]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/zsmalloc.c
zram: fix incorrect stat with failed_reads
[thirdparty/kernel/stable.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
c3e3e88a
NC
15 * This allocator is designed for use with zram. Thus, the allocator is
16 * supposed to work well under low memory conditions. In particular, it
17 * never attempts higher order page allocation which is very likely to
18 * fail under memory pressure. On the other hand, if we just use single
19 * (0-order) pages, it would suffer from very high fragmentation --
20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21 * This was one of the major issues with its predecessor (xvmalloc).
2db51dae
NG
22 *
23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24 * and links them together using various 'struct page' fields. These linked
25 * pages act as a single higher-order page i.e. an object can span 0-order
26 * page boundaries. The code refers to these linked pages as a single entity
27 * called zspage.
28 *
c3e3e88a
NC
29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30 * since this satisfies the requirements of all its current users (in the
31 * worst case, page is incompressible and is thus stored "as-is" i.e. in
32 * uncompressed form). For allocation requests larger than this size, failure
33 * is returned (see zs_malloc).
34 *
35 * Additionally, zs_malloc() does not return a dereferenceable pointer.
36 * Instead, it returns an opaque handle (unsigned long) which encodes actual
37 * location of the allocated object. The reason for this indirection is that
38 * zsmalloc does not keep zspages permanently mapped since that would cause
39 * issues on 32-bit systems where the VA region for kernel space mappings
40 * is very small. So, before using the allocating memory, the object has to
41 * be mapped using zs_map_object() to get a usable pointer and subsequently
42 * unmapped using zs_unmap_object().
43 *
2db51dae
NG
44 * Following is how we use various fields and flags of underlying
45 * struct page(s) to form a zspage.
46 *
47 * Usage of struct page fields:
48 * page->first_page: points to the first component (0-order) page
49 * page->index (union with page->freelist): offset of the first object
50 * starting in this page. For the first page, this is
51 * always 0, so we use this field (aka freelist) to point
52 * to the first free object in zspage.
53 * page->lru: links together all component pages (except the first page)
54 * of a zspage
55 *
56 * For _first_ page only:
57 *
58 * page->private (union with page->first_page): refers to the
59 * component page after the first page
60 * page->freelist: points to the first free object in zspage.
61 * Free objects are linked together using in-place
62 * metadata.
63 * page->objects: maximum number of objects we can store in this
64 * zspage (class->zspage_order * PAGE_SIZE / class->size)
65 * page->lru: links together first pages of various zspages.
66 * Basically forming list of zspages in a fullness group.
67 * page->mapping: class index and fullness group of the zspage
68 *
69 * Usage of struct page flags:
70 * PG_private: identifies the first component page
71 * PG_private2: identifies the last component page
72 *
73 */
74
61989a80
NG
75#ifdef CONFIG_ZSMALLOC_DEBUG
76#define DEBUG
77#endif
78
79#include <linux/module.h>
80#include <linux/kernel.h>
81#include <linux/bitops.h>
82#include <linux/errno.h>
83#include <linux/highmem.h>
61989a80
NG
84#include <linux/string.h>
85#include <linux/slab.h>
86#include <asm/tlbflush.h>
87#include <asm/pgtable.h>
88#include <linux/cpumask.h>
89#include <linux/cpu.h>
0cbb613f 90#include <linux/vmalloc.h>
c60369f0 91#include <linux/hardirq.h>
0959c63f
SJ
92#include <linux/spinlock.h>
93#include <linux/types.h>
bcf1647d 94#include <linux/zsmalloc.h>
c795779d 95#include <linux/zpool.h>
0959c63f
SJ
96
97/*
98 * This must be power of 2 and greater than of equal to sizeof(link_free).
99 * These two conditions ensure that any 'struct link_free' itself doesn't
100 * span more than 1 page which avoids complex case of mapping 2 pages simply
101 * to restore link_free pointer values.
102 */
103#define ZS_ALIGN 8
104
105/*
106 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
107 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
108 */
109#define ZS_MAX_ZSPAGE_ORDER 2
110#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
111
112/*
113 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 114 * as single (unsigned long) handle value.
0959c63f
SJ
115 *
116 * Note that object index <obj_idx> is relative to system
117 * page <PFN> it is stored in, so for each sub-page belonging
118 * to a zspage, obj_idx starts with 0.
119 *
120 * This is made more complicated by various memory models and PAE.
121 */
122
123#ifndef MAX_PHYSMEM_BITS
124#ifdef CONFIG_HIGHMEM64G
125#define MAX_PHYSMEM_BITS 36
126#else /* !CONFIG_HIGHMEM64G */
127/*
128 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
129 * be PAGE_SHIFT
130 */
131#define MAX_PHYSMEM_BITS BITS_PER_LONG
132#endif
133#endif
134#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
135#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
136#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
137
138#define MAX(a, b) ((a) >= (b) ? (a) : (b))
139/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140#define ZS_MIN_ALLOC_SIZE \
141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
143
144/*
7eb52512 145 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
146 * trader-off here:
147 * - Large number of size classes is potentially wasteful as free page are
148 * spread across these classes
149 * - Small number of size classes causes large internal fragmentation
150 * - Probably its better to use specific size classes (empirically
151 * determined). NOTE: all those class sizes must be set as multiple of
152 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
153 *
154 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
155 * (reason above)
156 */
d662b8eb 157#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
0959c63f
SJ
158#define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
159 ZS_SIZE_CLASS_DELTA + 1)
160
161/*
162 * We do not maintain any list for completely empty or full pages
163 */
164enum fullness_group {
165 ZS_ALMOST_FULL,
166 ZS_ALMOST_EMPTY,
167 _ZS_NR_FULLNESS_GROUPS,
168
169 ZS_EMPTY,
170 ZS_FULL
171};
172
173/*
174 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
175 * n <= N / f, where
176 * n = number of allocated objects
177 * N = total number of objects zspage can store
178 * f = 1/fullness_threshold_frac
179 *
180 * Similarly, we assign zspage to:
181 * ZS_ALMOST_FULL when n > N / f
182 * ZS_EMPTY when n == 0
183 * ZS_FULL when n == N
184 *
185 * (see: fix_fullness_group())
186 */
187static const int fullness_threshold_frac = 4;
188
189struct size_class {
190 /*
191 * Size of objects stored in this class. Must be multiple
192 * of ZS_ALIGN.
193 */
194 int size;
195 unsigned int index;
196
197 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
198 int pages_per_zspage;
199
200 spinlock_t lock;
201
202 /* stats */
203 u64 pages_allocated;
204
205 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
206};
207
208/*
209 * Placed within free objects to form a singly linked list.
210 * For every zspage, first_page->freelist gives head of this list.
211 *
212 * This must be power of 2 and less than or equal to ZS_ALIGN
213 */
214struct link_free {
215 /* Handle of next free chunk (encodes <PFN, obj_idx>) */
216 void *next;
217};
218
219struct zs_pool {
220 struct size_class size_class[ZS_SIZE_CLASSES];
221
222 gfp_t flags; /* allocation flags used when growing pool */
0959c63f 223};
61989a80
NG
224
225/*
226 * A zspage's class index and fullness group
227 * are encoded in its (first)page->mapping
228 */
229#define CLASS_IDX_BITS 28
230#define FULLNESS_BITS 4
231#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
232#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
233
f553646a 234struct mapping_area {
1b945aee 235#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
236 struct vm_struct *vm; /* vm area for mapping object that span pages */
237#else
238 char *vm_buf; /* copy buffer for objects that span pages */
239#endif
240 char *vm_addr; /* address of kmap_atomic()'ed pages */
241 enum zs_mapmode vm_mm; /* mapping mode */
242};
243
c795779d
DS
244/* zpool driver */
245
246#ifdef CONFIG_ZPOOL
247
248static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops)
249{
250 return zs_create_pool(gfp);
251}
252
253static void zs_zpool_destroy(void *pool)
254{
255 zs_destroy_pool(pool);
256}
257
258static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
259 unsigned long *handle)
260{
261 *handle = zs_malloc(pool, size);
262 return *handle ? 0 : -1;
263}
264static void zs_zpool_free(void *pool, unsigned long handle)
265{
266 zs_free(pool, handle);
267}
268
269static int zs_zpool_shrink(void *pool, unsigned int pages,
270 unsigned int *reclaimed)
271{
272 return -EINVAL;
273}
274
275static void *zs_zpool_map(void *pool, unsigned long handle,
276 enum zpool_mapmode mm)
277{
278 enum zs_mapmode zs_mm;
279
280 switch (mm) {
281 case ZPOOL_MM_RO:
282 zs_mm = ZS_MM_RO;
283 break;
284 case ZPOOL_MM_WO:
285 zs_mm = ZS_MM_WO;
286 break;
287 case ZPOOL_MM_RW: /* fallthru */
288 default:
289 zs_mm = ZS_MM_RW;
290 break;
291 }
292
293 return zs_map_object(pool, handle, zs_mm);
294}
295static void zs_zpool_unmap(void *pool, unsigned long handle)
296{
297 zs_unmap_object(pool, handle);
298}
299
300static u64 zs_zpool_total_size(void *pool)
301{
302 return zs_get_total_size_bytes(pool);
303}
304
305static struct zpool_driver zs_zpool_driver = {
306 .type = "zsmalloc",
307 .owner = THIS_MODULE,
308 .create = zs_zpool_create,
309 .destroy = zs_zpool_destroy,
310 .malloc = zs_zpool_malloc,
311 .free = zs_zpool_free,
312 .shrink = zs_zpool_shrink,
313 .map = zs_zpool_map,
314 .unmap = zs_zpool_unmap,
315 .total_size = zs_zpool_total_size,
316};
317
318#endif /* CONFIG_ZPOOL */
319
61989a80
NG
320/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
321static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
322
323static int is_first_page(struct page *page)
324{
a27545bf 325 return PagePrivate(page);
61989a80
NG
326}
327
328static int is_last_page(struct page *page)
329{
a27545bf 330 return PagePrivate2(page);
61989a80
NG
331}
332
333static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
334 enum fullness_group *fullness)
335{
336 unsigned long m;
337 BUG_ON(!is_first_page(page));
338
339 m = (unsigned long)page->mapping;
340 *fullness = m & FULLNESS_MASK;
341 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
342}
343
344static void set_zspage_mapping(struct page *page, unsigned int class_idx,
345 enum fullness_group fullness)
346{
347 unsigned long m;
348 BUG_ON(!is_first_page(page));
349
350 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
351 (fullness & FULLNESS_MASK);
352 page->mapping = (struct address_space *)m;
353}
354
c3e3e88a
NC
355/*
356 * zsmalloc divides the pool into various size classes where each
357 * class maintains a list of zspages where each zspage is divided
358 * into equal sized chunks. Each allocation falls into one of these
359 * classes depending on its size. This function returns index of the
360 * size class which has chunk size big enough to hold the give size.
361 */
61989a80
NG
362static int get_size_class_index(int size)
363{
364 int idx = 0;
365
366 if (likely(size > ZS_MIN_ALLOC_SIZE))
367 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
368 ZS_SIZE_CLASS_DELTA);
369
370 return idx;
371}
372
c3e3e88a
NC
373/*
374 * For each size class, zspages are divided into different groups
375 * depending on how "full" they are. This was done so that we could
376 * easily find empty or nearly empty zspages when we try to shrink
377 * the pool (not yet implemented). This function returns fullness
378 * status of the given page.
379 */
61989a80
NG
380static enum fullness_group get_fullness_group(struct page *page)
381{
382 int inuse, max_objects;
383 enum fullness_group fg;
384 BUG_ON(!is_first_page(page));
385
386 inuse = page->inuse;
387 max_objects = page->objects;
388
389 if (inuse == 0)
390 fg = ZS_EMPTY;
391 else if (inuse == max_objects)
392 fg = ZS_FULL;
393 else if (inuse <= max_objects / fullness_threshold_frac)
394 fg = ZS_ALMOST_EMPTY;
395 else
396 fg = ZS_ALMOST_FULL;
397
398 return fg;
399}
400
c3e3e88a
NC
401/*
402 * Each size class maintains various freelists and zspages are assigned
403 * to one of these freelists based on the number of live objects they
404 * have. This functions inserts the given zspage into the freelist
405 * identified by <class, fullness_group>.
406 */
61989a80
NG
407static void insert_zspage(struct page *page, struct size_class *class,
408 enum fullness_group fullness)
409{
410 struct page **head;
411
412 BUG_ON(!is_first_page(page));
413
414 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
415 return;
416
417 head = &class->fullness_list[fullness];
418 if (*head)
419 list_add_tail(&page->lru, &(*head)->lru);
420
421 *head = page;
422}
423
c3e3e88a
NC
424/*
425 * This function removes the given zspage from the freelist identified
426 * by <class, fullness_group>.
427 */
61989a80
NG
428static void remove_zspage(struct page *page, struct size_class *class,
429 enum fullness_group fullness)
430{
431 struct page **head;
432
433 BUG_ON(!is_first_page(page));
434
435 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
436 return;
437
438 head = &class->fullness_list[fullness];
439 BUG_ON(!*head);
440 if (list_empty(&(*head)->lru))
441 *head = NULL;
442 else if (*head == page)
443 *head = (struct page *)list_entry((*head)->lru.next,
444 struct page, lru);
445
446 list_del_init(&page->lru);
447}
448
c3e3e88a
NC
449/*
450 * Each size class maintains zspages in different fullness groups depending
451 * on the number of live objects they contain. When allocating or freeing
452 * objects, the fullness status of the page can change, say, from ALMOST_FULL
453 * to ALMOST_EMPTY when freeing an object. This function checks if such
454 * a status change has occurred for the given page and accordingly moves the
455 * page from the freelist of the old fullness group to that of the new
456 * fullness group.
457 */
61989a80
NG
458static enum fullness_group fix_fullness_group(struct zs_pool *pool,
459 struct page *page)
460{
461 int class_idx;
462 struct size_class *class;
463 enum fullness_group currfg, newfg;
464
465 BUG_ON(!is_first_page(page));
466
467 get_zspage_mapping(page, &class_idx, &currfg);
468 newfg = get_fullness_group(page);
469 if (newfg == currfg)
470 goto out;
471
472 class = &pool->size_class[class_idx];
473 remove_zspage(page, class, currfg);
474 insert_zspage(page, class, newfg);
475 set_zspage_mapping(page, class_idx, newfg);
476
477out:
478 return newfg;
479}
480
481/*
482 * We have to decide on how many pages to link together
483 * to form a zspage for each size class. This is important
484 * to reduce wastage due to unusable space left at end of
485 * each zspage which is given as:
486 * wastage = Zp - Zp % size_class
487 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
488 *
489 * For example, for size class of 3/8 * PAGE_SIZE, we should
490 * link together 3 PAGE_SIZE sized pages to form a zspage
491 * since then we can perfectly fit in 8 such objects.
492 */
2e3b6154 493static int get_pages_per_zspage(int class_size)
61989a80
NG
494{
495 int i, max_usedpc = 0;
496 /* zspage order which gives maximum used size per KB */
497 int max_usedpc_order = 1;
498
84d4faab 499 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
500 int zspage_size;
501 int waste, usedpc;
502
503 zspage_size = i * PAGE_SIZE;
504 waste = zspage_size % class_size;
505 usedpc = (zspage_size - waste) * 100 / zspage_size;
506
507 if (usedpc > max_usedpc) {
508 max_usedpc = usedpc;
509 max_usedpc_order = i;
510 }
511 }
512
513 return max_usedpc_order;
514}
515
516/*
517 * A single 'zspage' is composed of many system pages which are
518 * linked together using fields in struct page. This function finds
519 * the first/head page, given any component page of a zspage.
520 */
521static struct page *get_first_page(struct page *page)
522{
523 if (is_first_page(page))
524 return page;
525 else
526 return page->first_page;
527}
528
529static struct page *get_next_page(struct page *page)
530{
531 struct page *next;
532
533 if (is_last_page(page))
534 next = NULL;
535 else if (is_first_page(page))
e842b976 536 next = (struct page *)page_private(page);
61989a80
NG
537 else
538 next = list_entry(page->lru.next, struct page, lru);
539
540 return next;
541}
542
67296874
OH
543/*
544 * Encode <page, obj_idx> as a single handle value.
545 * On hardware platforms with physical memory starting at 0x0 the pfn
546 * could be 0 so we ensure that the handle will never be 0 by adjusting the
547 * encoded obj_idx value before encoding.
548 */
61989a80
NG
549static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
550{
551 unsigned long handle;
552
553 if (!page) {
554 BUG_ON(obj_idx);
555 return NULL;
556 }
557
558 handle = page_to_pfn(page) << OBJ_INDEX_BITS;
67296874 559 handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
61989a80
NG
560
561 return (void *)handle;
562}
563
67296874
OH
564/*
565 * Decode <page, obj_idx> pair from the given object handle. We adjust the
566 * decoded obj_idx back to its original value since it was adjusted in
567 * obj_location_to_handle().
568 */
c2344348 569static void obj_handle_to_location(unsigned long handle, struct page **page,
61989a80
NG
570 unsigned long *obj_idx)
571{
c2344348 572 *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
67296874 573 *obj_idx = (handle & OBJ_INDEX_MASK) - 1;
61989a80
NG
574}
575
576static unsigned long obj_idx_to_offset(struct page *page,
577 unsigned long obj_idx, int class_size)
578{
579 unsigned long off = 0;
580
581 if (!is_first_page(page))
582 off = page->index;
583
584 return off + obj_idx * class_size;
585}
586
f4477e90
NG
587static void reset_page(struct page *page)
588{
589 clear_bit(PG_private, &page->flags);
590 clear_bit(PG_private_2, &page->flags);
591 set_page_private(page, 0);
592 page->mapping = NULL;
593 page->freelist = NULL;
22b751c3 594 page_mapcount_reset(page);
f4477e90
NG
595}
596
61989a80
NG
597static void free_zspage(struct page *first_page)
598{
f4477e90 599 struct page *nextp, *tmp, *head_extra;
61989a80
NG
600
601 BUG_ON(!is_first_page(first_page));
602 BUG_ON(first_page->inuse);
603
f4477e90 604 head_extra = (struct page *)page_private(first_page);
61989a80 605
f4477e90 606 reset_page(first_page);
61989a80
NG
607 __free_page(first_page);
608
609 /* zspage with only 1 system page */
f4477e90 610 if (!head_extra)
61989a80
NG
611 return;
612
f4477e90 613 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
61989a80 614 list_del(&nextp->lru);
f4477e90 615 reset_page(nextp);
61989a80
NG
616 __free_page(nextp);
617 }
f4477e90
NG
618 reset_page(head_extra);
619 __free_page(head_extra);
61989a80
NG
620}
621
622/* Initialize a newly allocated zspage */
623static void init_zspage(struct page *first_page, struct size_class *class)
624{
625 unsigned long off = 0;
626 struct page *page = first_page;
627
628 BUG_ON(!is_first_page(first_page));
629 while (page) {
630 struct page *next_page;
631 struct link_free *link;
632 unsigned int i, objs_on_page;
633
634 /*
635 * page->index stores offset of first object starting
636 * in the page. For the first page, this is always 0,
637 * so we use first_page->index (aka ->freelist) to store
638 * head of corresponding zspage's freelist.
639 */
640 if (page != first_page)
641 page->index = off;
642
643 link = (struct link_free *)kmap_atomic(page) +
644 off / sizeof(*link);
645 objs_on_page = (PAGE_SIZE - off) / class->size;
646
647 for (i = 1; i <= objs_on_page; i++) {
648 off += class->size;
649 if (off < PAGE_SIZE) {
650 link->next = obj_location_to_handle(page, i);
651 link += class->size / sizeof(*link);
652 }
653 }
654
655 /*
656 * We now come to the last (full or partial) object on this
657 * page, which must point to the first object on the next
658 * page (if present)
659 */
660 next_page = get_next_page(page);
661 link->next = obj_location_to_handle(next_page, 0);
662 kunmap_atomic(link);
663 page = next_page;
664 off = (off + class->size) % PAGE_SIZE;
665 }
666}
667
668/*
669 * Allocate a zspage for the given size class
670 */
671static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
672{
673 int i, error;
b4b700c5 674 struct page *first_page = NULL, *uninitialized_var(prev_page);
61989a80
NG
675
676 /*
677 * Allocate individual pages and link them together as:
678 * 1. first page->private = first sub-page
679 * 2. all sub-pages are linked together using page->lru
680 * 3. each sub-page is linked to the first page using page->first_page
681 *
682 * For each size class, First/Head pages are linked together using
683 * page->lru. Also, we set PG_private to identify the first page
684 * (i.e. no other sub-page has this flag set) and PG_private_2 to
685 * identify the last page.
686 */
687 error = -ENOMEM;
2e3b6154 688 for (i = 0; i < class->pages_per_zspage; i++) {
b4b700c5 689 struct page *page;
61989a80
NG
690
691 page = alloc_page(flags);
692 if (!page)
693 goto cleanup;
694
695 INIT_LIST_HEAD(&page->lru);
696 if (i == 0) { /* first page */
a27545bf 697 SetPagePrivate(page);
61989a80
NG
698 set_page_private(page, 0);
699 first_page = page;
700 first_page->inuse = 0;
701 }
702 if (i == 1)
e842b976 703 set_page_private(first_page, (unsigned long)page);
61989a80
NG
704 if (i >= 1)
705 page->first_page = first_page;
706 if (i >= 2)
707 list_add(&page->lru, &prev_page->lru);
2e3b6154 708 if (i == class->pages_per_zspage - 1) /* last page */
a27545bf 709 SetPagePrivate2(page);
61989a80
NG
710 prev_page = page;
711 }
712
713 init_zspage(first_page, class);
714
715 first_page->freelist = obj_location_to_handle(first_page, 0);
716 /* Maximum number of objects we can store in this zspage */
2e3b6154 717 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
61989a80
NG
718
719 error = 0; /* Success */
720
721cleanup:
722 if (unlikely(error) && first_page) {
723 free_zspage(first_page);
724 first_page = NULL;
725 }
726
727 return first_page;
728}
729
730static struct page *find_get_zspage(struct size_class *class)
731{
732 int i;
733 struct page *page;
734
735 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
736 page = class->fullness_list[i];
737 if (page)
738 break;
739 }
740
741 return page;
742}
743
1b945aee 744#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
745static inline int __zs_cpu_up(struct mapping_area *area)
746{
747 /*
748 * Make sure we don't leak memory if a cpu UP notification
749 * and zs_init() race and both call zs_cpu_up() on the same cpu
750 */
751 if (area->vm)
752 return 0;
753 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
754 if (!area->vm)
755 return -ENOMEM;
756 return 0;
757}
758
759static inline void __zs_cpu_down(struct mapping_area *area)
760{
761 if (area->vm)
762 free_vm_area(area->vm);
763 area->vm = NULL;
764}
765
766static inline void *__zs_map_object(struct mapping_area *area,
767 struct page *pages[2], int off, int size)
768{
f6f8ed47 769 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
770 area->vm_addr = area->vm->addr;
771 return area->vm_addr + off;
772}
773
774static inline void __zs_unmap_object(struct mapping_area *area,
775 struct page *pages[2], int off, int size)
776{
777 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 778
d95abbbb 779 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
780}
781
1b945aee 782#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
783
784static inline int __zs_cpu_up(struct mapping_area *area)
785{
786 /*
787 * Make sure we don't leak memory if a cpu UP notification
788 * and zs_init() race and both call zs_cpu_up() on the same cpu
789 */
790 if (area->vm_buf)
791 return 0;
792 area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
793 if (!area->vm_buf)
794 return -ENOMEM;
795 return 0;
796}
797
798static inline void __zs_cpu_down(struct mapping_area *area)
799{
800 if (area->vm_buf)
801 free_page((unsigned long)area->vm_buf);
802 area->vm_buf = NULL;
803}
804
805static void *__zs_map_object(struct mapping_area *area,
806 struct page *pages[2], int off, int size)
5f601902 807{
5f601902
SJ
808 int sizes[2];
809 void *addr;
f553646a 810 char *buf = area->vm_buf;
5f601902 811
f553646a
SJ
812 /* disable page faults to match kmap_atomic() return conditions */
813 pagefault_disable();
814
815 /* no read fastpath */
816 if (area->vm_mm == ZS_MM_WO)
817 goto out;
5f601902
SJ
818
819 sizes[0] = PAGE_SIZE - off;
820 sizes[1] = size - sizes[0];
821
5f601902
SJ
822 /* copy object to per-cpu buffer */
823 addr = kmap_atomic(pages[0]);
824 memcpy(buf, addr + off, sizes[0]);
825 kunmap_atomic(addr);
826 addr = kmap_atomic(pages[1]);
827 memcpy(buf + sizes[0], addr, sizes[1]);
828 kunmap_atomic(addr);
f553646a
SJ
829out:
830 return area->vm_buf;
5f601902
SJ
831}
832
f553646a
SJ
833static void __zs_unmap_object(struct mapping_area *area,
834 struct page *pages[2], int off, int size)
5f601902 835{
5f601902
SJ
836 int sizes[2];
837 void *addr;
f553646a 838 char *buf = area->vm_buf;
5f601902 839
f553646a
SJ
840 /* no write fastpath */
841 if (area->vm_mm == ZS_MM_RO)
842 goto out;
5f601902
SJ
843
844 sizes[0] = PAGE_SIZE - off;
845 sizes[1] = size - sizes[0];
846
847 /* copy per-cpu buffer to object */
848 addr = kmap_atomic(pages[0]);
849 memcpy(addr + off, buf, sizes[0]);
850 kunmap_atomic(addr);
851 addr = kmap_atomic(pages[1]);
852 memcpy(addr, buf + sizes[0], sizes[1]);
853 kunmap_atomic(addr);
f553646a
SJ
854
855out:
856 /* enable page faults to match kunmap_atomic() return conditions */
857 pagefault_enable();
5f601902 858}
61989a80 859
1b945aee 860#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 861
61989a80
NG
862static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
863 void *pcpu)
864{
f553646a 865 int ret, cpu = (long)pcpu;
61989a80
NG
866 struct mapping_area *area;
867
868 switch (action) {
869 case CPU_UP_PREPARE:
870 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
871 ret = __zs_cpu_up(area);
872 if (ret)
873 return notifier_from_errno(ret);
61989a80
NG
874 break;
875 case CPU_DEAD:
876 case CPU_UP_CANCELED:
877 area = &per_cpu(zs_map_area, cpu);
f553646a 878 __zs_cpu_down(area);
61989a80
NG
879 break;
880 }
881
882 return NOTIFY_OK;
883}
884
885static struct notifier_block zs_cpu_nb = {
886 .notifier_call = zs_cpu_notifier
887};
888
889static void zs_exit(void)
890{
891 int cpu;
892
c795779d
DS
893#ifdef CONFIG_ZPOOL
894 zpool_unregister_driver(&zs_zpool_driver);
895#endif
896
f0e71fcd
SB
897 cpu_notifier_register_begin();
898
61989a80
NG
899 for_each_online_cpu(cpu)
900 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
f0e71fcd
SB
901 __unregister_cpu_notifier(&zs_cpu_nb);
902
903 cpu_notifier_register_done();
61989a80
NG
904}
905
906static int zs_init(void)
907{
908 int cpu, ret;
909
f0e71fcd
SB
910 cpu_notifier_register_begin();
911
912 __register_cpu_notifier(&zs_cpu_nb);
61989a80
NG
913 for_each_online_cpu(cpu) {
914 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
f0e71fcd
SB
915 if (notifier_to_errno(ret)) {
916 cpu_notifier_register_done();
61989a80 917 goto fail;
f0e71fcd 918 }
61989a80 919 }
f0e71fcd
SB
920
921 cpu_notifier_register_done();
922
c795779d
DS
923#ifdef CONFIG_ZPOOL
924 zpool_register_driver(&zs_zpool_driver);
925#endif
926
61989a80
NG
927 return 0;
928fail:
929 zs_exit();
930 return notifier_to_errno(ret);
931}
932
4bbc0bc0
DB
933/**
934 * zs_create_pool - Creates an allocation pool to work from.
0d145a50 935 * @flags: allocation flags used to allocate pool metadata
4bbc0bc0
DB
936 *
937 * This function must be called before anything when using
938 * the zsmalloc allocator.
939 *
940 * On success, a pointer to the newly created pool is returned,
941 * otherwise NULL.
942 */
0d145a50 943struct zs_pool *zs_create_pool(gfp_t flags)
61989a80 944{
069f101f 945 int i, ovhd_size;
61989a80
NG
946 struct zs_pool *pool;
947
61989a80
NG
948 ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
949 pool = kzalloc(ovhd_size, GFP_KERNEL);
950 if (!pool)
951 return NULL;
952
953 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
954 int size;
955 struct size_class *class;
956
957 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
958 if (size > ZS_MAX_ALLOC_SIZE)
959 size = ZS_MAX_ALLOC_SIZE;
960
961 class = &pool->size_class[i];
962 class->size = size;
963 class->index = i;
964 spin_lock_init(&class->lock);
2e3b6154 965 class->pages_per_zspage = get_pages_per_zspage(size);
61989a80
NG
966
967 }
968
61989a80 969 pool->flags = flags;
61989a80 970
61989a80
NG
971 return pool;
972}
973EXPORT_SYMBOL_GPL(zs_create_pool);
974
975void zs_destroy_pool(struct zs_pool *pool)
976{
977 int i;
978
979 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
980 int fg;
981 struct size_class *class = &pool->size_class[i];
982
983 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
984 if (class->fullness_list[fg]) {
93ad5ab5 985 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
61989a80
NG
986 class->size, fg);
987 }
988 }
989 }
990 kfree(pool);
991}
992EXPORT_SYMBOL_GPL(zs_destroy_pool);
993
994/**
995 * zs_malloc - Allocate block of given size from pool.
996 * @pool: pool to allocate from
997 * @size: size of block to allocate
61989a80 998 *
00a61d86 999 * On success, handle to the allocated object is returned,
c2344348 1000 * otherwise 0.
61989a80
NG
1001 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1002 */
c2344348 1003unsigned long zs_malloc(struct zs_pool *pool, size_t size)
61989a80 1004{
c2344348 1005 unsigned long obj;
61989a80
NG
1006 struct link_free *link;
1007 int class_idx;
1008 struct size_class *class;
1009
1010 struct page *first_page, *m_page;
1011 unsigned long m_objidx, m_offset;
1012
1013 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
c2344348 1014 return 0;
61989a80
NG
1015
1016 class_idx = get_size_class_index(size);
1017 class = &pool->size_class[class_idx];
1018 BUG_ON(class_idx != class->index);
1019
1020 spin_lock(&class->lock);
1021 first_page = find_get_zspage(class);
1022
1023 if (!first_page) {
1024 spin_unlock(&class->lock);
1025 first_page = alloc_zspage(class, pool->flags);
1026 if (unlikely(!first_page))
c2344348 1027 return 0;
61989a80
NG
1028
1029 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1030 spin_lock(&class->lock);
2e3b6154 1031 class->pages_allocated += class->pages_per_zspage;
61989a80
NG
1032 }
1033
c2344348 1034 obj = (unsigned long)first_page->freelist;
61989a80
NG
1035 obj_handle_to_location(obj, &m_page, &m_objidx);
1036 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1037
1038 link = (struct link_free *)kmap_atomic(m_page) +
1039 m_offset / sizeof(*link);
1040 first_page->freelist = link->next;
1041 memset(link, POISON_INUSE, sizeof(*link));
1042 kunmap_atomic(link);
1043
1044 first_page->inuse++;
1045 /* Now move the zspage to another fullness group, if required */
1046 fix_fullness_group(pool, first_page);
1047 spin_unlock(&class->lock);
1048
1049 return obj;
1050}
1051EXPORT_SYMBOL_GPL(zs_malloc);
1052
c2344348 1053void zs_free(struct zs_pool *pool, unsigned long obj)
61989a80
NG
1054{
1055 struct link_free *link;
1056 struct page *first_page, *f_page;
1057 unsigned long f_objidx, f_offset;
1058
1059 int class_idx;
1060 struct size_class *class;
1061 enum fullness_group fullness;
1062
1063 if (unlikely(!obj))
1064 return;
1065
1066 obj_handle_to_location(obj, &f_page, &f_objidx);
1067 first_page = get_first_page(f_page);
1068
1069 get_zspage_mapping(first_page, &class_idx, &fullness);
1070 class = &pool->size_class[class_idx];
1071 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1072
1073 spin_lock(&class->lock);
1074
1075 /* Insert this object in containing zspage's freelist */
1076 link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
1077 + f_offset);
1078 link->next = first_page->freelist;
1079 kunmap_atomic(link);
c2344348 1080 first_page->freelist = (void *)obj;
61989a80
NG
1081
1082 first_page->inuse--;
1083 fullness = fix_fullness_group(pool, first_page);
1084
1085 if (fullness == ZS_EMPTY)
2e3b6154 1086 class->pages_allocated -= class->pages_per_zspage;
61989a80
NG
1087
1088 spin_unlock(&class->lock);
1089
1090 if (fullness == ZS_EMPTY)
1091 free_zspage(first_page);
1092}
1093EXPORT_SYMBOL_GPL(zs_free);
1094
00a61d86
MK
1095/**
1096 * zs_map_object - get address of allocated object from handle.
1097 * @pool: pool from which the object was allocated
1098 * @handle: handle returned from zs_malloc
1099 *
1100 * Before using an object allocated from zs_malloc, it must be mapped using
1101 * this function. When done with the object, it must be unmapped using
166cfda7
SJ
1102 * zs_unmap_object.
1103 *
1104 * Only one object can be mapped per cpu at a time. There is no protection
1105 * against nested mappings.
1106 *
1107 * This function returns with preemption and page faults disabled.
396b7fd6 1108 */
b7418510
SJ
1109void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1110 enum zs_mapmode mm)
61989a80
NG
1111{
1112 struct page *page;
1113 unsigned long obj_idx, off;
1114
1115 unsigned int class_idx;
1116 enum fullness_group fg;
1117 struct size_class *class;
1118 struct mapping_area *area;
f553646a 1119 struct page *pages[2];
61989a80
NG
1120
1121 BUG_ON(!handle);
1122
c60369f0
SJ
1123 /*
1124 * Because we use per-cpu mapping areas shared among the
1125 * pools/users, we can't allow mapping in interrupt context
1126 * because it can corrupt another users mappings.
1127 */
1128 BUG_ON(in_interrupt());
1129
61989a80
NG
1130 obj_handle_to_location(handle, &page, &obj_idx);
1131 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1132 class = &pool->size_class[class_idx];
1133 off = obj_idx_to_offset(page, obj_idx, class->size);
1134
1135 area = &get_cpu_var(zs_map_area);
f553646a 1136 area->vm_mm = mm;
61989a80
NG
1137 if (off + class->size <= PAGE_SIZE) {
1138 /* this object is contained entirely within a page */
1139 area->vm_addr = kmap_atomic(page);
5f601902 1140 return area->vm_addr + off;
61989a80
NG
1141 }
1142
f553646a
SJ
1143 /* this object spans two pages */
1144 pages[0] = page;
1145 pages[1] = get_next_page(page);
1146 BUG_ON(!pages[1]);
b7418510 1147
f553646a 1148 return __zs_map_object(area, pages, off, class->size);
61989a80
NG
1149}
1150EXPORT_SYMBOL_GPL(zs_map_object);
1151
c2344348 1152void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80
NG
1153{
1154 struct page *page;
1155 unsigned long obj_idx, off;
1156
1157 unsigned int class_idx;
1158 enum fullness_group fg;
1159 struct size_class *class;
1160 struct mapping_area *area;
1161
1162 BUG_ON(!handle);
1163
1164 obj_handle_to_location(handle, &page, &obj_idx);
1165 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1166 class = &pool->size_class[class_idx];
1167 off = obj_idx_to_offset(page, obj_idx, class->size);
1168
7c8e0181 1169 area = this_cpu_ptr(&zs_map_area);
f553646a
SJ
1170 if (off + class->size <= PAGE_SIZE)
1171 kunmap_atomic(area->vm_addr);
1172 else {
1173 struct page *pages[2];
1174
1175 pages[0] = page;
1176 pages[1] = get_next_page(page);
1177 BUG_ON(!pages[1]);
b7418510 1178
f553646a
SJ
1179 __zs_unmap_object(area, pages, off, class->size);
1180 }
61989a80
NG
1181 put_cpu_var(zs_map_area);
1182}
1183EXPORT_SYMBOL_GPL(zs_unmap_object);
1184
1185u64 zs_get_total_size_bytes(struct zs_pool *pool)
1186{
1187 int i;
1188 u64 npages = 0;
1189
1190 for (i = 0; i < ZS_SIZE_CLASSES; i++)
1191 npages += pool->size_class[i].pages_allocated;
1192
1193 return npages << PAGE_SHIFT;
1194}
1195EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);
069f101f
BH
1196
1197module_init(zs_init);
1198module_exit(zs_exit);
1199
1200MODULE_LICENSE("Dual BSD/GPL");
1201MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");