]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/zsmalloc.c
zsmalloc: account the number of compacted pages
[thirdparty/kernel/stable.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->first_page: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
29 * page->private (union with page->first_page): refers to the
30 * component page after the first page
7b60a685
MK
31 * If the page is first_page for huge object, it stores handle.
32 * Look at size_class->huge.
2db51dae
NG
33 * page->freelist: points to the first free object in zspage.
34 * Free objects are linked together using in-place
35 * metadata.
36 * page->objects: maximum number of objects we can store in this
37 * zspage (class->zspage_order * PAGE_SIZE / class->size)
38 * page->lru: links together first pages of various zspages.
39 * Basically forming list of zspages in a fullness group.
40 * page->mapping: class index and fullness group of the zspage
41 *
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
45 *
46 */
47
61989a80
NG
48#include <linux/module.h>
49#include <linux/kernel.h>
312fcae2 50#include <linux/sched.h>
61989a80
NG
51#include <linux/bitops.h>
52#include <linux/errno.h>
53#include <linux/highmem.h>
61989a80
NG
54#include <linux/string.h>
55#include <linux/slab.h>
56#include <asm/tlbflush.h>
57#include <asm/pgtable.h>
58#include <linux/cpumask.h>
59#include <linux/cpu.h>
0cbb613f 60#include <linux/vmalloc.h>
c60369f0 61#include <linux/hardirq.h>
0959c63f
SJ
62#include <linux/spinlock.h>
63#include <linux/types.h>
0f050d99 64#include <linux/debugfs.h>
bcf1647d 65#include <linux/zsmalloc.h>
c795779d 66#include <linux/zpool.h>
0959c63f
SJ
67
68/*
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
2e40e163
MK
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
0959c63f
SJ
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 87 * as single (unsigned long) handle value.
0959c63f
SJ
88 *
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
92 *
93 * This is made more complicated by various memory models and PAE.
94 */
95
96#ifndef MAX_PHYSMEM_BITS
97#ifdef CONFIG_HIGHMEM64G
98#define MAX_PHYSMEM_BITS 36
99#else /* !CONFIG_HIGHMEM64G */
100/*
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
103 */
104#define MAX_PHYSMEM_BITS BITS_PER_LONG
105#endif
106#endif
107#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
108
109/*
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
115 */
116#define HANDLE_PIN_BIT 0
117
118/*
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
124 */
125#define OBJ_ALLOCATED_TAG 1
126#define OBJ_TAG_BITS 1
127#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
128#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129
130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132#define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 134/* each chunk includes extra space to keep handle */
7b60a685 135#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
136
137/*
7eb52512 138 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
d662b8eb 150#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
0959c63f
SJ
151
152/*
153 * We do not maintain any list for completely empty or full pages
154 */
155enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
159
160 ZS_EMPTY,
161 ZS_FULL
162};
163
0f050d99
GM
164enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
248ca1b0
MK
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
0f050d99
GM
169 NR_ZS_STAT_TYPE,
170};
171
0f050d99
GM
172struct zs_size_stat {
173 unsigned long objs[NR_ZS_STAT_TYPE];
174};
175
57244594
SS
176#ifdef CONFIG_ZSMALLOC_STAT
177static struct dentry *zs_stat_root;
0f050d99
GM
178#endif
179
40f9fb8c
MG
180/*
181 * number of size_classes
182 */
183static int zs_size_classes;
184
0959c63f
SJ
185/*
186 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
187 * n <= N / f, where
188 * n = number of allocated objects
189 * N = total number of objects zspage can store
6dd9737e 190 * f = fullness_threshold_frac
0959c63f
SJ
191 *
192 * Similarly, we assign zspage to:
193 * ZS_ALMOST_FULL when n > N / f
194 * ZS_EMPTY when n == 0
195 * ZS_FULL when n == N
196 *
197 * (see: fix_fullness_group())
198 */
199static const int fullness_threshold_frac = 4;
200
201struct size_class {
57244594
SS
202 spinlock_t lock;
203 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
0959c63f
SJ
204 /*
205 * Size of objects stored in this class. Must be multiple
206 * of ZS_ALIGN.
207 */
208 int size;
209 unsigned int index;
210
211 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
212 int pages_per_zspage;
0f050d99 213 struct zs_size_stat stats;
0959c63f 214
57244594
SS
215 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
216 bool huge;
0959c63f
SJ
217};
218
219/*
220 * Placed within free objects to form a singly linked list.
221 * For every zspage, first_page->freelist gives head of this list.
222 *
223 * This must be power of 2 and less than or equal to ZS_ALIGN
224 */
225struct link_free {
2e40e163
MK
226 union {
227 /*
228 * Position of next free chunk (encodes <PFN, obj_idx>)
229 * It's valid for non-allocated object
230 */
231 void *next;
232 /*
233 * Handle of allocated object.
234 */
235 unsigned long handle;
236 };
0959c63f
SJ
237};
238
239struct zs_pool {
0f050d99
GM
240 char *name;
241
40f9fb8c 242 struct size_class **size_class;
2e40e163 243 struct kmem_cache *handle_cachep;
0959c63f
SJ
244
245 gfp_t flags; /* allocation flags used when growing pool */
13de8933 246 atomic_long_t pages_allocated;
0f050d99 247
7d3f3938 248 struct zs_pool_stats stats;
0f050d99
GM
249#ifdef CONFIG_ZSMALLOC_STAT
250 struct dentry *stat_dentry;
251#endif
0959c63f 252};
61989a80
NG
253
254/*
255 * A zspage's class index and fullness group
256 * are encoded in its (first)page->mapping
257 */
258#define CLASS_IDX_BITS 28
259#define FULLNESS_BITS 4
260#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
261#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
262
f553646a 263struct mapping_area {
1b945aee 264#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
265 struct vm_struct *vm; /* vm area for mapping object that span pages */
266#else
267 char *vm_buf; /* copy buffer for objects that span pages */
268#endif
269 char *vm_addr; /* address of kmap_atomic()'ed pages */
270 enum zs_mapmode vm_mm; /* mapping mode */
7b60a685 271 bool huge;
f553646a
SJ
272};
273
2e40e163
MK
274static int create_handle_cache(struct zs_pool *pool)
275{
276 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
277 0, 0, NULL);
278 return pool->handle_cachep ? 0 : 1;
279}
280
281static void destroy_handle_cache(struct zs_pool *pool)
282{
02f7b414
SS
283 if (pool->handle_cachep)
284 kmem_cache_destroy(pool->handle_cachep);
2e40e163
MK
285}
286
287static unsigned long alloc_handle(struct zs_pool *pool)
288{
289 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
290 pool->flags & ~__GFP_HIGHMEM);
291}
292
293static void free_handle(struct zs_pool *pool, unsigned long handle)
294{
295 kmem_cache_free(pool->handle_cachep, (void *)handle);
296}
297
298static void record_obj(unsigned long handle, unsigned long obj)
299{
300 *(unsigned long *)handle = obj;
301}
302
c795779d
DS
303/* zpool driver */
304
305#ifdef CONFIG_ZPOOL
306
479305fd
DS
307static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops,
308 struct zpool *zpool)
c795779d 309{
3eba0c6a 310 return zs_create_pool(name, gfp);
c795779d
DS
311}
312
313static void zs_zpool_destroy(void *pool)
314{
315 zs_destroy_pool(pool);
316}
317
318static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
319 unsigned long *handle)
320{
321 *handle = zs_malloc(pool, size);
322 return *handle ? 0 : -1;
323}
324static void zs_zpool_free(void *pool, unsigned long handle)
325{
326 zs_free(pool, handle);
327}
328
329static int zs_zpool_shrink(void *pool, unsigned int pages,
330 unsigned int *reclaimed)
331{
332 return -EINVAL;
333}
334
335static void *zs_zpool_map(void *pool, unsigned long handle,
336 enum zpool_mapmode mm)
337{
338 enum zs_mapmode zs_mm;
339
340 switch (mm) {
341 case ZPOOL_MM_RO:
342 zs_mm = ZS_MM_RO;
343 break;
344 case ZPOOL_MM_WO:
345 zs_mm = ZS_MM_WO;
346 break;
347 case ZPOOL_MM_RW: /* fallthru */
348 default:
349 zs_mm = ZS_MM_RW;
350 break;
351 }
352
353 return zs_map_object(pool, handle, zs_mm);
354}
355static void zs_zpool_unmap(void *pool, unsigned long handle)
356{
357 zs_unmap_object(pool, handle);
358}
359
360static u64 zs_zpool_total_size(void *pool)
361{
722cdc17 362 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
363}
364
365static struct zpool_driver zs_zpool_driver = {
366 .type = "zsmalloc",
367 .owner = THIS_MODULE,
368 .create = zs_zpool_create,
369 .destroy = zs_zpool_destroy,
370 .malloc = zs_zpool_malloc,
371 .free = zs_zpool_free,
372 .shrink = zs_zpool_shrink,
373 .map = zs_zpool_map,
374 .unmap = zs_zpool_unmap,
375 .total_size = zs_zpool_total_size,
376};
377
137f8cff 378MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
379#endif /* CONFIG_ZPOOL */
380
248ca1b0
MK
381static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
382{
383 return pages_per_zspage * PAGE_SIZE / size;
384}
385
61989a80
NG
386/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
387static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
388
389static int is_first_page(struct page *page)
390{
a27545bf 391 return PagePrivate(page);
61989a80
NG
392}
393
394static int is_last_page(struct page *page)
395{
a27545bf 396 return PagePrivate2(page);
61989a80
NG
397}
398
399static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
400 enum fullness_group *fullness)
401{
402 unsigned long m;
403 BUG_ON(!is_first_page(page));
404
405 m = (unsigned long)page->mapping;
406 *fullness = m & FULLNESS_MASK;
407 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
408}
409
410static void set_zspage_mapping(struct page *page, unsigned int class_idx,
411 enum fullness_group fullness)
412{
413 unsigned long m;
414 BUG_ON(!is_first_page(page));
415
416 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
417 (fullness & FULLNESS_MASK);
418 page->mapping = (struct address_space *)m;
419}
420
c3e3e88a
NC
421/*
422 * zsmalloc divides the pool into various size classes where each
423 * class maintains a list of zspages where each zspage is divided
424 * into equal sized chunks. Each allocation falls into one of these
425 * classes depending on its size. This function returns index of the
426 * size class which has chunk size big enough to hold the give size.
427 */
61989a80
NG
428static int get_size_class_index(int size)
429{
430 int idx = 0;
431
432 if (likely(size > ZS_MIN_ALLOC_SIZE))
433 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
434 ZS_SIZE_CLASS_DELTA);
435
7b60a685 436 return min(zs_size_classes - 1, idx);
61989a80
NG
437}
438
248ca1b0
MK
439static inline void zs_stat_inc(struct size_class *class,
440 enum zs_stat_type type, unsigned long cnt)
441{
442 class->stats.objs[type] += cnt;
443}
444
445static inline void zs_stat_dec(struct size_class *class,
446 enum zs_stat_type type, unsigned long cnt)
447{
448 class->stats.objs[type] -= cnt;
449}
450
451static inline unsigned long zs_stat_get(struct size_class *class,
452 enum zs_stat_type type)
453{
454 return class->stats.objs[type];
455}
456
57244594
SS
457#ifdef CONFIG_ZSMALLOC_STAT
458
248ca1b0
MK
459static int __init zs_stat_init(void)
460{
461 if (!debugfs_initialized())
462 return -ENODEV;
463
464 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
465 if (!zs_stat_root)
466 return -ENOMEM;
467
468 return 0;
469}
470
471static void __exit zs_stat_exit(void)
472{
473 debugfs_remove_recursive(zs_stat_root);
474}
475
476static int zs_stats_size_show(struct seq_file *s, void *v)
477{
478 int i;
479 struct zs_pool *pool = s->private;
480 struct size_class *class;
481 int objs_per_zspage;
482 unsigned long class_almost_full, class_almost_empty;
483 unsigned long obj_allocated, obj_used, pages_used;
484 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
485 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
486
487 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
488 "class", "size", "almost_full", "almost_empty",
489 "obj_allocated", "obj_used", "pages_used",
490 "pages_per_zspage");
491
492 for (i = 0; i < zs_size_classes; i++) {
493 class = pool->size_class[i];
494
495 if (class->index != i)
496 continue;
497
498 spin_lock(&class->lock);
499 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
500 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
501 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
502 obj_used = zs_stat_get(class, OBJ_USED);
503 spin_unlock(&class->lock);
504
505 objs_per_zspage = get_maxobj_per_zspage(class->size,
506 class->pages_per_zspage);
507 pages_used = obj_allocated / objs_per_zspage *
508 class->pages_per_zspage;
509
510 seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
511 i, class->size, class_almost_full, class_almost_empty,
512 obj_allocated, obj_used, pages_used,
513 class->pages_per_zspage);
514
515 total_class_almost_full += class_almost_full;
516 total_class_almost_empty += class_almost_empty;
517 total_objs += obj_allocated;
518 total_used_objs += obj_used;
519 total_pages += pages_used;
520 }
521
522 seq_puts(s, "\n");
523 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
524 "Total", "", total_class_almost_full,
525 total_class_almost_empty, total_objs,
526 total_used_objs, total_pages);
527
528 return 0;
529}
530
531static int zs_stats_size_open(struct inode *inode, struct file *file)
532{
533 return single_open(file, zs_stats_size_show, inode->i_private);
534}
535
536static const struct file_operations zs_stat_size_ops = {
537 .open = zs_stats_size_open,
538 .read = seq_read,
539 .llseek = seq_lseek,
540 .release = single_release,
541};
542
543static int zs_pool_stat_create(char *name, struct zs_pool *pool)
544{
545 struct dentry *entry;
546
547 if (!zs_stat_root)
548 return -ENODEV;
549
550 entry = debugfs_create_dir(name, zs_stat_root);
551 if (!entry) {
552 pr_warn("debugfs dir <%s> creation failed\n", name);
553 return -ENOMEM;
554 }
555 pool->stat_dentry = entry;
556
557 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
558 pool->stat_dentry, pool, &zs_stat_size_ops);
559 if (!entry) {
560 pr_warn("%s: debugfs file entry <%s> creation failed\n",
561 name, "classes");
562 return -ENOMEM;
563 }
564
565 return 0;
566}
567
568static void zs_pool_stat_destroy(struct zs_pool *pool)
569{
570 debugfs_remove_recursive(pool->stat_dentry);
571}
572
573#else /* CONFIG_ZSMALLOC_STAT */
248ca1b0
MK
574static int __init zs_stat_init(void)
575{
576 return 0;
577}
578
579static void __exit zs_stat_exit(void)
580{
581}
582
583static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
584{
585 return 0;
586}
587
588static inline void zs_pool_stat_destroy(struct zs_pool *pool)
589{
590}
248ca1b0
MK
591#endif
592
593
c3e3e88a
NC
594/*
595 * For each size class, zspages are divided into different groups
596 * depending on how "full" they are. This was done so that we could
597 * easily find empty or nearly empty zspages when we try to shrink
598 * the pool (not yet implemented). This function returns fullness
599 * status of the given page.
600 */
61989a80
NG
601static enum fullness_group get_fullness_group(struct page *page)
602{
603 int inuse, max_objects;
604 enum fullness_group fg;
605 BUG_ON(!is_first_page(page));
606
607 inuse = page->inuse;
608 max_objects = page->objects;
609
610 if (inuse == 0)
611 fg = ZS_EMPTY;
612 else if (inuse == max_objects)
613 fg = ZS_FULL;
d3d07c92 614 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
61989a80
NG
615 fg = ZS_ALMOST_EMPTY;
616 else
617 fg = ZS_ALMOST_FULL;
618
619 return fg;
620}
621
c3e3e88a
NC
622/*
623 * Each size class maintains various freelists and zspages are assigned
624 * to one of these freelists based on the number of live objects they
625 * have. This functions inserts the given zspage into the freelist
626 * identified by <class, fullness_group>.
627 */
61989a80
NG
628static void insert_zspage(struct page *page, struct size_class *class,
629 enum fullness_group fullness)
630{
631 struct page **head;
632
633 BUG_ON(!is_first_page(page));
634
635 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
636 return;
637
638 head = &class->fullness_list[fullness];
639 if (*head)
640 list_add_tail(&page->lru, &(*head)->lru);
641
642 *head = page;
248ca1b0
MK
643 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
644 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
61989a80
NG
645}
646
c3e3e88a
NC
647/*
648 * This function removes the given zspage from the freelist identified
649 * by <class, fullness_group>.
650 */
61989a80
NG
651static void remove_zspage(struct page *page, struct size_class *class,
652 enum fullness_group fullness)
653{
654 struct page **head;
655
656 BUG_ON(!is_first_page(page));
657
658 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
659 return;
660
661 head = &class->fullness_list[fullness];
662 BUG_ON(!*head);
663 if (list_empty(&(*head)->lru))
664 *head = NULL;
665 else if (*head == page)
666 *head = (struct page *)list_entry((*head)->lru.next,
667 struct page, lru);
668
669 list_del_init(&page->lru);
248ca1b0
MK
670 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
671 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
61989a80
NG
672}
673
c3e3e88a
NC
674/*
675 * Each size class maintains zspages in different fullness groups depending
676 * on the number of live objects they contain. When allocating or freeing
677 * objects, the fullness status of the page can change, say, from ALMOST_FULL
678 * to ALMOST_EMPTY when freeing an object. This function checks if such
679 * a status change has occurred for the given page and accordingly moves the
680 * page from the freelist of the old fullness group to that of the new
681 * fullness group.
682 */
c7806261 683static enum fullness_group fix_fullness_group(struct size_class *class,
61989a80
NG
684 struct page *page)
685{
686 int class_idx;
61989a80
NG
687 enum fullness_group currfg, newfg;
688
689 BUG_ON(!is_first_page(page));
690
691 get_zspage_mapping(page, &class_idx, &currfg);
692 newfg = get_fullness_group(page);
693 if (newfg == currfg)
694 goto out;
695
61989a80
NG
696 remove_zspage(page, class, currfg);
697 insert_zspage(page, class, newfg);
698 set_zspage_mapping(page, class_idx, newfg);
699
700out:
701 return newfg;
702}
703
704/*
705 * We have to decide on how many pages to link together
706 * to form a zspage for each size class. This is important
707 * to reduce wastage due to unusable space left at end of
708 * each zspage which is given as:
888fa374
YX
709 * wastage = Zp % class_size
710 * usage = Zp - wastage
61989a80
NG
711 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
712 *
713 * For example, for size class of 3/8 * PAGE_SIZE, we should
714 * link together 3 PAGE_SIZE sized pages to form a zspage
715 * since then we can perfectly fit in 8 such objects.
716 */
2e3b6154 717static int get_pages_per_zspage(int class_size)
61989a80
NG
718{
719 int i, max_usedpc = 0;
720 /* zspage order which gives maximum used size per KB */
721 int max_usedpc_order = 1;
722
84d4faab 723 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
724 int zspage_size;
725 int waste, usedpc;
726
727 zspage_size = i * PAGE_SIZE;
728 waste = zspage_size % class_size;
729 usedpc = (zspage_size - waste) * 100 / zspage_size;
730
731 if (usedpc > max_usedpc) {
732 max_usedpc = usedpc;
733 max_usedpc_order = i;
734 }
735 }
736
737 return max_usedpc_order;
738}
739
740/*
741 * A single 'zspage' is composed of many system pages which are
742 * linked together using fields in struct page. This function finds
743 * the first/head page, given any component page of a zspage.
744 */
745static struct page *get_first_page(struct page *page)
746{
747 if (is_first_page(page))
748 return page;
749 else
750 return page->first_page;
751}
752
753static struct page *get_next_page(struct page *page)
754{
755 struct page *next;
756
757 if (is_last_page(page))
758 next = NULL;
759 else if (is_first_page(page))
e842b976 760 next = (struct page *)page_private(page);
61989a80
NG
761 else
762 next = list_entry(page->lru.next, struct page, lru);
763
764 return next;
765}
766
67296874
OH
767/*
768 * Encode <page, obj_idx> as a single handle value.
312fcae2 769 * We use the least bit of handle for tagging.
67296874 770 */
312fcae2 771static void *location_to_obj(struct page *page, unsigned long obj_idx)
61989a80 772{
312fcae2 773 unsigned long obj;
61989a80
NG
774
775 if (!page) {
776 BUG_ON(obj_idx);
777 return NULL;
778 }
779
312fcae2
MK
780 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
781 obj |= ((obj_idx) & OBJ_INDEX_MASK);
782 obj <<= OBJ_TAG_BITS;
61989a80 783
312fcae2 784 return (void *)obj;
61989a80
NG
785}
786
67296874
OH
787/*
788 * Decode <page, obj_idx> pair from the given object handle. We adjust the
789 * decoded obj_idx back to its original value since it was adjusted in
312fcae2 790 * location_to_obj().
67296874 791 */
312fcae2 792static void obj_to_location(unsigned long obj, struct page **page,
61989a80
NG
793 unsigned long *obj_idx)
794{
312fcae2
MK
795 obj >>= OBJ_TAG_BITS;
796 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
797 *obj_idx = (obj & OBJ_INDEX_MASK);
61989a80
NG
798}
799
2e40e163
MK
800static unsigned long handle_to_obj(unsigned long handle)
801{
802 return *(unsigned long *)handle;
803}
804
7b60a685
MK
805static unsigned long obj_to_head(struct size_class *class, struct page *page,
806 void *obj)
312fcae2 807{
7b60a685
MK
808 if (class->huge) {
809 VM_BUG_ON(!is_first_page(page));
810 return *(unsigned long *)page_private(page);
811 } else
812 return *(unsigned long *)obj;
312fcae2
MK
813}
814
61989a80
NG
815static unsigned long obj_idx_to_offset(struct page *page,
816 unsigned long obj_idx, int class_size)
817{
818 unsigned long off = 0;
819
820 if (!is_first_page(page))
821 off = page->index;
822
823 return off + obj_idx * class_size;
824}
825
312fcae2
MK
826static inline int trypin_tag(unsigned long handle)
827{
828 unsigned long *ptr = (unsigned long *)handle;
829
830 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
831}
832
833static void pin_tag(unsigned long handle)
834{
835 while (!trypin_tag(handle));
836}
837
838static void unpin_tag(unsigned long handle)
839{
840 unsigned long *ptr = (unsigned long *)handle;
841
842 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
843}
844
f4477e90
NG
845static void reset_page(struct page *page)
846{
847 clear_bit(PG_private, &page->flags);
848 clear_bit(PG_private_2, &page->flags);
849 set_page_private(page, 0);
850 page->mapping = NULL;
851 page->freelist = NULL;
22b751c3 852 page_mapcount_reset(page);
f4477e90
NG
853}
854
61989a80
NG
855static void free_zspage(struct page *first_page)
856{
f4477e90 857 struct page *nextp, *tmp, *head_extra;
61989a80
NG
858
859 BUG_ON(!is_first_page(first_page));
860 BUG_ON(first_page->inuse);
861
f4477e90 862 head_extra = (struct page *)page_private(first_page);
61989a80 863
f4477e90 864 reset_page(first_page);
61989a80
NG
865 __free_page(first_page);
866
867 /* zspage with only 1 system page */
f4477e90 868 if (!head_extra)
61989a80
NG
869 return;
870
f4477e90 871 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
61989a80 872 list_del(&nextp->lru);
f4477e90 873 reset_page(nextp);
61989a80
NG
874 __free_page(nextp);
875 }
f4477e90
NG
876 reset_page(head_extra);
877 __free_page(head_extra);
61989a80
NG
878}
879
880/* Initialize a newly allocated zspage */
881static void init_zspage(struct page *first_page, struct size_class *class)
882{
883 unsigned long off = 0;
884 struct page *page = first_page;
885
886 BUG_ON(!is_first_page(first_page));
887 while (page) {
888 struct page *next_page;
889 struct link_free *link;
5538c562 890 unsigned int i = 1;
af4ee5e9 891 void *vaddr;
61989a80
NG
892
893 /*
894 * page->index stores offset of first object starting
895 * in the page. For the first page, this is always 0,
896 * so we use first_page->index (aka ->freelist) to store
897 * head of corresponding zspage's freelist.
898 */
899 if (page != first_page)
900 page->index = off;
901
af4ee5e9
MK
902 vaddr = kmap_atomic(page);
903 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
904
905 while ((off += class->size) < PAGE_SIZE) {
312fcae2 906 link->next = location_to_obj(page, i++);
5538c562 907 link += class->size / sizeof(*link);
61989a80
NG
908 }
909
910 /*
911 * We now come to the last (full or partial) object on this
912 * page, which must point to the first object on the next
913 * page (if present)
914 */
915 next_page = get_next_page(page);
312fcae2 916 link->next = location_to_obj(next_page, 0);
af4ee5e9 917 kunmap_atomic(vaddr);
61989a80 918 page = next_page;
5538c562 919 off %= PAGE_SIZE;
61989a80
NG
920 }
921}
922
923/*
924 * Allocate a zspage for the given size class
925 */
926static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
927{
928 int i, error;
b4b700c5 929 struct page *first_page = NULL, *uninitialized_var(prev_page);
61989a80
NG
930
931 /*
932 * Allocate individual pages and link them together as:
933 * 1. first page->private = first sub-page
934 * 2. all sub-pages are linked together using page->lru
935 * 3. each sub-page is linked to the first page using page->first_page
936 *
937 * For each size class, First/Head pages are linked together using
938 * page->lru. Also, we set PG_private to identify the first page
939 * (i.e. no other sub-page has this flag set) and PG_private_2 to
940 * identify the last page.
941 */
942 error = -ENOMEM;
2e3b6154 943 for (i = 0; i < class->pages_per_zspage; i++) {
b4b700c5 944 struct page *page;
61989a80
NG
945
946 page = alloc_page(flags);
947 if (!page)
948 goto cleanup;
949
950 INIT_LIST_HEAD(&page->lru);
951 if (i == 0) { /* first page */
a27545bf 952 SetPagePrivate(page);
61989a80
NG
953 set_page_private(page, 0);
954 first_page = page;
955 first_page->inuse = 0;
956 }
957 if (i == 1)
e842b976 958 set_page_private(first_page, (unsigned long)page);
61989a80
NG
959 if (i >= 1)
960 page->first_page = first_page;
961 if (i >= 2)
962 list_add(&page->lru, &prev_page->lru);
2e3b6154 963 if (i == class->pages_per_zspage - 1) /* last page */
a27545bf 964 SetPagePrivate2(page);
61989a80
NG
965 prev_page = page;
966 }
967
968 init_zspage(first_page, class);
969
312fcae2 970 first_page->freelist = location_to_obj(first_page, 0);
61989a80 971 /* Maximum number of objects we can store in this zspage */
2e3b6154 972 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
61989a80
NG
973
974 error = 0; /* Success */
975
976cleanup:
977 if (unlikely(error) && first_page) {
978 free_zspage(first_page);
979 first_page = NULL;
980 }
981
982 return first_page;
983}
984
985static struct page *find_get_zspage(struct size_class *class)
986{
987 int i;
988 struct page *page;
989
990 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
991 page = class->fullness_list[i];
992 if (page)
993 break;
994 }
995
996 return page;
997}
998
1b945aee 999#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1000static inline int __zs_cpu_up(struct mapping_area *area)
1001{
1002 /*
1003 * Make sure we don't leak memory if a cpu UP notification
1004 * and zs_init() race and both call zs_cpu_up() on the same cpu
1005 */
1006 if (area->vm)
1007 return 0;
1008 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1009 if (!area->vm)
1010 return -ENOMEM;
1011 return 0;
1012}
1013
1014static inline void __zs_cpu_down(struct mapping_area *area)
1015{
1016 if (area->vm)
1017 free_vm_area(area->vm);
1018 area->vm = NULL;
1019}
1020
1021static inline void *__zs_map_object(struct mapping_area *area,
1022 struct page *pages[2], int off, int size)
1023{
f6f8ed47 1024 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1025 area->vm_addr = area->vm->addr;
1026 return area->vm_addr + off;
1027}
1028
1029static inline void __zs_unmap_object(struct mapping_area *area,
1030 struct page *pages[2], int off, int size)
1031{
1032 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1033
d95abbbb 1034 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1035}
1036
1b945aee 1037#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1038
1039static inline int __zs_cpu_up(struct mapping_area *area)
1040{
1041 /*
1042 * Make sure we don't leak memory if a cpu UP notification
1043 * and zs_init() race and both call zs_cpu_up() on the same cpu
1044 */
1045 if (area->vm_buf)
1046 return 0;
40f9fb8c 1047 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1048 if (!area->vm_buf)
1049 return -ENOMEM;
1050 return 0;
1051}
1052
1053static inline void __zs_cpu_down(struct mapping_area *area)
1054{
40f9fb8c 1055 kfree(area->vm_buf);
f553646a
SJ
1056 area->vm_buf = NULL;
1057}
1058
1059static void *__zs_map_object(struct mapping_area *area,
1060 struct page *pages[2], int off, int size)
5f601902 1061{
5f601902
SJ
1062 int sizes[2];
1063 void *addr;
f553646a 1064 char *buf = area->vm_buf;
5f601902 1065
f553646a
SJ
1066 /* disable page faults to match kmap_atomic() return conditions */
1067 pagefault_disable();
1068
1069 /* no read fastpath */
1070 if (area->vm_mm == ZS_MM_WO)
1071 goto out;
5f601902
SJ
1072
1073 sizes[0] = PAGE_SIZE - off;
1074 sizes[1] = size - sizes[0];
1075
5f601902
SJ
1076 /* copy object to per-cpu buffer */
1077 addr = kmap_atomic(pages[0]);
1078 memcpy(buf, addr + off, sizes[0]);
1079 kunmap_atomic(addr);
1080 addr = kmap_atomic(pages[1]);
1081 memcpy(buf + sizes[0], addr, sizes[1]);
1082 kunmap_atomic(addr);
f553646a
SJ
1083out:
1084 return area->vm_buf;
5f601902
SJ
1085}
1086
f553646a
SJ
1087static void __zs_unmap_object(struct mapping_area *area,
1088 struct page *pages[2], int off, int size)
5f601902 1089{
5f601902
SJ
1090 int sizes[2];
1091 void *addr;
2e40e163 1092 char *buf;
5f601902 1093
f553646a
SJ
1094 /* no write fastpath */
1095 if (area->vm_mm == ZS_MM_RO)
1096 goto out;
5f601902 1097
7b60a685
MK
1098 buf = area->vm_buf;
1099 if (!area->huge) {
1100 buf = buf + ZS_HANDLE_SIZE;
1101 size -= ZS_HANDLE_SIZE;
1102 off += ZS_HANDLE_SIZE;
1103 }
2e40e163 1104
5f601902
SJ
1105 sizes[0] = PAGE_SIZE - off;
1106 sizes[1] = size - sizes[0];
1107
1108 /* copy per-cpu buffer to object */
1109 addr = kmap_atomic(pages[0]);
1110 memcpy(addr + off, buf, sizes[0]);
1111 kunmap_atomic(addr);
1112 addr = kmap_atomic(pages[1]);
1113 memcpy(addr, buf + sizes[0], sizes[1]);
1114 kunmap_atomic(addr);
f553646a
SJ
1115
1116out:
1117 /* enable page faults to match kunmap_atomic() return conditions */
1118 pagefault_enable();
5f601902 1119}
61989a80 1120
1b945aee 1121#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1122
61989a80
NG
1123static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1124 void *pcpu)
1125{
f553646a 1126 int ret, cpu = (long)pcpu;
61989a80
NG
1127 struct mapping_area *area;
1128
1129 switch (action) {
1130 case CPU_UP_PREPARE:
1131 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
1132 ret = __zs_cpu_up(area);
1133 if (ret)
1134 return notifier_from_errno(ret);
61989a80
NG
1135 break;
1136 case CPU_DEAD:
1137 case CPU_UP_CANCELED:
1138 area = &per_cpu(zs_map_area, cpu);
f553646a 1139 __zs_cpu_down(area);
61989a80
NG
1140 break;
1141 }
1142
1143 return NOTIFY_OK;
1144}
1145
1146static struct notifier_block zs_cpu_nb = {
1147 .notifier_call = zs_cpu_notifier
1148};
1149
b1b00a5b 1150static int zs_register_cpu_notifier(void)
61989a80 1151{
b1b00a5b 1152 int cpu, uninitialized_var(ret);
61989a80 1153
f0e71fcd
SB
1154 cpu_notifier_register_begin();
1155
1156 __register_cpu_notifier(&zs_cpu_nb);
61989a80
NG
1157 for_each_online_cpu(cpu) {
1158 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
b1b00a5b
SS
1159 if (notifier_to_errno(ret))
1160 break;
61989a80 1161 }
f0e71fcd
SB
1162
1163 cpu_notifier_register_done();
b1b00a5b
SS
1164 return notifier_to_errno(ret);
1165}
f0e71fcd 1166
66cdef66 1167static void zs_unregister_cpu_notifier(void)
40f9fb8c 1168{
66cdef66 1169 int cpu;
40f9fb8c 1170
66cdef66 1171 cpu_notifier_register_begin();
40f9fb8c 1172
66cdef66
GM
1173 for_each_online_cpu(cpu)
1174 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1175 __unregister_cpu_notifier(&zs_cpu_nb);
40f9fb8c 1176
66cdef66 1177 cpu_notifier_register_done();
b1b00a5b
SS
1178}
1179
66cdef66 1180static void init_zs_size_classes(void)
b1b00a5b 1181{
66cdef66 1182 int nr;
c795779d 1183
66cdef66
GM
1184 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1185 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1186 nr += 1;
40f9fb8c 1187
66cdef66 1188 zs_size_classes = nr;
61989a80
NG
1189}
1190
9eec4cd5
JK
1191static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1192{
1193 if (prev->pages_per_zspage != pages_per_zspage)
1194 return false;
1195
1196 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1197 != get_maxobj_per_zspage(size, pages_per_zspage))
1198 return false;
1199
1200 return true;
1201}
1202
312fcae2
MK
1203static bool zspage_full(struct page *page)
1204{
1205 BUG_ON(!is_first_page(page));
1206
1207 return page->inuse == page->objects;
1208}
1209
66cdef66
GM
1210unsigned long zs_get_total_pages(struct zs_pool *pool)
1211{
1212 return atomic_long_read(&pool->pages_allocated);
1213}
1214EXPORT_SYMBOL_GPL(zs_get_total_pages);
1215
4bbc0bc0 1216/**
66cdef66
GM
1217 * zs_map_object - get address of allocated object from handle.
1218 * @pool: pool from which the object was allocated
1219 * @handle: handle returned from zs_malloc
4bbc0bc0 1220 *
66cdef66
GM
1221 * Before using an object allocated from zs_malloc, it must be mapped using
1222 * this function. When done with the object, it must be unmapped using
1223 * zs_unmap_object.
4bbc0bc0 1224 *
66cdef66
GM
1225 * Only one object can be mapped per cpu at a time. There is no protection
1226 * against nested mappings.
1227 *
1228 * This function returns with preemption and page faults disabled.
4bbc0bc0 1229 */
66cdef66
GM
1230void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1231 enum zs_mapmode mm)
61989a80 1232{
66cdef66 1233 struct page *page;
2e40e163 1234 unsigned long obj, obj_idx, off;
61989a80 1235
66cdef66
GM
1236 unsigned int class_idx;
1237 enum fullness_group fg;
1238 struct size_class *class;
1239 struct mapping_area *area;
1240 struct page *pages[2];
2e40e163 1241 void *ret;
61989a80 1242
66cdef66 1243 BUG_ON(!handle);
40f9fb8c 1244
9eec4cd5 1245 /*
66cdef66
GM
1246 * Because we use per-cpu mapping areas shared among the
1247 * pools/users, we can't allow mapping in interrupt context
1248 * because it can corrupt another users mappings.
9eec4cd5 1249 */
66cdef66 1250 BUG_ON(in_interrupt());
61989a80 1251
312fcae2
MK
1252 /* From now on, migration cannot move the object */
1253 pin_tag(handle);
1254
2e40e163
MK
1255 obj = handle_to_obj(handle);
1256 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1257 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1258 class = pool->size_class[class_idx];
1259 off = obj_idx_to_offset(page, obj_idx, class->size);
df8b5bb9 1260
66cdef66
GM
1261 area = &get_cpu_var(zs_map_area);
1262 area->vm_mm = mm;
1263 if (off + class->size <= PAGE_SIZE) {
1264 /* this object is contained entirely within a page */
1265 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1266 ret = area->vm_addr + off;
1267 goto out;
61989a80
NG
1268 }
1269
66cdef66
GM
1270 /* this object spans two pages */
1271 pages[0] = page;
1272 pages[1] = get_next_page(page);
1273 BUG_ON(!pages[1]);
9eec4cd5 1274
2e40e163
MK
1275 ret = __zs_map_object(area, pages, off, class->size);
1276out:
7b60a685
MK
1277 if (!class->huge)
1278 ret += ZS_HANDLE_SIZE;
1279
1280 return ret;
61989a80 1281}
66cdef66 1282EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1283
66cdef66 1284void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1285{
66cdef66 1286 struct page *page;
2e40e163 1287 unsigned long obj, obj_idx, off;
61989a80 1288
66cdef66
GM
1289 unsigned int class_idx;
1290 enum fullness_group fg;
1291 struct size_class *class;
1292 struct mapping_area *area;
9eec4cd5 1293
66cdef66 1294 BUG_ON(!handle);
9eec4cd5 1295
2e40e163
MK
1296 obj = handle_to_obj(handle);
1297 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1298 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1299 class = pool->size_class[class_idx];
1300 off = obj_idx_to_offset(page, obj_idx, class->size);
61989a80 1301
66cdef66
GM
1302 area = this_cpu_ptr(&zs_map_area);
1303 if (off + class->size <= PAGE_SIZE)
1304 kunmap_atomic(area->vm_addr);
1305 else {
1306 struct page *pages[2];
40f9fb8c 1307
66cdef66
GM
1308 pages[0] = page;
1309 pages[1] = get_next_page(page);
1310 BUG_ON(!pages[1]);
1311
1312 __zs_unmap_object(area, pages, off, class->size);
1313 }
1314 put_cpu_var(zs_map_area);
312fcae2 1315 unpin_tag(handle);
61989a80 1316}
66cdef66 1317EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1318
c7806261
MK
1319static unsigned long obj_malloc(struct page *first_page,
1320 struct size_class *class, unsigned long handle)
1321{
1322 unsigned long obj;
1323 struct link_free *link;
1324
1325 struct page *m_page;
1326 unsigned long m_objidx, m_offset;
1327 void *vaddr;
1328
312fcae2 1329 handle |= OBJ_ALLOCATED_TAG;
c7806261
MK
1330 obj = (unsigned long)first_page->freelist;
1331 obj_to_location(obj, &m_page, &m_objidx);
1332 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1333
1334 vaddr = kmap_atomic(m_page);
1335 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1336 first_page->freelist = link->next;
7b60a685
MK
1337 if (!class->huge)
1338 /* record handle in the header of allocated chunk */
1339 link->handle = handle;
1340 else
1341 /* record handle in first_page->private */
1342 set_page_private(first_page, handle);
c7806261
MK
1343 kunmap_atomic(vaddr);
1344 first_page->inuse++;
1345 zs_stat_inc(class, OBJ_USED, 1);
1346
1347 return obj;
1348}
1349
1350
61989a80
NG
1351/**
1352 * zs_malloc - Allocate block of given size from pool.
1353 * @pool: pool to allocate from
1354 * @size: size of block to allocate
61989a80 1355 *
00a61d86 1356 * On success, handle to the allocated object is returned,
c2344348 1357 * otherwise 0.
61989a80
NG
1358 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1359 */
c2344348 1360unsigned long zs_malloc(struct zs_pool *pool, size_t size)
61989a80 1361{
2e40e163 1362 unsigned long handle, obj;
61989a80 1363 struct size_class *class;
c7806261 1364 struct page *first_page;
61989a80 1365
7b60a685 1366 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1367 return 0;
1368
1369 handle = alloc_handle(pool);
1370 if (!handle)
c2344348 1371 return 0;
61989a80 1372
2e40e163
MK
1373 /* extra space in chunk to keep the handle */
1374 size += ZS_HANDLE_SIZE;
9eec4cd5 1375 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1376
1377 spin_lock(&class->lock);
1378 first_page = find_get_zspage(class);
1379
1380 if (!first_page) {
1381 spin_unlock(&class->lock);
1382 first_page = alloc_zspage(class, pool->flags);
2e40e163
MK
1383 if (unlikely(!first_page)) {
1384 free_handle(pool, handle);
c2344348 1385 return 0;
2e40e163 1386 }
61989a80
NG
1387
1388 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
13de8933
MK
1389 atomic_long_add(class->pages_per_zspage,
1390 &pool->pages_allocated);
0f050d99 1391
61989a80 1392 spin_lock(&class->lock);
0f050d99
GM
1393 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1394 class->size, class->pages_per_zspage));
61989a80
NG
1395 }
1396
c7806261 1397 obj = obj_malloc(first_page, class, handle);
61989a80 1398 /* Now move the zspage to another fullness group, if required */
c7806261 1399 fix_fullness_group(class, first_page);
2e40e163 1400 record_obj(handle, obj);
61989a80
NG
1401 spin_unlock(&class->lock);
1402
2e40e163 1403 return handle;
61989a80
NG
1404}
1405EXPORT_SYMBOL_GPL(zs_malloc);
1406
c7806261
MK
1407static void obj_free(struct zs_pool *pool, struct size_class *class,
1408 unsigned long obj)
61989a80
NG
1409{
1410 struct link_free *link;
1411 struct page *first_page, *f_page;
c7806261 1412 unsigned long f_objidx, f_offset;
af4ee5e9 1413 void *vaddr;
61989a80 1414 int class_idx;
61989a80
NG
1415 enum fullness_group fullness;
1416
c7806261 1417 BUG_ON(!obj);
61989a80 1418
312fcae2 1419 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1420 obj_to_location(obj, &f_page, &f_objidx);
61989a80
NG
1421 first_page = get_first_page(f_page);
1422
1423 get_zspage_mapping(first_page, &class_idx, &fullness);
61989a80
NG
1424 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1425
c7806261 1426 vaddr = kmap_atomic(f_page);
61989a80
NG
1427
1428 /* Insert this object in containing zspage's freelist */
af4ee5e9 1429 link = (struct link_free *)(vaddr + f_offset);
61989a80 1430 link->next = first_page->freelist;
7b60a685
MK
1431 if (class->huge)
1432 set_page_private(first_page, 0);
af4ee5e9 1433 kunmap_atomic(vaddr);
c2344348 1434 first_page->freelist = (void *)obj;
61989a80 1435 first_page->inuse--;
0f050d99 1436 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1437}
1438
1439void zs_free(struct zs_pool *pool, unsigned long handle)
1440{
1441 struct page *first_page, *f_page;
1442 unsigned long obj, f_objidx;
1443 int class_idx;
1444 struct size_class *class;
1445 enum fullness_group fullness;
1446
1447 if (unlikely(!handle))
1448 return;
1449
312fcae2 1450 pin_tag(handle);
c7806261 1451 obj = handle_to_obj(handle);
c7806261
MK
1452 obj_to_location(obj, &f_page, &f_objidx);
1453 first_page = get_first_page(f_page);
1454
1455 get_zspage_mapping(first_page, &class_idx, &fullness);
1456 class = pool->size_class[class_idx];
1457
1458 spin_lock(&class->lock);
1459 obj_free(pool, class, obj);
1460 fullness = fix_fullness_group(class, first_page);
312fcae2 1461 if (fullness == ZS_EMPTY) {
0f050d99
GM
1462 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1463 class->size, class->pages_per_zspage));
312fcae2
MK
1464 atomic_long_sub(class->pages_per_zspage,
1465 &pool->pages_allocated);
1466 free_zspage(first_page);
1467 }
61989a80 1468 spin_unlock(&class->lock);
312fcae2 1469 unpin_tag(handle);
61989a80 1470
312fcae2
MK
1471 free_handle(pool, handle);
1472}
1473EXPORT_SYMBOL_GPL(zs_free);
1474
0dc63d48 1475static void zs_object_copy(unsigned long dst, unsigned long src,
312fcae2
MK
1476 struct size_class *class)
1477{
1478 struct page *s_page, *d_page;
1479 unsigned long s_objidx, d_objidx;
1480 unsigned long s_off, d_off;
1481 void *s_addr, *d_addr;
1482 int s_size, d_size, size;
1483 int written = 0;
1484
1485 s_size = d_size = class->size;
1486
1487 obj_to_location(src, &s_page, &s_objidx);
1488 obj_to_location(dst, &d_page, &d_objidx);
1489
1490 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1491 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1492
1493 if (s_off + class->size > PAGE_SIZE)
1494 s_size = PAGE_SIZE - s_off;
1495
1496 if (d_off + class->size > PAGE_SIZE)
1497 d_size = PAGE_SIZE - d_off;
1498
1499 s_addr = kmap_atomic(s_page);
1500 d_addr = kmap_atomic(d_page);
1501
1502 while (1) {
1503 size = min(s_size, d_size);
1504 memcpy(d_addr + d_off, s_addr + s_off, size);
1505 written += size;
1506
1507 if (written == class->size)
1508 break;
1509
495819ea
SS
1510 s_off += size;
1511 s_size -= size;
1512 d_off += size;
1513 d_size -= size;
1514
1515 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1516 kunmap_atomic(d_addr);
1517 kunmap_atomic(s_addr);
1518 s_page = get_next_page(s_page);
1519 BUG_ON(!s_page);
1520 s_addr = kmap_atomic(s_page);
1521 d_addr = kmap_atomic(d_page);
1522 s_size = class->size - written;
1523 s_off = 0;
312fcae2
MK
1524 }
1525
495819ea 1526 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1527 kunmap_atomic(d_addr);
1528 d_page = get_next_page(d_page);
1529 BUG_ON(!d_page);
1530 d_addr = kmap_atomic(d_page);
1531 d_size = class->size - written;
1532 d_off = 0;
312fcae2
MK
1533 }
1534 }
1535
1536 kunmap_atomic(d_addr);
1537 kunmap_atomic(s_addr);
1538}
1539
1540/*
1541 * Find alloced object in zspage from index object and
1542 * return handle.
1543 */
1544static unsigned long find_alloced_obj(struct page *page, int index,
1545 struct size_class *class)
1546{
1547 unsigned long head;
1548 int offset = 0;
1549 unsigned long handle = 0;
1550 void *addr = kmap_atomic(page);
1551
1552 if (!is_first_page(page))
1553 offset = page->index;
1554 offset += class->size * index;
1555
1556 while (offset < PAGE_SIZE) {
7b60a685 1557 head = obj_to_head(class, page, addr + offset);
312fcae2
MK
1558 if (head & OBJ_ALLOCATED_TAG) {
1559 handle = head & ~OBJ_ALLOCATED_TAG;
1560 if (trypin_tag(handle))
1561 break;
1562 handle = 0;
1563 }
1564
1565 offset += class->size;
1566 index++;
1567 }
1568
1569 kunmap_atomic(addr);
1570 return handle;
1571}
1572
1573struct zs_compact_control {
1574 /* Source page for migration which could be a subpage of zspage. */
1575 struct page *s_page;
1576 /* Destination page for migration which should be a first page
1577 * of zspage. */
1578 struct page *d_page;
1579 /* Starting object index within @s_page which used for live object
1580 * in the subpage. */
1581 int index;
312fcae2
MK
1582};
1583
1584static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1585 struct zs_compact_control *cc)
1586{
1587 unsigned long used_obj, free_obj;
1588 unsigned long handle;
1589 struct page *s_page = cc->s_page;
1590 struct page *d_page = cc->d_page;
1591 unsigned long index = cc->index;
312fcae2
MK
1592 int ret = 0;
1593
1594 while (1) {
1595 handle = find_alloced_obj(s_page, index, class);
1596 if (!handle) {
1597 s_page = get_next_page(s_page);
1598 if (!s_page)
1599 break;
1600 index = 0;
1601 continue;
1602 }
1603
1604 /* Stop if there is no more space */
1605 if (zspage_full(d_page)) {
1606 unpin_tag(handle);
1607 ret = -ENOMEM;
1608 break;
1609 }
1610
1611 used_obj = handle_to_obj(handle);
1612 free_obj = obj_malloc(d_page, class, handle);
0dc63d48 1613 zs_object_copy(free_obj, used_obj, class);
312fcae2
MK
1614 index++;
1615 record_obj(handle, free_obj);
1616 unpin_tag(handle);
1617 obj_free(pool, class, used_obj);
312fcae2
MK
1618 }
1619
1620 /* Remember last position in this iteration */
1621 cc->s_page = s_page;
1622 cc->index = index;
312fcae2
MK
1623
1624 return ret;
1625}
1626
0dc63d48 1627static struct page *isolate_target_page(struct size_class *class)
312fcae2
MK
1628{
1629 int i;
1630 struct page *page;
1631
1632 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1633 page = class->fullness_list[i];
1634 if (page) {
1635 remove_zspage(page, class, i);
1636 break;
1637 }
1638 }
1639
1640 return page;
1641}
1642
860c707d
SS
1643/*
1644 * putback_zspage - add @first_page into right class's fullness list
1645 * @pool: target pool
1646 * @class: destination class
1647 * @first_page: target page
1648 *
1649 * Return @fist_page's fullness_group
1650 */
1651static enum fullness_group putback_zspage(struct zs_pool *pool,
1652 struct size_class *class,
1653 struct page *first_page)
312fcae2 1654{
312fcae2
MK
1655 enum fullness_group fullness;
1656
1657 BUG_ON(!is_first_page(first_page));
1658
839373e6 1659 fullness = get_fullness_group(first_page);
312fcae2 1660 insert_zspage(first_page, class, fullness);
839373e6
MK
1661 set_zspage_mapping(first_page, class->index, fullness);
1662
13de8933 1663 if (fullness == ZS_EMPTY) {
312fcae2
MK
1664 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1665 class->size, class->pages_per_zspage));
13de8933
MK
1666 atomic_long_sub(class->pages_per_zspage,
1667 &pool->pages_allocated);
312fcae2 1668
61989a80 1669 free_zspage(first_page);
13de8933 1670 }
860c707d
SS
1671
1672 return fullness;
61989a80 1673}
312fcae2
MK
1674
1675static struct page *isolate_source_page(struct size_class *class)
1676{
1677 struct page *page;
1678
1679 page = class->fullness_list[ZS_ALMOST_EMPTY];
1680 if (page)
1681 remove_zspage(page, class, ZS_ALMOST_EMPTY);
1682
1683 return page;
1684}
1685
04f05909
SS
1686/*
1687 *
1688 * Based on the number of unused allocated objects calculate
1689 * and return the number of pages that we can free.
1690 *
1691 * Should be called under class->lock.
1692 */
1693static unsigned long zs_can_compact(struct size_class *class)
1694{
1695 unsigned long obj_wasted;
1696
1697 if (!zs_stat_get(class, CLASS_ALMOST_EMPTY))
1698 return 0;
1699
1700 obj_wasted = zs_stat_get(class, OBJ_ALLOCATED) -
1701 zs_stat_get(class, OBJ_USED);
1702
1703 obj_wasted /= get_maxobj_per_zspage(class->size,
1704 class->pages_per_zspage);
1705
1706 return obj_wasted * get_pages_per_zspage(class->size);
1707}
1708
7d3f3938 1709static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 1710{
312fcae2
MK
1711 struct zs_compact_control cc;
1712 struct page *src_page;
1713 struct page *dst_page = NULL;
312fcae2 1714
312fcae2
MK
1715 spin_lock(&class->lock);
1716 while ((src_page = isolate_source_page(class))) {
1717
1718 BUG_ON(!is_first_page(src_page));
1719
04f05909
SS
1720 if (!zs_can_compact(class))
1721 break;
1722
312fcae2
MK
1723 cc.index = 0;
1724 cc.s_page = src_page;
1725
0dc63d48 1726 while ((dst_page = isolate_target_page(class))) {
312fcae2
MK
1727 cc.d_page = dst_page;
1728 /*
0dc63d48
SS
1729 * If there is no more space in dst_page, resched
1730 * and see if anyone had allocated another zspage.
312fcae2
MK
1731 */
1732 if (!migrate_zspage(pool, class, &cc))
1733 break;
1734
1735 putback_zspage(pool, class, dst_page);
312fcae2
MK
1736 }
1737
1738 /* Stop if we couldn't find slot */
1739 if (dst_page == NULL)
1740 break;
1741
1742 putback_zspage(pool, class, dst_page);
860c707d
SS
1743 if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1744 pool->stats.pages_compacted +=
1745 get_pages_per_zspage(class->size);
312fcae2 1746 spin_unlock(&class->lock);
312fcae2
MK
1747 cond_resched();
1748 spin_lock(&class->lock);
1749 }
1750
1751 if (src_page)
1752 putback_zspage(pool, class, src_page);
1753
7d3f3938 1754 spin_unlock(&class->lock);
312fcae2
MK
1755}
1756
1757unsigned long zs_compact(struct zs_pool *pool)
1758{
1759 int i;
312fcae2
MK
1760 struct size_class *class;
1761
1762 for (i = zs_size_classes - 1; i >= 0; i--) {
1763 class = pool->size_class[i];
1764 if (!class)
1765 continue;
1766 if (class->index != i)
1767 continue;
7d3f3938 1768 __zs_compact(pool, class);
312fcae2
MK
1769 }
1770
860c707d 1771 return pool->stats.pages_compacted;
312fcae2
MK
1772}
1773EXPORT_SYMBOL_GPL(zs_compact);
61989a80 1774
7d3f3938
SS
1775void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1776{
1777 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1778}
1779EXPORT_SYMBOL_GPL(zs_pool_stats);
1780
00a61d86 1781/**
66cdef66
GM
1782 * zs_create_pool - Creates an allocation pool to work from.
1783 * @flags: allocation flags used to allocate pool metadata
166cfda7 1784 *
66cdef66
GM
1785 * This function must be called before anything when using
1786 * the zsmalloc allocator.
166cfda7 1787 *
66cdef66
GM
1788 * On success, a pointer to the newly created pool is returned,
1789 * otherwise NULL.
396b7fd6 1790 */
3eba0c6a 1791struct zs_pool *zs_create_pool(char *name, gfp_t flags)
61989a80 1792{
66cdef66
GM
1793 int i;
1794 struct zs_pool *pool;
1795 struct size_class *prev_class = NULL;
61989a80 1796
66cdef66
GM
1797 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1798 if (!pool)
1799 return NULL;
61989a80 1800
66cdef66
GM
1801 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1802 GFP_KERNEL);
1803 if (!pool->size_class) {
1804 kfree(pool);
1805 return NULL;
1806 }
61989a80 1807
2e40e163
MK
1808 pool->name = kstrdup(name, GFP_KERNEL);
1809 if (!pool->name)
1810 goto err;
1811
1812 if (create_handle_cache(pool))
1813 goto err;
1814
c60369f0 1815 /*
66cdef66
GM
1816 * Iterate reversly, because, size of size_class that we want to use
1817 * for merging should be larger or equal to current size.
c60369f0 1818 */
66cdef66
GM
1819 for (i = zs_size_classes - 1; i >= 0; i--) {
1820 int size;
1821 int pages_per_zspage;
1822 struct size_class *class;
c60369f0 1823
66cdef66
GM
1824 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1825 if (size > ZS_MAX_ALLOC_SIZE)
1826 size = ZS_MAX_ALLOC_SIZE;
1827 pages_per_zspage = get_pages_per_zspage(size);
61989a80 1828
66cdef66
GM
1829 /*
1830 * size_class is used for normal zsmalloc operation such
1831 * as alloc/free for that size. Although it is natural that we
1832 * have one size_class for each size, there is a chance that we
1833 * can get more memory utilization if we use one size_class for
1834 * many different sizes whose size_class have same
1835 * characteristics. So, we makes size_class point to
1836 * previous size_class if possible.
1837 */
1838 if (prev_class) {
1839 if (can_merge(prev_class, size, pages_per_zspage)) {
1840 pool->size_class[i] = prev_class;
1841 continue;
1842 }
1843 }
1844
1845 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1846 if (!class)
1847 goto err;
1848
1849 class->size = size;
1850 class->index = i;
1851 class->pages_per_zspage = pages_per_zspage;
7b60a685
MK
1852 if (pages_per_zspage == 1 &&
1853 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1854 class->huge = true;
66cdef66
GM
1855 spin_lock_init(&class->lock);
1856 pool->size_class[i] = class;
1857
1858 prev_class = class;
61989a80
NG
1859 }
1860
66cdef66 1861 pool->flags = flags;
b7418510 1862
0f050d99
GM
1863 if (zs_pool_stat_create(name, pool))
1864 goto err;
1865
66cdef66
GM
1866 return pool;
1867
1868err:
1869 zs_destroy_pool(pool);
1870 return NULL;
61989a80 1871}
66cdef66 1872EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 1873
66cdef66 1874void zs_destroy_pool(struct zs_pool *pool)
61989a80 1875{
66cdef66 1876 int i;
61989a80 1877
0f050d99
GM
1878 zs_pool_stat_destroy(pool);
1879
66cdef66
GM
1880 for (i = 0; i < zs_size_classes; i++) {
1881 int fg;
1882 struct size_class *class = pool->size_class[i];
61989a80 1883
66cdef66
GM
1884 if (!class)
1885 continue;
61989a80 1886
66cdef66
GM
1887 if (class->index != i)
1888 continue;
61989a80 1889
66cdef66
GM
1890 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1891 if (class->fullness_list[fg]) {
1892 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1893 class->size, fg);
1894 }
1895 }
1896 kfree(class);
1897 }
f553646a 1898
2e40e163 1899 destroy_handle_cache(pool);
66cdef66 1900 kfree(pool->size_class);
0f050d99 1901 kfree(pool->name);
66cdef66
GM
1902 kfree(pool);
1903}
1904EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 1905
66cdef66
GM
1906static int __init zs_init(void)
1907{
1908 int ret = zs_register_cpu_notifier();
1909
0f050d99
GM
1910 if (ret)
1911 goto notifier_fail;
66cdef66
GM
1912
1913 init_zs_size_classes();
1914
1915#ifdef CONFIG_ZPOOL
1916 zpool_register_driver(&zs_zpool_driver);
1917#endif
0f050d99
GM
1918
1919 ret = zs_stat_init();
1920 if (ret) {
1921 pr_err("zs stat initialization failed\n");
1922 goto stat_fail;
1923 }
66cdef66 1924 return 0;
0f050d99
GM
1925
1926stat_fail:
1927#ifdef CONFIG_ZPOOL
1928 zpool_unregister_driver(&zs_zpool_driver);
1929#endif
1930notifier_fail:
1931 zs_unregister_cpu_notifier();
1932
1933 return ret;
61989a80 1934}
61989a80 1935
66cdef66 1936static void __exit zs_exit(void)
61989a80 1937{
66cdef66
GM
1938#ifdef CONFIG_ZPOOL
1939 zpool_unregister_driver(&zs_zpool_driver);
1940#endif
1941 zs_unregister_cpu_notifier();
0f050d99
GM
1942
1943 zs_stat_exit();
61989a80 1944}
069f101f
BH
1945
1946module_init(zs_init);
1947module_exit(zs_exit);
1948
1949MODULE_LICENSE("Dual BSD/GPL");
1950MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");