, and the page is no longer mapped into
858 * process address space (page_count == 1) it can be freed.
859 * Otherwise, leave the page on the LRU so it is swappable.
860 */
266cf658 861 if (page_has_private(page)) {
1da177e4
LT
862 if (!try_to_release_page(page, sc->gfp_mask))
863 goto activate_locked;
e286781d
NP
864 if (!mapping && page_count(page) == 1) {
865 unlock_page(page);
866 if (put_page_testzero(page))
867 goto free_it;
868 else {
869 /*
870 * rare race with speculative reference.
871 * the speculative reference will free
872 * this page shortly, so we may
873 * increment nr_reclaimed here (and
874 * leave it off the LRU).
875 */
876 nr_reclaimed++;
877 continue;
878 }
879 }
1da177e4
LT
880 }
881
e286781d 882 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 883 goto keep_locked;
1da177e4 884
a978d6f5
NP
885 /*
886 * At this point, we have no other references and there is
887 * no way to pick any more up (removed from LRU, removed
888 * from pagecache). Can use non-atomic bitops now (and
889 * we obviously don't have to worry about waking up a process
890 * waiting on the page lock, because there are no references.
891 */
892 __clear_page_locked(page);
e286781d 893free_it:
05ff5137 894 nr_reclaimed++;
abe4c3b5
MG
895
896 /*
897 * Is there need to periodically free_page_list? It would
898 * appear not as the counts should be low
899 */
900 list_add(&page->lru, &free_pages);
1da177e4
LT
901 continue;
902
b291f000 903cull_mlocked:
63d6c5ad
HD
904 if (PageSwapCache(page))
905 try_to_free_swap(page);
b291f000
NP
906 unlock_page(page);
907 putback_lru_page(page);
908 continue;
909
1da177e4 910activate_locked:
68a22394
RR
911 /* Not a candidate for swapping, so reclaim swap space. */
912 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 913 try_to_free_swap(page);
894bc310 914 VM_BUG_ON(PageActive(page));
1da177e4
LT
915 SetPageActive(page);
916 pgactivate++;
917keep_locked:
918 unlock_page(page);
919keep:
920 list_add(&page->lru, &ret_pages);
b291f000 921 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 922 }
abe4c3b5 923
0e093d99
MG
924 /*
925 * Tag a zone as congested if all the dirty pages encountered were
926 * backed by a congested BDI. In this case, reclaimers should just
927 * back off and wait for congestion to clear because further reclaim
928 * will encounter the same problem
929 */
89b5fae5 930 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
f16015fb 931 zone_set_flag(mz->zone, ZONE_CONGESTED);
0e093d99 932
cc59850e 933 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 934
1da177e4 935 list_splice(&ret_pages, page_list);
f8891e5e 936 count_vm_events(PGACTIVATE, pgactivate);
92df3a72
MG
937 *ret_nr_dirty += nr_dirty;
938 *ret_nr_writeback += nr_writeback;
05ff5137 939 return nr_reclaimed;
1da177e4
LT
940}
941
5ad333eb
AW
942/*
943 * Attempt to remove the specified page from its LRU. Only take this page
944 * if it is of the appropriate PageActive status. Pages which are being
945 * freed elsewhere are also ignored.
946 *
947 * page: page to consider
948 * mode: one of the LRU isolation modes defined above
949 *
950 * returns 0 on success, -ve errno on failure.
951 */
f3fd4a61 952int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
953{
954 int ret = -EINVAL;
955
956 /* Only take pages on the LRU. */
957 if (!PageLRU(page))
958 return ret;
959
c53919ad 960 /* Do not give back unevictable pages for compaction */
894bc310
LS
961 if (PageUnevictable(page))
962 return ret;
963
5ad333eb 964 ret = -EBUSY;
08e552c6 965
c8244935
MG
966 /*
967 * To minimise LRU disruption, the caller can indicate that it only
968 * wants to isolate pages it will be able to operate on without
969 * blocking - clean pages for the most part.
970 *
971 * ISOLATE_CLEAN means that only clean pages should be isolated. This
972 * is used by reclaim when it is cannot write to backing storage
973 *
974 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
975 * that it is possible to migrate without blocking
976 */
977 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
978 /* All the caller can do on PageWriteback is block */
979 if (PageWriteback(page))
980 return ret;
981
982 if (PageDirty(page)) {
983 struct address_space *mapping;
984
985 /* ISOLATE_CLEAN means only clean pages */
986 if (mode & ISOLATE_CLEAN)
987 return ret;
988
989 /*
990 * Only pages without mappings or that have a
991 * ->migratepage callback are possible to migrate
992 * without blocking
993 */
994 mapping = page_mapping(page);
995 if (mapping && !mapping->a_ops->migratepage)
996 return ret;
997 }
998 }
39deaf85 999
f80c0673
MK
1000 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1001 return ret;
1002
5ad333eb
AW
1003 if (likely(get_page_unless_zero(page))) {
1004 /*
1005 * Be careful not to clear PageLRU until after we're
1006 * sure the page is not being freed elsewhere -- the
1007 * page release code relies on it.
1008 */
1009 ClearPageLRU(page);
1010 ret = 0;
1011 }
1012
1013 return ret;
1014}
1015
1da177e4
LT
1016/*
1017 * zone->lru_lock is heavily contended. Some of the functions that
1018 * shrink the lists perform better by taking out a batch of pages
1019 * and working on them outside the LRU lock.
1020 *
1021 * For pagecache intensive workloads, this function is the hottest
1022 * spot in the kernel (apart from copy_*_user functions).
1023 *
1024 * Appropriate locks must be held before calling this function.
1025 *
1026 * @nr_to_scan: The number of pages to look through on the list.
f626012d 1027 * @mz: The mem_cgroup_zone to pull pages from.
1da177e4 1028 * @dst: The temp list to put pages on to.
f626012d 1029 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1030 * @sc: The scan_control struct for this reclaim session
5ad333eb 1031 * @mode: One of the LRU isolation modes
3cb99451 1032 * @lru: LRU list id for isolating
1da177e4
LT
1033 *
1034 * returns how many pages were moved onto *@dst.
1035 */
69e05944 1036static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
f626012d 1037 struct mem_cgroup_zone *mz, struct list_head *dst,
fe2c2a10 1038 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1039 isolate_mode_t mode, enum lru_list lru)
1da177e4 1040{
f626012d
HD
1041 struct lruvec *lruvec;
1042 struct list_head *src;
69e05944 1043 unsigned long nr_taken = 0;
c9b02d97 1044 unsigned long scan;
3cb99451 1045 int file = is_file_lru(lru);
f626012d
HD
1046
1047 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
f626012d 1048 src = &lruvec->lists[lru];
1da177e4 1049
c9b02d97 1050 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1051 struct page *page;
5ad333eb 1052
1da177e4
LT
1053 page = lru_to_page(src);
1054 prefetchw_prev_lru_page(page, src, flags);
1055
725d704e 1056 VM_BUG_ON(!PageLRU(page));
8d438f96 1057
f3fd4a61 1058 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1059 case 0:
925b7673 1060 mem_cgroup_lru_del(page);
5ad333eb 1061 list_move(&page->lru, dst);
2c888cfb 1062 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1063 break;
1064
1065 case -EBUSY:
1066 /* else it is being freed elsewhere */
1067 list_move(&page->lru, src);
1068 continue;
46453a6e 1069
5ad333eb
AW
1070 default:
1071 BUG();
1072 }
1da177e4
LT
1073 }
1074
f626012d 1075 *nr_scanned = scan;
a8a94d15 1076
fe2c2a10 1077 trace_mm_vmscan_lru_isolate(sc->order,
a8a94d15
MG
1078 nr_to_scan, scan,
1079 nr_taken,
ea4d349f 1080 mode, file);
1da177e4
LT
1081 return nr_taken;
1082}
1083
62695a84
NP
1084/**
1085 * isolate_lru_page - tries to isolate a page from its LRU list
1086 * @page: page to isolate from its LRU list
1087 *
1088 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1089 * vmstat statistic corresponding to whatever LRU list the page was on.
1090 *
1091 * Returns 0 if the page was removed from an LRU list.
1092 * Returns -EBUSY if the page was not on an LRU list.
1093 *
1094 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1095 * the active list, it will have PageActive set. If it was found on
1096 * the unevictable list, it will have the PageUnevictable bit set. That flag
1097 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1098 *
1099 * The vmstat statistic corresponding to the list on which the page was
1100 * found will be decremented.
1101 *
1102 * Restrictions:
1103 * (1) Must be called with an elevated refcount on the page. This is a
1104 * fundamentnal difference from isolate_lru_pages (which is called
1105 * without a stable reference).
1106 * (2) the lru_lock must not be held.
1107 * (3) interrupts must be enabled.
1108 */
1109int isolate_lru_page(struct page *page)
1110{
1111 int ret = -EBUSY;
1112
0c917313
KK
1113 VM_BUG_ON(!page_count(page));
1114
62695a84
NP
1115 if (PageLRU(page)) {
1116 struct zone *zone = page_zone(page);
1117
1118 spin_lock_irq(&zone->lru_lock);
0c917313 1119 if (PageLRU(page)) {
894bc310 1120 int lru = page_lru(page);
62695a84 1121 ret = 0;
0c917313 1122 get_page(page);
62695a84 1123 ClearPageLRU(page);
4f98a2fe 1124
4f98a2fe 1125 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1126 }
1127 spin_unlock_irq(&zone->lru_lock);
1128 }
1129 return ret;
1130}
1131
35cd7815
RR
1132/*
1133 * Are there way too many processes in the direct reclaim path already?
1134 */
1135static int too_many_isolated(struct zone *zone, int file,
1136 struct scan_control *sc)
1137{
1138 unsigned long inactive, isolated;
1139
1140 if (current_is_kswapd())
1141 return 0;
1142
89b5fae5 1143 if (!global_reclaim(sc))
35cd7815
RR
1144 return 0;
1145
1146 if (file) {
1147 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1148 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1149 } else {
1150 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1151 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1152 }
1153
1154 return isolated > inactive;
1155}
1156
66635629 1157static noinline_for_stack void
3f79768f
HD
1158putback_inactive_pages(struct mem_cgroup_zone *mz,
1159 struct list_head *page_list)
66635629 1160{
f16015fb 1161 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
3f79768f
HD
1162 struct zone *zone = mz->zone;
1163 LIST_HEAD(pages_to_free);
66635629 1164
66635629
MG
1165 /*
1166 * Put back any unfreeable pages.
1167 */
66635629 1168 while (!list_empty(page_list)) {
3f79768f 1169 struct page *page = lru_to_page(page_list);
66635629 1170 int lru;
3f79768f 1171
66635629
MG
1172 VM_BUG_ON(PageLRU(page));
1173 list_del(&page->lru);
1174 if (unlikely(!page_evictable(page, NULL))) {
1175 spin_unlock_irq(&zone->lru_lock);
1176 putback_lru_page(page);
1177 spin_lock_irq(&zone->lru_lock);
1178 continue;
1179 }
7a608572 1180 SetPageLRU(page);
66635629 1181 lru = page_lru(page);
7a608572 1182 add_page_to_lru_list(zone, page, lru);
66635629
MG
1183 if (is_active_lru(lru)) {
1184 int file = is_file_lru(lru);
9992af10
RR
1185 int numpages = hpage_nr_pages(page);
1186 reclaim_stat->recent_rotated[file] += numpages;
66635629 1187 }
2bcf8879
HD
1188 if (put_page_testzero(page)) {
1189 __ClearPageLRU(page);
1190 __ClearPageActive(page);
1191 del_page_from_lru_list(zone, page, lru);
1192
1193 if (unlikely(PageCompound(page))) {
1194 spin_unlock_irq(&zone->lru_lock);
1195 (*get_compound_page_dtor(page))(page);
1196 spin_lock_irq(&zone->lru_lock);
1197 } else
1198 list_add(&page->lru, &pages_to_free);
66635629
MG
1199 }
1200 }
66635629 1201
3f79768f
HD
1202 /*
1203 * To save our caller's stack, now use input list for pages to free.
1204 */
1205 list_splice(&pages_to_free, page_list);
66635629
MG
1206}
1207
f16015fb
JW
1208static noinline_for_stack void
1209update_isolated_counts(struct mem_cgroup_zone *mz,
3f79768f 1210 struct list_head *page_list,
f16015fb 1211 unsigned long *nr_anon,
3f79768f 1212 unsigned long *nr_file)
1489fa14 1213{
f16015fb 1214 struct zone *zone = mz->zone;
1489fa14 1215 unsigned int count[NR_LRU_LISTS] = { 0, };
3f79768f
HD
1216 unsigned long nr_active = 0;
1217 struct page *page;
1218 int lru;
1219
1220 /*
1221 * Count pages and clear active flags
1222 */
1223 list_for_each_entry(page, page_list, lru) {
1224 int numpages = hpage_nr_pages(page);
1225 lru = page_lru_base_type(page);
1226 if (PageActive(page)) {
1227 lru += LRU_ACTIVE;
1228 ClearPageActive(page);
1229 nr_active += numpages;
1230 }
1231 count[lru] += numpages;
1232 }
1489fa14 1233
d563c050 1234 preempt_disable();
1489fa14
MG
1235 __count_vm_events(PGDEACTIVATE, nr_active);
1236
1237 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1238 -count[LRU_ACTIVE_FILE]);
1239 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1240 -count[LRU_INACTIVE_FILE]);
1241 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1242 -count[LRU_ACTIVE_ANON]);
1243 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1244 -count[LRU_INACTIVE_ANON]);
1245
1246 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1247 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1489fa14 1248
d563c050
HD
1249 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1250 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1251 preempt_enable();
1489fa14
MG
1252}
1253
1da177e4 1254/*
1742f19f
AM
1255 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1256 * of reclaimed pages
1da177e4 1257 */
66635629 1258static noinline_for_stack unsigned long
f16015fb 1259shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
3cb99451 1260 struct scan_control *sc, int priority, enum lru_list lru)
1da177e4
LT
1261{
1262 LIST_HEAD(page_list);
e247dbce 1263 unsigned long nr_scanned;
05ff5137 1264 unsigned long nr_reclaimed = 0;
e247dbce 1265 unsigned long nr_taken;
e247dbce
KM
1266 unsigned long nr_anon;
1267 unsigned long nr_file;
92df3a72
MG
1268 unsigned long nr_dirty = 0;
1269 unsigned long nr_writeback = 0;
f3fd4a61 1270 isolate_mode_t isolate_mode = 0;
3cb99451 1271 int file = is_file_lru(lru);
f16015fb 1272 struct zone *zone = mz->zone;
d563c050 1273 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
78dc583d 1274
35cd7815 1275 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1276 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1277
1278 /* We are about to die and free our memory. Return now. */
1279 if (fatal_signal_pending(current))
1280 return SWAP_CLUSTER_MAX;
1281 }
1282
1da177e4 1283 lru_add_drain();
f80c0673
MK
1284
1285 if (!sc->may_unmap)
61317289 1286 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1287 if (!sc->may_writepage)
61317289 1288 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1289
1da177e4 1290 spin_lock_irq(&zone->lru_lock);
b35ea17b 1291
fe2c2a10 1292 nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
3cb99451 1293 sc, isolate_mode, lru);
89b5fae5 1294 if (global_reclaim(sc)) {
e247dbce
KM
1295 zone->pages_scanned += nr_scanned;
1296 if (current_is_kswapd())
1297 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1298 nr_scanned);
1299 else
1300 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1301 nr_scanned);
e247dbce 1302 }
d563c050 1303 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1304
d563c050 1305 if (nr_taken == 0)
66635629 1306 return 0;
5ad333eb 1307
3f79768f
HD
1308 update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1309
f16015fb 1310 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
92df3a72 1311 &nr_dirty, &nr_writeback);
c661b078 1312
3f79768f
HD
1313 spin_lock_irq(&zone->lru_lock);
1314
d563c050
HD
1315 reclaim_stat->recent_scanned[0] += nr_anon;
1316 reclaim_stat->recent_scanned[1] += nr_file;
1317
904249aa
YH
1318 if (global_reclaim(sc)) {
1319 if (current_is_kswapd())
1320 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1321 nr_reclaimed);
1322 else
1323 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1324 nr_reclaimed);
1325 }
a74609fa 1326
3f79768f
HD
1327 putback_inactive_pages(mz, &page_list);
1328
1329 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1330 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1331
1332 spin_unlock_irq(&zone->lru_lock);
1333
1334 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1335
92df3a72
MG
1336 /*
1337 * If reclaim is isolating dirty pages under writeback, it implies
1338 * that the long-lived page allocation rate is exceeding the page
1339 * laundering rate. Either the global limits are not being effective
1340 * at throttling processes due to the page distribution throughout
1341 * zones or there is heavy usage of a slow backing device. The
1342 * only option is to throttle from reclaim context which is not ideal
1343 * as there is no guarantee the dirtying process is throttled in the
1344 * same way balance_dirty_pages() manages.
1345 *
1346 * This scales the number of dirty pages that must be under writeback
1347 * before throttling depending on priority. It is a simple backoff
1348 * function that has the most effect in the range DEF_PRIORITY to
1349 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1350 * in trouble and reclaim is considered to be in trouble.
1351 *
1352 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1353 * DEF_PRIORITY-1 50% must be PageWriteback
1354 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1355 * ...
1356 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1357 * isolated page is PageWriteback
1358 */
1359 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1360 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1361
e11da5b4
MG
1362 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1363 zone_idx(zone),
1364 nr_scanned, nr_reclaimed,
1365 priority,
23b9da55 1366 trace_shrink_flags(file));
05ff5137 1367 return nr_reclaimed;
1da177e4
LT
1368}
1369
1370/*
1371 * This moves pages from the active list to the inactive list.
1372 *
1373 * We move them the other way if the page is referenced by one or more
1374 * processes, from rmap.
1375 *
1376 * If the pages are mostly unmapped, the processing is fast and it is
1377 * appropriate to hold zone->lru_lock across the whole operation. But if
1378 * the pages are mapped, the processing is slow (page_referenced()) so we
1379 * should drop zone->lru_lock around each page. It's impossible to balance
1380 * this, so instead we remove the pages from the LRU while processing them.
1381 * It is safe to rely on PG_active against the non-LRU pages in here because
1382 * nobody will play with that bit on a non-LRU page.
1383 *
1384 * The downside is that we have to touch page->_count against each page.
1385 * But we had to alter page->flags anyway.
1386 */
1cfb419b 1387
3eb4140f
WF
1388static void move_active_pages_to_lru(struct zone *zone,
1389 struct list_head *list,
2bcf8879 1390 struct list_head *pages_to_free,
3eb4140f
WF
1391 enum lru_list lru)
1392{
1393 unsigned long pgmoved = 0;
3eb4140f
WF
1394 struct page *page;
1395
3eb4140f 1396 while (!list_empty(list)) {
925b7673
JW
1397 struct lruvec *lruvec;
1398
3eb4140f 1399 page = lru_to_page(list);
3eb4140f
WF
1400
1401 VM_BUG_ON(PageLRU(page));
1402 SetPageLRU(page);
1403
925b7673
JW
1404 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1405 list_move(&page->lru, &lruvec->lists[lru]);
2c888cfb 1406 pgmoved += hpage_nr_pages(page);
3eb4140f 1407
2bcf8879
HD
1408 if (put_page_testzero(page)) {
1409 __ClearPageLRU(page);
1410 __ClearPageActive(page);
1411 del_page_from_lru_list(zone, page, lru);
1412
1413 if (unlikely(PageCompound(page))) {
1414 spin_unlock_irq(&zone->lru_lock);
1415 (*get_compound_page_dtor(page))(page);
1416 spin_lock_irq(&zone->lru_lock);
1417 } else
1418 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1419 }
1420 }
1421 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1422 if (!is_active_lru(lru))
1423 __count_vm_events(PGDEACTIVATE, pgmoved);
1424}
1cfb419b 1425
f626012d 1426static void shrink_active_list(unsigned long nr_to_scan,
f16015fb
JW
1427 struct mem_cgroup_zone *mz,
1428 struct scan_control *sc,
3cb99451 1429 int priority, enum lru_list lru)
1da177e4 1430{
44c241f1 1431 unsigned long nr_taken;
f626012d 1432 unsigned long nr_scanned;
6fe6b7e3 1433 unsigned long vm_flags;
1da177e4 1434 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1435 LIST_HEAD(l_active);
b69408e8 1436 LIST_HEAD(l_inactive);
1da177e4 1437 struct page *page;
f16015fb 1438 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
44c241f1 1439 unsigned long nr_rotated = 0;
f3fd4a61 1440 isolate_mode_t isolate_mode = 0;
3cb99451 1441 int file = is_file_lru(lru);
f16015fb 1442 struct zone *zone = mz->zone;
1da177e4
LT
1443
1444 lru_add_drain();
f80c0673
MK
1445
1446 if (!sc->may_unmap)
61317289 1447 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1448 if (!sc->may_writepage)
61317289 1449 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1450
1da177e4 1451 spin_lock_irq(&zone->lru_lock);
925b7673 1452
fe2c2a10 1453 nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
3cb99451 1454 isolate_mode, lru);
89b5fae5 1455 if (global_reclaim(sc))
f626012d 1456 zone->pages_scanned += nr_scanned;
89b5fae5 1457
b7c46d15 1458 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1459
f626012d 1460 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1461 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1462 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1463 spin_unlock_irq(&zone->lru_lock);
1464
1da177e4
LT
1465 while (!list_empty(&l_hold)) {
1466 cond_resched();
1467 page = lru_to_page(&l_hold);
1468 list_del(&page->lru);
7e9cd484 1469
894bc310
LS
1470 if (unlikely(!page_evictable(page, NULL))) {
1471 putback_lru_page(page);
1472 continue;
1473 }
1474
cc715d99
MG
1475 if (unlikely(buffer_heads_over_limit)) {
1476 if (page_has_private(page) && trylock_page(page)) {
1477 if (page_has_private(page))
1478 try_to_release_page(page, 0);
1479 unlock_page(page);
1480 }
1481 }
1482
c3ac9a8a
JW
1483 if (page_referenced(page, 0, sc->target_mem_cgroup,
1484 &vm_flags)) {
9992af10 1485 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1486 /*
1487 * Identify referenced, file-backed active pages and
1488 * give them one more trip around the active list. So
1489 * that executable code get better chances to stay in
1490 * memory under moderate memory pressure. Anon pages
1491 * are not likely to be evicted by use-once streaming
1492 * IO, plus JVM can create lots of anon VM_EXEC pages,
1493 * so we ignore them here.
1494 */
41e20983 1495 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1496 list_add(&page->lru, &l_active);
1497 continue;
1498 }
1499 }
7e9cd484 1500
5205e56e 1501 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1502 list_add(&page->lru, &l_inactive);
1503 }
1504
b555749a 1505 /*
8cab4754 1506 * Move pages back to the lru list.
b555749a 1507 */
2a1dc509 1508 spin_lock_irq(&zone->lru_lock);
556adecb 1509 /*
8cab4754
WF
1510 * Count referenced pages from currently used mappings as rotated,
1511 * even though only some of them are actually re-activated. This
1512 * helps balance scan pressure between file and anonymous pages in
1513 * get_scan_ratio.
7e9cd484 1514 */
b7c46d15 1515 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1516
3cb99451
KK
1517 move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1518 move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1519 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1520 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1521
1522 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1523}
1524
74e3f3c3 1525#ifdef CONFIG_SWAP
14797e23 1526static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1527{
1528 unsigned long active, inactive;
1529
1530 active = zone_page_state(zone, NR_ACTIVE_ANON);
1531 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1532
1533 if (inactive * zone->inactive_ratio < active)
1534 return 1;
1535
1536 return 0;
1537}
1538
14797e23
KM
1539/**
1540 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1541 * @zone: zone to check
1542 * @sc: scan control of this context
1543 *
1544 * Returns true if the zone does not have enough inactive anon pages,
1545 * meaning some active anon pages need to be deactivated.
1546 */
f16015fb 1547static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
14797e23 1548{
74e3f3c3
MK
1549 /*
1550 * If we don't have swap space, anonymous page deactivation
1551 * is pointless.
1552 */
1553 if (!total_swap_pages)
1554 return 0;
1555
c3c787e8 1556 if (!mem_cgroup_disabled())
f16015fb
JW
1557 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1558 mz->zone);
1559
1560 return inactive_anon_is_low_global(mz->zone);
14797e23 1561}
74e3f3c3 1562#else
f16015fb 1563static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
74e3f3c3
MK
1564{
1565 return 0;
1566}
1567#endif
14797e23 1568
56e49d21
RR
1569static int inactive_file_is_low_global(struct zone *zone)
1570{
1571 unsigned long active, inactive;
1572
1573 active = zone_page_state(zone, NR_ACTIVE_FILE);
1574 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1575
1576 return (active > inactive);
1577}
1578
1579/**
1580 * inactive_file_is_low - check if file pages need to be deactivated
f16015fb 1581 * @mz: memory cgroup and zone to check
56e49d21
RR
1582 *
1583 * When the system is doing streaming IO, memory pressure here
1584 * ensures that active file pages get deactivated, until more
1585 * than half of the file pages are on the inactive list.
1586 *
1587 * Once we get to that situation, protect the system's working
1588 * set from being evicted by disabling active file page aging.
1589 *
1590 * This uses a different ratio than the anonymous pages, because
1591 * the page cache uses a use-once replacement algorithm.
1592 */
f16015fb 1593static int inactive_file_is_low(struct mem_cgroup_zone *mz)
56e49d21 1594{
c3c787e8 1595 if (!mem_cgroup_disabled())
f16015fb
JW
1596 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1597 mz->zone);
56e49d21 1598
f16015fb 1599 return inactive_file_is_low_global(mz->zone);
56e49d21
RR
1600}
1601
f16015fb 1602static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
b39415b2
RR
1603{
1604 if (file)
f16015fb 1605 return inactive_file_is_low(mz);
b39415b2 1606 else
f16015fb 1607 return inactive_anon_is_low(mz);
b39415b2
RR
1608}
1609
4f98a2fe 1610static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
f16015fb
JW
1611 struct mem_cgroup_zone *mz,
1612 struct scan_control *sc, int priority)
b69408e8 1613{
4f98a2fe
RR
1614 int file = is_file_lru(lru);
1615
b39415b2 1616 if (is_active_lru(lru)) {
f16015fb 1617 if (inactive_list_is_low(mz, file))
3cb99451 1618 shrink_active_list(nr_to_scan, mz, sc, priority, lru);
556adecb
RR
1619 return 0;
1620 }
1621
3cb99451 1622 return shrink_inactive_list(nr_to_scan, mz, sc, priority, lru);
4f98a2fe
RR
1623}
1624
f16015fb
JW
1625static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1626 struct scan_control *sc)
1f4c025b 1627{
89b5fae5 1628 if (global_reclaim(sc))
1f4c025b 1629 return vm_swappiness;
f16015fb 1630 return mem_cgroup_swappiness(mz->mem_cgroup);
1f4c025b
KH
1631}
1632
4f98a2fe
RR
1633/*
1634 * Determine how aggressively the anon and file LRU lists should be
1635 * scanned. The relative value of each set of LRU lists is determined
1636 * by looking at the fraction of the pages scanned we did rotate back
1637 * onto the active list instead of evict.
1638 *
76a33fc3 1639 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1640 */
f16015fb
JW
1641static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1642 unsigned long *nr, int priority)
4f98a2fe
RR
1643{
1644 unsigned long anon, file, free;
1645 unsigned long anon_prio, file_prio;
1646 unsigned long ap, fp;
f16015fb 1647 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
76a33fc3 1648 u64 fraction[2], denominator;
4111304d 1649 enum lru_list lru;
76a33fc3 1650 int noswap = 0;
a4d3e9e7 1651 bool force_scan = false;
246e87a9 1652
f11c0ca5
JW
1653 /*
1654 * If the zone or memcg is small, nr[l] can be 0. This
1655 * results in no scanning on this priority and a potential
1656 * priority drop. Global direct reclaim can go to the next
1657 * zone and tends to have no problems. Global kswapd is for
1658 * zone balancing and it needs to scan a minimum amount. When
1659 * reclaiming for a memcg, a priority drop can cause high
1660 * latencies, so it's better to scan a minimum amount there as
1661 * well.
1662 */
b95a2f2d 1663 if (current_is_kswapd() && mz->zone->all_unreclaimable)
a4d3e9e7 1664 force_scan = true;
89b5fae5 1665 if (!global_reclaim(sc))
a4d3e9e7 1666 force_scan = true;
76a33fc3
SL
1667
1668 /* If we have no swap space, do not bother scanning anon pages. */
1669 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1670 noswap = 1;
1671 fraction[0] = 0;
1672 fraction[1] = 1;
1673 denominator = 1;
1674 goto out;
1675 }
4f98a2fe 1676
f16015fb
JW
1677 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1678 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1679 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1680 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
a4d3e9e7 1681
89b5fae5 1682 if (global_reclaim(sc)) {
f16015fb 1683 free = zone_page_state(mz->zone, NR_FREE_PAGES);
eeee9a8c
KM
1684 /* If we have very few page cache pages,
1685 force-scan anon pages. */
f16015fb 1686 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
76a33fc3
SL
1687 fraction[0] = 1;
1688 fraction[1] = 0;
1689 denominator = 1;
1690 goto out;
eeee9a8c 1691 }
4f98a2fe
RR
1692 }
1693
58c37f6e
KM
1694 /*
1695 * With swappiness at 100, anonymous and file have the same priority.
1696 * This scanning priority is essentially the inverse of IO cost.
1697 */
f16015fb
JW
1698 anon_prio = vmscan_swappiness(mz, sc);
1699 file_prio = 200 - vmscan_swappiness(mz, sc);
58c37f6e 1700
4f98a2fe
RR
1701 /*
1702 * OK, so we have swap space and a fair amount of page cache
1703 * pages. We use the recently rotated / recently scanned
1704 * ratios to determine how valuable each cache is.
1705 *
1706 * Because workloads change over time (and to avoid overflow)
1707 * we keep these statistics as a floating average, which ends
1708 * up weighing recent references more than old ones.
1709 *
1710 * anon in [0], file in [1]
1711 */
f16015fb 1712 spin_lock_irq(&mz->zone->lru_lock);
6e901571 1713 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1714 reclaim_stat->recent_scanned[0] /= 2;
1715 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1716 }
1717
6e901571 1718 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1719 reclaim_stat->recent_scanned[1] /= 2;
1720 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1721 }
1722
4f98a2fe 1723 /*
00d8089c
RR
1724 * The amount of pressure on anon vs file pages is inversely
1725 * proportional to the fraction of recently scanned pages on
1726 * each list that were recently referenced and in active use.
4f98a2fe 1727 */
fe35004f 1728 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1729 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1730
fe35004f 1731 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1732 fp /= reclaim_stat->recent_rotated[1] + 1;
f16015fb 1733 spin_unlock_irq(&mz->zone->lru_lock);
4f98a2fe 1734
76a33fc3
SL
1735 fraction[0] = ap;
1736 fraction[1] = fp;
1737 denominator = ap + fp + 1;
1738out:
4111304d
HD
1739 for_each_evictable_lru(lru) {
1740 int file = is_file_lru(lru);
76a33fc3 1741 unsigned long scan;
6e08a369 1742
4111304d 1743 scan = zone_nr_lru_pages(mz, lru);
fe35004f 1744 if (priority || noswap || !vmscan_swappiness(mz, sc)) {
76a33fc3 1745 scan >>= priority;
f11c0ca5
JW
1746 if (!scan && force_scan)
1747 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1748 scan = div64_u64(scan * fraction[file], denominator);
1749 }
4111304d 1750 nr[lru] = scan;
76a33fc3 1751 }
6e08a369 1752}
4f98a2fe 1753
23b9da55
MG
1754/* Use reclaim/compaction for costly allocs or under memory pressure */
1755static bool in_reclaim_compaction(int priority, struct scan_control *sc)
1756{
1757 if (COMPACTION_BUILD && sc->order &&
1758 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1759 priority < DEF_PRIORITY - 2))
1760 return true;
1761
1762 return false;
1763}
1764
3e7d3449 1765/*
23b9da55
MG
1766 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1767 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1768 * true if more pages should be reclaimed such that when the page allocator
1769 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1770 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 1771 */
f16015fb 1772static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
3e7d3449
MG
1773 unsigned long nr_reclaimed,
1774 unsigned long nr_scanned,
23b9da55 1775 int priority,
3e7d3449
MG
1776 struct scan_control *sc)
1777{
1778 unsigned long pages_for_compaction;
1779 unsigned long inactive_lru_pages;
1780
1781 /* If not in reclaim/compaction mode, stop */
23b9da55 1782 if (!in_reclaim_compaction(priority, sc))
3e7d3449
MG
1783 return false;
1784
2876592f
MG
1785 /* Consider stopping depending on scan and reclaim activity */
1786 if (sc->gfp_mask & __GFP_REPEAT) {
1787 /*
1788 * For __GFP_REPEAT allocations, stop reclaiming if the
1789 * full LRU list has been scanned and we are still failing
1790 * to reclaim pages. This full LRU scan is potentially
1791 * expensive but a __GFP_REPEAT caller really wants to succeed
1792 */
1793 if (!nr_reclaimed && !nr_scanned)
1794 return false;
1795 } else {
1796 /*
1797 * For non-__GFP_REPEAT allocations which can presumably
1798 * fail without consequence, stop if we failed to reclaim
1799 * any pages from the last SWAP_CLUSTER_MAX number of
1800 * pages that were scanned. This will return to the
1801 * caller faster at the risk reclaim/compaction and
1802 * the resulting allocation attempt fails
1803 */
1804 if (!nr_reclaimed)
1805 return false;
1806 }
3e7d3449
MG
1807
1808 /*
1809 * If we have not reclaimed enough pages for compaction and the
1810 * inactive lists are large enough, continue reclaiming
1811 */
1812 pages_for_compaction = (2UL << sc->order);
f16015fb 1813 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
86cfd3a4 1814 if (nr_swap_pages > 0)
f16015fb 1815 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
3e7d3449
MG
1816 if (sc->nr_reclaimed < pages_for_compaction &&
1817 inactive_lru_pages > pages_for_compaction)
1818 return true;
1819
1820 /* If compaction would go ahead or the allocation would succeed, stop */
f16015fb 1821 switch (compaction_suitable(mz->zone, sc->order)) {
3e7d3449
MG
1822 case COMPACT_PARTIAL:
1823 case COMPACT_CONTINUE:
1824 return false;
1825 default:
1826 return true;
1827 }
1828}
1829
1da177e4
LT
1830/*
1831 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1832 */
f16015fb
JW
1833static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
1834 struct scan_control *sc)
1da177e4 1835{
b69408e8 1836 unsigned long nr[NR_LRU_LISTS];
8695949a 1837 unsigned long nr_to_scan;
4111304d 1838 enum lru_list lru;
f0fdc5e8 1839 unsigned long nr_reclaimed, nr_scanned;
22fba335 1840 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1841 struct blk_plug plug;
e0f79b8f 1842
3e7d3449
MG
1843restart:
1844 nr_reclaimed = 0;
f0fdc5e8 1845 nr_scanned = sc->nr_scanned;
f16015fb 1846 get_scan_count(mz, sc, nr, priority);
1da177e4 1847
3da367c3 1848 blk_start_plug(&plug);
556adecb
RR
1849 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1850 nr[LRU_INACTIVE_FILE]) {
4111304d
HD
1851 for_each_evictable_lru(lru) {
1852 if (nr[lru]) {
ece74b2e 1853 nr_to_scan = min_t(unsigned long,
4111304d
HD
1854 nr[lru], SWAP_CLUSTER_MAX);
1855 nr[lru] -= nr_to_scan;
1da177e4 1856
4111304d 1857 nr_reclaimed += shrink_list(lru, nr_to_scan,
f16015fb 1858 mz, sc, priority);
b69408e8 1859 }
1da177e4 1860 }
a79311c1
RR
1861 /*
1862 * On large memory systems, scan >> priority can become
1863 * really large. This is fine for the starting priority;
1864 * we want to put equal scanning pressure on each zone.
1865 * However, if the VM has a harder time of freeing pages,
1866 * with multiple processes reclaiming pages, the total
1867 * freeing target can get unreasonably large.
1868 */
41c93088 1869 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 1870 break;
1da177e4 1871 }
3da367c3 1872 blk_finish_plug(&plug);
3e7d3449 1873 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 1874
556adecb
RR
1875 /*
1876 * Even if we did not try to evict anon pages at all, we want to
1877 * rebalance the anon lru active/inactive ratio.
1878 */
f16015fb 1879 if (inactive_anon_is_low(mz))
3cb99451
KK
1880 shrink_active_list(SWAP_CLUSTER_MAX, mz,
1881 sc, priority, LRU_ACTIVE_ANON);
556adecb 1882
3e7d3449 1883 /* reclaim/compaction might need reclaim to continue */
f16015fb 1884 if (should_continue_reclaim(mz, nr_reclaimed,
23b9da55
MG
1885 sc->nr_scanned - nr_scanned,
1886 priority, sc))
3e7d3449
MG
1887 goto restart;
1888
232ea4d6 1889 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1890}
1891
f16015fb
JW
1892static void shrink_zone(int priority, struct zone *zone,
1893 struct scan_control *sc)
1894{
5660048c
JW
1895 struct mem_cgroup *root = sc->target_mem_cgroup;
1896 struct mem_cgroup_reclaim_cookie reclaim = {
f16015fb 1897 .zone = zone,
5660048c 1898 .priority = priority,
f16015fb 1899 };
5660048c
JW
1900 struct mem_cgroup *memcg;
1901
5660048c
JW
1902 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1903 do {
1904 struct mem_cgroup_zone mz = {
1905 .mem_cgroup = memcg,
1906 .zone = zone,
1907 };
f16015fb 1908
5660048c
JW
1909 shrink_mem_cgroup_zone(priority, &mz, sc);
1910 /*
1911 * Limit reclaim has historically picked one memcg and
1912 * scanned it with decreasing priority levels until
1913 * nr_to_reclaim had been reclaimed. This priority
1914 * cycle is thus over after a single memcg.
b95a2f2d
JW
1915 *
1916 * Direct reclaim and kswapd, on the other hand, have
1917 * to scan all memory cgroups to fulfill the overall
1918 * scan target for the zone.
5660048c
JW
1919 */
1920 if (!global_reclaim(sc)) {
1921 mem_cgroup_iter_break(root, memcg);
1922 break;
1923 }
1924 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1925 } while (memcg);
f16015fb
JW
1926}
1927
fe4b1b24
MG
1928/* Returns true if compaction should go ahead for a high-order request */
1929static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1930{
1931 unsigned long balance_gap, watermark;
1932 bool watermark_ok;
1933
1934 /* Do not consider compaction for orders reclaim is meant to satisfy */
1935 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1936 return false;
1937
1938 /*
1939 * Compaction takes time to run and there are potentially other
1940 * callers using the pages just freed. Continue reclaiming until
1941 * there is a buffer of free pages available to give compaction
1942 * a reasonable chance of completing and allocating the page
1943 */
1944 balance_gap = min(low_wmark_pages(zone),
1945 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1946 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1947 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1948 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1949
1950 /*
1951 * If compaction is deferred, reclaim up to a point where
1952 * compaction will have a chance of success when re-enabled
1953 */
aff62249 1954 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
1955 return watermark_ok;
1956
1957 /* If compaction is not ready to start, keep reclaiming */
1958 if (!compaction_suitable(zone, sc->order))
1959 return false;
1960
1961 return watermark_ok;
1962}
1963
1da177e4
LT
1964/*
1965 * This is the direct reclaim path, for page-allocating processes. We only
1966 * try to reclaim pages from zones which will satisfy the caller's allocation
1967 * request.
1968 *
41858966
MG
1969 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1970 * Because:
1da177e4
LT
1971 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1972 * allocation or
41858966
MG
1973 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1974 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1975 * zone defense algorithm.
1da177e4 1976 *
1da177e4
LT
1977 * If a zone is deemed to be full of pinned pages then just give it a light
1978 * scan then give up on it.
e0c23279
MG
1979 *
1980 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 1981 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
1982 * the caller that it should consider retrying the allocation instead of
1983 * further reclaim.
1da177e4 1984 */
e0c23279 1985static bool shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1986 struct scan_control *sc)
1da177e4 1987{
dd1a239f 1988 struct zoneref *z;
54a6eb5c 1989 struct zone *zone;
d149e3b2
YH
1990 unsigned long nr_soft_reclaimed;
1991 unsigned long nr_soft_scanned;
0cee34fd 1992 bool aborted_reclaim = false;
1cfb419b 1993
cc715d99
MG
1994 /*
1995 * If the number of buffer_heads in the machine exceeds the maximum
1996 * allowed level, force direct reclaim to scan the highmem zone as
1997 * highmem pages could be pinning lowmem pages storing buffer_heads
1998 */
1999 if (buffer_heads_over_limit)
2000 sc->gfp_mask |= __GFP_HIGHMEM;
2001
d4debc66
MG
2002 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2003 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2004 if (!populated_zone(zone))
1da177e4 2005 continue;
1cfb419b
KH
2006 /*
2007 * Take care memory controller reclaiming has small influence
2008 * to global LRU.
2009 */
89b5fae5 2010 if (global_reclaim(sc)) {
1cfb419b
KH
2011 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2012 continue;
93e4a89a 2013 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 2014 continue; /* Let kswapd poll it */
e0887c19
RR
2015 if (COMPACTION_BUILD) {
2016 /*
e0c23279
MG
2017 * If we already have plenty of memory free for
2018 * compaction in this zone, don't free any more.
2019 * Even though compaction is invoked for any
2020 * non-zero order, only frequent costly order
2021 * reclamation is disruptive enough to become a
c7cfa37b
CA
2022 * noticeable problem, like transparent huge
2023 * page allocations.
e0887c19 2024 */
fe4b1b24 2025 if (compaction_ready(zone, sc)) {
0cee34fd 2026 aborted_reclaim = true;
e0887c19 2027 continue;
e0c23279 2028 }
e0887c19 2029 }
ac34a1a3
KH
2030 /*
2031 * This steals pages from memory cgroups over softlimit
2032 * and returns the number of reclaimed pages and
2033 * scanned pages. This works for global memory pressure
2034 * and balancing, not for a memcg's limit.
2035 */
2036 nr_soft_scanned = 0;
2037 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2038 sc->order, sc->gfp_mask,
2039 &nr_soft_scanned);
2040 sc->nr_reclaimed += nr_soft_reclaimed;
2041 sc->nr_scanned += nr_soft_scanned;
2042 /* need some check for avoid more shrink_zone() */
1cfb419b 2043 }
408d8544 2044
a79311c1 2045 shrink_zone(priority, zone, sc);
1da177e4 2046 }
e0c23279 2047
0cee34fd 2048 return aborted_reclaim;
d1908362
MK
2049}
2050
2051static bool zone_reclaimable(struct zone *zone)
2052{
2053 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2054}
2055
929bea7c 2056/* All zones in zonelist are unreclaimable? */
d1908362
MK
2057static bool all_unreclaimable(struct zonelist *zonelist,
2058 struct scan_control *sc)
2059{
2060 struct zoneref *z;
2061 struct zone *zone;
d1908362
MK
2062
2063 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2064 gfp_zone(sc->gfp_mask), sc->nodemask) {
2065 if (!populated_zone(zone))
2066 continue;
2067 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2068 continue;
929bea7c
KM
2069 if (!zone->all_unreclaimable)
2070 return false;
d1908362
MK
2071 }
2072
929bea7c 2073 return true;
1da177e4 2074}
4f98a2fe 2075
1da177e4
LT
2076/*
2077 * This is the main entry point to direct page reclaim.
2078 *
2079 * If a full scan of the inactive list fails to free enough memory then we
2080 * are "out of memory" and something needs to be killed.
2081 *
2082 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2083 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2084 * caller can't do much about. We kick the writeback threads and take explicit
2085 * naps in the hope that some of these pages can be written. But if the
2086 * allocating task holds filesystem locks which prevent writeout this might not
2087 * work, and the allocation attempt will fail.
a41f24ea
NA
2088 *
2089 * returns: 0, if no pages reclaimed
2090 * else, the number of pages reclaimed
1da177e4 2091 */
dac1d27b 2092static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2093 struct scan_control *sc,
2094 struct shrink_control *shrink)
1da177e4
LT
2095{
2096 int priority;
69e05944 2097 unsigned long total_scanned = 0;
1da177e4 2098 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2099 struct zoneref *z;
54a6eb5c 2100 struct zone *zone;
22fba335 2101 unsigned long writeback_threshold;
0cee34fd 2102 bool aborted_reclaim;
1da177e4 2103
873b4771
KK
2104 delayacct_freepages_start();
2105
89b5fae5 2106 if (global_reclaim(sc))
1cfb419b 2107 count_vm_event(ALLOCSTALL);
1da177e4
LT
2108
2109 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 2110 sc->nr_scanned = 0;
0cee34fd 2111 aborted_reclaim = shrink_zones(priority, zonelist, sc);
e0c23279 2112
66e1707b
BS
2113 /*
2114 * Don't shrink slabs when reclaiming memory from
2115 * over limit cgroups
2116 */
89b5fae5 2117 if (global_reclaim(sc)) {
c6a8a8c5 2118 unsigned long lru_pages = 0;
d4debc66
MG
2119 for_each_zone_zonelist(zone, z, zonelist,
2120 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2121 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2122 continue;
2123
2124 lru_pages += zone_reclaimable_pages(zone);
2125 }
2126
1495f230 2127 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2128 if (reclaim_state) {
a79311c1 2129 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2130 reclaim_state->reclaimed_slab = 0;
2131 }
1da177e4 2132 }
66e1707b 2133 total_scanned += sc->nr_scanned;
bb21c7ce 2134 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2135 goto out;
1da177e4
LT
2136
2137 /*
2138 * Try to write back as many pages as we just scanned. This
2139 * tends to cause slow streaming writers to write data to the
2140 * disk smoothly, at the dirtying rate, which is nice. But
2141 * that's undesirable in laptop mode, where we *want* lumpy
2142 * writeout. So in laptop mode, write out the whole world.
2143 */
22fba335
KM
2144 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2145 if (total_scanned > writeback_threshold) {
0e175a18
CW
2146 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2147 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2148 sc->may_writepage = 1;
1da177e4
LT
2149 }
2150
2151 /* Take a nap, wait for some writeback to complete */
7b51755c 2152 if (!sc->hibernation_mode && sc->nr_scanned &&
0e093d99
MG
2153 priority < DEF_PRIORITY - 2) {
2154 struct zone *preferred_zone;
2155
2156 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2157 &cpuset_current_mems_allowed,
2158 &preferred_zone);
0e093d99
MG
2159 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2160 }
1da177e4 2161 }
bb21c7ce 2162
1da177e4 2163out:
873b4771
KK
2164 delayacct_freepages_end();
2165
bb21c7ce
KM
2166 if (sc->nr_reclaimed)
2167 return sc->nr_reclaimed;
2168
929bea7c
KM
2169 /*
2170 * As hibernation is going on, kswapd is freezed so that it can't mark
2171 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2172 * check.
2173 */
2174 if (oom_killer_disabled)
2175 return 0;
2176
0cee34fd
MG
2177 /* Aborted reclaim to try compaction? don't OOM, then */
2178 if (aborted_reclaim)
7335084d
MG
2179 return 1;
2180
bb21c7ce 2181 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2182 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2183 return 1;
2184
2185 return 0;
1da177e4
LT
2186}
2187
dac1d27b 2188unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2189 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2190{
33906bc5 2191 unsigned long nr_reclaimed;
66e1707b
BS
2192 struct scan_control sc = {
2193 .gfp_mask = gfp_mask,
2194 .may_writepage = !laptop_mode,
22fba335 2195 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2196 .may_unmap = 1,
2e2e4259 2197 .may_swap = 1,
66e1707b 2198 .order = order,
f16015fb 2199 .target_mem_cgroup = NULL,
327c0e96 2200 .nodemask = nodemask,
66e1707b 2201 };
a09ed5e0
YH
2202 struct shrink_control shrink = {
2203 .gfp_mask = sc.gfp_mask,
2204 };
66e1707b 2205
33906bc5
MG
2206 trace_mm_vmscan_direct_reclaim_begin(order,
2207 sc.may_writepage,
2208 gfp_mask);
2209
a09ed5e0 2210 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2211
2212 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2213
2214 return nr_reclaimed;
66e1707b
BS
2215}
2216
00f0b825 2217#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2218
72835c86 2219unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2220 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2221 struct zone *zone,
2222 unsigned long *nr_scanned)
4e416953
BS
2223{
2224 struct scan_control sc = {
0ae5e89c 2225 .nr_scanned = 0,
b8f5c566 2226 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2227 .may_writepage = !laptop_mode,
2228 .may_unmap = 1,
2229 .may_swap = !noswap,
4e416953 2230 .order = 0,
72835c86 2231 .target_mem_cgroup = memcg,
4e416953 2232 };
5660048c 2233 struct mem_cgroup_zone mz = {
72835c86 2234 .mem_cgroup = memcg,
5660048c
JW
2235 .zone = zone,
2236 };
0ae5e89c 2237
4e416953
BS
2238 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2239 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2240
2241 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2242 sc.may_writepage,
2243 sc.gfp_mask);
2244
4e416953
BS
2245 /*
2246 * NOTE: Although we can get the priority field, using it
2247 * here is not a good idea, since it limits the pages we can scan.
2248 * if we don't reclaim here, the shrink_zone from balance_pgdat
2249 * will pick up pages from other mem cgroup's as well. We hack
2250 * the priority and make it zero.
2251 */
5660048c 2252 shrink_mem_cgroup_zone(0, &mz, &sc);
bdce6d9e
KM
2253
2254 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2255
0ae5e89c 2256 *nr_scanned = sc.nr_scanned;
4e416953
BS
2257 return sc.nr_reclaimed;
2258}
2259
72835c86 2260unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2261 gfp_t gfp_mask,
185efc0f 2262 bool noswap)
66e1707b 2263{
4e416953 2264 struct zonelist *zonelist;
bdce6d9e 2265 unsigned long nr_reclaimed;
889976db 2266 int nid;
66e1707b 2267 struct scan_control sc = {
66e1707b 2268 .may_writepage = !laptop_mode,
a6dc60f8 2269 .may_unmap = 1,
2e2e4259 2270 .may_swap = !noswap,
22fba335 2271 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2272 .order = 0,
72835c86 2273 .target_mem_cgroup = memcg,
327c0e96 2274 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2275 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2276 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2277 };
2278 struct shrink_control shrink = {
2279 .gfp_mask = sc.gfp_mask,
66e1707b 2280 };
66e1707b 2281
889976db
YH
2282 /*
2283 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2284 * take care of from where we get pages. So the node where we start the
2285 * scan does not need to be the current node.
2286 */
72835c86 2287 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2288
2289 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2290
2291 trace_mm_vmscan_memcg_reclaim_begin(0,
2292 sc.may_writepage,
2293 sc.gfp_mask);
2294
a09ed5e0 2295 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2296
2297 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2298
2299 return nr_reclaimed;
66e1707b
BS
2300}
2301#endif
2302
f16015fb
JW
2303static void age_active_anon(struct zone *zone, struct scan_control *sc,
2304 int priority)
2305{
b95a2f2d 2306 struct mem_cgroup *memcg;
f16015fb 2307
b95a2f2d
JW
2308 if (!total_swap_pages)
2309 return;
2310
2311 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2312 do {
2313 struct mem_cgroup_zone mz = {
2314 .mem_cgroup = memcg,
2315 .zone = zone,
2316 };
2317
2318 if (inactive_anon_is_low(&mz))
2319 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
3cb99451 2320 sc, priority, LRU_ACTIVE_ANON);
b95a2f2d
JW
2321
2322 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2323 } while (memcg);
f16015fb
JW
2324}
2325
1741c877
MG
2326/*
2327 * pgdat_balanced is used when checking if a node is balanced for high-order
2328 * allocations. Only zones that meet watermarks and are in a zone allowed
2329 * by the callers classzone_idx are added to balanced_pages. The total of
2330 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2331 * for the node to be considered balanced. Forcing all zones to be balanced
2332 * for high orders can cause excessive reclaim when there are imbalanced zones.
2333 * The choice of 25% is due to
2334 * o a 16M DMA zone that is balanced will not balance a zone on any
2335 * reasonable sized machine
2336 * o On all other machines, the top zone must be at least a reasonable
25985edc 2337 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2338 * would need to be at least 256M for it to be balance a whole node.
2339 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2340 * to balance a node on its own. These seemed like reasonable ratios.
2341 */
2342static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2343 int classzone_idx)
2344{
2345 unsigned long present_pages = 0;
2346 int i;
2347
2348 for (i = 0; i <= classzone_idx; i++)
2349 present_pages += pgdat->node_zones[i].present_pages;
2350
4746efde
SL
2351 /* A special case here: if zone has no page, we think it's balanced */
2352 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2353}
2354
f50de2d3 2355/* is kswapd sleeping prematurely? */
dc83edd9
MG
2356static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2357 int classzone_idx)
f50de2d3 2358{
bb3ab596 2359 int i;
1741c877
MG
2360 unsigned long balanced = 0;
2361 bool all_zones_ok = true;
f50de2d3
MG
2362
2363 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2364 if (remaining)
dc83edd9 2365 return true;
f50de2d3 2366
0abdee2b 2367 /* Check the watermark levels */
08951e54 2368 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2369 struct zone *zone = pgdat->node_zones + i;
2370
2371 if (!populated_zone(zone))
2372 continue;
2373
355b09c4
MG
2374 /*
2375 * balance_pgdat() skips over all_unreclaimable after
2376 * DEF_PRIORITY. Effectively, it considers them balanced so
2377 * they must be considered balanced here as well if kswapd
2378 * is to sleep
2379 */
2380 if (zone->all_unreclaimable) {
2381 balanced += zone->present_pages;
de3fab39 2382 continue;
355b09c4 2383 }
de3fab39 2384
88f5acf8 2385 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2386 i, 0))
1741c877
MG
2387 all_zones_ok = false;
2388 else
2389 balanced += zone->present_pages;
bb3ab596 2390 }
f50de2d3 2391
1741c877
MG
2392 /*
2393 * For high-order requests, the balanced zones must contain at least
2394 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2395 * must be balanced
2396 */
2397 if (order)
afc7e326 2398 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2399 else
2400 return !all_zones_ok;
f50de2d3
MG
2401}
2402
1da177e4
LT
2403/*
2404 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2405 * they are all at high_wmark_pages(zone).
1da177e4 2406 *
0abdee2b 2407 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2408 *
2409 * There is special handling here for zones which are full of pinned pages.
2410 * This can happen if the pages are all mlocked, or if they are all used by
2411 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2412 * What we do is to detect the case where all pages in the zone have been
2413 * scanned twice and there has been zero successful reclaim. Mark the zone as
2414 * dead and from now on, only perform a short scan. Basically we're polling
2415 * the zone for when the problem goes away.
2416 *
2417 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2418 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2419 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2420 * lower zones regardless of the number of free pages in the lower zones. This
2421 * interoperates with the page allocator fallback scheme to ensure that aging
2422 * of pages is balanced across the zones.
1da177e4 2423 */
99504748 2424static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2425 int *classzone_idx)
1da177e4 2426{
1da177e4 2427 int all_zones_ok;
1741c877 2428 unsigned long balanced;
1da177e4
LT
2429 int priority;
2430 int i;
99504748 2431 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2432 unsigned long total_scanned;
1da177e4 2433 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2434 unsigned long nr_soft_reclaimed;
2435 unsigned long nr_soft_scanned;
179e9639
AM
2436 struct scan_control sc = {
2437 .gfp_mask = GFP_KERNEL,
a6dc60f8 2438 .may_unmap = 1,
2e2e4259 2439 .may_swap = 1,
22fba335
KM
2440 /*
2441 * kswapd doesn't want to be bailed out while reclaim. because
2442 * we want to put equal scanning pressure on each zone.
2443 */
2444 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2445 .order = order,
f16015fb 2446 .target_mem_cgroup = NULL,
179e9639 2447 };
a09ed5e0
YH
2448 struct shrink_control shrink = {
2449 .gfp_mask = sc.gfp_mask,
2450 };
1da177e4
LT
2451loop_again:
2452 total_scanned = 0;
a79311c1 2453 sc.nr_reclaimed = 0;
c0bbbc73 2454 sc.may_writepage = !laptop_mode;
f8891e5e 2455 count_vm_event(PAGEOUTRUN);
1da177e4 2456
1da177e4 2457 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 2458 unsigned long lru_pages = 0;
bb3ab596 2459 int has_under_min_watermark_zone = 0;
1da177e4
LT
2460
2461 all_zones_ok = 1;
1741c877 2462 balanced = 0;
1da177e4 2463
d6277db4
RW
2464 /*
2465 * Scan in the highmem->dma direction for the highest
2466 * zone which needs scanning
2467 */
2468 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2469 struct zone *zone = pgdat->node_zones + i;
1da177e4 2470
d6277db4
RW
2471 if (!populated_zone(zone))
2472 continue;
1da177e4 2473
93e4a89a 2474 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2475 continue;
1da177e4 2476
556adecb
RR
2477 /*
2478 * Do some background aging of the anon list, to give
2479 * pages a chance to be referenced before reclaiming.
2480 */
f16015fb 2481 age_active_anon(zone, &sc, priority);
556adecb 2482
cc715d99
MG
2483 /*
2484 * If the number of buffer_heads in the machine
2485 * exceeds the maximum allowed level and this node
2486 * has a highmem zone, force kswapd to reclaim from
2487 * it to relieve lowmem pressure.
2488 */
2489 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2490 end_zone = i;
2491 break;
2492 }
2493
88f5acf8 2494 if (!zone_watermark_ok_safe(zone, order,
41858966 2495 high_wmark_pages(zone), 0, 0)) {
d6277db4 2496 end_zone = i;
e1dbeda6 2497 break;
439423f6
SL
2498 } else {
2499 /* If balanced, clear the congested flag */
2500 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2501 }
1da177e4 2502 }
e1dbeda6
AM
2503 if (i < 0)
2504 goto out;
2505
1da177e4
LT
2506 for (i = 0; i <= end_zone; i++) {
2507 struct zone *zone = pgdat->node_zones + i;
2508
adea02a1 2509 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2510 }
2511
2512 /*
2513 * Now scan the zone in the dma->highmem direction, stopping
2514 * at the last zone which needs scanning.
2515 *
2516 * We do this because the page allocator works in the opposite
2517 * direction. This prevents the page allocator from allocating
2518 * pages behind kswapd's direction of progress, which would
2519 * cause too much scanning of the lower zones.
2520 */
2521 for (i = 0; i <= end_zone; i++) {
2522 struct zone *zone = pgdat->node_zones + i;
fe2c2a10 2523 int nr_slab, testorder;
8afdcece 2524 unsigned long balance_gap;
1da177e4 2525
f3fe6512 2526 if (!populated_zone(zone))
1da177e4
LT
2527 continue;
2528
93e4a89a 2529 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2530 continue;
2531
1da177e4 2532 sc.nr_scanned = 0;
4e416953 2533
0ae5e89c 2534 nr_soft_scanned = 0;
4e416953
BS
2535 /*
2536 * Call soft limit reclaim before calling shrink_zone.
4e416953 2537 */
0ae5e89c
YH
2538 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2539 order, sc.gfp_mask,
2540 &nr_soft_scanned);
2541 sc.nr_reclaimed += nr_soft_reclaimed;
2542 total_scanned += nr_soft_scanned;
00918b6a 2543
32a4330d 2544 /*
8afdcece
MG
2545 * We put equal pressure on every zone, unless
2546 * one zone has way too many pages free
2547 * already. The "too many pages" is defined
2548 * as the high wmark plus a "gap" where the
2549 * gap is either the low watermark or 1%
2550 * of the zone, whichever is smaller.
32a4330d 2551 */
8afdcece
MG
2552 balance_gap = min(low_wmark_pages(zone),
2553 (zone->present_pages +
2554 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2555 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2556 /*
2557 * Kswapd reclaims only single pages with compaction
2558 * enabled. Trying too hard to reclaim until contiguous
2559 * free pages have become available can hurt performance
2560 * by evicting too much useful data from memory.
2561 * Do not reclaim more than needed for compaction.
2562 */
2563 testorder = order;
2564 if (COMPACTION_BUILD && order &&
2565 compaction_suitable(zone, order) !=
2566 COMPACT_SKIPPED)
2567 testorder = 0;
2568
cc715d99 2569 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
643ac9fc 2570 !zone_watermark_ok_safe(zone, testorder,
8afdcece 2571 high_wmark_pages(zone) + balance_gap,
d7868dae 2572 end_zone, 0)) {
a79311c1 2573 shrink_zone(priority, zone, &sc);
5a03b051 2574
d7868dae
MG
2575 reclaim_state->reclaimed_slab = 0;
2576 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2577 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2578 total_scanned += sc.nr_scanned;
2579
2580 if (nr_slab == 0 && !zone_reclaimable(zone))
2581 zone->all_unreclaimable = 1;
2582 }
2583
1da177e4
LT
2584 /*
2585 * If we've done a decent amount of scanning and
2586 * the reclaim ratio is low, start doing writepage
2587 * even in laptop mode
2588 */
2589 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2590 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2591 sc.may_writepage = 1;
bb3ab596 2592
215ddd66
MG
2593 if (zone->all_unreclaimable) {
2594 if (end_zone && end_zone == i)
2595 end_zone--;
d7868dae 2596 continue;
215ddd66 2597 }
d7868dae 2598
fe2c2a10 2599 if (!zone_watermark_ok_safe(zone, testorder,
45973d74
MK
2600 high_wmark_pages(zone), end_zone, 0)) {
2601 all_zones_ok = 0;
2602 /*
2603 * We are still under min water mark. This
2604 * means that we have a GFP_ATOMIC allocation
2605 * failure risk. Hurry up!
2606 */
88f5acf8 2607 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2608 min_wmark_pages(zone), end_zone, 0))
2609 has_under_min_watermark_zone = 1;
0e093d99
MG
2610 } else {
2611 /*
2612 * If a zone reaches its high watermark,
2613 * consider it to be no longer congested. It's
2614 * possible there are dirty pages backed by
2615 * congested BDIs but as pressure is relieved,
2616 * spectulatively avoid congestion waits
2617 */
2618 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2619 if (i <= *classzone_idx)
1741c877 2620 balanced += zone->present_pages;
45973d74 2621 }
bb3ab596 2622
1da177e4 2623 }
dc83edd9 2624 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2625 break; /* kswapd: all done */
2626 /*
2627 * OK, kswapd is getting into trouble. Take a nap, then take
2628 * another pass across the zones.
2629 */
bb3ab596
KM
2630 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2631 if (has_under_min_watermark_zone)
2632 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2633 else
2634 congestion_wait(BLK_RW_ASYNC, HZ/10);
2635 }
1da177e4
LT
2636
2637 /*
2638 * We do this so kswapd doesn't build up large priorities for
2639 * example when it is freeing in parallel with allocators. It
2640 * matches the direct reclaim path behaviour in terms of impact
2641 * on zone->*_priority.
2642 */
a79311c1 2643 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2644 break;
2645 }
2646out:
99504748
MG
2647
2648 /*
2649 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2650 * high-order: Balanced zones must make up at least 25% of the node
2651 * for the node to be balanced
99504748 2652 */
dc83edd9 2653 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2654 cond_resched();
8357376d
RW
2655
2656 try_to_freeze();
2657
73ce02e9
KM
2658 /*
2659 * Fragmentation may mean that the system cannot be
2660 * rebalanced for high-order allocations in all zones.
2661 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2662 * it means the zones have been fully scanned and are still
2663 * not balanced. For high-order allocations, there is
2664 * little point trying all over again as kswapd may
2665 * infinite loop.
2666 *
2667 * Instead, recheck all watermarks at order-0 as they
2668 * are the most important. If watermarks are ok, kswapd will go
2669 * back to sleep. High-order users can still perform direct
2670 * reclaim if they wish.
2671 */
2672 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2673 order = sc.order = 0;
2674
1da177e4
LT
2675 goto loop_again;
2676 }
2677
99504748
MG
2678 /*
2679 * If kswapd was reclaiming at a higher order, it has the option of
2680 * sleeping without all zones being balanced. Before it does, it must
2681 * ensure that the watermarks for order-0 on *all* zones are met and
2682 * that the congestion flags are cleared. The congestion flag must
2683 * be cleared as kswapd is the only mechanism that clears the flag
2684 * and it is potentially going to sleep here.
2685 */
2686 if (order) {
7be62de9
RR
2687 int zones_need_compaction = 1;
2688
99504748
MG
2689 for (i = 0; i <= end_zone; i++) {
2690 struct zone *zone = pgdat->node_zones + i;
2691
2692 if (!populated_zone(zone))
2693 continue;
2694
2695 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2696 continue;
2697
fe2c2a10 2698 /* Would compaction fail due to lack of free memory? */
496b919b
RR
2699 if (COMPACTION_BUILD &&
2700 compaction_suitable(zone, order) == COMPACT_SKIPPED)
fe2c2a10
RR
2701 goto loop_again;
2702
99504748
MG
2703 /* Confirm the zone is balanced for order-0 */
2704 if (!zone_watermark_ok(zone, 0,
2705 high_wmark_pages(zone), 0, 0)) {
2706 order = sc.order = 0;
2707 goto loop_again;
2708 }
2709
7be62de9
RR
2710 /* Check if the memory needs to be defragmented. */
2711 if (zone_watermark_ok(zone, order,
2712 low_wmark_pages(zone), *classzone_idx, 0))
2713 zones_need_compaction = 0;
2714
99504748
MG
2715 /* If balanced, clear the congested flag */
2716 zone_clear_flag(zone, ZONE_CONGESTED);
2717 }
7be62de9
RR
2718
2719 if (zones_need_compaction)
2720 compact_pgdat(pgdat, order);
99504748
MG
2721 }
2722
0abdee2b
MG
2723 /*
2724 * Return the order we were reclaiming at so sleeping_prematurely()
2725 * makes a decision on the order we were last reclaiming at. However,
2726 * if another caller entered the allocator slow path while kswapd
2727 * was awake, order will remain at the higher level
2728 */
dc83edd9 2729 *classzone_idx = end_zone;
0abdee2b 2730 return order;
1da177e4
LT
2731}
2732
dc83edd9 2733static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2734{
2735 long remaining = 0;
2736 DEFINE_WAIT(wait);
2737
2738 if (freezing(current) || kthread_should_stop())
2739 return;
2740
2741 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2742
2743 /* Try to sleep for a short interval */
dc83edd9 2744 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2745 remaining = schedule_timeout(HZ/10);
2746 finish_wait(&pgdat->kswapd_wait, &wait);
2747 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2748 }
2749
2750 /*
2751 * After a short sleep, check if it was a premature sleep. If not, then
2752 * go fully to sleep until explicitly woken up.
2753 */
dc83edd9 2754 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2755 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2756
2757 /*
2758 * vmstat counters are not perfectly accurate and the estimated
2759 * value for counters such as NR_FREE_PAGES can deviate from the
2760 * true value by nr_online_cpus * threshold. To avoid the zone
2761 * watermarks being breached while under pressure, we reduce the
2762 * per-cpu vmstat threshold while kswapd is awake and restore
2763 * them before going back to sleep.
2764 */
2765 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2766 schedule();
2767 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2768 } else {
2769 if (remaining)
2770 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2771 else
2772 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2773 }
2774 finish_wait(&pgdat->kswapd_wait, &wait);
2775}
2776
1da177e4
LT
2777/*
2778 * The background pageout daemon, started as a kernel thread
4f98a2fe 2779 * from the init process.
1da177e4
LT
2780 *
2781 * This basically trickles out pages so that we have _some_
2782 * free memory available even if there is no other activity
2783 * that frees anything up. This is needed for things like routing
2784 * etc, where we otherwise might have all activity going on in
2785 * asynchronous contexts that cannot page things out.
2786 *
2787 * If there are applications that are active memory-allocators
2788 * (most normal use), this basically shouldn't matter.
2789 */
2790static int kswapd(void *p)
2791{
215ddd66 2792 unsigned long order, new_order;
d2ebd0f6 2793 unsigned balanced_order;
215ddd66 2794 int classzone_idx, new_classzone_idx;
d2ebd0f6 2795 int balanced_classzone_idx;
1da177e4
LT
2796 pg_data_t *pgdat = (pg_data_t*)p;
2797 struct task_struct *tsk = current;
f0bc0a60 2798
1da177e4
LT
2799 struct reclaim_state reclaim_state = {
2800 .reclaimed_slab = 0,
2801 };
a70f7302 2802 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2803
cf40bd16
NP
2804 lockdep_set_current_reclaim_state(GFP_KERNEL);
2805
174596a0 2806 if (!cpumask_empty(cpumask))
c5f59f08 2807 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2808 current->reclaim_state = &reclaim_state;
2809
2810 /*
2811 * Tell the memory management that we're a "memory allocator",
2812 * and that if we need more memory we should get access to it
2813 * regardless (see "__alloc_pages()"). "kswapd" should
2814 * never get caught in the normal page freeing logic.
2815 *
2816 * (Kswapd normally doesn't need memory anyway, but sometimes
2817 * you need a small amount of memory in order to be able to
2818 * page out something else, and this flag essentially protects
2819 * us from recursively trying to free more memory as we're
2820 * trying to free the first piece of memory in the first place).
2821 */
930d9152 2822 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2823 set_freezable();
1da177e4 2824
215ddd66 2825 order = new_order = 0;
d2ebd0f6 2826 balanced_order = 0;
215ddd66 2827 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 2828 balanced_classzone_idx = classzone_idx;
1da177e4 2829 for ( ; ; ) {
8fe23e05 2830 int ret;
3e1d1d28 2831
215ddd66
MG
2832 /*
2833 * If the last balance_pgdat was unsuccessful it's unlikely a
2834 * new request of a similar or harder type will succeed soon
2835 * so consider going to sleep on the basis we reclaimed at
2836 */
d2ebd0f6
AS
2837 if (balanced_classzone_idx >= new_classzone_idx &&
2838 balanced_order == new_order) {
215ddd66
MG
2839 new_order = pgdat->kswapd_max_order;
2840 new_classzone_idx = pgdat->classzone_idx;
2841 pgdat->kswapd_max_order = 0;
2842 pgdat->classzone_idx = pgdat->nr_zones - 1;
2843 }
2844
99504748 2845 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2846 /*
2847 * Don't sleep if someone wants a larger 'order'
99504748 2848 * allocation or has tigher zone constraints
1da177e4
LT
2849 */
2850 order = new_order;
99504748 2851 classzone_idx = new_classzone_idx;
1da177e4 2852 } else {
d2ebd0f6
AS
2853 kswapd_try_to_sleep(pgdat, balanced_order,
2854 balanced_classzone_idx);
1da177e4 2855 order = pgdat->kswapd_max_order;
99504748 2856 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
2857 new_order = order;
2858 new_classzone_idx = classzone_idx;
4d40502e 2859 pgdat->kswapd_max_order = 0;
215ddd66 2860 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2861 }
1da177e4 2862
8fe23e05
DR
2863 ret = try_to_freeze();
2864 if (kthread_should_stop())
2865 break;
2866
2867 /*
2868 * We can speed up thawing tasks if we don't call balance_pgdat
2869 * after returning from the refrigerator
2870 */
33906bc5
MG
2871 if (!ret) {
2872 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
2873 balanced_classzone_idx = classzone_idx;
2874 balanced_order = balance_pgdat(pgdat, order,
2875 &balanced_classzone_idx);
33906bc5 2876 }
1da177e4
LT
2877 }
2878 return 0;
2879}
2880
2881/*
2882 * A zone is low on free memory, so wake its kswapd task to service it.
2883 */
99504748 2884void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2885{
2886 pg_data_t *pgdat;
2887
f3fe6512 2888 if (!populated_zone(zone))
1da177e4
LT
2889 return;
2890
88f5acf8 2891 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2892 return;
88f5acf8 2893 pgdat = zone->zone_pgdat;
99504748 2894 if (pgdat->kswapd_max_order < order) {
1da177e4 2895 pgdat->kswapd_max_order = order;
99504748
MG
2896 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2897 }
8d0986e2 2898 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2899 return;
88f5acf8
MG
2900 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2901 return;
2902
2903 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2904 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2905}
2906
adea02a1
WF
2907/*
2908 * The reclaimable count would be mostly accurate.
2909 * The less reclaimable pages may be
2910 * - mlocked pages, which will be moved to unevictable list when encountered
2911 * - mapped pages, which may require several travels to be reclaimed
2912 * - dirty pages, which is not "instantly" reclaimable
2913 */
2914unsigned long global_reclaimable_pages(void)
4f98a2fe 2915{
adea02a1
WF
2916 int nr;
2917
2918 nr = global_page_state(NR_ACTIVE_FILE) +
2919 global_page_state(NR_INACTIVE_FILE);
2920
2921 if (nr_swap_pages > 0)
2922 nr += global_page_state(NR_ACTIVE_ANON) +
2923 global_page_state(NR_INACTIVE_ANON);
2924
2925 return nr;
2926}
2927
2928unsigned long zone_reclaimable_pages(struct zone *zone)
2929{
2930 int nr;
2931
2932 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2933 zone_page_state(zone, NR_INACTIVE_FILE);
2934
2935 if (nr_swap_pages > 0)
2936 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2937 zone_page_state(zone, NR_INACTIVE_ANON);
2938
2939 return nr;
4f98a2fe
RR
2940}
2941
c6f37f12 2942#ifdef CONFIG_HIBERNATION
1da177e4 2943/*
7b51755c 2944 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2945 * freed pages.
2946 *
2947 * Rather than trying to age LRUs the aim is to preserve the overall
2948 * LRU order by reclaiming preferentially
2949 * inactive > active > active referenced > active mapped
1da177e4 2950 */
7b51755c 2951unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2952{
d6277db4 2953 struct reclaim_state reclaim_state;
d6277db4 2954 struct scan_control sc = {
7b51755c
KM
2955 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2956 .may_swap = 1,
2957 .may_unmap = 1,
d6277db4 2958 .may_writepage = 1,
7b51755c
KM
2959 .nr_to_reclaim = nr_to_reclaim,
2960 .hibernation_mode = 1,
7b51755c 2961 .order = 0,
1da177e4 2962 };
a09ed5e0
YH
2963 struct shrink_control shrink = {
2964 .gfp_mask = sc.gfp_mask,
2965 };
2966 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
2967 struct task_struct *p = current;
2968 unsigned long nr_reclaimed;
1da177e4 2969
7b51755c
KM
2970 p->flags |= PF_MEMALLOC;
2971 lockdep_set_current_reclaim_state(sc.gfp_mask);
2972 reclaim_state.reclaimed_slab = 0;
2973 p->reclaim_state = &reclaim_state;
d6277db4 2974
a09ed5e0 2975 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 2976
7b51755c
KM
2977 p->reclaim_state = NULL;
2978 lockdep_clear_current_reclaim_state();
2979 p->flags &= ~PF_MEMALLOC;
d6277db4 2980
7b51755c 2981 return nr_reclaimed;
1da177e4 2982}
c6f37f12 2983#endif /* CONFIG_HIBERNATION */
1da177e4 2984
1da177e4
LT
2985/* It's optimal to keep kswapds on the same CPUs as their memory, but
2986 not required for correctness. So if the last cpu in a node goes
2987 away, we get changed to run anywhere: as the first one comes back,
2988 restore their cpu bindings. */
9c7b216d 2989static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2990 unsigned long action, void *hcpu)
1da177e4 2991{
58c0a4a7 2992 int nid;
1da177e4 2993
8bb78442 2994 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2995 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2996 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2997 const struct cpumask *mask;
2998
2999 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3000
3e597945 3001 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3002 /* One of our CPUs online: restore mask */
c5f59f08 3003 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3004 }
3005 }
3006 return NOTIFY_OK;
3007}
1da177e4 3008
3218ae14
YG
3009/*
3010 * This kswapd start function will be called by init and node-hot-add.
3011 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3012 */
3013int kswapd_run(int nid)
3014{
3015 pg_data_t *pgdat = NODE_DATA(nid);
3016 int ret = 0;
3017
3018 if (pgdat->kswapd)
3019 return 0;
3020
3021 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3022 if (IS_ERR(pgdat->kswapd)) {
3023 /* failure at boot is fatal */
3024 BUG_ON(system_state == SYSTEM_BOOTING);
3025 printk("Failed to start kswapd on node %d\n",nid);
3026 ret = -1;
3027 }
3028 return ret;
3029}
3030
8fe23e05
DR
3031/*
3032 * Called by memory hotplug when all memory in a node is offlined.
3033 */
3034void kswapd_stop(int nid)
3035{
3036 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3037
3038 if (kswapd)
3039 kthread_stop(kswapd);
3040}
3041
1da177e4
LT
3042static int __init kswapd_init(void)
3043{
3218ae14 3044 int nid;
69e05944 3045
1da177e4 3046 swap_setup();
9422ffba 3047 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3048 kswapd_run(nid);
1da177e4
LT
3049 hotcpu_notifier(cpu_callback, 0);
3050 return 0;
3051}
3052
3053module_init(kswapd_init)
9eeff239
CL
3054
3055#ifdef CONFIG_NUMA
3056/*
3057 * Zone reclaim mode
3058 *
3059 * If non-zero call zone_reclaim when the number of free pages falls below
3060 * the watermarks.
9eeff239
CL
3061 */
3062int zone_reclaim_mode __read_mostly;
3063
1b2ffb78 3064#define RECLAIM_OFF 0
7d03431c 3065#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3066#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3067#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3068
a92f7126
CL
3069/*
3070 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3071 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3072 * a zone.
3073 */
3074#define ZONE_RECLAIM_PRIORITY 4
3075
9614634f
CL
3076/*
3077 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3078 * occur.
3079 */
3080int sysctl_min_unmapped_ratio = 1;
3081
0ff38490
CL
3082/*
3083 * If the number of slab pages in a zone grows beyond this percentage then
3084 * slab reclaim needs to occur.
3085 */
3086int sysctl_min_slab_ratio = 5;
3087
90afa5de
MG
3088static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3089{
3090 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3091 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3092 zone_page_state(zone, NR_ACTIVE_FILE);
3093
3094 /*
3095 * It's possible for there to be more file mapped pages than
3096 * accounted for by the pages on the file LRU lists because
3097 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3098 */
3099 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3100}
3101
3102/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3103static long zone_pagecache_reclaimable(struct zone *zone)
3104{
3105 long nr_pagecache_reclaimable;
3106 long delta = 0;
3107
3108 /*
3109 * If RECLAIM_SWAP is set, then all file pages are considered
3110 * potentially reclaimable. Otherwise, we have to worry about
3111 * pages like swapcache and zone_unmapped_file_pages() provides
3112 * a better estimate
3113 */
3114 if (zone_reclaim_mode & RECLAIM_SWAP)
3115 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3116 else
3117 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3118
3119 /* If we can't clean pages, remove dirty pages from consideration */
3120 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3121 delta += zone_page_state(zone, NR_FILE_DIRTY);
3122
3123 /* Watch for any possible underflows due to delta */
3124 if (unlikely(delta > nr_pagecache_reclaimable))
3125 delta = nr_pagecache_reclaimable;
3126
3127 return nr_pagecache_reclaimable - delta;
3128}
3129
9eeff239
CL
3130/*
3131 * Try to free up some pages from this zone through reclaim.
3132 */
179e9639 3133static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3134{
7fb2d46d 3135 /* Minimum pages needed in order to stay on node */
69e05944 3136 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3137 struct task_struct *p = current;
3138 struct reclaim_state reclaim_state;
8695949a 3139 int priority;
179e9639
AM
3140 struct scan_control sc = {
3141 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3142 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3143 .may_swap = 1,
22fba335
KM
3144 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3145 SWAP_CLUSTER_MAX),
179e9639 3146 .gfp_mask = gfp_mask,
bd2f6199 3147 .order = order,
179e9639 3148 };
a09ed5e0
YH
3149 struct shrink_control shrink = {
3150 .gfp_mask = sc.gfp_mask,
3151 };
15748048 3152 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3153
9eeff239 3154 cond_resched();
d4f7796e
CL
3155 /*
3156 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3157 * and we also need to be able to write out pages for RECLAIM_WRITE
3158 * and RECLAIM_SWAP.
3159 */
3160 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3161 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3162 reclaim_state.reclaimed_slab = 0;
3163 p->reclaim_state = &reclaim_state;
c84db23c 3164
90afa5de 3165 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3166 /*
3167 * Free memory by calling shrink zone with increasing
3168 * priorities until we have enough memory freed.
3169 */
3170 priority = ZONE_RECLAIM_PRIORITY;
3171 do {
a79311c1 3172 shrink_zone(priority, zone, &sc);
0ff38490 3173 priority--;
a79311c1 3174 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 3175 }
c84db23c 3176
15748048
KM
3177 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3178 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3179 /*
7fb2d46d 3180 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3181 * many pages were freed in this zone. So we take the current
3182 * number of slab pages and shake the slab until it is reduced
3183 * by the same nr_pages that we used for reclaiming unmapped
3184 * pages.
2a16e3f4 3185 *
0ff38490
CL
3186 * Note that shrink_slab will free memory on all zones and may
3187 * take a long time.
2a16e3f4 3188 */
4dc4b3d9
KM
3189 for (;;) {
3190 unsigned long lru_pages = zone_reclaimable_pages(zone);
3191
3192 /* No reclaimable slab or very low memory pressure */
1495f230 3193 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3194 break;
3195
3196 /* Freed enough memory */
3197 nr_slab_pages1 = zone_page_state(zone,
3198 NR_SLAB_RECLAIMABLE);
3199 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3200 break;
3201 }
83e33a47
CL
3202
3203 /*
3204 * Update nr_reclaimed by the number of slab pages we
3205 * reclaimed from this zone.
3206 */
15748048
KM
3207 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3208 if (nr_slab_pages1 < nr_slab_pages0)
3209 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3210 }
3211
9eeff239 3212 p->reclaim_state = NULL;
d4f7796e 3213 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3214 lockdep_clear_current_reclaim_state();
a79311c1 3215 return sc.nr_reclaimed >= nr_pages;
9eeff239 3216}
179e9639
AM
3217
3218int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3219{
179e9639 3220 int node_id;
d773ed6b 3221 int ret;
179e9639
AM
3222
3223 /*
0ff38490
CL
3224 * Zone reclaim reclaims unmapped file backed pages and
3225 * slab pages if we are over the defined limits.
34aa1330 3226 *
9614634f
CL
3227 * A small portion of unmapped file backed pages is needed for
3228 * file I/O otherwise pages read by file I/O will be immediately
3229 * thrown out if the zone is overallocated. So we do not reclaim
3230 * if less than a specified percentage of the zone is used by
3231 * unmapped file backed pages.
179e9639 3232 */
90afa5de
MG
3233 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3234 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3235 return ZONE_RECLAIM_FULL;
179e9639 3236
93e4a89a 3237 if (zone->all_unreclaimable)
fa5e084e 3238 return ZONE_RECLAIM_FULL;
d773ed6b 3239
179e9639 3240 /*
d773ed6b 3241 * Do not scan if the allocation should not be delayed.
179e9639 3242 */
d773ed6b 3243 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3244 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3245
3246 /*
3247 * Only run zone reclaim on the local zone or on zones that do not
3248 * have associated processors. This will favor the local processor
3249 * over remote processors and spread off node memory allocations
3250 * as wide as possible.
3251 */
89fa3024 3252 node_id = zone_to_nid(zone);
37c0708d 3253 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3254 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3255
3256 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3257 return ZONE_RECLAIM_NOSCAN;
3258
d773ed6b
DR
3259 ret = __zone_reclaim(zone, gfp_mask, order);
3260 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3261
24cf7251
MG
3262 if (!ret)
3263 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3264
d773ed6b 3265 return ret;
179e9639 3266}
9eeff239 3267#endif
894bc310 3268
894bc310
LS
3269/*
3270 * page_evictable - test whether a page is evictable
3271 * @page: the page to test
3272 * @vma: the VMA in which the page is or will be mapped, may be NULL
3273 *
3274 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3275 * lists vs unevictable list. The vma argument is !NULL when called from the
3276 * fault path to determine how to instantate a new page.
894bc310
LS
3277 *
3278 * Reasons page might not be evictable:
ba9ddf49 3279 * (1) page's mapping marked unevictable
b291f000 3280 * (2) page is part of an mlocked VMA
ba9ddf49 3281 *
894bc310
LS
3282 */
3283int page_evictable(struct page *page, struct vm_area_struct *vma)
3284{
3285
ba9ddf49
LS
3286 if (mapping_unevictable(page_mapping(page)))
3287 return 0;
3288
096a7cf4 3289 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
b291f000 3290 return 0;
894bc310
LS
3291
3292 return 1;
3293}
89e004ea 3294
85046579 3295#ifdef CONFIG_SHMEM
89e004ea 3296/**
24513264
HD
3297 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3298 * @pages: array of pages to check
3299 * @nr_pages: number of pages to check
89e004ea 3300 *
24513264 3301 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3302 *
3303 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3304 */
24513264 3305void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3306{
925b7673 3307 struct lruvec *lruvec;
24513264
HD
3308 struct zone *zone = NULL;
3309 int pgscanned = 0;
3310 int pgrescued = 0;
3311 int i;
89e004ea 3312
24513264
HD
3313 for (i = 0; i < nr_pages; i++) {
3314 struct page *page = pages[i];
3315 struct zone *pagezone;
89e004ea 3316
24513264
HD
3317 pgscanned++;
3318 pagezone = page_zone(page);
3319 if (pagezone != zone) {
3320 if (zone)
3321 spin_unlock_irq(&zone->lru_lock);
3322 zone = pagezone;
3323 spin_lock_irq(&zone->lru_lock);
3324 }
89e004ea 3325
24513264
HD
3326 if (!PageLRU(page) || !PageUnevictable(page))
3327 continue;
89e004ea 3328
24513264
HD
3329 if (page_evictable(page, NULL)) {
3330 enum lru_list lru = page_lru_base_type(page);
3331
3332 VM_BUG_ON(PageActive(page));
3333 ClearPageUnevictable(page);
3334 __dec_zone_state(zone, NR_UNEVICTABLE);
3335 lruvec = mem_cgroup_lru_move_lists(zone, page,
3336 LRU_UNEVICTABLE, lru);
3337 list_move(&page->lru, &lruvec->lists[lru]);
3338 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3339 pgrescued++;
89e004ea 3340 }
24513264 3341 }
89e004ea 3342
24513264
HD
3343 if (zone) {
3344 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3345 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3346 spin_unlock_irq(&zone->lru_lock);
89e004ea 3347 }
89e004ea 3348}
85046579 3349#endif /* CONFIG_SHMEM */
af936a16 3350
264e56d8 3351static void warn_scan_unevictable_pages(void)
af936a16 3352{
264e56d8 3353 printk_once(KERN_WARNING
25bd91bd 3354 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3355 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3356 "one, please send an email to linux-mm@kvack.org.\n",
3357 current->comm);
af936a16
LS
3358}
3359
3360/*
3361 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3362 * all nodes' unevictable lists for evictable pages
3363 */
3364unsigned long scan_unevictable_pages;
3365
3366int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3367 void __user *buffer,
af936a16
LS
3368 size_t *length, loff_t *ppos)
3369{
264e56d8 3370 warn_scan_unevictable_pages();
8d65af78 3371 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3372 scan_unevictable_pages = 0;
3373 return 0;
3374}
3375
e4455abb 3376#ifdef CONFIG_NUMA
af936a16
LS
3377/*
3378 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3379 * a specified node's per zone unevictable lists for evictable pages.
3380 */
3381
10fbcf4c
KS
3382static ssize_t read_scan_unevictable_node(struct device *dev,
3383 struct device_attribute *attr,
af936a16
LS
3384 char *buf)
3385{
264e56d8 3386 warn_scan_unevictable_pages();
af936a16
LS
3387 return sprintf(buf, "0\n"); /* always zero; should fit... */
3388}
3389
10fbcf4c
KS
3390static ssize_t write_scan_unevictable_node(struct device *dev,
3391 struct device_attribute *attr,
af936a16
LS
3392 const char *buf, size_t count)
3393{
264e56d8 3394 warn_scan_unevictable_pages();
af936a16
LS
3395 return 1;
3396}
3397
3398
10fbcf4c 3399static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3400 read_scan_unevictable_node,
3401 write_scan_unevictable_node);
3402
3403int scan_unevictable_register_node(struct node *node)
3404{
10fbcf4c 3405 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3406}
3407
3408void scan_unevictable_unregister_node(struct node *node)
3409{
10fbcf4c 3410 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3411}
e4455abb 3412#endif