]> git.ipfire.org Git - people/ms/linux.git/blame - mm/zsmalloc.c
zsmalloc: introduce some helper functions
[people/ms/linux.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
ffedd09f 20 * page->index: links together all component pages of a zspage
48b4800a
MK
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
ffedd09f 23 * page->page_type: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
61989a80
NG
33#include <linux/module.h>
34#include <linux/kernel.h>
312fcae2 35#include <linux/sched.h>
50d34394 36#include <linux/magic.h>
61989a80
NG
37#include <linux/bitops.h>
38#include <linux/errno.h>
39#include <linux/highmem.h>
61989a80
NG
40#include <linux/string.h>
41#include <linux/slab.h>
ca5999fd 42#include <linux/pgtable.h>
65fddcfc 43#include <asm/tlbflush.h>
61989a80
NG
44#include <linux/cpumask.h>
45#include <linux/cpu.h>
0cbb613f 46#include <linux/vmalloc.h>
759b26b2 47#include <linux/preempt.h>
0959c63f 48#include <linux/spinlock.h>
93144ca3 49#include <linux/shrinker.h>
0959c63f 50#include <linux/types.h>
0f050d99 51#include <linux/debugfs.h>
bcf1647d 52#include <linux/zsmalloc.h>
c795779d 53#include <linux/zpool.h>
48b4800a 54#include <linux/mount.h>
8e9231f8 55#include <linux/pseudo_fs.h>
dd4123f3 56#include <linux/migrate.h>
701d6785 57#include <linux/wait.h>
48b4800a 58#include <linux/pagemap.h>
cdc346b3 59#include <linux/fs.h>
48b4800a
MK
60
61#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
62
63/*
cb152a1a 64 * This must be power of 2 and greater than or equal to sizeof(link_free).
0959c63f
SJ
65 * These two conditions ensure that any 'struct link_free' itself doesn't
66 * span more than 1 page which avoids complex case of mapping 2 pages simply
67 * to restore link_free pointer values.
68 */
69#define ZS_ALIGN 8
70
71/*
72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74 */
75#define ZS_MAX_ZSPAGE_ORDER 2
76#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
2e40e163
MK
78#define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
0959c63f
SJ
80/*
81 * Object location (<PFN>, <obj_idx>) is encoded as
b956b5ac 82 * a single (unsigned long) handle value.
0959c63f 83 *
bfd093f5 84 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
85 *
86 * This is made more complicated by various memory models and PAE.
87 */
88
02390b87
KS
89#ifndef MAX_POSSIBLE_PHYSMEM_BITS
90#ifdef MAX_PHYSMEM_BITS
91#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92#else
0959c63f
SJ
93/*
94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95 * be PAGE_SHIFT
96 */
02390b87 97#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
98#endif
99#endif
02390b87
KS
100
101#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
102
103/*
104 * Memory for allocating for handle keeps object position by
105 * encoding <page, obj_idx> and the encoded value has a room
106 * in least bit(ie, look at obj_to_location).
107 * We use the bit to synchronize between object access by
108 * user and migration.
109 */
110#define HANDLE_PIN_BIT 0
111
112/*
113 * Head in allocated object should have OBJ_ALLOCATED_TAG
114 * to identify the object was allocated or not.
115 * It's okay to add the status bit in the least bit because
116 * header keeps handle which is 4byte-aligned address so we
117 * have room for two bit at least.
118 */
119#define OBJ_ALLOCATED_TAG 1
120#define OBJ_TAG_BITS 1
121#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
122#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
cf8e0fed
JM
124#define FULLNESS_BITS 2
125#define CLASS_BITS 8
126#define ISOLATED_BITS 3
127#define MAGIC_VAL_BITS 8
128
0959c63f
SJ
129#define MAX(a, b) ((a) >= (b) ? (a) : (b))
130/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131#define ZS_MIN_ALLOC_SIZE \
132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 133/* each chunk includes extra space to keep handle */
7b60a685 134#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
135
136/*
7eb52512 137 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
138 * trader-off here:
139 * - Large number of size classes is potentially wasteful as free page are
140 * spread across these classes
141 * - Small number of size classes causes large internal fragmentation
142 * - Probably its better to use specific size classes (empirically
143 * determined). NOTE: all those class sizes must be set as multiple of
144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145 *
146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147 * (reason above)
148 */
3783689a 149#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
150#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 152
0959c63f 153enum fullness_group {
0959c63f 154 ZS_EMPTY,
48b4800a
MK
155 ZS_ALMOST_EMPTY,
156 ZS_ALMOST_FULL,
157 ZS_FULL,
158 NR_ZS_FULLNESS,
0959c63f
SJ
159};
160
0f050d99 161enum zs_stat_type {
48b4800a
MK
162 CLASS_EMPTY,
163 CLASS_ALMOST_EMPTY,
164 CLASS_ALMOST_FULL,
165 CLASS_FULL,
0f050d99
GM
166 OBJ_ALLOCATED,
167 OBJ_USED,
48b4800a 168 NR_ZS_STAT_TYPE,
0f050d99
GM
169};
170
0f050d99
GM
171struct zs_size_stat {
172 unsigned long objs[NR_ZS_STAT_TYPE];
173};
174
57244594
SS
175#ifdef CONFIG_ZSMALLOC_STAT
176static struct dentry *zs_stat_root;
0f050d99
GM
177#endif
178
48b4800a
MK
179#ifdef CONFIG_COMPACTION
180static struct vfsmount *zsmalloc_mnt;
181#endif
182
0959c63f
SJ
183/*
184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185 * n <= N / f, where
186 * n = number of allocated objects
187 * N = total number of objects zspage can store
6dd9737e 188 * f = fullness_threshold_frac
0959c63f
SJ
189 *
190 * Similarly, we assign zspage to:
191 * ZS_ALMOST_FULL when n > N / f
192 * ZS_EMPTY when n == 0
193 * ZS_FULL when n == N
194 *
195 * (see: fix_fullness_group())
196 */
197static const int fullness_threshold_frac = 4;
010b495e 198static size_t huge_class_size;
0959c63f
SJ
199
200struct size_class {
57244594 201 spinlock_t lock;
48b4800a 202 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
203 /*
204 * Size of objects stored in this class. Must be multiple
205 * of ZS_ALIGN.
206 */
207 int size;
1fc6e27d 208 int objs_per_zspage;
7dfa4612
WY
209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210 int pages_per_zspage;
48b4800a
MK
211
212 unsigned int index;
213 struct zs_size_stat stats;
0959c63f
SJ
214};
215
48b4800a
MK
216/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217static void SetPageHugeObject(struct page *page)
218{
219 SetPageOwnerPriv1(page);
220}
221
222static void ClearPageHugeObject(struct page *page)
223{
224 ClearPageOwnerPriv1(page);
225}
226
227static int PageHugeObject(struct page *page)
228{
229 return PageOwnerPriv1(page);
230}
231
0959c63f
SJ
232/*
233 * Placed within free objects to form a singly linked list.
3783689a 234 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
235 *
236 * This must be power of 2 and less than or equal to ZS_ALIGN
237 */
238struct link_free {
2e40e163
MK
239 union {
240 /*
bfd093f5 241 * Free object index;
2e40e163
MK
242 * It's valid for non-allocated object
243 */
bfd093f5 244 unsigned long next;
2e40e163
MK
245 /*
246 * Handle of allocated object.
247 */
248 unsigned long handle;
249 };
0959c63f
SJ
250};
251
252struct zs_pool {
6f3526d6 253 const char *name;
0f050d99 254
cf8e0fed 255 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 256 struct kmem_cache *handle_cachep;
3783689a 257 struct kmem_cache *zspage_cachep;
0959c63f 258
13de8933 259 atomic_long_t pages_allocated;
0f050d99 260
7d3f3938 261 struct zs_pool_stats stats;
ab9d306d
SS
262
263 /* Compact classes */
264 struct shrinker shrinker;
93144ca3 265
0f050d99
GM
266#ifdef CONFIG_ZSMALLOC_STAT
267 struct dentry *stat_dentry;
268#endif
48b4800a
MK
269#ifdef CONFIG_COMPACTION
270 struct inode *inode;
271 struct work_struct free_work;
701d6785
HB
272 /* A wait queue for when migration races with async_free_zspage() */
273 struct wait_queue_head migration_wait;
274 atomic_long_t isolated_pages;
275 bool destroying;
48b4800a 276#endif
0959c63f 277};
61989a80 278
3783689a
MK
279struct zspage {
280 struct {
281 unsigned int fullness:FULLNESS_BITS;
85d492f2 282 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
283 unsigned int isolated:ISOLATED_BITS;
284 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
285 };
286 unsigned int inuse;
bfd093f5 287 unsigned int freeobj;
3783689a
MK
288 struct page *first_page;
289 struct list_head list; /* fullness list */
48b4800a
MK
290#ifdef CONFIG_COMPACTION
291 rwlock_t lock;
292#endif
3783689a 293};
61989a80 294
f553646a 295struct mapping_area {
f553646a 296 char *vm_buf; /* copy buffer for objects that span pages */
f553646a
SJ
297 char *vm_addr; /* address of kmap_atomic()'ed pages */
298 enum zs_mapmode vm_mm; /* mapping mode */
299};
300
48b4800a
MK
301#ifdef CONFIG_COMPACTION
302static int zs_register_migration(struct zs_pool *pool);
303static void zs_unregister_migration(struct zs_pool *pool);
304static void migrate_lock_init(struct zspage *zspage);
305static void migrate_read_lock(struct zspage *zspage);
306static void migrate_read_unlock(struct zspage *zspage);
307static void kick_deferred_free(struct zs_pool *pool);
308static void init_deferred_free(struct zs_pool *pool);
309static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
310#else
311static int zsmalloc_mount(void) { return 0; }
312static void zsmalloc_unmount(void) {}
313static int zs_register_migration(struct zs_pool *pool) { return 0; }
314static void zs_unregister_migration(struct zs_pool *pool) {}
315static void migrate_lock_init(struct zspage *zspage) {}
316static void migrate_read_lock(struct zspage *zspage) {}
317static void migrate_read_unlock(struct zspage *zspage) {}
318static void kick_deferred_free(struct zs_pool *pool) {}
319static void init_deferred_free(struct zs_pool *pool) {}
320static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
321#endif
322
3783689a 323static int create_cache(struct zs_pool *pool)
2e40e163
MK
324{
325 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
326 0, 0, NULL);
3783689a
MK
327 if (!pool->handle_cachep)
328 return 1;
329
330 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
331 0, 0, NULL);
332 if (!pool->zspage_cachep) {
333 kmem_cache_destroy(pool->handle_cachep);
334 pool->handle_cachep = NULL;
335 return 1;
336 }
337
338 return 0;
2e40e163
MK
339}
340
3783689a 341static void destroy_cache(struct zs_pool *pool)
2e40e163 342{
cd10add0 343 kmem_cache_destroy(pool->handle_cachep);
3783689a 344 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
345}
346
3783689a 347static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
348{
349 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 350 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
351}
352
3783689a 353static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
354{
355 kmem_cache_free(pool->handle_cachep, (void *)handle);
356}
357
3783689a
MK
358static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359{
f0231305 360 return kmem_cache_zalloc(pool->zspage_cachep,
48b4800a 361 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 362}
3783689a
MK
363
364static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365{
366 kmem_cache_free(pool->zspage_cachep, zspage);
367}
368
2e40e163
MK
369static void record_obj(unsigned long handle, unsigned long obj)
370{
c102f07c
JL
371 /*
372 * lsb of @obj represents handle lock while other bits
373 * represent object value the handle is pointing so
374 * updating shouldn't do store tearing.
375 */
376 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
377}
378
c795779d
DS
379/* zpool driver */
380
381#ifdef CONFIG_ZPOOL
382
6f3526d6 383static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 384 const struct zpool_ops *zpool_ops,
479305fd 385 struct zpool *zpool)
c795779d 386{
d0d8da2d
SS
387 /*
388 * Ignore global gfp flags: zs_malloc() may be invoked from
389 * different contexts and its caller must provide a valid
390 * gfp mask.
391 */
392 return zs_create_pool(name);
c795779d
DS
393}
394
395static void zs_zpool_destroy(void *pool)
396{
397 zs_destroy_pool(pool);
398}
399
400static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
401 unsigned long *handle)
402{
d0d8da2d 403 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
404 return *handle ? 0 : -1;
405}
406static void zs_zpool_free(void *pool, unsigned long handle)
407{
408 zs_free(pool, handle);
409}
410
c795779d
DS
411static void *zs_zpool_map(void *pool, unsigned long handle,
412 enum zpool_mapmode mm)
413{
414 enum zs_mapmode zs_mm;
415
416 switch (mm) {
417 case ZPOOL_MM_RO:
418 zs_mm = ZS_MM_RO;
419 break;
420 case ZPOOL_MM_WO:
421 zs_mm = ZS_MM_WO;
422 break;
e4a9bc58 423 case ZPOOL_MM_RW:
c795779d
DS
424 default:
425 zs_mm = ZS_MM_RW;
426 break;
427 }
428
429 return zs_map_object(pool, handle, zs_mm);
430}
431static void zs_zpool_unmap(void *pool, unsigned long handle)
432{
433 zs_unmap_object(pool, handle);
434}
435
436static u64 zs_zpool_total_size(void *pool)
437{
722cdc17 438 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
439}
440
441static struct zpool_driver zs_zpool_driver = {
c165f25d
HZ
442 .type = "zsmalloc",
443 .owner = THIS_MODULE,
444 .create = zs_zpool_create,
445 .destroy = zs_zpool_destroy,
446 .malloc_support_movable = true,
447 .malloc = zs_zpool_malloc,
448 .free = zs_zpool_free,
449 .map = zs_zpool_map,
450 .unmap = zs_zpool_unmap,
451 .total_size = zs_zpool_total_size,
c795779d
DS
452};
453
137f8cff 454MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
455#endif /* CONFIG_ZPOOL */
456
61989a80
NG
457/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
458static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
459
48b4800a
MK
460static bool is_zspage_isolated(struct zspage *zspage)
461{
462 return zspage->isolated;
463}
464
3457f414 465static __maybe_unused int is_first_page(struct page *page)
61989a80 466{
a27545bf 467 return PagePrivate(page);
61989a80
NG
468}
469
48b4800a 470/* Protected by class->lock */
3783689a 471static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 472{
3783689a 473 return zspage->inuse;
4f42047b
MK
474}
475
4f42047b 476
3783689a 477static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 478{
3783689a 479 zspage->inuse += val;
4f42047b
MK
480}
481
48b4800a 482static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 483{
48b4800a 484 struct page *first_page = zspage->first_page;
3783689a 485
48b4800a
MK
486 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487 return first_page;
4f42047b
MK
488}
489
48b4800a 490static inline int get_first_obj_offset(struct page *page)
4f42047b 491{
ffedd09f 492 return page->page_type;
48b4800a 493}
3783689a 494
48b4800a
MK
495static inline void set_first_obj_offset(struct page *page, int offset)
496{
ffedd09f 497 page->page_type = offset;
4f42047b
MK
498}
499
bfd093f5 500static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 501{
bfd093f5 502 return zspage->freeobj;
4f42047b
MK
503}
504
bfd093f5 505static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 506{
bfd093f5 507 zspage->freeobj = obj;
4f42047b
MK
508}
509
3783689a 510static void get_zspage_mapping(struct zspage *zspage,
a4209467 511 unsigned int *class_idx,
61989a80
NG
512 enum fullness_group *fullness)
513{
48b4800a
MK
514 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515
3783689a
MK
516 *fullness = zspage->fullness;
517 *class_idx = zspage->class;
61989a80
NG
518}
519
67f1c9cd
MK
520static struct size_class *zspage_class(struct zs_pool *pool,
521 struct zspage *zspage)
522{
523 return pool->size_class[zspage->class];
524}
525
3783689a 526static void set_zspage_mapping(struct zspage *zspage,
a4209467 527 unsigned int class_idx,
61989a80
NG
528 enum fullness_group fullness)
529{
3783689a
MK
530 zspage->class = class_idx;
531 zspage->fullness = fullness;
61989a80
NG
532}
533
c3e3e88a
NC
534/*
535 * zsmalloc divides the pool into various size classes where each
536 * class maintains a list of zspages where each zspage is divided
537 * into equal sized chunks. Each allocation falls into one of these
538 * classes depending on its size. This function returns index of the
cb152a1a 539 * size class which has chunk size big enough to hold the given size.
c3e3e88a 540 */
61989a80
NG
541static int get_size_class_index(int size)
542{
543 int idx = 0;
544
545 if (likely(size > ZS_MIN_ALLOC_SIZE))
546 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
547 ZS_SIZE_CLASS_DELTA);
548
cf8e0fed 549 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
550}
551
3eb95fea 552/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 553static inline void zs_stat_inc(struct size_class *class,
3eb95fea 554 int type, unsigned long cnt)
248ca1b0 555{
48b4800a 556 class->stats.objs[type] += cnt;
248ca1b0
MK
557}
558
3eb95fea 559/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 560static inline void zs_stat_dec(struct size_class *class,
3eb95fea 561 int type, unsigned long cnt)
248ca1b0 562{
48b4800a 563 class->stats.objs[type] -= cnt;
248ca1b0
MK
564}
565
3eb95fea 566/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 567static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 568 int type)
248ca1b0 569{
48b4800a 570 return class->stats.objs[type];
248ca1b0
MK
571}
572
57244594
SS
573#ifdef CONFIG_ZSMALLOC_STAT
574
4abaac9b 575static void __init zs_stat_init(void)
248ca1b0 576{
4abaac9b
DS
577 if (!debugfs_initialized()) {
578 pr_warn("debugfs not available, stat dir not created\n");
579 return;
580 }
248ca1b0
MK
581
582 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
248ca1b0
MK
583}
584
585static void __exit zs_stat_exit(void)
586{
587 debugfs_remove_recursive(zs_stat_root);
588}
589
1120ed54
SS
590static unsigned long zs_can_compact(struct size_class *class);
591
248ca1b0
MK
592static int zs_stats_size_show(struct seq_file *s, void *v)
593{
594 int i;
595 struct zs_pool *pool = s->private;
596 struct size_class *class;
597 int objs_per_zspage;
598 unsigned long class_almost_full, class_almost_empty;
1120ed54 599 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
600 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
601 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 602 unsigned long total_freeable = 0;
248ca1b0 603
1120ed54 604 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
605 "class", "size", "almost_full", "almost_empty",
606 "obj_allocated", "obj_used", "pages_used",
1120ed54 607 "pages_per_zspage", "freeable");
248ca1b0 608
cf8e0fed 609 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
610 class = pool->size_class[i];
611
612 if (class->index != i)
613 continue;
614
615 spin_lock(&class->lock);
616 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
617 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
618 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
619 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 620 freeable = zs_can_compact(class);
248ca1b0
MK
621 spin_unlock(&class->lock);
622
b4fd07a0 623 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
624 pages_used = obj_allocated / objs_per_zspage *
625 class->pages_per_zspage;
626
1120ed54
SS
627 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
628 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
629 i, class->size, class_almost_full, class_almost_empty,
630 obj_allocated, obj_used, pages_used,
1120ed54 631 class->pages_per_zspage, freeable);
248ca1b0
MK
632
633 total_class_almost_full += class_almost_full;
634 total_class_almost_empty += class_almost_empty;
635 total_objs += obj_allocated;
636 total_used_objs += obj_used;
637 total_pages += pages_used;
1120ed54 638 total_freeable += freeable;
248ca1b0
MK
639 }
640
641 seq_puts(s, "\n");
1120ed54 642 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
643 "Total", "", total_class_almost_full,
644 total_class_almost_empty, total_objs,
1120ed54 645 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
646
647 return 0;
648}
5ad35093 649DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 650
d34f6157 651static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 652{
4abaac9b
DS
653 if (!zs_stat_root) {
654 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 655 return;
4abaac9b 656 }
248ca1b0 657
4268509a
GKH
658 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
659
660 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
661 &zs_stats_size_fops);
248ca1b0
MK
662}
663
664static void zs_pool_stat_destroy(struct zs_pool *pool)
665{
666 debugfs_remove_recursive(pool->stat_dentry);
667}
668
669#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 670static void __init zs_stat_init(void)
248ca1b0 671{
248ca1b0
MK
672}
673
674static void __exit zs_stat_exit(void)
675{
676}
677
d34f6157 678static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 679{
248ca1b0
MK
680}
681
682static inline void zs_pool_stat_destroy(struct zs_pool *pool)
683{
684}
248ca1b0
MK
685#endif
686
48b4800a 687
c3e3e88a
NC
688/*
689 * For each size class, zspages are divided into different groups
690 * depending on how "full" they are. This was done so that we could
691 * easily find empty or nearly empty zspages when we try to shrink
692 * the pool (not yet implemented). This function returns fullness
693 * status of the given page.
694 */
1fc6e27d 695static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 696 struct zspage *zspage)
61989a80 697{
1fc6e27d 698 int inuse, objs_per_zspage;
61989a80 699 enum fullness_group fg;
830e4bc5 700
3783689a 701 inuse = get_zspage_inuse(zspage);
1fc6e27d 702 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
703
704 if (inuse == 0)
705 fg = ZS_EMPTY;
1fc6e27d 706 else if (inuse == objs_per_zspage)
61989a80 707 fg = ZS_FULL;
1fc6e27d 708 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
709 fg = ZS_ALMOST_EMPTY;
710 else
711 fg = ZS_ALMOST_FULL;
712
713 return fg;
714}
715
c3e3e88a
NC
716/*
717 * Each size class maintains various freelists and zspages are assigned
718 * to one of these freelists based on the number of live objects they
719 * have. This functions inserts the given zspage into the freelist
720 * identified by <class, fullness_group>.
721 */
251cbb95 722static void insert_zspage(struct size_class *class,
3783689a
MK
723 struct zspage *zspage,
724 enum fullness_group fullness)
61989a80 725{
3783689a 726 struct zspage *head;
61989a80 727
48b4800a 728 zs_stat_inc(class, fullness, 1);
3783689a
MK
729 head = list_first_entry_or_null(&class->fullness_list[fullness],
730 struct zspage, list);
58f17117 731 /*
3783689a
MK
732 * We want to see more ZS_FULL pages and less almost empty/full.
733 * Put pages with higher ->inuse first.
58f17117 734 */
110ceb82
ML
735 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
736 list_add(&zspage->list, &head->list);
737 else
738 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
739}
740
c3e3e88a
NC
741/*
742 * This function removes the given zspage from the freelist identified
743 * by <class, fullness_group>.
744 */
251cbb95 745static void remove_zspage(struct size_class *class,
3783689a
MK
746 struct zspage *zspage,
747 enum fullness_group fullness)
61989a80 748{
3783689a 749 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
48b4800a 750 VM_BUG_ON(is_zspage_isolated(zspage));
61989a80 751
3783689a 752 list_del_init(&zspage->list);
48b4800a 753 zs_stat_dec(class, fullness, 1);
61989a80
NG
754}
755
c3e3e88a
NC
756/*
757 * Each size class maintains zspages in different fullness groups depending
758 * on the number of live objects they contain. When allocating or freeing
759 * objects, the fullness status of the page can change, say, from ALMOST_FULL
760 * to ALMOST_EMPTY when freeing an object. This function checks if such
761 * a status change has occurred for the given page and accordingly moves the
762 * page from the freelist of the old fullness group to that of the new
763 * fullness group.
764 */
c7806261 765static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 766 struct zspage *zspage)
61989a80
NG
767{
768 int class_idx;
61989a80
NG
769 enum fullness_group currfg, newfg;
770
3783689a
MK
771 get_zspage_mapping(zspage, &class_idx, &currfg);
772 newfg = get_fullness_group(class, zspage);
61989a80
NG
773 if (newfg == currfg)
774 goto out;
775
48b4800a
MK
776 if (!is_zspage_isolated(zspage)) {
777 remove_zspage(class, zspage, currfg);
778 insert_zspage(class, zspage, newfg);
779 }
780
3783689a 781 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
782
783out:
784 return newfg;
785}
786
787/*
788 * We have to decide on how many pages to link together
789 * to form a zspage for each size class. This is important
790 * to reduce wastage due to unusable space left at end of
791 * each zspage which is given as:
888fa374
YX
792 * wastage = Zp % class_size
793 * usage = Zp - wastage
61989a80
NG
794 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
795 *
796 * For example, for size class of 3/8 * PAGE_SIZE, we should
797 * link together 3 PAGE_SIZE sized pages to form a zspage
798 * since then we can perfectly fit in 8 such objects.
799 */
2e3b6154 800static int get_pages_per_zspage(int class_size)
61989a80
NG
801{
802 int i, max_usedpc = 0;
803 /* zspage order which gives maximum used size per KB */
804 int max_usedpc_order = 1;
805
84d4faab 806 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
807 int zspage_size;
808 int waste, usedpc;
809
810 zspage_size = i * PAGE_SIZE;
811 waste = zspage_size % class_size;
812 usedpc = (zspage_size - waste) * 100 / zspage_size;
813
814 if (usedpc > max_usedpc) {
815 max_usedpc = usedpc;
816 max_usedpc_order = i;
817 }
818 }
819
820 return max_usedpc_order;
821}
822
3783689a 823static struct zspage *get_zspage(struct page *page)
61989a80 824{
a6c5e0f7 825 struct zspage *zspage = (struct zspage *)page_private(page);
48b4800a
MK
826
827 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
828 return zspage;
61989a80
NG
829}
830
831static struct page *get_next_page(struct page *page)
832{
48b4800a
MK
833 if (unlikely(PageHugeObject(page)))
834 return NULL;
835
ffedd09f 836 return (struct page *)page->index;
61989a80
NG
837}
838
bfd093f5
MK
839/**
840 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
e8b098fc 841 * @obj: the encoded object value
bfd093f5
MK
842 * @page: page object resides in zspage
843 * @obj_idx: object index
67296874 844 */
bfd093f5
MK
845static void obj_to_location(unsigned long obj, struct page **page,
846 unsigned int *obj_idx)
61989a80 847{
bfd093f5
MK
848 obj >>= OBJ_TAG_BITS;
849 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
850 *obj_idx = (obj & OBJ_INDEX_MASK);
851}
61989a80 852
67f1c9cd
MK
853static void obj_to_page(unsigned long obj, struct page **page)
854{
855 obj >>= OBJ_TAG_BITS;
856 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
857}
858
bfd093f5
MK
859/**
860 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
861 * @page: page object resides in zspage
862 * @obj_idx: object index
863 */
864static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
865{
866 unsigned long obj;
61989a80 867
312fcae2 868 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 869 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 870 obj <<= OBJ_TAG_BITS;
61989a80 871
bfd093f5 872 return obj;
61989a80
NG
873}
874
2e40e163
MK
875static unsigned long handle_to_obj(unsigned long handle)
876{
877 return *(unsigned long *)handle;
878}
879
48b4800a 880static unsigned long obj_to_head(struct page *page, void *obj)
312fcae2 881{
48b4800a 882 if (unlikely(PageHugeObject(page))) {
830e4bc5 883 VM_BUG_ON_PAGE(!is_first_page(page), page);
3783689a 884 return page->index;
7b60a685
MK
885 } else
886 return *(unsigned long *)obj;
312fcae2
MK
887}
888
48b4800a
MK
889static inline int testpin_tag(unsigned long handle)
890{
891 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
892}
893
312fcae2
MK
894static inline int trypin_tag(unsigned long handle)
895{
1b8320b6 896 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
897}
898
70c7ec95 899static void pin_tag(unsigned long handle) __acquires(bitlock)
312fcae2 900{
1b8320b6 901 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
902}
903
bc22b18b 904static void unpin_tag(unsigned long handle) __releases(bitlock)
312fcae2 905{
1b8320b6 906 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
907}
908
f4477e90
NG
909static void reset_page(struct page *page)
910{
48b4800a 911 __ClearPageMovable(page);
18fd06bf 912 ClearPagePrivate(page);
f4477e90 913 set_page_private(page, 0);
48b4800a
MK
914 page_mapcount_reset(page);
915 ClearPageHugeObject(page);
ffedd09f 916 page->index = 0;
48b4800a
MK
917}
918
4d0a5402 919static int trylock_zspage(struct zspage *zspage)
48b4800a
MK
920{
921 struct page *cursor, *fail;
922
923 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
924 get_next_page(cursor)) {
925 if (!trylock_page(cursor)) {
926 fail = cursor;
927 goto unlock;
928 }
929 }
930
931 return 1;
932unlock:
933 for (cursor = get_first_page(zspage); cursor != fail; cursor =
934 get_next_page(cursor))
935 unlock_page(cursor);
936
937 return 0;
f4477e90
NG
938}
939
48b4800a
MK
940static void __free_zspage(struct zs_pool *pool, struct size_class *class,
941 struct zspage *zspage)
61989a80 942{
3783689a 943 struct page *page, *next;
48b4800a
MK
944 enum fullness_group fg;
945 unsigned int class_idx;
946
947 get_zspage_mapping(zspage, &class_idx, &fg);
948
949 assert_spin_locked(&class->lock);
61989a80 950
3783689a 951 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 952 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 953
48b4800a 954 next = page = get_first_page(zspage);
3783689a 955 do {
48b4800a
MK
956 VM_BUG_ON_PAGE(!PageLocked(page), page);
957 next = get_next_page(page);
3783689a 958 reset_page(page);
48b4800a 959 unlock_page(page);
91537fee 960 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
961 put_page(page);
962 page = next;
963 } while (page != NULL);
61989a80 964
3783689a 965 cache_free_zspage(pool, zspage);
48b4800a 966
b4fd07a0 967 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
968 atomic_long_sub(class->pages_per_zspage,
969 &pool->pages_allocated);
970}
971
972static void free_zspage(struct zs_pool *pool, struct size_class *class,
973 struct zspage *zspage)
974{
975 VM_BUG_ON(get_zspage_inuse(zspage));
976 VM_BUG_ON(list_empty(&zspage->list));
977
978 if (!trylock_zspage(zspage)) {
979 kick_deferred_free(pool);
980 return;
981 }
982
983 remove_zspage(class, zspage, ZS_EMPTY);
984 __free_zspage(pool, class, zspage);
61989a80
NG
985}
986
987/* Initialize a newly allocated zspage */
3783689a 988static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 989{
bfd093f5 990 unsigned int freeobj = 1;
61989a80 991 unsigned long off = 0;
48b4800a 992 struct page *page = get_first_page(zspage);
830e4bc5 993
61989a80
NG
994 while (page) {
995 struct page *next_page;
996 struct link_free *link;
af4ee5e9 997 void *vaddr;
61989a80 998
3783689a 999 set_first_obj_offset(page, off);
61989a80 1000
af4ee5e9
MK
1001 vaddr = kmap_atomic(page);
1002 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
1003
1004 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 1005 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 1006 link += class->size / sizeof(*link);
61989a80
NG
1007 }
1008
1009 /*
1010 * We now come to the last (full or partial) object on this
1011 * page, which must point to the first object on the next
1012 * page (if present)
1013 */
1014 next_page = get_next_page(page);
bfd093f5 1015 if (next_page) {
3b1d9ca6 1016 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1017 } else {
1018 /*
3b1d9ca6 1019 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1020 * whether it's allocated object or not.
1021 */
01a6ad9a 1022 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1023 }
af4ee5e9 1024 kunmap_atomic(vaddr);
61989a80 1025 page = next_page;
5538c562 1026 off %= PAGE_SIZE;
61989a80 1027 }
bdb0af7c 1028
bfd093f5 1029 set_freeobj(zspage, 0);
61989a80
NG
1030}
1031
48b4800a
MK
1032static void create_page_chain(struct size_class *class, struct zspage *zspage,
1033 struct page *pages[])
61989a80 1034{
bdb0af7c
MK
1035 int i;
1036 struct page *page;
1037 struct page *prev_page = NULL;
48b4800a 1038 int nr_pages = class->pages_per_zspage;
61989a80
NG
1039
1040 /*
1041 * Allocate individual pages and link them together as:
ffedd09f 1042 * 1. all pages are linked together using page->index
3783689a 1043 * 2. each sub-page point to zspage using page->private
61989a80 1044 *
3783689a 1045 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1046 * has this flag set).
61989a80 1047 */
bdb0af7c
MK
1048 for (i = 0; i < nr_pages; i++) {
1049 page = pages[i];
3783689a 1050 set_page_private(page, (unsigned long)zspage);
ffedd09f 1051 page->index = 0;
bdb0af7c 1052 if (i == 0) {
3783689a 1053 zspage->first_page = page;
a27545bf 1054 SetPagePrivate(page);
48b4800a
MK
1055 if (unlikely(class->objs_per_zspage == 1 &&
1056 class->pages_per_zspage == 1))
1057 SetPageHugeObject(page);
3783689a 1058 } else {
ffedd09f 1059 prev_page->index = (unsigned long)page;
61989a80 1060 }
61989a80
NG
1061 prev_page = page;
1062 }
bdb0af7c 1063}
61989a80 1064
bdb0af7c
MK
1065/*
1066 * Allocate a zspage for the given size class
1067 */
3783689a
MK
1068static struct zspage *alloc_zspage(struct zs_pool *pool,
1069 struct size_class *class,
1070 gfp_t gfp)
bdb0af7c
MK
1071{
1072 int i;
bdb0af7c 1073 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1074 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1075
1076 if (!zspage)
1077 return NULL;
1078
48b4800a
MK
1079 zspage->magic = ZSPAGE_MAGIC;
1080 migrate_lock_init(zspage);
61989a80 1081
bdb0af7c
MK
1082 for (i = 0; i < class->pages_per_zspage; i++) {
1083 struct page *page;
61989a80 1084
3783689a 1085 page = alloc_page(gfp);
bdb0af7c 1086 if (!page) {
91537fee
MK
1087 while (--i >= 0) {
1088 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1089 __free_page(pages[i]);
91537fee 1090 }
3783689a 1091 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1092 return NULL;
1093 }
91537fee
MK
1094
1095 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1096 pages[i] = page;
61989a80
NG
1097 }
1098
48b4800a 1099 create_page_chain(class, zspage, pages);
3783689a 1100 init_zspage(class, zspage);
bdb0af7c 1101
3783689a 1102 return zspage;
61989a80
NG
1103}
1104
3783689a 1105static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1106{
1107 int i;
3783689a 1108 struct zspage *zspage;
61989a80 1109
48b4800a 1110 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1111 zspage = list_first_entry_or_null(&class->fullness_list[i],
1112 struct zspage, list);
1113 if (zspage)
61989a80
NG
1114 break;
1115 }
1116
3783689a 1117 return zspage;
61989a80
NG
1118}
1119
f553646a
SJ
1120static inline int __zs_cpu_up(struct mapping_area *area)
1121{
1122 /*
1123 * Make sure we don't leak memory if a cpu UP notification
1124 * and zs_init() race and both call zs_cpu_up() on the same cpu
1125 */
1126 if (area->vm_buf)
1127 return 0;
40f9fb8c 1128 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1129 if (!area->vm_buf)
1130 return -ENOMEM;
1131 return 0;
1132}
1133
1134static inline void __zs_cpu_down(struct mapping_area *area)
1135{
40f9fb8c 1136 kfree(area->vm_buf);
f553646a
SJ
1137 area->vm_buf = NULL;
1138}
1139
1140static void *__zs_map_object(struct mapping_area *area,
1141 struct page *pages[2], int off, int size)
5f601902 1142{
5f601902
SJ
1143 int sizes[2];
1144 void *addr;
f553646a 1145 char *buf = area->vm_buf;
5f601902 1146
f553646a
SJ
1147 /* disable page faults to match kmap_atomic() return conditions */
1148 pagefault_disable();
1149
1150 /* no read fastpath */
1151 if (area->vm_mm == ZS_MM_WO)
1152 goto out;
5f601902
SJ
1153
1154 sizes[0] = PAGE_SIZE - off;
1155 sizes[1] = size - sizes[0];
1156
5f601902
SJ
1157 /* copy object to per-cpu buffer */
1158 addr = kmap_atomic(pages[0]);
1159 memcpy(buf, addr + off, sizes[0]);
1160 kunmap_atomic(addr);
1161 addr = kmap_atomic(pages[1]);
1162 memcpy(buf + sizes[0], addr, sizes[1]);
1163 kunmap_atomic(addr);
f553646a
SJ
1164out:
1165 return area->vm_buf;
5f601902
SJ
1166}
1167
f553646a
SJ
1168static void __zs_unmap_object(struct mapping_area *area,
1169 struct page *pages[2], int off, int size)
5f601902 1170{
5f601902
SJ
1171 int sizes[2];
1172 void *addr;
2e40e163 1173 char *buf;
5f601902 1174
f553646a
SJ
1175 /* no write fastpath */
1176 if (area->vm_mm == ZS_MM_RO)
1177 goto out;
5f601902 1178
7b60a685 1179 buf = area->vm_buf;
a82cbf07
YX
1180 buf = buf + ZS_HANDLE_SIZE;
1181 size -= ZS_HANDLE_SIZE;
1182 off += ZS_HANDLE_SIZE;
2e40e163 1183
5f601902
SJ
1184 sizes[0] = PAGE_SIZE - off;
1185 sizes[1] = size - sizes[0];
1186
1187 /* copy per-cpu buffer to object */
1188 addr = kmap_atomic(pages[0]);
1189 memcpy(addr + off, buf, sizes[0]);
1190 kunmap_atomic(addr);
1191 addr = kmap_atomic(pages[1]);
1192 memcpy(addr, buf + sizes[0], sizes[1]);
1193 kunmap_atomic(addr);
f553646a
SJ
1194
1195out:
1196 /* enable page faults to match kunmap_atomic() return conditions */
1197 pagefault_enable();
5f601902 1198}
61989a80 1199
215c89d0 1200static int zs_cpu_prepare(unsigned int cpu)
61989a80 1201{
61989a80
NG
1202 struct mapping_area *area;
1203
215c89d0
SAS
1204 area = &per_cpu(zs_map_area, cpu);
1205 return __zs_cpu_up(area);
61989a80
NG
1206}
1207
215c89d0 1208static int zs_cpu_dead(unsigned int cpu)
61989a80 1209{
215c89d0 1210 struct mapping_area *area;
40f9fb8c 1211
215c89d0
SAS
1212 area = &per_cpu(zs_map_area, cpu);
1213 __zs_cpu_down(area);
1214 return 0;
b1b00a5b
SS
1215}
1216
64d90465
GM
1217static bool can_merge(struct size_class *prev, int pages_per_zspage,
1218 int objs_per_zspage)
9eec4cd5 1219{
64d90465
GM
1220 if (prev->pages_per_zspage == pages_per_zspage &&
1221 prev->objs_per_zspage == objs_per_zspage)
1222 return true;
9eec4cd5 1223
64d90465 1224 return false;
9eec4cd5
JK
1225}
1226
3783689a 1227static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1228{
3783689a 1229 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1230}
1231
66cdef66
GM
1232unsigned long zs_get_total_pages(struct zs_pool *pool)
1233{
1234 return atomic_long_read(&pool->pages_allocated);
1235}
1236EXPORT_SYMBOL_GPL(zs_get_total_pages);
1237
4bbc0bc0 1238/**
66cdef66
GM
1239 * zs_map_object - get address of allocated object from handle.
1240 * @pool: pool from which the object was allocated
1241 * @handle: handle returned from zs_malloc
f0953a1b 1242 * @mm: mapping mode to use
4bbc0bc0 1243 *
66cdef66
GM
1244 * Before using an object allocated from zs_malloc, it must be mapped using
1245 * this function. When done with the object, it must be unmapped using
1246 * zs_unmap_object.
4bbc0bc0 1247 *
66cdef66
GM
1248 * Only one object can be mapped per cpu at a time. There is no protection
1249 * against nested mappings.
1250 *
1251 * This function returns with preemption and page faults disabled.
4bbc0bc0 1252 */
66cdef66
GM
1253void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1254 enum zs_mapmode mm)
61989a80 1255{
3783689a 1256 struct zspage *zspage;
66cdef66 1257 struct page *page;
bfd093f5
MK
1258 unsigned long obj, off;
1259 unsigned int obj_idx;
61989a80 1260
66cdef66
GM
1261 struct size_class *class;
1262 struct mapping_area *area;
1263 struct page *pages[2];
2e40e163 1264 void *ret;
61989a80 1265
9eec4cd5 1266 /*
66cdef66
GM
1267 * Because we use per-cpu mapping areas shared among the
1268 * pools/users, we can't allow mapping in interrupt context
1269 * because it can corrupt another users mappings.
9eec4cd5 1270 */
1aedcafb 1271 BUG_ON(in_interrupt());
61989a80 1272
312fcae2
MK
1273 /* From now on, migration cannot move the object */
1274 pin_tag(handle);
1275
2e40e163
MK
1276 obj = handle_to_obj(handle);
1277 obj_to_location(obj, &page, &obj_idx);
3783689a 1278 zspage = get_zspage(page);
48b4800a
MK
1279
1280 /* migration cannot move any subpage in this zspage */
1281 migrate_read_lock(zspage);
1282
67f1c9cd 1283 class = zspage_class(pool, zspage);
bfd093f5 1284 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1285
66cdef66
GM
1286 area = &get_cpu_var(zs_map_area);
1287 area->vm_mm = mm;
1288 if (off + class->size <= PAGE_SIZE) {
1289 /* this object is contained entirely within a page */
1290 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1291 ret = area->vm_addr + off;
1292 goto out;
61989a80
NG
1293 }
1294
66cdef66
GM
1295 /* this object spans two pages */
1296 pages[0] = page;
1297 pages[1] = get_next_page(page);
1298 BUG_ON(!pages[1]);
9eec4cd5 1299
2e40e163
MK
1300 ret = __zs_map_object(area, pages, off, class->size);
1301out:
48b4800a 1302 if (likely(!PageHugeObject(page)))
7b60a685
MK
1303 ret += ZS_HANDLE_SIZE;
1304
1305 return ret;
61989a80 1306}
66cdef66 1307EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1308
66cdef66 1309void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1310{
3783689a 1311 struct zspage *zspage;
66cdef66 1312 struct page *page;
bfd093f5
MK
1313 unsigned long obj, off;
1314 unsigned int obj_idx;
61989a80 1315
66cdef66
GM
1316 struct size_class *class;
1317 struct mapping_area *area;
9eec4cd5 1318
2e40e163
MK
1319 obj = handle_to_obj(handle);
1320 obj_to_location(obj, &page, &obj_idx);
3783689a 1321 zspage = get_zspage(page);
67f1c9cd 1322 class = zspage_class(pool, zspage);
bfd093f5 1323 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1324
66cdef66
GM
1325 area = this_cpu_ptr(&zs_map_area);
1326 if (off + class->size <= PAGE_SIZE)
1327 kunmap_atomic(area->vm_addr);
1328 else {
1329 struct page *pages[2];
40f9fb8c 1330
66cdef66
GM
1331 pages[0] = page;
1332 pages[1] = get_next_page(page);
1333 BUG_ON(!pages[1]);
1334
1335 __zs_unmap_object(area, pages, off, class->size);
1336 }
1337 put_cpu_var(zs_map_area);
48b4800a
MK
1338
1339 migrate_read_unlock(zspage);
312fcae2 1340 unpin_tag(handle);
61989a80 1341}
66cdef66 1342EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1343
010b495e
SS
1344/**
1345 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1346 * zsmalloc &size_class.
1347 * @pool: zsmalloc pool to use
1348 *
1349 * The function returns the size of the first huge class - any object of equal
1350 * or bigger size will be stored in zspage consisting of a single physical
1351 * page.
1352 *
1353 * Context: Any context.
1354 *
1355 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1356 */
1357size_t zs_huge_class_size(struct zs_pool *pool)
1358{
1359 return huge_class_size;
1360}
1361EXPORT_SYMBOL_GPL(zs_huge_class_size);
1362
251cbb95 1363static unsigned long obj_malloc(struct size_class *class,
3783689a 1364 struct zspage *zspage, unsigned long handle)
c7806261 1365{
bfd093f5 1366 int i, nr_page, offset;
c7806261
MK
1367 unsigned long obj;
1368 struct link_free *link;
1369
1370 struct page *m_page;
bfd093f5 1371 unsigned long m_offset;
c7806261
MK
1372 void *vaddr;
1373
312fcae2 1374 handle |= OBJ_ALLOCATED_TAG;
3783689a 1375 obj = get_freeobj(zspage);
bfd093f5
MK
1376
1377 offset = obj * class->size;
1378 nr_page = offset >> PAGE_SHIFT;
1379 m_offset = offset & ~PAGE_MASK;
1380 m_page = get_first_page(zspage);
1381
1382 for (i = 0; i < nr_page; i++)
1383 m_page = get_next_page(m_page);
c7806261
MK
1384
1385 vaddr = kmap_atomic(m_page);
1386 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1387 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
48b4800a 1388 if (likely(!PageHugeObject(m_page)))
7b60a685
MK
1389 /* record handle in the header of allocated chunk */
1390 link->handle = handle;
1391 else
3783689a
MK
1392 /* record handle to page->index */
1393 zspage->first_page->index = handle;
1394
c7806261 1395 kunmap_atomic(vaddr);
3783689a 1396 mod_zspage_inuse(zspage, 1);
c7806261
MK
1397 zs_stat_inc(class, OBJ_USED, 1);
1398
bfd093f5
MK
1399 obj = location_to_obj(m_page, obj);
1400
c7806261
MK
1401 return obj;
1402}
1403
1404
61989a80
NG
1405/**
1406 * zs_malloc - Allocate block of given size from pool.
1407 * @pool: pool to allocate from
1408 * @size: size of block to allocate
fd854463 1409 * @gfp: gfp flags when allocating object
61989a80 1410 *
00a61d86 1411 * On success, handle to the allocated object is returned,
c2344348 1412 * otherwise 0.
61989a80
NG
1413 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1414 */
d0d8da2d 1415unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1416{
2e40e163 1417 unsigned long handle, obj;
61989a80 1418 struct size_class *class;
48b4800a 1419 enum fullness_group newfg;
3783689a 1420 struct zspage *zspage;
61989a80 1421
7b60a685 1422 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1423 return 0;
1424
3783689a 1425 handle = cache_alloc_handle(pool, gfp);
2e40e163 1426 if (!handle)
c2344348 1427 return 0;
61989a80 1428
2e40e163
MK
1429 /* extra space in chunk to keep the handle */
1430 size += ZS_HANDLE_SIZE;
9eec4cd5 1431 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1432
1433 spin_lock(&class->lock);
3783689a 1434 zspage = find_get_zspage(class);
48b4800a
MK
1435 if (likely(zspage)) {
1436 obj = obj_malloc(class, zspage, handle);
1437 /* Now move the zspage to another fullness group, if required */
1438 fix_fullness_group(class, zspage);
1439 record_obj(handle, obj);
61989a80 1440 spin_unlock(&class->lock);
61989a80 1441
48b4800a
MK
1442 return handle;
1443 }
0f050d99 1444
48b4800a
MK
1445 spin_unlock(&class->lock);
1446
1447 zspage = alloc_zspage(pool, class, gfp);
1448 if (!zspage) {
1449 cache_free_handle(pool, handle);
1450 return 0;
61989a80
NG
1451 }
1452
48b4800a 1453 spin_lock(&class->lock);
3783689a 1454 obj = obj_malloc(class, zspage, handle);
48b4800a
MK
1455 newfg = get_fullness_group(class, zspage);
1456 insert_zspage(class, zspage, newfg);
1457 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1458 record_obj(handle, obj);
48b4800a
MK
1459 atomic_long_add(class->pages_per_zspage,
1460 &pool->pages_allocated);
b4fd07a0 1461 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
1462
1463 /* We completely set up zspage so mark them as movable */
1464 SetZsPageMovable(pool, zspage);
61989a80
NG
1465 spin_unlock(&class->lock);
1466
2e40e163 1467 return handle;
61989a80
NG
1468}
1469EXPORT_SYMBOL_GPL(zs_malloc);
1470
1ee47165 1471static void obj_free(struct size_class *class, unsigned long obj)
61989a80
NG
1472{
1473 struct link_free *link;
3783689a
MK
1474 struct zspage *zspage;
1475 struct page *f_page;
bfd093f5
MK
1476 unsigned long f_offset;
1477 unsigned int f_objidx;
af4ee5e9 1478 void *vaddr;
61989a80 1479
2e40e163 1480 obj_to_location(obj, &f_page, &f_objidx);
bfd093f5 1481 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
3783689a 1482 zspage = get_zspage(f_page);
61989a80 1483
c7806261 1484 vaddr = kmap_atomic(f_page);
61989a80
NG
1485
1486 /* Insert this object in containing zspage's freelist */
af4ee5e9 1487 link = (struct link_free *)(vaddr + f_offset);
3b1d9ca6 1488 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
af4ee5e9 1489 kunmap_atomic(vaddr);
bfd093f5 1490 set_freeobj(zspage, f_objidx);
3783689a 1491 mod_zspage_inuse(zspage, -1);
0f050d99 1492 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1493}
1494
1495void zs_free(struct zs_pool *pool, unsigned long handle)
1496{
3783689a
MK
1497 struct zspage *zspage;
1498 struct page *f_page;
bfd093f5 1499 unsigned long obj;
c7806261
MK
1500 struct size_class *class;
1501 enum fullness_group fullness;
48b4800a 1502 bool isolated;
c7806261
MK
1503
1504 if (unlikely(!handle))
1505 return;
1506
312fcae2 1507 pin_tag(handle);
c7806261 1508 obj = handle_to_obj(handle);
67f1c9cd 1509 obj_to_page(obj, &f_page);
3783689a 1510 zspage = get_zspage(f_page);
c7806261 1511
48b4800a 1512 migrate_read_lock(zspage);
67f1c9cd 1513 class = zspage_class(pool, zspage);
c7806261
MK
1514
1515 spin_lock(&class->lock);
1ee47165 1516 obj_free(class, obj);
3783689a 1517 fullness = fix_fullness_group(class, zspage);
48b4800a
MK
1518 if (fullness != ZS_EMPTY) {
1519 migrate_read_unlock(zspage);
1520 goto out;
312fcae2 1521 }
48b4800a
MK
1522
1523 isolated = is_zspage_isolated(zspage);
1524 migrate_read_unlock(zspage);
1525 /* If zspage is isolated, zs_page_putback will free the zspage */
1526 if (likely(!isolated))
1527 free_zspage(pool, class, zspage);
1528out:
1529
61989a80 1530 spin_unlock(&class->lock);
312fcae2 1531 unpin_tag(handle);
3783689a 1532 cache_free_handle(pool, handle);
312fcae2
MK
1533}
1534EXPORT_SYMBOL_GPL(zs_free);
1535
251cbb95
MK
1536static void zs_object_copy(struct size_class *class, unsigned long dst,
1537 unsigned long src)
312fcae2
MK
1538{
1539 struct page *s_page, *d_page;
bfd093f5 1540 unsigned int s_objidx, d_objidx;
312fcae2
MK
1541 unsigned long s_off, d_off;
1542 void *s_addr, *d_addr;
1543 int s_size, d_size, size;
1544 int written = 0;
1545
1546 s_size = d_size = class->size;
1547
1548 obj_to_location(src, &s_page, &s_objidx);
1549 obj_to_location(dst, &d_page, &d_objidx);
1550
bfd093f5
MK
1551 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1552 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1553
1554 if (s_off + class->size > PAGE_SIZE)
1555 s_size = PAGE_SIZE - s_off;
1556
1557 if (d_off + class->size > PAGE_SIZE)
1558 d_size = PAGE_SIZE - d_off;
1559
1560 s_addr = kmap_atomic(s_page);
1561 d_addr = kmap_atomic(d_page);
1562
1563 while (1) {
1564 size = min(s_size, d_size);
1565 memcpy(d_addr + d_off, s_addr + s_off, size);
1566 written += size;
1567
1568 if (written == class->size)
1569 break;
1570
495819ea
SS
1571 s_off += size;
1572 s_size -= size;
1573 d_off += size;
1574 d_size -= size;
1575
1576 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1577 kunmap_atomic(d_addr);
1578 kunmap_atomic(s_addr);
1579 s_page = get_next_page(s_page);
312fcae2
MK
1580 s_addr = kmap_atomic(s_page);
1581 d_addr = kmap_atomic(d_page);
1582 s_size = class->size - written;
1583 s_off = 0;
312fcae2
MK
1584 }
1585
495819ea 1586 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1587 kunmap_atomic(d_addr);
1588 d_page = get_next_page(d_page);
312fcae2
MK
1589 d_addr = kmap_atomic(d_page);
1590 d_size = class->size - written;
1591 d_off = 0;
312fcae2
MK
1592 }
1593 }
1594
1595 kunmap_atomic(d_addr);
1596 kunmap_atomic(s_addr);
1597}
1598
1599/*
1600 * Find alloced object in zspage from index object and
1601 * return handle.
1602 */
251cbb95 1603static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1604 struct page *page, int *obj_idx)
312fcae2
MK
1605{
1606 unsigned long head;
1607 int offset = 0;
cf675acb 1608 int index = *obj_idx;
312fcae2
MK
1609 unsigned long handle = 0;
1610 void *addr = kmap_atomic(page);
1611
3783689a 1612 offset = get_first_obj_offset(page);
312fcae2
MK
1613 offset += class->size * index;
1614
1615 while (offset < PAGE_SIZE) {
48b4800a 1616 head = obj_to_head(page, addr + offset);
312fcae2
MK
1617 if (head & OBJ_ALLOCATED_TAG) {
1618 handle = head & ~OBJ_ALLOCATED_TAG;
1619 if (trypin_tag(handle))
1620 break;
1621 handle = 0;
1622 }
1623
1624 offset += class->size;
1625 index++;
1626 }
1627
1628 kunmap_atomic(addr);
cf675acb
GM
1629
1630 *obj_idx = index;
1631
312fcae2
MK
1632 return handle;
1633}
1634
1635struct zs_compact_control {
3783689a 1636 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1637 struct page *s_page;
1638 /* Destination page for migration which should be a first page
1639 * of zspage. */
1640 struct page *d_page;
1641 /* Starting object index within @s_page which used for live object
1642 * in the subpage. */
41b88e14 1643 int obj_idx;
312fcae2
MK
1644};
1645
1646static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1647 struct zs_compact_control *cc)
1648{
1649 unsigned long used_obj, free_obj;
1650 unsigned long handle;
1651 struct page *s_page = cc->s_page;
1652 struct page *d_page = cc->d_page;
41b88e14 1653 int obj_idx = cc->obj_idx;
312fcae2
MK
1654 int ret = 0;
1655
1656 while (1) {
cf675acb 1657 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1658 if (!handle) {
1659 s_page = get_next_page(s_page);
1660 if (!s_page)
1661 break;
41b88e14 1662 obj_idx = 0;
312fcae2
MK
1663 continue;
1664 }
1665
1666 /* Stop if there is no more space */
3783689a 1667 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1668 unpin_tag(handle);
1669 ret = -ENOMEM;
1670 break;
1671 }
1672
1673 used_obj = handle_to_obj(handle);
3783689a 1674 free_obj = obj_malloc(class, get_zspage(d_page), handle);
251cbb95 1675 zs_object_copy(class, free_obj, used_obj);
41b88e14 1676 obj_idx++;
c102f07c
JL
1677 /*
1678 * record_obj updates handle's value to free_obj and it will
1679 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1680 * breaks synchronization using pin_tag(e,g, zs_free) so
1681 * let's keep the lock bit.
1682 */
1683 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1684 record_obj(handle, free_obj);
1685 unpin_tag(handle);
1ee47165 1686 obj_free(class, used_obj);
312fcae2
MK
1687 }
1688
1689 /* Remember last position in this iteration */
1690 cc->s_page = s_page;
41b88e14 1691 cc->obj_idx = obj_idx;
312fcae2
MK
1692
1693 return ret;
1694}
1695
3783689a 1696static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1697{
1698 int i;
3783689a
MK
1699 struct zspage *zspage;
1700 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1701
3783689a
MK
1702 if (!source) {
1703 fg[0] = ZS_ALMOST_FULL;
1704 fg[1] = ZS_ALMOST_EMPTY;
1705 }
1706
1707 for (i = 0; i < 2; i++) {
1708 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1709 struct zspage, list);
1710 if (zspage) {
48b4800a 1711 VM_BUG_ON(is_zspage_isolated(zspage));
3783689a
MK
1712 remove_zspage(class, zspage, fg[i]);
1713 return zspage;
312fcae2
MK
1714 }
1715 }
1716
3783689a 1717 return zspage;
312fcae2
MK
1718}
1719
860c707d 1720/*
3783689a 1721 * putback_zspage - add @zspage into right class's fullness list
860c707d 1722 * @class: destination class
3783689a 1723 * @zspage: target page
860c707d 1724 *
3783689a 1725 * Return @zspage's fullness_group
860c707d 1726 */
4aa409ca 1727static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1728 struct zspage *zspage)
312fcae2 1729{
312fcae2
MK
1730 enum fullness_group fullness;
1731
48b4800a
MK
1732 VM_BUG_ON(is_zspage_isolated(zspage));
1733
3783689a
MK
1734 fullness = get_fullness_group(class, zspage);
1735 insert_zspage(class, zspage, fullness);
1736 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1737
860c707d 1738 return fullness;
61989a80 1739}
312fcae2 1740
48b4800a 1741#ifdef CONFIG_COMPACTION
4d0a5402
CIK
1742/*
1743 * To prevent zspage destroy during migration, zspage freeing should
1744 * hold locks of all pages in the zspage.
1745 */
1746static void lock_zspage(struct zspage *zspage)
1747{
1748 struct page *page = get_first_page(zspage);
1749
1750 do {
1751 lock_page(page);
1752 } while ((page = get_next_page(page)) != NULL);
1753}
1754
8e9231f8 1755static int zs_init_fs_context(struct fs_context *fc)
48b4800a 1756{
8e9231f8 1757 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
48b4800a
MK
1758}
1759
1760static struct file_system_type zsmalloc_fs = {
1761 .name = "zsmalloc",
8e9231f8 1762 .init_fs_context = zs_init_fs_context,
48b4800a
MK
1763 .kill_sb = kill_anon_super,
1764};
1765
1766static int zsmalloc_mount(void)
1767{
1768 int ret = 0;
1769
1770 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1771 if (IS_ERR(zsmalloc_mnt))
1772 ret = PTR_ERR(zsmalloc_mnt);
1773
1774 return ret;
1775}
1776
1777static void zsmalloc_unmount(void)
1778{
1779 kern_unmount(zsmalloc_mnt);
1780}
1781
1782static void migrate_lock_init(struct zspage *zspage)
1783{
1784 rwlock_init(&zspage->lock);
1785}
1786
cfc451cf 1787static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
48b4800a
MK
1788{
1789 read_lock(&zspage->lock);
1790}
1791
8a374ccc 1792static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
48b4800a
MK
1793{
1794 read_unlock(&zspage->lock);
1795}
1796
1797static void migrate_write_lock(struct zspage *zspage)
1798{
1799 write_lock(&zspage->lock);
1800}
1801
1802static void migrate_write_unlock(struct zspage *zspage)
1803{
1804 write_unlock(&zspage->lock);
1805}
1806
1807/* Number of isolated subpage for *page migration* in this zspage */
1808static void inc_zspage_isolation(struct zspage *zspage)
1809{
1810 zspage->isolated++;
1811}
1812
1813static void dec_zspage_isolation(struct zspage *zspage)
1814{
1815 zspage->isolated--;
1816}
1817
1a87aa03
HB
1818static void putback_zspage_deferred(struct zs_pool *pool,
1819 struct size_class *class,
1820 struct zspage *zspage)
1821{
1822 enum fullness_group fg;
1823
1824 fg = putback_zspage(class, zspage);
1825 if (fg == ZS_EMPTY)
1826 schedule_work(&pool->free_work);
1827
1828}
1829
701d6785
HB
1830static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1831{
1832 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1833 atomic_long_dec(&pool->isolated_pages);
1834 /*
afe8605c
ML
1835 * Checking pool->destroying must happen after atomic_long_dec()
1836 * for pool->isolated_pages above. Paired with the smp_mb() in
1837 * zs_unregister_migration().
701d6785 1838 */
afe8605c 1839 smp_mb__after_atomic();
701d6785
HB
1840 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1841 wake_up_all(&pool->migration_wait);
1842}
1843
48b4800a
MK
1844static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1845 struct page *newpage, struct page *oldpage)
1846{
1847 struct page *page;
1848 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1849 int idx = 0;
1850
1851 page = get_first_page(zspage);
1852 do {
1853 if (page == oldpage)
1854 pages[idx] = newpage;
1855 else
1856 pages[idx] = page;
1857 idx++;
1858 } while ((page = get_next_page(page)) != NULL);
1859
1860 create_page_chain(class, zspage, pages);
1861 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1862 if (unlikely(PageHugeObject(oldpage)))
1863 newpage->index = oldpage->index;
1864 __SetPageMovable(newpage, page_mapping(oldpage));
1865}
1866
4d0a5402 1867static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
48b4800a
MK
1868{
1869 struct zs_pool *pool;
1870 struct size_class *class;
48b4800a
MK
1871 struct zspage *zspage;
1872 struct address_space *mapping;
1873
1874 /*
1875 * Page is locked so zspage couldn't be destroyed. For detail, look at
1876 * lock_zspage in free_zspage.
1877 */
1878 VM_BUG_ON_PAGE(!PageMovable(page), page);
1879 VM_BUG_ON_PAGE(PageIsolated(page), page);
1880
1881 zspage = get_zspage(page);
1882
48b4800a
MK
1883 mapping = page_mapping(page);
1884 pool = mapping->private_data;
67f1c9cd
MK
1885
1886 class = zspage_class(pool, zspage);
48b4800a
MK
1887
1888 spin_lock(&class->lock);
1889 if (get_zspage_inuse(zspage) == 0) {
1890 spin_unlock(&class->lock);
1891 return false;
1892 }
1893
1894 /* zspage is isolated for object migration */
1895 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1896 spin_unlock(&class->lock);
1897 return false;
1898 }
1899
1900 /*
1901 * If this is first time isolation for the zspage, isolate zspage from
1902 * size_class to prevent further object allocation from the zspage.
1903 */
1904 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
67f1c9cd
MK
1905 enum fullness_group fullness;
1906 unsigned int class_idx;
1907
48b4800a 1908 get_zspage_mapping(zspage, &class_idx, &fullness);
701d6785 1909 atomic_long_inc(&pool->isolated_pages);
48b4800a
MK
1910 remove_zspage(class, zspage, fullness);
1911 }
1912
1913 inc_zspage_isolation(zspage);
1914 spin_unlock(&class->lock);
1915
1916 return true;
1917}
1918
4d0a5402 1919static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
48b4800a
MK
1920 struct page *page, enum migrate_mode mode)
1921{
1922 struct zs_pool *pool;
1923 struct size_class *class;
48b4800a
MK
1924 struct zspage *zspage;
1925 struct page *dummy;
1926 void *s_addr, *d_addr, *addr;
1927 int offset, pos;
1928 unsigned long handle, head;
1929 unsigned long old_obj, new_obj;
1930 unsigned int obj_idx;
1931 int ret = -EAGAIN;
1932
2916ecc0
JG
1933 /*
1934 * We cannot support the _NO_COPY case here, because copy needs to
1935 * happen under the zs lock, which does not work with
1936 * MIGRATE_SYNC_NO_COPY workflow.
1937 */
1938 if (mode == MIGRATE_SYNC_NO_COPY)
1939 return -EINVAL;
1940
48b4800a
MK
1941 VM_BUG_ON_PAGE(!PageMovable(page), page);
1942 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1943
1944 zspage = get_zspage(page);
1945
1946 /* Concurrent compactor cannot migrate any subpage in zspage */
1947 migrate_write_lock(zspage);
48b4800a 1948 pool = mapping->private_data;
67f1c9cd 1949 class = zspage_class(pool, zspage);
48b4800a
MK
1950 offset = get_first_obj_offset(page);
1951
1952 spin_lock(&class->lock);
1953 if (!get_zspage_inuse(zspage)) {
77ff4657
HZ
1954 /*
1955 * Set "offset" to end of the page so that every loops
1956 * skips unnecessary object scanning.
1957 */
1958 offset = PAGE_SIZE;
48b4800a
MK
1959 }
1960
1961 pos = offset;
1962 s_addr = kmap_atomic(page);
1963 while (pos < PAGE_SIZE) {
1964 head = obj_to_head(page, s_addr + pos);
1965 if (head & OBJ_ALLOCATED_TAG) {
1966 handle = head & ~OBJ_ALLOCATED_TAG;
1967 if (!trypin_tag(handle))
1968 goto unpin_objects;
1969 }
1970 pos += class->size;
1971 }
1972
1973 /*
1974 * Here, any user cannot access all objects in the zspage so let's move.
1975 */
1976 d_addr = kmap_atomic(newpage);
1977 memcpy(d_addr, s_addr, PAGE_SIZE);
1978 kunmap_atomic(d_addr);
1979
1980 for (addr = s_addr + offset; addr < s_addr + pos;
1981 addr += class->size) {
1982 head = obj_to_head(page, addr);
1983 if (head & OBJ_ALLOCATED_TAG) {
1984 handle = head & ~OBJ_ALLOCATED_TAG;
ecfc2bda 1985 BUG_ON(!testpin_tag(handle));
48b4800a
MK
1986
1987 old_obj = handle_to_obj(handle);
1988 obj_to_location(old_obj, &dummy, &obj_idx);
1989 new_obj = (unsigned long)location_to_obj(newpage,
1990 obj_idx);
1991 new_obj |= BIT(HANDLE_PIN_BIT);
1992 record_obj(handle, new_obj);
1993 }
1994 }
1995
1996 replace_sub_page(class, zspage, newpage, page);
1997 get_page(newpage);
1998
1999 dec_zspage_isolation(zspage);
2000
2001 /*
2002 * Page migration is done so let's putback isolated zspage to
2003 * the list if @page is final isolated subpage in the zspage.
2004 */
701d6785
HB
2005 if (!is_zspage_isolated(zspage)) {
2006 /*
2007 * We cannot race with zs_destroy_pool() here because we wait
2008 * for isolation to hit zero before we start destroying.
2009 * Also, we ensure that everyone can see pool->destroying before
2010 * we start waiting.
2011 */
1a87aa03 2012 putback_zspage_deferred(pool, class, zspage);
701d6785
HB
2013 zs_pool_dec_isolated(pool);
2014 }
48b4800a 2015
ac8f05da
CM
2016 if (page_zone(newpage) != page_zone(page)) {
2017 dec_zone_page_state(page, NR_ZSPAGES);
2018 inc_zone_page_state(newpage, NR_ZSPAGES);
2019 }
2020
48b4800a
MK
2021 reset_page(page);
2022 put_page(page);
2023 page = newpage;
2024
dd4123f3 2025 ret = MIGRATEPAGE_SUCCESS;
48b4800a
MK
2026unpin_objects:
2027 for (addr = s_addr + offset; addr < s_addr + pos;
2028 addr += class->size) {
2029 head = obj_to_head(page, addr);
2030 if (head & OBJ_ALLOCATED_TAG) {
2031 handle = head & ~OBJ_ALLOCATED_TAG;
ecfc2bda 2032 BUG_ON(!testpin_tag(handle));
48b4800a
MK
2033 unpin_tag(handle);
2034 }
2035 }
2036 kunmap_atomic(s_addr);
48b4800a
MK
2037 spin_unlock(&class->lock);
2038 migrate_write_unlock(zspage);
2039
2040 return ret;
2041}
2042
4d0a5402 2043static void zs_page_putback(struct page *page)
48b4800a
MK
2044{
2045 struct zs_pool *pool;
2046 struct size_class *class;
48b4800a
MK
2047 struct address_space *mapping;
2048 struct zspage *zspage;
2049
2050 VM_BUG_ON_PAGE(!PageMovable(page), page);
2051 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2052
2053 zspage = get_zspage(page);
48b4800a
MK
2054 mapping = page_mapping(page);
2055 pool = mapping->private_data;
67f1c9cd 2056 class = zspage_class(pool, zspage);
48b4800a
MK
2057
2058 spin_lock(&class->lock);
2059 dec_zspage_isolation(zspage);
2060 if (!is_zspage_isolated(zspage)) {
48b4800a
MK
2061 /*
2062 * Due to page_lock, we cannot free zspage immediately
2063 * so let's defer.
2064 */
1a87aa03 2065 putback_zspage_deferred(pool, class, zspage);
701d6785 2066 zs_pool_dec_isolated(pool);
48b4800a
MK
2067 }
2068 spin_unlock(&class->lock);
2069}
2070
4d0a5402 2071static const struct address_space_operations zsmalloc_aops = {
48b4800a
MK
2072 .isolate_page = zs_page_isolate,
2073 .migratepage = zs_page_migrate,
2074 .putback_page = zs_page_putback,
2075};
2076
2077static int zs_register_migration(struct zs_pool *pool)
2078{
2079 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2080 if (IS_ERR(pool->inode)) {
2081 pool->inode = NULL;
2082 return 1;
2083 }
2084
2085 pool->inode->i_mapping->private_data = pool;
2086 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2087 return 0;
2088}
2089
701d6785
HB
2090static bool pool_isolated_are_drained(struct zs_pool *pool)
2091{
2092 return atomic_long_read(&pool->isolated_pages) == 0;
2093}
2094
2095/* Function for resolving migration */
2096static void wait_for_isolated_drain(struct zs_pool *pool)
2097{
2098
2099 /*
2100 * We're in the process of destroying the pool, so there are no
2101 * active allocations. zs_page_isolate() fails for completely free
2102 * zspages, so we need only wait for the zs_pool's isolated
2103 * count to hit zero.
2104 */
2105 wait_event(pool->migration_wait,
2106 pool_isolated_are_drained(pool));
2107}
2108
48b4800a
MK
2109static void zs_unregister_migration(struct zs_pool *pool)
2110{
701d6785
HB
2111 pool->destroying = true;
2112 /*
2113 * We need a memory barrier here to ensure global visibility of
2114 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2115 * case we don't care, or it will be > 0 and pool->destroying will
2116 * ensure that we wake up once isolation hits 0.
2117 */
2118 smp_mb();
2119 wait_for_isolated_drain(pool); /* This can block */
48b4800a 2120 flush_work(&pool->free_work);
c3491eca 2121 iput(pool->inode);
48b4800a
MK
2122}
2123
2124/*
2125 * Caller should hold page_lock of all pages in the zspage
2126 * In here, we cannot use zspage meta data.
2127 */
2128static void async_free_zspage(struct work_struct *work)
2129{
2130 int i;
2131 struct size_class *class;
2132 unsigned int class_idx;
2133 enum fullness_group fullness;
2134 struct zspage *zspage, *tmp;
2135 LIST_HEAD(free_pages);
2136 struct zs_pool *pool = container_of(work, struct zs_pool,
2137 free_work);
2138
cf8e0fed 2139 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2140 class = pool->size_class[i];
2141 if (class->index != i)
2142 continue;
2143
2144 spin_lock(&class->lock);
2145 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2146 spin_unlock(&class->lock);
2147 }
2148
2149
2150 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2151 list_del(&zspage->list);
2152 lock_zspage(zspage);
2153
2154 get_zspage_mapping(zspage, &class_idx, &fullness);
2155 VM_BUG_ON(fullness != ZS_EMPTY);
2156 class = pool->size_class[class_idx];
2157 spin_lock(&class->lock);
33848337 2158 __free_zspage(pool, class, zspage);
48b4800a
MK
2159 spin_unlock(&class->lock);
2160 }
2161};
2162
2163static void kick_deferred_free(struct zs_pool *pool)
2164{
2165 schedule_work(&pool->free_work);
2166}
2167
2168static void init_deferred_free(struct zs_pool *pool)
2169{
2170 INIT_WORK(&pool->free_work, async_free_zspage);
2171}
2172
2173static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2174{
2175 struct page *page = get_first_page(zspage);
2176
2177 do {
2178 WARN_ON(!trylock_page(page));
2179 __SetPageMovable(page, pool->inode->i_mapping);
2180 unlock_page(page);
2181 } while ((page = get_next_page(page)) != NULL);
2182}
2183#endif
2184
04f05909
SS
2185/*
2186 *
2187 * Based on the number of unused allocated objects calculate
2188 * and return the number of pages that we can free.
04f05909
SS
2189 */
2190static unsigned long zs_can_compact(struct size_class *class)
2191{
2192 unsigned long obj_wasted;
44f43e99
SS
2193 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2194 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2195
44f43e99
SS
2196 if (obj_allocated <= obj_used)
2197 return 0;
04f05909 2198
44f43e99 2199 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2200 obj_wasted /= class->objs_per_zspage;
04f05909 2201
6cbf16b3 2202 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2203}
2204
23959281
RY
2205static unsigned long __zs_compact(struct zs_pool *pool,
2206 struct size_class *class)
312fcae2 2207{
312fcae2 2208 struct zs_compact_control cc;
3783689a
MK
2209 struct zspage *src_zspage;
2210 struct zspage *dst_zspage = NULL;
23959281 2211 unsigned long pages_freed = 0;
312fcae2 2212
312fcae2 2213 spin_lock(&class->lock);
3783689a 2214 while ((src_zspage = isolate_zspage(class, true))) {
312fcae2 2215
04f05909
SS
2216 if (!zs_can_compact(class))
2217 break;
2218
41b88e14 2219 cc.obj_idx = 0;
48b4800a 2220 cc.s_page = get_first_page(src_zspage);
312fcae2 2221
3783689a 2222 while ((dst_zspage = isolate_zspage(class, false))) {
48b4800a 2223 cc.d_page = get_first_page(dst_zspage);
312fcae2 2224 /*
0dc63d48
SS
2225 * If there is no more space in dst_page, resched
2226 * and see if anyone had allocated another zspage.
312fcae2
MK
2227 */
2228 if (!migrate_zspage(pool, class, &cc))
2229 break;
2230
4aa409ca 2231 putback_zspage(class, dst_zspage);
312fcae2
MK
2232 }
2233
2234 /* Stop if we couldn't find slot */
3783689a 2235 if (dst_zspage == NULL)
312fcae2
MK
2236 break;
2237
4aa409ca
MK
2238 putback_zspage(class, dst_zspage);
2239 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
48b4800a 2240 free_zspage(pool, class, src_zspage);
23959281 2241 pages_freed += class->pages_per_zspage;
4aa409ca 2242 }
312fcae2 2243 spin_unlock(&class->lock);
312fcae2
MK
2244 cond_resched();
2245 spin_lock(&class->lock);
2246 }
2247
3783689a 2248 if (src_zspage)
4aa409ca 2249 putback_zspage(class, src_zspage);
312fcae2 2250
7d3f3938 2251 spin_unlock(&class->lock);
23959281
RY
2252
2253 return pages_freed;
312fcae2
MK
2254}
2255
2256unsigned long zs_compact(struct zs_pool *pool)
2257{
2258 int i;
312fcae2 2259 struct size_class *class;
23959281 2260 unsigned long pages_freed = 0;
312fcae2 2261
cf8e0fed 2262 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2
MK
2263 class = pool->size_class[i];
2264 if (!class)
2265 continue;
2266 if (class->index != i)
2267 continue;
23959281 2268 pages_freed += __zs_compact(pool, class);
312fcae2 2269 }
23959281 2270 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
312fcae2 2271
23959281 2272 return pages_freed;
312fcae2
MK
2273}
2274EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2275
7d3f3938
SS
2276void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2277{
2278 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2279}
2280EXPORT_SYMBOL_GPL(zs_pool_stats);
2281
ab9d306d
SS
2282static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2283 struct shrink_control *sc)
2284{
2285 unsigned long pages_freed;
2286 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2287 shrinker);
2288
ab9d306d
SS
2289 /*
2290 * Compact classes and calculate compaction delta.
2291 * Can run concurrently with a manually triggered
2292 * (by user) compaction.
2293 */
23959281 2294 pages_freed = zs_compact(pool);
ab9d306d
SS
2295
2296 return pages_freed ? pages_freed : SHRINK_STOP;
2297}
2298
2299static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2300 struct shrink_control *sc)
2301{
2302 int i;
2303 struct size_class *class;
2304 unsigned long pages_to_free = 0;
2305 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2306 shrinker);
2307
cf8e0fed 2308 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d
SS
2309 class = pool->size_class[i];
2310 if (!class)
2311 continue;
2312 if (class->index != i)
2313 continue;
2314
ab9d306d 2315 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2316 }
2317
2318 return pages_to_free;
2319}
2320
2321static void zs_unregister_shrinker(struct zs_pool *pool)
2322{
93144ca3 2323 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2324}
2325
2326static int zs_register_shrinker(struct zs_pool *pool)
2327{
2328 pool->shrinker.scan_objects = zs_shrinker_scan;
2329 pool->shrinker.count_objects = zs_shrinker_count;
2330 pool->shrinker.batch = 0;
2331 pool->shrinker.seeks = DEFAULT_SEEKS;
2332
2333 return register_shrinker(&pool->shrinker);
2334}
2335
00a61d86 2336/**
66cdef66 2337 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2338 * @name: pool name to be created
166cfda7 2339 *
66cdef66
GM
2340 * This function must be called before anything when using
2341 * the zsmalloc allocator.
166cfda7 2342 *
66cdef66
GM
2343 * On success, a pointer to the newly created pool is returned,
2344 * otherwise NULL.
396b7fd6 2345 */
d0d8da2d 2346struct zs_pool *zs_create_pool(const char *name)
61989a80 2347{
66cdef66
GM
2348 int i;
2349 struct zs_pool *pool;
2350 struct size_class *prev_class = NULL;
61989a80 2351
66cdef66
GM
2352 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2353 if (!pool)
2354 return NULL;
61989a80 2355
48b4800a 2356 init_deferred_free(pool);
61989a80 2357
2e40e163
MK
2358 pool->name = kstrdup(name, GFP_KERNEL);
2359 if (!pool->name)
2360 goto err;
2361
441e254c 2362#ifdef CONFIG_COMPACTION
701d6785 2363 init_waitqueue_head(&pool->migration_wait);
441e254c 2364#endif
701d6785 2365
3783689a 2366 if (create_cache(pool))
2e40e163
MK
2367 goto err;
2368
c60369f0 2369 /*
399d8eeb 2370 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2371 * for merging should be larger or equal to current size.
c60369f0 2372 */
cf8e0fed 2373 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2374 int size;
2375 int pages_per_zspage;
64d90465 2376 int objs_per_zspage;
66cdef66 2377 struct size_class *class;
3783689a 2378 int fullness = 0;
c60369f0 2379
66cdef66
GM
2380 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2381 if (size > ZS_MAX_ALLOC_SIZE)
2382 size = ZS_MAX_ALLOC_SIZE;
2383 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2384 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2385
010b495e
SS
2386 /*
2387 * We iterate from biggest down to smallest classes,
2388 * so huge_class_size holds the size of the first huge
2389 * class. Any object bigger than or equal to that will
2390 * endup in the huge class.
2391 */
2392 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2393 !huge_class_size) {
2394 huge_class_size = size;
2395 /*
2396 * The object uses ZS_HANDLE_SIZE bytes to store the
2397 * handle. We need to subtract it, because zs_malloc()
2398 * unconditionally adds handle size before it performs
2399 * size class search - so object may be smaller than
2400 * huge class size, yet it still can end up in the huge
2401 * class because it grows by ZS_HANDLE_SIZE extra bytes
2402 * right before class lookup.
2403 */
2404 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2405 }
2406
66cdef66
GM
2407 /*
2408 * size_class is used for normal zsmalloc operation such
2409 * as alloc/free for that size. Although it is natural that we
2410 * have one size_class for each size, there is a chance that we
2411 * can get more memory utilization if we use one size_class for
2412 * many different sizes whose size_class have same
2413 * characteristics. So, we makes size_class point to
2414 * previous size_class if possible.
2415 */
2416 if (prev_class) {
64d90465 2417 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2418 pool->size_class[i] = prev_class;
2419 continue;
2420 }
2421 }
2422
2423 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2424 if (!class)
2425 goto err;
2426
2427 class->size = size;
2428 class->index = i;
2429 class->pages_per_zspage = pages_per_zspage;
64d90465 2430 class->objs_per_zspage = objs_per_zspage;
66cdef66
GM
2431 spin_lock_init(&class->lock);
2432 pool->size_class[i] = class;
48b4800a
MK
2433 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2434 fullness++)
3783689a 2435 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2436
2437 prev_class = class;
61989a80
NG
2438 }
2439
d34f6157
DS
2440 /* debug only, don't abort if it fails */
2441 zs_pool_stat_create(pool, name);
0f050d99 2442
48b4800a
MK
2443 if (zs_register_migration(pool))
2444 goto err;
2445
ab9d306d 2446 /*
93144ca3
AK
2447 * Not critical since shrinker is only used to trigger internal
2448 * defragmentation of the pool which is pretty optional thing. If
2449 * registration fails we still can use the pool normally and user can
2450 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2451 */
93144ca3
AK
2452 zs_register_shrinker(pool);
2453
66cdef66
GM
2454 return pool;
2455
2456err:
2457 zs_destroy_pool(pool);
2458 return NULL;
61989a80 2459}
66cdef66 2460EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2461
66cdef66 2462void zs_destroy_pool(struct zs_pool *pool)
61989a80 2463{
66cdef66 2464 int i;
61989a80 2465
ab9d306d 2466 zs_unregister_shrinker(pool);
48b4800a 2467 zs_unregister_migration(pool);
0f050d99
GM
2468 zs_pool_stat_destroy(pool);
2469
cf8e0fed 2470 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2471 int fg;
2472 struct size_class *class = pool->size_class[i];
61989a80 2473
66cdef66
GM
2474 if (!class)
2475 continue;
61989a80 2476
66cdef66
GM
2477 if (class->index != i)
2478 continue;
61989a80 2479
48b4800a 2480 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2481 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2482 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2483 class->size, fg);
2484 }
2485 }
2486 kfree(class);
2487 }
f553646a 2488
3783689a 2489 destroy_cache(pool);
0f050d99 2490 kfree(pool->name);
66cdef66
GM
2491 kfree(pool);
2492}
2493EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2494
66cdef66
GM
2495static int __init zs_init(void)
2496{
48b4800a
MK
2497 int ret;
2498
2499 ret = zsmalloc_mount();
2500 if (ret)
2501 goto out;
2502
215c89d0
SAS
2503 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2504 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2505 if (ret)
215c89d0 2506 goto hp_setup_fail;
66cdef66 2507
66cdef66
GM
2508#ifdef CONFIG_ZPOOL
2509 zpool_register_driver(&zs_zpool_driver);
2510#endif
0f050d99 2511
4abaac9b
DS
2512 zs_stat_init();
2513
66cdef66 2514 return 0;
0f050d99 2515
215c89d0 2516hp_setup_fail:
48b4800a
MK
2517 zsmalloc_unmount();
2518out:
0f050d99 2519 return ret;
61989a80 2520}
61989a80 2521
66cdef66 2522static void __exit zs_exit(void)
61989a80 2523{
66cdef66
GM
2524#ifdef CONFIG_ZPOOL
2525 zpool_unregister_driver(&zs_zpool_driver);
2526#endif
48b4800a 2527 zsmalloc_unmount();
215c89d0 2528 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2529
2530 zs_stat_exit();
61989a80 2531}
069f101f
BH
2532
2533module_init(zs_init);
2534module_exit(zs_exit);
2535
2536MODULE_LICENSE("Dual BSD/GPL");
2537MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");