]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/workingset.c
Merge tag 'for-6.10-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[thirdparty/linux.git] / mm / workingset.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
a528910e
JW
2/*
3 * Workingset detection
4 *
5 * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
6 */
7
8#include <linux/memcontrol.h>
170b04b7 9#include <linux/mm_inline.h>
a528910e 10#include <linux/writeback.h>
3a4f8a0b 11#include <linux/shmem_fs.h>
a528910e
JW
12#include <linux/pagemap.h>
13#include <linux/atomic.h>
14#include <linux/module.h>
15#include <linux/swap.h>
14b46879 16#include <linux/dax.h>
a528910e
JW
17#include <linux/fs.h>
18#include <linux/mm.h>
b64e74e9 19#include "internal.h"
a528910e
JW
20
21/*
22 * Double CLOCK lists
23 *
1e6b1085 24 * Per node, two clock lists are maintained for file pages: the
a528910e
JW
25 * inactive and the active list. Freshly faulted pages start out at
26 * the head of the inactive list and page reclaim scans pages from the
27 * tail. Pages that are accessed multiple times on the inactive list
28 * are promoted to the active list, to protect them from reclaim,
29 * whereas active pages are demoted to the inactive list when the
30 * active list grows too big.
31 *
32 * fault ------------------------+
33 * |
34 * +--------------+ | +-------------+
35 * reclaim <- | inactive | <-+-- demotion | active | <--+
36 * +--------------+ +-------------+ |
37 * | |
38 * +-------------- promotion ------------------+
39 *
40 *
41 * Access frequency and refault distance
42 *
43 * A workload is thrashing when its pages are frequently used but they
44 * are evicted from the inactive list every time before another access
45 * would have promoted them to the active list.
46 *
47 * In cases where the average access distance between thrashing pages
48 * is bigger than the size of memory there is nothing that can be
49 * done - the thrashing set could never fit into memory under any
50 * circumstance.
51 *
52 * However, the average access distance could be bigger than the
53 * inactive list, yet smaller than the size of memory. In this case,
54 * the set could fit into memory if it weren't for the currently
55 * active pages - which may be used more, hopefully less frequently:
56 *
57 * +-memory available to cache-+
58 * | |
59 * +-inactive------+-active----+
60 * a b | c d e f g h i | J K L M N |
61 * +---------------+-----------+
62 *
63 * It is prohibitively expensive to accurately track access frequency
64 * of pages. But a reasonable approximation can be made to measure
65 * thrashing on the inactive list, after which refaulting pages can be
66 * activated optimistically to compete with the existing active pages.
67 *
68 * Approximating inactive page access frequency - Observations:
69 *
70 * 1. When a page is accessed for the first time, it is added to the
71 * head of the inactive list, slides every existing inactive page
72 * towards the tail by one slot, and pushes the current tail page
73 * out of memory.
74 *
75 * 2. When a page is accessed for the second time, it is promoted to
76 * the active list, shrinking the inactive list by one slot. This
77 * also slides all inactive pages that were faulted into the cache
78 * more recently than the activated page towards the tail of the
79 * inactive list.
80 *
81 * Thus:
82 *
83 * 1. The sum of evictions and activations between any two points in
84 * time indicate the minimum number of inactive pages accessed in
85 * between.
86 *
87 * 2. Moving one inactive page N page slots towards the tail of the
88 * list requires at least N inactive page accesses.
89 *
90 * Combining these:
91 *
92 * 1. When a page is finally evicted from memory, the number of
93 * inactive pages accessed while the page was in cache is at least
94 * the number of page slots on the inactive list.
95 *
96 * 2. In addition, measuring the sum of evictions and activations (E)
97 * at the time of a page's eviction, and comparing it to another
98 * reading (R) at the time the page faults back into memory tells
99 * the minimum number of accesses while the page was not cached.
100 * This is called the refault distance.
101 *
102 * Because the first access of the page was the fault and the second
103 * access the refault, we combine the in-cache distance with the
104 * out-of-cache distance to get the complete minimum access distance
105 * of this page:
106 *
107 * NR_inactive + (R - E)
108 *
109 * And knowing the minimum access distance of a page, we can easily
110 * tell if the page would be able to stay in cache assuming all page
111 * slots in the cache were available:
112 *
113 * NR_inactive + (R - E) <= NR_inactive + NR_active
114 *
ed8f3f99
YY
115 * If we have swap we should consider about NR_inactive_anon and
116 * NR_active_anon, so for page cache and anonymous respectively:
a528910e 117 *
ed8f3f99
YY
118 * NR_inactive_file + (R - E) <= NR_inactive_file + NR_active_file
119 * + NR_inactive_anon + NR_active_anon
120 *
121 * NR_inactive_anon + (R - E) <= NR_inactive_anon + NR_active_anon
122 * + NR_inactive_file + NR_active_file
123 *
124 * Which can be further simplified to:
125 *
126 * (R - E) <= NR_active_file + NR_inactive_anon + NR_active_anon
127 *
128 * (R - E) <= NR_active_anon + NR_inactive_file + NR_active_file
a528910e
JW
129 *
130 * Put into words, the refault distance (out-of-cache) can be seen as
131 * a deficit in inactive list space (in-cache). If the inactive list
132 * had (R - E) more page slots, the page would not have been evicted
133 * in between accesses, but activated instead. And on a full system,
134 * the only thing eating into inactive list space is active pages.
135 *
136 *
1899ad18 137 * Refaulting inactive pages
a528910e
JW
138 *
139 * All that is known about the active list is that the pages have been
140 * accessed more than once in the past. This means that at any given
141 * time there is actually a good chance that pages on the active list
142 * are no longer in active use.
143 *
144 * So when a refault distance of (R - E) is observed and there are at
ed8f3f99
YY
145 * least (R - E) pages in the userspace workingset, the refaulting page
146 * is activated optimistically in the hope that (R - E) pages are actually
a528910e
JW
147 * used less frequently than the refaulting page - or even not used at
148 * all anymore.
149 *
1899ad18
JW
150 * That means if inactive cache is refaulting with a suitable refault
151 * distance, we assume the cache workingset is transitioning and put
ed8f3f99 152 * pressure on the current workingset.
1899ad18 153 *
a528910e
JW
154 * If this is wrong and demotion kicks in, the pages which are truly
155 * used more frequently will be reactivated while the less frequently
156 * used once will be evicted from memory.
157 *
158 * But if this is right, the stale pages will be pushed out of memory
159 * and the used pages get to stay in cache.
160 *
1899ad18
JW
161 * Refaulting active pages
162 *
163 * If on the other hand the refaulting pages have recently been
164 * deactivated, it means that the active list is no longer protecting
165 * actively used cache from reclaim. The cache is NOT transitioning to
166 * a different workingset; the existing workingset is thrashing in the
167 * space allocated to the page cache.
168 *
a528910e
JW
169 *
170 * Implementation
171 *
31d8fcac
JW
172 * For each node's LRU lists, a counter for inactive evictions and
173 * activations is maintained (node->nonresident_age).
a528910e
JW
174 *
175 * On eviction, a snapshot of this counter (along with some bits to
a97e7904 176 * identify the node) is stored in the now empty page cache
a528910e
JW
177 * slot of the evicted page. This is called a shadow entry.
178 *
179 * On cache misses for which there are shadow entries, an eligible
180 * refault distance will immediately activate the refaulting page.
181 */
182
3ebc57f4 183#define WORKINGSET_SHIFT 1
3159f943 184#define EVICTION_SHIFT ((BITS_PER_LONG - BITS_PER_XA_VALUE) + \
3ebc57f4
ML
185 WORKINGSET_SHIFT + NODES_SHIFT + \
186 MEM_CGROUP_ID_SHIFT)
689c94f0
JW
187#define EVICTION_MASK (~0UL >> EVICTION_SHIFT)
188
612e4493
JW
189/*
190 * Eviction timestamps need to be able to cover the full range of
a97e7904 191 * actionable refaults. However, bits are tight in the xarray
612e4493
JW
192 * entry, and after storing the identifier for the lruvec there might
193 * not be enough left to represent every single actionable refault. In
194 * that case, we have to sacrifice granularity for distance, and group
195 * evictions into coarser buckets by shaving off lower timestamp bits.
196 */
197static unsigned int bucket_order __read_mostly;
198
1899ad18
JW
199static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
200 bool workingset)
a528910e 201{
3159f943 202 eviction &= EVICTION_MASK;
23047a96 203 eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
1e6b1085 204 eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
3ebc57f4 205 eviction = (eviction << WORKINGSET_SHIFT) | workingset;
a528910e 206
3159f943 207 return xa_mk_value(eviction);
a528910e
JW
208}
209
1e6b1085 210static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
1899ad18 211 unsigned long *evictionp, bool *workingsetp)
a528910e 212{
3159f943 213 unsigned long entry = xa_to_value(shadow);
1e6b1085 214 int memcgid, nid;
1899ad18 215 bool workingset;
a528910e 216
3ebc57f4
ML
217 workingset = entry & ((1UL << WORKINGSET_SHIFT) - 1);
218 entry >>= WORKINGSET_SHIFT;
a528910e
JW
219 nid = entry & ((1UL << NODES_SHIFT) - 1);
220 entry >>= NODES_SHIFT;
23047a96
JW
221 memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
222 entry >>= MEM_CGROUP_ID_SHIFT;
a528910e 223
23047a96 224 *memcgidp = memcgid;
1e6b1085 225 *pgdat = NODE_DATA(nid);
ac35a490 226 *evictionp = entry;
1899ad18 227 *workingsetp = workingset;
a528910e
JW
228}
229
ac35a490
YZ
230#ifdef CONFIG_LRU_GEN
231
232static void *lru_gen_eviction(struct folio *folio)
233{
234 int hist;
235 unsigned long token;
236 unsigned long min_seq;
237 struct lruvec *lruvec;
391655fe 238 struct lru_gen_folio *lrugen;
ac35a490
YZ
239 int type = folio_is_file_lru(folio);
240 int delta = folio_nr_pages(folio);
241 int refs = folio_lru_refs(folio);
242 int tier = lru_tier_from_refs(refs);
243 struct mem_cgroup *memcg = folio_memcg(folio);
244 struct pglist_data *pgdat = folio_pgdat(folio);
245
246 BUILD_BUG_ON(LRU_GEN_WIDTH + LRU_REFS_WIDTH > BITS_PER_LONG - EVICTION_SHIFT);
247
248 lruvec = mem_cgroup_lruvec(memcg, pgdat);
249 lrugen = &lruvec->lrugen;
250 min_seq = READ_ONCE(lrugen->min_seq[type]);
251 token = (min_seq << LRU_REFS_WIDTH) | max(refs - 1, 0);
252
253 hist = lru_hist_from_seq(min_seq);
254 atomic_long_add(delta, &lrugen->evicted[hist][type][tier]);
255
256 return pack_shadow(mem_cgroup_id(memcg), pgdat, token, refs);
257}
258
ffcb5f52
NP
259/*
260 * Tests if the shadow entry is for a folio that was recently evicted.
d7f1afd0 261 * Fills in @lruvec, @token, @workingset with the values unpacked from shadow.
ffcb5f52 262 */
d7f1afd0
A
263static bool lru_gen_test_recent(void *shadow, bool file, struct lruvec **lruvec,
264 unsigned long *token, bool *workingset)
ffcb5f52 265{
d7f1afd0 266 int memcg_id;
ffcb5f52 267 unsigned long min_seq;
d7f1afd0
A
268 struct mem_cgroup *memcg;
269 struct pglist_data *pgdat;
ffcb5f52 270
d7f1afd0 271 unpack_shadow(shadow, &memcg_id, &pgdat, token, workingset);
ffcb5f52 272
d7f1afd0
A
273 memcg = mem_cgroup_from_id(memcg_id);
274 *lruvec = mem_cgroup_lruvec(memcg, pgdat);
ffcb5f52 275
d7f1afd0 276 min_seq = READ_ONCE((*lruvec)->lrugen.min_seq[file]);
ffcb5f52
NP
277 return (*token >> LRU_REFS_WIDTH) == (min_seq & (EVICTION_MASK >> LRU_REFS_WIDTH));
278}
279
ac35a490
YZ
280static void lru_gen_refault(struct folio *folio, void *shadow)
281{
3af0191a 282 bool recent;
ac35a490 283 int hist, tier, refs;
ac35a490
YZ
284 bool workingset;
285 unsigned long token;
ac35a490 286 struct lruvec *lruvec;
391655fe 287 struct lru_gen_folio *lrugen;
ac35a490
YZ
288 int type = folio_is_file_lru(folio);
289 int delta = folio_nr_pages(folio);
290
ac35a490
YZ
291 rcu_read_lock();
292
3af0191a
KS
293 recent = lru_gen_test_recent(shadow, type, &lruvec, &token, &workingset);
294 if (lruvec != folio_lruvec(folio))
ac35a490
YZ
295 goto unlock;
296
3af0191a
KS
297 mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + type, delta);
298
299 if (!recent)
ffcb5f52
NP
300 goto unlock;
301
ac35a490 302 lrugen = &lruvec->lrugen;
ac35a490 303
d7f1afd0 304 hist = lru_hist_from_seq(READ_ONCE(lrugen->min_seq[type]));
ac35a490
YZ
305 /* see the comment in folio_lru_refs() */
306 refs = (token & (BIT(LRU_REFS_WIDTH) - 1)) + workingset;
307 tier = lru_tier_from_refs(refs);
308
309 atomic_long_add(delta, &lrugen->refaulted[hist][type][tier]);
3af0191a 310 mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
ac35a490
YZ
311
312 /*
313 * Count the following two cases as stalls:
314 * 1. For pages accessed through page tables, hotter pages pushed out
315 * hot pages which refaulted immediately.
316 * 2. For pages accessed multiple times through file descriptors,
08148805 317 * they would have been protected by sort_folio().
ac35a490 318 */
08148805
YZ
319 if (lru_gen_in_fault() || refs >= BIT(LRU_REFS_WIDTH) - 1) {
320 set_mask_bits(&folio->flags, 0, LRU_REFS_MASK | BIT(PG_workingset));
ac35a490
YZ
321 mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + type, delta);
322 }
323unlock:
324 rcu_read_unlock();
325}
326
327#else /* !CONFIG_LRU_GEN */
328
329static void *lru_gen_eviction(struct folio *folio)
330{
331 return NULL;
332}
333
d7f1afd0
A
334static bool lru_gen_test_recent(void *shadow, bool file, struct lruvec **lruvec,
335 unsigned long *token, bool *workingset)
ffcb5f52
NP
336{
337 return false;
338}
339
ac35a490
YZ
340static void lru_gen_refault(struct folio *folio, void *shadow)
341{
342}
343
344#endif /* CONFIG_LRU_GEN */
345
31d8fcac
JW
346/**
347 * workingset_age_nonresident - age non-resident entries as LRU ages
e755f4af 348 * @lruvec: the lruvec that was aged
31d8fcac
JW
349 * @nr_pages: the number of pages to count
350 *
351 * As in-memory pages are aged, non-resident pages need to be aged as
352 * well, in order for the refault distances later on to be comparable
353 * to the in-memory dimensions. This function allows reclaim and LRU
354 * operations to drive the non-resident aging along in parallel.
355 */
356void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)
b910718a
JW
357{
358 /*
359 * Reclaiming a cgroup means reclaiming all its children in a
360 * round-robin fashion. That means that each cgroup has an LRU
361 * order that is composed of the LRU orders of its child
362 * cgroups; and every page has an LRU position not just in the
363 * cgroup that owns it, but in all of that group's ancestors.
364 *
365 * So when the physical inactive list of a leaf cgroup ages,
366 * the virtual inactive lists of all its parents, including
367 * the root cgroup's, age as well.
368 */
369 do {
31d8fcac
JW
370 atomic_long_add(nr_pages, &lruvec->nonresident_age);
371 } while ((lruvec = parent_lruvec(lruvec)));
b910718a
JW
372}
373
a528910e 374/**
8927f647 375 * workingset_eviction - note the eviction of a folio from memory
b910718a 376 * @target_memcg: the cgroup that is causing the reclaim
8927f647 377 * @folio: the folio being evicted
a528910e 378 *
8927f647
MWO
379 * Return: a shadow entry to be stored in @folio->mapping->i_pages in place
380 * of the evicted @folio so that a later refault can be detected.
a528910e 381 */
8927f647 382void *workingset_eviction(struct folio *folio, struct mem_cgroup *target_memcg)
a528910e 383{
8927f647 384 struct pglist_data *pgdat = folio_pgdat(folio);
a528910e 385 unsigned long eviction;
23047a96 386 struct lruvec *lruvec;
b910718a 387 int memcgid;
a528910e 388
8927f647
MWO
389 /* Folio is fully exclusive and pins folio's memory cgroup pointer */
390 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
391 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
392 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
23047a96 393
ac35a490
YZ
394 if (lru_gen_enabled())
395 return lru_gen_eviction(folio);
396
b910718a
JW
397 lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
398 /* XXX: target_memcg can be NULL, go through lruvec */
399 memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
31d8fcac 400 eviction = atomic_long_read(&lruvec->nonresident_age);
ac35a490 401 eviction >>= bucket_order;
8927f647
MWO
402 workingset_age_nonresident(lruvec, folio_nr_pages(folio));
403 return pack_shadow(memcgid, pgdat, eviction,
404 folio_test_workingset(folio));
a528910e
JW
405}
406
407/**
ffcb5f52
NP
408 * workingset_test_recent - tests if the shadow entry is for a folio that was
409 * recently evicted. Also fills in @workingset with the value unpacked from
410 * shadow.
411 * @shadow: the shadow entry to be tested.
412 * @file: whether the corresponding folio is from the file lru.
413 * @workingset: where the workingset value unpacked from shadow should
414 * be stored.
415 *
416 * Return: true if the shadow is for a recently evicted folio; false otherwise.
a528910e 417 */
ffcb5f52 418bool workingset_test_recent(void *shadow, bool file, bool *workingset)
a528910e 419{
b910718a
JW
420 struct mem_cgroup *eviction_memcg;
421 struct lruvec *eviction_lruvec;
a528910e 422 unsigned long refault_distance;
34e58cac 423 unsigned long workingset_size;
162453bf 424 unsigned long refault;
23047a96 425 int memcgid;
ffcb5f52
NP
426 struct pglist_data *pgdat;
427 unsigned long eviction;
a528910e 428
b0068472
YA
429 rcu_read_lock();
430
431 if (lru_gen_enabled()) {
432 bool recent = lru_gen_test_recent(shadow, file,
433 &eviction_lruvec, &eviction, workingset);
434
435 rcu_read_unlock();
436 return recent;
437 }
438
ac35a490 439
ffcb5f52 440 unpack_shadow(shadow, &memcgid, &pgdat, &eviction, workingset);
ac35a490 441 eviction <<= bucket_order;
162453bf 442
23047a96
JW
443 /*
444 * Look up the memcg associated with the stored ID. It might
0995d7e5 445 * have been deleted since the folio's eviction.
23047a96
JW
446 *
447 * Note that in rare events the ID could have been recycled
0995d7e5 448 * for a new cgroup that refaults a shared folio. This is
23047a96
JW
449 * impossible to tell from the available data. However, this
450 * should be a rare and limited disturbance, and activations
451 * are always speculative anyway. Ultimately, it's the aging
452 * algorithm's job to shake out the minimum access frequency
453 * for the active cache.
454 *
455 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
456 * would be better if the root_mem_cgroup existed in all
457 * configurations instead.
458 */
b910718a 459 eviction_memcg = mem_cgroup_from_id(memcgid);
b0068472
YA
460 if (!mem_cgroup_disabled() &&
461 (!eviction_memcg || !mem_cgroup_tryget(eviction_memcg))) {
462 rcu_read_unlock();
ffcb5f52 463 return false;
b0068472
YA
464 }
465
466 rcu_read_unlock();
467
7d7ef0a4
YA
468 /*
469 * Flush stats (and potentially sleep) outside the RCU read section.
470 * XXX: With per-memcg flushing and thresholding, is ratelimiting
471 * still needed here?
472 */
473 mem_cgroup_flush_stats_ratelimited(eviction_memcg);
ffcb5f52 474
b910718a 475 eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
31d8fcac 476 refault = atomic_long_read(&eviction_lruvec->nonresident_age);
162453bf
JW
477
478 /*
1899ad18 479 * Calculate the refault distance
162453bf 480 *
1899ad18 481 * The unsigned subtraction here gives an accurate distance
31d8fcac 482 * across nonresident_age overflows in most cases. There is a
1899ad18
JW
483 * special case: usually, shadow entries have a short lifetime
484 * and are either refaulted or reclaimed along with the inode
485 * before they get too old. But it is not impossible for the
31d8fcac
JW
486 * nonresident_age to lap a shadow entry in the field, which
487 * can then result in a false small refault distance, leading
488 * to a false activation should this old entry actually
489 * refault again. However, earlier kernels used to deactivate
1899ad18
JW
490 * unconditionally with *every* reclaim invocation for the
491 * longest time, so the occasional inappropriate activation
492 * leading to pressure on the active list is not a problem.
162453bf
JW
493 */
494 refault_distance = (refault - eviction) & EVICTION_MASK;
495
1899ad18
JW
496 /*
497 * Compare the distance to the existing workingset size. We
34e58cac 498 * don't activate pages that couldn't stay resident even if
aae466b0
JK
499 * all the memory was available to the workingset. Whether
500 * workingset competition needs to consider anon or not depends
ed8f3f99 501 * on having free swap space.
1899ad18 502 */
34e58cac 503 workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
aae466b0 504 if (!file) {
34e58cac 505 workingset_size += lruvec_page_state(eviction_lruvec,
aae466b0
JK
506 NR_INACTIVE_FILE);
507 }
f78dfc7b 508 if (mem_cgroup_get_nr_swap_pages(eviction_memcg) > 0) {
34e58cac
JW
509 workingset_size += lruvec_page_state(eviction_lruvec,
510 NR_ACTIVE_ANON);
aae466b0
JK
511 if (file) {
512 workingset_size += lruvec_page_state(eviction_lruvec,
513 NR_INACTIVE_ANON);
514 }
34e58cac 515 }
ffcb5f52 516
b0068472 517 mem_cgroup_put(eviction_memcg);
ffcb5f52
NP
518 return refault_distance <= workingset_size;
519}
520
521/**
522 * workingset_refault - Evaluate the refault of a previously evicted folio.
523 * @folio: The freshly allocated replacement folio.
524 * @shadow: Shadow entry of the evicted folio.
525 *
526 * Calculates and evaluates the refault distance of the previously
527 * evicted folio in the context of the node and the memcg whose memory
528 * pressure caused the eviction.
529 */
530void workingset_refault(struct folio *folio, void *shadow)
531{
532 bool file = folio_is_file_lru(folio);
533 struct pglist_data *pgdat;
534 struct mem_cgroup *memcg;
535 struct lruvec *lruvec;
536 bool workingset;
537 long nr;
538
539 if (lru_gen_enabled()) {
540 lru_gen_refault(folio, shadow);
541 return;
542 }
543
ffcb5f52
NP
544 /*
545 * The activation decision for this folio is made at the level
546 * where the eviction occurred, as that is where the LRU order
547 * during folio reclaim is being determined.
548 *
549 * However, the cgroup that will own the folio is the one that
b0068472
YA
550 * is actually experiencing the refault event. Make sure the folio is
551 * locked to guarantee folio_memcg() stability throughout.
ffcb5f52 552 */
b0068472 553 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
ffcb5f52
NP
554 nr = folio_nr_pages(folio);
555 memcg = folio_memcg(folio);
556 pgdat = folio_pgdat(folio);
557 lruvec = mem_cgroup_lruvec(memcg, pgdat);
558
559 mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file, nr);
560
561 if (!workingset_test_recent(shadow, file, &workingset))
b0068472 562 return;
1899ad18 563
0995d7e5
MWO
564 folio_set_active(folio);
565 workingset_age_nonresident(lruvec, nr);
566 mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file, nr);
1899ad18 567
0995d7e5 568 /* Folio was active prior to eviction */
1899ad18 569 if (workingset) {
0995d7e5 570 folio_set_workingset(folio);
6e1ca48d
VMO
571 /*
572 * XXX: Move to folio_add_lru() when it supports new vs
573 * putback
574 */
0538a82c 575 lru_note_cost_refault(folio);
0995d7e5 576 mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file, nr);
a528910e 577 }
a528910e
JW
578}
579
580/**
581 * workingset_activation - note a page activation
c5ce619a 582 * @folio: Folio that is being activated.
a528910e 583 */
c5ce619a 584void workingset_activation(struct folio *folio)
a528910e 585{
55779ec7 586 struct mem_cgroup *memcg;
23047a96 587
55779ec7 588 rcu_read_lock();
23047a96
JW
589 /*
590 * Filter non-memcg pages here, e.g. unmap can call
591 * mark_page_accessed() on VDSO pages.
592 *
593 * XXX: See workingset_refault() - this should return
594 * root_mem_cgroup even for !CONFIG_MEMCG.
595 */
c5ce619a 596 memcg = folio_memcg_rcu(folio);
55779ec7 597 if (!mem_cgroup_disabled() && !memcg)
23047a96 598 goto out;
c5ce619a 599 workingset_age_nonresident(folio_lruvec(folio), folio_nr_pages(folio));
23047a96 600out:
55779ec7 601 rcu_read_unlock();
a528910e 602}
449dd698
JW
603
604/*
605 * Shadow entries reflect the share of the working set that does not
606 * fit into memory, so their number depends on the access pattern of
607 * the workload. In most cases, they will refault or get reclaimed
608 * along with the inode, but a (malicious) workload that streams
609 * through files with a total size several times that of available
610 * memory, while preventing the inodes from being reclaimed, can
611 * create excessive amounts of shadow nodes. To keep a lid on this,
612 * track shadow nodes and reclaim them when they grow way past the
613 * point where they would still be useful.
614 */
615
9bbdc0f3 616struct list_lru shadow_nodes;
14b46879 617
a97e7904 618void workingset_update_node(struct xa_node *node)
14b46879 619{
2386eef2 620 struct address_space *mapping;
4715c6a7 621 struct page *page = virt_to_page(node);
2386eef2 622
14b46879
JW
623 /*
624 * Track non-empty nodes that contain only shadow entries;
625 * unlink those that contain pages or are being freed.
626 *
627 * Avoid acquiring the list_lru lock when the nodes are
628 * already where they should be. The list_empty() test is safe
b93b0163 629 * as node->private_list is protected by the i_pages lock.
14b46879 630 */
2386eef2
SAS
631 mapping = container_of(node->array, struct address_space, i_pages);
632 lockdep_assert_held(&mapping->i_pages.xa_lock);
68d48e6a 633
01959dfe 634 if (node->count && node->count == node->nr_values) {
68d48e6a 635 if (list_empty(&node->private_list)) {
0a97c01c 636 list_lru_add_obj(&shadow_nodes, &node->private_list);
4715c6a7 637 __inc_node_page_state(page, WORKINGSET_NODES);
68d48e6a 638 }
14b46879 639 } else {
68d48e6a 640 if (!list_empty(&node->private_list)) {
0a97c01c 641 list_lru_del_obj(&shadow_nodes, &node->private_list);
4715c6a7 642 __dec_node_page_state(page, WORKINGSET_NODES);
68d48e6a 643 }
14b46879
JW
644 }
645}
449dd698
JW
646
647static unsigned long count_shadow_nodes(struct shrinker *shrinker,
648 struct shrink_control *sc)
649{
449dd698 650 unsigned long max_nodes;
14b46879 651 unsigned long nodes;
95f9ab2d 652 unsigned long pages;
449dd698 653
14b46879 654 nodes = list_lru_shrink_count(&shadow_nodes, sc);
725cac1c
ML
655 if (!nodes)
656 return SHRINK_EMPTY;
449dd698 657
449dd698 658 /*
a97e7904 659 * Approximate a reasonable limit for the nodes
b5388998
JW
660 * containing shadow entries. We don't need to keep more
661 * shadow entries than possible pages on the active list,
662 * since refault distances bigger than that are dismissed.
663 *
664 * The size of the active list converges toward 100% of
665 * overall page cache as memory grows, with only a tiny
666 * inactive list. Assume the total cache size for that.
667 *
668 * Nodes might be sparsely populated, with only one shadow
669 * entry in the extreme case. Obviously, we cannot keep one
670 * node for every eligible shadow entry, so compromise on a
671 * worst-case density of 1/8th. Below that, not all eligible
672 * refaults can be detected anymore.
449dd698 673 *
a97e7904 674 * On 64-bit with 7 xa_nodes per page and 64 slots
449dd698 675 * each, this will reclaim shadow entries when they consume
b5388998 676 * ~1.8% of available memory:
449dd698 677 *
a97e7904 678 * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
449dd698 679 */
95f9ab2d 680#ifdef CONFIG_MEMCG
b5388998 681 if (sc->memcg) {
95f9ab2d 682 struct lruvec *lruvec;
2b487e59 683 int i;
95f9ab2d 684
d4a5b369 685 mem_cgroup_flush_stats_ratelimited(sc->memcg);
867e5e1d 686 lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
2b487e59 687 for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
205b20cc
JW
688 pages += lruvec_page_state_local(lruvec,
689 NR_LRU_BASE + i);
d42f3245
RG
690 pages += lruvec_page_state_local(
691 lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT;
692 pages += lruvec_page_state_local(
693 lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT;
95f9ab2d
JW
694 } else
695#endif
696 pages = node_present_pages(sc->nid);
697
dad4f140 698 max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
449dd698 699
14b46879 700 if (nodes <= max_nodes)
449dd698 701 return 0;
14b46879 702 return nodes - max_nodes;
449dd698
JW
703}
704
705static enum lru_status shadow_lru_isolate(struct list_head *item,
3f97b163 706 struct list_lru_one *lru,
449dd698 707 spinlock_t *lru_lock,
a97e7904 708 void *arg) __must_hold(lru_lock)
449dd698 709{
a97e7904 710 struct xa_node *node = container_of(item, struct xa_node, private_list);
449dd698 711 struct address_space *mapping;
449dd698
JW
712 int ret;
713
714 /*
f82cd2f0 715 * Page cache insertions and deletions synchronously maintain
b93b0163 716 * the shadow node LRU under the i_pages lock and the
449dd698
JW
717 * lru_lock. Because the page cache tree is emptied before
718 * the inode can be destroyed, holding the lru_lock pins any
a97e7904 719 * address_space that has nodes on the LRU.
449dd698 720 *
b93b0163 721 * We can then safely transition to the i_pages lock to
449dd698
JW
722 * pin only the address_space of the particular node we want
723 * to reclaim, take the node off-LRU, and drop the lru_lock.
724 */
725
01959dfe 726 mapping = container_of(node->array, struct address_space, i_pages);
449dd698
JW
727
728 /* Coming from the list, invert the lock order */
b93b0163 729 if (!xa_trylock(&mapping->i_pages)) {
6ca342d0 730 spin_unlock_irq(lru_lock);
449dd698
JW
731 ret = LRU_RETRY;
732 goto out;
733 }
734
5649d113
YY
735 /* For page cache we need to hold i_lock */
736 if (mapping->host != NULL) {
737 if (!spin_trylock(&mapping->host->i_lock)) {
738 xa_unlock(&mapping->i_pages);
739 spin_unlock_irq(lru_lock);
740 ret = LRU_RETRY;
741 goto out;
742 }
51b8c1fe
JW
743 }
744
3f97b163 745 list_lru_isolate(lru, item);
4715c6a7 746 __dec_node_page_state(virt_to_page(node), WORKINGSET_NODES);
68d48e6a 747
449dd698
JW
748 spin_unlock(lru_lock);
749
750 /*
751 * The nodes should only contain one or more shadow entries,
752 * no pages, so we expect to be able to remove them all and
753 * delete and free the empty node afterwards.
754 */
01959dfe 755 if (WARN_ON_ONCE(!node->nr_values))
b936887e 756 goto out_invalid;
01959dfe 757 if (WARN_ON_ONCE(node->count != node->nr_values))
b936887e 758 goto out_invalid;
f82cd2f0 759 xa_delete_node(node, workingset_update_node);
da3ceeff 760 __inc_lruvec_kmem_state(node, WORKINGSET_NODERECLAIM);
449dd698 761
b936887e 762out_invalid:
6ca342d0 763 xa_unlock_irq(&mapping->i_pages);
5649d113
YY
764 if (mapping->host != NULL) {
765 if (mapping_shrinkable(mapping))
766 inode_add_lru(mapping->host);
767 spin_unlock(&mapping->host->i_lock);
768 }
449dd698
JW
769 ret = LRU_REMOVED_RETRY;
770out:
449dd698 771 cond_resched();
6ca342d0 772 spin_lock_irq(lru_lock);
449dd698
JW
773 return ret;
774}
775
776static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
777 struct shrink_control *sc)
778{
b93b0163 779 /* list_lru lock nests inside the IRQ-safe i_pages lock */
6b51e881
SAS
780 return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
781 NULL);
449dd698
JW
782}
783
449dd698
JW
784/*
785 * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
b93b0163 786 * i_pages lock.
449dd698
JW
787 */
788static struct lock_class_key shadow_nodes_key;
789
790static int __init workingset_init(void)
791{
219c666e 792 struct shrinker *workingset_shadow_shrinker;
612e4493
JW
793 unsigned int timestamp_bits;
794 unsigned int max_order;
219c666e 795 int ret = -ENOMEM;
449dd698 796
612e4493
JW
797 BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
798 /*
799 * Calculate the eviction bucket size to cover the longest
800 * actionable refault distance, which is currently half of
801 * memory (totalram_pages/2). However, memory hotplug may add
802 * some more pages at runtime, so keep working with up to
803 * double the initial memory by using totalram_pages as-is.
804 */
805 timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
ca79b0c2 806 max_order = fls_long(totalram_pages() - 1);
612e4493
JW
807 if (max_order > timestamp_bits)
808 bucket_order = max_order - timestamp_bits;
d3d36c4b 809 pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
612e4493
JW
810 timestamp_bits, max_order, bucket_order);
811
219c666e
QZ
812 workingset_shadow_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
813 SHRINKER_MEMCG_AWARE,
814 "mm-shadow");
815 if (!workingset_shadow_shrinker)
449dd698 816 goto err;
219c666e 817
c92e8e10 818 ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
219c666e 819 workingset_shadow_shrinker);
449dd698
JW
820 if (ret)
821 goto err_list_lru;
219c666e
QZ
822
823 workingset_shadow_shrinker->count_objects = count_shadow_nodes;
824 workingset_shadow_shrinker->scan_objects = scan_shadow_nodes;
825 /* ->count reports only fully expendable nodes */
826 workingset_shadow_shrinker->seeks = 0;
827
828 shrinker_register(workingset_shadow_shrinker);
449dd698
JW
829 return 0;
830err_list_lru:
219c666e 831 shrinker_free(workingset_shadow_shrinker);
449dd698
JW
832err:
833 return ret;
834}
835module_init(workingset_init);