]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmstat.c
mm, vmstat: remove zone and node double accounting by approximating retries
[thirdparty/linux.git] / mm / vmstat.c
CommitLineData
f6ac2354
CL
1/*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
2244b95a
CL
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
7cc36bbd 10 * Copyright (C) 2008-2014 Christoph Lameter
f6ac2354 11 */
8f32f7e5 12#include <linux/fs.h>
f6ac2354 13#include <linux/mm.h>
4e950f6f 14#include <linux/err.h>
2244b95a 15#include <linux/module.h>
5a0e3ad6 16#include <linux/slab.h>
df9ecaba 17#include <linux/cpu.h>
7cc36bbd 18#include <linux/cpumask.h>
c748e134 19#include <linux/vmstat.h>
3c486871
AM
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/debugfs.h>
e8edc6e0 23#include <linux/sched.h>
f1a5ab12 24#include <linux/math64.h>
79da826a 25#include <linux/writeback.h>
36deb0be 26#include <linux/compaction.h>
6e543d57 27#include <linux/mm_inline.h>
48c96a36
JK
28#include <linux/page_ext.h>
29#include <linux/page_owner.h>
6e543d57
LD
30
31#include "internal.h"
f6ac2354 32
f8891e5e
CL
33#ifdef CONFIG_VM_EVENT_COUNTERS
34DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
31f961a8 37static void sum_vm_events(unsigned long *ret)
f8891e5e 38{
9eccf2a8 39 int cpu;
f8891e5e
CL
40 int i;
41
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
31f961a8 44 for_each_online_cpu(cpu) {
f8891e5e
CL
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
f8891e5e
CL
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
49 }
50}
51
52/*
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
56*/
57void all_vm_events(unsigned long *ret)
58{
b5be1132 59 get_online_cpus();
31f961a8 60 sum_vm_events(ret);
b5be1132 61 put_online_cpus();
f8891e5e 62}
32dd66fc 63EXPORT_SYMBOL_GPL(all_vm_events);
f8891e5e 64
f8891e5e
CL
65/*
66 * Fold the foreign cpu events into our own.
67 *
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
70 */
71void vm_events_fold_cpu(int cpu)
72{
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 int i;
75
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
79 }
80}
f8891e5e
CL
81
82#endif /* CONFIG_VM_EVENT_COUNTERS */
83
2244b95a
CL
84/*
85 * Manage combined zone based / global counters
86 *
87 * vm_stat contains the global counters
88 */
75ef7184
MG
89atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
91EXPORT_SYMBOL(vm_zone_stat);
92EXPORT_SYMBOL(vm_node_stat);
2244b95a
CL
93
94#ifdef CONFIG_SMP
95
b44129b3 96int calculate_pressure_threshold(struct zone *zone)
88f5acf8
MG
97{
98 int threshold;
99 int watermark_distance;
100
101 /*
102 * As vmstats are not up to date, there is drift between the estimated
103 * and real values. For high thresholds and a high number of CPUs, it
104 * is possible for the min watermark to be breached while the estimated
105 * value looks fine. The pressure threshold is a reduced value such
106 * that even the maximum amount of drift will not accidentally breach
107 * the min watermark
108 */
109 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
110 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
111
112 /*
113 * Maximum threshold is 125
114 */
115 threshold = min(125, threshold);
116
117 return threshold;
118}
119
b44129b3 120int calculate_normal_threshold(struct zone *zone)
df9ecaba
CL
121{
122 int threshold;
123 int mem; /* memory in 128 MB units */
124
125 /*
126 * The threshold scales with the number of processors and the amount
127 * of memory per zone. More memory means that we can defer updates for
128 * longer, more processors could lead to more contention.
129 * fls() is used to have a cheap way of logarithmic scaling.
130 *
131 * Some sample thresholds:
132 *
133 * Threshold Processors (fls) Zonesize fls(mem+1)
134 * ------------------------------------------------------------------
135 * 8 1 1 0.9-1 GB 4
136 * 16 2 2 0.9-1 GB 4
137 * 20 2 2 1-2 GB 5
138 * 24 2 2 2-4 GB 6
139 * 28 2 2 4-8 GB 7
140 * 32 2 2 8-16 GB 8
141 * 4 2 2 <128M 1
142 * 30 4 3 2-4 GB 5
143 * 48 4 3 8-16 GB 8
144 * 32 8 4 1-2 GB 4
145 * 32 8 4 0.9-1GB 4
146 * 10 16 5 <128M 1
147 * 40 16 5 900M 4
148 * 70 64 7 2-4 GB 5
149 * 84 64 7 4-8 GB 6
150 * 108 512 9 4-8 GB 6
151 * 125 1024 10 8-16 GB 8
152 * 125 1024 10 16-32 GB 9
153 */
154
b40da049 155 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
df9ecaba
CL
156
157 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
158
159 /*
160 * Maximum threshold is 125
161 */
162 threshold = min(125, threshold);
163
164 return threshold;
165}
2244b95a
CL
166
167/*
df9ecaba 168 * Refresh the thresholds for each zone.
2244b95a 169 */
a6cccdc3 170void refresh_zone_stat_thresholds(void)
2244b95a 171{
75ef7184 172 struct pglist_data *pgdat;
df9ecaba
CL
173 struct zone *zone;
174 int cpu;
175 int threshold;
176
75ef7184
MG
177 /* Zero current pgdat thresholds */
178 for_each_online_pgdat(pgdat) {
179 for_each_online_cpu(cpu) {
180 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
181 }
182 }
183
ee99c71c 184 for_each_populated_zone(zone) {
75ef7184 185 struct pglist_data *pgdat = zone->zone_pgdat;
aa454840
CL
186 unsigned long max_drift, tolerate_drift;
187
b44129b3 188 threshold = calculate_normal_threshold(zone);
df9ecaba 189
75ef7184
MG
190 for_each_online_cpu(cpu) {
191 int pgdat_threshold;
192
99dcc3e5
CL
193 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
194 = threshold;
aa454840 195
75ef7184
MG
196 /* Base nodestat threshold on the largest populated zone. */
197 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
198 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
199 = max(threshold, pgdat_threshold);
200 }
201
aa454840
CL
202 /*
203 * Only set percpu_drift_mark if there is a danger that
204 * NR_FREE_PAGES reports the low watermark is ok when in fact
205 * the min watermark could be breached by an allocation
206 */
207 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
208 max_drift = num_online_cpus() * threshold;
209 if (max_drift > tolerate_drift)
210 zone->percpu_drift_mark = high_wmark_pages(zone) +
211 max_drift;
df9ecaba 212 }
2244b95a
CL
213}
214
b44129b3
MG
215void set_pgdat_percpu_threshold(pg_data_t *pgdat,
216 int (*calculate_pressure)(struct zone *))
88f5acf8
MG
217{
218 struct zone *zone;
219 int cpu;
220 int threshold;
221 int i;
222
88f5acf8
MG
223 for (i = 0; i < pgdat->nr_zones; i++) {
224 zone = &pgdat->node_zones[i];
225 if (!zone->percpu_drift_mark)
226 continue;
227
b44129b3 228 threshold = (*calculate_pressure)(zone);
bb0b6dff 229 for_each_online_cpu(cpu)
88f5acf8
MG
230 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
231 = threshold;
232 }
88f5acf8
MG
233}
234
2244b95a 235/*
bea04b07
JZ
236 * For use when we know that interrupts are disabled,
237 * or when we know that preemption is disabled and that
238 * particular counter cannot be updated from interrupt context.
2244b95a
CL
239 */
240void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 241 long delta)
2244b95a 242{
12938a92
CL
243 struct per_cpu_pageset __percpu *pcp = zone->pageset;
244 s8 __percpu *p = pcp->vm_stat_diff + item;
2244b95a 245 long x;
12938a92
CL
246 long t;
247
248 x = delta + __this_cpu_read(*p);
2244b95a 249
12938a92 250 t = __this_cpu_read(pcp->stat_threshold);
2244b95a 251
12938a92 252 if (unlikely(x > t || x < -t)) {
2244b95a
CL
253 zone_page_state_add(x, zone, item);
254 x = 0;
255 }
12938a92 256 __this_cpu_write(*p, x);
2244b95a
CL
257}
258EXPORT_SYMBOL(__mod_zone_page_state);
259
75ef7184
MG
260void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
261 long delta)
262{
263 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
264 s8 __percpu *p = pcp->vm_node_stat_diff + item;
265 long x;
266 long t;
267
268 x = delta + __this_cpu_read(*p);
269
270 t = __this_cpu_read(pcp->stat_threshold);
271
272 if (unlikely(x > t || x < -t)) {
273 node_page_state_add(x, pgdat, item);
274 x = 0;
275 }
276 __this_cpu_write(*p, x);
277}
278EXPORT_SYMBOL(__mod_node_page_state);
279
2244b95a
CL
280/*
281 * Optimized increment and decrement functions.
282 *
283 * These are only for a single page and therefore can take a struct page *
284 * argument instead of struct zone *. This allows the inclusion of the code
285 * generated for page_zone(page) into the optimized functions.
286 *
287 * No overflow check is necessary and therefore the differential can be
288 * incremented or decremented in place which may allow the compilers to
289 * generate better code.
2244b95a
CL
290 * The increment or decrement is known and therefore one boundary check can
291 * be omitted.
292 *
df9ecaba
CL
293 * NOTE: These functions are very performance sensitive. Change only
294 * with care.
295 *
2244b95a
CL
296 * Some processors have inc/dec instructions that are atomic vs an interrupt.
297 * However, the code must first determine the differential location in a zone
298 * based on the processor number and then inc/dec the counter. There is no
299 * guarantee without disabling preemption that the processor will not change
300 * in between and therefore the atomicity vs. interrupt cannot be exploited
301 * in a useful way here.
302 */
c8785385 303void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 304{
12938a92
CL
305 struct per_cpu_pageset __percpu *pcp = zone->pageset;
306 s8 __percpu *p = pcp->vm_stat_diff + item;
307 s8 v, t;
2244b95a 308
908ee0f1 309 v = __this_cpu_inc_return(*p);
12938a92
CL
310 t = __this_cpu_read(pcp->stat_threshold);
311 if (unlikely(v > t)) {
312 s8 overstep = t >> 1;
df9ecaba 313
12938a92
CL
314 zone_page_state_add(v + overstep, zone, item);
315 __this_cpu_write(*p, -overstep);
2244b95a
CL
316 }
317}
ca889e6c 318
75ef7184
MG
319void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
320{
321 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
322 s8 __percpu *p = pcp->vm_node_stat_diff + item;
323 s8 v, t;
324
325 v = __this_cpu_inc_return(*p);
326 t = __this_cpu_read(pcp->stat_threshold);
327 if (unlikely(v > t)) {
328 s8 overstep = t >> 1;
329
330 node_page_state_add(v + overstep, pgdat, item);
331 __this_cpu_write(*p, -overstep);
332 }
333}
334
ca889e6c
CL
335void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
336{
337 __inc_zone_state(page_zone(page), item);
338}
2244b95a
CL
339EXPORT_SYMBOL(__inc_zone_page_state);
340
75ef7184
MG
341void __inc_node_page_state(struct page *page, enum node_stat_item item)
342{
343 __inc_node_state(page_pgdat(page), item);
344}
345EXPORT_SYMBOL(__inc_node_page_state);
346
c8785385 347void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 348{
12938a92
CL
349 struct per_cpu_pageset __percpu *pcp = zone->pageset;
350 s8 __percpu *p = pcp->vm_stat_diff + item;
351 s8 v, t;
2244b95a 352
908ee0f1 353 v = __this_cpu_dec_return(*p);
12938a92
CL
354 t = __this_cpu_read(pcp->stat_threshold);
355 if (unlikely(v < - t)) {
356 s8 overstep = t >> 1;
2244b95a 357
12938a92
CL
358 zone_page_state_add(v - overstep, zone, item);
359 __this_cpu_write(*p, overstep);
2244b95a
CL
360 }
361}
c8785385 362
75ef7184
MG
363void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
364{
365 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
366 s8 __percpu *p = pcp->vm_node_stat_diff + item;
367 s8 v, t;
368
369 v = __this_cpu_dec_return(*p);
370 t = __this_cpu_read(pcp->stat_threshold);
371 if (unlikely(v < - t)) {
372 s8 overstep = t >> 1;
373
374 node_page_state_add(v - overstep, pgdat, item);
375 __this_cpu_write(*p, overstep);
376 }
377}
378
c8785385
CL
379void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
380{
381 __dec_zone_state(page_zone(page), item);
382}
2244b95a
CL
383EXPORT_SYMBOL(__dec_zone_page_state);
384
75ef7184
MG
385void __dec_node_page_state(struct page *page, enum node_stat_item item)
386{
387 __dec_node_state(page_pgdat(page), item);
388}
389EXPORT_SYMBOL(__dec_node_page_state);
390
4156153c 391#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
7c839120
CL
392/*
393 * If we have cmpxchg_local support then we do not need to incur the overhead
394 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
395 *
396 * mod_state() modifies the zone counter state through atomic per cpu
397 * operations.
398 *
399 * Overstep mode specifies how overstep should handled:
400 * 0 No overstepping
401 * 1 Overstepping half of threshold
402 * -1 Overstepping minus half of threshold
403*/
75ef7184
MG
404static inline void mod_zone_state(struct zone *zone,
405 enum zone_stat_item item, long delta, int overstep_mode)
7c839120
CL
406{
407 struct per_cpu_pageset __percpu *pcp = zone->pageset;
408 s8 __percpu *p = pcp->vm_stat_diff + item;
409 long o, n, t, z;
410
411 do {
412 z = 0; /* overflow to zone counters */
413
414 /*
415 * The fetching of the stat_threshold is racy. We may apply
416 * a counter threshold to the wrong the cpu if we get
d3bc2367
CL
417 * rescheduled while executing here. However, the next
418 * counter update will apply the threshold again and
419 * therefore bring the counter under the threshold again.
420 *
421 * Most of the time the thresholds are the same anyways
422 * for all cpus in a zone.
7c839120
CL
423 */
424 t = this_cpu_read(pcp->stat_threshold);
425
426 o = this_cpu_read(*p);
427 n = delta + o;
428
429 if (n > t || n < -t) {
430 int os = overstep_mode * (t >> 1) ;
431
432 /* Overflow must be added to zone counters */
433 z = n + os;
434 n = -os;
435 }
436 } while (this_cpu_cmpxchg(*p, o, n) != o);
437
438 if (z)
439 zone_page_state_add(z, zone, item);
440}
441
442void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 443 long delta)
7c839120 444{
75ef7184 445 mod_zone_state(zone, item, delta, 0);
7c839120
CL
446}
447EXPORT_SYMBOL(mod_zone_page_state);
448
7c839120
CL
449void inc_zone_page_state(struct page *page, enum zone_stat_item item)
450{
75ef7184 451 mod_zone_state(page_zone(page), item, 1, 1);
7c839120
CL
452}
453EXPORT_SYMBOL(inc_zone_page_state);
454
455void dec_zone_page_state(struct page *page, enum zone_stat_item item)
456{
75ef7184 457 mod_zone_state(page_zone(page), item, -1, -1);
7c839120
CL
458}
459EXPORT_SYMBOL(dec_zone_page_state);
75ef7184
MG
460
461static inline void mod_node_state(struct pglist_data *pgdat,
462 enum node_stat_item item, int delta, int overstep_mode)
463{
464 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
465 s8 __percpu *p = pcp->vm_node_stat_diff + item;
466 long o, n, t, z;
467
468 do {
469 z = 0; /* overflow to node counters */
470
471 /*
472 * The fetching of the stat_threshold is racy. We may apply
473 * a counter threshold to the wrong the cpu if we get
474 * rescheduled while executing here. However, the next
475 * counter update will apply the threshold again and
476 * therefore bring the counter under the threshold again.
477 *
478 * Most of the time the thresholds are the same anyways
479 * for all cpus in a node.
480 */
481 t = this_cpu_read(pcp->stat_threshold);
482
483 o = this_cpu_read(*p);
484 n = delta + o;
485
486 if (n > t || n < -t) {
487 int os = overstep_mode * (t >> 1) ;
488
489 /* Overflow must be added to node counters */
490 z = n + os;
491 n = -os;
492 }
493 } while (this_cpu_cmpxchg(*p, o, n) != o);
494
495 if (z)
496 node_page_state_add(z, pgdat, item);
497}
498
499void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
500 long delta)
501{
502 mod_node_state(pgdat, item, delta, 0);
503}
504EXPORT_SYMBOL(mod_node_page_state);
505
506void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
507{
508 mod_node_state(pgdat, item, 1, 1);
509}
510
511void inc_node_page_state(struct page *page, enum node_stat_item item)
512{
513 mod_node_state(page_pgdat(page), item, 1, 1);
514}
515EXPORT_SYMBOL(inc_node_page_state);
516
517void dec_node_page_state(struct page *page, enum node_stat_item item)
518{
519 mod_node_state(page_pgdat(page), item, -1, -1);
520}
521EXPORT_SYMBOL(dec_node_page_state);
7c839120
CL
522#else
523/*
524 * Use interrupt disable to serialize counter updates
525 */
526void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 527 long delta)
7c839120
CL
528{
529 unsigned long flags;
530
531 local_irq_save(flags);
532 __mod_zone_page_state(zone, item, delta);
533 local_irq_restore(flags);
534}
535EXPORT_SYMBOL(mod_zone_page_state);
536
2244b95a
CL
537void inc_zone_page_state(struct page *page, enum zone_stat_item item)
538{
539 unsigned long flags;
540 struct zone *zone;
2244b95a
CL
541
542 zone = page_zone(page);
543 local_irq_save(flags);
ca889e6c 544 __inc_zone_state(zone, item);
2244b95a
CL
545 local_irq_restore(flags);
546}
547EXPORT_SYMBOL(inc_zone_page_state);
548
549void dec_zone_page_state(struct page *page, enum zone_stat_item item)
550{
551 unsigned long flags;
2244b95a 552
2244b95a 553 local_irq_save(flags);
a302eb4e 554 __dec_zone_page_state(page, item);
2244b95a
CL
555 local_irq_restore(flags);
556}
557EXPORT_SYMBOL(dec_zone_page_state);
558
75ef7184
MG
559void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
560{
561 unsigned long flags;
562
563 local_irq_save(flags);
564 __inc_node_state(pgdat, item);
565 local_irq_restore(flags);
566}
567EXPORT_SYMBOL(inc_node_state);
568
569void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
570 long delta)
571{
572 unsigned long flags;
573
574 local_irq_save(flags);
575 __mod_node_page_state(pgdat, item, delta);
576 local_irq_restore(flags);
577}
578EXPORT_SYMBOL(mod_node_page_state);
579
580void inc_node_page_state(struct page *page, enum node_stat_item item)
581{
582 unsigned long flags;
583 struct pglist_data *pgdat;
584
585 pgdat = page_pgdat(page);
586 local_irq_save(flags);
587 __inc_node_state(pgdat, item);
588 local_irq_restore(flags);
589}
590EXPORT_SYMBOL(inc_node_page_state);
591
592void dec_node_page_state(struct page *page, enum node_stat_item item)
593{
594 unsigned long flags;
595
596 local_irq_save(flags);
597 __dec_node_page_state(page, item);
598 local_irq_restore(flags);
599}
600EXPORT_SYMBOL(dec_node_page_state);
601#endif
7cc36bbd
CL
602
603/*
604 * Fold a differential into the global counters.
605 * Returns the number of counters updated.
606 */
75ef7184 607static int fold_diff(int *zone_diff, int *node_diff)
4edb0748
CL
608{
609 int i;
7cc36bbd 610 int changes = 0;
4edb0748
CL
611
612 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
75ef7184
MG
613 if (zone_diff[i]) {
614 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
615 changes++;
616 }
617
618 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
619 if (node_diff[i]) {
620 atomic_long_add(node_diff[i], &vm_node_stat[i]);
7cc36bbd
CL
621 changes++;
622 }
623 return changes;
4edb0748
CL
624}
625
2244b95a 626/*
2bb921e5 627 * Update the zone counters for the current cpu.
a7f75e25 628 *
4037d452
CL
629 * Note that refresh_cpu_vm_stats strives to only access
630 * node local memory. The per cpu pagesets on remote zones are placed
631 * in the memory local to the processor using that pageset. So the
632 * loop over all zones will access a series of cachelines local to
633 * the processor.
634 *
635 * The call to zone_page_state_add updates the cachelines with the
636 * statistics in the remote zone struct as well as the global cachelines
637 * with the global counters. These could cause remote node cache line
638 * bouncing and will have to be only done when necessary.
7cc36bbd
CL
639 *
640 * The function returns the number of global counters updated.
2244b95a 641 */
0eb77e98 642static int refresh_cpu_vm_stats(bool do_pagesets)
2244b95a 643{
75ef7184 644 struct pglist_data *pgdat;
2244b95a
CL
645 struct zone *zone;
646 int i;
75ef7184
MG
647 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
648 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
7cc36bbd 649 int changes = 0;
2244b95a 650
ee99c71c 651 for_each_populated_zone(zone) {
fbc2edb0 652 struct per_cpu_pageset __percpu *p = zone->pageset;
2244b95a 653
fbc2edb0
CL
654 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
655 int v;
2244b95a 656
fbc2edb0
CL
657 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
658 if (v) {
a7f75e25 659
a7f75e25 660 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 661 global_zone_diff[i] += v;
4037d452
CL
662#ifdef CONFIG_NUMA
663 /* 3 seconds idle till flush */
fbc2edb0 664 __this_cpu_write(p->expire, 3);
4037d452 665#endif
2244b95a 666 }
fbc2edb0 667 }
4037d452 668#ifdef CONFIG_NUMA
0eb77e98
CL
669 if (do_pagesets) {
670 cond_resched();
671 /*
672 * Deal with draining the remote pageset of this
673 * processor
674 *
675 * Check if there are pages remaining in this pageset
676 * if not then there is nothing to expire.
677 */
678 if (!__this_cpu_read(p->expire) ||
fbc2edb0 679 !__this_cpu_read(p->pcp.count))
0eb77e98 680 continue;
4037d452 681
0eb77e98
CL
682 /*
683 * We never drain zones local to this processor.
684 */
685 if (zone_to_nid(zone) == numa_node_id()) {
686 __this_cpu_write(p->expire, 0);
687 continue;
688 }
4037d452 689
0eb77e98
CL
690 if (__this_cpu_dec_return(p->expire))
691 continue;
4037d452 692
0eb77e98
CL
693 if (__this_cpu_read(p->pcp.count)) {
694 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
695 changes++;
696 }
7cc36bbd 697 }
4037d452 698#endif
2244b95a 699 }
75ef7184
MG
700
701 for_each_online_pgdat(pgdat) {
702 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
703
704 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
705 int v;
706
707 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
708 if (v) {
709 atomic_long_add(v, &pgdat->vm_stat[i]);
710 global_node_diff[i] += v;
711 }
712 }
713 }
714
715 changes += fold_diff(global_zone_diff, global_node_diff);
7cc36bbd 716 return changes;
2244b95a
CL
717}
718
2bb921e5
CL
719/*
720 * Fold the data for an offline cpu into the global array.
721 * There cannot be any access by the offline cpu and therefore
722 * synchronization is simplified.
723 */
724void cpu_vm_stats_fold(int cpu)
725{
75ef7184 726 struct pglist_data *pgdat;
2bb921e5
CL
727 struct zone *zone;
728 int i;
75ef7184
MG
729 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
730 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
2bb921e5
CL
731
732 for_each_populated_zone(zone) {
733 struct per_cpu_pageset *p;
734
735 p = per_cpu_ptr(zone->pageset, cpu);
736
737 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
738 if (p->vm_stat_diff[i]) {
739 int v;
740
741 v = p->vm_stat_diff[i];
742 p->vm_stat_diff[i] = 0;
743 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 744 global_zone_diff[i] += v;
2bb921e5
CL
745 }
746 }
747
75ef7184
MG
748 for_each_online_pgdat(pgdat) {
749 struct per_cpu_nodestat *p;
750
751 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
752
753 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
754 if (p->vm_node_stat_diff[i]) {
755 int v;
756
757 v = p->vm_node_stat_diff[i];
758 p->vm_node_stat_diff[i] = 0;
759 atomic_long_add(v, &pgdat->vm_stat[i]);
760 global_node_diff[i] += v;
761 }
762 }
763
764 fold_diff(global_zone_diff, global_node_diff);
2bb921e5
CL
765}
766
40f4b1ea
CS
767/*
768 * this is only called if !populated_zone(zone), which implies no other users of
769 * pset->vm_stat_diff[] exsist.
770 */
5a883813
MK
771void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
772{
773 int i;
774
775 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
776 if (pset->vm_stat_diff[i]) {
777 int v = pset->vm_stat_diff[i];
778 pset->vm_stat_diff[i] = 0;
779 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 780 atomic_long_add(v, &vm_zone_stat[i]);
5a883813
MK
781 }
782}
2244b95a
CL
783#endif
784
ca889e6c 785#ifdef CONFIG_NUMA
c2d42c16 786/*
75ef7184
MG
787 * Determine the per node value of a stat item. This function
788 * is called frequently in a NUMA machine, so try to be as
789 * frugal as possible.
c2d42c16 790 */
75ef7184
MG
791unsigned long sum_zone_node_page_state(int node,
792 enum zone_stat_item item)
c2d42c16
AM
793{
794 struct zone *zones = NODE_DATA(node)->node_zones;
e87d59f7
JK
795 int i;
796 unsigned long count = 0;
c2d42c16 797
e87d59f7
JK
798 for (i = 0; i < MAX_NR_ZONES; i++)
799 count += zone_page_state(zones + i, item);
800
801 return count;
c2d42c16
AM
802}
803
75ef7184
MG
804/*
805 * Determine the per node value of a stat item.
806 */
807unsigned long node_page_state(struct pglist_data *pgdat,
808 enum node_stat_item item)
809{
810 long x = atomic_long_read(&pgdat->vm_stat[item]);
811#ifdef CONFIG_SMP
812 if (x < 0)
813 x = 0;
814#endif
815 return x;
816}
ca889e6c
CL
817#endif
818
d7a5752c 819#ifdef CONFIG_COMPACTION
36deb0be 820
d7a5752c
MG
821struct contig_page_info {
822 unsigned long free_pages;
823 unsigned long free_blocks_total;
824 unsigned long free_blocks_suitable;
825};
826
827/*
828 * Calculate the number of free pages in a zone, how many contiguous
829 * pages are free and how many are large enough to satisfy an allocation of
830 * the target size. Note that this function makes no attempt to estimate
831 * how many suitable free blocks there *might* be if MOVABLE pages were
832 * migrated. Calculating that is possible, but expensive and can be
833 * figured out from userspace
834 */
835static void fill_contig_page_info(struct zone *zone,
836 unsigned int suitable_order,
837 struct contig_page_info *info)
838{
839 unsigned int order;
840
841 info->free_pages = 0;
842 info->free_blocks_total = 0;
843 info->free_blocks_suitable = 0;
844
845 for (order = 0; order < MAX_ORDER; order++) {
846 unsigned long blocks;
847
848 /* Count number of free blocks */
849 blocks = zone->free_area[order].nr_free;
850 info->free_blocks_total += blocks;
851
852 /* Count free base pages */
853 info->free_pages += blocks << order;
854
855 /* Count the suitable free blocks */
856 if (order >= suitable_order)
857 info->free_blocks_suitable += blocks <<
858 (order - suitable_order);
859 }
860}
f1a5ab12
MG
861
862/*
863 * A fragmentation index only makes sense if an allocation of a requested
864 * size would fail. If that is true, the fragmentation index indicates
865 * whether external fragmentation or a lack of memory was the problem.
866 * The value can be used to determine if page reclaim or compaction
867 * should be used
868 */
56de7263 869static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
f1a5ab12
MG
870{
871 unsigned long requested = 1UL << order;
872
873 if (!info->free_blocks_total)
874 return 0;
875
876 /* Fragmentation index only makes sense when a request would fail */
877 if (info->free_blocks_suitable)
878 return -1000;
879
880 /*
881 * Index is between 0 and 1 so return within 3 decimal places
882 *
883 * 0 => allocation would fail due to lack of memory
884 * 1 => allocation would fail due to fragmentation
885 */
886 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
887}
56de7263
MG
888
889/* Same as __fragmentation index but allocs contig_page_info on stack */
890int fragmentation_index(struct zone *zone, unsigned int order)
891{
892 struct contig_page_info info;
893
894 fill_contig_page_info(zone, order, &info);
895 return __fragmentation_index(order, &info);
896}
d7a5752c
MG
897#endif
898
0d6617c7 899#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
fa25c503
KM
900#ifdef CONFIG_ZONE_DMA
901#define TEXT_FOR_DMA(xx) xx "_dma",
902#else
903#define TEXT_FOR_DMA(xx)
904#endif
905
906#ifdef CONFIG_ZONE_DMA32
907#define TEXT_FOR_DMA32(xx) xx "_dma32",
908#else
909#define TEXT_FOR_DMA32(xx)
910#endif
911
912#ifdef CONFIG_HIGHMEM
913#define TEXT_FOR_HIGHMEM(xx) xx "_high",
914#else
915#define TEXT_FOR_HIGHMEM(xx)
916#endif
917
918#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
919 TEXT_FOR_HIGHMEM(xx) xx "_movable",
920
921const char * const vmstat_text[] = {
09316c09 922 /* enum zone_stat_item countes */
fa25c503 923 "nr_free_pages",
fa25c503 924 "nr_mlock",
fa25c503
KM
925 "nr_slab_reclaimable",
926 "nr_slab_unreclaimable",
927 "nr_page_table_pages",
928 "nr_kernel_stack",
fa25c503 929 "nr_bounce",
91537fee
MK
930#if IS_ENABLED(CONFIG_ZSMALLOC)
931 "nr_zspages",
932#endif
fa25c503
KM
933#ifdef CONFIG_NUMA
934 "numa_hit",
935 "numa_miss",
936 "numa_foreign",
937 "numa_interleave",
938 "numa_local",
939 "numa_other",
940#endif
d1ce749a 941 "nr_free_cma",
09316c09 942
599d0c95
MG
943 /* Node-based counters */
944 "nr_inactive_anon",
945 "nr_active_anon",
946 "nr_inactive_file",
947 "nr_active_file",
948 "nr_unevictable",
949 "nr_isolated_anon",
950 "nr_isolated_file",
951 "nr_pages_scanned",
1e6b1085
MG
952 "workingset_refault",
953 "workingset_activate",
954 "workingset_nodereclaim",
50658e2e
MG
955 "nr_anon_pages",
956 "nr_mapped",
11fb9989
MG
957 "nr_file_pages",
958 "nr_dirty",
959 "nr_writeback",
960 "nr_writeback_temp",
961 "nr_shmem",
962 "nr_shmem_hugepages",
963 "nr_shmem_pmdmapped",
964 "nr_anon_transparent_hugepages",
965 "nr_unstable",
c4a25635
MG
966 "nr_vmscan_write",
967 "nr_vmscan_immediate_reclaim",
968 "nr_dirtied",
969 "nr_written",
599d0c95 970
09316c09 971 /* enum writeback_stat_item counters */
fa25c503
KM
972 "nr_dirty_threshold",
973 "nr_dirty_background_threshold",
974
975#ifdef CONFIG_VM_EVENT_COUNTERS
09316c09 976 /* enum vm_event_item counters */
fa25c503
KM
977 "pgpgin",
978 "pgpgout",
979 "pswpin",
980 "pswpout",
981
982 TEXTS_FOR_ZONES("pgalloc")
7cc30fcf
MG
983 TEXTS_FOR_ZONES("allocstall")
984 TEXTS_FOR_ZONES("pgskip")
fa25c503
KM
985
986 "pgfree",
987 "pgactivate",
988 "pgdeactivate",
989
990 "pgfault",
991 "pgmajfault",
854e9ed0 992 "pglazyfreed",
fa25c503 993
599d0c95
MG
994 "pgrefill",
995 "pgsteal_kswapd",
996 "pgsteal_direct",
997 "pgscan_kswapd",
998 "pgscan_direct",
68243e76 999 "pgscan_direct_throttle",
fa25c503
KM
1000
1001#ifdef CONFIG_NUMA
1002 "zone_reclaim_failed",
1003#endif
1004 "pginodesteal",
1005 "slabs_scanned",
fa25c503
KM
1006 "kswapd_inodesteal",
1007 "kswapd_low_wmark_hit_quickly",
1008 "kswapd_high_wmark_hit_quickly",
fa25c503 1009 "pageoutrun",
fa25c503
KM
1010
1011 "pgrotated",
1012
5509a5d2
DH
1013 "drop_pagecache",
1014 "drop_slab",
1015
03c5a6e1
MG
1016#ifdef CONFIG_NUMA_BALANCING
1017 "numa_pte_updates",
72403b4a 1018 "numa_huge_pte_updates",
03c5a6e1
MG
1019 "numa_hint_faults",
1020 "numa_hint_faults_local",
1021 "numa_pages_migrated",
1022#endif
5647bc29
MG
1023#ifdef CONFIG_MIGRATION
1024 "pgmigrate_success",
1025 "pgmigrate_fail",
1026#endif
fa25c503 1027#ifdef CONFIG_COMPACTION
397487db
MG
1028 "compact_migrate_scanned",
1029 "compact_free_scanned",
1030 "compact_isolated",
fa25c503
KM
1031 "compact_stall",
1032 "compact_fail",
1033 "compact_success",
698b1b30 1034 "compact_daemon_wake",
fa25c503
KM
1035#endif
1036
1037#ifdef CONFIG_HUGETLB_PAGE
1038 "htlb_buddy_alloc_success",
1039 "htlb_buddy_alloc_fail",
1040#endif
1041 "unevictable_pgs_culled",
1042 "unevictable_pgs_scanned",
1043 "unevictable_pgs_rescued",
1044 "unevictable_pgs_mlocked",
1045 "unevictable_pgs_munlocked",
1046 "unevictable_pgs_cleared",
1047 "unevictable_pgs_stranded",
fa25c503
KM
1048
1049#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1050 "thp_fault_alloc",
1051 "thp_fault_fallback",
1052 "thp_collapse_alloc",
1053 "thp_collapse_alloc_failed",
95ecedcd
KS
1054 "thp_file_alloc",
1055 "thp_file_mapped",
122afea9
KS
1056 "thp_split_page",
1057 "thp_split_page_failed",
f9719a03 1058 "thp_deferred_split_page",
122afea9 1059 "thp_split_pmd",
d8a8e1f0
KS
1060 "thp_zero_page_alloc",
1061 "thp_zero_page_alloc_failed",
fa25c503 1062#endif
09316c09
KK
1063#ifdef CONFIG_MEMORY_BALLOON
1064 "balloon_inflate",
1065 "balloon_deflate",
1066#ifdef CONFIG_BALLOON_COMPACTION
1067 "balloon_migrate",
1068#endif
1069#endif /* CONFIG_MEMORY_BALLOON */
ec659934 1070#ifdef CONFIG_DEBUG_TLBFLUSH
6df46865 1071#ifdef CONFIG_SMP
9824cf97
DH
1072 "nr_tlb_remote_flush",
1073 "nr_tlb_remote_flush_received",
ec659934 1074#endif /* CONFIG_SMP */
9824cf97
DH
1075 "nr_tlb_local_flush_all",
1076 "nr_tlb_local_flush_one",
ec659934 1077#endif /* CONFIG_DEBUG_TLBFLUSH */
fa25c503 1078
4f115147
DB
1079#ifdef CONFIG_DEBUG_VM_VMACACHE
1080 "vmacache_find_calls",
1081 "vmacache_find_hits",
f5f302e2 1082 "vmacache_full_flushes",
4f115147 1083#endif
fa25c503
KM
1084#endif /* CONFIG_VM_EVENTS_COUNTERS */
1085};
0d6617c7 1086#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
fa25c503
KM
1087
1088
3c486871
AM
1089#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1090 defined(CONFIG_PROC_FS)
1091static void *frag_start(struct seq_file *m, loff_t *pos)
1092{
1093 pg_data_t *pgdat;
1094 loff_t node = *pos;
1095
1096 for (pgdat = first_online_pgdat();
1097 pgdat && node;
1098 pgdat = next_online_pgdat(pgdat))
1099 --node;
1100
1101 return pgdat;
1102}
1103
1104static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1105{
1106 pg_data_t *pgdat = (pg_data_t *)arg;
1107
1108 (*pos)++;
1109 return next_online_pgdat(pgdat);
1110}
1111
1112static void frag_stop(struct seq_file *m, void *arg)
1113{
1114}
1115
1116/* Walk all the zones in a node and print using a callback */
1117static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1118 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1119{
1120 struct zone *zone;
1121 struct zone *node_zones = pgdat->node_zones;
1122 unsigned long flags;
1123
1124 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1125 if (!populated_zone(zone))
1126 continue;
1127
1128 spin_lock_irqsave(&zone->lock, flags);
1129 print(m, pgdat, zone);
1130 spin_unlock_irqrestore(&zone->lock, flags);
1131 }
1132}
1133#endif
1134
d7a5752c 1135#ifdef CONFIG_PROC_FS
467c996c
MG
1136static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1137 struct zone *zone)
1138{
1139 int order;
1140
1141 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1142 for (order = 0; order < MAX_ORDER; ++order)
1143 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1144 seq_putc(m, '\n');
1145}
1146
1147/*
1148 * This walks the free areas for each zone.
1149 */
1150static int frag_show(struct seq_file *m, void *arg)
1151{
1152 pg_data_t *pgdat = (pg_data_t *)arg;
1153 walk_zones_in_node(m, pgdat, frag_show_print);
1154 return 0;
1155}
1156
1157static void pagetypeinfo_showfree_print(struct seq_file *m,
1158 pg_data_t *pgdat, struct zone *zone)
1159{
1160 int order, mtype;
1161
1162 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1163 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1164 pgdat->node_id,
1165 zone->name,
1166 migratetype_names[mtype]);
1167 for (order = 0; order < MAX_ORDER; ++order) {
1168 unsigned long freecount = 0;
1169 struct free_area *area;
1170 struct list_head *curr;
1171
1172 area = &(zone->free_area[order]);
1173
1174 list_for_each(curr, &area->free_list[mtype])
1175 freecount++;
1176 seq_printf(m, "%6lu ", freecount);
1177 }
f6ac2354
CL
1178 seq_putc(m, '\n');
1179 }
467c996c
MG
1180}
1181
1182/* Print out the free pages at each order for each migatetype */
1183static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1184{
1185 int order;
1186 pg_data_t *pgdat = (pg_data_t *)arg;
1187
1188 /* Print header */
1189 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1190 for (order = 0; order < MAX_ORDER; ++order)
1191 seq_printf(m, "%6d ", order);
1192 seq_putc(m, '\n');
1193
1194 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
1195
1196 return 0;
1197}
1198
1199static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1200 pg_data_t *pgdat, struct zone *zone)
1201{
1202 int mtype;
1203 unsigned long pfn;
1204 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 1205 unsigned long end_pfn = zone_end_pfn(zone);
467c996c
MG
1206 unsigned long count[MIGRATE_TYPES] = { 0, };
1207
1208 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1209 struct page *page;
1210
1211 if (!pfn_valid(pfn))
1212 continue;
1213
1214 page = pfn_to_page(pfn);
eb33575c
MG
1215
1216 /* Watch for unexpected holes punched in the memmap */
1217 if (!memmap_valid_within(pfn, page, zone))
e80d6a24 1218 continue;
eb33575c 1219
a91c43c7
JK
1220 if (page_zone(page) != zone)
1221 continue;
1222
467c996c
MG
1223 mtype = get_pageblock_migratetype(page);
1224
e80d6a24
MG
1225 if (mtype < MIGRATE_TYPES)
1226 count[mtype]++;
467c996c
MG
1227 }
1228
1229 /* Print counts */
1230 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1231 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1232 seq_printf(m, "%12lu ", count[mtype]);
1233 seq_putc(m, '\n');
1234}
1235
1236/* Print out the free pages at each order for each migratetype */
1237static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1238{
1239 int mtype;
1240 pg_data_t *pgdat = (pg_data_t *)arg;
1241
1242 seq_printf(m, "\n%-23s", "Number of blocks type ");
1243 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1244 seq_printf(m, "%12s ", migratetype_names[mtype]);
1245 seq_putc(m, '\n');
1246 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1247
1248 return 0;
1249}
1250
48c96a36
JK
1251#ifdef CONFIG_PAGE_OWNER
1252static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1253 pg_data_t *pgdat,
1254 struct zone *zone)
1255{
1256 struct page *page;
1257 struct page_ext *page_ext;
1258 unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1259 unsigned long end_pfn = pfn + zone->spanned_pages;
1260 unsigned long count[MIGRATE_TYPES] = { 0, };
1261 int pageblock_mt, page_mt;
1262 int i;
1263
1264 /* Scan block by block. First and last block may be incomplete */
1265 pfn = zone->zone_start_pfn;
1266
1267 /*
1268 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1269 * a zone boundary, it will be double counted between zones. This does
1270 * not matter as the mixed block count will still be correct
1271 */
1272 for (; pfn < end_pfn; ) {
1273 if (!pfn_valid(pfn)) {
1274 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1275 continue;
1276 }
1277
1278 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1279 block_end_pfn = min(block_end_pfn, end_pfn);
1280
1281 page = pfn_to_page(pfn);
0b423ca2 1282 pageblock_mt = get_pageblock_migratetype(page);
48c96a36
JK
1283
1284 for (; pfn < block_end_pfn; pfn++) {
1285 if (!pfn_valid_within(pfn))
1286 continue;
1287
1288 page = pfn_to_page(pfn);
a91c43c7
JK
1289
1290 if (page_zone(page) != zone)
1291 continue;
1292
48c96a36
JK
1293 if (PageBuddy(page)) {
1294 pfn += (1UL << page_order(page)) - 1;
1295 continue;
1296 }
1297
1298 if (PageReserved(page))
1299 continue;
1300
1301 page_ext = lookup_page_ext(page);
f86e4271
YS
1302 if (unlikely(!page_ext))
1303 continue;
48c96a36
JK
1304
1305 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1306 continue;
1307
1308 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1309 if (pageblock_mt != page_mt) {
1310 if (is_migrate_cma(pageblock_mt))
1311 count[MIGRATE_MOVABLE]++;
1312 else
1313 count[pageblock_mt]++;
1314
1315 pfn = block_end_pfn;
1316 break;
1317 }
1318 pfn += (1UL << page_ext->order) - 1;
1319 }
1320 }
1321
1322 /* Print counts */
1323 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1324 for (i = 0; i < MIGRATE_TYPES; i++)
1325 seq_printf(m, "%12lu ", count[i]);
1326 seq_putc(m, '\n');
1327}
1328#endif /* CONFIG_PAGE_OWNER */
1329
1330/*
1331 * Print out the number of pageblocks for each migratetype that contain pages
1332 * of other types. This gives an indication of how well fallbacks are being
1333 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1334 * to determine what is going on
1335 */
1336static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1337{
1338#ifdef CONFIG_PAGE_OWNER
1339 int mtype;
1340
7dd80b8a 1341 if (!static_branch_unlikely(&page_owner_inited))
48c96a36
JK
1342 return;
1343
1344 drain_all_pages(NULL);
1345
1346 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1347 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1348 seq_printf(m, "%12s ", migratetype_names[mtype]);
1349 seq_putc(m, '\n');
1350
1351 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1352#endif /* CONFIG_PAGE_OWNER */
1353}
1354
467c996c
MG
1355/*
1356 * This prints out statistics in relation to grouping pages by mobility.
1357 * It is expensive to collect so do not constantly read the file.
1358 */
1359static int pagetypeinfo_show(struct seq_file *m, void *arg)
1360{
1361 pg_data_t *pgdat = (pg_data_t *)arg;
1362
41b25a37 1363 /* check memoryless node */
a47b53c5 1364 if (!node_state(pgdat->node_id, N_MEMORY))
41b25a37
KM
1365 return 0;
1366
467c996c
MG
1367 seq_printf(m, "Page block order: %d\n", pageblock_order);
1368 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1369 seq_putc(m, '\n');
1370 pagetypeinfo_showfree(m, pgdat);
1371 pagetypeinfo_showblockcount(m, pgdat);
48c96a36 1372 pagetypeinfo_showmixedcount(m, pgdat);
467c996c 1373
f6ac2354
CL
1374 return 0;
1375}
1376
8f32f7e5 1377static const struct seq_operations fragmentation_op = {
f6ac2354
CL
1378 .start = frag_start,
1379 .next = frag_next,
1380 .stop = frag_stop,
1381 .show = frag_show,
1382};
1383
8f32f7e5
AD
1384static int fragmentation_open(struct inode *inode, struct file *file)
1385{
1386 return seq_open(file, &fragmentation_op);
1387}
1388
1389static const struct file_operations fragmentation_file_operations = {
1390 .open = fragmentation_open,
1391 .read = seq_read,
1392 .llseek = seq_lseek,
1393 .release = seq_release,
1394};
1395
74e2e8e8 1396static const struct seq_operations pagetypeinfo_op = {
467c996c
MG
1397 .start = frag_start,
1398 .next = frag_next,
1399 .stop = frag_stop,
1400 .show = pagetypeinfo_show,
1401};
1402
74e2e8e8
AD
1403static int pagetypeinfo_open(struct inode *inode, struct file *file)
1404{
1405 return seq_open(file, &pagetypeinfo_op);
1406}
1407
1408static const struct file_operations pagetypeinfo_file_ops = {
1409 .open = pagetypeinfo_open,
1410 .read = seq_read,
1411 .llseek = seq_lseek,
1412 .release = seq_release,
1413};
1414
e2ecc8a7
MG
1415static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1416{
1417 int zid;
1418
1419 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1420 struct zone *compare = &pgdat->node_zones[zid];
1421
1422 if (populated_zone(compare))
1423 return zone == compare;
1424 }
1425
1426 /* The zone must be somewhere! */
1427 WARN_ON_ONCE(1);
1428 return false;
1429}
1430
467c996c
MG
1431static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1432 struct zone *zone)
f6ac2354 1433{
467c996c
MG
1434 int i;
1435 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
e2ecc8a7
MG
1436 if (is_zone_first_populated(pgdat, zone)) {
1437 seq_printf(m, "\n per-node stats");
1438 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1439 seq_printf(m, "\n %-12s %lu",
1440 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1441 node_page_state(pgdat, i));
1442 }
1443 }
467c996c
MG
1444 seq_printf(m,
1445 "\n pages free %lu"
1446 "\n min %lu"
1447 "\n low %lu"
1448 "\n high %lu"
599d0c95 1449 "\n node_scanned %lu"
467c996c 1450 "\n spanned %lu"
9feedc9d
JL
1451 "\n present %lu"
1452 "\n managed %lu",
88f5acf8 1453 zone_page_state(zone, NR_FREE_PAGES),
41858966
MG
1454 min_wmark_pages(zone),
1455 low_wmark_pages(zone),
1456 high_wmark_pages(zone),
599d0c95 1457 node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED),
467c996c 1458 zone->spanned_pages,
9feedc9d
JL
1459 zone->present_pages,
1460 zone->managed_pages);
467c996c
MG
1461
1462 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
599d0c95 1463 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
467c996c
MG
1464 zone_page_state(zone, i));
1465
1466 seq_printf(m,
3484b2de 1467 "\n protection: (%ld",
467c996c
MG
1468 zone->lowmem_reserve[0]);
1469 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
3484b2de 1470 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
467c996c
MG
1471 seq_printf(m,
1472 ")"
1473 "\n pagesets");
1474 for_each_online_cpu(i) {
1475 struct per_cpu_pageset *pageset;
467c996c 1476
99dcc3e5 1477 pageset = per_cpu_ptr(zone->pageset, i);
3dfa5721
CL
1478 seq_printf(m,
1479 "\n cpu: %i"
1480 "\n count: %i"
1481 "\n high: %i"
1482 "\n batch: %i",
1483 i,
1484 pageset->pcp.count,
1485 pageset->pcp.high,
1486 pageset->pcp.batch);
df9ecaba 1487#ifdef CONFIG_SMP
467c996c
MG
1488 seq_printf(m, "\n vm stats threshold: %d",
1489 pageset->stat_threshold);
df9ecaba 1490#endif
f6ac2354 1491 }
467c996c 1492 seq_printf(m,
599d0c95
MG
1493 "\n node_unreclaimable: %u"
1494 "\n start_pfn: %lu"
1495 "\n node_inactive_ratio: %u",
1496 !pgdat_reclaimable(zone->zone_pgdat),
556adecb 1497 zone->zone_start_pfn,
599d0c95 1498 zone->zone_pgdat->inactive_ratio);
467c996c
MG
1499 seq_putc(m, '\n');
1500}
1501
1502/*
1503 * Output information about zones in @pgdat.
1504 */
1505static int zoneinfo_show(struct seq_file *m, void *arg)
1506{
1507 pg_data_t *pgdat = (pg_data_t *)arg;
1508 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
f6ac2354
CL
1509 return 0;
1510}
1511
5c9fe628 1512static const struct seq_operations zoneinfo_op = {
f6ac2354
CL
1513 .start = frag_start, /* iterate over all zones. The same as in
1514 * fragmentation. */
1515 .next = frag_next,
1516 .stop = frag_stop,
1517 .show = zoneinfo_show,
1518};
1519
5c9fe628
AD
1520static int zoneinfo_open(struct inode *inode, struct file *file)
1521{
1522 return seq_open(file, &zoneinfo_op);
1523}
1524
1525static const struct file_operations proc_zoneinfo_file_operations = {
1526 .open = zoneinfo_open,
1527 .read = seq_read,
1528 .llseek = seq_lseek,
1529 .release = seq_release,
1530};
1531
79da826a
MR
1532enum writeback_stat_item {
1533 NR_DIRTY_THRESHOLD,
1534 NR_DIRTY_BG_THRESHOLD,
1535 NR_VM_WRITEBACK_STAT_ITEMS,
1536};
1537
f6ac2354
CL
1538static void *vmstat_start(struct seq_file *m, loff_t *pos)
1539{
2244b95a 1540 unsigned long *v;
79da826a 1541 int i, stat_items_size;
f6ac2354
CL
1542
1543 if (*pos >= ARRAY_SIZE(vmstat_text))
1544 return NULL;
79da826a 1545 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
75ef7184 1546 NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
79da826a 1547 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
f6ac2354 1548
f8891e5e 1549#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a 1550 stat_items_size += sizeof(struct vm_event_state);
f8891e5e 1551#endif
79da826a
MR
1552
1553 v = kmalloc(stat_items_size, GFP_KERNEL);
2244b95a
CL
1554 m->private = v;
1555 if (!v)
f6ac2354 1556 return ERR_PTR(-ENOMEM);
2244b95a
CL
1557 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1558 v[i] = global_page_state(i);
79da826a
MR
1559 v += NR_VM_ZONE_STAT_ITEMS;
1560
75ef7184
MG
1561 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1562 v[i] = global_node_page_state(i);
1563 v += NR_VM_NODE_STAT_ITEMS;
1564
79da826a
MR
1565 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1566 v + NR_DIRTY_THRESHOLD);
1567 v += NR_VM_WRITEBACK_STAT_ITEMS;
1568
f8891e5e 1569#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a
MR
1570 all_vm_events(v);
1571 v[PGPGIN] /= 2; /* sectors -> kbytes */
1572 v[PGPGOUT] /= 2;
f8891e5e 1573#endif
ff8b16d7 1574 return (unsigned long *)m->private + *pos;
f6ac2354
CL
1575}
1576
1577static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1578{
1579 (*pos)++;
1580 if (*pos >= ARRAY_SIZE(vmstat_text))
1581 return NULL;
1582 return (unsigned long *)m->private + *pos;
1583}
1584
1585static int vmstat_show(struct seq_file *m, void *arg)
1586{
1587 unsigned long *l = arg;
1588 unsigned long off = l - (unsigned long *)m->private;
f6ac2354
CL
1589 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1590 return 0;
1591}
1592
1593static void vmstat_stop(struct seq_file *m, void *arg)
1594{
1595 kfree(m->private);
1596 m->private = NULL;
1597}
1598
b6aa44ab 1599static const struct seq_operations vmstat_op = {
f6ac2354
CL
1600 .start = vmstat_start,
1601 .next = vmstat_next,
1602 .stop = vmstat_stop,
1603 .show = vmstat_show,
1604};
1605
b6aa44ab
AD
1606static int vmstat_open(struct inode *inode, struct file *file)
1607{
1608 return seq_open(file, &vmstat_op);
1609}
1610
1611static const struct file_operations proc_vmstat_file_operations = {
1612 .open = vmstat_open,
1613 .read = seq_read,
1614 .llseek = seq_lseek,
1615 .release = seq_release,
1616};
f6ac2354
CL
1617#endif /* CONFIG_PROC_FS */
1618
df9ecaba 1619#ifdef CONFIG_SMP
373ccbe5 1620static struct workqueue_struct *vmstat_wq;
d1187ed2 1621static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
77461ab3 1622int sysctl_stat_interval __read_mostly = HZ;
d1187ed2 1623
52b6f46b
HD
1624#ifdef CONFIG_PROC_FS
1625static void refresh_vm_stats(struct work_struct *work)
1626{
1627 refresh_cpu_vm_stats(true);
1628}
1629
1630int vmstat_refresh(struct ctl_table *table, int write,
1631 void __user *buffer, size_t *lenp, loff_t *ppos)
1632{
1633 long val;
1634 int err;
1635 int i;
1636
1637 /*
1638 * The regular update, every sysctl_stat_interval, may come later
1639 * than expected: leaving a significant amount in per_cpu buckets.
1640 * This is particularly misleading when checking a quantity of HUGE
1641 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1642 * which can equally be echo'ed to or cat'ted from (by root),
1643 * can be used to update the stats just before reading them.
1644 *
1645 * Oh, and since global_page_state() etc. are so careful to hide
1646 * transiently negative values, report an error here if any of
1647 * the stats is negative, so we know to go looking for imbalance.
1648 */
1649 err = schedule_on_each_cpu(refresh_vm_stats);
1650 if (err)
1651 return err;
1652 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
75ef7184 1653 val = atomic_long_read(&vm_zone_stat[i]);
52b6f46b
HD
1654 if (val < 0) {
1655 switch (i) {
52b6f46b
HD
1656 case NR_PAGES_SCANNED:
1657 /*
e6cbd7f2 1658 * This is often seen to go negative in
52b6f46b
HD
1659 * recent kernels, but not to go permanently
1660 * negative. Whilst it would be nicer not to
1661 * have exceptions, rooting them out would be
1662 * another task, of rather low priority.
1663 */
1664 break;
1665 default:
1666 pr_warn("%s: %s %ld\n",
1667 __func__, vmstat_text[i], val);
1668 err = -EINVAL;
1669 break;
1670 }
1671 }
1672 }
1673 if (err)
1674 return err;
1675 if (write)
1676 *ppos += *lenp;
1677 else
1678 *lenp = 0;
1679 return 0;
1680}
1681#endif /* CONFIG_PROC_FS */
1682
d1187ed2
CL
1683static void vmstat_update(struct work_struct *w)
1684{
0eb77e98 1685 if (refresh_cpu_vm_stats(true)) {
7cc36bbd
CL
1686 /*
1687 * Counters were updated so we expect more updates
1688 * to occur in the future. Keep on running the
1689 * update worker thread.
1690 */
7b8da4c7 1691 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
f01f17d3
MH
1692 this_cpu_ptr(&vmstat_work),
1693 round_jiffies_relative(sysctl_stat_interval));
7cc36bbd
CL
1694 }
1695}
1696
0eb77e98
CL
1697/*
1698 * Switch off vmstat processing and then fold all the remaining differentials
1699 * until the diffs stay at zero. The function is used by NOHZ and can only be
1700 * invoked when tick processing is not active.
1701 */
7cc36bbd
CL
1702/*
1703 * Check if the diffs for a certain cpu indicate that
1704 * an update is needed.
1705 */
1706static bool need_update(int cpu)
1707{
1708 struct zone *zone;
1709
1710 for_each_populated_zone(zone) {
1711 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1712
1713 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1714 /*
1715 * The fast way of checking if there are any vmstat diffs.
1716 * This works because the diffs are byte sized items.
1717 */
1718 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1719 return true;
1720
1721 }
1722 return false;
1723}
1724
7b8da4c7
CL
1725/*
1726 * Switch off vmstat processing and then fold all the remaining differentials
1727 * until the diffs stay at zero. The function is used by NOHZ and can only be
1728 * invoked when tick processing is not active.
1729 */
f01f17d3
MH
1730void quiet_vmstat(void)
1731{
1732 if (system_state != SYSTEM_RUNNING)
1733 return;
1734
7b8da4c7 1735 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
f01f17d3
MH
1736 return;
1737
1738 if (!need_update(smp_processor_id()))
1739 return;
1740
1741 /*
1742 * Just refresh counters and do not care about the pending delayed
1743 * vmstat_update. It doesn't fire that often to matter and canceling
1744 * it would be too expensive from this path.
1745 * vmstat_shepherd will take care about that for us.
1746 */
1747 refresh_cpu_vm_stats(false);
1748}
1749
7cc36bbd
CL
1750/*
1751 * Shepherd worker thread that checks the
1752 * differentials of processors that have their worker
1753 * threads for vm statistics updates disabled because of
1754 * inactivity.
1755 */
1756static void vmstat_shepherd(struct work_struct *w);
1757
0eb77e98 1758static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
7cc36bbd
CL
1759
1760static void vmstat_shepherd(struct work_struct *w)
1761{
1762 int cpu;
1763
1764 get_online_cpus();
1765 /* Check processors whose vmstat worker threads have been disabled */
7b8da4c7 1766 for_each_online_cpu(cpu) {
f01f17d3 1767 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
7cc36bbd 1768
7b8da4c7
CL
1769 if (!delayed_work_pending(dw) && need_update(cpu))
1770 queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
f01f17d3 1771 }
7cc36bbd
CL
1772 put_online_cpus();
1773
1774 schedule_delayed_work(&shepherd,
98f4ebb2 1775 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
1776}
1777
7cc36bbd 1778static void __init start_shepherd_timer(void)
d1187ed2 1779{
7cc36bbd
CL
1780 int cpu;
1781
1782 for_each_possible_cpu(cpu)
ccde8bd4 1783 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
7cc36bbd
CL
1784 vmstat_update);
1785
751e5f5c 1786 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
7cc36bbd
CL
1787 schedule_delayed_work(&shepherd,
1788 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
1789}
1790
807a1bd2
TK
1791static void vmstat_cpu_dead(int node)
1792{
1793 int cpu;
1794
1795 get_online_cpus();
1796 for_each_online_cpu(cpu)
1797 if (cpu_to_node(cpu) == node)
1798 goto end;
1799
1800 node_clear_state(node, N_CPU);
1801end:
1802 put_online_cpus();
1803}
1804
df9ecaba
CL
1805/*
1806 * Use the cpu notifier to insure that the thresholds are recalculated
1807 * when necessary.
1808 */
0db0628d 1809static int vmstat_cpuup_callback(struct notifier_block *nfb,
df9ecaba
CL
1810 unsigned long action,
1811 void *hcpu)
1812{
d1187ed2
CL
1813 long cpu = (long)hcpu;
1814
df9ecaba 1815 switch (action) {
d1187ed2
CL
1816 case CPU_ONLINE:
1817 case CPU_ONLINE_FROZEN:
5ee28a44 1818 refresh_zone_stat_thresholds();
ad596925 1819 node_set_state(cpu_to_node(cpu), N_CPU);
d1187ed2
CL
1820 break;
1821 case CPU_DOWN_PREPARE:
1822 case CPU_DOWN_PREPARE_FROZEN:
afe2c511 1823 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
d1187ed2
CL
1824 break;
1825 case CPU_DOWN_FAILED:
1826 case CPU_DOWN_FAILED_FROZEN:
d1187ed2 1827 break;
ce421c79 1828 case CPU_DEAD:
8bb78442 1829 case CPU_DEAD_FROZEN:
ce421c79 1830 refresh_zone_stat_thresholds();
807a1bd2 1831 vmstat_cpu_dead(cpu_to_node(cpu));
ce421c79
AW
1832 break;
1833 default:
1834 break;
df9ecaba
CL
1835 }
1836 return NOTIFY_OK;
1837}
1838
0db0628d 1839static struct notifier_block vmstat_notifier =
df9ecaba 1840 { &vmstat_cpuup_callback, NULL, 0 };
8f32f7e5 1841#endif
df9ecaba 1842
e2fc88d0 1843static int __init setup_vmstat(void)
df9ecaba 1844{
8f32f7e5 1845#ifdef CONFIG_SMP
0be94bad
SB
1846 cpu_notifier_register_begin();
1847 __register_cpu_notifier(&vmstat_notifier);
d1187ed2 1848
7cc36bbd 1849 start_shepherd_timer();
0be94bad 1850 cpu_notifier_register_done();
8f32f7e5
AD
1851#endif
1852#ifdef CONFIG_PROC_FS
1853 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
74e2e8e8 1854 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
b6aa44ab 1855 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
5c9fe628 1856 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
8f32f7e5 1857#endif
df9ecaba
CL
1858 return 0;
1859}
1860module_init(setup_vmstat)
d7a5752c
MG
1861
1862#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
d7a5752c
MG
1863
1864/*
1865 * Return an index indicating how much of the available free memory is
1866 * unusable for an allocation of the requested size.
1867 */
1868static int unusable_free_index(unsigned int order,
1869 struct contig_page_info *info)
1870{
1871 /* No free memory is interpreted as all free memory is unusable */
1872 if (info->free_pages == 0)
1873 return 1000;
1874
1875 /*
1876 * Index should be a value between 0 and 1. Return a value to 3
1877 * decimal places.
1878 *
1879 * 0 => no fragmentation
1880 * 1 => high fragmentation
1881 */
1882 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1883
1884}
1885
1886static void unusable_show_print(struct seq_file *m,
1887 pg_data_t *pgdat, struct zone *zone)
1888{
1889 unsigned int order;
1890 int index;
1891 struct contig_page_info info;
1892
1893 seq_printf(m, "Node %d, zone %8s ",
1894 pgdat->node_id,
1895 zone->name);
1896 for (order = 0; order < MAX_ORDER; ++order) {
1897 fill_contig_page_info(zone, order, &info);
1898 index = unusable_free_index(order, &info);
1899 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1900 }
1901
1902 seq_putc(m, '\n');
1903}
1904
1905/*
1906 * Display unusable free space index
1907 *
1908 * The unusable free space index measures how much of the available free
1909 * memory cannot be used to satisfy an allocation of a given size and is a
1910 * value between 0 and 1. The higher the value, the more of free memory is
1911 * unusable and by implication, the worse the external fragmentation is. This
1912 * can be expressed as a percentage by multiplying by 100.
1913 */
1914static int unusable_show(struct seq_file *m, void *arg)
1915{
1916 pg_data_t *pgdat = (pg_data_t *)arg;
1917
1918 /* check memoryless node */
a47b53c5 1919 if (!node_state(pgdat->node_id, N_MEMORY))
d7a5752c
MG
1920 return 0;
1921
1922 walk_zones_in_node(m, pgdat, unusable_show_print);
1923
1924 return 0;
1925}
1926
1927static const struct seq_operations unusable_op = {
1928 .start = frag_start,
1929 .next = frag_next,
1930 .stop = frag_stop,
1931 .show = unusable_show,
1932};
1933
1934static int unusable_open(struct inode *inode, struct file *file)
1935{
1936 return seq_open(file, &unusable_op);
1937}
1938
1939static const struct file_operations unusable_file_ops = {
1940 .open = unusable_open,
1941 .read = seq_read,
1942 .llseek = seq_lseek,
1943 .release = seq_release,
1944};
1945
f1a5ab12
MG
1946static void extfrag_show_print(struct seq_file *m,
1947 pg_data_t *pgdat, struct zone *zone)
1948{
1949 unsigned int order;
1950 int index;
1951
1952 /* Alloc on stack as interrupts are disabled for zone walk */
1953 struct contig_page_info info;
1954
1955 seq_printf(m, "Node %d, zone %8s ",
1956 pgdat->node_id,
1957 zone->name);
1958 for (order = 0; order < MAX_ORDER; ++order) {
1959 fill_contig_page_info(zone, order, &info);
56de7263 1960 index = __fragmentation_index(order, &info);
f1a5ab12
MG
1961 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1962 }
1963
1964 seq_putc(m, '\n');
1965}
1966
1967/*
1968 * Display fragmentation index for orders that allocations would fail for
1969 */
1970static int extfrag_show(struct seq_file *m, void *arg)
1971{
1972 pg_data_t *pgdat = (pg_data_t *)arg;
1973
1974 walk_zones_in_node(m, pgdat, extfrag_show_print);
1975
1976 return 0;
1977}
1978
1979static const struct seq_operations extfrag_op = {
1980 .start = frag_start,
1981 .next = frag_next,
1982 .stop = frag_stop,
1983 .show = extfrag_show,
1984};
1985
1986static int extfrag_open(struct inode *inode, struct file *file)
1987{
1988 return seq_open(file, &extfrag_op);
1989}
1990
1991static const struct file_operations extfrag_file_ops = {
1992 .open = extfrag_open,
1993 .read = seq_read,
1994 .llseek = seq_lseek,
1995 .release = seq_release,
1996};
1997
d7a5752c
MG
1998static int __init extfrag_debug_init(void)
1999{
bde8bd8a
S
2000 struct dentry *extfrag_debug_root;
2001
d7a5752c
MG
2002 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2003 if (!extfrag_debug_root)
2004 return -ENOMEM;
2005
2006 if (!debugfs_create_file("unusable_index", 0444,
2007 extfrag_debug_root, NULL, &unusable_file_ops))
bde8bd8a 2008 goto fail;
d7a5752c 2009
f1a5ab12
MG
2010 if (!debugfs_create_file("extfrag_index", 0444,
2011 extfrag_debug_root, NULL, &extfrag_file_ops))
bde8bd8a 2012 goto fail;
f1a5ab12 2013
d7a5752c 2014 return 0;
bde8bd8a
S
2015fail:
2016 debugfs_remove_recursive(extfrag_debug_root);
2017 return -ENOMEM;
d7a5752c
MG
2018}
2019
2020module_init(extfrag_debug_init);
2021#endif