]> git.ipfire.org Git - people/ms/linux.git/blame - mm/zsmalloc.c
Merge tag 'soc-fixes-6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[people/ms/linux.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
ffedd09f 20 * page->index: links together all component pages of a zspage
48b4800a
MK
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
ffedd09f 23 * page->page_type: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
b475d42d
MK
33/*
34 * lock ordering:
35 * page_lock
36 * pool->migrate_lock
37 * class->lock
38 * zspage->lock
39 */
40
61989a80
NG
41#include <linux/module.h>
42#include <linux/kernel.h>
312fcae2 43#include <linux/sched.h>
61989a80
NG
44#include <linux/bitops.h>
45#include <linux/errno.h>
46#include <linux/highmem.h>
61989a80
NG
47#include <linux/string.h>
48#include <linux/slab.h>
ca5999fd 49#include <linux/pgtable.h>
65fddcfc 50#include <asm/tlbflush.h>
61989a80
NG
51#include <linux/cpumask.h>
52#include <linux/cpu.h>
0cbb613f 53#include <linux/vmalloc.h>
759b26b2 54#include <linux/preempt.h>
0959c63f 55#include <linux/spinlock.h>
93144ca3 56#include <linux/shrinker.h>
0959c63f 57#include <linux/types.h>
0f050d99 58#include <linux/debugfs.h>
bcf1647d 59#include <linux/zsmalloc.h>
c795779d 60#include <linux/zpool.h>
dd4123f3 61#include <linux/migrate.h>
701d6785 62#include <linux/wait.h>
48b4800a 63#include <linux/pagemap.h>
cdc346b3 64#include <linux/fs.h>
a3726599 65#include <linux/local_lock.h>
48b4800a
MK
66
67#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
68
69/*
cb152a1a 70 * This must be power of 2 and greater than or equal to sizeof(link_free).
0959c63f
SJ
71 * These two conditions ensure that any 'struct link_free' itself doesn't
72 * span more than 1 page which avoids complex case of mapping 2 pages simply
73 * to restore link_free pointer values.
74 */
75#define ZS_ALIGN 8
76
77/*
78 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
79 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
80 */
81#define ZS_MAX_ZSPAGE_ORDER 2
82#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
83
2e40e163
MK
84#define ZS_HANDLE_SIZE (sizeof(unsigned long))
85
0959c63f
SJ
86/*
87 * Object location (<PFN>, <obj_idx>) is encoded as
b956b5ac 88 * a single (unsigned long) handle value.
0959c63f 89 *
bfd093f5 90 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
91 *
92 * This is made more complicated by various memory models and PAE.
93 */
94
02390b87
KS
95#ifndef MAX_POSSIBLE_PHYSMEM_BITS
96#ifdef MAX_PHYSMEM_BITS
97#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
98#else
0959c63f
SJ
99/*
100 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
101 * be PAGE_SHIFT
102 */
02390b87 103#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
104#endif
105#endif
02390b87
KS
106
107#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2 108
312fcae2
MK
109/*
110 * Head in allocated object should have OBJ_ALLOCATED_TAG
111 * to identify the object was allocated or not.
112 * It's okay to add the status bit in the least bit because
113 * header keeps handle which is 4byte-aligned address so we
114 * have room for two bit at least.
115 */
116#define OBJ_ALLOCATED_TAG 1
117#define OBJ_TAG_BITS 1
118#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
119#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
120
a41ec880 121#define HUGE_BITS 1
cf8e0fed
JM
122#define FULLNESS_BITS 2
123#define CLASS_BITS 8
124#define ISOLATED_BITS 3
125#define MAGIC_VAL_BITS 8
126
0959c63f
SJ
127#define MAX(a, b) ((a) >= (b) ? (a) : (b))
128/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129#define ZS_MIN_ALLOC_SIZE \
130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 131/* each chunk includes extra space to keep handle */
7b60a685 132#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
133
134/*
7eb52512 135 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
136 * trader-off here:
137 * - Large number of size classes is potentially wasteful as free page are
138 * spread across these classes
139 * - Small number of size classes causes large internal fragmentation
140 * - Probably its better to use specific size classes (empirically
141 * determined). NOTE: all those class sizes must be set as multiple of
142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143 *
144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145 * (reason above)
146 */
3783689a 147#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
148#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 150
0959c63f 151enum fullness_group {
0959c63f 152 ZS_EMPTY,
48b4800a
MK
153 ZS_ALMOST_EMPTY,
154 ZS_ALMOST_FULL,
155 ZS_FULL,
156 NR_ZS_FULLNESS,
0959c63f
SJ
157};
158
3828a764 159enum class_stat_type {
48b4800a
MK
160 CLASS_EMPTY,
161 CLASS_ALMOST_EMPTY,
162 CLASS_ALMOST_FULL,
163 CLASS_FULL,
0f050d99
GM
164 OBJ_ALLOCATED,
165 OBJ_USED,
48b4800a 166 NR_ZS_STAT_TYPE,
0f050d99
GM
167};
168
0f050d99
GM
169struct zs_size_stat {
170 unsigned long objs[NR_ZS_STAT_TYPE];
171};
172
57244594
SS
173#ifdef CONFIG_ZSMALLOC_STAT
174static struct dentry *zs_stat_root;
0f050d99
GM
175#endif
176
0959c63f
SJ
177/*
178 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
179 * n <= N / f, where
180 * n = number of allocated objects
181 * N = total number of objects zspage can store
6dd9737e 182 * f = fullness_threshold_frac
0959c63f
SJ
183 *
184 * Similarly, we assign zspage to:
185 * ZS_ALMOST_FULL when n > N / f
186 * ZS_EMPTY when n == 0
187 * ZS_FULL when n == N
188 *
189 * (see: fix_fullness_group())
190 */
191static const int fullness_threshold_frac = 4;
010b495e 192static size_t huge_class_size;
0959c63f
SJ
193
194struct size_class {
57244594 195 spinlock_t lock;
48b4800a 196 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
197 /*
198 * Size of objects stored in this class. Must be multiple
199 * of ZS_ALIGN.
200 */
201 int size;
1fc6e27d 202 int objs_per_zspage;
7dfa4612
WY
203 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
204 int pages_per_zspage;
48b4800a
MK
205
206 unsigned int index;
207 struct zs_size_stat stats;
0959c63f
SJ
208};
209
210/*
211 * Placed within free objects to form a singly linked list.
3783689a 212 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
213 *
214 * This must be power of 2 and less than or equal to ZS_ALIGN
215 */
216struct link_free {
2e40e163
MK
217 union {
218 /*
bfd093f5 219 * Free object index;
2e40e163
MK
220 * It's valid for non-allocated object
221 */
bfd093f5 222 unsigned long next;
2e40e163
MK
223 /*
224 * Handle of allocated object.
225 */
226 unsigned long handle;
227 };
0959c63f
SJ
228};
229
230struct zs_pool {
6f3526d6 231 const char *name;
0f050d99 232
cf8e0fed 233 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 234 struct kmem_cache *handle_cachep;
3783689a 235 struct kmem_cache *zspage_cachep;
0959c63f 236
13de8933 237 atomic_long_t pages_allocated;
0f050d99 238
7d3f3938 239 struct zs_pool_stats stats;
ab9d306d
SS
240
241 /* Compact classes */
242 struct shrinker shrinker;
93144ca3 243
0f050d99
GM
244#ifdef CONFIG_ZSMALLOC_STAT
245 struct dentry *stat_dentry;
246#endif
48b4800a 247#ifdef CONFIG_COMPACTION
48b4800a
MK
248 struct work_struct free_work;
249#endif
b475d42d
MK
250 /* protect page/zspage migration */
251 rwlock_t migrate_lock;
0959c63f 252};
61989a80 253
3783689a
MK
254struct zspage {
255 struct {
a41ec880 256 unsigned int huge:HUGE_BITS;
3783689a 257 unsigned int fullness:FULLNESS_BITS;
85d492f2 258 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
259 unsigned int isolated:ISOLATED_BITS;
260 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
261 };
262 unsigned int inuse;
bfd093f5 263 unsigned int freeobj;
3783689a
MK
264 struct page *first_page;
265 struct list_head list; /* fullness list */
68f2736a 266 struct zs_pool *pool;
48b4800a
MK
267#ifdef CONFIG_COMPACTION
268 rwlock_t lock;
269#endif
3783689a 270};
61989a80 271
f553646a 272struct mapping_area {
a3726599 273 local_lock_t lock;
f553646a 274 char *vm_buf; /* copy buffer for objects that span pages */
f553646a
SJ
275 char *vm_addr; /* address of kmap_atomic()'ed pages */
276 enum zs_mapmode vm_mm; /* mapping mode */
277};
278
a41ec880
MK
279/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
280static void SetZsHugePage(struct zspage *zspage)
281{
282 zspage->huge = 1;
283}
284
285static bool ZsHugePage(struct zspage *zspage)
286{
287 return zspage->huge;
288}
289
48b4800a 290#ifdef CONFIG_COMPACTION
48b4800a
MK
291static void migrate_lock_init(struct zspage *zspage);
292static void migrate_read_lock(struct zspage *zspage);
293static void migrate_read_unlock(struct zspage *zspage);
b475d42d
MK
294static void migrate_write_lock(struct zspage *zspage);
295static void migrate_write_lock_nested(struct zspage *zspage);
296static void migrate_write_unlock(struct zspage *zspage);
48b4800a
MK
297static void kick_deferred_free(struct zs_pool *pool);
298static void init_deferred_free(struct zs_pool *pool);
299static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
300#else
48b4800a
MK
301static void migrate_lock_init(struct zspage *zspage) {}
302static void migrate_read_lock(struct zspage *zspage) {}
303static void migrate_read_unlock(struct zspage *zspage) {}
b475d42d
MK
304static void migrate_write_lock(struct zspage *zspage) {}
305static void migrate_write_lock_nested(struct zspage *zspage) {}
306static void migrate_write_unlock(struct zspage *zspage) {}
48b4800a
MK
307static void kick_deferred_free(struct zs_pool *pool) {}
308static void init_deferred_free(struct zs_pool *pool) {}
309static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
310#endif
311
3783689a 312static int create_cache(struct zs_pool *pool)
2e40e163
MK
313{
314 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
315 0, 0, NULL);
3783689a
MK
316 if (!pool->handle_cachep)
317 return 1;
318
319 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
320 0, 0, NULL);
321 if (!pool->zspage_cachep) {
322 kmem_cache_destroy(pool->handle_cachep);
323 pool->handle_cachep = NULL;
324 return 1;
325 }
326
327 return 0;
2e40e163
MK
328}
329
3783689a 330static void destroy_cache(struct zs_pool *pool)
2e40e163 331{
cd10add0 332 kmem_cache_destroy(pool->handle_cachep);
3783689a 333 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
334}
335
3783689a 336static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
337{
338 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 339 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
340}
341
3783689a 342static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
343{
344 kmem_cache_free(pool->handle_cachep, (void *)handle);
345}
346
3783689a
MK
347static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
348{
f0231305 349 return kmem_cache_zalloc(pool->zspage_cachep,
48b4800a 350 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 351}
3783689a
MK
352
353static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
354{
355 kmem_cache_free(pool->zspage_cachep, zspage);
356}
357
b475d42d 358/* class->lock(which owns the handle) synchronizes races */
2e40e163
MK
359static void record_obj(unsigned long handle, unsigned long obj)
360{
b475d42d 361 *(unsigned long *)handle = obj;
2e40e163
MK
362}
363
c795779d
DS
364/* zpool driver */
365
366#ifdef CONFIG_ZPOOL
367
6f3526d6 368static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 369 const struct zpool_ops *zpool_ops,
479305fd 370 struct zpool *zpool)
c795779d 371{
d0d8da2d
SS
372 /*
373 * Ignore global gfp flags: zs_malloc() may be invoked from
374 * different contexts and its caller must provide a valid
375 * gfp mask.
376 */
377 return zs_create_pool(name);
c795779d
DS
378}
379
380static void zs_zpool_destroy(void *pool)
381{
382 zs_destroy_pool(pool);
383}
384
385static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
386 unsigned long *handle)
387{
d0d8da2d 388 *handle = zs_malloc(pool, size, gfp);
c7e6f17b
HZ
389
390 if (IS_ERR((void *)(*handle)))
391 return PTR_ERR((void *)*handle);
392 return 0;
c795779d
DS
393}
394static void zs_zpool_free(void *pool, unsigned long handle)
395{
396 zs_free(pool, handle);
397}
398
c795779d
DS
399static void *zs_zpool_map(void *pool, unsigned long handle,
400 enum zpool_mapmode mm)
401{
402 enum zs_mapmode zs_mm;
403
404 switch (mm) {
405 case ZPOOL_MM_RO:
406 zs_mm = ZS_MM_RO;
407 break;
408 case ZPOOL_MM_WO:
409 zs_mm = ZS_MM_WO;
410 break;
e4a9bc58 411 case ZPOOL_MM_RW:
c795779d
DS
412 default:
413 zs_mm = ZS_MM_RW;
414 break;
415 }
416
417 return zs_map_object(pool, handle, zs_mm);
418}
419static void zs_zpool_unmap(void *pool, unsigned long handle)
420{
421 zs_unmap_object(pool, handle);
422}
423
424static u64 zs_zpool_total_size(void *pool)
425{
722cdc17 426 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
427}
428
429static struct zpool_driver zs_zpool_driver = {
c165f25d
HZ
430 .type = "zsmalloc",
431 .owner = THIS_MODULE,
432 .create = zs_zpool_create,
433 .destroy = zs_zpool_destroy,
434 .malloc_support_movable = true,
435 .malloc = zs_zpool_malloc,
436 .free = zs_zpool_free,
437 .map = zs_zpool_map,
438 .unmap = zs_zpool_unmap,
439 .total_size = zs_zpool_total_size,
c795779d
DS
440};
441
137f8cff 442MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
443#endif /* CONFIG_ZPOOL */
444
61989a80 445/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
a3726599
MG
446static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
447 .lock = INIT_LOCAL_LOCK(lock),
448};
61989a80 449
3457f414 450static __maybe_unused int is_first_page(struct page *page)
61989a80 451{
a27545bf 452 return PagePrivate(page);
61989a80
NG
453}
454
48b4800a 455/* Protected by class->lock */
3783689a 456static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 457{
3783689a 458 return zspage->inuse;
4f42047b
MK
459}
460
4f42047b 461
3783689a 462static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 463{
3783689a 464 zspage->inuse += val;
4f42047b
MK
465}
466
48b4800a 467static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 468{
48b4800a 469 struct page *first_page = zspage->first_page;
3783689a 470
48b4800a
MK
471 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
472 return first_page;
4f42047b
MK
473}
474
48b4800a 475static inline int get_first_obj_offset(struct page *page)
4f42047b 476{
ffedd09f 477 return page->page_type;
48b4800a 478}
3783689a 479
48b4800a
MK
480static inline void set_first_obj_offset(struct page *page, int offset)
481{
ffedd09f 482 page->page_type = offset;
4f42047b
MK
483}
484
bfd093f5 485static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 486{
bfd093f5 487 return zspage->freeobj;
4f42047b
MK
488}
489
bfd093f5 490static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 491{
bfd093f5 492 zspage->freeobj = obj;
4f42047b
MK
493}
494
3783689a 495static void get_zspage_mapping(struct zspage *zspage,
a4209467 496 unsigned int *class_idx,
61989a80
NG
497 enum fullness_group *fullness)
498{
48b4800a
MK
499 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
500
3783689a
MK
501 *fullness = zspage->fullness;
502 *class_idx = zspage->class;
61989a80
NG
503}
504
67f1c9cd
MK
505static struct size_class *zspage_class(struct zs_pool *pool,
506 struct zspage *zspage)
507{
508 return pool->size_class[zspage->class];
509}
510
3783689a 511static void set_zspage_mapping(struct zspage *zspage,
a4209467 512 unsigned int class_idx,
61989a80
NG
513 enum fullness_group fullness)
514{
3783689a
MK
515 zspage->class = class_idx;
516 zspage->fullness = fullness;
61989a80
NG
517}
518
c3e3e88a
NC
519/*
520 * zsmalloc divides the pool into various size classes where each
521 * class maintains a list of zspages where each zspage is divided
522 * into equal sized chunks. Each allocation falls into one of these
523 * classes depending on its size. This function returns index of the
cb152a1a 524 * size class which has chunk size big enough to hold the given size.
c3e3e88a 525 */
61989a80
NG
526static int get_size_class_index(int size)
527{
528 int idx = 0;
529
530 if (likely(size > ZS_MIN_ALLOC_SIZE))
531 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
532 ZS_SIZE_CLASS_DELTA);
533
cf8e0fed 534 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
535}
536
3828a764
MK
537/* type can be of enum type class_stat_type or fullness_group */
538static inline void class_stat_inc(struct size_class *class,
3eb95fea 539 int type, unsigned long cnt)
248ca1b0 540{
48b4800a 541 class->stats.objs[type] += cnt;
248ca1b0
MK
542}
543
3828a764
MK
544/* type can be of enum type class_stat_type or fullness_group */
545static inline void class_stat_dec(struct size_class *class,
3eb95fea 546 int type, unsigned long cnt)
248ca1b0 547{
48b4800a 548 class->stats.objs[type] -= cnt;
248ca1b0
MK
549}
550
3828a764 551/* type can be of enum type class_stat_type or fullness_group */
248ca1b0 552static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 553 int type)
248ca1b0 554{
48b4800a 555 return class->stats.objs[type];
248ca1b0
MK
556}
557
57244594
SS
558#ifdef CONFIG_ZSMALLOC_STAT
559
4abaac9b 560static void __init zs_stat_init(void)
248ca1b0 561{
4abaac9b
DS
562 if (!debugfs_initialized()) {
563 pr_warn("debugfs not available, stat dir not created\n");
564 return;
565 }
248ca1b0
MK
566
567 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
248ca1b0
MK
568}
569
570static void __exit zs_stat_exit(void)
571{
572 debugfs_remove_recursive(zs_stat_root);
573}
574
1120ed54
SS
575static unsigned long zs_can_compact(struct size_class *class);
576
248ca1b0
MK
577static int zs_stats_size_show(struct seq_file *s, void *v)
578{
579 int i;
580 struct zs_pool *pool = s->private;
581 struct size_class *class;
582 int objs_per_zspage;
583 unsigned long class_almost_full, class_almost_empty;
1120ed54 584 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
585 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
586 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 587 unsigned long total_freeable = 0;
248ca1b0 588
1120ed54 589 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
590 "class", "size", "almost_full", "almost_empty",
591 "obj_allocated", "obj_used", "pages_used",
1120ed54 592 "pages_per_zspage", "freeable");
248ca1b0 593
cf8e0fed 594 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
595 class = pool->size_class[i];
596
597 if (class->index != i)
598 continue;
599
600 spin_lock(&class->lock);
601 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
602 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
603 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
604 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 605 freeable = zs_can_compact(class);
248ca1b0
MK
606 spin_unlock(&class->lock);
607
b4fd07a0 608 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
609 pages_used = obj_allocated / objs_per_zspage *
610 class->pages_per_zspage;
611
1120ed54
SS
612 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
613 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
614 i, class->size, class_almost_full, class_almost_empty,
615 obj_allocated, obj_used, pages_used,
1120ed54 616 class->pages_per_zspage, freeable);
248ca1b0
MK
617
618 total_class_almost_full += class_almost_full;
619 total_class_almost_empty += class_almost_empty;
620 total_objs += obj_allocated;
621 total_used_objs += obj_used;
622 total_pages += pages_used;
1120ed54 623 total_freeable += freeable;
248ca1b0
MK
624 }
625
626 seq_puts(s, "\n");
1120ed54 627 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
628 "Total", "", total_class_almost_full,
629 total_class_almost_empty, total_objs,
1120ed54 630 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
631
632 return 0;
633}
5ad35093 634DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 635
d34f6157 636static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 637{
4abaac9b
DS
638 if (!zs_stat_root) {
639 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 640 return;
4abaac9b 641 }
248ca1b0 642
4268509a
GKH
643 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
644
645 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
646 &zs_stats_size_fops);
248ca1b0
MK
647}
648
649static void zs_pool_stat_destroy(struct zs_pool *pool)
650{
651 debugfs_remove_recursive(pool->stat_dentry);
652}
653
654#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 655static void __init zs_stat_init(void)
248ca1b0 656{
248ca1b0
MK
657}
658
659static void __exit zs_stat_exit(void)
660{
661}
662
d34f6157 663static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 664{
248ca1b0
MK
665}
666
667static inline void zs_pool_stat_destroy(struct zs_pool *pool)
668{
669}
248ca1b0
MK
670#endif
671
48b4800a 672
c3e3e88a
NC
673/*
674 * For each size class, zspages are divided into different groups
675 * depending on how "full" they are. This was done so that we could
676 * easily find empty or nearly empty zspages when we try to shrink
677 * the pool (not yet implemented). This function returns fullness
678 * status of the given page.
679 */
1fc6e27d 680static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 681 struct zspage *zspage)
61989a80 682{
1fc6e27d 683 int inuse, objs_per_zspage;
61989a80 684 enum fullness_group fg;
830e4bc5 685
3783689a 686 inuse = get_zspage_inuse(zspage);
1fc6e27d 687 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
688
689 if (inuse == 0)
690 fg = ZS_EMPTY;
1fc6e27d 691 else if (inuse == objs_per_zspage)
61989a80 692 fg = ZS_FULL;
1fc6e27d 693 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
694 fg = ZS_ALMOST_EMPTY;
695 else
696 fg = ZS_ALMOST_FULL;
697
698 return fg;
699}
700
c3e3e88a
NC
701/*
702 * Each size class maintains various freelists and zspages are assigned
703 * to one of these freelists based on the number of live objects they
704 * have. This functions inserts the given zspage into the freelist
705 * identified by <class, fullness_group>.
706 */
251cbb95 707static void insert_zspage(struct size_class *class,
3783689a
MK
708 struct zspage *zspage,
709 enum fullness_group fullness)
61989a80 710{
3783689a 711 struct zspage *head;
61989a80 712
3828a764 713 class_stat_inc(class, fullness, 1);
3783689a
MK
714 head = list_first_entry_or_null(&class->fullness_list[fullness],
715 struct zspage, list);
58f17117 716 /*
3783689a
MK
717 * We want to see more ZS_FULL pages and less almost empty/full.
718 * Put pages with higher ->inuse first.
58f17117 719 */
110ceb82
ML
720 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
721 list_add(&zspage->list, &head->list);
722 else
723 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
724}
725
c3e3e88a
NC
726/*
727 * This function removes the given zspage from the freelist identified
728 * by <class, fullness_group>.
729 */
251cbb95 730static void remove_zspage(struct size_class *class,
3783689a
MK
731 struct zspage *zspage,
732 enum fullness_group fullness)
61989a80 733{
3783689a 734 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
61989a80 735
3783689a 736 list_del_init(&zspage->list);
3828a764 737 class_stat_dec(class, fullness, 1);
61989a80
NG
738}
739
c3e3e88a
NC
740/*
741 * Each size class maintains zspages in different fullness groups depending
742 * on the number of live objects they contain. When allocating or freeing
743 * objects, the fullness status of the page can change, say, from ALMOST_FULL
744 * to ALMOST_EMPTY when freeing an object. This function checks if such
745 * a status change has occurred for the given page and accordingly moves the
746 * page from the freelist of the old fullness group to that of the new
747 * fullness group.
748 */
c7806261 749static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 750 struct zspage *zspage)
61989a80
NG
751{
752 int class_idx;
61989a80
NG
753 enum fullness_group currfg, newfg;
754
3783689a
MK
755 get_zspage_mapping(zspage, &class_idx, &currfg);
756 newfg = get_fullness_group(class, zspage);
61989a80
NG
757 if (newfg == currfg)
758 goto out;
759
c4549b87
MK
760 remove_zspage(class, zspage, currfg);
761 insert_zspage(class, zspage, newfg);
3783689a 762 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
763out:
764 return newfg;
765}
766
767/*
768 * We have to decide on how many pages to link together
769 * to form a zspage for each size class. This is important
770 * to reduce wastage due to unusable space left at end of
771 * each zspage which is given as:
888fa374
YX
772 * wastage = Zp % class_size
773 * usage = Zp - wastage
61989a80
NG
774 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
775 *
776 * For example, for size class of 3/8 * PAGE_SIZE, we should
777 * link together 3 PAGE_SIZE sized pages to form a zspage
778 * since then we can perfectly fit in 8 such objects.
779 */
2e3b6154 780static int get_pages_per_zspage(int class_size)
61989a80
NG
781{
782 int i, max_usedpc = 0;
783 /* zspage order which gives maximum used size per KB */
784 int max_usedpc_order = 1;
785
84d4faab 786 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
787 int zspage_size;
788 int waste, usedpc;
789
790 zspage_size = i * PAGE_SIZE;
791 waste = zspage_size % class_size;
792 usedpc = (zspage_size - waste) * 100 / zspage_size;
793
794 if (usedpc > max_usedpc) {
795 max_usedpc = usedpc;
796 max_usedpc_order = i;
797 }
798 }
799
800 return max_usedpc_order;
801}
802
3783689a 803static struct zspage *get_zspage(struct page *page)
61989a80 804{
a6c5e0f7 805 struct zspage *zspage = (struct zspage *)page_private(page);
48b4800a
MK
806
807 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
808 return zspage;
61989a80
NG
809}
810
811static struct page *get_next_page(struct page *page)
812{
a41ec880
MK
813 struct zspage *zspage = get_zspage(page);
814
815 if (unlikely(ZsHugePage(zspage)))
48b4800a
MK
816 return NULL;
817
ffedd09f 818 return (struct page *)page->index;
61989a80
NG
819}
820
bfd093f5
MK
821/**
822 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
e8b098fc 823 * @obj: the encoded object value
bfd093f5
MK
824 * @page: page object resides in zspage
825 * @obj_idx: object index
67296874 826 */
bfd093f5
MK
827static void obj_to_location(unsigned long obj, struct page **page,
828 unsigned int *obj_idx)
61989a80 829{
bfd093f5
MK
830 obj >>= OBJ_TAG_BITS;
831 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
832 *obj_idx = (obj & OBJ_INDEX_MASK);
833}
61989a80 834
67f1c9cd
MK
835static void obj_to_page(unsigned long obj, struct page **page)
836{
837 obj >>= OBJ_TAG_BITS;
838 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
839}
840
bfd093f5
MK
841/**
842 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
843 * @page: page object resides in zspage
844 * @obj_idx: object index
845 */
846static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
847{
848 unsigned long obj;
61989a80 849
312fcae2 850 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 851 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 852 obj <<= OBJ_TAG_BITS;
61989a80 853
bfd093f5 854 return obj;
61989a80
NG
855}
856
2e40e163
MK
857static unsigned long handle_to_obj(unsigned long handle)
858{
859 return *(unsigned long *)handle;
860}
861
3ae92ac2 862static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
312fcae2 863{
3ae92ac2 864 unsigned long handle;
a41ec880 865 struct zspage *zspage = get_zspage(page);
3ae92ac2 866
a41ec880 867 if (unlikely(ZsHugePage(zspage))) {
830e4bc5 868 VM_BUG_ON_PAGE(!is_first_page(page), page);
3ae92ac2 869 handle = page->index;
7b60a685 870 } else
3ae92ac2
MK
871 handle = *(unsigned long *)obj;
872
873 if (!(handle & OBJ_ALLOCATED_TAG))
874 return false;
875
876 *phandle = handle & ~OBJ_ALLOCATED_TAG;
877 return true;
312fcae2
MK
878}
879
f4477e90
NG
880static void reset_page(struct page *page)
881{
48b4800a 882 __ClearPageMovable(page);
18fd06bf 883 ClearPagePrivate(page);
f4477e90 884 set_page_private(page, 0);
48b4800a 885 page_mapcount_reset(page);
ffedd09f 886 page->index = 0;
48b4800a
MK
887}
888
4d0a5402 889static int trylock_zspage(struct zspage *zspage)
48b4800a
MK
890{
891 struct page *cursor, *fail;
892
893 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
894 get_next_page(cursor)) {
895 if (!trylock_page(cursor)) {
896 fail = cursor;
897 goto unlock;
898 }
899 }
900
901 return 1;
902unlock:
903 for (cursor = get_first_page(zspage); cursor != fail; cursor =
904 get_next_page(cursor))
905 unlock_page(cursor);
906
907 return 0;
f4477e90
NG
908}
909
48b4800a
MK
910static void __free_zspage(struct zs_pool *pool, struct size_class *class,
911 struct zspage *zspage)
61989a80 912{
3783689a 913 struct page *page, *next;
48b4800a
MK
914 enum fullness_group fg;
915 unsigned int class_idx;
916
917 get_zspage_mapping(zspage, &class_idx, &fg);
918
919 assert_spin_locked(&class->lock);
61989a80 920
3783689a 921 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 922 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 923
48b4800a 924 next = page = get_first_page(zspage);
3783689a 925 do {
48b4800a
MK
926 VM_BUG_ON_PAGE(!PageLocked(page), page);
927 next = get_next_page(page);
3783689a 928 reset_page(page);
48b4800a 929 unlock_page(page);
91537fee 930 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
931 put_page(page);
932 page = next;
933 } while (page != NULL);
61989a80 934
3783689a 935 cache_free_zspage(pool, zspage);
48b4800a 936
3828a764 937 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
938 atomic_long_sub(class->pages_per_zspage,
939 &pool->pages_allocated);
940}
941
942static void free_zspage(struct zs_pool *pool, struct size_class *class,
943 struct zspage *zspage)
944{
945 VM_BUG_ON(get_zspage_inuse(zspage));
946 VM_BUG_ON(list_empty(&zspage->list));
947
b475d42d
MK
948 /*
949 * Since zs_free couldn't be sleepable, this function cannot call
950 * lock_page. The page locks trylock_zspage got will be released
951 * by __free_zspage.
952 */
48b4800a
MK
953 if (!trylock_zspage(zspage)) {
954 kick_deferred_free(pool);
955 return;
956 }
957
958 remove_zspage(class, zspage, ZS_EMPTY);
959 __free_zspage(pool, class, zspage);
61989a80
NG
960}
961
962/* Initialize a newly allocated zspage */
3783689a 963static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 964{
bfd093f5 965 unsigned int freeobj = 1;
61989a80 966 unsigned long off = 0;
48b4800a 967 struct page *page = get_first_page(zspage);
830e4bc5 968
61989a80
NG
969 while (page) {
970 struct page *next_page;
971 struct link_free *link;
af4ee5e9 972 void *vaddr;
61989a80 973
3783689a 974 set_first_obj_offset(page, off);
61989a80 975
af4ee5e9
MK
976 vaddr = kmap_atomic(page);
977 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
978
979 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 980 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 981 link += class->size / sizeof(*link);
61989a80
NG
982 }
983
984 /*
985 * We now come to the last (full or partial) object on this
986 * page, which must point to the first object on the next
987 * page (if present)
988 */
989 next_page = get_next_page(page);
bfd093f5 990 if (next_page) {
3b1d9ca6 991 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
992 } else {
993 /*
3b1d9ca6 994 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
995 * whether it's allocated object or not.
996 */
01a6ad9a 997 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 998 }
af4ee5e9 999 kunmap_atomic(vaddr);
61989a80 1000 page = next_page;
5538c562 1001 off %= PAGE_SIZE;
61989a80 1002 }
bdb0af7c 1003
bfd093f5 1004 set_freeobj(zspage, 0);
61989a80
NG
1005}
1006
48b4800a
MK
1007static void create_page_chain(struct size_class *class, struct zspage *zspage,
1008 struct page *pages[])
61989a80 1009{
bdb0af7c
MK
1010 int i;
1011 struct page *page;
1012 struct page *prev_page = NULL;
48b4800a 1013 int nr_pages = class->pages_per_zspage;
61989a80
NG
1014
1015 /*
1016 * Allocate individual pages and link them together as:
ffedd09f 1017 * 1. all pages are linked together using page->index
3783689a 1018 * 2. each sub-page point to zspage using page->private
61989a80 1019 *
3783689a 1020 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1021 * has this flag set).
61989a80 1022 */
bdb0af7c
MK
1023 for (i = 0; i < nr_pages; i++) {
1024 page = pages[i];
3783689a 1025 set_page_private(page, (unsigned long)zspage);
ffedd09f 1026 page->index = 0;
bdb0af7c 1027 if (i == 0) {
3783689a 1028 zspage->first_page = page;
a27545bf 1029 SetPagePrivate(page);
48b4800a
MK
1030 if (unlikely(class->objs_per_zspage == 1 &&
1031 class->pages_per_zspage == 1))
a41ec880 1032 SetZsHugePage(zspage);
3783689a 1033 } else {
ffedd09f 1034 prev_page->index = (unsigned long)page;
61989a80 1035 }
61989a80
NG
1036 prev_page = page;
1037 }
bdb0af7c 1038}
61989a80 1039
bdb0af7c
MK
1040/*
1041 * Allocate a zspage for the given size class
1042 */
3783689a
MK
1043static struct zspage *alloc_zspage(struct zs_pool *pool,
1044 struct size_class *class,
1045 gfp_t gfp)
bdb0af7c
MK
1046{
1047 int i;
bdb0af7c 1048 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1049 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1050
1051 if (!zspage)
1052 return NULL;
1053
48b4800a
MK
1054 zspage->magic = ZSPAGE_MAGIC;
1055 migrate_lock_init(zspage);
61989a80 1056
bdb0af7c
MK
1057 for (i = 0; i < class->pages_per_zspage; i++) {
1058 struct page *page;
61989a80 1059
3783689a 1060 page = alloc_page(gfp);
bdb0af7c 1061 if (!page) {
91537fee
MK
1062 while (--i >= 0) {
1063 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1064 __free_page(pages[i]);
91537fee 1065 }
3783689a 1066 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1067 return NULL;
1068 }
91537fee
MK
1069
1070 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1071 pages[i] = page;
61989a80
NG
1072 }
1073
48b4800a 1074 create_page_chain(class, zspage, pages);
3783689a 1075 init_zspage(class, zspage);
68f2736a 1076 zspage->pool = pool;
bdb0af7c 1077
3783689a 1078 return zspage;
61989a80
NG
1079}
1080
3783689a 1081static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1082{
1083 int i;
3783689a 1084 struct zspage *zspage;
61989a80 1085
48b4800a 1086 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1087 zspage = list_first_entry_or_null(&class->fullness_list[i],
1088 struct zspage, list);
1089 if (zspage)
61989a80
NG
1090 break;
1091 }
1092
3783689a 1093 return zspage;
61989a80
NG
1094}
1095
f553646a
SJ
1096static inline int __zs_cpu_up(struct mapping_area *area)
1097{
1098 /*
1099 * Make sure we don't leak memory if a cpu UP notification
1100 * and zs_init() race and both call zs_cpu_up() on the same cpu
1101 */
1102 if (area->vm_buf)
1103 return 0;
40f9fb8c 1104 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1105 if (!area->vm_buf)
1106 return -ENOMEM;
1107 return 0;
1108}
1109
1110static inline void __zs_cpu_down(struct mapping_area *area)
1111{
40f9fb8c 1112 kfree(area->vm_buf);
f553646a
SJ
1113 area->vm_buf = NULL;
1114}
1115
1116static void *__zs_map_object(struct mapping_area *area,
1117 struct page *pages[2], int off, int size)
5f601902 1118{
5f601902
SJ
1119 int sizes[2];
1120 void *addr;
f553646a 1121 char *buf = area->vm_buf;
5f601902 1122
f553646a
SJ
1123 /* disable page faults to match kmap_atomic() return conditions */
1124 pagefault_disable();
1125
1126 /* no read fastpath */
1127 if (area->vm_mm == ZS_MM_WO)
1128 goto out;
5f601902
SJ
1129
1130 sizes[0] = PAGE_SIZE - off;
1131 sizes[1] = size - sizes[0];
1132
5f601902
SJ
1133 /* copy object to per-cpu buffer */
1134 addr = kmap_atomic(pages[0]);
1135 memcpy(buf, addr + off, sizes[0]);
1136 kunmap_atomic(addr);
1137 addr = kmap_atomic(pages[1]);
1138 memcpy(buf + sizes[0], addr, sizes[1]);
1139 kunmap_atomic(addr);
f553646a
SJ
1140out:
1141 return area->vm_buf;
5f601902
SJ
1142}
1143
f553646a
SJ
1144static void __zs_unmap_object(struct mapping_area *area,
1145 struct page *pages[2], int off, int size)
5f601902 1146{
5f601902
SJ
1147 int sizes[2];
1148 void *addr;
2e40e163 1149 char *buf;
5f601902 1150
f553646a
SJ
1151 /* no write fastpath */
1152 if (area->vm_mm == ZS_MM_RO)
1153 goto out;
5f601902 1154
7b60a685 1155 buf = area->vm_buf;
a82cbf07
YX
1156 buf = buf + ZS_HANDLE_SIZE;
1157 size -= ZS_HANDLE_SIZE;
1158 off += ZS_HANDLE_SIZE;
2e40e163 1159
5f601902
SJ
1160 sizes[0] = PAGE_SIZE - off;
1161 sizes[1] = size - sizes[0];
1162
1163 /* copy per-cpu buffer to object */
1164 addr = kmap_atomic(pages[0]);
1165 memcpy(addr + off, buf, sizes[0]);
1166 kunmap_atomic(addr);
1167 addr = kmap_atomic(pages[1]);
1168 memcpy(addr, buf + sizes[0], sizes[1]);
1169 kunmap_atomic(addr);
f553646a
SJ
1170
1171out:
1172 /* enable page faults to match kunmap_atomic() return conditions */
1173 pagefault_enable();
5f601902 1174}
61989a80 1175
215c89d0 1176static int zs_cpu_prepare(unsigned int cpu)
61989a80 1177{
61989a80
NG
1178 struct mapping_area *area;
1179
215c89d0
SAS
1180 area = &per_cpu(zs_map_area, cpu);
1181 return __zs_cpu_up(area);
61989a80
NG
1182}
1183
215c89d0 1184static int zs_cpu_dead(unsigned int cpu)
61989a80 1185{
215c89d0 1186 struct mapping_area *area;
40f9fb8c 1187
215c89d0
SAS
1188 area = &per_cpu(zs_map_area, cpu);
1189 __zs_cpu_down(area);
1190 return 0;
b1b00a5b
SS
1191}
1192
64d90465
GM
1193static bool can_merge(struct size_class *prev, int pages_per_zspage,
1194 int objs_per_zspage)
9eec4cd5 1195{
64d90465
GM
1196 if (prev->pages_per_zspage == pages_per_zspage &&
1197 prev->objs_per_zspage == objs_per_zspage)
1198 return true;
9eec4cd5 1199
64d90465 1200 return false;
9eec4cd5
JK
1201}
1202
3783689a 1203static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1204{
3783689a 1205 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1206}
1207
66cdef66
GM
1208unsigned long zs_get_total_pages(struct zs_pool *pool)
1209{
1210 return atomic_long_read(&pool->pages_allocated);
1211}
1212EXPORT_SYMBOL_GPL(zs_get_total_pages);
1213
4bbc0bc0 1214/**
66cdef66
GM
1215 * zs_map_object - get address of allocated object from handle.
1216 * @pool: pool from which the object was allocated
1217 * @handle: handle returned from zs_malloc
f0953a1b 1218 * @mm: mapping mode to use
4bbc0bc0 1219 *
66cdef66
GM
1220 * Before using an object allocated from zs_malloc, it must be mapped using
1221 * this function. When done with the object, it must be unmapped using
1222 * zs_unmap_object.
4bbc0bc0 1223 *
66cdef66
GM
1224 * Only one object can be mapped per cpu at a time. There is no protection
1225 * against nested mappings.
1226 *
1227 * This function returns with preemption and page faults disabled.
4bbc0bc0 1228 */
66cdef66
GM
1229void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1230 enum zs_mapmode mm)
61989a80 1231{
3783689a 1232 struct zspage *zspage;
66cdef66 1233 struct page *page;
bfd093f5
MK
1234 unsigned long obj, off;
1235 unsigned int obj_idx;
61989a80 1236
66cdef66
GM
1237 struct size_class *class;
1238 struct mapping_area *area;
1239 struct page *pages[2];
2e40e163 1240 void *ret;
61989a80 1241
9eec4cd5 1242 /*
66cdef66
GM
1243 * Because we use per-cpu mapping areas shared among the
1244 * pools/users, we can't allow mapping in interrupt context
1245 * because it can corrupt another users mappings.
9eec4cd5 1246 */
1aedcafb 1247 BUG_ON(in_interrupt());
61989a80 1248
b475d42d
MK
1249 /* It guarantees it can get zspage from handle safely */
1250 read_lock(&pool->migrate_lock);
2e40e163
MK
1251 obj = handle_to_obj(handle);
1252 obj_to_location(obj, &page, &obj_idx);
3783689a 1253 zspage = get_zspage(page);
48b4800a 1254
b475d42d
MK
1255 /*
1256 * migration cannot move any zpages in this zspage. Here, class->lock
1257 * is too heavy since callers would take some time until they calls
1258 * zs_unmap_object API so delegate the locking from class to zspage
1259 * which is smaller granularity.
1260 */
48b4800a 1261 migrate_read_lock(zspage);
b475d42d 1262 read_unlock(&pool->migrate_lock);
48b4800a 1263
67f1c9cd 1264 class = zspage_class(pool, zspage);
bfd093f5 1265 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1266
a3726599
MG
1267 local_lock(&zs_map_area.lock);
1268 area = this_cpu_ptr(&zs_map_area);
66cdef66
GM
1269 area->vm_mm = mm;
1270 if (off + class->size <= PAGE_SIZE) {
1271 /* this object is contained entirely within a page */
1272 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1273 ret = area->vm_addr + off;
1274 goto out;
61989a80
NG
1275 }
1276
66cdef66
GM
1277 /* this object spans two pages */
1278 pages[0] = page;
1279 pages[1] = get_next_page(page);
1280 BUG_ON(!pages[1]);
9eec4cd5 1281
2e40e163
MK
1282 ret = __zs_map_object(area, pages, off, class->size);
1283out:
a41ec880 1284 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1285 ret += ZS_HANDLE_SIZE;
1286
1287 return ret;
61989a80 1288}
66cdef66 1289EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1290
66cdef66 1291void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1292{
3783689a 1293 struct zspage *zspage;
66cdef66 1294 struct page *page;
bfd093f5
MK
1295 unsigned long obj, off;
1296 unsigned int obj_idx;
61989a80 1297
66cdef66
GM
1298 struct size_class *class;
1299 struct mapping_area *area;
9eec4cd5 1300
2e40e163
MK
1301 obj = handle_to_obj(handle);
1302 obj_to_location(obj, &page, &obj_idx);
3783689a 1303 zspage = get_zspage(page);
67f1c9cd 1304 class = zspage_class(pool, zspage);
bfd093f5 1305 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1306
66cdef66
GM
1307 area = this_cpu_ptr(&zs_map_area);
1308 if (off + class->size <= PAGE_SIZE)
1309 kunmap_atomic(area->vm_addr);
1310 else {
1311 struct page *pages[2];
40f9fb8c 1312
66cdef66
GM
1313 pages[0] = page;
1314 pages[1] = get_next_page(page);
1315 BUG_ON(!pages[1]);
1316
1317 __zs_unmap_object(area, pages, off, class->size);
1318 }
a3726599 1319 local_unlock(&zs_map_area.lock);
48b4800a
MK
1320
1321 migrate_read_unlock(zspage);
61989a80 1322}
66cdef66 1323EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1324
010b495e
SS
1325/**
1326 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1327 * zsmalloc &size_class.
1328 * @pool: zsmalloc pool to use
1329 *
1330 * The function returns the size of the first huge class - any object of equal
1331 * or bigger size will be stored in zspage consisting of a single physical
1332 * page.
1333 *
1334 * Context: Any context.
1335 *
1336 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1337 */
1338size_t zs_huge_class_size(struct zs_pool *pool)
1339{
1340 return huge_class_size;
1341}
1342EXPORT_SYMBOL_GPL(zs_huge_class_size);
1343
0a5f079b 1344static unsigned long obj_malloc(struct zs_pool *pool,
3783689a 1345 struct zspage *zspage, unsigned long handle)
c7806261 1346{
bfd093f5 1347 int i, nr_page, offset;
c7806261
MK
1348 unsigned long obj;
1349 struct link_free *link;
0a5f079b 1350 struct size_class *class;
c7806261
MK
1351
1352 struct page *m_page;
bfd093f5 1353 unsigned long m_offset;
c7806261
MK
1354 void *vaddr;
1355
0a5f079b 1356 class = pool->size_class[zspage->class];
312fcae2 1357 handle |= OBJ_ALLOCATED_TAG;
3783689a 1358 obj = get_freeobj(zspage);
bfd093f5
MK
1359
1360 offset = obj * class->size;
1361 nr_page = offset >> PAGE_SHIFT;
1362 m_offset = offset & ~PAGE_MASK;
1363 m_page = get_first_page(zspage);
1364
1365 for (i = 0; i < nr_page; i++)
1366 m_page = get_next_page(m_page);
c7806261
MK
1367
1368 vaddr = kmap_atomic(m_page);
1369 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1370 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
a41ec880 1371 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1372 /* record handle in the header of allocated chunk */
1373 link->handle = handle;
1374 else
3783689a
MK
1375 /* record handle to page->index */
1376 zspage->first_page->index = handle;
1377
c7806261 1378 kunmap_atomic(vaddr);
3783689a 1379 mod_zspage_inuse(zspage, 1);
c7806261 1380
bfd093f5
MK
1381 obj = location_to_obj(m_page, obj);
1382
c7806261
MK
1383 return obj;
1384}
1385
1386
61989a80
NG
1387/**
1388 * zs_malloc - Allocate block of given size from pool.
1389 * @pool: pool to allocate from
1390 * @size: size of block to allocate
fd854463 1391 * @gfp: gfp flags when allocating object
61989a80 1392 *
00a61d86 1393 * On success, handle to the allocated object is returned,
c7e6f17b 1394 * otherwise an ERR_PTR().
61989a80
NG
1395 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1396 */
d0d8da2d 1397unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1398{
2e40e163 1399 unsigned long handle, obj;
61989a80 1400 struct size_class *class;
48b4800a 1401 enum fullness_group newfg;
3783689a 1402 struct zspage *zspage;
61989a80 1403
7b60a685 1404 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
c7e6f17b 1405 return (unsigned long)ERR_PTR(-EINVAL);
2e40e163 1406
3783689a 1407 handle = cache_alloc_handle(pool, gfp);
2e40e163 1408 if (!handle)
c7e6f17b 1409 return (unsigned long)ERR_PTR(-ENOMEM);
61989a80 1410
2e40e163
MK
1411 /* extra space in chunk to keep the handle */
1412 size += ZS_HANDLE_SIZE;
9eec4cd5 1413 class = pool->size_class[get_size_class_index(size)];
61989a80 1414
b475d42d 1415 /* class->lock effectively protects the zpage migration */
61989a80 1416 spin_lock(&class->lock);
3783689a 1417 zspage = find_get_zspage(class);
48b4800a 1418 if (likely(zspage)) {
0a5f079b 1419 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1420 /* Now move the zspage to another fullness group, if required */
1421 fix_fullness_group(class, zspage);
1422 record_obj(handle, obj);
0a5f079b 1423 class_stat_inc(class, OBJ_USED, 1);
61989a80 1424 spin_unlock(&class->lock);
61989a80 1425
48b4800a
MK
1426 return handle;
1427 }
0f050d99 1428
48b4800a
MK
1429 spin_unlock(&class->lock);
1430
1431 zspage = alloc_zspage(pool, class, gfp);
1432 if (!zspage) {
1433 cache_free_handle(pool, handle);
c7e6f17b 1434 return (unsigned long)ERR_PTR(-ENOMEM);
61989a80
NG
1435 }
1436
48b4800a 1437 spin_lock(&class->lock);
0a5f079b 1438 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1439 newfg = get_fullness_group(class, zspage);
1440 insert_zspage(class, zspage, newfg);
1441 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1442 record_obj(handle, obj);
48b4800a
MK
1443 atomic_long_add(class->pages_per_zspage,
1444 &pool->pages_allocated);
3828a764 1445 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
0a5f079b 1446 class_stat_inc(class, OBJ_USED, 1);
48b4800a
MK
1447
1448 /* We completely set up zspage so mark them as movable */
1449 SetZsPageMovable(pool, zspage);
61989a80
NG
1450 spin_unlock(&class->lock);
1451
2e40e163 1452 return handle;
61989a80
NG
1453}
1454EXPORT_SYMBOL_GPL(zs_malloc);
1455
0a5f079b 1456static void obj_free(int class_size, unsigned long obj)
61989a80
NG
1457{
1458 struct link_free *link;
3783689a
MK
1459 struct zspage *zspage;
1460 struct page *f_page;
bfd093f5
MK
1461 unsigned long f_offset;
1462 unsigned int f_objidx;
af4ee5e9 1463 void *vaddr;
61989a80 1464
2e40e163 1465 obj_to_location(obj, &f_page, &f_objidx);
0a5f079b 1466 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
3783689a 1467 zspage = get_zspage(f_page);
61989a80 1468
c7806261 1469 vaddr = kmap_atomic(f_page);
61989a80
NG
1470
1471 /* Insert this object in containing zspage's freelist */
af4ee5e9 1472 link = (struct link_free *)(vaddr + f_offset);
a41ec880
MK
1473 if (likely(!ZsHugePage(zspage)))
1474 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1475 else
1476 f_page->index = 0;
af4ee5e9 1477 kunmap_atomic(vaddr);
bfd093f5 1478 set_freeobj(zspage, f_objidx);
3783689a 1479 mod_zspage_inuse(zspage, -1);
c7806261
MK
1480}
1481
1482void zs_free(struct zs_pool *pool, unsigned long handle)
1483{
3783689a
MK
1484 struct zspage *zspage;
1485 struct page *f_page;
bfd093f5 1486 unsigned long obj;
c7806261
MK
1487 struct size_class *class;
1488 enum fullness_group fullness;
1489
a5d21721 1490 if (IS_ERR_OR_NULL((void *)handle))
c7806261
MK
1491 return;
1492
b475d42d
MK
1493 /*
1494 * The pool->migrate_lock protects the race with zpage's migration
1495 * so it's safe to get the page from handle.
1496 */
1497 read_lock(&pool->migrate_lock);
c7806261 1498 obj = handle_to_obj(handle);
67f1c9cd 1499 obj_to_page(obj, &f_page);
3783689a 1500 zspage = get_zspage(f_page);
67f1c9cd 1501 class = zspage_class(pool, zspage);
c7806261 1502 spin_lock(&class->lock);
b475d42d
MK
1503 read_unlock(&pool->migrate_lock);
1504
0a5f079b
MK
1505 obj_free(class->size, obj);
1506 class_stat_dec(class, OBJ_USED, 1);
3783689a 1507 fullness = fix_fullness_group(class, zspage);
b475d42d 1508 if (fullness != ZS_EMPTY)
48b4800a 1509 goto out;
48b4800a 1510
c4549b87 1511 free_zspage(pool, class, zspage);
48b4800a 1512out:
61989a80 1513 spin_unlock(&class->lock);
3783689a 1514 cache_free_handle(pool, handle);
312fcae2
MK
1515}
1516EXPORT_SYMBOL_GPL(zs_free);
1517
251cbb95
MK
1518static void zs_object_copy(struct size_class *class, unsigned long dst,
1519 unsigned long src)
312fcae2
MK
1520{
1521 struct page *s_page, *d_page;
bfd093f5 1522 unsigned int s_objidx, d_objidx;
312fcae2
MK
1523 unsigned long s_off, d_off;
1524 void *s_addr, *d_addr;
1525 int s_size, d_size, size;
1526 int written = 0;
1527
1528 s_size = d_size = class->size;
1529
1530 obj_to_location(src, &s_page, &s_objidx);
1531 obj_to_location(dst, &d_page, &d_objidx);
1532
bfd093f5
MK
1533 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1534 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1535
1536 if (s_off + class->size > PAGE_SIZE)
1537 s_size = PAGE_SIZE - s_off;
1538
1539 if (d_off + class->size > PAGE_SIZE)
1540 d_size = PAGE_SIZE - d_off;
1541
1542 s_addr = kmap_atomic(s_page);
1543 d_addr = kmap_atomic(d_page);
1544
1545 while (1) {
1546 size = min(s_size, d_size);
1547 memcpy(d_addr + d_off, s_addr + s_off, size);
1548 written += size;
1549
1550 if (written == class->size)
1551 break;
1552
495819ea
SS
1553 s_off += size;
1554 s_size -= size;
1555 d_off += size;
1556 d_size -= size;
1557
1558 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1559 kunmap_atomic(d_addr);
1560 kunmap_atomic(s_addr);
1561 s_page = get_next_page(s_page);
312fcae2
MK
1562 s_addr = kmap_atomic(s_page);
1563 d_addr = kmap_atomic(d_page);
1564 s_size = class->size - written;
1565 s_off = 0;
312fcae2
MK
1566 }
1567
495819ea 1568 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1569 kunmap_atomic(d_addr);
1570 d_page = get_next_page(d_page);
312fcae2
MK
1571 d_addr = kmap_atomic(d_page);
1572 d_size = class->size - written;
1573 d_off = 0;
312fcae2
MK
1574 }
1575 }
1576
1577 kunmap_atomic(d_addr);
1578 kunmap_atomic(s_addr);
1579}
1580
1581/*
1582 * Find alloced object in zspage from index object and
1583 * return handle.
1584 */
251cbb95 1585static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1586 struct page *page, int *obj_idx)
312fcae2 1587{
312fcae2 1588 int offset = 0;
cf675acb 1589 int index = *obj_idx;
312fcae2
MK
1590 unsigned long handle = 0;
1591 void *addr = kmap_atomic(page);
1592
3783689a 1593 offset = get_first_obj_offset(page);
312fcae2
MK
1594 offset += class->size * index;
1595
1596 while (offset < PAGE_SIZE) {
b475d42d
MK
1597 if (obj_allocated(page, addr + offset, &handle))
1598 break;
312fcae2
MK
1599
1600 offset += class->size;
1601 index++;
1602 }
1603
1604 kunmap_atomic(addr);
cf675acb
GM
1605
1606 *obj_idx = index;
1607
312fcae2
MK
1608 return handle;
1609}
1610
1611struct zs_compact_control {
3783689a 1612 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1613 struct page *s_page;
1614 /* Destination page for migration which should be a first page
1615 * of zspage. */
1616 struct page *d_page;
1617 /* Starting object index within @s_page which used for live object
1618 * in the subpage. */
41b88e14 1619 int obj_idx;
312fcae2
MK
1620};
1621
1622static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1623 struct zs_compact_control *cc)
1624{
1625 unsigned long used_obj, free_obj;
1626 unsigned long handle;
1627 struct page *s_page = cc->s_page;
1628 struct page *d_page = cc->d_page;
41b88e14 1629 int obj_idx = cc->obj_idx;
312fcae2
MK
1630 int ret = 0;
1631
1632 while (1) {
cf675acb 1633 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1634 if (!handle) {
1635 s_page = get_next_page(s_page);
1636 if (!s_page)
1637 break;
41b88e14 1638 obj_idx = 0;
312fcae2
MK
1639 continue;
1640 }
1641
1642 /* Stop if there is no more space */
3783689a 1643 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1644 ret = -ENOMEM;
1645 break;
1646 }
1647
1648 used_obj = handle_to_obj(handle);
0a5f079b 1649 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
251cbb95 1650 zs_object_copy(class, free_obj, used_obj);
41b88e14 1651 obj_idx++;
312fcae2 1652 record_obj(handle, free_obj);
0a5f079b 1653 obj_free(class->size, used_obj);
312fcae2
MK
1654 }
1655
1656 /* Remember last position in this iteration */
1657 cc->s_page = s_page;
41b88e14 1658 cc->obj_idx = obj_idx;
312fcae2
MK
1659
1660 return ret;
1661}
1662
3783689a 1663static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1664{
1665 int i;
3783689a
MK
1666 struct zspage *zspage;
1667 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1668
3783689a
MK
1669 if (!source) {
1670 fg[0] = ZS_ALMOST_FULL;
1671 fg[1] = ZS_ALMOST_EMPTY;
1672 }
1673
1674 for (i = 0; i < 2; i++) {
1675 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1676 struct zspage, list);
1677 if (zspage) {
1678 remove_zspage(class, zspage, fg[i]);
1679 return zspage;
312fcae2
MK
1680 }
1681 }
1682
3783689a 1683 return zspage;
312fcae2
MK
1684}
1685
860c707d 1686/*
3783689a 1687 * putback_zspage - add @zspage into right class's fullness list
860c707d 1688 * @class: destination class
3783689a 1689 * @zspage: target page
860c707d 1690 *
3783689a 1691 * Return @zspage's fullness_group
860c707d 1692 */
4aa409ca 1693static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1694 struct zspage *zspage)
312fcae2 1695{
312fcae2
MK
1696 enum fullness_group fullness;
1697
3783689a
MK
1698 fullness = get_fullness_group(class, zspage);
1699 insert_zspage(class, zspage, fullness);
1700 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1701
860c707d 1702 return fullness;
61989a80 1703}
312fcae2 1704
48b4800a 1705#ifdef CONFIG_COMPACTION
4d0a5402
CIK
1706/*
1707 * To prevent zspage destroy during migration, zspage freeing should
1708 * hold locks of all pages in the zspage.
1709 */
1710static void lock_zspage(struct zspage *zspage)
1711{
2505a981 1712 struct page *curr_page, *page;
4d0a5402 1713
2505a981
SA
1714 /*
1715 * Pages we haven't locked yet can be migrated off the list while we're
1716 * trying to lock them, so we need to be careful and only attempt to
1717 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1718 * may no longer belong to the zspage. This means that we may wait for
1719 * the wrong page to unlock, so we must take a reference to the page
1720 * prior to waiting for it to unlock outside migrate_read_lock().
1721 */
1722 while (1) {
1723 migrate_read_lock(zspage);
1724 page = get_first_page(zspage);
1725 if (trylock_page(page))
1726 break;
1727 get_page(page);
1728 migrate_read_unlock(zspage);
1729 wait_on_page_locked(page);
1730 put_page(page);
1731 }
1732
1733 curr_page = page;
1734 while ((page = get_next_page(curr_page))) {
1735 if (trylock_page(page)) {
1736 curr_page = page;
1737 } else {
1738 get_page(page);
1739 migrate_read_unlock(zspage);
1740 wait_on_page_locked(page);
1741 put_page(page);
1742 migrate_read_lock(zspage);
1743 }
1744 }
1745 migrate_read_unlock(zspage);
4d0a5402
CIK
1746}
1747
48b4800a
MK
1748static void migrate_lock_init(struct zspage *zspage)
1749{
1750 rwlock_init(&zspage->lock);
1751}
1752
cfc451cf 1753static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
48b4800a
MK
1754{
1755 read_lock(&zspage->lock);
1756}
1757
8a374ccc 1758static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
48b4800a
MK
1759{
1760 read_unlock(&zspage->lock);
1761}
1762
1763static void migrate_write_lock(struct zspage *zspage)
1764{
1765 write_lock(&zspage->lock);
1766}
1767
b475d42d
MK
1768static void migrate_write_lock_nested(struct zspage *zspage)
1769{
1770 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1771}
1772
48b4800a
MK
1773static void migrate_write_unlock(struct zspage *zspage)
1774{
1775 write_unlock(&zspage->lock);
1776}
1777
1778/* Number of isolated subpage for *page migration* in this zspage */
1779static void inc_zspage_isolation(struct zspage *zspage)
1780{
1781 zspage->isolated++;
1782}
1783
1784static void dec_zspage_isolation(struct zspage *zspage)
1785{
c4549b87 1786 VM_BUG_ON(zspage->isolated == 0);
48b4800a
MK
1787 zspage->isolated--;
1788}
1789
68f2736a
MWO
1790static const struct movable_operations zsmalloc_mops;
1791
48b4800a
MK
1792static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1793 struct page *newpage, struct page *oldpage)
1794{
1795 struct page *page;
1796 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1797 int idx = 0;
1798
1799 page = get_first_page(zspage);
1800 do {
1801 if (page == oldpage)
1802 pages[idx] = newpage;
1803 else
1804 pages[idx] = page;
1805 idx++;
1806 } while ((page = get_next_page(page)) != NULL);
1807
1808 create_page_chain(class, zspage, pages);
1809 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
a41ec880 1810 if (unlikely(ZsHugePage(zspage)))
48b4800a 1811 newpage->index = oldpage->index;
68f2736a 1812 __SetPageMovable(newpage, &zsmalloc_mops);
48b4800a
MK
1813}
1814
4d0a5402 1815static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
48b4800a 1816{
48b4800a 1817 struct zspage *zspage;
48b4800a
MK
1818
1819 /*
1820 * Page is locked so zspage couldn't be destroyed. For detail, look at
1821 * lock_zspage in free_zspage.
1822 */
1823 VM_BUG_ON_PAGE(!PageMovable(page), page);
1824 VM_BUG_ON_PAGE(PageIsolated(page), page);
1825
1826 zspage = get_zspage(page);
c4549b87 1827 migrate_write_lock(zspage);
48b4800a 1828 inc_zspage_isolation(zspage);
c4549b87 1829 migrate_write_unlock(zspage);
48b4800a
MK
1830
1831 return true;
1832}
1833
68f2736a
MWO
1834static int zs_page_migrate(struct page *newpage, struct page *page,
1835 enum migrate_mode mode)
48b4800a
MK
1836{
1837 struct zs_pool *pool;
1838 struct size_class *class;
48b4800a
MK
1839 struct zspage *zspage;
1840 struct page *dummy;
1841 void *s_addr, *d_addr, *addr;
b475d42d 1842 int offset;
3ae92ac2 1843 unsigned long handle;
48b4800a
MK
1844 unsigned long old_obj, new_obj;
1845 unsigned int obj_idx;
48b4800a 1846
2916ecc0
JG
1847 /*
1848 * We cannot support the _NO_COPY case here, because copy needs to
1849 * happen under the zs lock, which does not work with
1850 * MIGRATE_SYNC_NO_COPY workflow.
1851 */
1852 if (mode == MIGRATE_SYNC_NO_COPY)
1853 return -EINVAL;
1854
48b4800a
MK
1855 VM_BUG_ON_PAGE(!PageMovable(page), page);
1856 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1857
68f2736a
MWO
1858 /* The page is locked, so this pointer must remain valid */
1859 zspage = get_zspage(page);
1860 pool = zspage->pool;
b475d42d
MK
1861
1862 /*
1863 * The pool migrate_lock protects the race between zpage migration
1864 * and zs_free.
1865 */
1866 write_lock(&pool->migrate_lock);
67f1c9cd 1867 class = zspage_class(pool, zspage);
48b4800a 1868
b475d42d
MK
1869 /*
1870 * the class lock protects zpage alloc/free in the zspage.
1871 */
48b4800a 1872 spin_lock(&class->lock);
b475d42d
MK
1873 /* the migrate_write_lock protects zpage access via zs_map_object */
1874 migrate_write_lock(zspage);
48b4800a 1875
b475d42d 1876 offset = get_first_obj_offset(page);
48b4800a 1877 s_addr = kmap_atomic(page);
48b4800a
MK
1878
1879 /*
1880 * Here, any user cannot access all objects in the zspage so let's move.
1881 */
1882 d_addr = kmap_atomic(newpage);
1883 memcpy(d_addr, s_addr, PAGE_SIZE);
1884 kunmap_atomic(d_addr);
1885
b475d42d 1886 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
48b4800a 1887 addr += class->size) {
3ae92ac2 1888 if (obj_allocated(page, addr, &handle)) {
48b4800a
MK
1889
1890 old_obj = handle_to_obj(handle);
1891 obj_to_location(old_obj, &dummy, &obj_idx);
1892 new_obj = (unsigned long)location_to_obj(newpage,
1893 obj_idx);
48b4800a
MK
1894 record_obj(handle, new_obj);
1895 }
1896 }
b475d42d 1897 kunmap_atomic(s_addr);
48b4800a
MK
1898
1899 replace_sub_page(class, zspage, newpage, page);
b475d42d
MK
1900 /*
1901 * Since we complete the data copy and set up new zspage structure,
1902 * it's okay to release migration_lock.
1903 */
1904 write_unlock(&pool->migrate_lock);
1905 spin_unlock(&class->lock);
48b4800a 1906 dec_zspage_isolation(zspage);
b475d42d 1907 migrate_write_unlock(zspage);
48b4800a 1908
b475d42d 1909 get_page(newpage);
ac8f05da
CM
1910 if (page_zone(newpage) != page_zone(page)) {
1911 dec_zone_page_state(page, NR_ZSPAGES);
1912 inc_zone_page_state(newpage, NR_ZSPAGES);
1913 }
1914
48b4800a
MK
1915 reset_page(page);
1916 put_page(page);
48b4800a 1917
b475d42d 1918 return MIGRATEPAGE_SUCCESS;
48b4800a
MK
1919}
1920
4d0a5402 1921static void zs_page_putback(struct page *page)
48b4800a 1922{
48b4800a
MK
1923 struct zspage *zspage;
1924
1925 VM_BUG_ON_PAGE(!PageMovable(page), page);
1926 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1927
1928 zspage = get_zspage(page);
c4549b87 1929 migrate_write_lock(zspage);
48b4800a 1930 dec_zspage_isolation(zspage);
c4549b87 1931 migrate_write_unlock(zspage);
48b4800a
MK
1932}
1933
68f2736a 1934static const struct movable_operations zsmalloc_mops = {
48b4800a 1935 .isolate_page = zs_page_isolate,
68f2736a 1936 .migrate_page = zs_page_migrate,
48b4800a
MK
1937 .putback_page = zs_page_putback,
1938};
1939
48b4800a
MK
1940/*
1941 * Caller should hold page_lock of all pages in the zspage
1942 * In here, we cannot use zspage meta data.
1943 */
1944static void async_free_zspage(struct work_struct *work)
1945{
1946 int i;
1947 struct size_class *class;
1948 unsigned int class_idx;
1949 enum fullness_group fullness;
1950 struct zspage *zspage, *tmp;
1951 LIST_HEAD(free_pages);
1952 struct zs_pool *pool = container_of(work, struct zs_pool,
1953 free_work);
1954
cf8e0fed 1955 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
1956 class = pool->size_class[i];
1957 if (class->index != i)
1958 continue;
1959
1960 spin_lock(&class->lock);
1961 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
1962 spin_unlock(&class->lock);
1963 }
1964
48b4800a
MK
1965 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1966 list_del(&zspage->list);
1967 lock_zspage(zspage);
1968
1969 get_zspage_mapping(zspage, &class_idx, &fullness);
1970 VM_BUG_ON(fullness != ZS_EMPTY);
1971 class = pool->size_class[class_idx];
1972 spin_lock(&class->lock);
33848337 1973 __free_zspage(pool, class, zspage);
48b4800a
MK
1974 spin_unlock(&class->lock);
1975 }
1976};
1977
1978static void kick_deferred_free(struct zs_pool *pool)
1979{
1980 schedule_work(&pool->free_work);
1981}
1982
68f2736a
MWO
1983static void zs_flush_migration(struct zs_pool *pool)
1984{
1985 flush_work(&pool->free_work);
1986}
1987
48b4800a
MK
1988static void init_deferred_free(struct zs_pool *pool)
1989{
1990 INIT_WORK(&pool->free_work, async_free_zspage);
1991}
1992
1993static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1994{
1995 struct page *page = get_first_page(zspage);
1996
1997 do {
1998 WARN_ON(!trylock_page(page));
68f2736a 1999 __SetPageMovable(page, &zsmalloc_mops);
48b4800a
MK
2000 unlock_page(page);
2001 } while ((page = get_next_page(page)) != NULL);
2002}
68f2736a
MWO
2003#else
2004static inline void zs_flush_migration(struct zs_pool *pool) { }
48b4800a
MK
2005#endif
2006
04f05909
SS
2007/*
2008 *
2009 * Based on the number of unused allocated objects calculate
2010 * and return the number of pages that we can free.
04f05909
SS
2011 */
2012static unsigned long zs_can_compact(struct size_class *class)
2013{
2014 unsigned long obj_wasted;
44f43e99
SS
2015 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2016 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2017
44f43e99
SS
2018 if (obj_allocated <= obj_used)
2019 return 0;
04f05909 2020
44f43e99 2021 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2022 obj_wasted /= class->objs_per_zspage;
04f05909 2023
6cbf16b3 2024 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2025}
2026
23959281
RY
2027static unsigned long __zs_compact(struct zs_pool *pool,
2028 struct size_class *class)
312fcae2 2029{
312fcae2 2030 struct zs_compact_control cc;
3783689a
MK
2031 struct zspage *src_zspage;
2032 struct zspage *dst_zspage = NULL;
23959281 2033 unsigned long pages_freed = 0;
312fcae2 2034
b475d42d
MK
2035 /* protect the race between zpage migration and zs_free */
2036 write_lock(&pool->migrate_lock);
2037 /* protect zpage allocation/free */
312fcae2 2038 spin_lock(&class->lock);
3783689a 2039 while ((src_zspage = isolate_zspage(class, true))) {
b475d42d
MK
2040 /* protect someone accessing the zspage(i.e., zs_map_object) */
2041 migrate_write_lock(src_zspage);
312fcae2 2042
04f05909
SS
2043 if (!zs_can_compact(class))
2044 break;
2045
41b88e14 2046 cc.obj_idx = 0;
48b4800a 2047 cc.s_page = get_first_page(src_zspage);
312fcae2 2048
3783689a 2049 while ((dst_zspage = isolate_zspage(class, false))) {
b475d42d
MK
2050 migrate_write_lock_nested(dst_zspage);
2051
48b4800a 2052 cc.d_page = get_first_page(dst_zspage);
312fcae2 2053 /*
0dc63d48
SS
2054 * If there is no more space in dst_page, resched
2055 * and see if anyone had allocated another zspage.
312fcae2
MK
2056 */
2057 if (!migrate_zspage(pool, class, &cc))
2058 break;
2059
4aa409ca 2060 putback_zspage(class, dst_zspage);
b475d42d
MK
2061 migrate_write_unlock(dst_zspage);
2062 dst_zspage = NULL;
2063 if (rwlock_is_contended(&pool->migrate_lock))
2064 break;
312fcae2
MK
2065 }
2066
2067 /* Stop if we couldn't find slot */
3783689a 2068 if (dst_zspage == NULL)
312fcae2
MK
2069 break;
2070
4aa409ca 2071 putback_zspage(class, dst_zspage);
b475d42d
MK
2072 migrate_write_unlock(dst_zspage);
2073
4aa409ca 2074 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
b475d42d 2075 migrate_write_unlock(src_zspage);
48b4800a 2076 free_zspage(pool, class, src_zspage);
23959281 2077 pages_freed += class->pages_per_zspage;
b475d42d
MK
2078 } else
2079 migrate_write_unlock(src_zspage);
312fcae2 2080 spin_unlock(&class->lock);
b475d42d 2081 write_unlock(&pool->migrate_lock);
312fcae2 2082 cond_resched();
b475d42d 2083 write_lock(&pool->migrate_lock);
312fcae2
MK
2084 spin_lock(&class->lock);
2085 }
2086
b475d42d 2087 if (src_zspage) {
4aa409ca 2088 putback_zspage(class, src_zspage);
b475d42d
MK
2089 migrate_write_unlock(src_zspage);
2090 }
312fcae2 2091
7d3f3938 2092 spin_unlock(&class->lock);
b475d42d 2093 write_unlock(&pool->migrate_lock);
23959281
RY
2094
2095 return pages_freed;
312fcae2
MK
2096}
2097
2098unsigned long zs_compact(struct zs_pool *pool)
2099{
2100 int i;
312fcae2 2101 struct size_class *class;
23959281 2102 unsigned long pages_freed = 0;
312fcae2 2103
cf8e0fed 2104 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2
MK
2105 class = pool->size_class[i];
2106 if (!class)
2107 continue;
2108 if (class->index != i)
2109 continue;
23959281 2110 pages_freed += __zs_compact(pool, class);
312fcae2 2111 }
23959281 2112 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
312fcae2 2113
23959281 2114 return pages_freed;
312fcae2
MK
2115}
2116EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2117
7d3f3938
SS
2118void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2119{
2120 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2121}
2122EXPORT_SYMBOL_GPL(zs_pool_stats);
2123
ab9d306d
SS
2124static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2125 struct shrink_control *sc)
2126{
2127 unsigned long pages_freed;
2128 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2129 shrinker);
2130
ab9d306d
SS
2131 /*
2132 * Compact classes and calculate compaction delta.
2133 * Can run concurrently with a manually triggered
2134 * (by user) compaction.
2135 */
23959281 2136 pages_freed = zs_compact(pool);
ab9d306d
SS
2137
2138 return pages_freed ? pages_freed : SHRINK_STOP;
2139}
2140
2141static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2142 struct shrink_control *sc)
2143{
2144 int i;
2145 struct size_class *class;
2146 unsigned long pages_to_free = 0;
2147 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2148 shrinker);
2149
cf8e0fed 2150 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d
SS
2151 class = pool->size_class[i];
2152 if (!class)
2153 continue;
2154 if (class->index != i)
2155 continue;
2156
ab9d306d 2157 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2158 }
2159
2160 return pages_to_free;
2161}
2162
2163static void zs_unregister_shrinker(struct zs_pool *pool)
2164{
93144ca3 2165 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2166}
2167
2168static int zs_register_shrinker(struct zs_pool *pool)
2169{
2170 pool->shrinker.scan_objects = zs_shrinker_scan;
2171 pool->shrinker.count_objects = zs_shrinker_count;
2172 pool->shrinker.batch = 0;
2173 pool->shrinker.seeks = DEFAULT_SEEKS;
2174
e33c267a
RG
2175 return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2176 pool->name);
ab9d306d
SS
2177}
2178
00a61d86 2179/**
66cdef66 2180 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2181 * @name: pool name to be created
166cfda7 2182 *
66cdef66
GM
2183 * This function must be called before anything when using
2184 * the zsmalloc allocator.
166cfda7 2185 *
66cdef66
GM
2186 * On success, a pointer to the newly created pool is returned,
2187 * otherwise NULL.
396b7fd6 2188 */
d0d8da2d 2189struct zs_pool *zs_create_pool(const char *name)
61989a80 2190{
66cdef66
GM
2191 int i;
2192 struct zs_pool *pool;
2193 struct size_class *prev_class = NULL;
61989a80 2194
66cdef66
GM
2195 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2196 if (!pool)
2197 return NULL;
61989a80 2198
48b4800a 2199 init_deferred_free(pool);
b475d42d 2200 rwlock_init(&pool->migrate_lock);
61989a80 2201
2e40e163
MK
2202 pool->name = kstrdup(name, GFP_KERNEL);
2203 if (!pool->name)
2204 goto err;
2205
3783689a 2206 if (create_cache(pool))
2e40e163
MK
2207 goto err;
2208
c60369f0 2209 /*
399d8eeb 2210 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2211 * for merging should be larger or equal to current size.
c60369f0 2212 */
cf8e0fed 2213 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2214 int size;
2215 int pages_per_zspage;
64d90465 2216 int objs_per_zspage;
66cdef66 2217 struct size_class *class;
3783689a 2218 int fullness = 0;
c60369f0 2219
66cdef66
GM
2220 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2221 if (size > ZS_MAX_ALLOC_SIZE)
2222 size = ZS_MAX_ALLOC_SIZE;
2223 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2224 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2225
010b495e
SS
2226 /*
2227 * We iterate from biggest down to smallest classes,
2228 * so huge_class_size holds the size of the first huge
2229 * class. Any object bigger than or equal to that will
2230 * endup in the huge class.
2231 */
2232 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2233 !huge_class_size) {
2234 huge_class_size = size;
2235 /*
2236 * The object uses ZS_HANDLE_SIZE bytes to store the
2237 * handle. We need to subtract it, because zs_malloc()
2238 * unconditionally adds handle size before it performs
2239 * size class search - so object may be smaller than
2240 * huge class size, yet it still can end up in the huge
2241 * class because it grows by ZS_HANDLE_SIZE extra bytes
2242 * right before class lookup.
2243 */
2244 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2245 }
2246
66cdef66
GM
2247 /*
2248 * size_class is used for normal zsmalloc operation such
2249 * as alloc/free for that size. Although it is natural that we
2250 * have one size_class for each size, there is a chance that we
2251 * can get more memory utilization if we use one size_class for
2252 * many different sizes whose size_class have same
2253 * characteristics. So, we makes size_class point to
2254 * previous size_class if possible.
2255 */
2256 if (prev_class) {
64d90465 2257 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2258 pool->size_class[i] = prev_class;
2259 continue;
2260 }
2261 }
2262
2263 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2264 if (!class)
2265 goto err;
2266
2267 class->size = size;
2268 class->index = i;
2269 class->pages_per_zspage = pages_per_zspage;
64d90465 2270 class->objs_per_zspage = objs_per_zspage;
66cdef66
GM
2271 spin_lock_init(&class->lock);
2272 pool->size_class[i] = class;
48b4800a
MK
2273 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2274 fullness++)
3783689a 2275 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2276
2277 prev_class = class;
61989a80
NG
2278 }
2279
d34f6157
DS
2280 /* debug only, don't abort if it fails */
2281 zs_pool_stat_create(pool, name);
0f050d99 2282
ab9d306d 2283 /*
93144ca3
AK
2284 * Not critical since shrinker is only used to trigger internal
2285 * defragmentation of the pool which is pretty optional thing. If
2286 * registration fails we still can use the pool normally and user can
2287 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2288 */
93144ca3
AK
2289 zs_register_shrinker(pool);
2290
66cdef66
GM
2291 return pool;
2292
2293err:
2294 zs_destroy_pool(pool);
2295 return NULL;
61989a80 2296}
66cdef66 2297EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2298
66cdef66 2299void zs_destroy_pool(struct zs_pool *pool)
61989a80 2300{
66cdef66 2301 int i;
61989a80 2302
ab9d306d 2303 zs_unregister_shrinker(pool);
68f2736a 2304 zs_flush_migration(pool);
0f050d99
GM
2305 zs_pool_stat_destroy(pool);
2306
cf8e0fed 2307 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2308 int fg;
2309 struct size_class *class = pool->size_class[i];
61989a80 2310
66cdef66
GM
2311 if (!class)
2312 continue;
61989a80 2313
66cdef66
GM
2314 if (class->index != i)
2315 continue;
61989a80 2316
48b4800a 2317 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2318 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2319 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2320 class->size, fg);
2321 }
2322 }
2323 kfree(class);
2324 }
f553646a 2325
3783689a 2326 destroy_cache(pool);
0f050d99 2327 kfree(pool->name);
66cdef66
GM
2328 kfree(pool);
2329}
2330EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2331
66cdef66
GM
2332static int __init zs_init(void)
2333{
48b4800a
MK
2334 int ret;
2335
215c89d0
SAS
2336 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2337 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2338 if (ret)
68f2736a 2339 goto out;
66cdef66 2340
66cdef66
GM
2341#ifdef CONFIG_ZPOOL
2342 zpool_register_driver(&zs_zpool_driver);
2343#endif
0f050d99 2344
4abaac9b
DS
2345 zs_stat_init();
2346
66cdef66 2347 return 0;
0f050d99 2348
48b4800a 2349out:
0f050d99 2350 return ret;
61989a80 2351}
61989a80 2352
66cdef66 2353static void __exit zs_exit(void)
61989a80 2354{
66cdef66
GM
2355#ifdef CONFIG_ZPOOL
2356 zpool_unregister_driver(&zs_zpool_driver);
2357#endif
215c89d0 2358 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2359
2360 zs_stat_exit();
61989a80 2361}
069f101f
BH
2362
2363module_init(zs_init);
2364module_exit(zs_exit);
2365
2366MODULE_LICENSE("Dual BSD/GPL");
2367MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");