]> git.ipfire.org Git - thirdparty/linux.git/blame - net/core/filter.c
soreuseport: fast reuseport UDP socket selection
[thirdparty/linux.git] / net / core / filter.c
CommitLineData
1da177e4
LT
1/*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
bd4cf0ed
AS
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
1da177e4 6 *
bd4cf0ed
AS
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
1da177e4
LT
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
4df95ff4 21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
1da177e4
LT
22 */
23
24#include <linux/module.h>
25#include <linux/types.h>
1da177e4
LT
26#include <linux/mm.h>
27#include <linux/fcntl.h>
28#include <linux/socket.h>
29#include <linux/in.h>
30#include <linux/inet.h>
31#include <linux/netdevice.h>
32#include <linux/if_packet.h>
5a0e3ad6 33#include <linux/gfp.h>
1da177e4
LT
34#include <net/ip.h>
35#include <net/protocol.h>
4738c1db 36#include <net/netlink.h>
1da177e4
LT
37#include <linux/skbuff.h>
38#include <net/sock.h>
10b89ee4 39#include <net/flow_dissector.h>
1da177e4
LT
40#include <linux/errno.h>
41#include <linux/timer.h>
1da177e4 42#include <asm/uaccess.h>
40daafc8 43#include <asm/unaligned.h>
1da177e4 44#include <linux/filter.h>
86e4ca66 45#include <linux/ratelimit.h>
46b325c7 46#include <linux/seccomp.h>
f3335031 47#include <linux/if_vlan.h>
89aa0758 48#include <linux/bpf.h>
d691f9e8 49#include <net/sch_generic.h>
8d20aabe 50#include <net/cls_cgroup.h>
d3aa45ce 51#include <net/dst_metadata.h>
c46646d0 52#include <net/dst.h>
1da177e4 53
43db6d65
SH
54/**
55 * sk_filter - run a packet through a socket filter
56 * @sk: sock associated with &sk_buff
57 * @skb: buffer to filter
43db6d65 58 *
ff936a04
AS
59 * Run the eBPF program and then cut skb->data to correct size returned by
60 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
43db6d65 61 * than pkt_len we keep whole skb->data. This is the socket level
ff936a04 62 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
43db6d65
SH
63 * be accepted or -EPERM if the packet should be tossed.
64 *
65 */
66int sk_filter(struct sock *sk, struct sk_buff *skb)
67{
68 int err;
69 struct sk_filter *filter;
70
c93bdd0e
MG
71 /*
72 * If the skb was allocated from pfmemalloc reserves, only
73 * allow SOCK_MEMALLOC sockets to use it as this socket is
74 * helping free memory
75 */
76 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
77 return -ENOMEM;
78
43db6d65
SH
79 err = security_sock_rcv_skb(sk, skb);
80 if (err)
81 return err;
82
80f8f102
ED
83 rcu_read_lock();
84 filter = rcu_dereference(sk->sk_filter);
43db6d65 85 if (filter) {
ff936a04 86 unsigned int pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
0d7da9dd 87
43db6d65
SH
88 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
89 }
80f8f102 90 rcu_read_unlock();
43db6d65
SH
91
92 return err;
93}
94EXPORT_SYMBOL(sk_filter);
95
30743837 96static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
bd4cf0ed 97{
56193d1b 98 return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
bd4cf0ed
AS
99}
100
30743837 101static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
bd4cf0ed 102{
eb9672f4 103 struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
bd4cf0ed
AS
104 struct nlattr *nla;
105
106 if (skb_is_nonlinear(skb))
107 return 0;
108
05ab8f26
MK
109 if (skb->len < sizeof(struct nlattr))
110 return 0;
111
30743837 112 if (a > skb->len - sizeof(struct nlattr))
bd4cf0ed
AS
113 return 0;
114
30743837 115 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
bd4cf0ed
AS
116 if (nla)
117 return (void *) nla - (void *) skb->data;
118
119 return 0;
120}
121
30743837 122static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
bd4cf0ed 123{
eb9672f4 124 struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
bd4cf0ed
AS
125 struct nlattr *nla;
126
127 if (skb_is_nonlinear(skb))
128 return 0;
129
05ab8f26
MK
130 if (skb->len < sizeof(struct nlattr))
131 return 0;
132
30743837 133 if (a > skb->len - sizeof(struct nlattr))
bd4cf0ed
AS
134 return 0;
135
30743837
DB
136 nla = (struct nlattr *) &skb->data[a];
137 if (nla->nla_len > skb->len - a)
bd4cf0ed
AS
138 return 0;
139
30743837 140 nla = nla_find_nested(nla, x);
bd4cf0ed
AS
141 if (nla)
142 return (void *) nla - (void *) skb->data;
143
144 return 0;
145}
146
30743837 147static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
bd4cf0ed
AS
148{
149 return raw_smp_processor_id();
150}
151
9bac3d6d
AS
152static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
153 struct bpf_insn *insn_buf)
154{
155 struct bpf_insn *insn = insn_buf;
156
157 switch (skb_field) {
158 case SKF_AD_MARK:
159 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
160
161 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
162 offsetof(struct sk_buff, mark));
163 break;
164
165 case SKF_AD_PKTTYPE:
166 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
167 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
168#ifdef __BIG_ENDIAN_BITFIELD
169 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
170#endif
171 break;
172
173 case SKF_AD_QUEUE:
174 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
175
176 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
177 offsetof(struct sk_buff, queue_mapping));
178 break;
c2497395 179
c2497395
AS
180 case SKF_AD_VLAN_TAG:
181 case SKF_AD_VLAN_TAG_PRESENT:
182 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
183 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
184
185 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
186 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
187 offsetof(struct sk_buff, vlan_tci));
188 if (skb_field == SKF_AD_VLAN_TAG) {
189 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
190 ~VLAN_TAG_PRESENT);
191 } else {
192 /* dst_reg >>= 12 */
193 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
194 /* dst_reg &= 1 */
195 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
196 }
197 break;
9bac3d6d
AS
198 }
199
200 return insn - insn_buf;
201}
202
bd4cf0ed 203static bool convert_bpf_extensions(struct sock_filter *fp,
2695fb55 204 struct bpf_insn **insnp)
bd4cf0ed 205{
2695fb55 206 struct bpf_insn *insn = *insnp;
9bac3d6d 207 u32 cnt;
bd4cf0ed
AS
208
209 switch (fp->k) {
210 case SKF_AD_OFF + SKF_AD_PROTOCOL:
0b8c707d
DB
211 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
212
213 /* A = *(u16 *) (CTX + offsetof(protocol)) */
214 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
215 offsetof(struct sk_buff, protocol));
216 /* A = ntohs(A) [emitting a nop or swap16] */
217 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
bd4cf0ed
AS
218 break;
219
220 case SKF_AD_OFF + SKF_AD_PKTTYPE:
9bac3d6d
AS
221 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
222 insn += cnt - 1;
bd4cf0ed
AS
223 break;
224
225 case SKF_AD_OFF + SKF_AD_IFINDEX:
226 case SKF_AD_OFF + SKF_AD_HATYPE:
bd4cf0ed
AS
227 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
228 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
f8f6d679
DB
229 BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);
230
231 *insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
232 BPF_REG_TMP, BPF_REG_CTX,
233 offsetof(struct sk_buff, dev));
234 /* if (tmp != 0) goto pc + 1 */
235 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
236 *insn++ = BPF_EXIT_INSN();
237 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
238 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
239 offsetof(struct net_device, ifindex));
240 else
241 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
242 offsetof(struct net_device, type));
bd4cf0ed
AS
243 break;
244
245 case SKF_AD_OFF + SKF_AD_MARK:
9bac3d6d
AS
246 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
247 insn += cnt - 1;
bd4cf0ed
AS
248 break;
249
250 case SKF_AD_OFF + SKF_AD_RXHASH:
251 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
252
9739eef1
AS
253 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
254 offsetof(struct sk_buff, hash));
bd4cf0ed
AS
255 break;
256
257 case SKF_AD_OFF + SKF_AD_QUEUE:
9bac3d6d
AS
258 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
259 insn += cnt - 1;
bd4cf0ed
AS
260 break;
261
262 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
c2497395
AS
263 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
264 BPF_REG_A, BPF_REG_CTX, insn);
265 insn += cnt - 1;
266 break;
bd4cf0ed 267
c2497395
AS
268 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
269 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
270 BPF_REG_A, BPF_REG_CTX, insn);
271 insn += cnt - 1;
bd4cf0ed
AS
272 break;
273
27cd5452
MS
274 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
275 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
276
277 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
278 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
279 offsetof(struct sk_buff, vlan_proto));
280 /* A = ntohs(A) [emitting a nop or swap16] */
281 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
282 break;
283
bd4cf0ed
AS
284 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
285 case SKF_AD_OFF + SKF_AD_NLATTR:
286 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
287 case SKF_AD_OFF + SKF_AD_CPU:
4cd3675e 288 case SKF_AD_OFF + SKF_AD_RANDOM:
e430f34e 289 /* arg1 = CTX */
f8f6d679 290 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
bd4cf0ed 291 /* arg2 = A */
f8f6d679 292 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
bd4cf0ed 293 /* arg3 = X */
f8f6d679 294 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
e430f34e 295 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
bd4cf0ed
AS
296 switch (fp->k) {
297 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
f8f6d679 298 *insn = BPF_EMIT_CALL(__skb_get_pay_offset);
bd4cf0ed
AS
299 break;
300 case SKF_AD_OFF + SKF_AD_NLATTR:
f8f6d679 301 *insn = BPF_EMIT_CALL(__skb_get_nlattr);
bd4cf0ed
AS
302 break;
303 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
f8f6d679 304 *insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
bd4cf0ed
AS
305 break;
306 case SKF_AD_OFF + SKF_AD_CPU:
f8f6d679 307 *insn = BPF_EMIT_CALL(__get_raw_cpu_id);
bd4cf0ed 308 break;
4cd3675e 309 case SKF_AD_OFF + SKF_AD_RANDOM:
3ad00405
DB
310 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
311 bpf_user_rnd_init_once();
4cd3675e 312 break;
bd4cf0ed
AS
313 }
314 break;
315
316 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
9739eef1
AS
317 /* A ^= X */
318 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
bd4cf0ed
AS
319 break;
320
321 default:
322 /* This is just a dummy call to avoid letting the compiler
323 * evict __bpf_call_base() as an optimization. Placed here
324 * where no-one bothers.
325 */
326 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
327 return false;
328 }
329
330 *insnp = insn;
331 return true;
332}
333
334/**
8fb575ca 335 * bpf_convert_filter - convert filter program
bd4cf0ed
AS
336 * @prog: the user passed filter program
337 * @len: the length of the user passed filter program
338 * @new_prog: buffer where converted program will be stored
339 * @new_len: pointer to store length of converted program
340 *
341 * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
342 * Conversion workflow:
343 *
344 * 1) First pass for calculating the new program length:
8fb575ca 345 * bpf_convert_filter(old_prog, old_len, NULL, &new_len)
bd4cf0ed
AS
346 *
347 * 2) 2nd pass to remap in two passes: 1st pass finds new
348 * jump offsets, 2nd pass remapping:
2695fb55 349 * new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
8fb575ca 350 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
bd4cf0ed 351 */
d9e12f42
NS
352static int bpf_convert_filter(struct sock_filter *prog, int len,
353 struct bpf_insn *new_prog, int *new_len)
bd4cf0ed
AS
354{
355 int new_flen = 0, pass = 0, target, i;
2695fb55 356 struct bpf_insn *new_insn;
bd4cf0ed
AS
357 struct sock_filter *fp;
358 int *addrs = NULL;
359 u8 bpf_src;
360
361 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
30743837 362 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
bd4cf0ed 363
6f9a093b 364 if (len <= 0 || len > BPF_MAXINSNS)
bd4cf0ed
AS
365 return -EINVAL;
366
367 if (new_prog) {
658da937
DB
368 addrs = kcalloc(len, sizeof(*addrs),
369 GFP_KERNEL | __GFP_NOWARN);
bd4cf0ed
AS
370 if (!addrs)
371 return -ENOMEM;
372 }
373
374do_pass:
375 new_insn = new_prog;
376 fp = prog;
377
8b614aeb
DB
378 /* Classic BPF related prologue emission. */
379 if (new_insn) {
380 /* Classic BPF expects A and X to be reset first. These need
381 * to be guaranteed to be the first two instructions.
382 */
383 *new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
384 *new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
385
386 /* All programs must keep CTX in callee saved BPF_REG_CTX.
387 * In eBPF case it's done by the compiler, here we need to
388 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
389 */
390 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
391 } else {
392 new_insn += 3;
393 }
bd4cf0ed
AS
394
395 for (i = 0; i < len; fp++, i++) {
2695fb55
AS
396 struct bpf_insn tmp_insns[6] = { };
397 struct bpf_insn *insn = tmp_insns;
bd4cf0ed
AS
398
399 if (addrs)
400 addrs[i] = new_insn - new_prog;
401
402 switch (fp->code) {
403 /* All arithmetic insns and skb loads map as-is. */
404 case BPF_ALU | BPF_ADD | BPF_X:
405 case BPF_ALU | BPF_ADD | BPF_K:
406 case BPF_ALU | BPF_SUB | BPF_X:
407 case BPF_ALU | BPF_SUB | BPF_K:
408 case BPF_ALU | BPF_AND | BPF_X:
409 case BPF_ALU | BPF_AND | BPF_K:
410 case BPF_ALU | BPF_OR | BPF_X:
411 case BPF_ALU | BPF_OR | BPF_K:
412 case BPF_ALU | BPF_LSH | BPF_X:
413 case BPF_ALU | BPF_LSH | BPF_K:
414 case BPF_ALU | BPF_RSH | BPF_X:
415 case BPF_ALU | BPF_RSH | BPF_K:
416 case BPF_ALU | BPF_XOR | BPF_X:
417 case BPF_ALU | BPF_XOR | BPF_K:
418 case BPF_ALU | BPF_MUL | BPF_X:
419 case BPF_ALU | BPF_MUL | BPF_K:
420 case BPF_ALU | BPF_DIV | BPF_X:
421 case BPF_ALU | BPF_DIV | BPF_K:
422 case BPF_ALU | BPF_MOD | BPF_X:
423 case BPF_ALU | BPF_MOD | BPF_K:
424 case BPF_ALU | BPF_NEG:
425 case BPF_LD | BPF_ABS | BPF_W:
426 case BPF_LD | BPF_ABS | BPF_H:
427 case BPF_LD | BPF_ABS | BPF_B:
428 case BPF_LD | BPF_IND | BPF_W:
429 case BPF_LD | BPF_IND | BPF_H:
430 case BPF_LD | BPF_IND | BPF_B:
431 /* Check for overloaded BPF extension and
432 * directly convert it if found, otherwise
433 * just move on with mapping.
434 */
435 if (BPF_CLASS(fp->code) == BPF_LD &&
436 BPF_MODE(fp->code) == BPF_ABS &&
437 convert_bpf_extensions(fp, &insn))
438 break;
439
f8f6d679 440 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
bd4cf0ed
AS
441 break;
442
f8f6d679
DB
443 /* Jump transformation cannot use BPF block macros
444 * everywhere as offset calculation and target updates
445 * require a bit more work than the rest, i.e. jump
446 * opcodes map as-is, but offsets need adjustment.
447 */
448
449#define BPF_EMIT_JMP \
bd4cf0ed
AS
450 do { \
451 if (target >= len || target < 0) \
452 goto err; \
453 insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
454 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
455 insn->off -= insn - tmp_insns; \
456 } while (0)
457
f8f6d679
DB
458 case BPF_JMP | BPF_JA:
459 target = i + fp->k + 1;
460 insn->code = fp->code;
461 BPF_EMIT_JMP;
bd4cf0ed
AS
462 break;
463
464 case BPF_JMP | BPF_JEQ | BPF_K:
465 case BPF_JMP | BPF_JEQ | BPF_X:
466 case BPF_JMP | BPF_JSET | BPF_K:
467 case BPF_JMP | BPF_JSET | BPF_X:
468 case BPF_JMP | BPF_JGT | BPF_K:
469 case BPF_JMP | BPF_JGT | BPF_X:
470 case BPF_JMP | BPF_JGE | BPF_K:
471 case BPF_JMP | BPF_JGE | BPF_X:
472 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
473 /* BPF immediates are signed, zero extend
474 * immediate into tmp register and use it
475 * in compare insn.
476 */
f8f6d679 477 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
bd4cf0ed 478
e430f34e
AS
479 insn->dst_reg = BPF_REG_A;
480 insn->src_reg = BPF_REG_TMP;
bd4cf0ed
AS
481 bpf_src = BPF_X;
482 } else {
e430f34e 483 insn->dst_reg = BPF_REG_A;
bd4cf0ed
AS
484 insn->imm = fp->k;
485 bpf_src = BPF_SRC(fp->code);
19539ce7 486 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
1da177e4 487 }
bd4cf0ed
AS
488
489 /* Common case where 'jump_false' is next insn. */
490 if (fp->jf == 0) {
491 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
492 target = i + fp->jt + 1;
f8f6d679 493 BPF_EMIT_JMP;
bd4cf0ed 494 break;
1da177e4 495 }
bd4cf0ed
AS
496
497 /* Convert JEQ into JNE when 'jump_true' is next insn. */
498 if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
499 insn->code = BPF_JMP | BPF_JNE | bpf_src;
500 target = i + fp->jf + 1;
f8f6d679 501 BPF_EMIT_JMP;
bd4cf0ed 502 break;
0b05b2a4 503 }
bd4cf0ed
AS
504
505 /* Other jumps are mapped into two insns: Jxx and JA. */
506 target = i + fp->jt + 1;
507 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
f8f6d679 508 BPF_EMIT_JMP;
bd4cf0ed
AS
509 insn++;
510
511 insn->code = BPF_JMP | BPF_JA;
512 target = i + fp->jf + 1;
f8f6d679 513 BPF_EMIT_JMP;
bd4cf0ed
AS
514 break;
515
516 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
517 case BPF_LDX | BPF_MSH | BPF_B:
9739eef1 518 /* tmp = A */
f8f6d679 519 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
1268e253 520 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
f8f6d679 521 *insn++ = BPF_LD_ABS(BPF_B, fp->k);
9739eef1 522 /* A &= 0xf */
f8f6d679 523 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
9739eef1 524 /* A <<= 2 */
f8f6d679 525 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
9739eef1 526 /* X = A */
f8f6d679 527 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
9739eef1 528 /* A = tmp */
f8f6d679 529 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
bd4cf0ed
AS
530 break;
531
532 /* RET_K, RET_A are remaped into 2 insns. */
533 case BPF_RET | BPF_A:
534 case BPF_RET | BPF_K:
f8f6d679
DB
535 *insn++ = BPF_MOV32_RAW(BPF_RVAL(fp->code) == BPF_K ?
536 BPF_K : BPF_X, BPF_REG_0,
537 BPF_REG_A, fp->k);
9739eef1 538 *insn = BPF_EXIT_INSN();
bd4cf0ed
AS
539 break;
540
541 /* Store to stack. */
542 case BPF_ST:
543 case BPF_STX:
f8f6d679
DB
544 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
545 BPF_ST ? BPF_REG_A : BPF_REG_X,
546 -(BPF_MEMWORDS - fp->k) * 4);
bd4cf0ed
AS
547 break;
548
549 /* Load from stack. */
550 case BPF_LD | BPF_MEM:
551 case BPF_LDX | BPF_MEM:
f8f6d679
DB
552 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
553 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
554 -(BPF_MEMWORDS - fp->k) * 4);
bd4cf0ed
AS
555 break;
556
557 /* A = K or X = K */
558 case BPF_LD | BPF_IMM:
559 case BPF_LDX | BPF_IMM:
f8f6d679
DB
560 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
561 BPF_REG_A : BPF_REG_X, fp->k);
bd4cf0ed
AS
562 break;
563
564 /* X = A */
565 case BPF_MISC | BPF_TAX:
f8f6d679 566 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
bd4cf0ed
AS
567 break;
568
569 /* A = X */
570 case BPF_MISC | BPF_TXA:
f8f6d679 571 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
bd4cf0ed
AS
572 break;
573
574 /* A = skb->len or X = skb->len */
575 case BPF_LD | BPF_W | BPF_LEN:
576 case BPF_LDX | BPF_W | BPF_LEN:
f8f6d679
DB
577 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
578 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
579 offsetof(struct sk_buff, len));
bd4cf0ed
AS
580 break;
581
f8f6d679 582 /* Access seccomp_data fields. */
bd4cf0ed 583 case BPF_LDX | BPF_ABS | BPF_W:
9739eef1
AS
584 /* A = *(u32 *) (ctx + K) */
585 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
bd4cf0ed
AS
586 break;
587
ca9f1fd2 588 /* Unknown instruction. */
1da177e4 589 default:
bd4cf0ed 590 goto err;
1da177e4 591 }
bd4cf0ed
AS
592
593 insn++;
594 if (new_prog)
595 memcpy(new_insn, tmp_insns,
596 sizeof(*insn) * (insn - tmp_insns));
bd4cf0ed 597 new_insn += insn - tmp_insns;
1da177e4
LT
598 }
599
bd4cf0ed
AS
600 if (!new_prog) {
601 /* Only calculating new length. */
602 *new_len = new_insn - new_prog;
603 return 0;
604 }
605
606 pass++;
607 if (new_flen != new_insn - new_prog) {
608 new_flen = new_insn - new_prog;
609 if (pass > 2)
610 goto err;
bd4cf0ed
AS
611 goto do_pass;
612 }
613
614 kfree(addrs);
615 BUG_ON(*new_len != new_flen);
1da177e4 616 return 0;
bd4cf0ed
AS
617err:
618 kfree(addrs);
619 return -EINVAL;
1da177e4
LT
620}
621
bd4cf0ed 622/* Security:
bd4cf0ed 623 *
2d5311e4 624 * As we dont want to clear mem[] array for each packet going through
8ea6e345 625 * __bpf_prog_run(), we check that filter loaded by user never try to read
2d5311e4 626 * a cell if not previously written, and we check all branches to be sure
25985edc 627 * a malicious user doesn't try to abuse us.
2d5311e4 628 */
ec31a05c 629static int check_load_and_stores(const struct sock_filter *filter, int flen)
2d5311e4 630{
34805931 631 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
2d5311e4
ED
632 int pc, ret = 0;
633
634 BUILD_BUG_ON(BPF_MEMWORDS > 16);
34805931 635
99e72a0f 636 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
2d5311e4
ED
637 if (!masks)
638 return -ENOMEM;
34805931 639
2d5311e4
ED
640 memset(masks, 0xff, flen * sizeof(*masks));
641
642 for (pc = 0; pc < flen; pc++) {
643 memvalid &= masks[pc];
644
645 switch (filter[pc].code) {
34805931
DB
646 case BPF_ST:
647 case BPF_STX:
2d5311e4
ED
648 memvalid |= (1 << filter[pc].k);
649 break;
34805931
DB
650 case BPF_LD | BPF_MEM:
651 case BPF_LDX | BPF_MEM:
2d5311e4
ED
652 if (!(memvalid & (1 << filter[pc].k))) {
653 ret = -EINVAL;
654 goto error;
655 }
656 break;
34805931
DB
657 case BPF_JMP | BPF_JA:
658 /* A jump must set masks on target */
2d5311e4
ED
659 masks[pc + 1 + filter[pc].k] &= memvalid;
660 memvalid = ~0;
661 break;
34805931
DB
662 case BPF_JMP | BPF_JEQ | BPF_K:
663 case BPF_JMP | BPF_JEQ | BPF_X:
664 case BPF_JMP | BPF_JGE | BPF_K:
665 case BPF_JMP | BPF_JGE | BPF_X:
666 case BPF_JMP | BPF_JGT | BPF_K:
667 case BPF_JMP | BPF_JGT | BPF_X:
668 case BPF_JMP | BPF_JSET | BPF_K:
669 case BPF_JMP | BPF_JSET | BPF_X:
670 /* A jump must set masks on targets */
2d5311e4
ED
671 masks[pc + 1 + filter[pc].jt] &= memvalid;
672 masks[pc + 1 + filter[pc].jf] &= memvalid;
673 memvalid = ~0;
674 break;
675 }
676 }
677error:
678 kfree(masks);
679 return ret;
680}
681
34805931
DB
682static bool chk_code_allowed(u16 code_to_probe)
683{
684 static const bool codes[] = {
685 /* 32 bit ALU operations */
686 [BPF_ALU | BPF_ADD | BPF_K] = true,
687 [BPF_ALU | BPF_ADD | BPF_X] = true,
688 [BPF_ALU | BPF_SUB | BPF_K] = true,
689 [BPF_ALU | BPF_SUB | BPF_X] = true,
690 [BPF_ALU | BPF_MUL | BPF_K] = true,
691 [BPF_ALU | BPF_MUL | BPF_X] = true,
692 [BPF_ALU | BPF_DIV | BPF_K] = true,
693 [BPF_ALU | BPF_DIV | BPF_X] = true,
694 [BPF_ALU | BPF_MOD | BPF_K] = true,
695 [BPF_ALU | BPF_MOD | BPF_X] = true,
696 [BPF_ALU | BPF_AND | BPF_K] = true,
697 [BPF_ALU | BPF_AND | BPF_X] = true,
698 [BPF_ALU | BPF_OR | BPF_K] = true,
699 [BPF_ALU | BPF_OR | BPF_X] = true,
700 [BPF_ALU | BPF_XOR | BPF_K] = true,
701 [BPF_ALU | BPF_XOR | BPF_X] = true,
702 [BPF_ALU | BPF_LSH | BPF_K] = true,
703 [BPF_ALU | BPF_LSH | BPF_X] = true,
704 [BPF_ALU | BPF_RSH | BPF_K] = true,
705 [BPF_ALU | BPF_RSH | BPF_X] = true,
706 [BPF_ALU | BPF_NEG] = true,
707 /* Load instructions */
708 [BPF_LD | BPF_W | BPF_ABS] = true,
709 [BPF_LD | BPF_H | BPF_ABS] = true,
710 [BPF_LD | BPF_B | BPF_ABS] = true,
711 [BPF_LD | BPF_W | BPF_LEN] = true,
712 [BPF_LD | BPF_W | BPF_IND] = true,
713 [BPF_LD | BPF_H | BPF_IND] = true,
714 [BPF_LD | BPF_B | BPF_IND] = true,
715 [BPF_LD | BPF_IMM] = true,
716 [BPF_LD | BPF_MEM] = true,
717 [BPF_LDX | BPF_W | BPF_LEN] = true,
718 [BPF_LDX | BPF_B | BPF_MSH] = true,
719 [BPF_LDX | BPF_IMM] = true,
720 [BPF_LDX | BPF_MEM] = true,
721 /* Store instructions */
722 [BPF_ST] = true,
723 [BPF_STX] = true,
724 /* Misc instructions */
725 [BPF_MISC | BPF_TAX] = true,
726 [BPF_MISC | BPF_TXA] = true,
727 /* Return instructions */
728 [BPF_RET | BPF_K] = true,
729 [BPF_RET | BPF_A] = true,
730 /* Jump instructions */
731 [BPF_JMP | BPF_JA] = true,
732 [BPF_JMP | BPF_JEQ | BPF_K] = true,
733 [BPF_JMP | BPF_JEQ | BPF_X] = true,
734 [BPF_JMP | BPF_JGE | BPF_K] = true,
735 [BPF_JMP | BPF_JGE | BPF_X] = true,
736 [BPF_JMP | BPF_JGT | BPF_K] = true,
737 [BPF_JMP | BPF_JGT | BPF_X] = true,
738 [BPF_JMP | BPF_JSET | BPF_K] = true,
739 [BPF_JMP | BPF_JSET | BPF_X] = true,
740 };
741
742 if (code_to_probe >= ARRAY_SIZE(codes))
743 return false;
744
745 return codes[code_to_probe];
746}
747
1da177e4 748/**
4df95ff4 749 * bpf_check_classic - verify socket filter code
1da177e4
LT
750 * @filter: filter to verify
751 * @flen: length of filter
752 *
753 * Check the user's filter code. If we let some ugly
754 * filter code slip through kaboom! The filter must contain
93699863
KK
755 * no references or jumps that are out of range, no illegal
756 * instructions, and must end with a RET instruction.
1da177e4 757 *
7b11f69f
KK
758 * All jumps are forward as they are not signed.
759 *
760 * Returns 0 if the rule set is legal or -EINVAL if not.
1da177e4 761 */
d9e12f42
NS
762static int bpf_check_classic(const struct sock_filter *filter,
763 unsigned int flen)
1da177e4 764{
aa1113d9 765 bool anc_found;
34805931 766 int pc;
1da177e4 767
1b93ae64 768 if (flen == 0 || flen > BPF_MAXINSNS)
1da177e4
LT
769 return -EINVAL;
770
34805931 771 /* Check the filter code now */
1da177e4 772 for (pc = 0; pc < flen; pc++) {
ec31a05c 773 const struct sock_filter *ftest = &filter[pc];
93699863 774
34805931
DB
775 /* May we actually operate on this code? */
776 if (!chk_code_allowed(ftest->code))
cba328fc 777 return -EINVAL;
34805931 778
93699863 779 /* Some instructions need special checks */
34805931
DB
780 switch (ftest->code) {
781 case BPF_ALU | BPF_DIV | BPF_K:
782 case BPF_ALU | BPF_MOD | BPF_K:
783 /* Check for division by zero */
b6069a95
ED
784 if (ftest->k == 0)
785 return -EINVAL;
786 break;
34805931
DB
787 case BPF_LD | BPF_MEM:
788 case BPF_LDX | BPF_MEM:
789 case BPF_ST:
790 case BPF_STX:
791 /* Check for invalid memory addresses */
93699863
KK
792 if (ftest->k >= BPF_MEMWORDS)
793 return -EINVAL;
794 break;
34805931
DB
795 case BPF_JMP | BPF_JA:
796 /* Note, the large ftest->k might cause loops.
93699863
KK
797 * Compare this with conditional jumps below,
798 * where offsets are limited. --ANK (981016)
799 */
34805931 800 if (ftest->k >= (unsigned int)(flen - pc - 1))
93699863 801 return -EINVAL;
01f2f3f6 802 break;
34805931
DB
803 case BPF_JMP | BPF_JEQ | BPF_K:
804 case BPF_JMP | BPF_JEQ | BPF_X:
805 case BPF_JMP | BPF_JGE | BPF_K:
806 case BPF_JMP | BPF_JGE | BPF_X:
807 case BPF_JMP | BPF_JGT | BPF_K:
808 case BPF_JMP | BPF_JGT | BPF_X:
809 case BPF_JMP | BPF_JSET | BPF_K:
810 case BPF_JMP | BPF_JSET | BPF_X:
811 /* Both conditionals must be safe */
e35bedf3 812 if (pc + ftest->jt + 1 >= flen ||
93699863
KK
813 pc + ftest->jf + 1 >= flen)
814 return -EINVAL;
cba328fc 815 break;
34805931
DB
816 case BPF_LD | BPF_W | BPF_ABS:
817 case BPF_LD | BPF_H | BPF_ABS:
818 case BPF_LD | BPF_B | BPF_ABS:
aa1113d9 819 anc_found = false;
34805931
DB
820 if (bpf_anc_helper(ftest) & BPF_ANC)
821 anc_found = true;
822 /* Ancillary operation unknown or unsupported */
aa1113d9
DB
823 if (anc_found == false && ftest->k >= SKF_AD_OFF)
824 return -EINVAL;
01f2f3f6
HPP
825 }
826 }
93699863 827
34805931 828 /* Last instruction must be a RET code */
01f2f3f6 829 switch (filter[flen - 1].code) {
34805931
DB
830 case BPF_RET | BPF_K:
831 case BPF_RET | BPF_A:
2d5311e4 832 return check_load_and_stores(filter, flen);
cba328fc 833 }
34805931 834
cba328fc 835 return -EINVAL;
1da177e4
LT
836}
837
7ae457c1
AS
838static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
839 const struct sock_fprog *fprog)
a3ea269b 840{
009937e7 841 unsigned int fsize = bpf_classic_proglen(fprog);
a3ea269b
DB
842 struct sock_fprog_kern *fkprog;
843
844 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
845 if (!fp->orig_prog)
846 return -ENOMEM;
847
848 fkprog = fp->orig_prog;
849 fkprog->len = fprog->len;
658da937
DB
850
851 fkprog->filter = kmemdup(fp->insns, fsize,
852 GFP_KERNEL | __GFP_NOWARN);
a3ea269b
DB
853 if (!fkprog->filter) {
854 kfree(fp->orig_prog);
855 return -ENOMEM;
856 }
857
858 return 0;
859}
860
7ae457c1 861static void bpf_release_orig_filter(struct bpf_prog *fp)
a3ea269b
DB
862{
863 struct sock_fprog_kern *fprog = fp->orig_prog;
864
865 if (fprog) {
866 kfree(fprog->filter);
867 kfree(fprog);
868 }
869}
870
7ae457c1
AS
871static void __bpf_prog_release(struct bpf_prog *prog)
872{
24701ece 873 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
89aa0758
AS
874 bpf_prog_put(prog);
875 } else {
876 bpf_release_orig_filter(prog);
877 bpf_prog_free(prog);
878 }
7ae457c1
AS
879}
880
34c5bd66
PN
881static void __sk_filter_release(struct sk_filter *fp)
882{
7ae457c1
AS
883 __bpf_prog_release(fp->prog);
884 kfree(fp);
34c5bd66
PN
885}
886
47e958ea 887/**
46bcf14f 888 * sk_filter_release_rcu - Release a socket filter by rcu_head
47e958ea
PE
889 * @rcu: rcu_head that contains the sk_filter to free
890 */
fbc907f0 891static void sk_filter_release_rcu(struct rcu_head *rcu)
47e958ea
PE
892{
893 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
894
34c5bd66 895 __sk_filter_release(fp);
47e958ea 896}
fbc907f0
DB
897
898/**
899 * sk_filter_release - release a socket filter
900 * @fp: filter to remove
901 *
902 * Remove a filter from a socket and release its resources.
903 */
904static void sk_filter_release(struct sk_filter *fp)
905{
906 if (atomic_dec_and_test(&fp->refcnt))
907 call_rcu(&fp->rcu, sk_filter_release_rcu);
908}
909
910void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
911{
7ae457c1 912 u32 filter_size = bpf_prog_size(fp->prog->len);
fbc907f0 913
278571ba
AS
914 atomic_sub(filter_size, &sk->sk_omem_alloc);
915 sk_filter_release(fp);
fbc907f0 916}
47e958ea 917
278571ba
AS
918/* try to charge the socket memory if there is space available
919 * return true on success
920 */
921bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
bd4cf0ed 922{
7ae457c1 923 u32 filter_size = bpf_prog_size(fp->prog->len);
278571ba
AS
924
925 /* same check as in sock_kmalloc() */
926 if (filter_size <= sysctl_optmem_max &&
927 atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
928 atomic_inc(&fp->refcnt);
929 atomic_add(filter_size, &sk->sk_omem_alloc);
930 return true;
bd4cf0ed 931 }
278571ba 932 return false;
bd4cf0ed
AS
933}
934
7ae457c1 935static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
bd4cf0ed
AS
936{
937 struct sock_filter *old_prog;
7ae457c1 938 struct bpf_prog *old_fp;
34805931 939 int err, new_len, old_len = fp->len;
bd4cf0ed
AS
940
941 /* We are free to overwrite insns et al right here as it
942 * won't be used at this point in time anymore internally
943 * after the migration to the internal BPF instruction
944 * representation.
945 */
946 BUILD_BUG_ON(sizeof(struct sock_filter) !=
2695fb55 947 sizeof(struct bpf_insn));
bd4cf0ed 948
bd4cf0ed
AS
949 /* Conversion cannot happen on overlapping memory areas,
950 * so we need to keep the user BPF around until the 2nd
951 * pass. At this time, the user BPF is stored in fp->insns.
952 */
953 old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
658da937 954 GFP_KERNEL | __GFP_NOWARN);
bd4cf0ed
AS
955 if (!old_prog) {
956 err = -ENOMEM;
957 goto out_err;
958 }
959
960 /* 1st pass: calculate the new program length. */
8fb575ca 961 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
bd4cf0ed
AS
962 if (err)
963 goto out_err_free;
964
965 /* Expand fp for appending the new filter representation. */
966 old_fp = fp;
60a3b225 967 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
bd4cf0ed
AS
968 if (!fp) {
969 /* The old_fp is still around in case we couldn't
970 * allocate new memory, so uncharge on that one.
971 */
972 fp = old_fp;
973 err = -ENOMEM;
974 goto out_err_free;
975 }
976
bd4cf0ed
AS
977 fp->len = new_len;
978
2695fb55 979 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
8fb575ca 980 err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
bd4cf0ed 981 if (err)
8fb575ca 982 /* 2nd bpf_convert_filter() can fail only if it fails
bd4cf0ed
AS
983 * to allocate memory, remapping must succeed. Note,
984 * that at this time old_fp has already been released
278571ba 985 * by krealloc().
bd4cf0ed
AS
986 */
987 goto out_err_free;
988
7ae457c1 989 bpf_prog_select_runtime(fp);
5fe821a9 990
bd4cf0ed
AS
991 kfree(old_prog);
992 return fp;
993
994out_err_free:
995 kfree(old_prog);
996out_err:
7ae457c1 997 __bpf_prog_release(fp);
bd4cf0ed
AS
998 return ERR_PTR(err);
999}
1000
ac67eb2c
DB
1001static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1002 bpf_aux_classic_check_t trans)
302d6637
JP
1003{
1004 int err;
1005
bd4cf0ed 1006 fp->bpf_func = NULL;
a91263d5 1007 fp->jited = 0;
302d6637 1008
4df95ff4 1009 err = bpf_check_classic(fp->insns, fp->len);
418c96ac 1010 if (err) {
7ae457c1 1011 __bpf_prog_release(fp);
bd4cf0ed 1012 return ERR_PTR(err);
418c96ac 1013 }
302d6637 1014
4ae92bc7
NS
1015 /* There might be additional checks and transformations
1016 * needed on classic filters, f.e. in case of seccomp.
1017 */
1018 if (trans) {
1019 err = trans(fp->insns, fp->len);
1020 if (err) {
1021 __bpf_prog_release(fp);
1022 return ERR_PTR(err);
1023 }
1024 }
1025
bd4cf0ed
AS
1026 /* Probe if we can JIT compile the filter and if so, do
1027 * the compilation of the filter.
1028 */
302d6637 1029 bpf_jit_compile(fp);
bd4cf0ed
AS
1030
1031 /* JIT compiler couldn't process this filter, so do the
1032 * internal BPF translation for the optimized interpreter.
1033 */
5fe821a9 1034 if (!fp->jited)
7ae457c1 1035 fp = bpf_migrate_filter(fp);
bd4cf0ed
AS
1036
1037 return fp;
302d6637
JP
1038}
1039
1040/**
7ae457c1 1041 * bpf_prog_create - create an unattached filter
c6c4b97c 1042 * @pfp: the unattached filter that is created
677a9fd3 1043 * @fprog: the filter program
302d6637 1044 *
c6c4b97c 1045 * Create a filter independent of any socket. We first run some
302d6637
JP
1046 * sanity checks on it to make sure it does not explode on us later.
1047 * If an error occurs or there is insufficient memory for the filter
1048 * a negative errno code is returned. On success the return is zero.
1049 */
7ae457c1 1050int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
302d6637 1051{
009937e7 1052 unsigned int fsize = bpf_classic_proglen(fprog);
7ae457c1 1053 struct bpf_prog *fp;
302d6637
JP
1054
1055 /* Make sure new filter is there and in the right amounts. */
1056 if (fprog->filter == NULL)
1057 return -EINVAL;
1058
60a3b225 1059 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
302d6637
JP
1060 if (!fp)
1061 return -ENOMEM;
a3ea269b 1062
302d6637
JP
1063 memcpy(fp->insns, fprog->filter, fsize);
1064
302d6637 1065 fp->len = fprog->len;
a3ea269b
DB
1066 /* Since unattached filters are not copied back to user
1067 * space through sk_get_filter(), we do not need to hold
1068 * a copy here, and can spare us the work.
1069 */
1070 fp->orig_prog = NULL;
302d6637 1071
7ae457c1 1072 /* bpf_prepare_filter() already takes care of freeing
bd4cf0ed
AS
1073 * memory in case something goes wrong.
1074 */
4ae92bc7 1075 fp = bpf_prepare_filter(fp, NULL);
bd4cf0ed
AS
1076 if (IS_ERR(fp))
1077 return PTR_ERR(fp);
302d6637
JP
1078
1079 *pfp = fp;
1080 return 0;
302d6637 1081}
7ae457c1 1082EXPORT_SYMBOL_GPL(bpf_prog_create);
302d6637 1083
ac67eb2c
DB
1084/**
1085 * bpf_prog_create_from_user - create an unattached filter from user buffer
1086 * @pfp: the unattached filter that is created
1087 * @fprog: the filter program
1088 * @trans: post-classic verifier transformation handler
bab18991 1089 * @save_orig: save classic BPF program
ac67eb2c
DB
1090 *
1091 * This function effectively does the same as bpf_prog_create(), only
1092 * that it builds up its insns buffer from user space provided buffer.
1093 * It also allows for passing a bpf_aux_classic_check_t handler.
1094 */
1095int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
bab18991 1096 bpf_aux_classic_check_t trans, bool save_orig)
ac67eb2c
DB
1097{
1098 unsigned int fsize = bpf_classic_proglen(fprog);
1099 struct bpf_prog *fp;
bab18991 1100 int err;
ac67eb2c
DB
1101
1102 /* Make sure new filter is there and in the right amounts. */
1103 if (fprog->filter == NULL)
1104 return -EINVAL;
1105
1106 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1107 if (!fp)
1108 return -ENOMEM;
1109
1110 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1111 __bpf_prog_free(fp);
1112 return -EFAULT;
1113 }
1114
1115 fp->len = fprog->len;
ac67eb2c
DB
1116 fp->orig_prog = NULL;
1117
bab18991
DB
1118 if (save_orig) {
1119 err = bpf_prog_store_orig_filter(fp, fprog);
1120 if (err) {
1121 __bpf_prog_free(fp);
1122 return -ENOMEM;
1123 }
1124 }
1125
ac67eb2c
DB
1126 /* bpf_prepare_filter() already takes care of freeing
1127 * memory in case something goes wrong.
1128 */
1129 fp = bpf_prepare_filter(fp, trans);
1130 if (IS_ERR(fp))
1131 return PTR_ERR(fp);
1132
1133 *pfp = fp;
1134 return 0;
1135}
2ea273d7 1136EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
ac67eb2c 1137
7ae457c1 1138void bpf_prog_destroy(struct bpf_prog *fp)
302d6637 1139{
7ae457c1 1140 __bpf_prog_release(fp);
302d6637 1141}
7ae457c1 1142EXPORT_SYMBOL_GPL(bpf_prog_destroy);
302d6637 1143
49b31e57
DB
1144static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1145{
1146 struct sk_filter *fp, *old_fp;
1147
1148 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1149 if (!fp)
1150 return -ENOMEM;
1151
1152 fp->prog = prog;
1153 atomic_set(&fp->refcnt, 0);
1154
1155 if (!sk_filter_charge(sk, fp)) {
1156 kfree(fp);
1157 return -ENOMEM;
1158 }
1159
1160 old_fp = rcu_dereference_protected(sk->sk_filter,
1161 sock_owned_by_user(sk));
1162 rcu_assign_pointer(sk->sk_filter, fp);
1163
1164 if (old_fp)
1165 sk_filter_uncharge(sk, old_fp);
1166
1167 return 0;
1168}
1169
1da177e4
LT
1170/**
1171 * sk_attach_filter - attach a socket filter
1172 * @fprog: the filter program
1173 * @sk: the socket to use
1174 *
1175 * Attach the user's filter code. We first run some sanity checks on
1176 * it to make sure it does not explode on us later. If an error
1177 * occurs or there is insufficient memory for the filter a negative
1178 * errno code is returned. On success the return is zero.
1179 */
1180int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1181{
009937e7 1182 unsigned int fsize = bpf_classic_proglen(fprog);
7ae457c1
AS
1183 unsigned int bpf_fsize = bpf_prog_size(fprog->len);
1184 struct bpf_prog *prog;
1da177e4
LT
1185 int err;
1186
d59577b6
VB
1187 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1188 return -EPERM;
1189
1da177e4 1190 /* Make sure new filter is there and in the right amounts. */
e35bedf3
KK
1191 if (fprog->filter == NULL)
1192 return -EINVAL;
1da177e4 1193
60a3b225 1194 prog = bpf_prog_alloc(bpf_fsize, 0);
7ae457c1 1195 if (!prog)
1da177e4 1196 return -ENOMEM;
a3ea269b 1197
7ae457c1 1198 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
c0d1379a 1199 __bpf_prog_free(prog);
1da177e4
LT
1200 return -EFAULT;
1201 }
1202
7ae457c1 1203 prog->len = fprog->len;
1da177e4 1204
7ae457c1 1205 err = bpf_prog_store_orig_filter(prog, fprog);
a3ea269b 1206 if (err) {
c0d1379a 1207 __bpf_prog_free(prog);
a3ea269b
DB
1208 return -ENOMEM;
1209 }
1210
7ae457c1 1211 /* bpf_prepare_filter() already takes care of freeing
bd4cf0ed
AS
1212 * memory in case something goes wrong.
1213 */
4ae92bc7 1214 prog = bpf_prepare_filter(prog, NULL);
7ae457c1
AS
1215 if (IS_ERR(prog))
1216 return PTR_ERR(prog);
1217
49b31e57
DB
1218 err = __sk_attach_prog(prog, sk);
1219 if (err < 0) {
7ae457c1 1220 __bpf_prog_release(prog);
49b31e57 1221 return err;
278571ba
AS
1222 }
1223
d3904b73 1224 return 0;
1da177e4 1225}
5ff3f073 1226EXPORT_SYMBOL_GPL(sk_attach_filter);
1da177e4 1227
89aa0758
AS
1228int sk_attach_bpf(u32 ufd, struct sock *sk)
1229{
89aa0758 1230 struct bpf_prog *prog;
49b31e57 1231 int err;
89aa0758
AS
1232
1233 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1234 return -EPERM;
1235
1236 prog = bpf_prog_get(ufd);
198bf1b0
AS
1237 if (IS_ERR(prog))
1238 return PTR_ERR(prog);
89aa0758 1239
24701ece 1240 if (prog->type != BPF_PROG_TYPE_SOCKET_FILTER) {
89aa0758
AS
1241 bpf_prog_put(prog);
1242 return -EINVAL;
1243 }
1244
49b31e57
DB
1245 err = __sk_attach_prog(prog, sk);
1246 if (err < 0) {
89aa0758 1247 bpf_prog_put(prog);
49b31e57 1248 return err;
89aa0758
AS
1249 }
1250
89aa0758
AS
1251 return 0;
1252}
1253
91bc4822 1254#define BPF_RECOMPUTE_CSUM(flags) ((flags) & 1)
05c74e5e 1255#define BPF_LDST_LEN 16U
91bc4822
AS
1256
1257static u64 bpf_skb_store_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 flags)
608cd71a
AS
1258{
1259 struct sk_buff *skb = (struct sk_buff *) (long) r1;
a166151c 1260 int offset = (int) r2;
608cd71a
AS
1261 void *from = (void *) (long) r3;
1262 unsigned int len = (unsigned int) r4;
05c74e5e 1263 char buf[BPF_LDST_LEN];
608cd71a
AS
1264 void *ptr;
1265
1266 /* bpf verifier guarantees that:
1267 * 'from' pointer points to bpf program stack
1268 * 'len' bytes of it were initialized
1269 * 'len' > 0
1270 * 'skb' is a valid pointer to 'struct sk_buff'
1271 *
1272 * so check for invalid 'offset' and too large 'len'
1273 */
a166151c 1274 if (unlikely((u32) offset > 0xffff || len > sizeof(buf)))
608cd71a
AS
1275 return -EFAULT;
1276
a166151c 1277 if (unlikely(skb_cloned(skb) &&
3431205e 1278 !skb_clone_writable(skb, offset + len)))
608cd71a
AS
1279 return -EFAULT;
1280
1281 ptr = skb_header_pointer(skb, offset, len, buf);
1282 if (unlikely(!ptr))
1283 return -EFAULT;
1284
91bc4822
AS
1285 if (BPF_RECOMPUTE_CSUM(flags))
1286 skb_postpull_rcsum(skb, ptr, len);
608cd71a
AS
1287
1288 memcpy(ptr, from, len);
1289
1290 if (ptr == buf)
1291 /* skb_store_bits cannot return -EFAULT here */
1292 skb_store_bits(skb, offset, ptr, len);
1293
91bc4822 1294 if (BPF_RECOMPUTE_CSUM(flags) && skb->ip_summed == CHECKSUM_COMPLETE)
608cd71a
AS
1295 skb->csum = csum_add(skb->csum, csum_partial(ptr, len, 0));
1296 return 0;
1297}
1298
1299const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1300 .func = bpf_skb_store_bytes,
1301 .gpl_only = false,
1302 .ret_type = RET_INTEGER,
1303 .arg1_type = ARG_PTR_TO_CTX,
1304 .arg2_type = ARG_ANYTHING,
1305 .arg3_type = ARG_PTR_TO_STACK,
1306 .arg4_type = ARG_CONST_STACK_SIZE,
91bc4822
AS
1307 .arg5_type = ARG_ANYTHING,
1308};
1309
05c74e5e
DB
1310static u64 bpf_skb_load_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1311{
1312 const struct sk_buff *skb = (const struct sk_buff *)(unsigned long) r1;
1313 int offset = (int) r2;
1314 void *to = (void *)(unsigned long) r3;
1315 unsigned int len = (unsigned int) r4;
1316 void *ptr;
1317
1318 if (unlikely((u32) offset > 0xffff || len > BPF_LDST_LEN))
1319 return -EFAULT;
1320
1321 ptr = skb_header_pointer(skb, offset, len, to);
1322 if (unlikely(!ptr))
1323 return -EFAULT;
1324 if (ptr != to)
1325 memcpy(to, ptr, len);
1326
1327 return 0;
1328}
1329
1330const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1331 .func = bpf_skb_load_bytes,
1332 .gpl_only = false,
1333 .ret_type = RET_INTEGER,
1334 .arg1_type = ARG_PTR_TO_CTX,
1335 .arg2_type = ARG_ANYTHING,
1336 .arg3_type = ARG_PTR_TO_STACK,
1337 .arg4_type = ARG_CONST_STACK_SIZE,
1338};
1339
91bc4822
AS
1340#define BPF_HEADER_FIELD_SIZE(flags) ((flags) & 0x0f)
1341#define BPF_IS_PSEUDO_HEADER(flags) ((flags) & 0x10)
1342
a166151c 1343static u64 bpf_l3_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
91bc4822
AS
1344{
1345 struct sk_buff *skb = (struct sk_buff *) (long) r1;
a166151c 1346 int offset = (int) r2;
91bc4822
AS
1347 __sum16 sum, *ptr;
1348
a166151c 1349 if (unlikely((u32) offset > 0xffff))
91bc4822
AS
1350 return -EFAULT;
1351
a166151c 1352 if (unlikely(skb_cloned(skb) &&
3431205e 1353 !skb_clone_writable(skb, offset + sizeof(sum))))
91bc4822
AS
1354 return -EFAULT;
1355
1356 ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1357 if (unlikely(!ptr))
1358 return -EFAULT;
1359
1360 switch (BPF_HEADER_FIELD_SIZE(flags)) {
1361 case 2:
1362 csum_replace2(ptr, from, to);
1363 break;
1364 case 4:
1365 csum_replace4(ptr, from, to);
1366 break;
1367 default:
1368 return -EINVAL;
1369 }
1370
1371 if (ptr == &sum)
1372 /* skb_store_bits guaranteed to not return -EFAULT here */
1373 skb_store_bits(skb, offset, ptr, sizeof(sum));
1374
1375 return 0;
1376}
1377
1378const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1379 .func = bpf_l3_csum_replace,
1380 .gpl_only = false,
1381 .ret_type = RET_INTEGER,
1382 .arg1_type = ARG_PTR_TO_CTX,
1383 .arg2_type = ARG_ANYTHING,
1384 .arg3_type = ARG_ANYTHING,
1385 .arg4_type = ARG_ANYTHING,
1386 .arg5_type = ARG_ANYTHING,
1387};
1388
a166151c 1389static u64 bpf_l4_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
91bc4822
AS
1390{
1391 struct sk_buff *skb = (struct sk_buff *) (long) r1;
4b048d6d 1392 bool is_pseudo = !!BPF_IS_PSEUDO_HEADER(flags);
a166151c 1393 int offset = (int) r2;
91bc4822
AS
1394 __sum16 sum, *ptr;
1395
a166151c 1396 if (unlikely((u32) offset > 0xffff))
91bc4822
AS
1397 return -EFAULT;
1398
a166151c 1399 if (unlikely(skb_cloned(skb) &&
3431205e 1400 !skb_clone_writable(skb, offset + sizeof(sum))))
91bc4822
AS
1401 return -EFAULT;
1402
1403 ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1404 if (unlikely(!ptr))
1405 return -EFAULT;
1406
1407 switch (BPF_HEADER_FIELD_SIZE(flags)) {
1408 case 2:
1409 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1410 break;
1411 case 4:
1412 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1413 break;
1414 default:
1415 return -EINVAL;
1416 }
1417
1418 if (ptr == &sum)
1419 /* skb_store_bits guaranteed to not return -EFAULT here */
1420 skb_store_bits(skb, offset, ptr, sizeof(sum));
1421
1422 return 0;
1423}
1424
1425const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1426 .func = bpf_l4_csum_replace,
1427 .gpl_only = false,
1428 .ret_type = RET_INTEGER,
1429 .arg1_type = ARG_PTR_TO_CTX,
1430 .arg2_type = ARG_ANYTHING,
1431 .arg3_type = ARG_ANYTHING,
1432 .arg4_type = ARG_ANYTHING,
1433 .arg5_type = ARG_ANYTHING,
608cd71a
AS
1434};
1435
3896d655
AS
1436#define BPF_IS_REDIRECT_INGRESS(flags) ((flags) & 1)
1437
1438static u64 bpf_clone_redirect(u64 r1, u64 ifindex, u64 flags, u64 r4, u64 r5)
1439{
1440 struct sk_buff *skb = (struct sk_buff *) (long) r1, *skb2;
1441 struct net_device *dev;
1442
1443 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1444 if (unlikely(!dev))
1445 return -EINVAL;
1446
3896d655
AS
1447 skb2 = skb_clone(skb, GFP_ATOMIC);
1448 if (unlikely(!skb2))
1449 return -ENOMEM;
1450
3896d655
AS
1451 if (BPF_IS_REDIRECT_INGRESS(flags))
1452 return dev_forward_skb(dev, skb2);
1453
1454 skb2->dev = dev;
6bf05773 1455 skb_sender_cpu_clear(skb2);
3896d655
AS
1456 return dev_queue_xmit(skb2);
1457}
1458
1459const struct bpf_func_proto bpf_clone_redirect_proto = {
1460 .func = bpf_clone_redirect,
1461 .gpl_only = false,
1462 .ret_type = RET_INTEGER,
1463 .arg1_type = ARG_PTR_TO_CTX,
1464 .arg2_type = ARG_ANYTHING,
1465 .arg3_type = ARG_ANYTHING,
1466};
1467
27b29f63
AS
1468struct redirect_info {
1469 u32 ifindex;
1470 u32 flags;
1471};
1472
1473static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1474static u64 bpf_redirect(u64 ifindex, u64 flags, u64 r3, u64 r4, u64 r5)
1475{
1476 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1477
1478 ri->ifindex = ifindex;
1479 ri->flags = flags;
1480 return TC_ACT_REDIRECT;
1481}
1482
1483int skb_do_redirect(struct sk_buff *skb)
1484{
1485 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1486 struct net_device *dev;
1487
1488 dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1489 ri->ifindex = 0;
1490 if (unlikely(!dev)) {
1491 kfree_skb(skb);
1492 return -EINVAL;
1493 }
1494
1495 if (BPF_IS_REDIRECT_INGRESS(ri->flags))
1496 return dev_forward_skb(dev, skb);
1497
1498 skb->dev = dev;
cfc81b50 1499 skb_sender_cpu_clear(skb);
27b29f63
AS
1500 return dev_queue_xmit(skb);
1501}
1502
1503const struct bpf_func_proto bpf_redirect_proto = {
1504 .func = bpf_redirect,
1505 .gpl_only = false,
1506 .ret_type = RET_INTEGER,
1507 .arg1_type = ARG_ANYTHING,
1508 .arg2_type = ARG_ANYTHING,
1509};
1510
8d20aabe
DB
1511static u64 bpf_get_cgroup_classid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1512{
1513 return task_get_classid((struct sk_buff *) (unsigned long) r1);
1514}
1515
1516static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
1517 .func = bpf_get_cgroup_classid,
1518 .gpl_only = false,
1519 .ret_type = RET_INTEGER,
1520 .arg1_type = ARG_PTR_TO_CTX,
1521};
1522
c46646d0
DB
1523static u64 bpf_get_route_realm(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1524{
1525#ifdef CONFIG_IP_ROUTE_CLASSID
1526 const struct dst_entry *dst;
1527
1528 dst = skb_dst((struct sk_buff *) (unsigned long) r1);
1529 if (dst)
1530 return dst->tclassid;
1531#endif
1532 return 0;
1533}
1534
1535static const struct bpf_func_proto bpf_get_route_realm_proto = {
1536 .func = bpf_get_route_realm,
1537 .gpl_only = false,
1538 .ret_type = RET_INTEGER,
1539 .arg1_type = ARG_PTR_TO_CTX,
1540};
1541
4e10df9a
AS
1542static u64 bpf_skb_vlan_push(u64 r1, u64 r2, u64 vlan_tci, u64 r4, u64 r5)
1543{
1544 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1545 __be16 vlan_proto = (__force __be16) r2;
1546
1547 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
1548 vlan_proto != htons(ETH_P_8021AD)))
1549 vlan_proto = htons(ETH_P_8021Q);
1550
1551 return skb_vlan_push(skb, vlan_proto, vlan_tci);
1552}
1553
1554const struct bpf_func_proto bpf_skb_vlan_push_proto = {
1555 .func = bpf_skb_vlan_push,
1556 .gpl_only = false,
1557 .ret_type = RET_INTEGER,
1558 .arg1_type = ARG_PTR_TO_CTX,
1559 .arg2_type = ARG_ANYTHING,
1560 .arg3_type = ARG_ANYTHING,
1561};
4d9c5c53 1562EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
4e10df9a
AS
1563
1564static u64 bpf_skb_vlan_pop(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1565{
1566 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1567
1568 return skb_vlan_pop(skb);
1569}
1570
1571const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
1572 .func = bpf_skb_vlan_pop,
1573 .gpl_only = false,
1574 .ret_type = RET_INTEGER,
1575 .arg1_type = ARG_PTR_TO_CTX,
1576};
4d9c5c53 1577EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
4e10df9a
AS
1578
1579bool bpf_helper_changes_skb_data(void *func)
1580{
1581 if (func == bpf_skb_vlan_push)
1582 return true;
1583 if (func == bpf_skb_vlan_pop)
1584 return true;
1585 return false;
1586}
1587
d3aa45ce
AS
1588static u64 bpf_skb_get_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
1589{
1590 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1591 struct bpf_tunnel_key *to = (struct bpf_tunnel_key *) (long) r2;
61adedf3 1592 struct ip_tunnel_info *info = skb_tunnel_info(skb);
d3aa45ce
AS
1593
1594 if (unlikely(size != sizeof(struct bpf_tunnel_key) || flags || !info))
1595 return -EINVAL;
7f9562a1
JB
1596 if (ip_tunnel_info_af(info) != AF_INET)
1597 return -EINVAL;
d3aa45ce
AS
1598
1599 to->tunnel_id = be64_to_cpu(info->key.tun_id);
c1ea5d67 1600 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
d3aa45ce
AS
1601
1602 return 0;
1603}
1604
1605const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
1606 .func = bpf_skb_get_tunnel_key,
1607 .gpl_only = false,
1608 .ret_type = RET_INTEGER,
1609 .arg1_type = ARG_PTR_TO_CTX,
1610 .arg2_type = ARG_PTR_TO_STACK,
1611 .arg3_type = ARG_CONST_STACK_SIZE,
1612 .arg4_type = ARG_ANYTHING,
1613};
1614
1615static struct metadata_dst __percpu *md_dst;
1616
1617static u64 bpf_skb_set_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
1618{
1619 struct sk_buff *skb = (struct sk_buff *) (long) r1;
1620 struct bpf_tunnel_key *from = (struct bpf_tunnel_key *) (long) r2;
1621 struct metadata_dst *md = this_cpu_ptr(md_dst);
1622 struct ip_tunnel_info *info;
1623
1624 if (unlikely(size != sizeof(struct bpf_tunnel_key) || flags))
1625 return -EINVAL;
1626
1627 skb_dst_drop(skb);
1628 dst_hold((struct dst_entry *) md);
1629 skb_dst_set(skb, (struct dst_entry *) md);
1630
1631 info = &md->u.tun_info;
1632 info->mode = IP_TUNNEL_INFO_TX;
1dd34b5a 1633 info->key.tun_flags = TUNNEL_KEY;
d3aa45ce 1634 info->key.tun_id = cpu_to_be64(from->tunnel_id);
c1ea5d67 1635 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
d3aa45ce
AS
1636
1637 return 0;
1638}
1639
1640const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
1641 .func = bpf_skb_set_tunnel_key,
1642 .gpl_only = false,
1643 .ret_type = RET_INTEGER,
1644 .arg1_type = ARG_PTR_TO_CTX,
1645 .arg2_type = ARG_PTR_TO_STACK,
1646 .arg3_type = ARG_CONST_STACK_SIZE,
1647 .arg4_type = ARG_ANYTHING,
1648};
1649
1650static const struct bpf_func_proto *bpf_get_skb_set_tunnel_key_proto(void)
1651{
1652 if (!md_dst) {
1653 /* race is not possible, since it's called from
1654 * verifier that is holding verifier mutex
1655 */
1656 md_dst = metadata_dst_alloc_percpu(0, GFP_KERNEL);
1657 if (!md_dst)
1658 return NULL;
1659 }
1660 return &bpf_skb_set_tunnel_key_proto;
1661}
1662
d4052c4a
DB
1663static const struct bpf_func_proto *
1664sk_filter_func_proto(enum bpf_func_id func_id)
89aa0758
AS
1665{
1666 switch (func_id) {
1667 case BPF_FUNC_map_lookup_elem:
1668 return &bpf_map_lookup_elem_proto;
1669 case BPF_FUNC_map_update_elem:
1670 return &bpf_map_update_elem_proto;
1671 case BPF_FUNC_map_delete_elem:
1672 return &bpf_map_delete_elem_proto;
03e69b50
DB
1673 case BPF_FUNC_get_prandom_u32:
1674 return &bpf_get_prandom_u32_proto;
c04167ce
DB
1675 case BPF_FUNC_get_smp_processor_id:
1676 return &bpf_get_smp_processor_id_proto;
04fd61ab
AS
1677 case BPF_FUNC_tail_call:
1678 return &bpf_tail_call_proto;
17ca8cbf
DB
1679 case BPF_FUNC_ktime_get_ns:
1680 return &bpf_ktime_get_ns_proto;
0756ea3e 1681 case BPF_FUNC_trace_printk:
1be7f75d
AS
1682 if (capable(CAP_SYS_ADMIN))
1683 return bpf_get_trace_printk_proto();
89aa0758
AS
1684 default:
1685 return NULL;
1686 }
1687}
1688
608cd71a
AS
1689static const struct bpf_func_proto *
1690tc_cls_act_func_proto(enum bpf_func_id func_id)
1691{
1692 switch (func_id) {
1693 case BPF_FUNC_skb_store_bytes:
1694 return &bpf_skb_store_bytes_proto;
05c74e5e
DB
1695 case BPF_FUNC_skb_load_bytes:
1696 return &bpf_skb_load_bytes_proto;
91bc4822
AS
1697 case BPF_FUNC_l3_csum_replace:
1698 return &bpf_l3_csum_replace_proto;
1699 case BPF_FUNC_l4_csum_replace:
1700 return &bpf_l4_csum_replace_proto;
3896d655
AS
1701 case BPF_FUNC_clone_redirect:
1702 return &bpf_clone_redirect_proto;
8d20aabe
DB
1703 case BPF_FUNC_get_cgroup_classid:
1704 return &bpf_get_cgroup_classid_proto;
4e10df9a
AS
1705 case BPF_FUNC_skb_vlan_push:
1706 return &bpf_skb_vlan_push_proto;
1707 case BPF_FUNC_skb_vlan_pop:
1708 return &bpf_skb_vlan_pop_proto;
d3aa45ce
AS
1709 case BPF_FUNC_skb_get_tunnel_key:
1710 return &bpf_skb_get_tunnel_key_proto;
1711 case BPF_FUNC_skb_set_tunnel_key:
1712 return bpf_get_skb_set_tunnel_key_proto();
27b29f63
AS
1713 case BPF_FUNC_redirect:
1714 return &bpf_redirect_proto;
c46646d0
DB
1715 case BPF_FUNC_get_route_realm:
1716 return &bpf_get_route_realm_proto;
608cd71a
AS
1717 default:
1718 return sk_filter_func_proto(func_id);
1719 }
1720}
1721
d691f9e8 1722static bool __is_valid_access(int off, int size, enum bpf_access_type type)
89aa0758 1723{
9bac3d6d
AS
1724 /* check bounds */
1725 if (off < 0 || off >= sizeof(struct __sk_buff))
1726 return false;
1727
1728 /* disallow misaligned access */
1729 if (off % size != 0)
1730 return false;
1731
1732 /* all __sk_buff fields are __u32 */
1733 if (size != 4)
1734 return false;
1735
1736 return true;
1737}
1738
d691f9e8
AS
1739static bool sk_filter_is_valid_access(int off, int size,
1740 enum bpf_access_type type)
1741{
045efa82
DB
1742 if (off == offsetof(struct __sk_buff, tc_classid))
1743 return false;
1744
d691f9e8
AS
1745 if (type == BPF_WRITE) {
1746 switch (off) {
1747 case offsetof(struct __sk_buff, cb[0]) ...
1748 offsetof(struct __sk_buff, cb[4]):
1749 break;
1750 default:
1751 return false;
1752 }
1753 }
1754
1755 return __is_valid_access(off, size, type);
1756}
1757
1758static bool tc_cls_act_is_valid_access(int off, int size,
1759 enum bpf_access_type type)
1760{
045efa82
DB
1761 if (off == offsetof(struct __sk_buff, tc_classid))
1762 return type == BPF_WRITE ? true : false;
1763
d691f9e8
AS
1764 if (type == BPF_WRITE) {
1765 switch (off) {
1766 case offsetof(struct __sk_buff, mark):
1767 case offsetof(struct __sk_buff, tc_index):
754f1e6a 1768 case offsetof(struct __sk_buff, priority):
d691f9e8
AS
1769 case offsetof(struct __sk_buff, cb[0]) ...
1770 offsetof(struct __sk_buff, cb[4]):
1771 break;
1772 default:
1773 return false;
1774 }
1775 }
1776 return __is_valid_access(off, size, type);
1777}
1778
1779static u32 bpf_net_convert_ctx_access(enum bpf_access_type type, int dst_reg,
1780 int src_reg, int ctx_off,
ff936a04
AS
1781 struct bpf_insn *insn_buf,
1782 struct bpf_prog *prog)
9bac3d6d
AS
1783{
1784 struct bpf_insn *insn = insn_buf;
1785
1786 switch (ctx_off) {
1787 case offsetof(struct __sk_buff, len):
1788 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
1789
1790 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1791 offsetof(struct sk_buff, len));
1792 break;
1793
0b8c707d
DB
1794 case offsetof(struct __sk_buff, protocol):
1795 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
1796
1797 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1798 offsetof(struct sk_buff, protocol));
1799 break;
1800
27cd5452
MS
1801 case offsetof(struct __sk_buff, vlan_proto):
1802 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
1803
1804 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1805 offsetof(struct sk_buff, vlan_proto));
1806 break;
1807
bcad5718
DB
1808 case offsetof(struct __sk_buff, priority):
1809 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);
1810
754f1e6a
DB
1811 if (type == BPF_WRITE)
1812 *insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
1813 offsetof(struct sk_buff, priority));
1814 else
1815 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1816 offsetof(struct sk_buff, priority));
bcad5718
DB
1817 break;
1818
37e82c2f
AS
1819 case offsetof(struct __sk_buff, ingress_ifindex):
1820 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);
1821
1822 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1823 offsetof(struct sk_buff, skb_iif));
1824 break;
1825
1826 case offsetof(struct __sk_buff, ifindex):
1827 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
1828
1829 *insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
1830 dst_reg, src_reg,
1831 offsetof(struct sk_buff, dev));
1832 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
1833 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
1834 offsetof(struct net_device, ifindex));
1835 break;
1836
ba7591d8
DB
1837 case offsetof(struct __sk_buff, hash):
1838 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
1839
1840 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1841 offsetof(struct sk_buff, hash));
1842 break;
1843
9bac3d6d 1844 case offsetof(struct __sk_buff, mark):
d691f9e8
AS
1845 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
1846
1847 if (type == BPF_WRITE)
1848 *insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
1849 offsetof(struct sk_buff, mark));
1850 else
1851 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1852 offsetof(struct sk_buff, mark));
1853 break;
9bac3d6d
AS
1854
1855 case offsetof(struct __sk_buff, pkt_type):
1856 return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);
1857
1858 case offsetof(struct __sk_buff, queue_mapping):
1859 return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
c2497395 1860
c2497395
AS
1861 case offsetof(struct __sk_buff, vlan_present):
1862 return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
1863 dst_reg, src_reg, insn);
1864
1865 case offsetof(struct __sk_buff, vlan_tci):
1866 return convert_skb_access(SKF_AD_VLAN_TAG,
1867 dst_reg, src_reg, insn);
d691f9e8
AS
1868
1869 case offsetof(struct __sk_buff, cb[0]) ...
1870 offsetof(struct __sk_buff, cb[4]):
1871 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
1872
ff936a04 1873 prog->cb_access = 1;
d691f9e8
AS
1874 ctx_off -= offsetof(struct __sk_buff, cb[0]);
1875 ctx_off += offsetof(struct sk_buff, cb);
1876 ctx_off += offsetof(struct qdisc_skb_cb, data);
1877 if (type == BPF_WRITE)
1878 *insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
1879 else
1880 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
1881 break;
1882
045efa82
DB
1883 case offsetof(struct __sk_buff, tc_classid):
1884 ctx_off -= offsetof(struct __sk_buff, tc_classid);
1885 ctx_off += offsetof(struct sk_buff, cb);
1886 ctx_off += offsetof(struct qdisc_skb_cb, tc_classid);
1887 WARN_ON(type != BPF_WRITE);
1888 *insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
1889 break;
1890
d691f9e8
AS
1891 case offsetof(struct __sk_buff, tc_index):
1892#ifdef CONFIG_NET_SCHED
1893 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);
1894
1895 if (type == BPF_WRITE)
1896 *insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg,
1897 offsetof(struct sk_buff, tc_index));
1898 else
1899 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1900 offsetof(struct sk_buff, tc_index));
1901 break;
1902#else
1903 if (type == BPF_WRITE)
1904 *insn++ = BPF_MOV64_REG(dst_reg, dst_reg);
1905 else
1906 *insn++ = BPF_MOV64_IMM(dst_reg, 0);
1907 break;
1908#endif
9bac3d6d
AS
1909 }
1910
1911 return insn - insn_buf;
89aa0758
AS
1912}
1913
d4052c4a
DB
1914static const struct bpf_verifier_ops sk_filter_ops = {
1915 .get_func_proto = sk_filter_func_proto,
1916 .is_valid_access = sk_filter_is_valid_access,
d691f9e8 1917 .convert_ctx_access = bpf_net_convert_ctx_access,
89aa0758
AS
1918};
1919
608cd71a
AS
1920static const struct bpf_verifier_ops tc_cls_act_ops = {
1921 .get_func_proto = tc_cls_act_func_proto,
d691f9e8
AS
1922 .is_valid_access = tc_cls_act_is_valid_access,
1923 .convert_ctx_access = bpf_net_convert_ctx_access,
608cd71a
AS
1924};
1925
d4052c4a
DB
1926static struct bpf_prog_type_list sk_filter_type __read_mostly = {
1927 .ops = &sk_filter_ops,
89aa0758
AS
1928 .type = BPF_PROG_TYPE_SOCKET_FILTER,
1929};
1930
96be4325 1931static struct bpf_prog_type_list sched_cls_type __read_mostly = {
608cd71a 1932 .ops = &tc_cls_act_ops,
96be4325
DB
1933 .type = BPF_PROG_TYPE_SCHED_CLS,
1934};
1935
94caee8c 1936static struct bpf_prog_type_list sched_act_type __read_mostly = {
608cd71a 1937 .ops = &tc_cls_act_ops,
94caee8c
DB
1938 .type = BPF_PROG_TYPE_SCHED_ACT,
1939};
1940
d4052c4a 1941static int __init register_sk_filter_ops(void)
89aa0758 1942{
d4052c4a 1943 bpf_register_prog_type(&sk_filter_type);
96be4325 1944 bpf_register_prog_type(&sched_cls_type);
94caee8c 1945 bpf_register_prog_type(&sched_act_type);
96be4325 1946
89aa0758
AS
1947 return 0;
1948}
d4052c4a
DB
1949late_initcall(register_sk_filter_ops);
1950
55b33325
PE
1951int sk_detach_filter(struct sock *sk)
1952{
1953 int ret = -ENOENT;
1954 struct sk_filter *filter;
1955
d59577b6
VB
1956 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1957 return -EPERM;
1958
f91ff5b9
ED
1959 filter = rcu_dereference_protected(sk->sk_filter,
1960 sock_owned_by_user(sk));
55b33325 1961 if (filter) {
a9b3cd7f 1962 RCU_INIT_POINTER(sk->sk_filter, NULL);
46bcf14f 1963 sk_filter_uncharge(sk, filter);
55b33325
PE
1964 ret = 0;
1965 }
a3ea269b 1966
55b33325
PE
1967 return ret;
1968}
5ff3f073 1969EXPORT_SYMBOL_GPL(sk_detach_filter);
a8fc9277 1970
a3ea269b
DB
1971int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
1972 unsigned int len)
a8fc9277 1973{
a3ea269b 1974 struct sock_fprog_kern *fprog;
a8fc9277 1975 struct sk_filter *filter;
a3ea269b 1976 int ret = 0;
a8fc9277
PE
1977
1978 lock_sock(sk);
1979 filter = rcu_dereference_protected(sk->sk_filter,
a3ea269b 1980 sock_owned_by_user(sk));
a8fc9277
PE
1981 if (!filter)
1982 goto out;
a3ea269b
DB
1983
1984 /* We're copying the filter that has been originally attached,
93d08b69
DB
1985 * so no conversion/decode needed anymore. eBPF programs that
1986 * have no original program cannot be dumped through this.
a3ea269b 1987 */
93d08b69 1988 ret = -EACCES;
7ae457c1 1989 fprog = filter->prog->orig_prog;
93d08b69
DB
1990 if (!fprog)
1991 goto out;
a3ea269b
DB
1992
1993 ret = fprog->len;
a8fc9277 1994 if (!len)
a3ea269b 1995 /* User space only enquires number of filter blocks. */
a8fc9277 1996 goto out;
a3ea269b 1997
a8fc9277 1998 ret = -EINVAL;
a3ea269b 1999 if (len < fprog->len)
a8fc9277
PE
2000 goto out;
2001
2002 ret = -EFAULT;
009937e7 2003 if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
a3ea269b 2004 goto out;
a8fc9277 2005
a3ea269b
DB
2006 /* Instead of bytes, the API requests to return the number
2007 * of filter blocks.
2008 */
2009 ret = fprog->len;
a8fc9277
PE
2010out:
2011 release_sock(sk);
2012 return ret;
2013}