]> git.ipfire.org Git - thirdparty/linux.git/blame - net/core/filter.c
vrf: fix a kernel warning
[thirdparty/linux.git] / net / core / filter.c
CommitLineData
1da177e4
LT
1/*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
bd4cf0ed
AS
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
1da177e4 6 *
bd4cf0ed
AS
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
1da177e4
LT
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
4df95ff4 21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
1da177e4
LT
22 */
23
24#include <linux/module.h>
25#include <linux/types.h>
1da177e4
LT
26#include <linux/mm.h>
27#include <linux/fcntl.h>
28#include <linux/socket.h>
29#include <linux/in.h>
30#include <linux/inet.h>
31#include <linux/netdevice.h>
32#include <linux/if_packet.h>
5a0e3ad6 33#include <linux/gfp.h>
1da177e4
LT
34#include <net/ip.h>
35#include <net/protocol.h>
4738c1db 36#include <net/netlink.h>
1da177e4
LT
37#include <linux/skbuff.h>
38#include <net/sock.h>
10b89ee4 39#include <net/flow_dissector.h>
1da177e4
LT
40#include <linux/errno.h>
41#include <linux/timer.h>
1da177e4 42#include <asm/uaccess.h>
40daafc8 43#include <asm/unaligned.h>
1da177e4 44#include <linux/filter.h>
86e4ca66 45#include <linux/ratelimit.h>
46b325c7 46#include <linux/seccomp.h>
f3335031 47#include <linux/if_vlan.h>
89aa0758 48#include <linux/bpf.h>
d691f9e8 49#include <net/sch_generic.h>
8d20aabe 50#include <net/cls_cgroup.h>
d3aa45ce 51#include <net/dst_metadata.h>
c46646d0 52#include <net/dst.h>
1da177e4 53
43db6d65
SH
54/**
55 * sk_filter - run a packet through a socket filter
56 * @sk: sock associated with &sk_buff
57 * @skb: buffer to filter
43db6d65
SH
58 *
59 * Run the filter code and then cut skb->data to correct size returned by
8ea6e345 60 * SK_RUN_FILTER. If pkt_len is 0 we toss packet. If skb->len is smaller
43db6d65 61 * than pkt_len we keep whole skb->data. This is the socket level
8ea6e345 62 * wrapper to SK_RUN_FILTER. It returns 0 if the packet should
43db6d65
SH
63 * be accepted or -EPERM if the packet should be tossed.
64 *
65 */
66int sk_filter(struct sock *sk, struct sk_buff *skb)
67{
68 int err;
69 struct sk_filter *filter;
70
c93bdd0e
MG
71 /*
72 * If the skb was allocated from pfmemalloc reserves, only
73 * allow SOCK_MEMALLOC sockets to use it as this socket is
74 * helping free memory
75 */
76 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
77 return -ENOMEM;
78
43db6d65
SH
79 err = security_sock_rcv_skb(sk, skb);
80 if (err)
81 return err;
82
80f8f102
ED
83 rcu_read_lock();
84 filter = rcu_dereference(sk->sk_filter);
43db6d65 85 if (filter) {
0a14842f 86 unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
0d7da9dd 87
43db6d65
SH
88 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
89 }
80f8f102 90 rcu_read_unlock();
43db6d65
SH
91
92 return err;
93}
94EXPORT_SYMBOL(sk_filter);
95
30743837 96static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
bd4cf0ed 97{
56193d1b 98 return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
bd4cf0ed
AS
99}
100
30743837 101static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
bd4cf0ed 102{
eb9672f4 103 struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
bd4cf0ed
AS
104 struct nlattr *nla;
105
106 if (skb_is_nonlinear(skb))
107 return 0;
108
05ab8f26
MK
109 if (skb->len < sizeof(struct nlattr))
110 return 0;
111
30743837 112 if (a > skb->len - sizeof(struct nlattr))
bd4cf0ed
AS
113 return 0;
114
30743837 115 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
bd4cf0ed
AS
116 if (nla)
117 return (void *) nla - (void *) skb->data;
118
119 return 0;
120}
121
30743837 122static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
bd4cf0ed 123{
eb9672f4 124 struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
bd4cf0ed
AS
125 struct nlattr *nla;
126
127 if (skb_is_nonlinear(skb))
128 return 0;
129
05ab8f26
MK
130 if (skb->len < sizeof(struct nlattr))
131 return 0;
132
30743837 133 if (a > skb->len - sizeof(struct nlattr))
bd4cf0ed
AS
134 return 0;
135
30743837
DB
136 nla = (struct nlattr *) &skb->data[a];
137 if (nla->nla_len > skb->len - a)
bd4cf0ed
AS
138 return 0;
139
30743837 140 nla = nla_find_nested(nla, x);
bd4cf0ed
AS
141 if (nla)
142 return (void *) nla - (void *) skb->data;
143
144 return 0;
145}
146
30743837 147static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
bd4cf0ed
AS
148{
149 return raw_smp_processor_id();
150}
151
4cd3675e 152/* note that this only generates 32-bit random numbers */
30743837 153static u64 __get_random_u32(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
4cd3675e 154{
eb9672f4 155 return prandom_u32();
4cd3675e
CG
156}
157
9bac3d6d
AS
158static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
159 struct bpf_insn *insn_buf)
160{
161 struct bpf_insn *insn = insn_buf;
162
163 switch (skb_field) {
164 case SKF_AD_MARK:
165 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
166
167 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
168 offsetof(struct sk_buff, mark));
169 break;
170
171 case SKF_AD_PKTTYPE:
172 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
173 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
174#ifdef __BIG_ENDIAN_BITFIELD
175 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
176#endif
177 break;
178
179 case SKF_AD_QUEUE:
180 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
181
182 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
183 offsetof(struct sk_buff, queue_mapping));
184 break;
c2497395 185
c2497395
AS
186 case SKF_AD_VLAN_TAG:
187 case SKF_AD_VLAN_TAG_PRESENT:
188 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
189 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
190
191 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
192 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
193 offsetof(struct sk_buff, vlan_tci));
194 if (skb_field == SKF_AD_VLAN_TAG) {
195 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
196 ~VLAN_TAG_PRESENT);
197 } else {
198 /* dst_reg >>= 12 */
199 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
200 /* dst_reg &= 1 */
201 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
202 }
203 break;
9bac3d6d
AS
204 }
205
206 return insn - insn_buf;
207}
208
bd4cf0ed 209static bool convert_bpf_extensions(struct sock_filter *fp,
2695fb55 210 struct bpf_insn **insnp)
bd4cf0ed 211{
2695fb55 212 struct bpf_insn *insn = *insnp;
9bac3d6d 213 u32 cnt;
bd4cf0ed
AS
214
215 switch (fp->k) {
216 case SKF_AD_OFF + SKF_AD_PROTOCOL:
0b8c707d
DB
217 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
218
219 /* A = *(u16 *) (CTX + offsetof(protocol)) */
220 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
221 offsetof(struct sk_buff, protocol));
222 /* A = ntohs(A) [emitting a nop or swap16] */
223 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
bd4cf0ed
AS
224 break;
225
226 case SKF_AD_OFF + SKF_AD_PKTTYPE:
9bac3d6d
AS
227 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
228 insn += cnt - 1;
bd4cf0ed
AS
229 break;
230
231 case SKF_AD_OFF + SKF_AD_IFINDEX:
232 case SKF_AD_OFF + SKF_AD_HATYPE:
bd4cf0ed
AS
233 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
234 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
f8f6d679
DB
235 BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);
236
237 *insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
238 BPF_REG_TMP, BPF_REG_CTX,
239 offsetof(struct sk_buff, dev));
240 /* if (tmp != 0) goto pc + 1 */
241 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
242 *insn++ = BPF_EXIT_INSN();
243 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
244 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
245 offsetof(struct net_device, ifindex));
246 else
247 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
248 offsetof(struct net_device, type));
bd4cf0ed
AS
249 break;
250
251 case SKF_AD_OFF + SKF_AD_MARK:
9bac3d6d
AS
252 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
253 insn += cnt - 1;
bd4cf0ed
AS
254 break;
255
256 case SKF_AD_OFF + SKF_AD_RXHASH:
257 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
258
9739eef1
AS
259 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
260 offsetof(struct sk_buff, hash));
bd4cf0ed
AS
261 break;
262
263 case SKF_AD_OFF + SKF_AD_QUEUE:
9bac3d6d
AS
264 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
265 insn += cnt - 1;
bd4cf0ed
AS
266 break;
267
268 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
c2497395
AS
269 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
270 BPF_REG_A, BPF_REG_CTX, insn);
271 insn += cnt - 1;
272 break;
bd4cf0ed 273
c2497395
AS
274 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
275 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
276 BPF_REG_A, BPF_REG_CTX, insn);
277 insn += cnt - 1;
bd4cf0ed
AS
278 break;
279
27cd5452
MS
280 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
281 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
282
283 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
284 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
285 offsetof(struct sk_buff, vlan_proto));
286 /* A = ntohs(A) [emitting a nop or swap16] */
287 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
288 break;
289
bd4cf0ed
AS
290 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
291 case SKF_AD_OFF + SKF_AD_NLATTR:
292 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
293 case SKF_AD_OFF + SKF_AD_CPU:
4cd3675e 294 case SKF_AD_OFF + SKF_AD_RANDOM:
e430f34e 295 /* arg1 = CTX */
f8f6d679 296 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
bd4cf0ed 297 /* arg2 = A */
f8f6d679 298 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
bd4cf0ed 299 /* arg3 = X */
f8f6d679 300 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
e430f34e 301 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
bd4cf0ed
AS
302 switch (fp->k) {
303 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
f8f6d679 304 *insn = BPF_EMIT_CALL(__skb_get_pay_offset);
bd4cf0ed
AS
305 break;
306 case SKF_AD_OFF + SKF_AD_NLATTR:
f8f6d679 307 *insn = BPF_EMIT_CALL(__skb_get_nlattr);
bd4cf0ed
AS
308 break;
309 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
f8f6d679 310 *insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
bd4cf0ed
AS
311 break;
312 case SKF_AD_OFF + SKF_AD_CPU:
f8f6d679 313 *insn = BPF_EMIT_CALL(__get_raw_cpu_id);
bd4cf0ed 314 break;
4cd3675e 315 case SKF_AD_OFF + SKF_AD_RANDOM:
f8f6d679 316 *insn = BPF_EMIT_CALL(__get_random_u32);
4cd3675e 317 break;
bd4cf0ed
AS
318 }
319 break;
320
321 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
9739eef1
AS
322 /* A ^= X */
323 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
bd4cf0ed
AS
324 break;
325
326 default:
327 /* This is just a dummy call to avoid letting the compiler
328 * evict __bpf_call_base() as an optimization. Placed here
329 * where no-one bothers.
330 */
331 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
332 return false;
333 }
334
335 *insnp = insn;
336 return true;
337}
338
339/**
8fb575ca 340 * bpf_convert_filter - convert filter program
bd4cf0ed
AS
341 * @prog: the user passed filter program
342 * @len: the length of the user passed filter program
343 * @new_prog: buffer where converted program will be stored
344 * @new_len: pointer to store length of converted program
345 *
346 * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
347 * Conversion workflow:
348 *
349 * 1) First pass for calculating the new program length:
8fb575ca 350 * bpf_convert_filter(old_prog, old_len, NULL, &new_len)
bd4cf0ed
AS
351 *
352 * 2) 2nd pass to remap in two passes: 1st pass finds new
353 * jump offsets, 2nd pass remapping:
2695fb55 354 * new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
8fb575ca 355 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
bd4cf0ed
AS
356 *
357 * User BPF's register A is mapped to our BPF register 6, user BPF
358 * register X is mapped to BPF register 7; frame pointer is always
359 * register 10; Context 'void *ctx' is stored in register 1, that is,
360 * for socket filters: ctx == 'struct sk_buff *', for seccomp:
361 * ctx == 'struct seccomp_data *'.
362 */
d9e12f42
NS
363static int bpf_convert_filter(struct sock_filter *prog, int len,
364 struct bpf_insn *new_prog, int *new_len)
bd4cf0ed
AS
365{
366 int new_flen = 0, pass = 0, target, i;
2695fb55 367 struct bpf_insn *new_insn;
bd4cf0ed
AS
368 struct sock_filter *fp;
369 int *addrs = NULL;
370 u8 bpf_src;
371
372 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
30743837 373 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
bd4cf0ed 374
6f9a093b 375 if (len <= 0 || len > BPF_MAXINSNS)
bd4cf0ed
AS
376 return -EINVAL;
377
378 if (new_prog) {
658da937
DB
379 addrs = kcalloc(len, sizeof(*addrs),
380 GFP_KERNEL | __GFP_NOWARN);
bd4cf0ed
AS
381 if (!addrs)
382 return -ENOMEM;
383 }
384
385do_pass:
386 new_insn = new_prog;
387 fp = prog;
388
f8f6d679
DB
389 if (new_insn)
390 *new_insn = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
bd4cf0ed
AS
391 new_insn++;
392
393 for (i = 0; i < len; fp++, i++) {
2695fb55
AS
394 struct bpf_insn tmp_insns[6] = { };
395 struct bpf_insn *insn = tmp_insns;
bd4cf0ed
AS
396
397 if (addrs)
398 addrs[i] = new_insn - new_prog;
399
400 switch (fp->code) {
401 /* All arithmetic insns and skb loads map as-is. */
402 case BPF_ALU | BPF_ADD | BPF_X:
403 case BPF_ALU | BPF_ADD | BPF_K:
404 case BPF_ALU | BPF_SUB | BPF_X:
405 case BPF_ALU | BPF_SUB | BPF_K:
406 case BPF_ALU | BPF_AND | BPF_X:
407 case BPF_ALU | BPF_AND | BPF_K:
408 case BPF_ALU | BPF_OR | BPF_X:
409 case BPF_ALU | BPF_OR | BPF_K:
410 case BPF_ALU | BPF_LSH | BPF_X:
411 case BPF_ALU | BPF_LSH | BPF_K:
412 case BPF_ALU | BPF_RSH | BPF_X:
413 case BPF_ALU | BPF_RSH | BPF_K:
414 case BPF_ALU | BPF_XOR | BPF_X:
415 case BPF_ALU | BPF_XOR | BPF_K:
416 case BPF_ALU | BPF_MUL | BPF_X:
417 case BPF_ALU | BPF_MUL | BPF_K:
418 case BPF_ALU | BPF_DIV | BPF_X:
419 case BPF_ALU | BPF_DIV | BPF_K:
420 case BPF_ALU | BPF_MOD | BPF_X:
421 case BPF_ALU | BPF_MOD | BPF_K:
422 case BPF_ALU | BPF_NEG:
423 case BPF_LD | BPF_ABS | BPF_W:
424 case BPF_LD | BPF_ABS | BPF_H:
425 case BPF_LD | BPF_ABS | BPF_B:
426 case BPF_LD | BPF_IND | BPF_W:
427 case BPF_LD | BPF_IND | BPF_H:
428 case BPF_LD | BPF_IND | BPF_B:
429 /* Check for overloaded BPF extension and
430 * directly convert it if found, otherwise
431 * just move on with mapping.
432 */
433 if (BPF_CLASS(fp->code) == BPF_LD &&
434 BPF_MODE(fp->code) == BPF_ABS &&
435 convert_bpf_extensions(fp, &insn))
436 break;
437
f8f6d679 438 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
bd4cf0ed
AS
439 break;
440
f8f6d679
DB
441 /* Jump transformation cannot use BPF block macros
442 * everywhere as offset calculation and target updates
443 * require a bit more work than the rest, i.e. jump
444 * opcodes map as-is, but offsets need adjustment.
445 */
446
447#define BPF_EMIT_JMP \
bd4cf0ed
AS
448 do { \
449 if (target >= len || target < 0) \
450 goto err; \
451 insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
452 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
453 insn->off -= insn - tmp_insns; \
454 } while (0)
455
f8f6d679
DB
456 case BPF_JMP | BPF_JA:
457 target = i + fp->k + 1;
458 insn->code = fp->code;
459 BPF_EMIT_JMP;
bd4cf0ed
AS
460 break;
461
462 case BPF_JMP | BPF_JEQ | BPF_K:
463 case BPF_JMP | BPF_JEQ | BPF_X:
464 case BPF_JMP | BPF_JSET | BPF_K:
465 case BPF_JMP | BPF_JSET | BPF_X:
466 case BPF_JMP | BPF_JGT | BPF_K:
467 case BPF_JMP | BPF_JGT | BPF_X:
468 case BPF_JMP | BPF_JGE | BPF_K:
469 case BPF_JMP | BPF_JGE | BPF_X:
470 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
471 /* BPF immediates are signed, zero extend
472 * immediate into tmp register and use it
473 * in compare insn.
474 */
f8f6d679 475 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
bd4cf0ed 476
e430f34e
AS
477 insn->dst_reg = BPF_REG_A;
478 insn->src_reg = BPF_REG_TMP;
bd4cf0ed
AS
479 bpf_src = BPF_X;
480 } else {
e430f34e 481 insn->dst_reg = BPF_REG_A;
bd4cf0ed
AS
482 insn->imm = fp->k;
483 bpf_src = BPF_SRC(fp->code);
19539ce7 484 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
1da177e4 485 }
bd4cf0ed
AS
486
487 /* Common case where 'jump_false' is next insn. */
488 if (fp->jf == 0) {
489 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
490 target = i + fp->jt + 1;
f8f6d679 491 BPF_EMIT_JMP;
bd4cf0ed 492 break;
1da177e4 493 }
bd4cf0ed
AS
494
495 /* Convert JEQ into JNE when 'jump_true' is next insn. */
496 if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
497 insn->code = BPF_JMP | BPF_JNE | bpf_src;
498 target = i + fp->jf + 1;
f8f6d679 499 BPF_EMIT_JMP;
bd4cf0ed 500 break;
0b05b2a4 501 }
bd4cf0ed
AS
502
503 /* Other jumps are mapped into two insns: Jxx and JA. */
504 target = i + fp->jt + 1;
505 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
f8f6d679 506 BPF_EMIT_JMP;
bd4cf0ed
AS
507 insn++;
508
509 insn->code = BPF_JMP | BPF_JA;
510 target = i + fp->jf + 1;
f8f6d679 511 BPF_EMIT_JMP;
bd4cf0ed
AS
512 break;
513
514 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
515 case BPF_LDX | BPF_MSH | BPF_B:
9739eef1 516 /* tmp = A */
f8f6d679 517 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
1268e253 518 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
f8f6d679 519 *insn++ = BPF_LD_ABS(BPF_B, fp->k);
9739eef1 520 /* A &= 0xf */
f8f6d679 521 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
9739eef1 522 /* A <<= 2 */
f8f6d679 523 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
9739eef1 524 /* X = A */
f8f6d679 525 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
9739eef1 526 /* A = tmp */
f8f6d679 527 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
bd4cf0ed
AS
528 break;
529
530 /* RET_K, RET_A are remaped into 2 insns. */
531 case BPF_RET | BPF_A:
532 case BPF_RET | BPF_K:
f8f6d679
DB
533 *insn++ = BPF_MOV32_RAW(BPF_RVAL(fp->code) == BPF_K ?
534 BPF_K : BPF_X, BPF_REG_0,
535 BPF_REG_A, fp->k);
9739eef1 536 *insn = BPF_EXIT_INSN();
bd4cf0ed
AS
537 break;
538
539 /* Store to stack. */
540 case BPF_ST:
541 case BPF_STX:
f8f6d679
DB
542 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
543 BPF_ST ? BPF_REG_A : BPF_REG_X,
544 -(BPF_MEMWORDS - fp->k) * 4);
bd4cf0ed
AS
545 break;
546
547 /* Load from stack. */
548 case BPF_LD | BPF_MEM:
549 case BPF_LDX | BPF_MEM:
f8f6d679
DB
550 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
551 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
552 -(BPF_MEMWORDS - fp->k) * 4);
bd4cf0ed
AS
553 break;
554
555 /* A = K or X = K */
556 case BPF_LD | BPF_IMM:
557 case BPF_LDX | BPF_IMM:
f8f6d679
DB
558 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
559 BPF_REG_A : BPF_REG_X, fp->k);
bd4cf0ed
AS
560 break;
561
562 /* X = A */
563 case BPF_MISC | BPF_TAX:
f8f6d679 564 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
bd4cf0ed
AS
565 break;
566
567 /* A = X */
568 case BPF_MISC | BPF_TXA:
f8f6d679 569 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
bd4cf0ed
AS
570 break;
571
572 /* A = skb->len or X = skb->len */
573 case BPF_LD | BPF_W | BPF_LEN:
574 case BPF_LDX | BPF_W | BPF_LEN:
f8f6d679
DB
575 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
576 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
577 offsetof(struct sk_buff, len));
bd4cf0ed
AS
578 break;
579
f8f6d679 580 /* Access seccomp_data fields. */
bd4cf0ed 581 case BPF_LDX | BPF_ABS | BPF_W:
9739eef1
AS
582 /* A = *(u32 *) (ctx + K) */
583 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
bd4cf0ed
AS
584 break;
585
ca9f1fd2 586 /* Unknown instruction. */
1da177e4 587 default:
bd4cf0ed 588 goto err;
1da177e4 589 }
bd4cf0ed
AS
590
591 insn++;
592 if (new_prog)
593 memcpy(new_insn, tmp_insns,
594 sizeof(*insn) * (insn - tmp_insns));
bd4cf0ed 595 new_insn += insn - tmp_insns;
1da177e4
LT
596 }
597
bd4cf0ed
AS
598 if (!new_prog) {
599 /* Only calculating new length. */
600 *new_len = new_insn - new_prog;
601 return 0;
602 }
603
604 pass++;
605 if (new_flen != new_insn - new_prog) {
606 new_flen = new_insn - new_prog;
607 if (pass > 2)
608 goto err;
bd4cf0ed
AS
609 goto do_pass;
610 }
611
612 kfree(addrs);
613 BUG_ON(*new_len != new_flen);
1da177e4 614 return 0;
bd4cf0ed
AS
615err:
616 kfree(addrs);
617 return -EINVAL;
1da177e4
LT
618}
619
bd4cf0ed 620/* Security:
bd4cf0ed 621 *
2d5311e4 622 * As we dont want to clear mem[] array for each packet going through
8ea6e345 623 * __bpf_prog_run(), we check that filter loaded by user never try to read
2d5311e4 624 * a cell if not previously written, and we check all branches to be sure
25985edc 625 * a malicious user doesn't try to abuse us.
2d5311e4 626 */
ec31a05c 627static int check_load_and_stores(const struct sock_filter *filter, int flen)
2d5311e4 628{
34805931 629 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
2d5311e4
ED
630 int pc, ret = 0;
631
632 BUILD_BUG_ON(BPF_MEMWORDS > 16);
34805931 633
99e72a0f 634 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
2d5311e4
ED
635 if (!masks)
636 return -ENOMEM;
34805931 637
2d5311e4
ED
638 memset(masks, 0xff, flen * sizeof(*masks));
639
640 for (pc = 0; pc < flen; pc++) {
641 memvalid &= masks[pc];
642
643 switch (filter[pc].code) {
34805931
DB
644 case BPF_ST:
645 case BPF_STX:
2d5311e4
ED
646 memvalid |= (1 << filter[pc].k);
647 break;
34805931
DB
648 case BPF_LD | BPF_MEM:
649 case BPF_LDX | BPF_MEM:
2d5311e4
ED
650 if (!(memvalid & (1 << filter[pc].k))) {
651 ret = -EINVAL;
652 goto error;
653 }
654 break;
34805931
DB
655 case BPF_JMP | BPF_JA:
656 /* A jump must set masks on target */
2d5311e4
ED
657 masks[pc + 1 + filter[pc].k] &= memvalid;
658 memvalid = ~0;
659 break;
34805931
DB
660 case BPF_JMP | BPF_JEQ | BPF_K:
661 case BPF_JMP | BPF_JEQ | BPF_X:
662 case BPF_JMP | BPF_JGE | BPF_K:
663 case BPF_JMP | BPF_JGE | BPF_X:
664 case BPF_JMP | BPF_JGT | BPF_K:
665 case BPF_JMP | BPF_JGT | BPF_X:
666 case BPF_JMP | BPF_JSET | BPF_K:
667 case BPF_JMP | BPF_JSET | BPF_X:
668 /* A jump must set masks on targets */
2d5311e4
ED
669 masks[pc + 1 + filter[pc].jt] &= memvalid;
670 masks[pc + 1 + filter[pc].jf] &= memvalid;
671 memvalid = ~0;
672 break;
673 }
674 }
675error:
676 kfree(masks);
677 return ret;
678}
679
34805931
DB
680static bool chk_code_allowed(u16 code_to_probe)
681{
682 static const bool codes[] = {
683 /* 32 bit ALU operations */
684 [BPF_ALU | BPF_ADD | BPF_K] = true,
685 [BPF_ALU | BPF_ADD | BPF_X] = true,
686 [BPF_ALU | BPF_SUB | BPF_K] = true,
687 [BPF_ALU | BPF_SUB | BPF_X] = true,
688 [BPF_ALU | BPF_MUL | BPF_K] = true,
689 [BPF_ALU | BPF_MUL | BPF_X] = true,
690 [BPF_ALU | BPF_DIV | BPF_K] = true,
691 [BPF_ALU | BPF_DIV | BPF_X] = true,
692 [BPF_ALU | BPF_MOD | BPF_K] = true,
693 [BPF_ALU | BPF_MOD | BPF_X] = true,
694 [BPF_ALU | BPF_AND | BPF_K] = true,
695 [BPF_ALU | BPF_AND | BPF_X] = true,
696 [BPF_ALU | BPF_OR | BPF_K] = true,
697 [BPF_ALU | BPF_OR | BPF_X] = true,
698 [BPF_ALU | BPF_XOR | BPF_K] = true,
699 [BPF_ALU | BPF_XOR | BPF_X] = true,
700 [BPF_ALU | BPF_LSH | BPF_K] = true,
701 [BPF_ALU | BPF_LSH | BPF_X] = true,
702 [BPF_ALU | BPF_RSH | BPF_K] = true,
703 [BPF_ALU | BPF_RSH | BPF_X] = true,
704 [BPF_ALU | BPF_NEG] = true,
705 /* Load instructions */
706 [BPF_LD | BPF_W | BPF_ABS] = true,
707 [BPF_LD | BPF_H | BPF_ABS] = true,
708 [BPF_LD | BPF_B | BPF_ABS] = true,
709 [BPF_LD | BPF_W | BPF_LEN] = true,
710 [BPF_LD | BPF_W | BPF_IND] = true,
711 [BPF_LD | BPF_H | BPF_IND] = true,
712 [BPF_LD | BPF_B | BPF_IND] = true,
713 [BPF_LD | BPF_IMM] = true,
714 [BPF_LD | BPF_MEM] = true,
715 [BPF_LDX | BPF_W | BPF_LEN] = true,
716 [BPF_LDX | BPF_B | BPF_MSH] = true,
717 [BPF_LDX | BPF_IMM] = true,
718 [BPF_LDX | BPF_MEM] = true,
719 /* Store instructions */
720 [BPF_ST] = true,
721 [BPF_STX] = true,
722 /* Misc instructions */
723 [BPF_MISC | BPF_TAX] = true,
724 [BPF_MISC | BPF_TXA] = true,
725 /* Return instructions */
726 [BPF_RET | BPF_K] = true,
727 [BPF_RET | BPF_A] = true,
728 /* Jump instructions */
729 [BPF_JMP | BPF_JA] = true,
730 [BPF_JMP | BPF_JEQ | BPF_K] = true,
731 [BPF_JMP | BPF_JEQ | BPF_X] = true,
732 [BPF_JMP | BPF_JGE | BPF_K] = true,
733 [BPF_JMP | BPF_JGE | BPF_X] = true,
734 [BPF_JMP | BPF_JGT | BPF_K] = true,
735 [BPF_JMP | BPF_JGT | BPF_X] = true,
736 [BPF_JMP | BPF_JSET | BPF_K] = true,
737 [BPF_JMP | BPF_JSET | BPF_X] = true,
738 };
739
740 if (code_to_probe >= ARRAY_SIZE(codes))
741 return false;
742
743 return codes[code_to_probe];
744}
745
1da177e4 746/**
4df95ff4 747 * bpf_check_classic - verify socket filter code
1da177e4
LT
748 * @filter: filter to verify
749 * @flen: length of filter
750 *
751 * Check the user's filter code. If we let some ugly
752 * filter code slip through kaboom! The filter must contain
93699863
KK
753 * no references or jumps that are out of range, no illegal
754 * instructions, and must end with a RET instruction.
1da177e4 755 *
7b11f69f
KK
756 * All jumps are forward as they are not signed.
757 *
758 * Returns 0 if the rule set is legal or -EINVAL if not.
1da177e4 759 */
d9e12f42
NS
760static int bpf_check_classic(const struct sock_filter *filter,
761 unsigned int flen)
1da177e4 762{
aa1113d9 763 bool anc_found;
34805931 764 int pc;
1da177e4 765
1b93ae64 766 if (flen == 0 || flen > BPF_MAXINSNS)
1da177e4
LT
767 return -EINVAL;
768
34805931 769 /* Check the filter code now */
1da177e4 770 for (pc = 0; pc < flen; pc++) {
ec31a05c 771 const struct sock_filter *ftest = &filter[pc];
93699863 772
34805931
DB
773 /* May we actually operate on this code? */
774 if (!chk_code_allowed(ftest->code))
cba328fc 775 return -EINVAL;
34805931 776
93699863 777 /* Some instructions need special checks */
34805931
DB
778 switch (ftest->code) {
779 case BPF_ALU | BPF_DIV | BPF_K:
780 case BPF_ALU | BPF_MOD | BPF_K:
781 /* Check for division by zero */
b6069a95
ED
782 if (ftest->k == 0)
783 return -EINVAL;
784 break;
34805931
DB
785 case BPF_LD | BPF_MEM:
786 case BPF_LDX | BPF_MEM:
787 case BPF_ST:
788 case BPF_STX:
789 /* Check for invalid memory addresses */
93699863
KK
790 if (ftest->k >= BPF_MEMWORDS)
791 return -EINVAL;
792 break;
34805931
DB
793 case BPF_JMP | BPF_JA:
794 /* Note, the large ftest->k might cause loops.
93699863
KK
795 * Compare this with conditional jumps below,
796 * where offsets are limited. --ANK (981016)
797 */
34805931 798 if (ftest->k >= (unsigned int)(flen - pc - 1))
93699863 799 return -EINVAL;
01f2f3f6 800 break;
34805931
DB
801 case BPF_JMP | BPF_JEQ | BPF_K:
802 case BPF_JMP | BPF_JEQ | BPF_X:
803 case BPF_JMP | BPF_JGE | BPF_K:
804 case BPF_JMP | BPF_JGE | BPF_X:
805 case BPF_JMP | BPF_JGT | BPF_K:
806 case BPF_JMP | BPF_JGT | BPF_X:
807 case BPF_JMP | BPF_JSET | BPF_K:
808 case BPF_JMP | BPF_JSET | BPF_X:
809 /* Both conditionals must be safe */
e35bedf3 810 if (pc + ftest->jt + 1 >= flen ||
93699863
KK
811 pc + ftest->jf + 1 >= flen)
812 return -EINVAL;
cba328fc 813 break;
34805931
DB
814 case BPF_LD | BPF_W | BPF_ABS:
815 case BPF_LD | BPF_H | BPF_ABS:
816 case BPF_LD | BPF_B | BPF_ABS:
aa1113d9 817 anc_found = false;
34805931
DB
818 if (bpf_anc_helper(ftest) & BPF_ANC)
819 anc_found = true;
820 /* Ancillary operation unknown or unsupported */
aa1113d9
DB
821 if (anc_found == false && ftest->k >= SKF_AD_OFF)
822 return -EINVAL;
01f2f3f6
HPP
823 }
824 }
93699863 825
34805931 826 /* Last instruction must be a RET code */
01f2f3f6 827 switch (filter[flen - 1].code) {
34805931
DB
828 case BPF_RET | BPF_K:
829 case BPF_RET | BPF_A:
2d5311e4 830 return check_load_and_stores(filter, flen);
cba328fc 831 }
34805931 832
cba328fc 833 return -EINVAL;
1da177e4
LT
834}
835
7ae457c1
AS
836static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
837 const struct sock_fprog *fprog)
a3ea269b 838{
009937e7 839 unsigned int fsize = bpf_classic_proglen(fprog);
a3ea269b
DB
840 struct sock_fprog_kern *fkprog;
841
842 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
843 if (!fp->orig_prog)
844 return -ENOMEM;
845
846 fkprog = fp->orig_prog;
847 fkprog->len = fprog->len;
658da937
DB
848
849 fkprog->filter = kmemdup(fp->insns, fsize,
850 GFP_KERNEL | __GFP_NOWARN);
a3ea269b
DB
851 if (!fkprog->filter) {
852 kfree(fp->orig_prog);
853 return -ENOMEM;
854 }
855
856 return 0;
857}
858
7ae457c1 859static void bpf_release_orig_filter(struct bpf_prog *fp)
a3ea269b
DB
860{
861 struct sock_fprog_kern *fprog = fp->orig_prog;
862
863 if (fprog) {
864 kfree(fprog->filter);
865 kfree(fprog);
866 }
867}
868
7ae457c1
AS
869static void __bpf_prog_release(struct bpf_prog *prog)
870{
24701ece 871 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
89aa0758
AS
872 bpf_prog_put(prog);
873 } else {
874 bpf_release_orig_filter(prog);
875 bpf_prog_free(prog);
876 }
7ae457c1
AS
877}
878
34c5bd66
PN
879static void __sk_filter_release(struct sk_filter *fp)
880{
7ae457c1
AS
881 __bpf_prog_release(fp->prog);
882 kfree(fp);
34c5bd66
PN
883}
884
47e958ea 885/**
46bcf14f 886 * sk_filter_release_rcu - Release a socket filter by rcu_head
47e958ea
PE
887 * @rcu: rcu_head that contains the sk_filter to free
888 */
fbc907f0 889static void sk_filter_release_rcu(struct rcu_head *rcu)
47e958ea
PE
890{
891 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
892
34c5bd66 893 __sk_filter_release(fp);
47e958ea 894}
fbc907f0
DB
895
896/**
897 * sk_filter_release - release a socket filter
898 * @fp: filter to remove
899 *
900 * Remove a filter from a socket and release its resources.
901 */
902static void sk_filter_release(struct sk_filter *fp)
903{
904 if (atomic_dec_and_test(&fp->refcnt))
905 call_rcu(&fp->rcu, sk_filter_release_rcu);
906}
907
908void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
909{
7ae457c1 910 u32 filter_size = bpf_prog_size(fp->prog->len);
fbc907f0 911
278571ba
AS
912 atomic_sub(filter_size, &sk->sk_omem_alloc);
913 sk_filter_release(fp);
fbc907f0 914}
47e958ea 915
278571ba
AS
916/* try to charge the socket memory if there is space available
917 * return true on success
918 */
919bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
bd4cf0ed 920{
7ae457c1 921 u32 filter_size = bpf_prog_size(fp->prog->len);
278571ba
AS
922
923 /* same check as in sock_kmalloc() */
924 if (filter_size <= sysctl_optmem_max &&
925 atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
926 atomic_inc(&fp->refcnt);
927 atomic_add(filter_size, &sk->sk_omem_alloc);
928 return true;
bd4cf0ed 929 }
278571ba 930 return false;
bd4cf0ed
AS
931}
932
7ae457c1 933static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
bd4cf0ed
AS
934{
935 struct sock_filter *old_prog;
7ae457c1 936 struct bpf_prog *old_fp;
34805931 937 int err, new_len, old_len = fp->len;
bd4cf0ed
AS
938
939 /* We are free to overwrite insns et al right here as it
940 * won't be used at this point in time anymore internally
941 * after the migration to the internal BPF instruction
942 * representation.
943 */
944 BUILD_BUG_ON(sizeof(struct sock_filter) !=
2695fb55 945 sizeof(struct bpf_insn));
bd4cf0ed 946
bd4cf0ed
AS
947 /* Conversion cannot happen on overlapping memory areas,
948 * so we need to keep the user BPF around until the 2nd
949 * pass. At this time, the user BPF is stored in fp->insns.
950 */
951 old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
658da937 952 GFP_KERNEL | __GFP_NOWARN);
bd4cf0ed
AS
953 if (!old_prog) {
954 err = -ENOMEM;
955 goto out_err;
956 }
957
958 /* 1st pass: calculate the new program length. */
8fb575ca 959 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
bd4cf0ed
AS
960 if (err)
961 goto out_err_free;
962
963 /* Expand fp for appending the new filter representation. */
964 old_fp = fp;
60a3b225 965 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
bd4cf0ed
AS
966 if (!fp) {
967 /* The old_fp is still around in case we couldn't
968 * allocate new memory, so uncharge on that one.
969 */
970 fp = old_fp;
971 err = -ENOMEM;
972 goto out_err_free;
973 }
974
bd4cf0ed
AS
975 fp->len = new_len;
976
2695fb55 977 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
8fb575ca 978 err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
bd4cf0ed 979 if (err)
8fb575ca 980 /* 2nd bpf_convert_filter() can fail only if it fails
bd4cf0ed
AS
981 * to allocate memory, remapping must succeed. Note,
982 * that at this time old_fp has already been released
278571ba 983 * by krealloc().
bd4cf0ed
AS
984 */
985 goto out_err_free;
986
7ae457c1 987 bpf_prog_select_runtime(fp);
5fe821a9 988
bd4cf0ed
AS
989 kfree(old_prog);
990 return fp;
991
992out_err_free:
993 kfree(old_prog);
994out_err:
7ae457c1 995 __bpf_prog_release(fp);
bd4cf0ed
AS
996 return ERR_PTR(err);
997}
998
ac67eb2c
DB
999static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1000 bpf_aux_classic_check_t trans)
302d6637
JP
1001{
1002 int err;
1003
bd4cf0ed 1004 fp->bpf_func = NULL;
a91263d5 1005 fp->jited = 0;
302d6637 1006
4df95ff4 1007 err = bpf_check_classic(fp->insns, fp->len);
418c96ac 1008 if (err) {
7ae457c1 1009 __bpf_prog_release(fp);
bd4cf0ed 1010 return ERR_PTR(err);
418c96ac 1011 }
302d6637 1012
4ae92bc7
NS
1013 /* There might be additional checks and transformations
1014 * needed on classic filters, f.e. in case of seccomp.
1015 */
1016 if (trans) {
1017 err = trans(fp->insns, fp->len);
1018 if (err) {
1019 __bpf_prog_release(fp);
1020 return ERR_PTR(err);
1021 }
1022 }
1023
bd4cf0ed
AS
1024 /* Probe if we can JIT compile the filter and if so, do
1025 * the compilation of the filter.
1026 */
302d6637 1027 bpf_jit_compile(fp);
bd4cf0ed
AS
1028
1029 /* JIT compiler couldn't process this filter, so do the
1030 * internal BPF translation for the optimized interpreter.
1031 */
5fe821a9 1032 if (!fp->jited)
7ae457c1 1033 fp = bpf_migrate_filter(fp);
bd4cf0ed
AS
1034
1035 return fp;
302d6637
JP
1036}
1037
1038/**
7ae457c1 1039 * bpf_prog_create - create an unattached filter
c6c4b97c 1040 * @pfp: the unattached filter that is created
677a9fd3 1041 * @fprog: the filter program
302d6637 1042 *
c6c4b97c 1043 * Create a filter independent of any socket. We first run some
302d6637
JP
1044 * sanity checks on it to make sure it does not explode on us later.
1045 * If an error occurs or there is insufficient memory for the filter
1046 * a negative errno code is returned. On success the return is zero.
1047 */
7ae457c1 1048int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
302d6637 1049{
009937e7 1050 unsigned int fsize = bpf_classic_proglen(fprog);
7ae457c1 1051 struct bpf_prog *fp;
302d6637
JP
1052
1053 /* Make sure new filter is there and in the right amounts. */
1054 if (fprog->filter == NULL)
1055 return -EINVAL;
1056
60a3b225 1057 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
302d6637
JP
1058 if (!fp)
1059 return -ENOMEM;
a3ea269b 1060
302d6637
JP
1061 memcpy(fp->insns, fprog->filter, fsize);
1062
302d6637 1063 fp->len = fprog->len;
a3ea269b
DB
1064 /* Since unattached filters are not copied back to user
1065 * space through sk_get_filter(), we do not need to hold
1066 * a copy here, and can spare us the work.
1067 */
1068 fp->orig_prog = NULL;
302d6637 1069
7ae457c1 1070 /* bpf_prepare_filter() already takes care of freeing
bd4cf0ed
AS
1071 * memory in case something goes wrong.
1072 */
4ae92bc7 1073 fp = bpf_prepare_filter(fp, NULL);
bd4cf0ed
AS
1074 if (IS_ERR(fp))
1075 return PTR_ERR(fp);
302d6637
JP
1076
1077 *pfp = fp;
1078 return 0;
302d6637 1079}
7ae457c1 1080EXPORT_SYMBOL_GPL(bpf_prog_create);
302d6637 1081
ac67eb2c
DB
1082/**
1083 * bpf_prog_create_from_user - create an unattached filter from user buffer
1084 * @pfp: the unattached filter that is created
1085 * @fprog: the filter program
1086 * @trans: post-classic verifier transformation handler
1087 *
1088 * This function effectively does the same as bpf_prog_create(), only
1089 * that it builds up its insns buffer from user space provided buffer.
1090 * It also allows for passing a bpf_aux_classic_check_t handler.
1091 */
1092int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1093 bpf_aux_classic_check_t trans)
1094{
1095 unsigned int fsize = bpf_classic_proglen(fprog);
1096 struct bpf_prog *fp;
1097
1098 /* Make sure new filter is there and in the right amounts. */
1099 if (fprog->filter == NULL)
1100 return -EINVAL;
1101
1102 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1103 if (!fp)
1104 return -ENOMEM;
1105
1106 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1107 __bpf_prog_free(fp);
1108 return -EFAULT;
1109 }
1110
1111 fp->len = fprog->len;
1112 /* Since unattached filters are not copied back to user
1113 * space through sk_get_filter(), we do not need to hold
1114 * a copy here, and can spare us the work.
1115 */
1116 fp->orig_prog = NULL;
1117
1118 /* bpf_prepare_filter() already takes care of freeing
1119 * memory in case something goes wrong.
1120 */
1121 fp = bpf_prepare_filter(fp, trans);
1122 if (IS_ERR(fp))
1123 return PTR_ERR(fp);
1124
1125 *pfp = fp;
1126 return 0;
1127}
2ea273d7 1128EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
ac67eb2c 1129
7ae457c1 1130void bpf_prog_destroy(struct bpf_prog *fp)
302d6637 1131{
7ae457c1 1132 __bpf_prog_release(fp);
302d6637 1133}
7ae457c1 1134EXPORT_SYMBOL_GPL(bpf_prog_destroy);
302d6637 1135
49b31e57
DB
1136static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1137{
1138 struct sk_filter *fp, *old_fp;
1139
1140 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1141 if (!fp)
1142 return -ENOMEM;
1143
1144 fp->prog = prog;
1145 atomic_set(&fp->refcnt, 0);
1146
1147 if (!sk_filter_charge(sk, fp)) {
1148 kfree(fp);
1149 return -ENOMEM;
1150 }
1151
1152 old_fp = rcu_dereference_protected(sk->sk_filter,
1153 sock_owned_by_user(sk));
1154 rcu_assign_pointer(sk->sk_filter, fp);
1155
1156 if (old_fp)
1157 sk_filter_uncharge(sk, old_fp);
1158
1159 return 0;
1160}
1161
1da177e4
LT
1162/**
1163 * sk_attach_filter - attach a socket filter
1164 * @fprog: the filter program
1165 * @sk: the socket to use
1166 *
1167 * Attach the user's filter code. We first run some sanity checks on
1168 * it to make sure it does not explode on us later. If an error
1169 * occurs or there is insufficient memory for the filter a negative
1170 * errno code is returned. On success the return is zero.
1171 */
1172int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1173{
009937e7 1174 unsigned int fsize = bpf_classic_proglen(fprog);
7ae457c1
AS
1175 unsigned int bpf_fsize = bpf_prog_size(fprog->len);
1176 struct bpf_prog *prog;
1da177e4
LT
1177 int err;
1178
d59577b6
VB
1179 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1180 return -EPERM;
1181
1da177e4 1182 /* Make sure new filter is there and in the right amounts. */
e35bedf3
KK
1183 if (fprog->filter == NULL)
1184 return -EINVAL;
1da177e4 1185
60a3b225 1186 prog = bpf_prog_alloc(bpf_fsize, 0);
7ae457c1 1187 if (!prog)
1da177e4 1188 return -ENOMEM;
a3ea269b 1189
7ae457c1 1190 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
c0d1379a 1191 __bpf_prog_free(prog);
1da177e4
LT
1192 return -EFAULT;
1193 }
1194
7ae457c1 1195 prog->len = fprog->len;
1da177e4 1196
7ae457c1 1197 err = bpf_prog_store_orig_filter(prog, fprog);
a3ea269b 1198 if (err) {
c0d1379a 1199 __bpf_prog_free(prog);
a3ea269b
DB
1200 return -ENOMEM;
1201 }
1202
7ae457c1 1203 /* bpf_prepare_filter() already takes care of freeing
bd4cf0ed
AS
1204 * memory in case something goes wrong.
1205 */
4ae92bc7 1206 prog = bpf_prepare_filter(prog, NULL);
7ae457c1
AS
1207 if (IS_ERR(prog))
1208 return PTR_ERR(prog);
1209
49b31e57
DB
1210 err = __sk_attach_prog(prog, sk);
1211 if (err < 0) {
7ae457c1 1212 __bpf_prog_release(prog);
49b31e57 1213 return err;
278571ba
AS
1214 }
1215
d3904b73 1216 return 0;
1da177e4 1217}
5ff3f073 1218EXPORT_SYMBOL_GPL(sk_attach_filter);
1da177e4 1219
89aa0758
AS
1220int sk_attach_bpf(u32 ufd, struct sock *sk)
1221{
89aa0758 1222 struct bpf_prog *prog;
49b31e57 1223 int err;
89aa0758
AS
1224
1225 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1226 return -EPERM;
1227
1228 prog = bpf_prog_get(ufd);
198bf1b0
AS
1229 if (IS_ERR(prog))
1230 return PTR_ERR(prog);
89aa0758 1231
24701ece 1232 if (prog->type != BPF_PROG_TYPE_SOCKET_FILTER) {
89aa0758
AS
1233 bpf_prog_put(prog);
1234 return -EINVAL;
1235 }
1236
49b31e57
DB
1237 err = __sk_attach_prog(prog, sk);
1238 if (err < 0) {
89aa0758 1239 bpf_prog_put(prog);
49b31e57 1240 return err;
89aa0758
AS
1241 }
1242
89aa0758
AS
1243 return 0;
1244}
1245
91bc4822
AS
1246#define BPF_RECOMPUTE_CSUM(flags) ((flags) & 1)
1247
1248static u64 bpf_skb_store_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 flags)
608cd71a
AS
1249{
1250 struct sk_buff *skb = (struct sk_buff *) (long) r1;
a166151c 1251 int offset = (int) r2;
608cd71a
AS
1252 void *from = (void *) (long) r3;
1253 unsigned int len = (unsigned int) r4;
1254 char buf[16];
1255 void *ptr;
1256
1257 /* bpf verifier guarantees that:
1258 * 'from' pointer points to bpf program stack
1259 * 'len' bytes of it were initialized
1260 * 'len' > 0
1261 * 'skb' is a valid pointer to 'struct sk_buff'
1262 *
1263 * so check for invalid 'offset' and too large 'len'
1264 */
a166151c 1265 if (unlikely((u32) offset > 0xffff || len > sizeof(buf)))
608cd71a
AS
1266 return -EFAULT;
1267
a166151c 1268 if (unlikely(skb_cloned(skb) &&
3431205e 1269 !skb_clone_writable(skb, offset + len)))
608cd71a
AS
1270 return -EFAULT;
1271
1272 ptr = skb_header_pointer(skb, offset, len, buf);
1273 if (unlikely(!ptr))
1274 return -EFAULT;
1275
91bc4822
AS
1276 if (BPF_RECOMPUTE_CSUM(flags))
1277 skb_postpull_rcsum(skb, ptr, len);
608cd71a
AS
1278
1279 memcpy(ptr, from, len);
1280
1281 if (ptr == buf)
1282 /* skb_store_bits cannot return -EFAULT here */
1283 skb_store_bits(skb, offset, ptr, len);
1284
91bc4822 1285 if (BPF_RECOMPUTE_CSUM(flags) && skb->ip_summed == CHECKSUM_COMPLETE)
608cd71a
AS
1286 skb->csum = csum_add(skb->csum, csum_partial(ptr, len, 0));
1287 return 0;
1288}
1289
1290const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1291 .func = bpf_skb_store_bytes,
1292 .gpl_only = false,
1293 .ret_type = RET_INTEGER,
1294 .arg1_type = ARG_PTR_TO_CTX,
1295 .arg2_type = ARG_ANYTHING,
1296 .arg3_type = ARG_PTR_TO_STACK,
1297 .arg4_type = ARG_CONST_STACK_SIZE,
91bc4822
AS
1298 .arg5_type = ARG_ANYTHING,
1299};
1300
1301#define BPF_HEADER_FIELD_SIZE(flags) ((flags) & 0x0f)
1302#define BPF_IS_PSEUDO_HEADER(flags) ((flags) & 0x10)
1303
a166151c 1304static u64 bpf_l3_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
91bc4822
AS
1305{
1306 struct sk_buff *skb = (struct sk_buff *) (long) r1;
a166151c 1307 int offset = (int) r2;
91bc4822
AS
1308 __sum16 sum, *ptr;
1309
a166151c 1310 if (unlikely((u32) offset > 0xffff))
91bc4822
AS
1311 return -EFAULT;
1312
a166151c 1313 if (unlikely(skb_cloned(skb) &&
3431205e 1314 !skb_clone_writable(skb, offset + sizeof(sum))))
91bc4822
AS
1315 return -EFAULT;
1316
1317 ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1318 if (unlikely(!ptr))
1319 return -EFAULT;
1320
1321 switch (BPF_HEADER_FIELD_SIZE(flags)) {
1322 case 2:
1323 csum_replace2(ptr, from, to);
1324 break;
1325 case 4:
1326 csum_replace4(ptr, from, to);
1327 break;
1328 default:
1329 return -EINVAL;
1330 }
1331
1332 if (ptr == &sum)
1333 /* skb_store_bits guaranteed to not return -EFAULT here */
1334 skb_store_bits(skb, offset, ptr, sizeof(sum));
1335
1336 return 0;
1337}
1338
1339const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1340 .func = bpf_l3_csum_replace,
1341 .gpl_only = false,
1342 .ret_type = RET_INTEGER,
1343 .arg1_type = ARG_PTR_TO_CTX,
1344 .arg2_type = ARG_ANYTHING,
1345 .arg3_type = ARG_ANYTHING,
1346 .arg4_type = ARG_ANYTHING,
1347 .arg5_type = ARG_ANYTHING,
1348};
1349
a166151c 1350static u64 bpf_l4_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
91bc4822
AS
1351{
1352 struct sk_buff *skb = (struct sk_buff *) (long) r1;
4b048d6d 1353 bool is_pseudo = !!BPF_IS_PSEUDO_HEADER(flags);
a166151c 1354 int offset = (int) r2;
91bc4822
AS
1355 __sum16 sum, *ptr;
1356
a166151c 1357 if (unlikely((u32) offset > 0xffff))
91bc4822
AS
1358 return -EFAULT;
1359
a166151c 1360 if (unlikely(skb_cloned(skb) &&
3431205e 1361 !skb_clone_writable(skb, offset + sizeof(sum))))
91bc4822
AS
1362 return -EFAULT;
1363
1364 ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1365 if (unlikely(!ptr))
1366 return -EFAULT;
1367
1368 switch (BPF_HEADER_FIELD_SIZE(flags)) {
1369 case 2:
1370 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1371 break;
1372 case 4:
1373 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1374 break;
1375 default:
1376 return -EINVAL;
1377 }
1378
1379 if (ptr == &sum)
1380 /* skb_store_bits guaranteed to not return -EFAULT here */
1381 skb_store_bits(skb, offset, ptr, sizeof(sum));
1382
1383 return 0;
1384}
1385
1386const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1387 .func = bpf_l4_csum_replace,
1388 .gpl_only = false,
1389 .ret_type = RET_INTEGER,
1390 .arg1_type = ARG_PTR_TO_CTX,
1391 .arg2_type = ARG_ANYTHING,
1392 .arg3_type = ARG_ANYTHING,
1393 .arg4_type = ARG_ANYTHING,
1394 .arg5_type = ARG_ANYTHING,
608cd71a
AS
1395};
1396
3896d655
AS
1397#define BPF_IS_REDIRECT_INGRESS(flags) ((flags) & 1)
1398
1399static u64 bpf_clone_redirect(u64 r1, u64 ifindex, u64 flags, u64 r4, u64 r5)
1400{
1401 struct sk_buff *skb = (struct sk_buff *) (long) r1, *skb2;
1402 struct net_device *dev;
1403
1404 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1405 if (unlikely(!dev))
1406 return -EINVAL;
1407
3896d655
AS
1408 skb2 = skb_clone(skb, GFP_ATOMIC);
1409 if (unlikely(!skb2))
1410 return -ENOMEM;
1411
3896d655
AS
1412 if (BPF_IS_REDIRECT_INGRESS(flags))
1413 return dev_forward_skb(dev, skb2);
1414
1415 skb2->dev = dev;
1416 return dev_queue_xmit(skb2);
1417}
1418
1419const struct bpf_func_proto bpf_clone_redirect_proto = {
1420 .func = bpf_clone_redirect,
1421 .gpl_only = false,
1422 .ret_type = RET_INTEGER,
1423 .arg1_type = ARG_PTR_TO_CTX,
1424 .arg2_type = ARG_ANYTHING,
1425 .arg3_type = ARG_ANYTHING,
1426};
1427
27b29f63
AS
1428struct redirect_info {
1429 u32 ifindex;
1430 u32 flags;
1431};
1432
1433static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1434static u64 bpf_redirect(u64 ifindex, u64 flags, u64 r3, u64 r4, u64 r5)
1435{
1436 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1437
1438 ri->ifindex = ifindex;
1439 ri->flags = flags;
1440 return TC_ACT_REDIRECT;
1441}
1442
1443int skb_do_redirect(struct sk_buff *skb)
1444{
1445 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1446 struct net_device *dev;
1447
1448 dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1449 ri->ifindex = 0;
1450 if (unlikely(!dev)) {
1451 kfree_skb(skb);
1452 return -EINVAL;
1453 }
1454
1455 if (BPF_IS_REDIRECT_INGRESS(ri->flags))
1456 return dev_forward_skb(dev, skb);
1457
1458 skb->dev = dev;
1459 return dev_queue_xmit(skb);
1460}
1461
1462const struct bpf_func_proto bpf_redirect_proto = {
1463 .func = bpf_redirect,
1464 .gpl_only = false,
1465 .ret_type = RET_INTEGER,
1466 .arg1_type = ARG_ANYTHING,
1467 .arg2_type = ARG_ANYTHING,
1468};
1469
8d20aabe
DB
1470static u64 bpf_get_cgroup_classid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1471{
1472 return task_get_classid((struct sk_buff *) (unsigned long) r1);
1473}
1474
1475static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
1476 .func = bpf_get_cgroup_classid,
1477 .gpl_only = false,
1478 .ret_type = RET_INTEGER,
1479 .arg1_type = ARG_PTR_TO_CTX,
1480};
1481
c46646d0
DB
1482static u64 bpf_get_route_realm(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1483{
1484#ifdef CONFIG_IP_ROUTE_CLASSID
1485 const struct dst_entry *dst;
1486
1487 dst = skb_dst((struct sk_buff *) (unsigned long) r1);
1488 if (dst)
1489 return dst->tclassid;
1490#endif
1491 return 0;
1492}
1493
1494static const struct bpf_func_proto bpf_get_route_realm_proto = {
1495 .func = bpf_get_route_realm,
1496 .gpl_only = false,
1497 .ret_type = RET_INTEGER,
1498 .arg1_type = ARG_PTR_TO_CTX,
1499};
1500
4e10df9a
AS
1501static u64 bpf_skb_vlan_push(u64 r1, u64 r2, u64 vlan_tci, u64 r4, u64 r5)
1502{
1503 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1504 __be16 vlan_proto = (__force __be16) r2;
1505
1506 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
1507 vlan_proto != htons(ETH_P_8021AD)))
1508 vlan_proto = htons(ETH_P_8021Q);
1509
1510 return skb_vlan_push(skb, vlan_proto, vlan_tci);
1511}
1512
1513const struct bpf_func_proto bpf_skb_vlan_push_proto = {
1514 .func = bpf_skb_vlan_push,
1515 .gpl_only = false,
1516 .ret_type = RET_INTEGER,
1517 .arg1_type = ARG_PTR_TO_CTX,
1518 .arg2_type = ARG_ANYTHING,
1519 .arg3_type = ARG_ANYTHING,
1520};
4d9c5c53 1521EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
4e10df9a
AS
1522
1523static u64 bpf_skb_vlan_pop(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1524{
1525 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1526
1527 return skb_vlan_pop(skb);
1528}
1529
1530const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
1531 .func = bpf_skb_vlan_pop,
1532 .gpl_only = false,
1533 .ret_type = RET_INTEGER,
1534 .arg1_type = ARG_PTR_TO_CTX,
1535};
4d9c5c53 1536EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
4e10df9a
AS
1537
1538bool bpf_helper_changes_skb_data(void *func)
1539{
1540 if (func == bpf_skb_vlan_push)
1541 return true;
1542 if (func == bpf_skb_vlan_pop)
1543 return true;
1544 return false;
1545}
1546
d3aa45ce
AS
1547static u64 bpf_skb_get_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
1548{
1549 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1550 struct bpf_tunnel_key *to = (struct bpf_tunnel_key *) (long) r2;
61adedf3 1551 struct ip_tunnel_info *info = skb_tunnel_info(skb);
d3aa45ce
AS
1552
1553 if (unlikely(size != sizeof(struct bpf_tunnel_key) || flags || !info))
1554 return -EINVAL;
7f9562a1
JB
1555 if (ip_tunnel_info_af(info) != AF_INET)
1556 return -EINVAL;
d3aa45ce
AS
1557
1558 to->tunnel_id = be64_to_cpu(info->key.tun_id);
c1ea5d67 1559 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
d3aa45ce
AS
1560
1561 return 0;
1562}
1563
1564const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
1565 .func = bpf_skb_get_tunnel_key,
1566 .gpl_only = false,
1567 .ret_type = RET_INTEGER,
1568 .arg1_type = ARG_PTR_TO_CTX,
1569 .arg2_type = ARG_PTR_TO_STACK,
1570 .arg3_type = ARG_CONST_STACK_SIZE,
1571 .arg4_type = ARG_ANYTHING,
1572};
1573
1574static struct metadata_dst __percpu *md_dst;
1575
1576static u64 bpf_skb_set_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
1577{
1578 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1579 struct bpf_tunnel_key *from = (struct bpf_tunnel_key *) (long) r2;
1580 struct metadata_dst *md = this_cpu_ptr(md_dst);
1581 struct ip_tunnel_info *info;
1582
1583 if (unlikely(size != sizeof(struct bpf_tunnel_key) || flags))
1584 return -EINVAL;
1585
1586 skb_dst_drop(skb);
1587 dst_hold((struct dst_entry *) md);
1588 skb_dst_set(skb, (struct dst_entry *) md);
1589
1590 info = &md->u.tun_info;
1591 info->mode = IP_TUNNEL_INFO_TX;
1dd34b5a 1592 info->key.tun_flags = TUNNEL_KEY;
d3aa45ce 1593 info->key.tun_id = cpu_to_be64(from->tunnel_id);
c1ea5d67 1594 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
d3aa45ce
AS
1595
1596 return 0;
1597}
1598
1599const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
1600 .func = bpf_skb_set_tunnel_key,
1601 .gpl_only = false,
1602 .ret_type = RET_INTEGER,
1603 .arg1_type = ARG_PTR_TO_CTX,
1604 .arg2_type = ARG_PTR_TO_STACK,
1605 .arg3_type = ARG_CONST_STACK_SIZE,
1606 .arg4_type = ARG_ANYTHING,
1607};
1608
1609static const struct bpf_func_proto *bpf_get_skb_set_tunnel_key_proto(void)
1610{
1611 if (!md_dst) {
1612 /* race is not possible, since it's called from
1613 * verifier that is holding verifier mutex
1614 */
1615 md_dst = metadata_dst_alloc_percpu(0, GFP_KERNEL);
1616 if (!md_dst)
1617 return NULL;
1618 }
1619 return &bpf_skb_set_tunnel_key_proto;
1620}
1621
d4052c4a
DB
1622static const struct bpf_func_proto *
1623sk_filter_func_proto(enum bpf_func_id func_id)
89aa0758
AS
1624{
1625 switch (func_id) {
1626 case BPF_FUNC_map_lookup_elem:
1627 return &bpf_map_lookup_elem_proto;
1628 case BPF_FUNC_map_update_elem:
1629 return &bpf_map_update_elem_proto;
1630 case BPF_FUNC_map_delete_elem:
1631 return &bpf_map_delete_elem_proto;
03e69b50
DB
1632 case BPF_FUNC_get_prandom_u32:
1633 return &bpf_get_prandom_u32_proto;
c04167ce
DB
1634 case BPF_FUNC_get_smp_processor_id:
1635 return &bpf_get_smp_processor_id_proto;
04fd61ab
AS
1636 case BPF_FUNC_tail_call:
1637 return &bpf_tail_call_proto;
17ca8cbf
DB
1638 case BPF_FUNC_ktime_get_ns:
1639 return &bpf_ktime_get_ns_proto;
0756ea3e
AS
1640 case BPF_FUNC_trace_printk:
1641 return bpf_get_trace_printk_proto();
89aa0758
AS
1642 default:
1643 return NULL;
1644 }
1645}
1646
608cd71a
AS
1647static const struct bpf_func_proto *
1648tc_cls_act_func_proto(enum bpf_func_id func_id)
1649{
1650 switch (func_id) {
1651 case BPF_FUNC_skb_store_bytes:
1652 return &bpf_skb_store_bytes_proto;
91bc4822
AS
1653 case BPF_FUNC_l3_csum_replace:
1654 return &bpf_l3_csum_replace_proto;
1655 case BPF_FUNC_l4_csum_replace:
1656 return &bpf_l4_csum_replace_proto;
3896d655
AS
1657 case BPF_FUNC_clone_redirect:
1658 return &bpf_clone_redirect_proto;
8d20aabe
DB
1659 case BPF_FUNC_get_cgroup_classid:
1660 return &bpf_get_cgroup_classid_proto;
4e10df9a
AS
1661 case BPF_FUNC_skb_vlan_push:
1662 return &bpf_skb_vlan_push_proto;
1663 case BPF_FUNC_skb_vlan_pop:
1664 return &bpf_skb_vlan_pop_proto;
d3aa45ce
AS
1665 case BPF_FUNC_skb_get_tunnel_key:
1666 return &bpf_skb_get_tunnel_key_proto;
1667 case BPF_FUNC_skb_set_tunnel_key:
1668 return bpf_get_skb_set_tunnel_key_proto();
27b29f63
AS
1669 case BPF_FUNC_redirect:
1670 return &bpf_redirect_proto;
c46646d0
DB
1671 case BPF_FUNC_get_route_realm:
1672 return &bpf_get_route_realm_proto;
608cd71a
AS
1673 default:
1674 return sk_filter_func_proto(func_id);
1675 }
1676}
1677
d691f9e8 1678static bool __is_valid_access(int off, int size, enum bpf_access_type type)
89aa0758 1679{
9bac3d6d
AS
1680 /* check bounds */
1681 if (off < 0 || off >= sizeof(struct __sk_buff))
1682 return false;
1683
1684 /* disallow misaligned access */
1685 if (off % size != 0)
1686 return false;
1687
1688 /* all __sk_buff fields are __u32 */
1689 if (size != 4)
1690 return false;
1691
1692 return true;
1693}
1694
d691f9e8
AS
1695static bool sk_filter_is_valid_access(int off, int size,
1696 enum bpf_access_type type)
1697{
045efa82
DB
1698 if (off == offsetof(struct __sk_buff, tc_classid))
1699 return false;
1700
d691f9e8
AS
1701 if (type == BPF_WRITE) {
1702 switch (off) {
1703 case offsetof(struct __sk_buff, cb[0]) ...
1704 offsetof(struct __sk_buff, cb[4]):
1705 break;
1706 default:
1707 return false;
1708 }
1709 }
1710
1711 return __is_valid_access(off, size, type);
1712}
1713
1714static bool tc_cls_act_is_valid_access(int off, int size,
1715 enum bpf_access_type type)
1716{
045efa82
DB
1717 if (off == offsetof(struct __sk_buff, tc_classid))
1718 return type == BPF_WRITE ? true : false;
1719
d691f9e8
AS
1720 if (type == BPF_WRITE) {
1721 switch (off) {
1722 case offsetof(struct __sk_buff, mark):
1723 case offsetof(struct __sk_buff, tc_index):
754f1e6a 1724 case offsetof(struct __sk_buff, priority):
d691f9e8
AS
1725 case offsetof(struct __sk_buff, cb[0]) ...
1726 offsetof(struct __sk_buff, cb[4]):
1727 break;
1728 default:
1729 return false;
1730 }
1731 }
1732 return __is_valid_access(off, size, type);
1733}
1734
1735static u32 bpf_net_convert_ctx_access(enum bpf_access_type type, int dst_reg,
1736 int src_reg, int ctx_off,
1737 struct bpf_insn *insn_buf)
9bac3d6d
AS
1738{
1739 struct bpf_insn *insn = insn_buf;
1740
1741 switch (ctx_off) {
1742 case offsetof(struct __sk_buff, len):
1743 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
1744
1745 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1746 offsetof(struct sk_buff, len));
1747 break;
1748
0b8c707d
DB
1749 case offsetof(struct __sk_buff, protocol):
1750 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
1751
1752 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1753 offsetof(struct sk_buff, protocol));
1754 break;
1755
27cd5452
MS
1756 case offsetof(struct __sk_buff, vlan_proto):
1757 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
1758
1759 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1760 offsetof(struct sk_buff, vlan_proto));
1761 break;
1762
bcad5718
DB
1763 case offsetof(struct __sk_buff, priority):
1764 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);
1765
754f1e6a
DB
1766 if (type == BPF_WRITE)
1767 *insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
1768 offsetof(struct sk_buff, priority));
1769 else
1770 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1771 offsetof(struct sk_buff, priority));
bcad5718
DB
1772 break;
1773
37e82c2f
AS
1774 case offsetof(struct __sk_buff, ingress_ifindex):
1775 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);
1776
1777 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1778 offsetof(struct sk_buff, skb_iif));
1779 break;
1780
1781 case offsetof(struct __sk_buff, ifindex):
1782 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
1783
1784 *insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
1785 dst_reg, src_reg,
1786 offsetof(struct sk_buff, dev));
1787 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
1788 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
1789 offsetof(struct net_device, ifindex));
1790 break;
1791
ba7591d8
DB
1792 case offsetof(struct __sk_buff, hash):
1793 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
1794
1795 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1796 offsetof(struct sk_buff, hash));
1797 break;
1798
9bac3d6d 1799 case offsetof(struct __sk_buff, mark):
d691f9e8
AS
1800 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
1801
1802 if (type == BPF_WRITE)
1803 *insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
1804 offsetof(struct sk_buff, mark));
1805 else
1806 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1807 offsetof(struct sk_buff, mark));
1808 break;
9bac3d6d
AS
1809
1810 case offsetof(struct __sk_buff, pkt_type):
1811 return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);
1812
1813 case offsetof(struct __sk_buff, queue_mapping):
1814 return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
c2497395 1815
c2497395
AS
1816 case offsetof(struct __sk_buff, vlan_present):
1817 return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
1818 dst_reg, src_reg, insn);
1819
1820 case offsetof(struct __sk_buff, vlan_tci):
1821 return convert_skb_access(SKF_AD_VLAN_TAG,
1822 dst_reg, src_reg, insn);
d691f9e8
AS
1823
1824 case offsetof(struct __sk_buff, cb[0]) ...
1825 offsetof(struct __sk_buff, cb[4]):
1826 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
1827
1828 ctx_off -= offsetof(struct __sk_buff, cb[0]);
1829 ctx_off += offsetof(struct sk_buff, cb);
1830 ctx_off += offsetof(struct qdisc_skb_cb, data);
1831 if (type == BPF_WRITE)
1832 *insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
1833 else
1834 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
1835 break;
1836
045efa82
DB
1837 case offsetof(struct __sk_buff, tc_classid):
1838 ctx_off -= offsetof(struct __sk_buff, tc_classid);
1839 ctx_off += offsetof(struct sk_buff, cb);
1840 ctx_off += offsetof(struct qdisc_skb_cb, tc_classid);
1841 WARN_ON(type != BPF_WRITE);
1842 *insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
1843 break;
1844
d691f9e8
AS
1845 case offsetof(struct __sk_buff, tc_index):
1846#ifdef CONFIG_NET_SCHED
1847 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);
1848
1849 if (type == BPF_WRITE)
1850 *insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg,
1851 offsetof(struct sk_buff, tc_index));
1852 else
1853 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1854 offsetof(struct sk_buff, tc_index));
1855 break;
1856#else
1857 if (type == BPF_WRITE)
1858 *insn++ = BPF_MOV64_REG(dst_reg, dst_reg);
1859 else
1860 *insn++ = BPF_MOV64_IMM(dst_reg, 0);
1861 break;
1862#endif
9bac3d6d
AS
1863 }
1864
1865 return insn - insn_buf;
89aa0758
AS
1866}
1867
d4052c4a
DB
1868static const struct bpf_verifier_ops sk_filter_ops = {
1869 .get_func_proto = sk_filter_func_proto,
1870 .is_valid_access = sk_filter_is_valid_access,
d691f9e8 1871 .convert_ctx_access = bpf_net_convert_ctx_access,
89aa0758
AS
1872};
1873
608cd71a
AS
1874static const struct bpf_verifier_ops tc_cls_act_ops = {
1875 .get_func_proto = tc_cls_act_func_proto,
d691f9e8
AS
1876 .is_valid_access = tc_cls_act_is_valid_access,
1877 .convert_ctx_access = bpf_net_convert_ctx_access,
608cd71a
AS
1878};
1879
d4052c4a
DB
1880static struct bpf_prog_type_list sk_filter_type __read_mostly = {
1881 .ops = &sk_filter_ops,
89aa0758
AS
1882 .type = BPF_PROG_TYPE_SOCKET_FILTER,
1883};
1884
96be4325 1885static struct bpf_prog_type_list sched_cls_type __read_mostly = {
608cd71a 1886 .ops = &tc_cls_act_ops,
96be4325
DB
1887 .type = BPF_PROG_TYPE_SCHED_CLS,
1888};
1889
94caee8c 1890static struct bpf_prog_type_list sched_act_type __read_mostly = {
608cd71a 1891 .ops = &tc_cls_act_ops,
94caee8c
DB
1892 .type = BPF_PROG_TYPE_SCHED_ACT,
1893};
1894
d4052c4a 1895static int __init register_sk_filter_ops(void)
89aa0758 1896{
d4052c4a 1897 bpf_register_prog_type(&sk_filter_type);
96be4325 1898 bpf_register_prog_type(&sched_cls_type);
94caee8c 1899 bpf_register_prog_type(&sched_act_type);
96be4325 1900
89aa0758
AS
1901 return 0;
1902}
d4052c4a
DB
1903late_initcall(register_sk_filter_ops);
1904
55b33325
PE
1905int sk_detach_filter(struct sock *sk)
1906{
1907 int ret = -ENOENT;
1908 struct sk_filter *filter;
1909
d59577b6
VB
1910 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1911 return -EPERM;
1912
f91ff5b9
ED
1913 filter = rcu_dereference_protected(sk->sk_filter,
1914 sock_owned_by_user(sk));
55b33325 1915 if (filter) {
a9b3cd7f 1916 RCU_INIT_POINTER(sk->sk_filter, NULL);
46bcf14f 1917 sk_filter_uncharge(sk, filter);
55b33325
PE
1918 ret = 0;
1919 }
a3ea269b 1920
55b33325
PE
1921 return ret;
1922}
5ff3f073 1923EXPORT_SYMBOL_GPL(sk_detach_filter);
a8fc9277 1924
a3ea269b
DB
1925int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
1926 unsigned int len)
a8fc9277 1927{
a3ea269b 1928 struct sock_fprog_kern *fprog;
a8fc9277 1929 struct sk_filter *filter;
a3ea269b 1930 int ret = 0;
a8fc9277
PE
1931
1932 lock_sock(sk);
1933 filter = rcu_dereference_protected(sk->sk_filter,
a3ea269b 1934 sock_owned_by_user(sk));
a8fc9277
PE
1935 if (!filter)
1936 goto out;
a3ea269b
DB
1937
1938 /* We're copying the filter that has been originally attached,
1939 * so no conversion/decode needed anymore.
1940 */
7ae457c1 1941 fprog = filter->prog->orig_prog;
a3ea269b
DB
1942
1943 ret = fprog->len;
a8fc9277 1944 if (!len)
a3ea269b 1945 /* User space only enquires number of filter blocks. */
a8fc9277 1946 goto out;
a3ea269b 1947
a8fc9277 1948 ret = -EINVAL;
a3ea269b 1949 if (len < fprog->len)
a8fc9277
PE
1950 goto out;
1951
1952 ret = -EFAULT;
009937e7 1953 if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
a3ea269b 1954 goto out;
a8fc9277 1955
a3ea269b
DB
1956 /* Instead of bytes, the API requests to return the number
1957 * of filter blocks.
1958 */
1959 ret = fprog->len;
a8fc9277
PE
1960out:
1961 release_sock(sk);
1962 return ret;
1963}