]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/workingset.c
dt-bindings: usb: tegra-xudc: Remove extraneous PHYs
[thirdparty/linux.git] / mm / workingset.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
a528910e
JW
2/*
3 * Workingset detection
4 *
5 * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
6 */
7
8#include <linux/memcontrol.h>
170b04b7 9#include <linux/mm_inline.h>
a528910e 10#include <linux/writeback.h>
3a4f8a0b 11#include <linux/shmem_fs.h>
a528910e
JW
12#include <linux/pagemap.h>
13#include <linux/atomic.h>
14#include <linux/module.h>
15#include <linux/swap.h>
14b46879 16#include <linux/dax.h>
a528910e
JW
17#include <linux/fs.h>
18#include <linux/mm.h>
19
20/*
21 * Double CLOCK lists
22 *
1e6b1085 23 * Per node, two clock lists are maintained for file pages: the
a528910e
JW
24 * inactive and the active list. Freshly faulted pages start out at
25 * the head of the inactive list and page reclaim scans pages from the
26 * tail. Pages that are accessed multiple times on the inactive list
27 * are promoted to the active list, to protect them from reclaim,
28 * whereas active pages are demoted to the inactive list when the
29 * active list grows too big.
30 *
31 * fault ------------------------+
32 * |
33 * +--------------+ | +-------------+
34 * reclaim <- | inactive | <-+-- demotion | active | <--+
35 * +--------------+ +-------------+ |
36 * | |
37 * +-------------- promotion ------------------+
38 *
39 *
40 * Access frequency and refault distance
41 *
42 * A workload is thrashing when its pages are frequently used but they
43 * are evicted from the inactive list every time before another access
44 * would have promoted them to the active list.
45 *
46 * In cases where the average access distance between thrashing pages
47 * is bigger than the size of memory there is nothing that can be
48 * done - the thrashing set could never fit into memory under any
49 * circumstance.
50 *
51 * However, the average access distance could be bigger than the
52 * inactive list, yet smaller than the size of memory. In this case,
53 * the set could fit into memory if it weren't for the currently
54 * active pages - which may be used more, hopefully less frequently:
55 *
56 * +-memory available to cache-+
57 * | |
58 * +-inactive------+-active----+
59 * a b | c d e f g h i | J K L M N |
60 * +---------------+-----------+
61 *
62 * It is prohibitively expensive to accurately track access frequency
63 * of pages. But a reasonable approximation can be made to measure
64 * thrashing on the inactive list, after which refaulting pages can be
65 * activated optimistically to compete with the existing active pages.
66 *
67 * Approximating inactive page access frequency - Observations:
68 *
69 * 1. When a page is accessed for the first time, it is added to the
70 * head of the inactive list, slides every existing inactive page
71 * towards the tail by one slot, and pushes the current tail page
72 * out of memory.
73 *
74 * 2. When a page is accessed for the second time, it is promoted to
75 * the active list, shrinking the inactive list by one slot. This
76 * also slides all inactive pages that were faulted into the cache
77 * more recently than the activated page towards the tail of the
78 * inactive list.
79 *
80 * Thus:
81 *
82 * 1. The sum of evictions and activations between any two points in
83 * time indicate the minimum number of inactive pages accessed in
84 * between.
85 *
86 * 2. Moving one inactive page N page slots towards the tail of the
87 * list requires at least N inactive page accesses.
88 *
89 * Combining these:
90 *
91 * 1. When a page is finally evicted from memory, the number of
92 * inactive pages accessed while the page was in cache is at least
93 * the number of page slots on the inactive list.
94 *
95 * 2. In addition, measuring the sum of evictions and activations (E)
96 * at the time of a page's eviction, and comparing it to another
97 * reading (R) at the time the page faults back into memory tells
98 * the minimum number of accesses while the page was not cached.
99 * This is called the refault distance.
100 *
101 * Because the first access of the page was the fault and the second
102 * access the refault, we combine the in-cache distance with the
103 * out-of-cache distance to get the complete minimum access distance
104 * of this page:
105 *
106 * NR_inactive + (R - E)
107 *
108 * And knowing the minimum access distance of a page, we can easily
109 * tell if the page would be able to stay in cache assuming all page
110 * slots in the cache were available:
111 *
112 * NR_inactive + (R - E) <= NR_inactive + NR_active
113 *
ed8f3f99
YY
114 * If we have swap we should consider about NR_inactive_anon and
115 * NR_active_anon, so for page cache and anonymous respectively:
a528910e 116 *
ed8f3f99
YY
117 * NR_inactive_file + (R - E) <= NR_inactive_file + NR_active_file
118 * + NR_inactive_anon + NR_active_anon
119 *
120 * NR_inactive_anon + (R - E) <= NR_inactive_anon + NR_active_anon
121 * + NR_inactive_file + NR_active_file
122 *
123 * Which can be further simplified to:
124 *
125 * (R - E) <= NR_active_file + NR_inactive_anon + NR_active_anon
126 *
127 * (R - E) <= NR_active_anon + NR_inactive_file + NR_active_file
a528910e
JW
128 *
129 * Put into words, the refault distance (out-of-cache) can be seen as
130 * a deficit in inactive list space (in-cache). If the inactive list
131 * had (R - E) more page slots, the page would not have been evicted
132 * in between accesses, but activated instead. And on a full system,
133 * the only thing eating into inactive list space is active pages.
134 *
135 *
1899ad18 136 * Refaulting inactive pages
a528910e
JW
137 *
138 * All that is known about the active list is that the pages have been
139 * accessed more than once in the past. This means that at any given
140 * time there is actually a good chance that pages on the active list
141 * are no longer in active use.
142 *
143 * So when a refault distance of (R - E) is observed and there are at
ed8f3f99
YY
144 * least (R - E) pages in the userspace workingset, the refaulting page
145 * is activated optimistically in the hope that (R - E) pages are actually
a528910e
JW
146 * used less frequently than the refaulting page - or even not used at
147 * all anymore.
148 *
1899ad18
JW
149 * That means if inactive cache is refaulting with a suitable refault
150 * distance, we assume the cache workingset is transitioning and put
ed8f3f99 151 * pressure on the current workingset.
1899ad18 152 *
a528910e
JW
153 * If this is wrong and demotion kicks in, the pages which are truly
154 * used more frequently will be reactivated while the less frequently
155 * used once will be evicted from memory.
156 *
157 * But if this is right, the stale pages will be pushed out of memory
158 * and the used pages get to stay in cache.
159 *
1899ad18
JW
160 * Refaulting active pages
161 *
162 * If on the other hand the refaulting pages have recently been
163 * deactivated, it means that the active list is no longer protecting
164 * actively used cache from reclaim. The cache is NOT transitioning to
165 * a different workingset; the existing workingset is thrashing in the
166 * space allocated to the page cache.
167 *
a528910e
JW
168 *
169 * Implementation
170 *
31d8fcac
JW
171 * For each node's LRU lists, a counter for inactive evictions and
172 * activations is maintained (node->nonresident_age).
a528910e
JW
173 *
174 * On eviction, a snapshot of this counter (along with some bits to
a97e7904 175 * identify the node) is stored in the now empty page cache
a528910e
JW
176 * slot of the evicted page. This is called a shadow entry.
177 *
178 * On cache misses for which there are shadow entries, an eligible
179 * refault distance will immediately activate the refaulting page.
180 */
181
3ebc57f4 182#define WORKINGSET_SHIFT 1
3159f943 183#define EVICTION_SHIFT ((BITS_PER_LONG - BITS_PER_XA_VALUE) + \
3ebc57f4
ML
184 WORKINGSET_SHIFT + NODES_SHIFT + \
185 MEM_CGROUP_ID_SHIFT)
689c94f0
JW
186#define EVICTION_MASK (~0UL >> EVICTION_SHIFT)
187
612e4493
JW
188/*
189 * Eviction timestamps need to be able to cover the full range of
a97e7904 190 * actionable refaults. However, bits are tight in the xarray
612e4493
JW
191 * entry, and after storing the identifier for the lruvec there might
192 * not be enough left to represent every single actionable refault. In
193 * that case, we have to sacrifice granularity for distance, and group
194 * evictions into coarser buckets by shaving off lower timestamp bits.
195 */
196static unsigned int bucket_order __read_mostly;
197
1899ad18
JW
198static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
199 bool workingset)
a528910e 200{
3159f943 201 eviction &= EVICTION_MASK;
23047a96 202 eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
1e6b1085 203 eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
3ebc57f4 204 eviction = (eviction << WORKINGSET_SHIFT) | workingset;
a528910e 205
3159f943 206 return xa_mk_value(eviction);
a528910e
JW
207}
208
1e6b1085 209static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
1899ad18 210 unsigned long *evictionp, bool *workingsetp)
a528910e 211{
3159f943 212 unsigned long entry = xa_to_value(shadow);
1e6b1085 213 int memcgid, nid;
1899ad18 214 bool workingset;
a528910e 215
3ebc57f4
ML
216 workingset = entry & ((1UL << WORKINGSET_SHIFT) - 1);
217 entry >>= WORKINGSET_SHIFT;
a528910e
JW
218 nid = entry & ((1UL << NODES_SHIFT) - 1);
219 entry >>= NODES_SHIFT;
23047a96
JW
220 memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
221 entry >>= MEM_CGROUP_ID_SHIFT;
a528910e 222
23047a96 223 *memcgidp = memcgid;
1e6b1085 224 *pgdat = NODE_DATA(nid);
ac35a490 225 *evictionp = entry;
1899ad18 226 *workingsetp = workingset;
a528910e
JW
227}
228
ac35a490
YZ
229#ifdef CONFIG_LRU_GEN
230
231static void *lru_gen_eviction(struct folio *folio)
232{
233 int hist;
234 unsigned long token;
235 unsigned long min_seq;
236 struct lruvec *lruvec;
391655fe 237 struct lru_gen_folio *lrugen;
ac35a490
YZ
238 int type = folio_is_file_lru(folio);
239 int delta = folio_nr_pages(folio);
240 int refs = folio_lru_refs(folio);
241 int tier = lru_tier_from_refs(refs);
242 struct mem_cgroup *memcg = folio_memcg(folio);
243 struct pglist_data *pgdat = folio_pgdat(folio);
244
245 BUILD_BUG_ON(LRU_GEN_WIDTH + LRU_REFS_WIDTH > BITS_PER_LONG - EVICTION_SHIFT);
246
247 lruvec = mem_cgroup_lruvec(memcg, pgdat);
248 lrugen = &lruvec->lrugen;
249 min_seq = READ_ONCE(lrugen->min_seq[type]);
250 token = (min_seq << LRU_REFS_WIDTH) | max(refs - 1, 0);
251
252 hist = lru_hist_from_seq(min_seq);
253 atomic_long_add(delta, &lrugen->evicted[hist][type][tier]);
254
255 return pack_shadow(mem_cgroup_id(memcg), pgdat, token, refs);
256}
257
258static void lru_gen_refault(struct folio *folio, void *shadow)
259{
260 int hist, tier, refs;
261 int memcg_id;
262 bool workingset;
263 unsigned long token;
264 unsigned long min_seq;
265 struct lruvec *lruvec;
391655fe 266 struct lru_gen_folio *lrugen;
ac35a490
YZ
267 struct mem_cgroup *memcg;
268 struct pglist_data *pgdat;
269 int type = folio_is_file_lru(folio);
270 int delta = folio_nr_pages(folio);
271
272 unpack_shadow(shadow, &memcg_id, &pgdat, &token, &workingset);
273
274 if (pgdat != folio_pgdat(folio))
275 return;
276
277 rcu_read_lock();
278
279 memcg = folio_memcg_rcu(folio);
280 if (memcg_id != mem_cgroup_id(memcg))
281 goto unlock;
282
283 lruvec = mem_cgroup_lruvec(memcg, pgdat);
284 lrugen = &lruvec->lrugen;
285
286 min_seq = READ_ONCE(lrugen->min_seq[type]);
287 if ((token >> LRU_REFS_WIDTH) != (min_seq & (EVICTION_MASK >> LRU_REFS_WIDTH)))
288 goto unlock;
289
290 hist = lru_hist_from_seq(min_seq);
291 /* see the comment in folio_lru_refs() */
292 refs = (token & (BIT(LRU_REFS_WIDTH) - 1)) + workingset;
293 tier = lru_tier_from_refs(refs);
294
295 atomic_long_add(delta, &lrugen->refaulted[hist][type][tier]);
296 mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + type, delta);
297
298 /*
299 * Count the following two cases as stalls:
300 * 1. For pages accessed through page tables, hotter pages pushed out
301 * hot pages which refaulted immediately.
302 * 2. For pages accessed multiple times through file descriptors,
303 * numbers of accesses might have been out of the range.
304 */
305 if (lru_gen_in_fault() || refs == BIT(LRU_REFS_WIDTH)) {
306 folio_set_workingset(folio);
307 mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + type, delta);
308 }
309unlock:
310 rcu_read_unlock();
311}
312
313#else /* !CONFIG_LRU_GEN */
314
315static void *lru_gen_eviction(struct folio *folio)
316{
317 return NULL;
318}
319
320static void lru_gen_refault(struct folio *folio, void *shadow)
321{
322}
323
324#endif /* CONFIG_LRU_GEN */
325
31d8fcac
JW
326/**
327 * workingset_age_nonresident - age non-resident entries as LRU ages
e755f4af 328 * @lruvec: the lruvec that was aged
31d8fcac
JW
329 * @nr_pages: the number of pages to count
330 *
331 * As in-memory pages are aged, non-resident pages need to be aged as
332 * well, in order for the refault distances later on to be comparable
333 * to the in-memory dimensions. This function allows reclaim and LRU
334 * operations to drive the non-resident aging along in parallel.
335 */
336void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)
b910718a
JW
337{
338 /*
339 * Reclaiming a cgroup means reclaiming all its children in a
340 * round-robin fashion. That means that each cgroup has an LRU
341 * order that is composed of the LRU orders of its child
342 * cgroups; and every page has an LRU position not just in the
343 * cgroup that owns it, but in all of that group's ancestors.
344 *
345 * So when the physical inactive list of a leaf cgroup ages,
346 * the virtual inactive lists of all its parents, including
347 * the root cgroup's, age as well.
348 */
349 do {
31d8fcac
JW
350 atomic_long_add(nr_pages, &lruvec->nonresident_age);
351 } while ((lruvec = parent_lruvec(lruvec)));
b910718a
JW
352}
353
a528910e 354/**
8927f647 355 * workingset_eviction - note the eviction of a folio from memory
b910718a 356 * @target_memcg: the cgroup that is causing the reclaim
8927f647 357 * @folio: the folio being evicted
a528910e 358 *
8927f647
MWO
359 * Return: a shadow entry to be stored in @folio->mapping->i_pages in place
360 * of the evicted @folio so that a later refault can be detected.
a528910e 361 */
8927f647 362void *workingset_eviction(struct folio *folio, struct mem_cgroup *target_memcg)
a528910e 363{
8927f647 364 struct pglist_data *pgdat = folio_pgdat(folio);
a528910e 365 unsigned long eviction;
23047a96 366 struct lruvec *lruvec;
b910718a 367 int memcgid;
a528910e 368
8927f647
MWO
369 /* Folio is fully exclusive and pins folio's memory cgroup pointer */
370 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
371 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
372 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
23047a96 373
ac35a490
YZ
374 if (lru_gen_enabled())
375 return lru_gen_eviction(folio);
376
b910718a
JW
377 lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
378 /* XXX: target_memcg can be NULL, go through lruvec */
379 memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
31d8fcac 380 eviction = atomic_long_read(&lruvec->nonresident_age);
ac35a490 381 eviction >>= bucket_order;
8927f647
MWO
382 workingset_age_nonresident(lruvec, folio_nr_pages(folio));
383 return pack_shadow(memcgid, pgdat, eviction,
384 folio_test_workingset(folio));
a528910e
JW
385}
386
387/**
0995d7e5
MWO
388 * workingset_refault - Evaluate the refault of a previously evicted folio.
389 * @folio: The freshly allocated replacement folio.
390 * @shadow: Shadow entry of the evicted folio.
a528910e
JW
391 *
392 * Calculates and evaluates the refault distance of the previously
0995d7e5 393 * evicted folio in the context of the node and the memcg whose memory
b910718a 394 * pressure caused the eviction.
a528910e 395 */
0995d7e5 396void workingset_refault(struct folio *folio, void *shadow)
a528910e 397{
0995d7e5 398 bool file = folio_is_file_lru(folio);
b910718a
JW
399 struct mem_cgroup *eviction_memcg;
400 struct lruvec *eviction_lruvec;
a528910e 401 unsigned long refault_distance;
34e58cac 402 unsigned long workingset_size;
1899ad18 403 struct pglist_data *pgdat;
23047a96 404 struct mem_cgroup *memcg;
162453bf 405 unsigned long eviction;
23047a96 406 struct lruvec *lruvec;
162453bf 407 unsigned long refault;
1899ad18 408 bool workingset;
23047a96 409 int memcgid;
0995d7e5 410 long nr;
a528910e 411
ac35a490
YZ
412 if (lru_gen_enabled()) {
413 lru_gen_refault(folio, shadow);
414 return;
415 }
416
1899ad18 417 unpack_shadow(shadow, &memcgid, &pgdat, &eviction, &workingset);
ac35a490 418 eviction <<= bucket_order;
162453bf 419
4009b2f1
YA
420 /* Flush stats (and potentially sleep) before holding RCU read lock */
421 mem_cgroup_flush_stats_ratelimited();
422
23047a96
JW
423 rcu_read_lock();
424 /*
425 * Look up the memcg associated with the stored ID. It might
0995d7e5 426 * have been deleted since the folio's eviction.
23047a96
JW
427 *
428 * Note that in rare events the ID could have been recycled
0995d7e5 429 * for a new cgroup that refaults a shared folio. This is
23047a96
JW
430 * impossible to tell from the available data. However, this
431 * should be a rare and limited disturbance, and activations
432 * are always speculative anyway. Ultimately, it's the aging
433 * algorithm's job to shake out the minimum access frequency
434 * for the active cache.
435 *
436 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
437 * would be better if the root_mem_cgroup existed in all
438 * configurations instead.
439 */
b910718a
JW
440 eviction_memcg = mem_cgroup_from_id(memcgid);
441 if (!mem_cgroup_disabled() && !eviction_memcg)
1899ad18 442 goto out;
b910718a 443 eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
31d8fcac 444 refault = atomic_long_read(&eviction_lruvec->nonresident_age);
162453bf
JW
445
446 /*
1899ad18 447 * Calculate the refault distance
162453bf 448 *
1899ad18 449 * The unsigned subtraction here gives an accurate distance
31d8fcac 450 * across nonresident_age overflows in most cases. There is a
1899ad18
JW
451 * special case: usually, shadow entries have a short lifetime
452 * and are either refaulted or reclaimed along with the inode
453 * before they get too old. But it is not impossible for the
31d8fcac
JW
454 * nonresident_age to lap a shadow entry in the field, which
455 * can then result in a false small refault distance, leading
456 * to a false activation should this old entry actually
457 * refault again. However, earlier kernels used to deactivate
1899ad18
JW
458 * unconditionally with *every* reclaim invocation for the
459 * longest time, so the occasional inappropriate activation
460 * leading to pressure on the active list is not a problem.
162453bf
JW
461 */
462 refault_distance = (refault - eviction) & EVICTION_MASK;
463
b910718a 464 /*
0995d7e5 465 * The activation decision for this folio is made at the level
b910718a 466 * where the eviction occurred, as that is where the LRU order
0995d7e5 467 * during folio reclaim is being determined.
b910718a 468 *
0995d7e5 469 * However, the cgroup that will own the folio is the one that
b910718a
JW
470 * is actually experiencing the refault event.
471 */
0995d7e5
MWO
472 nr = folio_nr_pages(folio);
473 memcg = folio_memcg(folio);
f78dfc7b 474 pgdat = folio_pgdat(folio);
b910718a
JW
475 lruvec = mem_cgroup_lruvec(memcg, pgdat);
476
0995d7e5 477 mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file, nr);
1899ad18
JW
478 /*
479 * Compare the distance to the existing workingset size. We
34e58cac 480 * don't activate pages that couldn't stay resident even if
aae466b0
JK
481 * all the memory was available to the workingset. Whether
482 * workingset competition needs to consider anon or not depends
ed8f3f99 483 * on having free swap space.
1899ad18 484 */
34e58cac 485 workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
aae466b0 486 if (!file) {
34e58cac 487 workingset_size += lruvec_page_state(eviction_lruvec,
aae466b0
JK
488 NR_INACTIVE_FILE);
489 }
f78dfc7b 490 if (mem_cgroup_get_nr_swap_pages(eviction_memcg) > 0) {
34e58cac
JW
491 workingset_size += lruvec_page_state(eviction_lruvec,
492 NR_ACTIVE_ANON);
aae466b0
JK
493 if (file) {
494 workingset_size += lruvec_page_state(eviction_lruvec,
495 NR_INACTIVE_ANON);
496 }
34e58cac
JW
497 }
498 if (refault_distance > workingset_size)
1899ad18
JW
499 goto out;
500
0995d7e5
MWO
501 folio_set_active(folio);
502 workingset_age_nonresident(lruvec, nr);
503 mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file, nr);
1899ad18 504
0995d7e5 505 /* Folio was active prior to eviction */
1899ad18 506 if (workingset) {
0995d7e5 507 folio_set_workingset(folio);
6e1ca48d
VMO
508 /*
509 * XXX: Move to folio_add_lru() when it supports new vs
510 * putback
511 */
0538a82c 512 lru_note_cost_refault(folio);
0995d7e5 513 mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file, nr);
a528910e 514 }
1899ad18 515out:
2a2e4885 516 rcu_read_unlock();
a528910e
JW
517}
518
519/**
520 * workingset_activation - note a page activation
c5ce619a 521 * @folio: Folio that is being activated.
a528910e 522 */
c5ce619a 523void workingset_activation(struct folio *folio)
a528910e 524{
55779ec7 525 struct mem_cgroup *memcg;
23047a96 526
55779ec7 527 rcu_read_lock();
23047a96
JW
528 /*
529 * Filter non-memcg pages here, e.g. unmap can call
530 * mark_page_accessed() on VDSO pages.
531 *
532 * XXX: See workingset_refault() - this should return
533 * root_mem_cgroup even for !CONFIG_MEMCG.
534 */
c5ce619a 535 memcg = folio_memcg_rcu(folio);
55779ec7 536 if (!mem_cgroup_disabled() && !memcg)
23047a96 537 goto out;
c5ce619a 538 workingset_age_nonresident(folio_lruvec(folio), folio_nr_pages(folio));
23047a96 539out:
55779ec7 540 rcu_read_unlock();
a528910e 541}
449dd698
JW
542
543/*
544 * Shadow entries reflect the share of the working set that does not
545 * fit into memory, so their number depends on the access pattern of
546 * the workload. In most cases, they will refault or get reclaimed
547 * along with the inode, but a (malicious) workload that streams
548 * through files with a total size several times that of available
549 * memory, while preventing the inodes from being reclaimed, can
550 * create excessive amounts of shadow nodes. To keep a lid on this,
551 * track shadow nodes and reclaim them when they grow way past the
552 * point where they would still be useful.
553 */
554
9bbdc0f3 555struct list_lru shadow_nodes;
14b46879 556
a97e7904 557void workingset_update_node(struct xa_node *node)
14b46879 558{
2386eef2
SAS
559 struct address_space *mapping;
560
14b46879
JW
561 /*
562 * Track non-empty nodes that contain only shadow entries;
563 * unlink those that contain pages or are being freed.
564 *
565 * Avoid acquiring the list_lru lock when the nodes are
566 * already where they should be. The list_empty() test is safe
b93b0163 567 * as node->private_list is protected by the i_pages lock.
14b46879 568 */
2386eef2
SAS
569 mapping = container_of(node->array, struct address_space, i_pages);
570 lockdep_assert_held(&mapping->i_pages.xa_lock);
68d48e6a 571
01959dfe 572 if (node->count && node->count == node->nr_values) {
68d48e6a 573 if (list_empty(&node->private_list)) {
14b46879 574 list_lru_add(&shadow_nodes, &node->private_list);
da3ceeff 575 __inc_lruvec_kmem_state(node, WORKINGSET_NODES);
68d48e6a 576 }
14b46879 577 } else {
68d48e6a 578 if (!list_empty(&node->private_list)) {
14b46879 579 list_lru_del(&shadow_nodes, &node->private_list);
da3ceeff 580 __dec_lruvec_kmem_state(node, WORKINGSET_NODES);
68d48e6a 581 }
14b46879
JW
582 }
583}
449dd698
JW
584
585static unsigned long count_shadow_nodes(struct shrinker *shrinker,
586 struct shrink_control *sc)
587{
449dd698 588 unsigned long max_nodes;
14b46879 589 unsigned long nodes;
95f9ab2d 590 unsigned long pages;
449dd698 591
14b46879 592 nodes = list_lru_shrink_count(&shadow_nodes, sc);
725cac1c
ML
593 if (!nodes)
594 return SHRINK_EMPTY;
449dd698 595
449dd698 596 /*
a97e7904 597 * Approximate a reasonable limit for the nodes
b5388998
JW
598 * containing shadow entries. We don't need to keep more
599 * shadow entries than possible pages on the active list,
600 * since refault distances bigger than that are dismissed.
601 *
602 * The size of the active list converges toward 100% of
603 * overall page cache as memory grows, with only a tiny
604 * inactive list. Assume the total cache size for that.
605 *
606 * Nodes might be sparsely populated, with only one shadow
607 * entry in the extreme case. Obviously, we cannot keep one
608 * node for every eligible shadow entry, so compromise on a
609 * worst-case density of 1/8th. Below that, not all eligible
610 * refaults can be detected anymore.
449dd698 611 *
a97e7904 612 * On 64-bit with 7 xa_nodes per page and 64 slots
449dd698 613 * each, this will reclaim shadow entries when they consume
b5388998 614 * ~1.8% of available memory:
449dd698 615 *
a97e7904 616 * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
449dd698 617 */
95f9ab2d 618#ifdef CONFIG_MEMCG
b5388998 619 if (sc->memcg) {
95f9ab2d 620 struct lruvec *lruvec;
2b487e59 621 int i;
95f9ab2d 622
867e5e1d 623 lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
2b487e59 624 for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
205b20cc
JW
625 pages += lruvec_page_state_local(lruvec,
626 NR_LRU_BASE + i);
d42f3245
RG
627 pages += lruvec_page_state_local(
628 lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT;
629 pages += lruvec_page_state_local(
630 lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT;
95f9ab2d
JW
631 } else
632#endif
633 pages = node_present_pages(sc->nid);
634
dad4f140 635 max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
449dd698 636
14b46879 637 if (nodes <= max_nodes)
449dd698 638 return 0;
14b46879 639 return nodes - max_nodes;
449dd698
JW
640}
641
642static enum lru_status shadow_lru_isolate(struct list_head *item,
3f97b163 643 struct list_lru_one *lru,
449dd698 644 spinlock_t *lru_lock,
a97e7904 645 void *arg) __must_hold(lru_lock)
449dd698 646{
a97e7904 647 struct xa_node *node = container_of(item, struct xa_node, private_list);
449dd698 648 struct address_space *mapping;
449dd698
JW
649 int ret;
650
651 /*
f82cd2f0 652 * Page cache insertions and deletions synchronously maintain
b93b0163 653 * the shadow node LRU under the i_pages lock and the
449dd698
JW
654 * lru_lock. Because the page cache tree is emptied before
655 * the inode can be destroyed, holding the lru_lock pins any
a97e7904 656 * address_space that has nodes on the LRU.
449dd698 657 *
b93b0163 658 * We can then safely transition to the i_pages lock to
449dd698
JW
659 * pin only the address_space of the particular node we want
660 * to reclaim, take the node off-LRU, and drop the lru_lock.
661 */
662
01959dfe 663 mapping = container_of(node->array, struct address_space, i_pages);
449dd698
JW
664
665 /* Coming from the list, invert the lock order */
b93b0163 666 if (!xa_trylock(&mapping->i_pages)) {
6ca342d0 667 spin_unlock_irq(lru_lock);
449dd698
JW
668 ret = LRU_RETRY;
669 goto out;
670 }
671
5649d113
YY
672 /* For page cache we need to hold i_lock */
673 if (mapping->host != NULL) {
674 if (!spin_trylock(&mapping->host->i_lock)) {
675 xa_unlock(&mapping->i_pages);
676 spin_unlock_irq(lru_lock);
677 ret = LRU_RETRY;
678 goto out;
679 }
51b8c1fe
JW
680 }
681
3f97b163 682 list_lru_isolate(lru, item);
da3ceeff 683 __dec_lruvec_kmem_state(node, WORKINGSET_NODES);
68d48e6a 684
449dd698
JW
685 spin_unlock(lru_lock);
686
687 /*
688 * The nodes should only contain one or more shadow entries,
689 * no pages, so we expect to be able to remove them all and
690 * delete and free the empty node afterwards.
691 */
01959dfe 692 if (WARN_ON_ONCE(!node->nr_values))
b936887e 693 goto out_invalid;
01959dfe 694 if (WARN_ON_ONCE(node->count != node->nr_values))
b936887e 695 goto out_invalid;
f82cd2f0 696 xa_delete_node(node, workingset_update_node);
da3ceeff 697 __inc_lruvec_kmem_state(node, WORKINGSET_NODERECLAIM);
449dd698 698
b936887e 699out_invalid:
6ca342d0 700 xa_unlock_irq(&mapping->i_pages);
5649d113
YY
701 if (mapping->host != NULL) {
702 if (mapping_shrinkable(mapping))
703 inode_add_lru(mapping->host);
704 spin_unlock(&mapping->host->i_lock);
705 }
449dd698
JW
706 ret = LRU_REMOVED_RETRY;
707out:
449dd698 708 cond_resched();
6ca342d0 709 spin_lock_irq(lru_lock);
449dd698
JW
710 return ret;
711}
712
713static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
714 struct shrink_control *sc)
715{
b93b0163 716 /* list_lru lock nests inside the IRQ-safe i_pages lock */
6b51e881
SAS
717 return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
718 NULL);
449dd698
JW
719}
720
721static struct shrinker workingset_shadow_shrinker = {
722 .count_objects = count_shadow_nodes,
723 .scan_objects = scan_shadow_nodes,
4b85afbd 724 .seeks = 0, /* ->count reports only fully expendable nodes */
0a6b76dd 725 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
449dd698
JW
726};
727
728/*
729 * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
b93b0163 730 * i_pages lock.
449dd698
JW
731 */
732static struct lock_class_key shadow_nodes_key;
733
734static int __init workingset_init(void)
735{
612e4493
JW
736 unsigned int timestamp_bits;
737 unsigned int max_order;
449dd698
JW
738 int ret;
739
612e4493
JW
740 BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
741 /*
742 * Calculate the eviction bucket size to cover the longest
743 * actionable refault distance, which is currently half of
744 * memory (totalram_pages/2). However, memory hotplug may add
745 * some more pages at runtime, so keep working with up to
746 * double the initial memory by using totalram_pages as-is.
747 */
748 timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
ca79b0c2 749 max_order = fls_long(totalram_pages() - 1);
612e4493
JW
750 if (max_order > timestamp_bits)
751 bucket_order = max_order - timestamp_bits;
d3d36c4b 752 pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
612e4493
JW
753 timestamp_bits, max_order, bucket_order);
754
e33c267a 755 ret = prealloc_shrinker(&workingset_shadow_shrinker, "mm-shadow");
449dd698
JW
756 if (ret)
757 goto err;
c92e8e10
KT
758 ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
759 &workingset_shadow_shrinker);
449dd698
JW
760 if (ret)
761 goto err_list_lru;
39887653 762 register_shrinker_prepared(&workingset_shadow_shrinker);
449dd698
JW
763 return 0;
764err_list_lru:
39887653 765 free_prealloced_shrinker(&workingset_shadow_shrinker);
449dd698
JW
766err:
767 return ret;
768}
769module_init(workingset_init);