]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmscan.c
Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[thirdparty/linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
26aa2d19 44#include <linux/migrate.h>
873b4771 45#include <linux/delayacct.h>
af936a16 46#include <linux/sysctl.h>
929bea7c 47#include <linux/oom.h>
64e3d12f 48#include <linux/pagevec.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
eb414681 52#include <linux/psi.h>
1da177e4
LT
53
54#include <asm/tlbflush.h>
55#include <asm/div64.h>
56
57#include <linux/swapops.h>
117aad1e 58#include <linux/balloon_compaction.h>
1da177e4 59
0f8053a5
NP
60#include "internal.h"
61
33906bc5
MG
62#define CREATE_TRACE_POINTS
63#include <trace/events/vmscan.h>
64
1da177e4 65struct scan_control {
22fba335
KM
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
ee814fe2
JW
69 /*
70 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 * are scanned.
72 */
73 nodemask_t *nodemask;
9e3b2f8c 74
f16015fb
JW
75 /*
76 * The memory cgroup that hit its limit and as a result is the
77 * primary target of this reclaim invocation.
78 */
79 struct mem_cgroup *target_mem_cgroup;
66e1707b 80
7cf111bc
JW
81 /*
82 * Scan pressure balancing between anon and file LRUs
83 */
84 unsigned long anon_cost;
85 unsigned long file_cost;
86
b91ac374
JW
87 /* Can active pages be deactivated as part of reclaim? */
88#define DEACTIVATE_ANON 1
89#define DEACTIVATE_FILE 2
90 unsigned int may_deactivate:2;
91 unsigned int force_deactivate:1;
92 unsigned int skipped_deactivate:1;
93
1276ad68 94 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
95 unsigned int may_writepage:1;
96
97 /* Can mapped pages be reclaimed? */
98 unsigned int may_unmap:1;
99
100 /* Can pages be swapped as part of reclaim? */
101 unsigned int may_swap:1;
102
d6622f63 103 /*
f56ce412
JW
104 * Cgroup memory below memory.low is protected as long as we
105 * don't threaten to OOM. If any cgroup is reclaimed at
106 * reduced force or passed over entirely due to its memory.low
107 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 * result, then go back for one more cycle that reclaims the protected
109 * memory (memcg_low_reclaim) to avert OOM.
d6622f63
YX
110 */
111 unsigned int memcg_low_reclaim:1;
112 unsigned int memcg_low_skipped:1;
241994ed 113
ee814fe2
JW
114 unsigned int hibernation_mode:1;
115
116 /* One of the zones is ready for compaction */
117 unsigned int compaction_ready:1;
118
b91ac374
JW
119 /* There is easily reclaimable cold cache in the current node */
120 unsigned int cache_trim_mode:1;
121
53138cea
JW
122 /* The file pages on the current node are dangerously low */
123 unsigned int file_is_tiny:1;
124
26aa2d19
DH
125 /* Always discard instead of demoting to lower tier memory */
126 unsigned int no_demotion:1;
127
bb451fdf
GT
128 /* Allocation order */
129 s8 order;
130
131 /* Scan (total_size >> priority) pages at once */
132 s8 priority;
133
134 /* The highest zone to isolate pages for reclaim from */
135 s8 reclaim_idx;
136
137 /* This context's GFP mask */
138 gfp_t gfp_mask;
139
ee814fe2
JW
140 /* Incremented by the number of inactive pages that were scanned */
141 unsigned long nr_scanned;
142
143 /* Number of pages freed so far during a call to shrink_zones() */
144 unsigned long nr_reclaimed;
d108c772
AR
145
146 struct {
147 unsigned int dirty;
148 unsigned int unqueued_dirty;
149 unsigned int congested;
150 unsigned int writeback;
151 unsigned int immediate;
152 unsigned int file_taken;
153 unsigned int taken;
154 } nr;
e5ca8071
YS
155
156 /* for recording the reclaimed slab by now */
157 struct reclaim_state reclaim_state;
1da177e4
LT
158};
159
1da177e4
LT
160#ifdef ARCH_HAS_PREFETCHW
161#define prefetchw_prev_lru_page(_page, _base, _field) \
162 do { \
163 if ((_page)->lru.prev != _base) { \
164 struct page *prev; \
165 \
166 prev = lru_to_page(&(_page->lru)); \
167 prefetchw(&prev->_field); \
168 } \
169 } while (0)
170#else
171#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172#endif
173
174/*
c843966c 175 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
176 */
177int vm_swappiness = 60;
1da177e4 178
0a432dcb
YS
179static void set_task_reclaim_state(struct task_struct *task,
180 struct reclaim_state *rs)
181{
182 /* Check for an overwrite */
183 WARN_ON_ONCE(rs && task->reclaim_state);
184
185 /* Check for the nulling of an already-nulled member */
186 WARN_ON_ONCE(!rs && !task->reclaim_state);
187
188 task->reclaim_state = rs;
189}
190
1da177e4
LT
191static LIST_HEAD(shrinker_list);
192static DECLARE_RWSEM(shrinker_rwsem);
193
0a432dcb 194#ifdef CONFIG_MEMCG
a2fb1261 195static int shrinker_nr_max;
2bfd3637 196
3c6f17e6 197/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
198static inline int shrinker_map_size(int nr_items)
199{
200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201}
2bfd3637 202
3c6f17e6
YS
203static inline int shrinker_defer_size(int nr_items)
204{
205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206}
207
468ab843
YS
208static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 int nid)
210{
211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 lockdep_is_held(&shrinker_rwsem));
213}
214
e4262c4f 215static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
216 int map_size, int defer_size,
217 int old_map_size, int old_defer_size)
2bfd3637 218{
e4262c4f 219 struct shrinker_info *new, *old;
2bfd3637
YS
220 struct mem_cgroup_per_node *pn;
221 int nid;
3c6f17e6 222 int size = map_size + defer_size;
2bfd3637 223
2bfd3637
YS
224 for_each_node(nid) {
225 pn = memcg->nodeinfo[nid];
468ab843 226 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
227 /* Not yet online memcg */
228 if (!old)
229 return 0;
230
231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 if (!new)
233 return -ENOMEM;
234
3c6f17e6
YS
235 new->nr_deferred = (atomic_long_t *)(new + 1);
236 new->map = (void *)new->nr_deferred + defer_size;
237
238 /* map: set all old bits, clear all new bits */
239 memset(new->map, (int)0xff, old_map_size);
240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 /* nr_deferred: copy old values, clear all new values */
242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 memset((void *)new->nr_deferred + old_defer_size, 0,
244 defer_size - old_defer_size);
2bfd3637 245
e4262c4f 246 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 247 kvfree_rcu(old, rcu);
2bfd3637
YS
248 }
249
250 return 0;
251}
252
e4262c4f 253void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
254{
255 struct mem_cgroup_per_node *pn;
e4262c4f 256 struct shrinker_info *info;
2bfd3637
YS
257 int nid;
258
2bfd3637
YS
259 for_each_node(nid) {
260 pn = memcg->nodeinfo[nid];
e4262c4f
YS
261 info = rcu_dereference_protected(pn->shrinker_info, true);
262 kvfree(info);
263 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
264 }
265}
266
e4262c4f 267int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 268{
e4262c4f 269 struct shrinker_info *info;
2bfd3637 270 int nid, size, ret = 0;
3c6f17e6 271 int map_size, defer_size = 0;
2bfd3637 272
d27cf2aa 273 down_write(&shrinker_rwsem);
3c6f17e6
YS
274 map_size = shrinker_map_size(shrinker_nr_max);
275 defer_size = shrinker_defer_size(shrinker_nr_max);
276 size = map_size + defer_size;
2bfd3637 277 for_each_node(nid) {
e4262c4f
YS
278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 if (!info) {
280 free_shrinker_info(memcg);
2bfd3637
YS
281 ret = -ENOMEM;
282 break;
283 }
3c6f17e6
YS
284 info->nr_deferred = (atomic_long_t *)(info + 1);
285 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 287 }
d27cf2aa 288 up_write(&shrinker_rwsem);
2bfd3637
YS
289
290 return ret;
291}
292
3c6f17e6
YS
293static inline bool need_expand(int nr_max)
294{
295 return round_up(nr_max, BITS_PER_LONG) >
296 round_up(shrinker_nr_max, BITS_PER_LONG);
297}
298
e4262c4f 299static int expand_shrinker_info(int new_id)
2bfd3637 300{
3c6f17e6 301 int ret = 0;
a2fb1261 302 int new_nr_max = new_id + 1;
3c6f17e6
YS
303 int map_size, defer_size = 0;
304 int old_map_size, old_defer_size = 0;
2bfd3637
YS
305 struct mem_cgroup *memcg;
306
3c6f17e6 307 if (!need_expand(new_nr_max))
a2fb1261 308 goto out;
2bfd3637 309
2bfd3637 310 if (!root_mem_cgroup)
d27cf2aa
YS
311 goto out;
312
313 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 314
3c6f17e6
YS
315 map_size = shrinker_map_size(new_nr_max);
316 defer_size = shrinker_defer_size(new_nr_max);
317 old_map_size = shrinker_map_size(shrinker_nr_max);
318 old_defer_size = shrinker_defer_size(shrinker_nr_max);
319
2bfd3637
YS
320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 do {
3c6f17e6
YS
322 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 old_map_size, old_defer_size);
2bfd3637
YS
324 if (ret) {
325 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 326 goto out;
2bfd3637
YS
327 }
328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 329out:
2bfd3637 330 if (!ret)
a2fb1261 331 shrinker_nr_max = new_nr_max;
d27cf2aa 332
2bfd3637
YS
333 return ret;
334}
335
336void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337{
338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 339 struct shrinker_info *info;
2bfd3637
YS
340
341 rcu_read_lock();
e4262c4f 342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
343 /* Pairs with smp mb in shrink_slab() */
344 smp_mb__before_atomic();
e4262c4f 345 set_bit(shrinker_id, info->map);
2bfd3637
YS
346 rcu_read_unlock();
347 }
348}
349
b4c2b231 350static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
351
352static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353{
354 int id, ret = -ENOMEM;
355
476b30a0
YS
356 if (mem_cgroup_disabled())
357 return -ENOSYS;
358
b4c2b231
KT
359 down_write(&shrinker_rwsem);
360 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
362 if (id < 0)
363 goto unlock;
364
0a4465d3 365 if (id >= shrinker_nr_max) {
e4262c4f 366 if (expand_shrinker_info(id)) {
0a4465d3
KT
367 idr_remove(&shrinker_idr, id);
368 goto unlock;
369 }
0a4465d3 370 }
b4c2b231
KT
371 shrinker->id = id;
372 ret = 0;
373unlock:
374 up_write(&shrinker_rwsem);
375 return ret;
376}
377
378static void unregister_memcg_shrinker(struct shrinker *shrinker)
379{
380 int id = shrinker->id;
381
382 BUG_ON(id < 0);
383
41ca668a
YS
384 lockdep_assert_held(&shrinker_rwsem);
385
b4c2b231 386 idr_remove(&shrinker_idr, id);
b4c2b231 387}
b4c2b231 388
86750830
YS
389static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 struct mem_cgroup *memcg)
391{
392 struct shrinker_info *info;
393
394 info = shrinker_info_protected(memcg, nid);
395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396}
397
398static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 struct mem_cgroup *memcg)
400{
401 struct shrinker_info *info;
402
403 info = shrinker_info_protected(memcg, nid);
404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405}
406
a178015c
YS
407void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408{
409 int i, nid;
410 long nr;
411 struct mem_cgroup *parent;
412 struct shrinker_info *child_info, *parent_info;
413
414 parent = parent_mem_cgroup(memcg);
415 if (!parent)
416 parent = root_mem_cgroup;
417
418 /* Prevent from concurrent shrinker_info expand */
419 down_read(&shrinker_rwsem);
420 for_each_node(nid) {
421 child_info = shrinker_info_protected(memcg, nid);
422 parent_info = shrinker_info_protected(parent, nid);
423 for (i = 0; i < shrinker_nr_max; i++) {
424 nr = atomic_long_read(&child_info->nr_deferred[i]);
425 atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 }
427 }
428 up_read(&shrinker_rwsem);
429}
430
b5ead35e 431static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 432{
b5ead35e 433 return sc->target_mem_cgroup;
89b5fae5 434}
97c9341f
TH
435
436/**
b5ead35e 437 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
438 * @sc: scan_control in question
439 *
440 * The normal page dirty throttling mechanism in balance_dirty_pages() is
441 * completely broken with the legacy memcg and direct stalling in
442 * shrink_page_list() is used for throttling instead, which lacks all the
443 * niceties such as fairness, adaptive pausing, bandwidth proportional
444 * allocation and configurability.
445 *
446 * This function tests whether the vmscan currently in progress can assume
447 * that the normal dirty throttling mechanism is operational.
448 */
b5ead35e 449static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 450{
b5ead35e 451 if (!cgroup_reclaim(sc))
97c9341f
TH
452 return true;
453#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
455 return true;
456#endif
457 return false;
458}
91a45470 459#else
0a432dcb
YS
460static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461{
476b30a0 462 return -ENOSYS;
0a432dcb
YS
463}
464
465static void unregister_memcg_shrinker(struct shrinker *shrinker)
466{
467}
468
86750830
YS
469static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 struct mem_cgroup *memcg)
471{
472 return 0;
473}
474
475static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 struct mem_cgroup *memcg)
477{
478 return 0;
479}
480
b5ead35e 481static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 482{
b5ead35e 483 return false;
89b5fae5 484}
97c9341f 485
b5ead35e 486static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
487{
488 return true;
489}
91a45470
KH
490#endif
491
86750830
YS
492static long xchg_nr_deferred(struct shrinker *shrinker,
493 struct shrink_control *sc)
494{
495 int nid = sc->nid;
496
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 nid = 0;
499
500 if (sc->memcg &&
501 (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 return xchg_nr_deferred_memcg(nid, shrinker,
503 sc->memcg);
504
505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506}
507
508
509static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 struct shrink_control *sc)
511{
512 int nid = sc->nid;
513
514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 nid = 0;
516
517 if (sc->memcg &&
518 (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 return add_nr_deferred_memcg(nr, nid, shrinker,
520 sc->memcg);
521
522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523}
524
26aa2d19
DH
525static bool can_demote(int nid, struct scan_control *sc)
526{
20b51af1
HY
527 if (!numa_demotion_enabled)
528 return false;
3a235693
DH
529 if (sc) {
530 if (sc->no_demotion)
531 return false;
532 /* It is pointless to do demotion in memcg reclaim */
533 if (cgroup_reclaim(sc))
534 return false;
535 }
26aa2d19
DH
536 if (next_demotion_node(nid) == NUMA_NO_NODE)
537 return false;
538
20b51af1 539 return true;
26aa2d19
DH
540}
541
a2a36488
KB
542static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 int nid,
544 struct scan_control *sc)
545{
546 if (memcg == NULL) {
547 /*
548 * For non-memcg reclaim, is there
549 * space in any swap device?
550 */
551 if (get_nr_swap_pages() > 0)
552 return true;
553 } else {
554 /* Is the memcg below its swap limit? */
555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 return true;
557 }
558
559 /*
560 * The page can not be swapped.
561 *
562 * Can it be reclaimed from this node via demotion?
563 */
564 return can_demote(nid, sc);
565}
566
5a1c84b4
MG
567/*
568 * This misses isolated pages which are not accounted for to save counters.
569 * As the data only determines if reclaim or compaction continues, it is
570 * not expected that isolated pages will be a dominating factor.
571 */
572unsigned long zone_reclaimable_pages(struct zone *zone)
573{
574 unsigned long nr;
575
576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
a2a36488 578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
5a1c84b4
MG
579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581
582 return nr;
583}
584
fd538803
MH
585/**
586 * lruvec_lru_size - Returns the number of pages on the given LRU list.
587 * @lruvec: lru vector
588 * @lru: lru to use
589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590 */
2091339d
YZ
591static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 int zone_idx)
c9f299d9 593{
de3b0150 594 unsigned long size = 0;
fd538803
MH
595 int zid;
596
de3b0150 597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
fd538803 598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 599
fd538803
MH
600 if (!managed_zone(zone))
601 continue;
602
603 if (!mem_cgroup_disabled())
de3b0150 604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 605 else
de3b0150 606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 607 }
de3b0150 608 return size;
b4536f0c
MH
609}
610
1da177e4 611/*
1d3d4437 612 * Add a shrinker callback to be called from the vm.
1da177e4 613 */
8e04944f 614int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 615{
476b30a0
YS
616 unsigned int size;
617 int err;
618
619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 err = prealloc_memcg_shrinker(shrinker);
621 if (err != -ENOSYS)
622 return err;
1d3d4437 623
476b30a0
YS
624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 }
626
627 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
628 if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 size *= nr_node_ids;
630
631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 if (!shrinker->nr_deferred)
633 return -ENOMEM;
b4c2b231 634
8e04944f
TH
635 return 0;
636}
637
638void free_prealloced_shrinker(struct shrinker *shrinker)
639{
41ca668a
YS
640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 down_write(&shrinker_rwsem);
b4c2b231 642 unregister_memcg_shrinker(shrinker);
41ca668a 643 up_write(&shrinker_rwsem);
476b30a0 644 return;
41ca668a 645 }
b4c2b231 646
8e04944f
TH
647 kfree(shrinker->nr_deferred);
648 shrinker->nr_deferred = NULL;
649}
1d3d4437 650
8e04944f
TH
651void register_shrinker_prepared(struct shrinker *shrinker)
652{
8e1f936b
RR
653 down_write(&shrinker_rwsem);
654 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 655 shrinker->flags |= SHRINKER_REGISTERED;
8e1f936b 656 up_write(&shrinker_rwsem);
8e04944f
TH
657}
658
659int register_shrinker(struct shrinker *shrinker)
660{
661 int err = prealloc_shrinker(shrinker);
662
663 if (err)
664 return err;
665 register_shrinker_prepared(shrinker);
1d3d4437 666 return 0;
1da177e4 667}
8e1f936b 668EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
669
670/*
671 * Remove one
672 */
8e1f936b 673void unregister_shrinker(struct shrinker *shrinker)
1da177e4 674{
41ca668a 675 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 676 return;
41ca668a 677
1da177e4
LT
678 down_write(&shrinker_rwsem);
679 list_del(&shrinker->list);
41ca668a
YS
680 shrinker->flags &= ~SHRINKER_REGISTERED;
681 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 unregister_memcg_shrinker(shrinker);
1da177e4 683 up_write(&shrinker_rwsem);
41ca668a 684
ae393321 685 kfree(shrinker->nr_deferred);
bb422a73 686 shrinker->nr_deferred = NULL;
1da177e4 687}
8e1f936b 688EXPORT_SYMBOL(unregister_shrinker);
1da177e4 689
880121be
CK
690/**
691 * synchronize_shrinkers - Wait for all running shrinkers to complete.
692 *
693 * This is equivalent to calling unregister_shrink() and register_shrinker(),
694 * but atomically and with less overhead. This is useful to guarantee that all
695 * shrinker invocations have seen an update, before freeing memory, similar to
696 * rcu.
697 */
698void synchronize_shrinkers(void)
699{
700 down_write(&shrinker_rwsem);
701 up_write(&shrinker_rwsem);
702}
703EXPORT_SYMBOL(synchronize_shrinkers);
704
1da177e4 705#define SHRINK_BATCH 128
1d3d4437 706
cb731d6c 707static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 708 struct shrinker *shrinker, int priority)
1d3d4437
GC
709{
710 unsigned long freed = 0;
711 unsigned long long delta;
712 long total_scan;
d5bc5fd3 713 long freeable;
1d3d4437
GC
714 long nr;
715 long new_nr;
1d3d4437
GC
716 long batch_size = shrinker->batch ? shrinker->batch
717 : SHRINK_BATCH;
5f33a080 718 long scanned = 0, next_deferred;
1d3d4437 719
d5bc5fd3 720 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
721 if (freeable == 0 || freeable == SHRINK_EMPTY)
722 return freeable;
1d3d4437
GC
723
724 /*
725 * copy the current shrinker scan count into a local variable
726 * and zero it so that other concurrent shrinker invocations
727 * don't also do this scanning work.
728 */
86750830 729 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 730
4b85afbd
JW
731 if (shrinker->seeks) {
732 delta = freeable >> priority;
733 delta *= 4;
734 do_div(delta, shrinker->seeks);
735 } else {
736 /*
737 * These objects don't require any IO to create. Trim
738 * them aggressively under memory pressure to keep
739 * them from causing refetches in the IO caches.
740 */
741 delta = freeable / 2;
742 }
172b06c3 743
18bb473e 744 total_scan = nr >> priority;
1d3d4437 745 total_scan += delta;
18bb473e 746 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
747
748 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 749 freeable, delta, total_scan, priority);
1d3d4437 750
0b1fb40a
VD
751 /*
752 * Normally, we should not scan less than batch_size objects in one
753 * pass to avoid too frequent shrinker calls, but if the slab has less
754 * than batch_size objects in total and we are really tight on memory,
755 * we will try to reclaim all available objects, otherwise we can end
756 * up failing allocations although there are plenty of reclaimable
757 * objects spread over several slabs with usage less than the
758 * batch_size.
759 *
760 * We detect the "tight on memory" situations by looking at the total
761 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 762 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
763 * scanning at high prio and therefore should try to reclaim as much as
764 * possible.
765 */
766 while (total_scan >= batch_size ||
d5bc5fd3 767 total_scan >= freeable) {
a0b02131 768 unsigned long ret;
0b1fb40a 769 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 770
0b1fb40a 771 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 772 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
773 ret = shrinker->scan_objects(shrinker, shrinkctl);
774 if (ret == SHRINK_STOP)
775 break;
776 freed += ret;
1d3d4437 777
d460acb5
CW
778 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
779 total_scan -= shrinkctl->nr_scanned;
780 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
781
782 cond_resched();
783 }
784
18bb473e
YS
785 /*
786 * The deferred work is increased by any new work (delta) that wasn't
787 * done, decreased by old deferred work that was done now.
788 *
789 * And it is capped to two times of the freeable items.
790 */
791 next_deferred = max_t(long, (nr + delta - scanned), 0);
792 next_deferred = min(next_deferred, (2 * freeable));
793
1d3d4437
GC
794 /*
795 * move the unused scan count back into the shrinker in a
86750830 796 * manner that handles concurrent updates.
1d3d4437 797 */
86750830 798 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 799
8efb4b59 800 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 801 return freed;
1495f230
YH
802}
803
0a432dcb 804#ifdef CONFIG_MEMCG
b0dedc49
KT
805static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
806 struct mem_cgroup *memcg, int priority)
807{
e4262c4f 808 struct shrinker_info *info;
b8e57efa
KT
809 unsigned long ret, freed = 0;
810 int i;
b0dedc49 811
0a432dcb 812 if (!mem_cgroup_online(memcg))
b0dedc49
KT
813 return 0;
814
815 if (!down_read_trylock(&shrinker_rwsem))
816 return 0;
817
468ab843 818 info = shrinker_info_protected(memcg, nid);
e4262c4f 819 if (unlikely(!info))
b0dedc49
KT
820 goto unlock;
821
e4262c4f 822 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
823 struct shrink_control sc = {
824 .gfp_mask = gfp_mask,
825 .nid = nid,
826 .memcg = memcg,
827 };
828 struct shrinker *shrinker;
829
830 shrinker = idr_find(&shrinker_idr, i);
41ca668a 831 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 832 if (!shrinker)
e4262c4f 833 clear_bit(i, info->map);
b0dedc49
KT
834 continue;
835 }
836
0a432dcb
YS
837 /* Call non-slab shrinkers even though kmem is disabled */
838 if (!memcg_kmem_enabled() &&
839 !(shrinker->flags & SHRINKER_NONSLAB))
840 continue;
841
b0dedc49 842 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 843 if (ret == SHRINK_EMPTY) {
e4262c4f 844 clear_bit(i, info->map);
f90280d6
KT
845 /*
846 * After the shrinker reported that it had no objects to
847 * free, but before we cleared the corresponding bit in
848 * the memcg shrinker map, a new object might have been
849 * added. To make sure, we have the bit set in this
850 * case, we invoke the shrinker one more time and reset
851 * the bit if it reports that it is not empty anymore.
852 * The memory barrier here pairs with the barrier in
2bfd3637 853 * set_shrinker_bit():
f90280d6
KT
854 *
855 * list_lru_add() shrink_slab_memcg()
856 * list_add_tail() clear_bit()
857 * <MB> <MB>
858 * set_bit() do_shrink_slab()
859 */
860 smp_mb__after_atomic();
861 ret = do_shrink_slab(&sc, shrinker, priority);
862 if (ret == SHRINK_EMPTY)
863 ret = 0;
864 else
2bfd3637 865 set_shrinker_bit(memcg, nid, i);
f90280d6 866 }
b0dedc49
KT
867 freed += ret;
868
869 if (rwsem_is_contended(&shrinker_rwsem)) {
870 freed = freed ? : 1;
871 break;
872 }
873 }
874unlock:
875 up_read(&shrinker_rwsem);
876 return freed;
877}
0a432dcb 878#else /* CONFIG_MEMCG */
b0dedc49
KT
879static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
880 struct mem_cgroup *memcg, int priority)
881{
882 return 0;
883}
0a432dcb 884#endif /* CONFIG_MEMCG */
b0dedc49 885
6b4f7799 886/**
cb731d6c 887 * shrink_slab - shrink slab caches
6b4f7799
JW
888 * @gfp_mask: allocation context
889 * @nid: node whose slab caches to target
cb731d6c 890 * @memcg: memory cgroup whose slab caches to target
9092c71b 891 * @priority: the reclaim priority
1da177e4 892 *
6b4f7799 893 * Call the shrink functions to age shrinkable caches.
1da177e4 894 *
6b4f7799
JW
895 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
896 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 897 *
aeed1d32
VD
898 * @memcg specifies the memory cgroup to target. Unaware shrinkers
899 * are called only if it is the root cgroup.
cb731d6c 900 *
9092c71b
JB
901 * @priority is sc->priority, we take the number of objects and >> by priority
902 * in order to get the scan target.
b15e0905 903 *
6b4f7799 904 * Returns the number of reclaimed slab objects.
1da177e4 905 */
cb731d6c
VD
906static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
907 struct mem_cgroup *memcg,
9092c71b 908 int priority)
1da177e4 909{
b8e57efa 910 unsigned long ret, freed = 0;
1da177e4
LT
911 struct shrinker *shrinker;
912
fa1e512f
YS
913 /*
914 * The root memcg might be allocated even though memcg is disabled
915 * via "cgroup_disable=memory" boot parameter. This could make
916 * mem_cgroup_is_root() return false, then just run memcg slab
917 * shrink, but skip global shrink. This may result in premature
918 * oom.
919 */
920 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 921 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 922
e830c63a 923 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 924 goto out;
1da177e4
LT
925
926 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
927 struct shrink_control sc = {
928 .gfp_mask = gfp_mask,
929 .nid = nid,
cb731d6c 930 .memcg = memcg,
6b4f7799 931 };
ec97097b 932
9b996468
KT
933 ret = do_shrink_slab(&sc, shrinker, priority);
934 if (ret == SHRINK_EMPTY)
935 ret = 0;
936 freed += ret;
e496612c
MK
937 /*
938 * Bail out if someone want to register a new shrinker to
55b65a57 939 * prevent the registration from being stalled for long periods
e496612c
MK
940 * by parallel ongoing shrinking.
941 */
942 if (rwsem_is_contended(&shrinker_rwsem)) {
943 freed = freed ? : 1;
944 break;
945 }
1da177e4 946 }
6b4f7799 947
1da177e4 948 up_read(&shrinker_rwsem);
f06590bd
MK
949out:
950 cond_resched();
24f7c6b9 951 return freed;
1da177e4
LT
952}
953
cb731d6c
VD
954void drop_slab_node(int nid)
955{
956 unsigned long freed;
1399af7e 957 int shift = 0;
cb731d6c
VD
958
959 do {
960 struct mem_cgroup *memcg = NULL;
961
069c411d
CZ
962 if (fatal_signal_pending(current))
963 return;
964
cb731d6c 965 freed = 0;
aeed1d32 966 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 967 do {
9092c71b 968 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c 969 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1399af7e 970 } while ((freed >> shift++) > 1);
cb731d6c
VD
971}
972
973void drop_slab(void)
974{
975 int nid;
976
977 for_each_online_node(nid)
978 drop_slab_node(nid);
979}
980
1da177e4
LT
981static inline int is_page_cache_freeable(struct page *page)
982{
ceddc3a5
JW
983 /*
984 * A freeable page cache page is referenced only by the caller
67891fff
MW
985 * that isolated the page, the page cache and optional buffer
986 * heads at page->private.
ceddc3a5 987 */
3efe62e4 988 int page_cache_pins = thp_nr_pages(page);
67891fff 989 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
990}
991
cb16556d 992static int may_write_to_inode(struct inode *inode)
1da177e4 993{
930d9152 994 if (current->flags & PF_SWAPWRITE)
1da177e4 995 return 1;
703c2708 996 if (!inode_write_congested(inode))
1da177e4 997 return 1;
703c2708 998 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
999 return 1;
1000 return 0;
1001}
1002
1003/*
1004 * We detected a synchronous write error writing a page out. Probably
1005 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1006 * fsync(), msync() or close().
1007 *
1008 * The tricky part is that after writepage we cannot touch the mapping: nothing
1009 * prevents it from being freed up. But we have a ref on the page and once
1010 * that page is locked, the mapping is pinned.
1011 *
1012 * We're allowed to run sleeping lock_page() here because we know the caller has
1013 * __GFP_FS.
1014 */
1015static void handle_write_error(struct address_space *mapping,
1016 struct page *page, int error)
1017{
7eaceacc 1018 lock_page(page);
3e9f45bd
GC
1019 if (page_mapping(page) == mapping)
1020 mapping_set_error(mapping, error);
1da177e4
LT
1021 unlock_page(page);
1022}
1023
04e62a29
CL
1024/* possible outcome of pageout() */
1025typedef enum {
1026 /* failed to write page out, page is locked */
1027 PAGE_KEEP,
1028 /* move page to the active list, page is locked */
1029 PAGE_ACTIVATE,
1030 /* page has been sent to the disk successfully, page is unlocked */
1031 PAGE_SUCCESS,
1032 /* page is clean and locked */
1033 PAGE_CLEAN,
1034} pageout_t;
1035
1da177e4 1036/*
1742f19f
AM
1037 * pageout is called by shrink_page_list() for each dirty page.
1038 * Calls ->writepage().
1da177e4 1039 */
cb16556d 1040static pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
1041{
1042 /*
1043 * If the page is dirty, only perform writeback if that write
1044 * will be non-blocking. To prevent this allocation from being
1045 * stalled by pagecache activity. But note that there may be
1046 * stalls if we need to run get_block(). We could test
1047 * PagePrivate for that.
1048 *
8174202b 1049 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
1050 * this page's queue, we can perform writeback even if that
1051 * will block.
1052 *
1053 * If the page is swapcache, write it back even if that would
1054 * block, for some throttling. This happens by accident, because
1055 * swap_backing_dev_info is bust: it doesn't reflect the
1056 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
1057 */
1058 if (!is_page_cache_freeable(page))
1059 return PAGE_KEEP;
1060 if (!mapping) {
1061 /*
1062 * Some data journaling orphaned pages can have
1063 * page->mapping == NULL while being dirty with clean buffers.
1064 */
266cf658 1065 if (page_has_private(page)) {
1da177e4
LT
1066 if (try_to_free_buffers(page)) {
1067 ClearPageDirty(page);
b1de0d13 1068 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
1069 return PAGE_CLEAN;
1070 }
1071 }
1072 return PAGE_KEEP;
1073 }
1074 if (mapping->a_ops->writepage == NULL)
1075 return PAGE_ACTIVATE;
cb16556d 1076 if (!may_write_to_inode(mapping->host))
1da177e4
LT
1077 return PAGE_KEEP;
1078
1079 if (clear_page_dirty_for_io(page)) {
1080 int res;
1081 struct writeback_control wbc = {
1082 .sync_mode = WB_SYNC_NONE,
1083 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1084 .range_start = 0,
1085 .range_end = LLONG_MAX,
1da177e4
LT
1086 .for_reclaim = 1,
1087 };
1088
1089 SetPageReclaim(page);
1090 res = mapping->a_ops->writepage(page, &wbc);
1091 if (res < 0)
1092 handle_write_error(mapping, page, res);
994fc28c 1093 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
1094 ClearPageReclaim(page);
1095 return PAGE_ACTIVATE;
1096 }
c661b078 1097
1da177e4
LT
1098 if (!PageWriteback(page)) {
1099 /* synchronous write or broken a_ops? */
1100 ClearPageReclaim(page);
1101 }
3aa23851 1102 trace_mm_vmscan_writepage(page);
c4a25635 1103 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
1104 return PAGE_SUCCESS;
1105 }
1106
1107 return PAGE_CLEAN;
1108}
1109
a649fd92 1110/*
e286781d
NP
1111 * Same as remove_mapping, but if the page is removed from the mapping, it
1112 * gets returned with a refcount of 0.
a649fd92 1113 */
a528910e 1114static int __remove_mapping(struct address_space *mapping, struct page *page,
b910718a 1115 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1116{
bd4c82c2 1117 int refcount;
aae466b0 1118 void *shadow = NULL;
c4843a75 1119
28e4d965
NP
1120 BUG_ON(!PageLocked(page));
1121 BUG_ON(mapping != page_mapping(page));
49d2e9cc 1122
30472509 1123 xa_lock_irq(&mapping->i_pages);
49d2e9cc 1124 /*
0fd0e6b0
NP
1125 * The non racy check for a busy page.
1126 *
1127 * Must be careful with the order of the tests. When someone has
1128 * a ref to the page, it may be possible that they dirty it then
1129 * drop the reference. So if PageDirty is tested before page_count
1130 * here, then the following race may occur:
1131 *
1132 * get_user_pages(&page);
1133 * [user mapping goes away]
1134 * write_to(page);
1135 * !PageDirty(page) [good]
1136 * SetPageDirty(page);
1137 * put_page(page);
1138 * !page_count(page) [good, discard it]
1139 *
1140 * [oops, our write_to data is lost]
1141 *
1142 * Reversing the order of the tests ensures such a situation cannot
1143 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 1144 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
1145 *
1146 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 1147 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1148 */
906d278d 1149 refcount = 1 + compound_nr(page);
bd4c82c2 1150 if (!page_ref_freeze(page, refcount))
49d2e9cc 1151 goto cannot_free;
1c4c3b99 1152 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 1153 if (unlikely(PageDirty(page))) {
bd4c82c2 1154 page_ref_unfreeze(page, refcount);
49d2e9cc 1155 goto cannot_free;
e286781d 1156 }
49d2e9cc
CL
1157
1158 if (PageSwapCache(page)) {
1159 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 1160 mem_cgroup_swapout(page, swap);
aae466b0
JK
1161 if (reclaimed && !mapping_exiting(mapping))
1162 shadow = workingset_eviction(page, target_memcg);
1163 __delete_from_swap_cache(page, swap, shadow);
30472509 1164 xa_unlock_irq(&mapping->i_pages);
75f6d6d2 1165 put_swap_page(page, swap);
e286781d 1166 } else {
6072d13c
LT
1167 void (*freepage)(struct page *);
1168
1169 freepage = mapping->a_ops->freepage;
a528910e
JW
1170 /*
1171 * Remember a shadow entry for reclaimed file cache in
1172 * order to detect refaults, thus thrashing, later on.
1173 *
1174 * But don't store shadows in an address space that is
238c3046 1175 * already exiting. This is not just an optimization,
a528910e
JW
1176 * inode reclaim needs to empty out the radix tree or
1177 * the nodes are lost. Don't plant shadows behind its
1178 * back.
f9fe48be
RZ
1179 *
1180 * We also don't store shadows for DAX mappings because the
1181 * only page cache pages found in these are zero pages
1182 * covering holes, and because we don't want to mix DAX
1183 * exceptional entries and shadow exceptional entries in the
b93b0163 1184 * same address_space.
a528910e 1185 */
9de4f22a 1186 if (reclaimed && page_is_file_lru(page) &&
f9fe48be 1187 !mapping_exiting(mapping) && !dax_mapping(mapping))
b910718a 1188 shadow = workingset_eviction(page, target_memcg);
62cccb8c 1189 __delete_from_page_cache(page, shadow);
30472509 1190 xa_unlock_irq(&mapping->i_pages);
6072d13c
LT
1191
1192 if (freepage != NULL)
1193 freepage(page);
49d2e9cc
CL
1194 }
1195
49d2e9cc
CL
1196 return 1;
1197
1198cannot_free:
30472509 1199 xa_unlock_irq(&mapping->i_pages);
49d2e9cc
CL
1200 return 0;
1201}
1202
e286781d
NP
1203/*
1204 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1205 * someone else has a ref on the page, abort and return 0. If it was
1206 * successfully detached, return 1. Assumes the caller has a single ref on
1207 * this page.
1208 */
1209int remove_mapping(struct address_space *mapping, struct page *page)
1210{
b910718a 1211 if (__remove_mapping(mapping, page, false, NULL)) {
e286781d
NP
1212 /*
1213 * Unfreezing the refcount with 1 rather than 2 effectively
1214 * drops the pagecache ref for us without requiring another
1215 * atomic operation.
1216 */
fe896d18 1217 page_ref_unfreeze(page, 1);
e286781d
NP
1218 return 1;
1219 }
1220 return 0;
1221}
1222
894bc310
LS
1223/**
1224 * putback_lru_page - put previously isolated page onto appropriate LRU list
1225 * @page: page to be put back to appropriate lru list
1226 *
1227 * Add previously isolated @page to appropriate LRU list.
1228 * Page may still be unevictable for other reasons.
1229 *
1230 * lru_lock must not be held, interrupts must be enabled.
1231 */
894bc310
LS
1232void putback_lru_page(struct page *page)
1233{
9c4e6b1a 1234 lru_cache_add(page);
894bc310
LS
1235 put_page(page); /* drop ref from isolate */
1236}
1237
dfc8d636
JW
1238enum page_references {
1239 PAGEREF_RECLAIM,
1240 PAGEREF_RECLAIM_CLEAN,
64574746 1241 PAGEREF_KEEP,
dfc8d636
JW
1242 PAGEREF_ACTIVATE,
1243};
1244
1245static enum page_references page_check_references(struct page *page,
1246 struct scan_control *sc)
1247{
64574746 1248 int referenced_ptes, referenced_page;
dfc8d636 1249 unsigned long vm_flags;
dfc8d636 1250
c3ac9a8a
JW
1251 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1252 &vm_flags);
64574746 1253 referenced_page = TestClearPageReferenced(page);
dfc8d636 1254
dfc8d636
JW
1255 /*
1256 * Mlock lost the isolation race with us. Let try_to_unmap()
1257 * move the page to the unevictable list.
1258 */
1259 if (vm_flags & VM_LOCKED)
1260 return PAGEREF_RECLAIM;
1261
64574746 1262 if (referenced_ptes) {
64574746
JW
1263 /*
1264 * All mapped pages start out with page table
1265 * references from the instantiating fault, so we need
1266 * to look twice if a mapped file page is used more
1267 * than once.
1268 *
1269 * Mark it and spare it for another trip around the
1270 * inactive list. Another page table reference will
1271 * lead to its activation.
1272 *
1273 * Note: the mark is set for activated pages as well
1274 * so that recently deactivated but used pages are
1275 * quickly recovered.
1276 */
1277 SetPageReferenced(page);
1278
34dbc67a 1279 if (referenced_page || referenced_ptes > 1)
64574746
JW
1280 return PAGEREF_ACTIVATE;
1281
c909e993
KK
1282 /*
1283 * Activate file-backed executable pages after first usage.
1284 */
b518154e 1285 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
c909e993
KK
1286 return PAGEREF_ACTIVATE;
1287
64574746
JW
1288 return PAGEREF_KEEP;
1289 }
dfc8d636
JW
1290
1291 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1292 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1293 return PAGEREF_RECLAIM_CLEAN;
1294
1295 return PAGEREF_RECLAIM;
dfc8d636
JW
1296}
1297
e2be15f6
MG
1298/* Check if a page is dirty or under writeback */
1299static void page_check_dirty_writeback(struct page *page,
1300 bool *dirty, bool *writeback)
1301{
b4597226
MG
1302 struct address_space *mapping;
1303
e2be15f6
MG
1304 /*
1305 * Anonymous pages are not handled by flushers and must be written
1306 * from reclaim context. Do not stall reclaim based on them
1307 */
9de4f22a 1308 if (!page_is_file_lru(page) ||
802a3a92 1309 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1310 *dirty = false;
1311 *writeback = false;
1312 return;
1313 }
1314
1315 /* By default assume that the page flags are accurate */
1316 *dirty = PageDirty(page);
1317 *writeback = PageWriteback(page);
b4597226
MG
1318
1319 /* Verify dirty/writeback state if the filesystem supports it */
1320 if (!page_has_private(page))
1321 return;
1322
1323 mapping = page_mapping(page);
1324 if (mapping && mapping->a_ops->is_dirty_writeback)
1325 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1326}
1327
26aa2d19
DH
1328static struct page *alloc_demote_page(struct page *page, unsigned long node)
1329{
1330 struct migration_target_control mtc = {
1331 /*
1332 * Allocate from 'node', or fail quickly and quietly.
1333 * When this happens, 'page' will likely just be discarded
1334 * instead of migrated.
1335 */
1336 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1337 __GFP_THISNODE | __GFP_NOWARN |
1338 __GFP_NOMEMALLOC | GFP_NOWAIT,
1339 .nid = node
1340 };
1341
1342 return alloc_migration_target(page, (unsigned long)&mtc);
1343}
1344
1345/*
1346 * Take pages on @demote_list and attempt to demote them to
1347 * another node. Pages which are not demoted are left on
1348 * @demote_pages.
1349 */
1350static unsigned int demote_page_list(struct list_head *demote_pages,
1351 struct pglist_data *pgdat)
1352{
1353 int target_nid = next_demotion_node(pgdat->node_id);
1354 unsigned int nr_succeeded;
1355 int err;
1356
1357 if (list_empty(demote_pages))
1358 return 0;
1359
1360 if (target_nid == NUMA_NO_NODE)
1361 return 0;
1362
1363 /* Demotion ignores all cpuset and mempolicy settings */
1364 err = migrate_pages(demote_pages, alloc_demote_page, NULL,
1365 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1366 &nr_succeeded);
1367
668e4147
YS
1368 if (current_is_kswapd())
1369 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1370 else
1371 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1372
26aa2d19
DH
1373 return nr_succeeded;
1374}
1375
1da177e4 1376/*
1742f19f 1377 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1378 */
730ec8c0
MS
1379static unsigned int shrink_page_list(struct list_head *page_list,
1380 struct pglist_data *pgdat,
1381 struct scan_control *sc,
730ec8c0
MS
1382 struct reclaim_stat *stat,
1383 bool ignore_references)
1da177e4
LT
1384{
1385 LIST_HEAD(ret_pages);
abe4c3b5 1386 LIST_HEAD(free_pages);
26aa2d19 1387 LIST_HEAD(demote_pages);
730ec8c0
MS
1388 unsigned int nr_reclaimed = 0;
1389 unsigned int pgactivate = 0;
26aa2d19 1390 bool do_demote_pass;
1da177e4 1391
060f005f 1392 memset(stat, 0, sizeof(*stat));
1da177e4 1393 cond_resched();
26aa2d19 1394 do_demote_pass = can_demote(pgdat->node_id, sc);
1da177e4 1395
26aa2d19 1396retry:
1da177e4
LT
1397 while (!list_empty(page_list)) {
1398 struct address_space *mapping;
1399 struct page *page;
8940b34a 1400 enum page_references references = PAGEREF_RECLAIM;
4b793062 1401 bool dirty, writeback, may_enter_fs;
98879b3b 1402 unsigned int nr_pages;
1da177e4
LT
1403
1404 cond_resched();
1405
1406 page = lru_to_page(page_list);
1407 list_del(&page->lru);
1408
529ae9aa 1409 if (!trylock_page(page))
1da177e4
LT
1410 goto keep;
1411
309381fe 1412 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1413
d8c6546b 1414 nr_pages = compound_nr(page);
98879b3b
YS
1415
1416 /* Account the number of base pages even though THP */
1417 sc->nr_scanned += nr_pages;
80e43426 1418
39b5f29a 1419 if (unlikely(!page_evictable(page)))
ad6b6704 1420 goto activate_locked;
894bc310 1421
a6dc60f8 1422 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1423 goto keep_locked;
1424
c661b078
AW
1425 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1426 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1427
e2be15f6 1428 /*
894befec 1429 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1430 * reclaim_congested which affects wait_iff_congested. kswapd
1431 * will stall and start writing pages if the tail of the LRU
1432 * is all dirty unqueued pages.
1433 */
1434 page_check_dirty_writeback(page, &dirty, &writeback);
1435 if (dirty || writeback)
060f005f 1436 stat->nr_dirty++;
e2be15f6
MG
1437
1438 if (dirty && !writeback)
060f005f 1439 stat->nr_unqueued_dirty++;
e2be15f6 1440
d04e8acd
MG
1441 /*
1442 * Treat this page as congested if the underlying BDI is or if
1443 * pages are cycling through the LRU so quickly that the
1444 * pages marked for immediate reclaim are making it to the
1445 * end of the LRU a second time.
1446 */
e2be15f6 1447 mapping = page_mapping(page);
1da58ee2 1448 if (((dirty || writeback) && mapping &&
703c2708 1449 inode_write_congested(mapping->host)) ||
d04e8acd 1450 (writeback && PageReclaim(page)))
060f005f 1451 stat->nr_congested++;
e2be15f6 1452
283aba9f
MG
1453 /*
1454 * If a page at the tail of the LRU is under writeback, there
1455 * are three cases to consider.
1456 *
1457 * 1) If reclaim is encountering an excessive number of pages
1458 * under writeback and this page is both under writeback and
1459 * PageReclaim then it indicates that pages are being queued
1460 * for IO but are being recycled through the LRU before the
1461 * IO can complete. Waiting on the page itself risks an
1462 * indefinite stall if it is impossible to writeback the
1463 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1464 * note that the LRU is being scanned too quickly and the
1465 * caller can stall after page list has been processed.
283aba9f 1466 *
97c9341f 1467 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1468 * not marked for immediate reclaim, or the caller does not
1469 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1470 * not to fs). In this case mark the page for immediate
97c9341f 1471 * reclaim and continue scanning.
283aba9f 1472 *
ecf5fc6e
MH
1473 * Require may_enter_fs because we would wait on fs, which
1474 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1475 * enter reclaim, and deadlock if it waits on a page for
1476 * which it is needed to do the write (loop masks off
1477 * __GFP_IO|__GFP_FS for this reason); but more thought
1478 * would probably show more reasons.
1479 *
7fadc820 1480 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1481 * PageReclaim. memcg does not have any dirty pages
1482 * throttling so we could easily OOM just because too many
1483 * pages are in writeback and there is nothing else to
1484 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1485 *
1486 * In cases 1) and 2) we activate the pages to get them out of
1487 * the way while we continue scanning for clean pages on the
1488 * inactive list and refilling from the active list. The
1489 * observation here is that waiting for disk writes is more
1490 * expensive than potentially causing reloads down the line.
1491 * Since they're marked for immediate reclaim, they won't put
1492 * memory pressure on the cache working set any longer than it
1493 * takes to write them to disk.
283aba9f 1494 */
c661b078 1495 if (PageWriteback(page)) {
283aba9f
MG
1496 /* Case 1 above */
1497 if (current_is_kswapd() &&
1498 PageReclaim(page) &&
599d0c95 1499 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1500 stat->nr_immediate++;
c55e8d03 1501 goto activate_locked;
283aba9f
MG
1502
1503 /* Case 2 above */
b5ead35e 1504 } else if (writeback_throttling_sane(sc) ||
ecf5fc6e 1505 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1506 /*
1507 * This is slightly racy - end_page_writeback()
1508 * might have just cleared PageReclaim, then
1509 * setting PageReclaim here end up interpreted
1510 * as PageReadahead - but that does not matter
1511 * enough to care. What we do want is for this
1512 * page to have PageReclaim set next time memcg
1513 * reclaim reaches the tests above, so it will
1514 * then wait_on_page_writeback() to avoid OOM;
1515 * and it's also appropriate in global reclaim.
1516 */
1517 SetPageReclaim(page);
060f005f 1518 stat->nr_writeback++;
c55e8d03 1519 goto activate_locked;
283aba9f
MG
1520
1521 /* Case 3 above */
1522 } else {
7fadc820 1523 unlock_page(page);
283aba9f 1524 wait_on_page_writeback(page);
7fadc820
HD
1525 /* then go back and try same page again */
1526 list_add_tail(&page->lru, page_list);
1527 continue;
e62e384e 1528 }
c661b078 1529 }
1da177e4 1530
8940b34a 1531 if (!ignore_references)
02c6de8d
MK
1532 references = page_check_references(page, sc);
1533
dfc8d636
JW
1534 switch (references) {
1535 case PAGEREF_ACTIVATE:
1da177e4 1536 goto activate_locked;
64574746 1537 case PAGEREF_KEEP:
98879b3b 1538 stat->nr_ref_keep += nr_pages;
64574746 1539 goto keep_locked;
dfc8d636
JW
1540 case PAGEREF_RECLAIM:
1541 case PAGEREF_RECLAIM_CLEAN:
1542 ; /* try to reclaim the page below */
1543 }
1da177e4 1544
26aa2d19
DH
1545 /*
1546 * Before reclaiming the page, try to relocate
1547 * its contents to another node.
1548 */
1549 if (do_demote_pass &&
1550 (thp_migration_supported() || !PageTransHuge(page))) {
1551 list_add(&page->lru, &demote_pages);
1552 unlock_page(page);
1553 continue;
1554 }
1555
1da177e4
LT
1556 /*
1557 * Anonymous process memory has backing store?
1558 * Try to allocate it some swap space here.
802a3a92 1559 * Lazyfree page could be freed directly
1da177e4 1560 */
bd4c82c2
HY
1561 if (PageAnon(page) && PageSwapBacked(page)) {
1562 if (!PageSwapCache(page)) {
1563 if (!(sc->gfp_mask & __GFP_IO))
1564 goto keep_locked;
feb889fb
LT
1565 if (page_maybe_dma_pinned(page))
1566 goto keep_locked;
bd4c82c2
HY
1567 if (PageTransHuge(page)) {
1568 /* cannot split THP, skip it */
1569 if (!can_split_huge_page(page, NULL))
1570 goto activate_locked;
1571 /*
1572 * Split pages without a PMD map right
1573 * away. Chances are some or all of the
1574 * tail pages can be freed without IO.
1575 */
1576 if (!compound_mapcount(page) &&
1577 split_huge_page_to_list(page,
1578 page_list))
1579 goto activate_locked;
1580 }
1581 if (!add_to_swap(page)) {
1582 if (!PageTransHuge(page))
98879b3b 1583 goto activate_locked_split;
bd4c82c2
HY
1584 /* Fallback to swap normal pages */
1585 if (split_huge_page_to_list(page,
1586 page_list))
1587 goto activate_locked;
fe490cc0
HY
1588#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1589 count_vm_event(THP_SWPOUT_FALLBACK);
1590#endif
bd4c82c2 1591 if (!add_to_swap(page))
98879b3b 1592 goto activate_locked_split;
bd4c82c2 1593 }
0f074658 1594
4b793062 1595 may_enter_fs = true;
1da177e4 1596
bd4c82c2
HY
1597 /* Adding to swap updated mapping */
1598 mapping = page_mapping(page);
1599 }
7751b2da
KS
1600 } else if (unlikely(PageTransHuge(page))) {
1601 /* Split file THP */
1602 if (split_huge_page_to_list(page, page_list))
1603 goto keep_locked;
e2be15f6 1604 }
1da177e4 1605
98879b3b
YS
1606 /*
1607 * THP may get split above, need minus tail pages and update
1608 * nr_pages to avoid accounting tail pages twice.
1609 *
1610 * The tail pages that are added into swap cache successfully
1611 * reach here.
1612 */
1613 if ((nr_pages > 1) && !PageTransHuge(page)) {
1614 sc->nr_scanned -= (nr_pages - 1);
1615 nr_pages = 1;
1616 }
1617
1da177e4
LT
1618 /*
1619 * The page is mapped into the page tables of one or more
1620 * processes. Try to unmap it here.
1621 */
802a3a92 1622 if (page_mapped(page)) {
013339df 1623 enum ttu_flags flags = TTU_BATCH_FLUSH;
1f318a9b 1624 bool was_swapbacked = PageSwapBacked(page);
bd4c82c2
HY
1625
1626 if (unlikely(PageTransHuge(page)))
1627 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1628
1fb08ac6
YS
1629 try_to_unmap(page, flags);
1630 if (page_mapped(page)) {
98879b3b 1631 stat->nr_unmap_fail += nr_pages;
1f318a9b
JK
1632 if (!was_swapbacked && PageSwapBacked(page))
1633 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1634 goto activate_locked;
1da177e4
LT
1635 }
1636 }
1637
1638 if (PageDirty(page)) {
ee72886d 1639 /*
4eda4823
JW
1640 * Only kswapd can writeback filesystem pages
1641 * to avoid risk of stack overflow. But avoid
1642 * injecting inefficient single-page IO into
1643 * flusher writeback as much as possible: only
1644 * write pages when we've encountered many
1645 * dirty pages, and when we've already scanned
1646 * the rest of the LRU for clean pages and see
1647 * the same dirty pages again (PageReclaim).
ee72886d 1648 */
9de4f22a 1649 if (page_is_file_lru(page) &&
4eda4823
JW
1650 (!current_is_kswapd() || !PageReclaim(page) ||
1651 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1652 /*
1653 * Immediately reclaim when written back.
1654 * Similar in principal to deactivate_page()
1655 * except we already have the page isolated
1656 * and know it's dirty
1657 */
c4a25635 1658 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1659 SetPageReclaim(page);
1660
c55e8d03 1661 goto activate_locked;
ee72886d
MG
1662 }
1663
dfc8d636 1664 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1665 goto keep_locked;
4dd4b920 1666 if (!may_enter_fs)
1da177e4 1667 goto keep_locked;
52a8363e 1668 if (!sc->may_writepage)
1da177e4
LT
1669 goto keep_locked;
1670
d950c947
MG
1671 /*
1672 * Page is dirty. Flush the TLB if a writable entry
1673 * potentially exists to avoid CPU writes after IO
1674 * starts and then write it out here.
1675 */
1676 try_to_unmap_flush_dirty();
cb16556d 1677 switch (pageout(page, mapping)) {
1da177e4
LT
1678 case PAGE_KEEP:
1679 goto keep_locked;
1680 case PAGE_ACTIVATE:
1681 goto activate_locked;
1682 case PAGE_SUCCESS:
6c357848 1683 stat->nr_pageout += thp_nr_pages(page);
96f8bf4f 1684
7d3579e8 1685 if (PageWriteback(page))
41ac1999 1686 goto keep;
7d3579e8 1687 if (PageDirty(page))
1da177e4 1688 goto keep;
7d3579e8 1689
1da177e4
LT
1690 /*
1691 * A synchronous write - probably a ramdisk. Go
1692 * ahead and try to reclaim the page.
1693 */
529ae9aa 1694 if (!trylock_page(page))
1da177e4
LT
1695 goto keep;
1696 if (PageDirty(page) || PageWriteback(page))
1697 goto keep_locked;
1698 mapping = page_mapping(page);
01359eb2 1699 fallthrough;
1da177e4
LT
1700 case PAGE_CLEAN:
1701 ; /* try to free the page below */
1702 }
1703 }
1704
1705 /*
1706 * If the page has buffers, try to free the buffer mappings
1707 * associated with this page. If we succeed we try to free
1708 * the page as well.
1709 *
1710 * We do this even if the page is PageDirty().
1711 * try_to_release_page() does not perform I/O, but it is
1712 * possible for a page to have PageDirty set, but it is actually
1713 * clean (all its buffers are clean). This happens if the
1714 * buffers were written out directly, with submit_bh(). ext3
894bc310 1715 * will do this, as well as the blockdev mapping.
1da177e4
LT
1716 * try_to_release_page() will discover that cleanness and will
1717 * drop the buffers and mark the page clean - it can be freed.
1718 *
1719 * Rarely, pages can have buffers and no ->mapping. These are
1720 * the pages which were not successfully invalidated in
d12b8951 1721 * truncate_cleanup_page(). We try to drop those buffers here
1da177e4
LT
1722 * and if that worked, and the page is no longer mapped into
1723 * process address space (page_count == 1) it can be freed.
1724 * Otherwise, leave the page on the LRU so it is swappable.
1725 */
266cf658 1726 if (page_has_private(page)) {
1da177e4
LT
1727 if (!try_to_release_page(page, sc->gfp_mask))
1728 goto activate_locked;
e286781d
NP
1729 if (!mapping && page_count(page) == 1) {
1730 unlock_page(page);
1731 if (put_page_testzero(page))
1732 goto free_it;
1733 else {
1734 /*
1735 * rare race with speculative reference.
1736 * the speculative reference will free
1737 * this page shortly, so we may
1738 * increment nr_reclaimed here (and
1739 * leave it off the LRU).
1740 */
1741 nr_reclaimed++;
1742 continue;
1743 }
1744 }
1da177e4
LT
1745 }
1746
802a3a92
SL
1747 if (PageAnon(page) && !PageSwapBacked(page)) {
1748 /* follow __remove_mapping for reference */
1749 if (!page_ref_freeze(page, 1))
1750 goto keep_locked;
d17be2d9
ML
1751 /*
1752 * The page has only one reference left, which is
1753 * from the isolation. After the caller puts the
1754 * page back on lru and drops the reference, the
1755 * page will be freed anyway. It doesn't matter
1756 * which lru it goes. So we don't bother checking
1757 * PageDirty here.
1758 */
802a3a92 1759 count_vm_event(PGLAZYFREED);
2262185c 1760 count_memcg_page_event(page, PGLAZYFREED);
b910718a
JW
1761 } else if (!mapping || !__remove_mapping(mapping, page, true,
1762 sc->target_mem_cgroup))
802a3a92 1763 goto keep_locked;
9a1ea439
HD
1764
1765 unlock_page(page);
e286781d 1766free_it:
98879b3b
YS
1767 /*
1768 * THP may get swapped out in a whole, need account
1769 * all base pages.
1770 */
1771 nr_reclaimed += nr_pages;
abe4c3b5
MG
1772
1773 /*
1774 * Is there need to periodically free_page_list? It would
1775 * appear not as the counts should be low
1776 */
7ae88534 1777 if (unlikely(PageTransHuge(page)))
ff45fc3c 1778 destroy_compound_page(page);
7ae88534 1779 else
bd4c82c2 1780 list_add(&page->lru, &free_pages);
1da177e4
LT
1781 continue;
1782
98879b3b
YS
1783activate_locked_split:
1784 /*
1785 * The tail pages that are failed to add into swap cache
1786 * reach here. Fixup nr_scanned and nr_pages.
1787 */
1788 if (nr_pages > 1) {
1789 sc->nr_scanned -= (nr_pages - 1);
1790 nr_pages = 1;
1791 }
1da177e4 1792activate_locked:
68a22394 1793 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1794 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1795 PageMlocked(page)))
a2c43eed 1796 try_to_free_swap(page);
309381fe 1797 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1798 if (!PageMlocked(page)) {
9de4f22a 1799 int type = page_is_file_lru(page);
ad6b6704 1800 SetPageActive(page);
98879b3b 1801 stat->nr_activate[type] += nr_pages;
2262185c 1802 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1803 }
1da177e4
LT
1804keep_locked:
1805 unlock_page(page);
1806keep:
1807 list_add(&page->lru, &ret_pages);
309381fe 1808 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1809 }
26aa2d19
DH
1810 /* 'page_list' is always empty here */
1811
1812 /* Migrate pages selected for demotion */
1813 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1814 /* Pages that could not be demoted are still in @demote_pages */
1815 if (!list_empty(&demote_pages)) {
1816 /* Pages which failed to demoted go back on @page_list for retry: */
1817 list_splice_init(&demote_pages, page_list);
1818 do_demote_pass = false;
1819 goto retry;
1820 }
abe4c3b5 1821
98879b3b
YS
1822 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1823
747db954 1824 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1825 try_to_unmap_flush();
2d4894b5 1826 free_unref_page_list(&free_pages);
abe4c3b5 1827
1da177e4 1828 list_splice(&ret_pages, page_list);
886cf190 1829 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1830
05ff5137 1831 return nr_reclaimed;
1da177e4
LT
1832}
1833
730ec8c0 1834unsigned int reclaim_clean_pages_from_list(struct zone *zone,
02c6de8d
MK
1835 struct list_head *page_list)
1836{
1837 struct scan_control sc = {
1838 .gfp_mask = GFP_KERNEL,
02c6de8d
MK
1839 .may_unmap = 1,
1840 };
1f318a9b 1841 struct reclaim_stat stat;
730ec8c0 1842 unsigned int nr_reclaimed;
02c6de8d
MK
1843 struct page *page, *next;
1844 LIST_HEAD(clean_pages);
2d2b8d2b 1845 unsigned int noreclaim_flag;
02c6de8d
MK
1846
1847 list_for_each_entry_safe(page, next, page_list, lru) {
ae37c7ff
OS
1848 if (!PageHuge(page) && page_is_file_lru(page) &&
1849 !PageDirty(page) && !__PageMovable(page) &&
1850 !PageUnevictable(page)) {
02c6de8d
MK
1851 ClearPageActive(page);
1852 list_move(&page->lru, &clean_pages);
1853 }
1854 }
1855
2d2b8d2b
YZ
1856 /*
1857 * We should be safe here since we are only dealing with file pages and
1858 * we are not kswapd and therefore cannot write dirty file pages. But
1859 * call memalloc_noreclaim_save() anyway, just in case these conditions
1860 * change in the future.
1861 */
1862 noreclaim_flag = memalloc_noreclaim_save();
1f318a9b 1863 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
013339df 1864 &stat, true);
2d2b8d2b
YZ
1865 memalloc_noreclaim_restore(noreclaim_flag);
1866
02c6de8d 1867 list_splice(&clean_pages, page_list);
2da9f630
NP
1868 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1869 -(long)nr_reclaimed);
1f318a9b
JK
1870 /*
1871 * Since lazyfree pages are isolated from file LRU from the beginning,
1872 * they will rotate back to anonymous LRU in the end if it failed to
1873 * discard so isolated count will be mismatched.
1874 * Compensate the isolated count for both LRU lists.
1875 */
1876 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1877 stat.nr_lazyfree_fail);
1878 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 1879 -(long)stat.nr_lazyfree_fail);
1f318a9b 1880 return nr_reclaimed;
02c6de8d
MK
1881}
1882
5ad333eb
AW
1883/*
1884 * Attempt to remove the specified page from its LRU. Only take this page
1885 * if it is of the appropriate PageActive status. Pages which are being
1886 * freed elsewhere are also ignored.
1887 *
1888 * page: page to consider
1889 * mode: one of the LRU isolation modes defined above
1890 *
c2135f7c 1891 * returns true on success, false on failure.
5ad333eb 1892 */
c2135f7c 1893bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
5ad333eb 1894{
5ad333eb
AW
1895 /* Only take pages on the LRU. */
1896 if (!PageLRU(page))
c2135f7c 1897 return false;
5ad333eb 1898
e46a2879
MK
1899 /* Compaction should not handle unevictable pages but CMA can do so */
1900 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
c2135f7c 1901 return false;
894bc310 1902
c8244935
MG
1903 /*
1904 * To minimise LRU disruption, the caller can indicate that it only
1905 * wants to isolate pages it will be able to operate on without
1906 * blocking - clean pages for the most part.
1907 *
c8244935
MG
1908 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1909 * that it is possible to migrate without blocking
1910 */
1276ad68 1911 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1912 /* All the caller can do on PageWriteback is block */
1913 if (PageWriteback(page))
c2135f7c 1914 return false;
c8244935
MG
1915
1916 if (PageDirty(page)) {
1917 struct address_space *mapping;
69d763fc 1918 bool migrate_dirty;
c8244935 1919
c8244935
MG
1920 /*
1921 * Only pages without mappings or that have a
1922 * ->migratepage callback are possible to migrate
69d763fc
MG
1923 * without blocking. However, we can be racing with
1924 * truncation so it's necessary to lock the page
1925 * to stabilise the mapping as truncation holds
1926 * the page lock until after the page is removed
1927 * from the page cache.
c8244935 1928 */
69d763fc 1929 if (!trylock_page(page))
c2135f7c 1930 return false;
69d763fc 1931
c8244935 1932 mapping = page_mapping(page);
145e1a71 1933 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1934 unlock_page(page);
1935 if (!migrate_dirty)
c2135f7c 1936 return false;
c8244935
MG
1937 }
1938 }
39deaf85 1939
f80c0673 1940 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
c2135f7c 1941 return false;
f80c0673 1942
c2135f7c 1943 return true;
5ad333eb
AW
1944}
1945
7ee36a14
MG
1946/*
1947 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 1948 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
1949 */
1950static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1951 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1952{
7ee36a14
MG
1953 int zid;
1954
7ee36a14
MG
1955 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1956 if (!nr_zone_taken[zid])
1957 continue;
1958
a892cb6b 1959 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
1960 }
1961
7ee36a14
MG
1962}
1963
f611fab7 1964/*
15b44736
HD
1965 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1966 *
1967 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1968 * shrink the lists perform better by taking out a batch of pages
1969 * and working on them outside the LRU lock.
1970 *
1971 * For pagecache intensive workloads, this function is the hottest
1972 * spot in the kernel (apart from copy_*_user functions).
1973 *
15b44736 1974 * Lru_lock must be held before calling this function.
1da177e4 1975 *
791b48b6 1976 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1977 * @lruvec: The LRU vector to pull pages from.
1da177e4 1978 * @dst: The temp list to put pages on to.
f626012d 1979 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1980 * @sc: The scan_control struct for this reclaim session
3cb99451 1981 * @lru: LRU list id for isolating
1da177e4
LT
1982 *
1983 * returns how many pages were moved onto *@dst.
1984 */
69e05944 1985static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1986 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1987 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1988 enum lru_list lru)
1da177e4 1989{
75b00af7 1990 struct list_head *src = &lruvec->lists[lru];
69e05944 1991 unsigned long nr_taken = 0;
599d0c95 1992 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1993 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1994 unsigned long skipped = 0;
791b48b6 1995 unsigned long scan, total_scan, nr_pages;
b2e18757 1996 LIST_HEAD(pages_skipped);
a9e7c39f 1997 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1998
98879b3b 1999 total_scan = 0;
791b48b6 2000 scan = 0;
98879b3b 2001 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 2002 struct page *page;
5ad333eb 2003
1da177e4
LT
2004 page = lru_to_page(src);
2005 prefetchw_prev_lru_page(page, src, flags);
2006
d8c6546b 2007 nr_pages = compound_nr(page);
98879b3b
YS
2008 total_scan += nr_pages;
2009
b2e18757
MG
2010 if (page_zonenum(page) > sc->reclaim_idx) {
2011 list_move(&page->lru, &pages_skipped);
98879b3b 2012 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
2013 continue;
2014 }
2015
791b48b6
MK
2016 /*
2017 * Do not count skipped pages because that makes the function
2018 * return with no isolated pages if the LRU mostly contains
2019 * ineligible pages. This causes the VM to not reclaim any
2020 * pages, triggering a premature OOM.
98879b3b
YS
2021 *
2022 * Account all tail pages of THP. This would not cause
2023 * premature OOM since __isolate_lru_page() returns -EBUSY
2024 * only when the page is being freed somewhere else.
791b48b6 2025 */
98879b3b 2026 scan += nr_pages;
c2135f7c
AS
2027 if (!__isolate_lru_page_prepare(page, mode)) {
2028 /* It is being freed elsewhere */
2029 list_move(&page->lru, src);
2030 continue;
2031 }
2032 /*
2033 * Be careful not to clear PageLRU until after we're
2034 * sure the page is not being freed elsewhere -- the
2035 * page release code relies on it.
2036 */
2037 if (unlikely(!get_page_unless_zero(page))) {
2038 list_move(&page->lru, src);
2039 continue;
2040 }
5ad333eb 2041
c2135f7c
AS
2042 if (!TestClearPageLRU(page)) {
2043 /* Another thread is already isolating this page */
2044 put_page(page);
5ad333eb 2045 list_move(&page->lru, src);
c2135f7c 2046 continue;
5ad333eb 2047 }
c2135f7c
AS
2048
2049 nr_taken += nr_pages;
2050 nr_zone_taken[page_zonenum(page)] += nr_pages;
2051 list_move(&page->lru, dst);
1da177e4
LT
2052 }
2053
b2e18757
MG
2054 /*
2055 * Splice any skipped pages to the start of the LRU list. Note that
2056 * this disrupts the LRU order when reclaiming for lower zones but
2057 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2058 * scanning would soon rescan the same pages to skip and put the
2059 * system at risk of premature OOM.
2060 */
7cc30fcf
MG
2061 if (!list_empty(&pages_skipped)) {
2062 int zid;
2063
3db65812 2064 list_splice(&pages_skipped, src);
7cc30fcf
MG
2065 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2066 if (!nr_skipped[zid])
2067 continue;
2068
2069 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 2070 skipped += nr_skipped[zid];
7cc30fcf
MG
2071 }
2072 }
791b48b6 2073 *nr_scanned = total_scan;
1265e3a6 2074 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 2075 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 2076 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
2077 return nr_taken;
2078}
2079
62695a84
NP
2080/**
2081 * isolate_lru_page - tries to isolate a page from its LRU list
2082 * @page: page to isolate from its LRU list
2083 *
2084 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2085 * vmstat statistic corresponding to whatever LRU list the page was on.
2086 *
2087 * Returns 0 if the page was removed from an LRU list.
2088 * Returns -EBUSY if the page was not on an LRU list.
2089 *
2090 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
2091 * the active list, it will have PageActive set. If it was found on
2092 * the unevictable list, it will have the PageUnevictable bit set. That flag
2093 * may need to be cleared by the caller before letting the page go.
62695a84
NP
2094 *
2095 * The vmstat statistic corresponding to the list on which the page was
2096 * found will be decremented.
2097 *
2098 * Restrictions:
a5d09bed 2099 *
62695a84 2100 * (1) Must be called with an elevated refcount on the page. This is a
01c4776b 2101 * fundamental difference from isolate_lru_pages (which is called
62695a84
NP
2102 * without a stable reference).
2103 * (2) the lru_lock must not be held.
2104 * (3) interrupts must be enabled.
2105 */
2106int isolate_lru_page(struct page *page)
2107{
e809c3fe 2108 struct folio *folio = page_folio(page);
62695a84
NP
2109 int ret = -EBUSY;
2110
309381fe 2111 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 2112 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 2113
d25b5bd8 2114 if (TestClearPageLRU(page)) {
fa9add64 2115 struct lruvec *lruvec;
62695a84 2116
d25b5bd8 2117 get_page(page);
e809c3fe 2118 lruvec = folio_lruvec_lock_irq(folio);
46ae6b2c 2119 del_page_from_lru_list(page, lruvec);
6168d0da 2120 unlock_page_lruvec_irq(lruvec);
d25b5bd8 2121 ret = 0;
62695a84 2122 }
d25b5bd8 2123
62695a84
NP
2124 return ret;
2125}
2126
35cd7815 2127/*
d37dd5dc 2128 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 2129 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
2130 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2131 * the LRU list will go small and be scanned faster than necessary, leading to
2132 * unnecessary swapping, thrashing and OOM.
35cd7815 2133 */
599d0c95 2134static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
2135 struct scan_control *sc)
2136{
2137 unsigned long inactive, isolated;
2138
2139 if (current_is_kswapd())
2140 return 0;
2141
b5ead35e 2142 if (!writeback_throttling_sane(sc))
35cd7815
RR
2143 return 0;
2144
2145 if (file) {
599d0c95
MG
2146 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2147 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 2148 } else {
599d0c95
MG
2149 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2150 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
2151 }
2152
3cf23841
FW
2153 /*
2154 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2155 * won't get blocked by normal direct-reclaimers, forming a circular
2156 * deadlock.
2157 */
d0164adc 2158 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2159 inactive >>= 3;
2160
35cd7815
RR
2161 return isolated > inactive;
2162}
2163
a222f341 2164/*
15b44736
HD
2165 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2166 * On return, @list is reused as a list of pages to be freed by the caller.
a222f341
KT
2167 *
2168 * Returns the number of pages moved to the given lruvec.
2169 */
9ef56b78
MS
2170static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2171 struct list_head *list)
66635629 2172{
a222f341 2173 int nr_pages, nr_moved = 0;
3f79768f 2174 LIST_HEAD(pages_to_free);
a222f341 2175 struct page *page;
66635629 2176
a222f341
KT
2177 while (!list_empty(list)) {
2178 page = lru_to_page(list);
309381fe 2179 VM_BUG_ON_PAGE(PageLRU(page), page);
3d06afab 2180 list_del(&page->lru);
39b5f29a 2181 if (unlikely(!page_evictable(page))) {
6168d0da 2182 spin_unlock_irq(&lruvec->lru_lock);
66635629 2183 putback_lru_page(page);
6168d0da 2184 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2185 continue;
2186 }
fa9add64 2187
3d06afab
AS
2188 /*
2189 * The SetPageLRU needs to be kept here for list integrity.
2190 * Otherwise:
2191 * #0 move_pages_to_lru #1 release_pages
2192 * if !put_page_testzero
2193 * if (put_page_testzero())
2194 * !PageLRU //skip lru_lock
2195 * SetPageLRU()
2196 * list_add(&page->lru,)
2197 * list_add(&page->lru,)
2198 */
7a608572 2199 SetPageLRU(page);
a222f341 2200
3d06afab 2201 if (unlikely(put_page_testzero(page))) {
87560179 2202 __clear_page_lru_flags(page);
2bcf8879
HD
2203
2204 if (unlikely(PageCompound(page))) {
6168d0da 2205 spin_unlock_irq(&lruvec->lru_lock);
ff45fc3c 2206 destroy_compound_page(page);
6168d0da 2207 spin_lock_irq(&lruvec->lru_lock);
2bcf8879
HD
2208 } else
2209 list_add(&page->lru, &pages_to_free);
3d06afab
AS
2210
2211 continue;
66635629 2212 }
3d06afab 2213
afca9157
AS
2214 /*
2215 * All pages were isolated from the same lruvec (and isolation
2216 * inhibits memcg migration).
2217 */
0de340cb 2218 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
3a9c9788 2219 add_page_to_lru_list(page, lruvec);
3d06afab 2220 nr_pages = thp_nr_pages(page);
3d06afab
AS
2221 nr_moved += nr_pages;
2222 if (PageActive(page))
2223 workingset_age_nonresident(lruvec, nr_pages);
66635629 2224 }
66635629 2225
3f79768f
HD
2226 /*
2227 * To save our caller's stack, now use input list for pages to free.
2228 */
a222f341
KT
2229 list_splice(&pages_to_free, list);
2230
2231 return nr_moved;
66635629
MG
2232}
2233
399ba0b9
N
2234/*
2235 * If a kernel thread (such as nfsd for loop-back mounts) services
a37b0715 2236 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
399ba0b9
N
2237 * In that case we should only throttle if the backing device it is
2238 * writing to is congested. In other cases it is safe to throttle.
2239 */
2240static int current_may_throttle(void)
2241{
a37b0715 2242 return !(current->flags & PF_LOCAL_THROTTLE) ||
399ba0b9
N
2243 current->backing_dev_info == NULL ||
2244 bdi_write_congested(current->backing_dev_info);
2245}
2246
1da177e4 2247/*
b2e18757 2248 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2249 * of reclaimed pages
1da177e4 2250 */
9ef56b78 2251static unsigned long
1a93be0e 2252shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 2253 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
2254{
2255 LIST_HEAD(page_list);
e247dbce 2256 unsigned long nr_scanned;
730ec8c0 2257 unsigned int nr_reclaimed = 0;
e247dbce 2258 unsigned long nr_taken;
060f005f 2259 struct reclaim_stat stat;
497a6c1b 2260 bool file = is_file_lru(lru);
f46b7912 2261 enum vm_event_item item;
599d0c95 2262 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2263 bool stalled = false;
78dc583d 2264
599d0c95 2265 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2266 if (stalled)
2267 return 0;
2268
2269 /* wait a bit for the reclaimer. */
2270 msleep(100);
2271 stalled = true;
35cd7815
RR
2272
2273 /* We are about to die and free our memory. Return now. */
2274 if (fatal_signal_pending(current))
2275 return SWAP_CLUSTER_MAX;
2276 }
2277
1da177e4 2278 lru_add_drain();
f80c0673 2279
6168d0da 2280 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2281
5dc35979 2282 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 2283 &nr_scanned, sc, lru);
95d918fc 2284
599d0c95 2285 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2286 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2287 if (!cgroup_reclaim(sc))
f46b7912
KT
2288 __count_vm_events(item, nr_scanned);
2289 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2290 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2291
6168d0da 2292 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2293
d563c050 2294 if (nr_taken == 0)
66635629 2295 return 0;
5ad333eb 2296
013339df 2297 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 2298
6168d0da 2299 spin_lock_irq(&lruvec->lru_lock);
497a6c1b
JW
2300 move_pages_to_lru(lruvec, &page_list);
2301
2302 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2303 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2304 if (!cgroup_reclaim(sc))
f46b7912
KT
2305 __count_vm_events(item, nr_reclaimed);
2306 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2307 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2308 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2309
75cc3c91 2310 lru_note_cost(lruvec, file, stat.nr_pageout);
747db954 2311 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2312 free_unref_page_list(&page_list);
e11da5b4 2313
1c610d5f
AR
2314 /*
2315 * If dirty pages are scanned that are not queued for IO, it
2316 * implies that flushers are not doing their job. This can
2317 * happen when memory pressure pushes dirty pages to the end of
2318 * the LRU before the dirty limits are breached and the dirty
2319 * data has expired. It can also happen when the proportion of
2320 * dirty pages grows not through writes but through memory
2321 * pressure reclaiming all the clean cache. And in some cases,
2322 * the flushers simply cannot keep up with the allocation
2323 * rate. Nudge the flusher threads in case they are asleep.
2324 */
2325 if (stat.nr_unqueued_dirty == nr_taken)
2326 wakeup_flusher_threads(WB_REASON_VMSCAN);
2327
d108c772
AR
2328 sc->nr.dirty += stat.nr_dirty;
2329 sc->nr.congested += stat.nr_congested;
2330 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2331 sc->nr.writeback += stat.nr_writeback;
2332 sc->nr.immediate += stat.nr_immediate;
2333 sc->nr.taken += nr_taken;
2334 if (file)
2335 sc->nr.file_taken += nr_taken;
8e950282 2336
599d0c95 2337 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2338 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2339 return nr_reclaimed;
1da177e4
LT
2340}
2341
15b44736
HD
2342/*
2343 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2344 *
2345 * We move them the other way if the page is referenced by one or more
2346 * processes.
2347 *
2348 * If the pages are mostly unmapped, the processing is fast and it is
2349 * appropriate to hold lru_lock across the whole operation. But if
2350 * the pages are mapped, the processing is slow (page_referenced()), so
2351 * we should drop lru_lock around each page. It's impossible to balance
2352 * this, so instead we remove the pages from the LRU while processing them.
2353 * It is safe to rely on PG_active against the non-LRU pages in here because
2354 * nobody will play with that bit on a non-LRU page.
2355 *
2356 * The downside is that we have to touch page->_refcount against each page.
2357 * But we had to alter page->flags anyway.
2358 */
f626012d 2359static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2360 struct lruvec *lruvec,
f16015fb 2361 struct scan_control *sc,
9e3b2f8c 2362 enum lru_list lru)
1da177e4 2363{
44c241f1 2364 unsigned long nr_taken;
f626012d 2365 unsigned long nr_scanned;
6fe6b7e3 2366 unsigned long vm_flags;
1da177e4 2367 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2368 LIST_HEAD(l_active);
b69408e8 2369 LIST_HEAD(l_inactive);
1da177e4 2370 struct page *page;
9d998b4f
MH
2371 unsigned nr_deactivate, nr_activate;
2372 unsigned nr_rotated = 0;
3cb99451 2373 int file = is_file_lru(lru);
599d0c95 2374 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2375
2376 lru_add_drain();
f80c0673 2377
6168d0da 2378 spin_lock_irq(&lruvec->lru_lock);
925b7673 2379
5dc35979 2380 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2381 &nr_scanned, sc, lru);
89b5fae5 2382
599d0c95 2383 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2384
912c0572
SB
2385 if (!cgroup_reclaim(sc))
2386 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2387 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2388
6168d0da 2389 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2390
1da177e4
LT
2391 while (!list_empty(&l_hold)) {
2392 cond_resched();
2393 page = lru_to_page(&l_hold);
2394 list_del(&page->lru);
7e9cd484 2395
39b5f29a 2396 if (unlikely(!page_evictable(page))) {
894bc310
LS
2397 putback_lru_page(page);
2398 continue;
2399 }
2400
cc715d99
MG
2401 if (unlikely(buffer_heads_over_limit)) {
2402 if (page_has_private(page) && trylock_page(page)) {
2403 if (page_has_private(page))
2404 try_to_release_page(page, 0);
2405 unlock_page(page);
2406 }
2407 }
2408
c3ac9a8a
JW
2409 if (page_referenced(page, 0, sc->target_mem_cgroup,
2410 &vm_flags)) {
8cab4754
WF
2411 /*
2412 * Identify referenced, file-backed active pages and
2413 * give them one more trip around the active list. So
2414 * that executable code get better chances to stay in
2415 * memory under moderate memory pressure. Anon pages
2416 * are not likely to be evicted by use-once streaming
2417 * IO, plus JVM can create lots of anon VM_EXEC pages,
2418 * so we ignore them here.
2419 */
9de4f22a 2420 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
6c357848 2421 nr_rotated += thp_nr_pages(page);
8cab4754
WF
2422 list_add(&page->lru, &l_active);
2423 continue;
2424 }
2425 }
7e9cd484 2426
5205e56e 2427 ClearPageActive(page); /* we are de-activating */
1899ad18 2428 SetPageWorkingset(page);
1da177e4
LT
2429 list_add(&page->lru, &l_inactive);
2430 }
2431
b555749a 2432 /*
8cab4754 2433 * Move pages back to the lru list.
b555749a 2434 */
6168d0da 2435 spin_lock_irq(&lruvec->lru_lock);
556adecb 2436
a222f341
KT
2437 nr_activate = move_pages_to_lru(lruvec, &l_active);
2438 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2439 /* Keep all free pages in l_active list */
2440 list_splice(&l_inactive, &l_active);
9851ac13
KT
2441
2442 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2443 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2444
599d0c95 2445 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2446 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2447
f372d89e
KT
2448 mem_cgroup_uncharge_list(&l_active);
2449 free_unref_page_list(&l_active);
9d998b4f
MH
2450 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2451 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2452}
2453
1a4e58cc
MK
2454unsigned long reclaim_pages(struct list_head *page_list)
2455{
f661d007 2456 int nid = NUMA_NO_NODE;
730ec8c0 2457 unsigned int nr_reclaimed = 0;
1a4e58cc
MK
2458 LIST_HEAD(node_page_list);
2459 struct reclaim_stat dummy_stat;
2460 struct page *page;
2d2b8d2b 2461 unsigned int noreclaim_flag;
1a4e58cc
MK
2462 struct scan_control sc = {
2463 .gfp_mask = GFP_KERNEL,
1a4e58cc
MK
2464 .may_writepage = 1,
2465 .may_unmap = 1,
2466 .may_swap = 1,
26aa2d19 2467 .no_demotion = 1,
1a4e58cc
MK
2468 };
2469
2d2b8d2b
YZ
2470 noreclaim_flag = memalloc_noreclaim_save();
2471
1a4e58cc
MK
2472 while (!list_empty(page_list)) {
2473 page = lru_to_page(page_list);
f661d007 2474 if (nid == NUMA_NO_NODE) {
1a4e58cc
MK
2475 nid = page_to_nid(page);
2476 INIT_LIST_HEAD(&node_page_list);
2477 }
2478
2479 if (nid == page_to_nid(page)) {
2480 ClearPageActive(page);
2481 list_move(&page->lru, &node_page_list);
2482 continue;
2483 }
2484
2485 nr_reclaimed += shrink_page_list(&node_page_list,
2486 NODE_DATA(nid),
013339df 2487 &sc, &dummy_stat, false);
1a4e58cc
MK
2488 while (!list_empty(&node_page_list)) {
2489 page = lru_to_page(&node_page_list);
2490 list_del(&page->lru);
2491 putback_lru_page(page);
2492 }
2493
f661d007 2494 nid = NUMA_NO_NODE;
1a4e58cc
MK
2495 }
2496
2497 if (!list_empty(&node_page_list)) {
2498 nr_reclaimed += shrink_page_list(&node_page_list,
2499 NODE_DATA(nid),
013339df 2500 &sc, &dummy_stat, false);
1a4e58cc
MK
2501 while (!list_empty(&node_page_list)) {
2502 page = lru_to_page(&node_page_list);
2503 list_del(&page->lru);
2504 putback_lru_page(page);
2505 }
2506 }
2507
2d2b8d2b
YZ
2508 memalloc_noreclaim_restore(noreclaim_flag);
2509
1a4e58cc
MK
2510 return nr_reclaimed;
2511}
2512
b91ac374
JW
2513static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2514 struct lruvec *lruvec, struct scan_control *sc)
2515{
2516 if (is_active_lru(lru)) {
2517 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2518 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2519 else
2520 sc->skipped_deactivate = 1;
2521 return 0;
2522 }
2523
2524 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2525}
2526
59dc76b0
RR
2527/*
2528 * The inactive anon list should be small enough that the VM never has
2529 * to do too much work.
14797e23 2530 *
59dc76b0
RR
2531 * The inactive file list should be small enough to leave most memory
2532 * to the established workingset on the scan-resistant active list,
2533 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2534 *
59dc76b0
RR
2535 * Both inactive lists should also be large enough that each inactive
2536 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2537 *
2a2e4885
JW
2538 * If that fails and refaulting is observed, the inactive list grows.
2539 *
59dc76b0 2540 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2541 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2542 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2543 *
59dc76b0
RR
2544 * total target max
2545 * memory ratio inactive
2546 * -------------------------------------
2547 * 10MB 1 5MB
2548 * 100MB 1 50MB
2549 * 1GB 3 250MB
2550 * 10GB 10 0.9GB
2551 * 100GB 31 3GB
2552 * 1TB 101 10GB
2553 * 10TB 320 32GB
56e49d21 2554 */
b91ac374 2555static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2556{
b91ac374 2557 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2558 unsigned long inactive, active;
2559 unsigned long inactive_ratio;
59dc76b0 2560 unsigned long gb;
e3790144 2561
b91ac374
JW
2562 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2563 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2564
b91ac374 2565 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2566 if (gb)
b91ac374
JW
2567 inactive_ratio = int_sqrt(10 * gb);
2568 else
2569 inactive_ratio = 1;
fd538803 2570
59dc76b0 2571 return inactive * inactive_ratio < active;
b39415b2
RR
2572}
2573
9a265114
JW
2574enum scan_balance {
2575 SCAN_EQUAL,
2576 SCAN_FRACT,
2577 SCAN_ANON,
2578 SCAN_FILE,
2579};
2580
4f98a2fe
RR
2581/*
2582 * Determine how aggressively the anon and file LRU lists should be
2583 * scanned. The relative value of each set of LRU lists is determined
2584 * by looking at the fraction of the pages scanned we did rotate back
2585 * onto the active list instead of evict.
2586 *
be7bd59d
WL
2587 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2588 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2589 */
afaf07a6
JW
2590static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2591 unsigned long *nr)
4f98a2fe 2592{
a2a36488 2593 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
afaf07a6 2594 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2595 unsigned long anon_cost, file_cost, total_cost;
33377678 2596 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2597 u64 fraction[ANON_AND_FILE];
9a265114 2598 u64 denominator = 0; /* gcc */
9a265114 2599 enum scan_balance scan_balance;
4f98a2fe 2600 unsigned long ap, fp;
4111304d 2601 enum lru_list lru;
76a33fc3
SL
2602
2603 /* If we have no swap space, do not bother scanning anon pages. */
a2a36488 2604 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
9a265114 2605 scan_balance = SCAN_FILE;
76a33fc3
SL
2606 goto out;
2607 }
4f98a2fe 2608
10316b31
JW
2609 /*
2610 * Global reclaim will swap to prevent OOM even with no
2611 * swappiness, but memcg users want to use this knob to
2612 * disable swapping for individual groups completely when
2613 * using the memory controller's swap limit feature would be
2614 * too expensive.
2615 */
b5ead35e 2616 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2617 scan_balance = SCAN_FILE;
10316b31
JW
2618 goto out;
2619 }
2620
2621 /*
2622 * Do not apply any pressure balancing cleverness when the
2623 * system is close to OOM, scan both anon and file equally
2624 * (unless the swappiness setting disagrees with swapping).
2625 */
02695175 2626 if (!sc->priority && swappiness) {
9a265114 2627 scan_balance = SCAN_EQUAL;
10316b31
JW
2628 goto out;
2629 }
2630
62376251 2631 /*
53138cea 2632 * If the system is almost out of file pages, force-scan anon.
62376251 2633 */
b91ac374 2634 if (sc->file_is_tiny) {
53138cea
JW
2635 scan_balance = SCAN_ANON;
2636 goto out;
62376251
JW
2637 }
2638
7c5bd705 2639 /*
b91ac374
JW
2640 * If there is enough inactive page cache, we do not reclaim
2641 * anything from the anonymous working right now.
7c5bd705 2642 */
b91ac374 2643 if (sc->cache_trim_mode) {
9a265114 2644 scan_balance = SCAN_FILE;
7c5bd705
JW
2645 goto out;
2646 }
2647
9a265114 2648 scan_balance = SCAN_FRACT;
58c37f6e 2649 /*
314b57fb
JW
2650 * Calculate the pressure balance between anon and file pages.
2651 *
2652 * The amount of pressure we put on each LRU is inversely
2653 * proportional to the cost of reclaiming each list, as
2654 * determined by the share of pages that are refaulting, times
2655 * the relative IO cost of bringing back a swapped out
2656 * anonymous page vs reloading a filesystem page (swappiness).
2657 *
d483a5dd
JW
2658 * Although we limit that influence to ensure no list gets
2659 * left behind completely: at least a third of the pressure is
2660 * applied, before swappiness.
2661 *
314b57fb 2662 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2663 */
d483a5dd
JW
2664 total_cost = sc->anon_cost + sc->file_cost;
2665 anon_cost = total_cost + sc->anon_cost;
2666 file_cost = total_cost + sc->file_cost;
2667 total_cost = anon_cost + file_cost;
58c37f6e 2668
d483a5dd
JW
2669 ap = swappiness * (total_cost + 1);
2670 ap /= anon_cost + 1;
4f98a2fe 2671
d483a5dd
JW
2672 fp = (200 - swappiness) * (total_cost + 1);
2673 fp /= file_cost + 1;
4f98a2fe 2674
76a33fc3
SL
2675 fraction[0] = ap;
2676 fraction[1] = fp;
a4fe1631 2677 denominator = ap + fp;
76a33fc3 2678out:
688035f7
JW
2679 for_each_evictable_lru(lru) {
2680 int file = is_file_lru(lru);
9783aa99 2681 unsigned long lruvec_size;
f56ce412 2682 unsigned long low, min;
688035f7 2683 unsigned long scan;
9783aa99
CD
2684
2685 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
f56ce412
JW
2686 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2687 &min, &low);
9783aa99 2688
f56ce412 2689 if (min || low) {
9783aa99
CD
2690 /*
2691 * Scale a cgroup's reclaim pressure by proportioning
2692 * its current usage to its memory.low or memory.min
2693 * setting.
2694 *
2695 * This is important, as otherwise scanning aggression
2696 * becomes extremely binary -- from nothing as we
2697 * approach the memory protection threshold, to totally
2698 * nominal as we exceed it. This results in requiring
2699 * setting extremely liberal protection thresholds. It
2700 * also means we simply get no protection at all if we
2701 * set it too low, which is not ideal.
1bc63fb1
CD
2702 *
2703 * If there is any protection in place, we reduce scan
2704 * pressure by how much of the total memory used is
2705 * within protection thresholds.
9783aa99 2706 *
9de7ca46
CD
2707 * There is one special case: in the first reclaim pass,
2708 * we skip over all groups that are within their low
2709 * protection. If that fails to reclaim enough pages to
2710 * satisfy the reclaim goal, we come back and override
2711 * the best-effort low protection. However, we still
2712 * ideally want to honor how well-behaved groups are in
2713 * that case instead of simply punishing them all
2714 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2715 * memory they are using, reducing the scan pressure
2716 * again by how much of the total memory used is under
2717 * hard protection.
9783aa99 2718 */
1bc63fb1 2719 unsigned long cgroup_size = mem_cgroup_size(memcg);
f56ce412
JW
2720 unsigned long protection;
2721
2722 /* memory.low scaling, make sure we retry before OOM */
2723 if (!sc->memcg_low_reclaim && low > min) {
2724 protection = low;
2725 sc->memcg_low_skipped = 1;
2726 } else {
2727 protection = min;
2728 }
1bc63fb1
CD
2729
2730 /* Avoid TOCTOU with earlier protection check */
2731 cgroup_size = max(cgroup_size, protection);
2732
2733 scan = lruvec_size - lruvec_size * protection /
32d4f4b7 2734 (cgroup_size + 1);
9783aa99
CD
2735
2736 /*
1bc63fb1 2737 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2738 * reclaim moving forwards, avoiding decrementing
9de7ca46 2739 * sc->priority further than desirable.
9783aa99 2740 */
1bc63fb1 2741 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2742 } else {
2743 scan = lruvec_size;
2744 }
2745
2746 scan >>= sc->priority;
6b4f7799 2747
688035f7
JW
2748 /*
2749 * If the cgroup's already been deleted, make sure to
2750 * scrape out the remaining cache.
2751 */
2752 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2753 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2754
688035f7
JW
2755 switch (scan_balance) {
2756 case SCAN_EQUAL:
2757 /* Scan lists relative to size */
2758 break;
2759 case SCAN_FRACT:
9a265114 2760 /*
688035f7
JW
2761 * Scan types proportional to swappiness and
2762 * their relative recent reclaim efficiency.
76073c64
GS
2763 * Make sure we don't miss the last page on
2764 * the offlined memory cgroups because of a
2765 * round-off error.
9a265114 2766 */
76073c64
GS
2767 scan = mem_cgroup_online(memcg) ?
2768 div64_u64(scan * fraction[file], denominator) :
2769 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2770 denominator);
688035f7
JW
2771 break;
2772 case SCAN_FILE:
2773 case SCAN_ANON:
2774 /* Scan one type exclusively */
e072bff6 2775 if ((scan_balance == SCAN_FILE) != file)
688035f7 2776 scan = 0;
688035f7
JW
2777 break;
2778 default:
2779 /* Look ma, no brain */
2780 BUG();
9a265114 2781 }
688035f7 2782
688035f7 2783 nr[lru] = scan;
76a33fc3 2784 }
6e08a369 2785}
4f98a2fe 2786
2f368a9f
DH
2787/*
2788 * Anonymous LRU management is a waste if there is
2789 * ultimately no way to reclaim the memory.
2790 */
2791static bool can_age_anon_pages(struct pglist_data *pgdat,
2792 struct scan_control *sc)
2793{
2794 /* Aging the anon LRU is valuable if swap is present: */
2795 if (total_swap_pages > 0)
2796 return true;
2797
2798 /* Also valuable if anon pages can be demoted: */
2799 return can_demote(pgdat->node_id, sc);
2800}
2801
afaf07a6 2802static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2803{
2804 unsigned long nr[NR_LRU_LISTS];
e82e0561 2805 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2806 unsigned long nr_to_scan;
2807 enum lru_list lru;
2808 unsigned long nr_reclaimed = 0;
2809 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2810 struct blk_plug plug;
1a501907 2811 bool scan_adjusted;
9b4f98cd 2812
afaf07a6 2813 get_scan_count(lruvec, sc, nr);
9b4f98cd 2814
e82e0561
MG
2815 /* Record the original scan target for proportional adjustments later */
2816 memcpy(targets, nr, sizeof(nr));
2817
1a501907
MG
2818 /*
2819 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2820 * event that can occur when there is little memory pressure e.g.
2821 * multiple streaming readers/writers. Hence, we do not abort scanning
2822 * when the requested number of pages are reclaimed when scanning at
2823 * DEF_PRIORITY on the assumption that the fact we are direct
2824 * reclaiming implies that kswapd is not keeping up and it is best to
2825 * do a batch of work at once. For memcg reclaim one check is made to
2826 * abort proportional reclaim if either the file or anon lru has already
2827 * dropped to zero at the first pass.
2828 */
b5ead35e 2829 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2830 sc->priority == DEF_PRIORITY);
2831
9b4f98cd
JW
2832 blk_start_plug(&plug);
2833 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2834 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2835 unsigned long nr_anon, nr_file, percentage;
2836 unsigned long nr_scanned;
2837
9b4f98cd
JW
2838 for_each_evictable_lru(lru) {
2839 if (nr[lru]) {
2840 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2841 nr[lru] -= nr_to_scan;
2842
2843 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2844 lruvec, sc);
9b4f98cd
JW
2845 }
2846 }
e82e0561 2847
bd041733
MH
2848 cond_resched();
2849
e82e0561
MG
2850 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2851 continue;
2852
e82e0561
MG
2853 /*
2854 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2855 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2856 * proportionally what was requested by get_scan_count(). We
2857 * stop reclaiming one LRU and reduce the amount scanning
2858 * proportional to the original scan target.
2859 */
2860 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2861 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2862
1a501907
MG
2863 /*
2864 * It's just vindictive to attack the larger once the smaller
2865 * has gone to zero. And given the way we stop scanning the
2866 * smaller below, this makes sure that we only make one nudge
2867 * towards proportionality once we've got nr_to_reclaim.
2868 */
2869 if (!nr_file || !nr_anon)
2870 break;
2871
e82e0561
MG
2872 if (nr_file > nr_anon) {
2873 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2874 targets[LRU_ACTIVE_ANON] + 1;
2875 lru = LRU_BASE;
2876 percentage = nr_anon * 100 / scan_target;
2877 } else {
2878 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2879 targets[LRU_ACTIVE_FILE] + 1;
2880 lru = LRU_FILE;
2881 percentage = nr_file * 100 / scan_target;
2882 }
2883
2884 /* Stop scanning the smaller of the LRU */
2885 nr[lru] = 0;
2886 nr[lru + LRU_ACTIVE] = 0;
2887
2888 /*
2889 * Recalculate the other LRU scan count based on its original
2890 * scan target and the percentage scanning already complete
2891 */
2892 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2893 nr_scanned = targets[lru] - nr[lru];
2894 nr[lru] = targets[lru] * (100 - percentage) / 100;
2895 nr[lru] -= min(nr[lru], nr_scanned);
2896
2897 lru += LRU_ACTIVE;
2898 nr_scanned = targets[lru] - nr[lru];
2899 nr[lru] = targets[lru] * (100 - percentage) / 100;
2900 nr[lru] -= min(nr[lru], nr_scanned);
2901
2902 scan_adjusted = true;
9b4f98cd
JW
2903 }
2904 blk_finish_plug(&plug);
2905 sc->nr_reclaimed += nr_reclaimed;
2906
2907 /*
2908 * Even if we did not try to evict anon pages at all, we want to
2909 * rebalance the anon lru active/inactive ratio.
2910 */
2f368a9f
DH
2911 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2912 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
2913 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2914 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2915}
2916
23b9da55 2917/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2918static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2919{
d84da3f9 2920 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2921 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2922 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2923 return true;
2924
2925 return false;
2926}
2927
3e7d3449 2928/*
23b9da55
MG
2929 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2930 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2931 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 2932 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 2933 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2934 */
a9dd0a83 2935static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 2936 unsigned long nr_reclaimed,
3e7d3449
MG
2937 struct scan_control *sc)
2938{
2939 unsigned long pages_for_compaction;
2940 unsigned long inactive_lru_pages;
a9dd0a83 2941 int z;
3e7d3449
MG
2942
2943 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2944 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2945 return false;
2946
5ee04716
VB
2947 /*
2948 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2949 * number of pages that were scanned. This will return to the caller
2950 * with the risk reclaim/compaction and the resulting allocation attempt
2951 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2952 * allocations through requiring that the full LRU list has been scanned
2953 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2954 * scan, but that approximation was wrong, and there were corner cases
2955 * where always a non-zero amount of pages were scanned.
2956 */
2957 if (!nr_reclaimed)
2958 return false;
3e7d3449 2959
3e7d3449 2960 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2961 for (z = 0; z <= sc->reclaim_idx; z++) {
2962 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2963 if (!managed_zone(zone))
a9dd0a83
MG
2964 continue;
2965
2966 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2967 case COMPACT_SUCCESS:
a9dd0a83
MG
2968 case COMPACT_CONTINUE:
2969 return false;
2970 default:
2971 /* check next zone */
2972 ;
2973 }
3e7d3449 2974 }
1c6c1597
HD
2975
2976 /*
2977 * If we have not reclaimed enough pages for compaction and the
2978 * inactive lists are large enough, continue reclaiming
2979 */
2980 pages_for_compaction = compact_gap(sc->order);
2981 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
a2a36488 2982 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
1c6c1597
HD
2983 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2984
5ee04716 2985 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
2986}
2987
0f6a5cff 2988static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2989{
0f6a5cff 2990 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 2991 struct mem_cgroup *memcg;
1da177e4 2992
0f6a5cff 2993 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 2994 do {
afaf07a6 2995 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
2996 unsigned long reclaimed;
2997 unsigned long scanned;
5660048c 2998
e3336cab
XP
2999 /*
3000 * This loop can become CPU-bound when target memcgs
3001 * aren't eligible for reclaim - either because they
3002 * don't have any reclaimable pages, or because their
3003 * memory is explicitly protected. Avoid soft lockups.
3004 */
3005 cond_resched();
3006
45c7f7e1
CD
3007 mem_cgroup_calculate_protection(target_memcg, memcg);
3008
3009 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
3010 /*
3011 * Hard protection.
3012 * If there is no reclaimable memory, OOM.
3013 */
3014 continue;
45c7f7e1 3015 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
3016 /*
3017 * Soft protection.
3018 * Respect the protection only as long as
3019 * there is an unprotected supply
3020 * of reclaimable memory from other cgroups.
3021 */
3022 if (!sc->memcg_low_reclaim) {
3023 sc->memcg_low_skipped = 1;
bf8d5d52 3024 continue;
241994ed 3025 }
d2af3397 3026 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 3027 }
241994ed 3028
d2af3397
JW
3029 reclaimed = sc->nr_reclaimed;
3030 scanned = sc->nr_scanned;
afaf07a6
JW
3031
3032 shrink_lruvec(lruvec, sc);
70ddf637 3033
d2af3397
JW
3034 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3035 sc->priority);
6b4f7799 3036
d2af3397
JW
3037 /* Record the group's reclaim efficiency */
3038 vmpressure(sc->gfp_mask, memcg, false,
3039 sc->nr_scanned - scanned,
3040 sc->nr_reclaimed - reclaimed);
70ddf637 3041
0f6a5cff
JW
3042 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3043}
3044
6c9e0907 3045static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
3046{
3047 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 3048 unsigned long nr_reclaimed, nr_scanned;
1b05117d 3049 struct lruvec *target_lruvec;
0f6a5cff 3050 bool reclaimable = false;
b91ac374 3051 unsigned long file;
0f6a5cff 3052
1b05117d
JW
3053 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3054
0f6a5cff 3055again:
aa48e47e
SB
3056 /*
3057 * Flush the memory cgroup stats, so that we read accurate per-memcg
3058 * lruvec stats for heuristics.
3059 */
3060 mem_cgroup_flush_stats();
3061
0f6a5cff
JW
3062 memset(&sc->nr, 0, sizeof(sc->nr));
3063
3064 nr_reclaimed = sc->nr_reclaimed;
3065 nr_scanned = sc->nr_scanned;
3066
7cf111bc
JW
3067 /*
3068 * Determine the scan balance between anon and file LRUs.
3069 */
6168d0da 3070 spin_lock_irq(&target_lruvec->lru_lock);
7cf111bc
JW
3071 sc->anon_cost = target_lruvec->anon_cost;
3072 sc->file_cost = target_lruvec->file_cost;
6168d0da 3073 spin_unlock_irq(&target_lruvec->lru_lock);
7cf111bc 3074
b91ac374
JW
3075 /*
3076 * Target desirable inactive:active list ratios for the anon
3077 * and file LRU lists.
3078 */
3079 if (!sc->force_deactivate) {
3080 unsigned long refaults;
3081
170b04b7
JK
3082 refaults = lruvec_page_state(target_lruvec,
3083 WORKINGSET_ACTIVATE_ANON);
3084 if (refaults != target_lruvec->refaults[0] ||
3085 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
b91ac374
JW
3086 sc->may_deactivate |= DEACTIVATE_ANON;
3087 else
3088 sc->may_deactivate &= ~DEACTIVATE_ANON;
3089
3090 /*
3091 * When refaults are being observed, it means a new
3092 * workingset is being established. Deactivate to get
3093 * rid of any stale active pages quickly.
3094 */
3095 refaults = lruvec_page_state(target_lruvec,
170b04b7
JK
3096 WORKINGSET_ACTIVATE_FILE);
3097 if (refaults != target_lruvec->refaults[1] ||
b91ac374
JW
3098 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3099 sc->may_deactivate |= DEACTIVATE_FILE;
3100 else
3101 sc->may_deactivate &= ~DEACTIVATE_FILE;
3102 } else
3103 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3104
3105 /*
3106 * If we have plenty of inactive file pages that aren't
3107 * thrashing, try to reclaim those first before touching
3108 * anonymous pages.
3109 */
3110 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3111 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3112 sc->cache_trim_mode = 1;
3113 else
3114 sc->cache_trim_mode = 0;
3115
53138cea
JW
3116 /*
3117 * Prevent the reclaimer from falling into the cache trap: as
3118 * cache pages start out inactive, every cache fault will tip
3119 * the scan balance towards the file LRU. And as the file LRU
3120 * shrinks, so does the window for rotation from references.
3121 * This means we have a runaway feedback loop where a tiny
3122 * thrashing file LRU becomes infinitely more attractive than
3123 * anon pages. Try to detect this based on file LRU size.
3124 */
3125 if (!cgroup_reclaim(sc)) {
53138cea 3126 unsigned long total_high_wmark = 0;
b91ac374
JW
3127 unsigned long free, anon;
3128 int z;
53138cea
JW
3129
3130 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3131 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3132 node_page_state(pgdat, NR_INACTIVE_FILE);
3133
3134 for (z = 0; z < MAX_NR_ZONES; z++) {
3135 struct zone *zone = &pgdat->node_zones[z];
3136 if (!managed_zone(zone))
3137 continue;
3138
3139 total_high_wmark += high_wmark_pages(zone);
3140 }
3141
b91ac374
JW
3142 /*
3143 * Consider anon: if that's low too, this isn't a
3144 * runaway file reclaim problem, but rather just
3145 * extreme pressure. Reclaim as per usual then.
3146 */
3147 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3148
3149 sc->file_is_tiny =
3150 file + free <= total_high_wmark &&
3151 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3152 anon >> sc->priority;
53138cea
JW
3153 }
3154
0f6a5cff 3155 shrink_node_memcgs(pgdat, sc);
2344d7e4 3156
d2af3397
JW
3157 if (reclaim_state) {
3158 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3159 reclaim_state->reclaimed_slab = 0;
3160 }
d108c772 3161
d2af3397 3162 /* Record the subtree's reclaim efficiency */
1b05117d 3163 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
3164 sc->nr_scanned - nr_scanned,
3165 sc->nr_reclaimed - nr_reclaimed);
d108c772 3166
d2af3397
JW
3167 if (sc->nr_reclaimed - nr_reclaimed)
3168 reclaimable = true;
d108c772 3169
d2af3397
JW
3170 if (current_is_kswapd()) {
3171 /*
3172 * If reclaim is isolating dirty pages under writeback,
3173 * it implies that the long-lived page allocation rate
3174 * is exceeding the page laundering rate. Either the
3175 * global limits are not being effective at throttling
3176 * processes due to the page distribution throughout
3177 * zones or there is heavy usage of a slow backing
3178 * device. The only option is to throttle from reclaim
3179 * context which is not ideal as there is no guarantee
3180 * the dirtying process is throttled in the same way
3181 * balance_dirty_pages() manages.
3182 *
3183 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3184 * count the number of pages under pages flagged for
3185 * immediate reclaim and stall if any are encountered
3186 * in the nr_immediate check below.
3187 */
3188 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3189 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 3190
d2af3397
JW
3191 /* Allow kswapd to start writing pages during reclaim.*/
3192 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3193 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 3194
d108c772 3195 /*
1eba09c1 3196 * If kswapd scans pages marked for immediate
d2af3397
JW
3197 * reclaim and under writeback (nr_immediate), it
3198 * implies that pages are cycling through the LRU
3199 * faster than they are written so also forcibly stall.
d108c772 3200 */
d2af3397
JW
3201 if (sc->nr.immediate)
3202 congestion_wait(BLK_RW_ASYNC, HZ/10);
3203 }
3204
3205 /*
1b05117d
JW
3206 * Tag a node/memcg as congested if all the dirty pages
3207 * scanned were backed by a congested BDI and
3208 * wait_iff_congested will stall.
3209 *
d2af3397
JW
3210 * Legacy memcg will stall in page writeback so avoid forcibly
3211 * stalling in wait_iff_congested().
3212 */
1b05117d
JW
3213 if ((current_is_kswapd() ||
3214 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 3215 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 3216 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
3217
3218 /*
3219 * Stall direct reclaim for IO completions if underlying BDIs
3220 * and node is congested. Allow kswapd to continue until it
3221 * starts encountering unqueued dirty pages or cycling through
3222 * the LRU too quickly.
3223 */
1b05117d
JW
3224 if (!current_is_kswapd() && current_may_throttle() &&
3225 !sc->hibernation_mode &&
3226 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
d2af3397 3227 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 3228
d2af3397
JW
3229 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3230 sc))
3231 goto again;
2344d7e4 3232
c73322d0
JW
3233 /*
3234 * Kswapd gives up on balancing particular nodes after too
3235 * many failures to reclaim anything from them and goes to
3236 * sleep. On reclaim progress, reset the failure counter. A
3237 * successful direct reclaim run will revive a dormant kswapd.
3238 */
3239 if (reclaimable)
3240 pgdat->kswapd_failures = 0;
f16015fb
JW
3241}
3242
53853e2d 3243/*
fdd4c614
VB
3244 * Returns true if compaction should go ahead for a costly-order request, or
3245 * the allocation would already succeed without compaction. Return false if we
3246 * should reclaim first.
53853e2d 3247 */
4f588331 3248static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 3249{
31483b6a 3250 unsigned long watermark;
fdd4c614 3251 enum compact_result suitable;
fe4b1b24 3252
fdd4c614
VB
3253 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3254 if (suitable == COMPACT_SUCCESS)
3255 /* Allocation should succeed already. Don't reclaim. */
3256 return true;
3257 if (suitable == COMPACT_SKIPPED)
3258 /* Compaction cannot yet proceed. Do reclaim. */
3259 return false;
fe4b1b24 3260
53853e2d 3261 /*
fdd4c614
VB
3262 * Compaction is already possible, but it takes time to run and there
3263 * are potentially other callers using the pages just freed. So proceed
3264 * with reclaim to make a buffer of free pages available to give
3265 * compaction a reasonable chance of completing and allocating the page.
3266 * Note that we won't actually reclaim the whole buffer in one attempt
3267 * as the target watermark in should_continue_reclaim() is lower. But if
3268 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 3269 */
fdd4c614 3270 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 3271
fdd4c614 3272 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
3273}
3274
1da177e4
LT
3275/*
3276 * This is the direct reclaim path, for page-allocating processes. We only
3277 * try to reclaim pages from zones which will satisfy the caller's allocation
3278 * request.
3279 *
1da177e4
LT
3280 * If a zone is deemed to be full of pinned pages then just give it a light
3281 * scan then give up on it.
3282 */
0a0337e0 3283static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 3284{
dd1a239f 3285 struct zoneref *z;
54a6eb5c 3286 struct zone *zone;
0608f43d
AM
3287 unsigned long nr_soft_reclaimed;
3288 unsigned long nr_soft_scanned;
619d0d76 3289 gfp_t orig_mask;
79dafcdc 3290 pg_data_t *last_pgdat = NULL;
1cfb419b 3291
cc715d99
MG
3292 /*
3293 * If the number of buffer_heads in the machine exceeds the maximum
3294 * allowed level, force direct reclaim to scan the highmem zone as
3295 * highmem pages could be pinning lowmem pages storing buffer_heads
3296 */
619d0d76 3297 orig_mask = sc->gfp_mask;
b2e18757 3298 if (buffer_heads_over_limit) {
cc715d99 3299 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 3300 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 3301 }
cc715d99 3302
d4debc66 3303 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 3304 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
3305 /*
3306 * Take care memory controller reclaiming has small influence
3307 * to global LRU.
3308 */
b5ead35e 3309 if (!cgroup_reclaim(sc)) {
344736f2
VD
3310 if (!cpuset_zone_allowed(zone,
3311 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 3312 continue;
65ec02cb 3313
0b06496a
JW
3314 /*
3315 * If we already have plenty of memory free for
3316 * compaction in this zone, don't free any more.
3317 * Even though compaction is invoked for any
3318 * non-zero order, only frequent costly order
3319 * reclamation is disruptive enough to become a
3320 * noticeable problem, like transparent huge
3321 * page allocations.
3322 */
3323 if (IS_ENABLED(CONFIG_COMPACTION) &&
3324 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 3325 compaction_ready(zone, sc)) {
0b06496a
JW
3326 sc->compaction_ready = true;
3327 continue;
e0887c19 3328 }
0b06496a 3329
79dafcdc
MG
3330 /*
3331 * Shrink each node in the zonelist once. If the
3332 * zonelist is ordered by zone (not the default) then a
3333 * node may be shrunk multiple times but in that case
3334 * the user prefers lower zones being preserved.
3335 */
3336 if (zone->zone_pgdat == last_pgdat)
3337 continue;
3338
0608f43d
AM
3339 /*
3340 * This steals pages from memory cgroups over softlimit
3341 * and returns the number of reclaimed pages and
3342 * scanned pages. This works for global memory pressure
3343 * and balancing, not for a memcg's limit.
3344 */
3345 nr_soft_scanned = 0;
ef8f2327 3346 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
3347 sc->order, sc->gfp_mask,
3348 &nr_soft_scanned);
3349 sc->nr_reclaimed += nr_soft_reclaimed;
3350 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 3351 /* need some check for avoid more shrink_zone() */
1cfb419b 3352 }
408d8544 3353
79dafcdc
MG
3354 /* See comment about same check for global reclaim above */
3355 if (zone->zone_pgdat == last_pgdat)
3356 continue;
3357 last_pgdat = zone->zone_pgdat;
970a39a3 3358 shrink_node(zone->zone_pgdat, sc);
1da177e4 3359 }
e0c23279 3360
619d0d76
WY
3361 /*
3362 * Restore to original mask to avoid the impact on the caller if we
3363 * promoted it to __GFP_HIGHMEM.
3364 */
3365 sc->gfp_mask = orig_mask;
1da177e4 3366}
4f98a2fe 3367
b910718a 3368static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 3369{
b910718a
JW
3370 struct lruvec *target_lruvec;
3371 unsigned long refaults;
2a2e4885 3372
b910718a 3373 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7
JK
3374 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3375 target_lruvec->refaults[0] = refaults;
3376 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3377 target_lruvec->refaults[1] = refaults;
2a2e4885
JW
3378}
3379
1da177e4
LT
3380/*
3381 * This is the main entry point to direct page reclaim.
3382 *
3383 * If a full scan of the inactive list fails to free enough memory then we
3384 * are "out of memory" and something needs to be killed.
3385 *
3386 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3387 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3388 * caller can't do much about. We kick the writeback threads and take explicit
3389 * naps in the hope that some of these pages can be written. But if the
3390 * allocating task holds filesystem locks which prevent writeout this might not
3391 * work, and the allocation attempt will fail.
a41f24ea
NA
3392 *
3393 * returns: 0, if no pages reclaimed
3394 * else, the number of pages reclaimed
1da177e4 3395 */
dac1d27b 3396static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3397 struct scan_control *sc)
1da177e4 3398{
241994ed 3399 int initial_priority = sc->priority;
2a2e4885
JW
3400 pg_data_t *last_pgdat;
3401 struct zoneref *z;
3402 struct zone *zone;
241994ed 3403retry:
873b4771
KK
3404 delayacct_freepages_start();
3405
b5ead35e 3406 if (!cgroup_reclaim(sc))
7cc30fcf 3407 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3408
9e3b2f8c 3409 do {
70ddf637
AV
3410 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3411 sc->priority);
66e1707b 3412 sc->nr_scanned = 0;
0a0337e0 3413 shrink_zones(zonelist, sc);
c6a8a8c5 3414
bb21c7ce 3415 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3416 break;
3417
3418 if (sc->compaction_ready)
3419 break;
1da177e4 3420
0e50ce3b
MK
3421 /*
3422 * If we're getting trouble reclaiming, start doing
3423 * writepage even in laptop mode.
3424 */
3425 if (sc->priority < DEF_PRIORITY - 2)
3426 sc->may_writepage = 1;
0b06496a 3427 } while (--sc->priority >= 0);
bb21c7ce 3428
2a2e4885
JW
3429 last_pgdat = NULL;
3430 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3431 sc->nodemask) {
3432 if (zone->zone_pgdat == last_pgdat)
3433 continue;
3434 last_pgdat = zone->zone_pgdat;
1b05117d 3435
2a2e4885 3436 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3437
3438 if (cgroup_reclaim(sc)) {
3439 struct lruvec *lruvec;
3440
3441 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3442 zone->zone_pgdat);
3443 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3444 }
2a2e4885
JW
3445 }
3446
873b4771
KK
3447 delayacct_freepages_end();
3448
bb21c7ce
KM
3449 if (sc->nr_reclaimed)
3450 return sc->nr_reclaimed;
3451
0cee34fd 3452 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3453 if (sc->compaction_ready)
7335084d
MG
3454 return 1;
3455
b91ac374
JW
3456 /*
3457 * We make inactive:active ratio decisions based on the node's
3458 * composition of memory, but a restrictive reclaim_idx or a
3459 * memory.low cgroup setting can exempt large amounts of
3460 * memory from reclaim. Neither of which are very common, so
3461 * instead of doing costly eligibility calculations of the
3462 * entire cgroup subtree up front, we assume the estimates are
3463 * good, and retry with forcible deactivation if that fails.
3464 */
3465 if (sc->skipped_deactivate) {
3466 sc->priority = initial_priority;
3467 sc->force_deactivate = 1;
3468 sc->skipped_deactivate = 0;
3469 goto retry;
3470 }
3471
241994ed 3472 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3473 if (sc->memcg_low_skipped) {
241994ed 3474 sc->priority = initial_priority;
b91ac374 3475 sc->force_deactivate = 0;
d6622f63
YX
3476 sc->memcg_low_reclaim = 1;
3477 sc->memcg_low_skipped = 0;
241994ed
JW
3478 goto retry;
3479 }
3480
bb21c7ce 3481 return 0;
1da177e4
LT
3482}
3483
c73322d0 3484static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3485{
3486 struct zone *zone;
3487 unsigned long pfmemalloc_reserve = 0;
3488 unsigned long free_pages = 0;
3489 int i;
3490 bool wmark_ok;
3491
c73322d0
JW
3492 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3493 return true;
3494
5515061d
MG
3495 for (i = 0; i <= ZONE_NORMAL; i++) {
3496 zone = &pgdat->node_zones[i];
d450abd8
JW
3497 if (!managed_zone(zone))
3498 continue;
3499
3500 if (!zone_reclaimable_pages(zone))
675becce
MG
3501 continue;
3502
5515061d
MG
3503 pfmemalloc_reserve += min_wmark_pages(zone);
3504 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3505 }
3506
675becce
MG
3507 /* If there are no reserves (unexpected config) then do not throttle */
3508 if (!pfmemalloc_reserve)
3509 return true;
3510
5515061d
MG
3511 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3512
3513 /* kswapd must be awake if processes are being throttled */
3514 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3515 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3516 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3517
5515061d
MG
3518 wake_up_interruptible(&pgdat->kswapd_wait);
3519 }
3520
3521 return wmark_ok;
3522}
3523
3524/*
3525 * Throttle direct reclaimers if backing storage is backed by the network
3526 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3527 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3528 * when the low watermark is reached.
3529 *
3530 * Returns true if a fatal signal was delivered during throttling. If this
3531 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3532 */
50694c28 3533static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3534 nodemask_t *nodemask)
3535{
675becce 3536 struct zoneref *z;
5515061d 3537 struct zone *zone;
675becce 3538 pg_data_t *pgdat = NULL;
5515061d
MG
3539
3540 /*
3541 * Kernel threads should not be throttled as they may be indirectly
3542 * responsible for cleaning pages necessary for reclaim to make forward
3543 * progress. kjournald for example may enter direct reclaim while
3544 * committing a transaction where throttling it could forcing other
3545 * processes to block on log_wait_commit().
3546 */
3547 if (current->flags & PF_KTHREAD)
50694c28
MG
3548 goto out;
3549
3550 /*
3551 * If a fatal signal is pending, this process should not throttle.
3552 * It should return quickly so it can exit and free its memory
3553 */
3554 if (fatal_signal_pending(current))
3555 goto out;
5515061d 3556
675becce
MG
3557 /*
3558 * Check if the pfmemalloc reserves are ok by finding the first node
3559 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3560 * GFP_KERNEL will be required for allocating network buffers when
3561 * swapping over the network so ZONE_HIGHMEM is unusable.
3562 *
3563 * Throttling is based on the first usable node and throttled processes
3564 * wait on a queue until kswapd makes progress and wakes them. There
3565 * is an affinity then between processes waking up and where reclaim
3566 * progress has been made assuming the process wakes on the same node.
3567 * More importantly, processes running on remote nodes will not compete
3568 * for remote pfmemalloc reserves and processes on different nodes
3569 * should make reasonable progress.
3570 */
3571 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3572 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3573 if (zone_idx(zone) > ZONE_NORMAL)
3574 continue;
3575
3576 /* Throttle based on the first usable node */
3577 pgdat = zone->zone_pgdat;
c73322d0 3578 if (allow_direct_reclaim(pgdat))
675becce
MG
3579 goto out;
3580 break;
3581 }
3582
3583 /* If no zone was usable by the allocation flags then do not throttle */
3584 if (!pgdat)
50694c28 3585 goto out;
5515061d 3586
68243e76
MG
3587 /* Account for the throttling */
3588 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3589
5515061d
MG
3590 /*
3591 * If the caller cannot enter the filesystem, it's possible that it
3592 * is due to the caller holding an FS lock or performing a journal
3593 * transaction in the case of a filesystem like ext[3|4]. In this case,
3594 * it is not safe to block on pfmemalloc_wait as kswapd could be
3595 * blocked waiting on the same lock. Instead, throttle for up to a
3596 * second before continuing.
3597 */
2e786d9e 3598 if (!(gfp_mask & __GFP_FS))
5515061d 3599 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3600 allow_direct_reclaim(pgdat), HZ);
2e786d9e
ML
3601 else
3602 /* Throttle until kswapd wakes the process */
3603 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3604 allow_direct_reclaim(pgdat));
50694c28 3605
50694c28
MG
3606 if (fatal_signal_pending(current))
3607 return true;
3608
3609out:
3610 return false;
5515061d
MG
3611}
3612
dac1d27b 3613unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3614 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3615{
33906bc5 3616 unsigned long nr_reclaimed;
66e1707b 3617 struct scan_control sc = {
ee814fe2 3618 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3619 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3620 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3621 .order = order,
3622 .nodemask = nodemask,
3623 .priority = DEF_PRIORITY,
66e1707b 3624 .may_writepage = !laptop_mode,
a6dc60f8 3625 .may_unmap = 1,
2e2e4259 3626 .may_swap = 1,
66e1707b
BS
3627 };
3628
bb451fdf
GT
3629 /*
3630 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3631 * Confirm they are large enough for max values.
3632 */
3633 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3634 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3635 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3636
5515061d 3637 /*
50694c28
MG
3638 * Do not enter reclaim if fatal signal was delivered while throttled.
3639 * 1 is returned so that the page allocator does not OOM kill at this
3640 * point.
5515061d 3641 */
f2f43e56 3642 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3643 return 1;
3644
1732d2b0 3645 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3646 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3647
3115cd91 3648 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3649
3650 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3651 set_task_reclaim_state(current, NULL);
33906bc5
MG
3652
3653 return nr_reclaimed;
66e1707b
BS
3654}
3655
c255a458 3656#ifdef CONFIG_MEMCG
66e1707b 3657
d2e5fb92 3658/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3659unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3660 gfp_t gfp_mask, bool noswap,
ef8f2327 3661 pg_data_t *pgdat,
0ae5e89c 3662 unsigned long *nr_scanned)
4e416953 3663{
afaf07a6 3664 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3665 struct scan_control sc = {
b8f5c566 3666 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3667 .target_mem_cgroup = memcg,
4e416953
BS
3668 .may_writepage = !laptop_mode,
3669 .may_unmap = 1,
b2e18757 3670 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3671 .may_swap = !noswap,
4e416953 3672 };
0ae5e89c 3673
d2e5fb92
MH
3674 WARN_ON_ONCE(!current->reclaim_state);
3675
4e416953
BS
3676 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3677 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3678
9e3b2f8c 3679 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3680 sc.gfp_mask);
bdce6d9e 3681
4e416953
BS
3682 /*
3683 * NOTE: Although we can get the priority field, using it
3684 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3685 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3686 * will pick up pages from other mem cgroup's as well. We hack
3687 * the priority and make it zero.
3688 */
afaf07a6 3689 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3690
3691 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3692
0ae5e89c 3693 *nr_scanned = sc.nr_scanned;
0308f7cf 3694
4e416953
BS
3695 return sc.nr_reclaimed;
3696}
3697
72835c86 3698unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3699 unsigned long nr_pages,
a7885eb8 3700 gfp_t gfp_mask,
b70a2a21 3701 bool may_swap)
66e1707b 3702{
bdce6d9e 3703 unsigned long nr_reclaimed;
499118e9 3704 unsigned int noreclaim_flag;
66e1707b 3705 struct scan_control sc = {
b70a2a21 3706 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3707 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3708 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3709 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3710 .target_mem_cgroup = memcg,
3711 .priority = DEF_PRIORITY,
3712 .may_writepage = !laptop_mode,
3713 .may_unmap = 1,
b70a2a21 3714 .may_swap = may_swap,
a09ed5e0 3715 };
889976db 3716 /*
fa40d1ee
SB
3717 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3718 * equal pressure on all the nodes. This is based on the assumption that
3719 * the reclaim does not bail out early.
889976db 3720 */
fa40d1ee 3721 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3722
fa40d1ee 3723 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3724 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 3725 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3726
3115cd91 3727 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3728
499118e9 3729 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 3730 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3731 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3732
3733 return nr_reclaimed;
66e1707b
BS
3734}
3735#endif
3736
1d82de61 3737static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3738 struct scan_control *sc)
f16015fb 3739{
b95a2f2d 3740 struct mem_cgroup *memcg;
b91ac374 3741 struct lruvec *lruvec;
f16015fb 3742
2f368a9f 3743 if (!can_age_anon_pages(pgdat, sc))
b95a2f2d
JW
3744 return;
3745
b91ac374
JW
3746 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3747 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3748 return;
3749
b95a2f2d
JW
3750 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3751 do {
b91ac374
JW
3752 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3753 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3754 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3755 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3756 } while (memcg);
f16015fb
JW
3757}
3758
97a225e6 3759static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3760{
3761 int i;
3762 struct zone *zone;
3763
3764 /*
3765 * Check for watermark boosts top-down as the higher zones
3766 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 3767 * should not be checked at the same time as reclaim would
1c30844d
MG
3768 * start prematurely when there is no boosting and a lower
3769 * zone is balanced.
3770 */
97a225e6 3771 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3772 zone = pgdat->node_zones + i;
3773 if (!managed_zone(zone))
3774 continue;
3775
3776 if (zone->watermark_boost)
3777 return true;
3778 }
3779
3780 return false;
3781}
3782
e716f2eb
MG
3783/*
3784 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3785 * and highest_zoneidx
e716f2eb 3786 */
97a225e6 3787static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3788{
e716f2eb
MG
3789 int i;
3790 unsigned long mark = -1;
3791 struct zone *zone;
60cefed4 3792
1c30844d
MG
3793 /*
3794 * Check watermarks bottom-up as lower zones are more likely to
3795 * meet watermarks.
3796 */
97a225e6 3797 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3798 zone = pgdat->node_zones + i;
6256c6b4 3799
e716f2eb
MG
3800 if (!managed_zone(zone))
3801 continue;
3802
3803 mark = high_wmark_pages(zone);
97a225e6 3804 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3805 return true;
3806 }
3807
3808 /*
97a225e6 3809 * If a node has no populated zone within highest_zoneidx, it does not
e716f2eb
MG
3810 * need balancing by definition. This can happen if a zone-restricted
3811 * allocation tries to wake a remote kswapd.
3812 */
3813 if (mark == -1)
3814 return true;
3815
3816 return false;
60cefed4
JW
3817}
3818
631b6e08
MG
3819/* Clear pgdat state for congested, dirty or under writeback. */
3820static void clear_pgdat_congested(pg_data_t *pgdat)
3821{
1b05117d
JW
3822 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3823
3824 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
3825 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3826 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3827}
3828
5515061d
MG
3829/*
3830 * Prepare kswapd for sleeping. This verifies that there are no processes
3831 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3832 *
3833 * Returns true if kswapd is ready to sleep
3834 */
97a225e6
JK
3835static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3836 int highest_zoneidx)
f50de2d3 3837{
5515061d 3838 /*
9e5e3661 3839 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3840 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3841 * race between when kswapd checks the watermarks and a process gets
3842 * throttled. There is also a potential race if processes get
3843 * throttled, kswapd wakes, a large process exits thereby balancing the
3844 * zones, which causes kswapd to exit balance_pgdat() before reaching
3845 * the wake up checks. If kswapd is going to sleep, no process should
3846 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3847 * the wake up is premature, processes will wake kswapd and get
3848 * throttled again. The difference from wake ups in balance_pgdat() is
3849 * that here we are under prepare_to_wait().
5515061d 3850 */
9e5e3661
VB
3851 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3852 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3853
c73322d0
JW
3854 /* Hopeless node, leave it to direct reclaim */
3855 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3856 return true;
3857
97a225e6 3858 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
3859 clear_pgdat_congested(pgdat);
3860 return true;
1d82de61
MG
3861 }
3862
333b0a45 3863 return false;
f50de2d3
MG
3864}
3865
75485363 3866/*
1d82de61
MG
3867 * kswapd shrinks a node of pages that are at or below the highest usable
3868 * zone that is currently unbalanced.
b8e83b94
MG
3869 *
3870 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3871 * reclaim or if the lack of progress was due to pages under writeback.
3872 * This is used to determine if the scanning priority needs to be raised.
75485363 3873 */
1d82de61 3874static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3875 struct scan_control *sc)
75485363 3876{
1d82de61
MG
3877 struct zone *zone;
3878 int z;
75485363 3879
1d82de61
MG
3880 /* Reclaim a number of pages proportional to the number of zones */
3881 sc->nr_to_reclaim = 0;
970a39a3 3882 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3883 zone = pgdat->node_zones + z;
6aa303de 3884 if (!managed_zone(zone))
1d82de61 3885 continue;
7c954f6d 3886
1d82de61
MG
3887 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3888 }
7c954f6d
MG
3889
3890 /*
1d82de61
MG
3891 * Historically care was taken to put equal pressure on all zones but
3892 * now pressure is applied based on node LRU order.
7c954f6d 3893 */
970a39a3 3894 shrink_node(pgdat, sc);
283aba9f 3895
7c954f6d 3896 /*
1d82de61
MG
3897 * Fragmentation may mean that the system cannot be rebalanced for
3898 * high-order allocations. If twice the allocation size has been
3899 * reclaimed then recheck watermarks only at order-0 to prevent
3900 * excessive reclaim. Assume that a process requested a high-order
3901 * can direct reclaim/compact.
7c954f6d 3902 */
9861a62c 3903 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3904 sc->order = 0;
7c954f6d 3905
b8e83b94 3906 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3907}
3908
c49c2c47
MG
3909/* Page allocator PCP high watermark is lowered if reclaim is active. */
3910static inline void
3911update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
3912{
3913 int i;
3914 struct zone *zone;
3915
3916 for (i = 0; i <= highest_zoneidx; i++) {
3917 zone = pgdat->node_zones + i;
3918
3919 if (!managed_zone(zone))
3920 continue;
3921
3922 if (active)
3923 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3924 else
3925 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3926 }
3927}
3928
3929static inline void
3930set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3931{
3932 update_reclaim_active(pgdat, highest_zoneidx, true);
3933}
3934
3935static inline void
3936clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3937{
3938 update_reclaim_active(pgdat, highest_zoneidx, false);
3939}
3940
1da177e4 3941/*
1d82de61
MG
3942 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3943 * that are eligible for use by the caller until at least one zone is
3944 * balanced.
1da177e4 3945 *
1d82de61 3946 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3947 *
3948 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3949 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3950 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3951 * or lower is eligible for reclaim until at least one usable zone is
3952 * balanced.
1da177e4 3953 */
97a225e6 3954static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 3955{
1da177e4 3956 int i;
0608f43d
AM
3957 unsigned long nr_soft_reclaimed;
3958 unsigned long nr_soft_scanned;
eb414681 3959 unsigned long pflags;
1c30844d
MG
3960 unsigned long nr_boost_reclaim;
3961 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3962 bool boosted;
1d82de61 3963 struct zone *zone;
179e9639
AM
3964 struct scan_control sc = {
3965 .gfp_mask = GFP_KERNEL,
ee814fe2 3966 .order = order,
a6dc60f8 3967 .may_unmap = 1,
179e9639 3968 };
93781325 3969
1732d2b0 3970 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 3971 psi_memstall_enter(&pflags);
4f3eaf45 3972 __fs_reclaim_acquire(_THIS_IP_);
93781325 3973
f8891e5e 3974 count_vm_event(PAGEOUTRUN);
1da177e4 3975
1c30844d
MG
3976 /*
3977 * Account for the reclaim boost. Note that the zone boost is left in
3978 * place so that parallel allocations that are near the watermark will
3979 * stall or direct reclaim until kswapd is finished.
3980 */
3981 nr_boost_reclaim = 0;
97a225e6 3982 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
3983 zone = pgdat->node_zones + i;
3984 if (!managed_zone(zone))
3985 continue;
3986
3987 nr_boost_reclaim += zone->watermark_boost;
3988 zone_boosts[i] = zone->watermark_boost;
3989 }
3990 boosted = nr_boost_reclaim;
3991
3992restart:
c49c2c47 3993 set_reclaim_active(pgdat, highest_zoneidx);
1c30844d 3994 sc.priority = DEF_PRIORITY;
9e3b2f8c 3995 do {
c73322d0 3996 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3997 bool raise_priority = true;
1c30844d 3998 bool balanced;
93781325 3999 bool ret;
b8e83b94 4000
97a225e6 4001 sc.reclaim_idx = highest_zoneidx;
1da177e4 4002
86c79f6b 4003 /*
84c7a777
MG
4004 * If the number of buffer_heads exceeds the maximum allowed
4005 * then consider reclaiming from all zones. This has a dual
4006 * purpose -- on 64-bit systems it is expected that
4007 * buffer_heads are stripped during active rotation. On 32-bit
4008 * systems, highmem pages can pin lowmem memory and shrinking
4009 * buffers can relieve lowmem pressure. Reclaim may still not
4010 * go ahead if all eligible zones for the original allocation
4011 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
4012 */
4013 if (buffer_heads_over_limit) {
4014 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4015 zone = pgdat->node_zones + i;
6aa303de 4016 if (!managed_zone(zone))
86c79f6b 4017 continue;
cc715d99 4018
970a39a3 4019 sc.reclaim_idx = i;
e1dbeda6 4020 break;
1da177e4 4021 }
1da177e4 4022 }
dafcb73e 4023
86c79f6b 4024 /*
1c30844d
MG
4025 * If the pgdat is imbalanced then ignore boosting and preserve
4026 * the watermarks for a later time and restart. Note that the
4027 * zone watermarks will be still reset at the end of balancing
4028 * on the grounds that the normal reclaim should be enough to
4029 * re-evaluate if boosting is required when kswapd next wakes.
4030 */
97a225e6 4031 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
4032 if (!balanced && nr_boost_reclaim) {
4033 nr_boost_reclaim = 0;
4034 goto restart;
4035 }
4036
4037 /*
4038 * If boosting is not active then only reclaim if there are no
4039 * eligible zones. Note that sc.reclaim_idx is not used as
4040 * buffer_heads_over_limit may have adjusted it.
86c79f6b 4041 */
1c30844d 4042 if (!nr_boost_reclaim && balanced)
e716f2eb 4043 goto out;
e1dbeda6 4044
1c30844d
MG
4045 /* Limit the priority of boosting to avoid reclaim writeback */
4046 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4047 raise_priority = false;
4048
4049 /*
4050 * Do not writeback or swap pages for boosted reclaim. The
4051 * intent is to relieve pressure not issue sub-optimal IO
4052 * from reclaim context. If no pages are reclaimed, the
4053 * reclaim will be aborted.
4054 */
4055 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4056 sc.may_swap = !nr_boost_reclaim;
1c30844d 4057
1d82de61
MG
4058 /*
4059 * Do some background aging of the anon list, to give
4060 * pages a chance to be referenced before reclaiming. All
4061 * pages are rotated regardless of classzone as this is
4062 * about consistent aging.
4063 */
ef8f2327 4064 age_active_anon(pgdat, &sc);
1d82de61 4065
b7ea3c41
MG
4066 /*
4067 * If we're getting trouble reclaiming, start doing writepage
4068 * even in laptop mode.
4069 */
047d72c3 4070 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
4071 sc.may_writepage = 1;
4072
1d82de61
MG
4073 /* Call soft limit reclaim before calling shrink_node. */
4074 sc.nr_scanned = 0;
4075 nr_soft_scanned = 0;
ef8f2327 4076 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
4077 sc.gfp_mask, &nr_soft_scanned);
4078 sc.nr_reclaimed += nr_soft_reclaimed;
4079
1da177e4 4080 /*
1d82de61
MG
4081 * There should be no need to raise the scanning priority if
4082 * enough pages are already being scanned that that high
4083 * watermark would be met at 100% efficiency.
1da177e4 4084 */
970a39a3 4085 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 4086 raise_priority = false;
5515061d
MG
4087
4088 /*
4089 * If the low watermark is met there is no need for processes
4090 * to be throttled on pfmemalloc_wait as they should not be
4091 * able to safely make forward progress. Wake them
4092 */
4093 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 4094 allow_direct_reclaim(pgdat))
cfc51155 4095 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 4096
b8e83b94 4097 /* Check if kswapd should be suspending */
4f3eaf45 4098 __fs_reclaim_release(_THIS_IP_);
93781325 4099 ret = try_to_freeze();
4f3eaf45 4100 __fs_reclaim_acquire(_THIS_IP_);
93781325 4101 if (ret || kthread_should_stop())
b8e83b94 4102 break;
8357376d 4103
73ce02e9 4104 /*
b8e83b94
MG
4105 * Raise priority if scanning rate is too low or there was no
4106 * progress in reclaiming pages
73ce02e9 4107 */
c73322d0 4108 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
4109 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4110
4111 /*
4112 * If reclaim made no progress for a boost, stop reclaim as
4113 * IO cannot be queued and it could be an infinite loop in
4114 * extreme circumstances.
4115 */
4116 if (nr_boost_reclaim && !nr_reclaimed)
4117 break;
4118
c73322d0 4119 if (raise_priority || !nr_reclaimed)
b8e83b94 4120 sc.priority--;
1d82de61 4121 } while (sc.priority >= 1);
1da177e4 4122
c73322d0
JW
4123 if (!sc.nr_reclaimed)
4124 pgdat->kswapd_failures++;
4125
b8e83b94 4126out:
c49c2c47
MG
4127 clear_reclaim_active(pgdat, highest_zoneidx);
4128
1c30844d
MG
4129 /* If reclaim was boosted, account for the reclaim done in this pass */
4130 if (boosted) {
4131 unsigned long flags;
4132
97a225e6 4133 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4134 if (!zone_boosts[i])
4135 continue;
4136
4137 /* Increments are under the zone lock */
4138 zone = pgdat->node_zones + i;
4139 spin_lock_irqsave(&zone->lock, flags);
4140 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4141 spin_unlock_irqrestore(&zone->lock, flags);
4142 }
4143
4144 /*
4145 * As there is now likely space, wakeup kcompact to defragment
4146 * pageblocks.
4147 */
97a225e6 4148 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
4149 }
4150
2a2e4885 4151 snapshot_refaults(NULL, pgdat);
4f3eaf45 4152 __fs_reclaim_release(_THIS_IP_);
eb414681 4153 psi_memstall_leave(&pflags);
1732d2b0 4154 set_task_reclaim_state(current, NULL);
e5ca8071 4155
0abdee2b 4156 /*
1d82de61
MG
4157 * Return the order kswapd stopped reclaiming at as
4158 * prepare_kswapd_sleep() takes it into account. If another caller
4159 * entered the allocator slow path while kswapd was awake, order will
4160 * remain at the higher level.
0abdee2b 4161 */
1d82de61 4162 return sc.order;
1da177e4
LT
4163}
4164
e716f2eb 4165/*
97a225e6
JK
4166 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4167 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4168 * not a valid index then either kswapd runs for first time or kswapd couldn't
4169 * sleep after previous reclaim attempt (node is still unbalanced). In that
4170 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 4171 */
97a225e6
JK
4172static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4173 enum zone_type prev_highest_zoneidx)
e716f2eb 4174{
97a225e6 4175 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4176
97a225e6 4177 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
4178}
4179
38087d9b 4180static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 4181 unsigned int highest_zoneidx)
f0bc0a60
KM
4182{
4183 long remaining = 0;
4184 DEFINE_WAIT(wait);
4185
4186 if (freezing(current) || kthread_should_stop())
4187 return;
4188
4189 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4190
333b0a45
SG
4191 /*
4192 * Try to sleep for a short interval. Note that kcompactd will only be
4193 * woken if it is possible to sleep for a short interval. This is
4194 * deliberate on the assumption that if reclaim cannot keep an
4195 * eligible zone balanced that it's also unlikely that compaction will
4196 * succeed.
4197 */
97a225e6 4198 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
4199 /*
4200 * Compaction records what page blocks it recently failed to
4201 * isolate pages from and skips them in the future scanning.
4202 * When kswapd is going to sleep, it is reasonable to assume
4203 * that pages and compaction may succeed so reset the cache.
4204 */
4205 reset_isolation_suitable(pgdat);
4206
4207 /*
4208 * We have freed the memory, now we should compact it to make
4209 * allocation of the requested order possible.
4210 */
97a225e6 4211 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 4212
f0bc0a60 4213 remaining = schedule_timeout(HZ/10);
38087d9b
MG
4214
4215 /*
97a225e6 4216 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
4217 * order. The values will either be from a wakeup request or
4218 * the previous request that slept prematurely.
4219 */
4220 if (remaining) {
97a225e6
JK
4221 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4222 kswapd_highest_zoneidx(pgdat,
4223 highest_zoneidx));
5644e1fb
QC
4224
4225 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4226 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
4227 }
4228
f0bc0a60
KM
4229 finish_wait(&pgdat->kswapd_wait, &wait);
4230 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4231 }
4232
4233 /*
4234 * After a short sleep, check if it was a premature sleep. If not, then
4235 * go fully to sleep until explicitly woken up.
4236 */
d9f21d42 4237 if (!remaining &&
97a225e6 4238 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
4239 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4240
4241 /*
4242 * vmstat counters are not perfectly accurate and the estimated
4243 * value for counters such as NR_FREE_PAGES can deviate from the
4244 * true value by nr_online_cpus * threshold. To avoid the zone
4245 * watermarks being breached while under pressure, we reduce the
4246 * per-cpu vmstat threshold while kswapd is awake and restore
4247 * them before going back to sleep.
4248 */
4249 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
4250
4251 if (!kthread_should_stop())
4252 schedule();
4253
f0bc0a60
KM
4254 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4255 } else {
4256 if (remaining)
4257 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4258 else
4259 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4260 }
4261 finish_wait(&pgdat->kswapd_wait, &wait);
4262}
4263
1da177e4
LT
4264/*
4265 * The background pageout daemon, started as a kernel thread
4f98a2fe 4266 * from the init process.
1da177e4
LT
4267 *
4268 * This basically trickles out pages so that we have _some_
4269 * free memory available even if there is no other activity
4270 * that frees anything up. This is needed for things like routing
4271 * etc, where we otherwise might have all activity going on in
4272 * asynchronous contexts that cannot page things out.
4273 *
4274 * If there are applications that are active memory-allocators
4275 * (most normal use), this basically shouldn't matter.
4276 */
4277static int kswapd(void *p)
4278{
e716f2eb 4279 unsigned int alloc_order, reclaim_order;
97a225e6 4280 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
68d68ff6 4281 pg_data_t *pgdat = (pg_data_t *)p;
1da177e4 4282 struct task_struct *tsk = current;
a70f7302 4283 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 4284
174596a0 4285 if (!cpumask_empty(cpumask))
c5f59f08 4286 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
4287
4288 /*
4289 * Tell the memory management that we're a "memory allocator",
4290 * and that if we need more memory we should get access to it
4291 * regardless (see "__alloc_pages()"). "kswapd" should
4292 * never get caught in the normal page freeing logic.
4293 *
4294 * (Kswapd normally doesn't need memory anyway, but sometimes
4295 * you need a small amount of memory in order to be able to
4296 * page out something else, and this flag essentially protects
4297 * us from recursively trying to free more memory as we're
4298 * trying to free the first piece of memory in the first place).
4299 */
930d9152 4300 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 4301 set_freezable();
1da177e4 4302
5644e1fb 4303 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4304 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4305 for ( ; ; ) {
6f6313d4 4306 bool ret;
3e1d1d28 4307
5644e1fb 4308 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4309 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4310 highest_zoneidx);
e716f2eb 4311
38087d9b
MG
4312kswapd_try_sleep:
4313 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 4314 highest_zoneidx);
215ddd66 4315
97a225e6 4316 /* Read the new order and highest_zoneidx */
2b47a24c 4317 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4318 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4319 highest_zoneidx);
5644e1fb 4320 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4321 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4322
8fe23e05
DR
4323 ret = try_to_freeze();
4324 if (kthread_should_stop())
4325 break;
4326
4327 /*
4328 * We can speed up thawing tasks if we don't call balance_pgdat
4329 * after returning from the refrigerator
4330 */
38087d9b
MG
4331 if (ret)
4332 continue;
4333
4334 /*
4335 * Reclaim begins at the requested order but if a high-order
4336 * reclaim fails then kswapd falls back to reclaiming for
4337 * order-0. If that happens, kswapd will consider sleeping
4338 * for the order it finished reclaiming at (reclaim_order)
4339 * but kcompactd is woken to compact for the original
4340 * request (alloc_order).
4341 */
97a225e6 4342 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 4343 alloc_order);
97a225e6
JK
4344 reclaim_order = balance_pgdat(pgdat, alloc_order,
4345 highest_zoneidx);
38087d9b
MG
4346 if (reclaim_order < alloc_order)
4347 goto kswapd_try_sleep;
1da177e4 4348 }
b0a8cc58 4349
71abdc15 4350 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 4351
1da177e4
LT
4352 return 0;
4353}
4354
4355/*
5ecd9d40
DR
4356 * A zone is low on free memory or too fragmented for high-order memory. If
4357 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4358 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4359 * has failed or is not needed, still wake up kcompactd if only compaction is
4360 * needed.
1da177e4 4361 */
5ecd9d40 4362void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 4363 enum zone_type highest_zoneidx)
1da177e4
LT
4364{
4365 pg_data_t *pgdat;
5644e1fb 4366 enum zone_type curr_idx;
1da177e4 4367
6aa303de 4368 if (!managed_zone(zone))
1da177e4
LT
4369 return;
4370
5ecd9d40 4371 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 4372 return;
5644e1fb 4373
88f5acf8 4374 pgdat = zone->zone_pgdat;
97a225e6 4375 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4376
97a225e6
JK
4377 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4378 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
4379
4380 if (READ_ONCE(pgdat->kswapd_order) < order)
4381 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 4382
8d0986e2 4383 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 4384 return;
e1a55637 4385
5ecd9d40
DR
4386 /* Hopeless node, leave it to direct reclaim if possible */
4387 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
4388 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4389 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
4390 /*
4391 * There may be plenty of free memory available, but it's too
4392 * fragmented for high-order allocations. Wake up kcompactd
4393 * and rely on compaction_suitable() to determine if it's
4394 * needed. If it fails, it will defer subsequent attempts to
4395 * ratelimit its work.
4396 */
4397 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 4398 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 4399 return;
5ecd9d40 4400 }
88f5acf8 4401
97a225e6 4402 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 4403 gfp_flags);
8d0986e2 4404 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
4405}
4406
c6f37f12 4407#ifdef CONFIG_HIBERNATION
1da177e4 4408/*
7b51755c 4409 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
4410 * freed pages.
4411 *
4412 * Rather than trying to age LRUs the aim is to preserve the overall
4413 * LRU order by reclaiming preferentially
4414 * inactive > active > active referenced > active mapped
1da177e4 4415 */
7b51755c 4416unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4417{
d6277db4 4418 struct scan_control sc = {
ee814fe2 4419 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4420 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4421 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4422 .priority = DEF_PRIORITY,
d6277db4 4423 .may_writepage = 1,
ee814fe2
JW
4424 .may_unmap = 1,
4425 .may_swap = 1,
7b51755c 4426 .hibernation_mode = 1,
1da177e4 4427 };
a09ed5e0 4428 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4429 unsigned long nr_reclaimed;
499118e9 4430 unsigned int noreclaim_flag;
1da177e4 4431
d92a8cfc 4432 fs_reclaim_acquire(sc.gfp_mask);
93781325 4433 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4434 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4435
3115cd91 4436 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4437
1732d2b0 4438 set_task_reclaim_state(current, NULL);
499118e9 4439 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4440 fs_reclaim_release(sc.gfp_mask);
d6277db4 4441
7b51755c 4442 return nr_reclaimed;
1da177e4 4443}
c6f37f12 4444#endif /* CONFIG_HIBERNATION */
1da177e4 4445
3218ae14
YG
4446/*
4447 * This kswapd start function will be called by init and node-hot-add.
4448 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4449 */
b87c517a 4450void kswapd_run(int nid)
3218ae14
YG
4451{
4452 pg_data_t *pgdat = NODE_DATA(nid);
3218ae14
YG
4453
4454 if (pgdat->kswapd)
b87c517a 4455 return;
3218ae14
YG
4456
4457 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4458 if (IS_ERR(pgdat->kswapd)) {
4459 /* failure at boot is fatal */
c6202adf 4460 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9 4461 pr_err("Failed to start kswapd on node %d\n", nid);
d72515b8 4462 pgdat->kswapd = NULL;
3218ae14 4463 }
3218ae14
YG
4464}
4465
8fe23e05 4466/*
d8adde17 4467 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4468 * hold mem_hotplug_begin/end().
8fe23e05
DR
4469 */
4470void kswapd_stop(int nid)
4471{
4472 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4473
d8adde17 4474 if (kswapd) {
8fe23e05 4475 kthread_stop(kswapd);
d8adde17
JL
4476 NODE_DATA(nid)->kswapd = NULL;
4477 }
8fe23e05
DR
4478}
4479
1da177e4
LT
4480static int __init kswapd_init(void)
4481{
6b700b5b 4482 int nid;
69e05944 4483
1da177e4 4484 swap_setup();
48fb2e24 4485 for_each_node_state(nid, N_MEMORY)
3218ae14 4486 kswapd_run(nid);
1da177e4
LT
4487 return 0;
4488}
4489
4490module_init(kswapd_init)
9eeff239
CL
4491
4492#ifdef CONFIG_NUMA
4493/*
a5f5f91d 4494 * Node reclaim mode
9eeff239 4495 *
a5f5f91d 4496 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4497 * the watermarks.
9eeff239 4498 */
a5f5f91d 4499int node_reclaim_mode __read_mostly;
9eeff239 4500
a92f7126 4501/*
a5f5f91d 4502 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4503 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4504 * a zone.
4505 */
a5f5f91d 4506#define NODE_RECLAIM_PRIORITY 4
a92f7126 4507
9614634f 4508/*
a5f5f91d 4509 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4510 * occur.
4511 */
4512int sysctl_min_unmapped_ratio = 1;
4513
0ff38490
CL
4514/*
4515 * If the number of slab pages in a zone grows beyond this percentage then
4516 * slab reclaim needs to occur.
4517 */
4518int sysctl_min_slab_ratio = 5;
4519
11fb9989 4520static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4521{
11fb9989
MG
4522 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4523 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4524 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4525
4526 /*
4527 * It's possible for there to be more file mapped pages than
4528 * accounted for by the pages on the file LRU lists because
4529 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4530 */
4531 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4532}
4533
4534/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4535static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4536{
d031a157
AM
4537 unsigned long nr_pagecache_reclaimable;
4538 unsigned long delta = 0;
90afa5de
MG
4539
4540 /*
95bbc0c7 4541 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4542 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4543 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4544 * a better estimate
4545 */
a5f5f91d
MG
4546 if (node_reclaim_mode & RECLAIM_UNMAP)
4547 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4548 else
a5f5f91d 4549 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4550
4551 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4552 if (!(node_reclaim_mode & RECLAIM_WRITE))
4553 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4554
4555 /* Watch for any possible underflows due to delta */
4556 if (unlikely(delta > nr_pagecache_reclaimable))
4557 delta = nr_pagecache_reclaimable;
4558
4559 return nr_pagecache_reclaimable - delta;
4560}
4561
9eeff239 4562/*
a5f5f91d 4563 * Try to free up some pages from this node through reclaim.
9eeff239 4564 */
a5f5f91d 4565static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4566{
7fb2d46d 4567 /* Minimum pages needed in order to stay on node */
69e05944 4568 const unsigned long nr_pages = 1 << order;
9eeff239 4569 struct task_struct *p = current;
499118e9 4570 unsigned int noreclaim_flag;
179e9639 4571 struct scan_control sc = {
62b726c1 4572 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4573 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4574 .order = order,
a5f5f91d
MG
4575 .priority = NODE_RECLAIM_PRIORITY,
4576 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4577 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4578 .may_swap = 1,
f2f43e56 4579 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4580 };
57f29762 4581 unsigned long pflags;
9eeff239 4582
132bb8cf
YS
4583 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4584 sc.gfp_mask);
4585
9eeff239 4586 cond_resched();
57f29762 4587 psi_memstall_enter(&pflags);
93781325 4588 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4589 /*
95bbc0c7 4590 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4591 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4592 * and RECLAIM_UNMAP.
d4f7796e 4593 */
499118e9
VB
4594 noreclaim_flag = memalloc_noreclaim_save();
4595 p->flags |= PF_SWAPWRITE;
1732d2b0 4596 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4597
a5f5f91d 4598 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4599 /*
894befec 4600 * Free memory by calling shrink node with increasing
0ff38490
CL
4601 * priorities until we have enough memory freed.
4602 */
0ff38490 4603 do {
970a39a3 4604 shrink_node(pgdat, &sc);
9e3b2f8c 4605 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4606 }
c84db23c 4607
1732d2b0 4608 set_task_reclaim_state(p, NULL);
499118e9
VB
4609 current->flags &= ~PF_SWAPWRITE;
4610 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4611 fs_reclaim_release(sc.gfp_mask);
57f29762 4612 psi_memstall_leave(&pflags);
132bb8cf
YS
4613
4614 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4615
a79311c1 4616 return sc.nr_reclaimed >= nr_pages;
9eeff239 4617}
179e9639 4618
a5f5f91d 4619int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4620{
d773ed6b 4621 int ret;
179e9639
AM
4622
4623 /*
a5f5f91d 4624 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4625 * slab pages if we are over the defined limits.
34aa1330 4626 *
9614634f
CL
4627 * A small portion of unmapped file backed pages is needed for
4628 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4629 * thrown out if the node is overallocated. So we do not reclaim
4630 * if less than a specified percentage of the node is used by
9614634f 4631 * unmapped file backed pages.
179e9639 4632 */
a5f5f91d 4633 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4634 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4635 pgdat->min_slab_pages)
a5f5f91d 4636 return NODE_RECLAIM_FULL;
179e9639
AM
4637
4638 /*
d773ed6b 4639 * Do not scan if the allocation should not be delayed.
179e9639 4640 */
d0164adc 4641 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4642 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4643
4644 /*
a5f5f91d 4645 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4646 * have associated processors. This will favor the local processor
4647 * over remote processors and spread off node memory allocations
4648 * as wide as possible.
4649 */
a5f5f91d
MG
4650 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4651 return NODE_RECLAIM_NOSCAN;
d773ed6b 4652
a5f5f91d
MG
4653 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4654 return NODE_RECLAIM_NOSCAN;
fa5e084e 4655
a5f5f91d
MG
4656 ret = __node_reclaim(pgdat, gfp_mask, order);
4657 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4658
24cf7251
MG
4659 if (!ret)
4660 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4661
d773ed6b 4662 return ret;
179e9639 4663}
9eeff239 4664#endif
894bc310 4665
89e004ea 4666/**
64e3d12f
KHY
4667 * check_move_unevictable_pages - check pages for evictability and move to
4668 * appropriate zone lru list
4669 * @pvec: pagevec with lru pages to check
89e004ea 4670 *
64e3d12f
KHY
4671 * Checks pages for evictability, if an evictable page is in the unevictable
4672 * lru list, moves it to the appropriate evictable lru list. This function
4673 * should be only used for lru pages.
89e004ea 4674 */
64e3d12f 4675void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4676{
6168d0da 4677 struct lruvec *lruvec = NULL;
24513264
HD
4678 int pgscanned = 0;
4679 int pgrescued = 0;
4680 int i;
89e004ea 4681
64e3d12f
KHY
4682 for (i = 0; i < pvec->nr; i++) {
4683 struct page *page = pvec->pages[i];
0de340cb 4684 struct folio *folio = page_folio(page);
8d8869ca
HD
4685 int nr_pages;
4686
4687 if (PageTransTail(page))
4688 continue;
4689
4690 nr_pages = thp_nr_pages(page);
4691 pgscanned += nr_pages;
89e004ea 4692
d25b5bd8
AS
4693 /* block memcg migration during page moving between lru */
4694 if (!TestClearPageLRU(page))
4695 continue;
4696
0de340cb 4697 lruvec = folio_lruvec_relock_irq(folio, lruvec);
d25b5bd8 4698 if (page_evictable(page) && PageUnevictable(page)) {
46ae6b2c 4699 del_page_from_lru_list(page, lruvec);
24513264 4700 ClearPageUnevictable(page);
3a9c9788 4701 add_page_to_lru_list(page, lruvec);
8d8869ca 4702 pgrescued += nr_pages;
89e004ea 4703 }
d25b5bd8 4704 SetPageLRU(page);
24513264 4705 }
89e004ea 4706
6168d0da 4707 if (lruvec) {
24513264
HD
4708 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4709 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 4710 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
4711 } else if (pgscanned) {
4712 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 4713 }
89e004ea 4714}
64e3d12f 4715EXPORT_SYMBOL_GPL(check_move_unevictable_pages);