]> git.ipfire.org Git - thirdparty/linux.git/blame - net/core/skbuff.c
netfilter: Correct calculation using skb->tail and skb-network_header
[thirdparty/linux.git] / net / core / skbuff.c
CommitLineData
1da177e4
LT
1/*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
113aa838 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
1da177e4
LT
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
1da177e4
LT
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35/*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
e005d193
JP
39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
1da177e4
LT
41#include <linux/module.h>
42#include <linux/types.h>
43#include <linux/kernel.h>
fe55f6d5 44#include <linux/kmemcheck.h>
1da177e4
LT
45#include <linux/mm.h>
46#include <linux/interrupt.h>
47#include <linux/in.h>
48#include <linux/inet.h>
49#include <linux/slab.h>
50#include <linux/netdevice.h>
51#ifdef CONFIG_NET_CLS_ACT
52#include <net/pkt_sched.h>
53#endif
54#include <linux/string.h>
55#include <linux/skbuff.h>
9c55e01c 56#include <linux/splice.h>
1da177e4
LT
57#include <linux/cache.h>
58#include <linux/rtnetlink.h>
59#include <linux/init.h>
716ea3a7 60#include <linux/scatterlist.h>
ac45f602 61#include <linux/errqueue.h>
268bb0ce 62#include <linux/prefetch.h>
1da177e4
LT
63
64#include <net/protocol.h>
65#include <net/dst.h>
66#include <net/sock.h>
67#include <net/checksum.h>
68#include <net/xfrm.h>
69
70#include <asm/uaccess.h>
ad8d75ff 71#include <trace/events/skb.h>
51c56b00 72#include <linux/highmem.h>
a1f8e7f7 73
d7e8883c 74struct kmem_cache *skbuff_head_cache __read_mostly;
e18b890b 75static struct kmem_cache *skbuff_fclone_cache __read_mostly;
1da177e4 76
9c55e01c
JA
77static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
79{
8b9d3728 80 put_page(buf->page);
9c55e01c
JA
81}
82
83static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
85{
8b9d3728 86 get_page(buf->page);
9c55e01c
JA
87}
88
89static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
91{
92 return 1;
93}
94
95
96/* Pipe buffer operations for a socket. */
28dfef8f 97static const struct pipe_buf_operations sock_pipe_buf_ops = {
9c55e01c
JA
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
105};
106
1da177e4 107/**
f05de73b
JS
108 * skb_panic - private function for out-of-line support
109 * @skb: buffer
110 * @sz: size
111 * @addr: address
99d5851e 112 * @msg: skb_over_panic or skb_under_panic
1da177e4 113 *
f05de73b
JS
114 * Out-of-line support for skb_put() and skb_push().
115 * Called via the wrapper skb_over_panic() or skb_under_panic().
116 * Keep out of line to prevent kernel bloat.
117 * __builtin_return_address is not used because it is not always reliable.
1da177e4 118 */
f05de73b 119static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99d5851e 120 const char msg[])
1da177e4 121{
e005d193 122 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
99d5851e 123 msg, addr, skb->len, sz, skb->head, skb->data,
e005d193
JP
124 (unsigned long)skb->tail, (unsigned long)skb->end,
125 skb->dev ? skb->dev->name : "<NULL>");
1da177e4
LT
126 BUG();
127}
128
f05de73b 129static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
1da177e4 130{
f05de73b 131 skb_panic(skb, sz, addr, __func__);
1da177e4
LT
132}
133
f05de73b
JS
134static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
135{
136 skb_panic(skb, sz, addr, __func__);
137}
c93bdd0e
MG
138
139/*
140 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
141 * the caller if emergency pfmemalloc reserves are being used. If it is and
142 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
143 * may be used. Otherwise, the packet data may be discarded until enough
144 * memory is free
145 */
146#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
147 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
61c5e88a 148
149static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
150 unsigned long ip, bool *pfmemalloc)
c93bdd0e
MG
151{
152 void *obj;
153 bool ret_pfmemalloc = false;
154
155 /*
156 * Try a regular allocation, when that fails and we're not entitled
157 * to the reserves, fail.
158 */
159 obj = kmalloc_node_track_caller(size,
160 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
161 node);
162 if (obj || !(gfp_pfmemalloc_allowed(flags)))
163 goto out;
164
165 /* Try again but now we are using pfmemalloc reserves */
166 ret_pfmemalloc = true;
167 obj = kmalloc_node_track_caller(size, flags, node);
168
169out:
170 if (pfmemalloc)
171 *pfmemalloc = ret_pfmemalloc;
172
173 return obj;
174}
175
1da177e4
LT
176/* Allocate a new skbuff. We do this ourselves so we can fill in a few
177 * 'private' fields and also do memory statistics to find all the
178 * [BEEP] leaks.
179 *
180 */
181
0ebd0ac5
PM
182struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
183{
184 struct sk_buff *skb;
185
186 /* Get the HEAD */
187 skb = kmem_cache_alloc_node(skbuff_head_cache,
188 gfp_mask & ~__GFP_DMA, node);
189 if (!skb)
190 goto out;
191
192 /*
193 * Only clear those fields we need to clear, not those that we will
194 * actually initialise below. Hence, don't put any more fields after
195 * the tail pointer in struct sk_buff!
196 */
197 memset(skb, 0, offsetof(struct sk_buff, tail));
198 skb->data = NULL;
199 skb->truesize = sizeof(struct sk_buff);
200 atomic_set(&skb->users, 1);
201
202#ifdef NET_SKBUFF_DATA_USES_OFFSET
06ecf24b 203 skb->mac_header = (__u16) ~0U;
0ebd0ac5
PM
204#endif
205out:
206 return skb;
207}
208
1da177e4 209/**
d179cd12 210 * __alloc_skb - allocate a network buffer
1da177e4
LT
211 * @size: size to allocate
212 * @gfp_mask: allocation mask
c93bdd0e
MG
213 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
214 * instead of head cache and allocate a cloned (child) skb.
215 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
216 * allocations in case the data is required for writeback
b30973f8 217 * @node: numa node to allocate memory on
1da177e4
LT
218 *
219 * Allocate a new &sk_buff. The returned buffer has no headroom and a
94b6042c
BH
220 * tail room of at least size bytes. The object has a reference count
221 * of one. The return is the buffer. On a failure the return is %NULL.
1da177e4
LT
222 *
223 * Buffers may only be allocated from interrupts using a @gfp_mask of
224 * %GFP_ATOMIC.
225 */
dd0fc66f 226struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
c93bdd0e 227 int flags, int node)
1da177e4 228{
e18b890b 229 struct kmem_cache *cache;
4947d3ef 230 struct skb_shared_info *shinfo;
1da177e4
LT
231 struct sk_buff *skb;
232 u8 *data;
c93bdd0e 233 bool pfmemalloc;
1da177e4 234
c93bdd0e
MG
235 cache = (flags & SKB_ALLOC_FCLONE)
236 ? skbuff_fclone_cache : skbuff_head_cache;
237
238 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
239 gfp_mask |= __GFP_MEMALLOC;
8798b3fb 240
1da177e4 241 /* Get the HEAD */
b30973f8 242 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
1da177e4
LT
243 if (!skb)
244 goto out;
ec7d2f2c 245 prefetchw(skb);
1da177e4 246
87fb4b7b
ED
247 /* We do our best to align skb_shared_info on a separate cache
248 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
249 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
250 * Both skb->head and skb_shared_info are cache line aligned.
251 */
bc417e30 252 size = SKB_DATA_ALIGN(size);
87fb4b7b 253 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
c93bdd0e 254 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
1da177e4
LT
255 if (!data)
256 goto nodata;
87fb4b7b
ED
257 /* kmalloc(size) might give us more room than requested.
258 * Put skb_shared_info exactly at the end of allocated zone,
259 * to allow max possible filling before reallocation.
260 */
261 size = SKB_WITH_OVERHEAD(ksize(data));
ec7d2f2c 262 prefetchw(data + size);
1da177e4 263
ca0605a7 264 /*
c8005785
JB
265 * Only clear those fields we need to clear, not those that we will
266 * actually initialise below. Hence, don't put any more fields after
267 * the tail pointer in struct sk_buff!
ca0605a7
ACM
268 */
269 memset(skb, 0, offsetof(struct sk_buff, tail));
87fb4b7b
ED
270 /* Account for allocated memory : skb + skb->head */
271 skb->truesize = SKB_TRUESIZE(size);
c93bdd0e 272 skb->pfmemalloc = pfmemalloc;
1da177e4
LT
273 atomic_set(&skb->users, 1);
274 skb->head = data;
275 skb->data = data;
27a884dc 276 skb_reset_tail_pointer(skb);
4305b541 277 skb->end = skb->tail + size;
19633e12 278#ifdef NET_SKBUFF_DATA_USES_OFFSET
06ecf24b
DM
279 skb->mac_header = (__u16) ~0U;
280 skb->transport_header = (__u16) ~0U;
19633e12
SH
281#endif
282
4947d3ef
BL
283 /* make sure we initialize shinfo sequentially */
284 shinfo = skb_shinfo(skb);
ec7d2f2c 285 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
4947d3ef 286 atomic_set(&shinfo->dataref, 1);
c2aa3665 287 kmemcheck_annotate_variable(shinfo->destructor_arg);
4947d3ef 288
c93bdd0e 289 if (flags & SKB_ALLOC_FCLONE) {
d179cd12
DM
290 struct sk_buff *child = skb + 1;
291 atomic_t *fclone_ref = (atomic_t *) (child + 1);
1da177e4 292
fe55f6d5
VN
293 kmemcheck_annotate_bitfield(child, flags1);
294 kmemcheck_annotate_bitfield(child, flags2);
d179cd12
DM
295 skb->fclone = SKB_FCLONE_ORIG;
296 atomic_set(fclone_ref, 1);
297
298 child->fclone = SKB_FCLONE_UNAVAILABLE;
c93bdd0e 299 child->pfmemalloc = pfmemalloc;
d179cd12 300 }
1da177e4
LT
301out:
302 return skb;
303nodata:
8798b3fb 304 kmem_cache_free(cache, skb);
1da177e4
LT
305 skb = NULL;
306 goto out;
1da177e4 307}
b4ac530f 308EXPORT_SYMBOL(__alloc_skb);
1da177e4 309
b2b5ce9d
ED
310/**
311 * build_skb - build a network buffer
312 * @data: data buffer provided by caller
d3836f21 313 * @frag_size: size of fragment, or 0 if head was kmalloced
b2b5ce9d
ED
314 *
315 * Allocate a new &sk_buff. Caller provides space holding head and
316 * skb_shared_info. @data must have been allocated by kmalloc()
317 * The return is the new skb buffer.
318 * On a failure the return is %NULL, and @data is not freed.
319 * Notes :
320 * Before IO, driver allocates only data buffer where NIC put incoming frame
321 * Driver should add room at head (NET_SKB_PAD) and
322 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
323 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
324 * before giving packet to stack.
325 * RX rings only contains data buffers, not full skbs.
326 */
d3836f21 327struct sk_buff *build_skb(void *data, unsigned int frag_size)
b2b5ce9d
ED
328{
329 struct skb_shared_info *shinfo;
330 struct sk_buff *skb;
d3836f21 331 unsigned int size = frag_size ? : ksize(data);
b2b5ce9d
ED
332
333 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
334 if (!skb)
335 return NULL;
336
d3836f21 337 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
b2b5ce9d
ED
338
339 memset(skb, 0, offsetof(struct sk_buff, tail));
340 skb->truesize = SKB_TRUESIZE(size);
d3836f21 341 skb->head_frag = frag_size != 0;
b2b5ce9d
ED
342 atomic_set(&skb->users, 1);
343 skb->head = data;
344 skb->data = data;
345 skb_reset_tail_pointer(skb);
346 skb->end = skb->tail + size;
347#ifdef NET_SKBUFF_DATA_USES_OFFSET
06ecf24b
DM
348 skb->mac_header = (__u16) ~0U;
349 skb->transport_header = (__u16) ~0U;
b2b5ce9d
ED
350#endif
351
352 /* make sure we initialize shinfo sequentially */
353 shinfo = skb_shinfo(skb);
354 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
355 atomic_set(&shinfo->dataref, 1);
356 kmemcheck_annotate_variable(shinfo->destructor_arg);
357
358 return skb;
359}
360EXPORT_SYMBOL(build_skb);
361
a1c7fff7 362struct netdev_alloc_cache {
69b08f62
ED
363 struct page_frag frag;
364 /* we maintain a pagecount bias, so that we dont dirty cache line
365 * containing page->_count every time we allocate a fragment.
366 */
367 unsigned int pagecnt_bias;
a1c7fff7
ED
368};
369static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
370
c93bdd0e 371static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
6f532612
ED
372{
373 struct netdev_alloc_cache *nc;
374 void *data = NULL;
69b08f62 375 int order;
6f532612
ED
376 unsigned long flags;
377
378 local_irq_save(flags);
379 nc = &__get_cpu_var(netdev_alloc_cache);
69b08f62 380 if (unlikely(!nc->frag.page)) {
6f532612 381refill:
69b08f62
ED
382 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
383 gfp_t gfp = gfp_mask;
384
385 if (order)
386 gfp |= __GFP_COMP | __GFP_NOWARN;
387 nc->frag.page = alloc_pages(gfp, order);
388 if (likely(nc->frag.page))
389 break;
390 if (--order < 0)
391 goto end;
392 }
393 nc->frag.size = PAGE_SIZE << order;
540eb7bf 394recycle:
69b08f62
ED
395 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
396 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
397 nc->frag.offset = 0;
6f532612 398 }
540eb7bf 399
69b08f62 400 if (nc->frag.offset + fragsz > nc->frag.size) {
540eb7bf 401 /* avoid unnecessary locked operations if possible */
69b08f62
ED
402 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
403 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
540eb7bf
AD
404 goto recycle;
405 goto refill;
6f532612 406 }
540eb7bf 407
69b08f62
ED
408 data = page_address(nc->frag.page) + nc->frag.offset;
409 nc->frag.offset += fragsz;
540eb7bf
AD
410 nc->pagecnt_bias--;
411end:
6f532612
ED
412 local_irq_restore(flags);
413 return data;
414}
c93bdd0e
MG
415
416/**
417 * netdev_alloc_frag - allocate a page fragment
418 * @fragsz: fragment size
419 *
420 * Allocates a frag from a page for receive buffer.
421 * Uses GFP_ATOMIC allocations.
422 */
423void *netdev_alloc_frag(unsigned int fragsz)
424{
425 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
426}
6f532612
ED
427EXPORT_SYMBOL(netdev_alloc_frag);
428
8af27456
CH
429/**
430 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
431 * @dev: network device to receive on
432 * @length: length to allocate
433 * @gfp_mask: get_free_pages mask, passed to alloc_skb
434 *
435 * Allocate a new &sk_buff and assign it a usage count of one. The
436 * buffer has unspecified headroom built in. Users should allocate
437 * the headroom they think they need without accounting for the
438 * built in space. The built in space is used for optimisations.
439 *
440 * %NULL is returned if there is no free memory.
441 */
442struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
6f532612 443 unsigned int length, gfp_t gfp_mask)
8af27456 444{
6f532612 445 struct sk_buff *skb = NULL;
a1c7fff7
ED
446 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
447 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
448
310e158c 449 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
c93bdd0e
MG
450 void *data;
451
452 if (sk_memalloc_socks())
453 gfp_mask |= __GFP_MEMALLOC;
454
455 data = __netdev_alloc_frag(fragsz, gfp_mask);
a1c7fff7 456
6f532612
ED
457 if (likely(data)) {
458 skb = build_skb(data, fragsz);
459 if (unlikely(!skb))
460 put_page(virt_to_head_page(data));
a1c7fff7 461 }
a1c7fff7 462 } else {
c93bdd0e
MG
463 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
464 SKB_ALLOC_RX, NUMA_NO_NODE);
a1c7fff7 465 }
7b2e497a 466 if (likely(skb)) {
8af27456 467 skb_reserve(skb, NET_SKB_PAD);
7b2e497a
CH
468 skb->dev = dev;
469 }
8af27456
CH
470 return skb;
471}
b4ac530f 472EXPORT_SYMBOL(__netdev_alloc_skb);
1da177e4 473
654bed16 474void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
50269e19 475 int size, unsigned int truesize)
654bed16
PZ
476{
477 skb_fill_page_desc(skb, i, page, off, size);
478 skb->len += size;
479 skb->data_len += size;
50269e19 480 skb->truesize += truesize;
654bed16
PZ
481}
482EXPORT_SYMBOL(skb_add_rx_frag);
483
27b437c8 484static void skb_drop_list(struct sk_buff **listp)
1da177e4 485{
27b437c8 486 struct sk_buff *list = *listp;
1da177e4 487
27b437c8 488 *listp = NULL;
1da177e4
LT
489
490 do {
491 struct sk_buff *this = list;
492 list = list->next;
493 kfree_skb(this);
494 } while (list);
495}
496
27b437c8
HX
497static inline void skb_drop_fraglist(struct sk_buff *skb)
498{
499 skb_drop_list(&skb_shinfo(skb)->frag_list);
500}
501
1da177e4
LT
502static void skb_clone_fraglist(struct sk_buff *skb)
503{
504 struct sk_buff *list;
505
fbb398a8 506 skb_walk_frags(skb, list)
1da177e4
LT
507 skb_get(list);
508}
509
d3836f21
ED
510static void skb_free_head(struct sk_buff *skb)
511{
512 if (skb->head_frag)
513 put_page(virt_to_head_page(skb->head));
514 else
515 kfree(skb->head);
516}
517
5bba1712 518static void skb_release_data(struct sk_buff *skb)
1da177e4
LT
519{
520 if (!skb->cloned ||
521 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
522 &skb_shinfo(skb)->dataref)) {
523 if (skb_shinfo(skb)->nr_frags) {
524 int i;
525 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
ea2ab693 526 skb_frag_unref(skb, i);
1da177e4
LT
527 }
528
a6686f2f
SM
529 /*
530 * If skb buf is from userspace, we need to notify the caller
531 * the lower device DMA has done;
532 */
533 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
534 struct ubuf_info *uarg;
535
536 uarg = skb_shinfo(skb)->destructor_arg;
537 if (uarg->callback)
e19d6763 538 uarg->callback(uarg, true);
a6686f2f
SM
539 }
540
21dc3301 541 if (skb_has_frag_list(skb))
1da177e4
LT
542 skb_drop_fraglist(skb);
543
d3836f21 544 skb_free_head(skb);
1da177e4
LT
545 }
546}
547
548/*
549 * Free an skbuff by memory without cleaning the state.
550 */
2d4baff8 551static void kfree_skbmem(struct sk_buff *skb)
1da177e4 552{
d179cd12
DM
553 struct sk_buff *other;
554 atomic_t *fclone_ref;
555
d179cd12
DM
556 switch (skb->fclone) {
557 case SKB_FCLONE_UNAVAILABLE:
558 kmem_cache_free(skbuff_head_cache, skb);
559 break;
560
561 case SKB_FCLONE_ORIG:
562 fclone_ref = (atomic_t *) (skb + 2);
563 if (atomic_dec_and_test(fclone_ref))
564 kmem_cache_free(skbuff_fclone_cache, skb);
565 break;
566
567 case SKB_FCLONE_CLONE:
568 fclone_ref = (atomic_t *) (skb + 1);
569 other = skb - 1;
570
571 /* The clone portion is available for
572 * fast-cloning again.
573 */
574 skb->fclone = SKB_FCLONE_UNAVAILABLE;
575
576 if (atomic_dec_and_test(fclone_ref))
577 kmem_cache_free(skbuff_fclone_cache, other);
578 break;
3ff50b79 579 }
1da177e4
LT
580}
581
04a4bb55 582static void skb_release_head_state(struct sk_buff *skb)
1da177e4 583{
adf30907 584 skb_dst_drop(skb);
1da177e4
LT
585#ifdef CONFIG_XFRM
586 secpath_put(skb->sp);
587#endif
9c2b3328
SH
588 if (skb->destructor) {
589 WARN_ON(in_irq());
1da177e4
LT
590 skb->destructor(skb);
591 }
a3bf7ae9 592#if IS_ENABLED(CONFIG_NF_CONNTRACK)
5f79e0f9 593 nf_conntrack_put(skb->nfct);
2fc72c7b
KK
594#endif
595#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
9fb9cbb1
YK
596 nf_conntrack_put_reasm(skb->nfct_reasm);
597#endif
1da177e4
LT
598#ifdef CONFIG_BRIDGE_NETFILTER
599 nf_bridge_put(skb->nf_bridge);
600#endif
1da177e4
LT
601/* XXX: IS this still necessary? - JHS */
602#ifdef CONFIG_NET_SCHED
603 skb->tc_index = 0;
604#ifdef CONFIG_NET_CLS_ACT
605 skb->tc_verd = 0;
1da177e4
LT
606#endif
607#endif
04a4bb55
LB
608}
609
610/* Free everything but the sk_buff shell. */
611static void skb_release_all(struct sk_buff *skb)
612{
613 skb_release_head_state(skb);
0ebd0ac5
PM
614 if (likely(skb->data))
615 skb_release_data(skb);
2d4baff8
HX
616}
617
618/**
619 * __kfree_skb - private function
620 * @skb: buffer
621 *
622 * Free an sk_buff. Release anything attached to the buffer.
623 * Clean the state. This is an internal helper function. Users should
624 * always call kfree_skb
625 */
1da177e4 626
2d4baff8
HX
627void __kfree_skb(struct sk_buff *skb)
628{
629 skb_release_all(skb);
1da177e4
LT
630 kfree_skbmem(skb);
631}
b4ac530f 632EXPORT_SYMBOL(__kfree_skb);
1da177e4 633