]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - net/ipv4/tcp_input.c
Merge tag 'kvm-x86-misc-6.7' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / net / ipv4 / tcp_input.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
02c30a84 9 * Authors: Ross Biro
1da177e4
LT
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 44 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
e905a9ed 52 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 53 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 54 * work without delayed acks.
1da177e4
LT
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
63 */
64
afd46503
JP
65#define pr_fmt(fmt) "TCP: " fmt
66
1da177e4 67#include <linux/mm.h>
5a0e3ad6 68#include <linux/slab.h>
1da177e4
LT
69#include <linux/module.h>
70#include <linux/sysctl.h>
a0bffffc 71#include <linux/kernel.h>
ad971f61 72#include <linux/prefetch.h>
5ffc02a1 73#include <net/dst.h>
1da177e4
LT
74#include <net/tcp.h>
75#include <net/inet_common.h>
76#include <linux/ipsec.h>
77#include <asm/unaligned.h>
e1c8a607 78#include <linux/errqueue.h>
5941521c 79#include <trace/events/tcp.h>
494bc1d2 80#include <linux/jump_label_ratelimit.h>
c6345ce7 81#include <net/busy_poll.h>
eda7acdd 82#include <net/mptcp.h>
1da177e4 83
ab32ea5d 84int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
1da177e4 85
1da177e4
LT
86#define FLAG_DATA 0x01 /* Incoming frame contained data. */
87#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91#define FLAG_DATA_SACKED 0x20 /* New SACK. */
92#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 93#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
31770e34 94#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 95#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 96#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 97#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
df92c839 98#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
cadbd031 99#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 100#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
d0e1a1b5 101#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
eb36be0f 102#define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
63f367d9 103#define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
1da177e4
LT
104
105#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
d09b9e60 107#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
1da177e4
LT
108#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109
1da177e4 110#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 111#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 112
e662ca40
YC
113#define REXMIT_NONE 0 /* no loss recovery to do */
114#define REXMIT_LOST 1 /* retransmit packets marked lost */
115#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
116
6dac1523 117#if IS_ENABLED(CONFIG_TLS_DEVICE)
494bc1d2 118static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
6dac1523
IL
119
120void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 void (*cad)(struct sock *sk, u32 ack_seq))
122{
123 icsk->icsk_clean_acked = cad;
7b58139f 124 static_branch_deferred_inc(&clean_acked_data_enabled);
6dac1523
IL
125}
126EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127
128void clean_acked_data_disable(struct inet_connection_sock *icsk)
129{
494bc1d2 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
6dac1523
IL
131 icsk->icsk_clean_acked = NULL;
132}
133EXPORT_SYMBOL_GPL(clean_acked_data_disable);
494bc1d2
JK
134
135void clean_acked_data_flush(void)
136{
137 static_key_deferred_flush(&clean_acked_data_enabled);
138}
139EXPORT_SYMBOL_GPL(clean_acked_data_flush);
6dac1523
IL
140#endif
141
72be0fe6 142#ifdef CONFIG_CGROUP_BPF
00d211a4
MKL
143static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144{
145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
0813a841 150 struct bpf_sock_ops_kern sock_ops;
00d211a4
MKL
151
152 if (likely(!unknown_opt && !parse_all_opt))
153 return;
154
155 /* The skb will be handled in the
156 * bpf_skops_established() or
157 * bpf_skops_write_hdr_opt().
158 */
159 switch (sk->sk_state) {
160 case TCP_SYN_RECV:
161 case TCP_SYN_SENT:
162 case TCP_LISTEN:
163 return;
164 }
165
0813a841
MKL
166 sock_owned_by_me(sk);
167
168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 sock_ops.is_fullsock = 1;
171 sock_ops.sk = sk;
172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173
174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
00d211a4
MKL
175}
176
72be0fe6
MKL
177static void bpf_skops_established(struct sock *sk, int bpf_op,
178 struct sk_buff *skb)
179{
180 struct bpf_sock_ops_kern sock_ops;
181
182 sock_owned_by_me(sk);
183
184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 sock_ops.op = bpf_op;
186 sock_ops.is_fullsock = 1;
187 sock_ops.sk = sk;
0813a841
MKL
188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 if (skb)
190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
72be0fe6
MKL
191
192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193}
194#else
00d211a4
MKL
195static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196{
197}
198
72be0fe6
MKL
199static void bpf_skops_established(struct sock *sk, int bpf_op,
200 struct sk_buff *skb)
201{
202}
203#endif
204
0b9aefea
MRL
205static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 unsigned int len)
dcb17d22
MRL
207{
208 static bool __once __read_mostly;
209
210 if (!__once) {
211 struct net_device *dev;
212
213 __once = true;
214
215 rcu_read_lock();
216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
0b9aefea
MRL
217 if (!dev || len >= dev->mtu)
218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 dev ? dev->name : "Unknown driver");
dcb17d22
MRL
220 rcu_read_unlock();
221 }
222}
223
e905a9ed 224/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 225 * real world.
e905a9ed 226 */
056834d9 227static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 228{
463c84b9 229 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 230 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 231 unsigned int len;
1da177e4 232
e905a9ed 233 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
234
235 /* skb->len may jitter because of SACKs, even if peer
236 * sends good full-sized frames.
237 */
056834d9 238 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 239 if (len >= icsk->icsk_ack.rcv_mss) {
dfa2f048
ED
240 /* Note: divides are still a bit expensive.
241 * For the moment, only adjust scaling_ratio
242 * when we update icsk_ack.rcv_mss.
243 */
244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246
247 do_div(val, skb->truesize);
248 tcp_sk(sk)->scaling_ratio = val ? val : 1;
249 }
dcb17d22
MRL
250 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
251 tcp_sk(sk)->advmss);
0b9aefea
MRL
252 /* Account for possibly-removed options */
253 if (unlikely(len > icsk->icsk_ack.rcv_mss +
254 MAX_TCP_OPTION_SPACE))
255 tcp_gro_dev_warn(sk, skb, len);
4720852e
NC
256 /* If the skb has a len of exactly 1*MSS and has the PSH bit
257 * set then it is likely the end of an application write. So
258 * more data may not be arriving soon, and yet the data sender
259 * may be waiting for an ACK if cwnd-bound or using TX zero
260 * copy. So we set ICSK_ACK_PUSHED here so that
261 * tcp_cleanup_rbuf() will send an ACK immediately if the app
262 * reads all of the data and is not ping-pong. If len > MSS
263 * then this logic does not matter (and does not hurt) because
264 * tcp_cleanup_rbuf() will always ACK immediately if the app
265 * reads data and there is more than an MSS of unACKed data.
266 */
267 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
268 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
269 } else {
270 /* Otherwise, we make more careful check taking into account,
271 * that SACKs block is variable.
272 *
273 * "len" is invariant segment length, including TCP header.
274 */
9c70220b 275 len += skb->data - skb_transport_header(skb);
bee7ca9e 276 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
277 /* If PSH is not set, packet should be
278 * full sized, provided peer TCP is not badly broken.
279 * This observation (if it is correct 8)) allows
280 * to handle super-low mtu links fairly.
281 */
282 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 283 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
284 /* Subtract also invariant (if peer is RFC compliant),
285 * tcp header plus fixed timestamp option length.
286 * Resulting "len" is MSS free of SACK jitter.
287 */
463c84b9
ACM
288 len -= tcp_sk(sk)->tcp_header_len;
289 icsk->icsk_ack.last_seg_size = len;
1da177e4 290 if (len == lss) {
463c84b9 291 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
292 return;
293 }
294 }
1ef9696c
AK
295 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
296 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 297 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
298 }
299}
300
9a9c9b51 301static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
1da177e4 302{
463c84b9 303 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 304 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 305
056834d9
IJ
306 if (quickacks == 0)
307 quickacks = 2;
9a9c9b51 308 quickacks = min(quickacks, max_quickacks);
463c84b9 309 if (quickacks > icsk->icsk_ack.quick)
9a9c9b51 310 icsk->icsk_ack.quick = quickacks;
1da177e4
LT
311}
312
03b123de 313static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
1da177e4 314{
463c84b9 315 struct inet_connection_sock *icsk = inet_csk(sk);
9a9c9b51
ED
316
317 tcp_incr_quickack(sk, max_quickacks);
31954cd8 318 inet_csk_exit_pingpong_mode(sk);
463c84b9 319 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
320}
321
322/* Send ACKs quickly, if "quick" count is not exhausted
323 * and the session is not interactive.
324 */
325
2251ae46 326static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 327{
463c84b9 328 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 329 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 330
2251ae46 331 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
31954cd8 332 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
1da177e4
LT
333}
334
735d3831 335static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 336{
056834d9 337 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
338 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
339}
340
fd2123a3 341static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
bdf1ee5d 342{
9aee4000 343 if (tcp_hdr(skb)->cwr) {
fd2123a3 344 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
9aee4000
LB
345
346 /* If the sender is telling us it has entered CWR, then its
347 * cwnd may be very low (even just 1 packet), so we should ACK
348 * immediately.
349 */
25702840
DK
350 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
351 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
9aee4000 352 }
bdf1ee5d
IJ
353}
354
735d3831 355static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d 356{
af38d07e 357 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
bdf1ee5d
IJ
358}
359
f4c9f85f 360static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
bdf1ee5d 361{
f4c9f85f
YS
362 struct tcp_sock *tp = tcp_sk(sk);
363
b82d1bb4 364 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 365 case INET_ECN_NOT_ECT:
bdf1ee5d 366 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
367 * and we already seen ECT on a previous segment,
368 * it is probably a retransmit.
369 */
370 if (tp->ecn_flags & TCP_ECN_SEEN)
15ecbe94 371 tcp_enter_quickack_mode(sk, 2);
7a269ffa
ED
372 break;
373 case INET_ECN_CE:
f4c9f85f
YS
374 if (tcp_ca_needs_ecn(sk))
375 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
9890092e 376
aae06bf5
ED
377 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
378 /* Better not delay acks, sender can have a very low cwnd */
15ecbe94 379 tcp_enter_quickack_mode(sk, 2);
aae06bf5
ED
380 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
381 }
9890092e
FW
382 tp->ecn_flags |= TCP_ECN_SEEN;
383 break;
7a269ffa 384 default:
f4c9f85f
YS
385 if (tcp_ca_needs_ecn(sk))
386 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
7a269ffa 387 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 388 break;
bdf1ee5d
IJ
389 }
390}
391
f4c9f85f 392static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
735d3831 393{
f4c9f85f
YS
394 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
395 __tcp_ecn_check_ce(sk, skb);
735d3831
FW
396}
397
398static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 399{
056834d9 400 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
401 tp->ecn_flags &= ~TCP_ECN_OK;
402}
403
735d3831 404static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 405{
056834d9 406 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
407 tp->ecn_flags &= ~TCP_ECN_OK;
408}
409
735d3831 410static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 411{
056834d9 412 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
413 return true;
414 return false;
bdf1ee5d
IJ
415}
416
1da177e4
LT
417/* Buffer size and advertised window tuning.
418 *
419 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
420 */
421
6ae70532 422static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 423{
6ae70532 424 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 425 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
426 int sndmem, per_mss;
427 u32 nr_segs;
428
429 /* Worst case is non GSO/TSO : each frame consumes one skb
430 * and skb->head is kmalloced using power of two area of memory
431 */
432 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
433 MAX_TCP_HEADER +
434 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
435
436 per_mss = roundup_pow_of_two(per_mss) +
437 SKB_DATA_ALIGN(sizeof(struct sk_buff));
438
40570375 439 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
6ae70532
ED
440 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
441
442 /* Fast Recovery (RFC 5681 3.2) :
443 * Cubic needs 1.7 factor, rounded to 2 to include
a9a08845 444 * extra cushion (application might react slowly to EPOLLOUT)
6ae70532 445 */
77bfc174
YC
446 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
447 sndmem *= nr_segs * per_mss;
1da177e4 448
06a59ecb 449 if (sk->sk_sndbuf < sndmem)
e292f05e 450 WRITE_ONCE(sk->sk_sndbuf,
02739545 451 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
1da177e4
LT
452}
453
454/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
455 *
456 * All tcp_full_space() is split to two parts: "network" buffer, allocated
457 * forward and advertised in receiver window (tp->rcv_wnd) and
458 * "application buffer", required to isolate scheduling/application
459 * latencies from network.
460 * window_clamp is maximal advertised window. It can be less than
461 * tcp_full_space(), in this case tcp_full_space() - window_clamp
462 * is reserved for "application" buffer. The less window_clamp is
463 * the smoother our behaviour from viewpoint of network, but the lower
464 * throughput and the higher sensitivity of the connection to losses. 8)
465 *
466 * rcv_ssthresh is more strict window_clamp used at "slow start"
467 * phase to predict further behaviour of this connection.
468 * It is used for two goals:
469 * - to enforce header prediction at sender, even when application
470 * requires some significant "application buffer". It is check #1.
471 * - to prevent pruning of receive queue because of misprediction
472 * of receiver window. Check #2.
473 *
474 * The scheme does not work when sender sends good segments opening
caa20d9a 475 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
476 * in common situations. Otherwise, we have to rely on queue collapsing.
477 */
478
479/* Slow part of check#2. */
240bfd13
ED
480static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
481 unsigned int skbtruesize)
1da177e4 482{
e9d9da91 483 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 484 /* Optimize this! */
240bfd13 485 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
02739545 486 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
1da177e4
LT
487
488 while (tp->rcv_ssthresh <= window) {
489 if (truesize <= skb->len)
463c84b9 490 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
491
492 truesize >>= 1;
493 window >>= 1;
494 }
495 return 0;
496}
497
240bfd13
ED
498/* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
499 * can play nice with us, as sk_buff and skb->head might be either
500 * freed or shared with up to MAX_SKB_FRAGS segments.
501 * Only give a boost to drivers using page frag(s) to hold the frame(s),
502 * and if no payload was pulled in skb->head before reaching us.
503 */
504static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
505{
506 u32 truesize = skb->truesize;
507
508 if (adjust && !skb_headlen(skb)) {
509 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
510 /* paranoid check, some drivers might be buggy */
511 if (unlikely((int)truesize < (int)skb->len))
512 truesize = skb->truesize;
513 }
514 return truesize;
515}
516
517static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
518 bool adjust)
1da177e4 519{
9e412ba7 520 struct tcp_sock *tp = tcp_sk(sk);
50ce163a
ED
521 int room;
522
523 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
9e412ba7 524
053f3684
WW
525 if (room <= 0)
526 return;
527
1da177e4 528 /* Check #1 */
053f3684 529 if (!tcp_under_memory_pressure(sk)) {
240bfd13 530 unsigned int truesize = truesize_adjust(adjust, skb);
1da177e4
LT
531 int incr;
532
533 /* Check #2. Increase window, if skb with such overhead
534 * will fit to rcvbuf in future.
535 */
240bfd13 536 if (tcp_win_from_space(sk, truesize) <= skb->len)
056834d9 537 incr = 2 * tp->advmss;
1da177e4 538 else
240bfd13 539 incr = __tcp_grow_window(sk, skb, truesize);
1da177e4
LT
540
541 if (incr) {
4d846f02 542 incr = max_t(int, incr, 2 * skb->len);
50ce163a 543 tp->rcv_ssthresh += min(room, incr);
463c84b9 544 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4 545 }
053f3684
WW
546 } else {
547 /* Under pressure:
548 * Adjust rcv_ssthresh according to reserved mem
549 */
550 tcp_adjust_rcv_ssthresh(sk);
1da177e4
LT
551 }
552}
553
a337531b 554/* 3. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
555 * established state.
556 */
bc183dec 557static void tcp_init_buffer_space(struct sock *sk)
1da177e4 558{
02ca527a 559 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
1da177e4
LT
560 struct tcp_sock *tp = tcp_sk(sk);
561 int maxwin;
562
1da177e4 563 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 564 tcp_sndbuf_expand(sk);
1da177e4 565
9a568de4 566 tcp_mstamp_refresh(tp);
645f4c6f 567 tp->rcvq_space.time = tp->tcp_mstamp;
b0983d3c 568 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
569
570 maxwin = tcp_full_space(sk);
571
572 if (tp->window_clamp >= maxwin) {
573 tp->window_clamp = maxwin;
574
0c12654a 575 if (tcp_app_win && maxwin > 4 * tp->advmss)
1da177e4 576 tp->window_clamp = max(maxwin -
0c12654a 577 (maxwin >> tcp_app_win),
1da177e4
LT
578 4 * tp->advmss);
579 }
580
581 /* Force reservation of one segment. */
0c12654a 582 if (tcp_app_win &&
1da177e4
LT
583 tp->window_clamp > 2 * tp->advmss &&
584 tp->window_clamp + tp->advmss > maxwin)
585 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
586
587 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
c2203cf7 588 tp->snd_cwnd_stamp = tcp_jiffies32;
72d05c00
ED
589 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
590 (u32)TCP_INIT_CWND * tp->advmss);
1da177e4
LT
591}
592
a337531b 593/* 4. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 594static void tcp_clamp_window(struct sock *sk)
1da177e4 595{
9e412ba7 596 struct tcp_sock *tp = tcp_sk(sk);
6687e988 597 struct inet_connection_sock *icsk = inet_csk(sk);
356d1833 598 struct net *net = sock_net(sk);
02739545 599 int rmem2;
1da177e4 600
6687e988 601 icsk->icsk_ack.quick = 0;
02739545 602 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
1da177e4 603
02739545 604 if (sk->sk_rcvbuf < rmem2 &&
326f36e9 605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 606 !tcp_under_memory_pressure(sk) &&
180d8cd9 607 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
ebb3b78d 608 WRITE_ONCE(sk->sk_rcvbuf,
02739545 609 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
1da177e4 610 }
326f36e9 611 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 612 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
613}
614
40efc6fa
SH
615/* Initialize RCV_MSS value.
616 * RCV_MSS is an our guess about MSS used by the peer.
617 * We haven't any direct information about the MSS.
618 * It's better to underestimate the RCV_MSS rather than overestimate.
619 * Overestimations make us ACKing less frequently than needed.
620 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
621 */
622void tcp_initialize_rcv_mss(struct sock *sk)
623{
cf533ea5 624 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
625 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
626
056834d9 627 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 628 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
629 hint = max(hint, TCP_MIN_MSS);
630
631 inet_csk(sk)->icsk_ack.rcv_mss = hint;
632}
4bc2f18b 633EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 634
1da177e4
LT
635/* Receiver "autotuning" code.
636 *
637 * The algorithm for RTT estimation w/o timestamps is based on
638 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
7a6498eb 639 * <https://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
640 *
641 * More detail on this code can be found at
631dd1a8 642 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
643 * though this reference is out of date. A new paper
644 * is pending.
645 */
646static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
647{
645f4c6f 648 u32 new_sample = tp->rcv_rtt_est.rtt_us;
1da177e4
LT
649 long m = sample;
650
1da177e4
LT
651 if (new_sample != 0) {
652 /* If we sample in larger samples in the non-timestamp
653 * case, we could grossly overestimate the RTT especially
654 * with chatty applications or bulk transfer apps which
655 * are stalled on filesystem I/O.
656 *
657 * Also, since we are only going for a minimum in the
31f34269 658 * non-timestamp case, we do not smooth things out
caa20d9a 659 * else with timestamps disabled convergence takes too
1da177e4
LT
660 * long.
661 */
662 if (!win_dep) {
663 m -= (new_sample >> 3);
664 new_sample += m;
18a223e0
NC
665 } else {
666 m <<= 3;
667 if (m < new_sample)
668 new_sample = m;
669 }
1da177e4 670 } else {
caa20d9a 671 /* No previous measure. */
1da177e4
LT
672 new_sample = m << 3;
673 }
674
645f4c6f 675 tp->rcv_rtt_est.rtt_us = new_sample;
1da177e4
LT
676}
677
678static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
679{
645f4c6f
ED
680 u32 delta_us;
681
9a568de4 682 if (tp->rcv_rtt_est.time == 0)
1da177e4
LT
683 goto new_measure;
684 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
685 return;
9a568de4 686 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
9ee11bd0
WW
687 if (!delta_us)
688 delta_us = 1;
645f4c6f 689 tcp_rcv_rtt_update(tp, delta_us, 1);
1da177e4
LT
690
691new_measure:
692 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
645f4c6f 693 tp->rcv_rtt_est.time = tp->tcp_mstamp;
1da177e4
LT
694}
695
056834d9
IJ
696static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
697 const struct sk_buff *skb)
1da177e4 698{
463c84b9 699 struct tcp_sock *tp = tcp_sk(sk);
9a568de4 700
3f6c65d6
WW
701 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
702 return;
703 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
704
705 if (TCP_SKB_CB(skb)->end_seq -
706 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
9a568de4 707 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
9ee11bd0 708 u32 delta_us;
9a568de4 709
9efdda4e
ED
710 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
711 if (!delta)
712 delta = 1;
713 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
714 tcp_rcv_rtt_update(tp, delta_us, 0);
715 }
9a568de4 716 }
1da177e4
LT
717}
718
719/*
720 * This function should be called every time data is copied to user space.
721 * It calculates the appropriate TCP receive buffer space.
722 */
723void tcp_rcv_space_adjust(struct sock *sk)
724{
725 struct tcp_sock *tp = tcp_sk(sk);
607065ba 726 u32 copied;
1da177e4 727 int time;
e905a9ed 728
6163849d
YS
729 trace_tcp_rcv_space_adjust(sk);
730
86323850 731 tcp_mstamp_refresh(tp);
9a568de4 732 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
645f4c6f 733 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
1da177e4 734 return;
e905a9ed 735
b0983d3c
ED
736 /* Number of bytes copied to user in last RTT */
737 copied = tp->copied_seq - tp->rcvq_space.seq;
738 if (copied <= tp->rcvq_space.space)
739 goto new_measure;
740
741 /* A bit of theory :
742 * copied = bytes received in previous RTT, our base window
743 * To cope with packet losses, we need a 2x factor
744 * To cope with slow start, and sender growing its cwin by 100 %
745 * every RTT, we need a 4x factor, because the ACK we are sending
746 * now is for the next RTT, not the current one :
747 * <prev RTT . ><current RTT .. ><next RTT .... >
748 */
749
78047648 750 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
b0983d3c 751 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
c3916ad9 752 u64 rcvwin, grow;
dfa2f048 753 int rcvbuf;
1da177e4 754
b0983d3c
ED
755 /* minimal window to cope with packet losses, assuming
756 * steady state. Add some cushion because of small variations.
757 */
607065ba 758 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
1da177e4 759
c3916ad9
ED
760 /* Accommodate for sender rate increase (eg. slow start) */
761 grow = rcvwin * (copied - tp->rcvq_space.space);
762 do_div(grow, tp->rcvq_space.space);
763 rcvwin += (grow << 1);
1da177e4 764
dfa2f048 765 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
02739545 766 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
b0983d3c 767 if (rcvbuf > sk->sk_rcvbuf) {
ebb3b78d 768 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1da177e4 769
b0983d3c 770 /* Make the window clamp follow along. */
02db5571 771 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
1da177e4
LT
772 }
773 }
b0983d3c 774 tp->rcvq_space.space = copied;
e905a9ed 775
1da177e4
LT
776new_measure:
777 tp->rcvq_space.seq = tp->copied_seq;
645f4c6f 778 tp->rcvq_space.time = tp->tcp_mstamp;
1da177e4
LT
779}
780
781/* There is something which you must keep in mind when you analyze the
782 * behavior of the tp->ato delayed ack timeout interval. When a
783 * connection starts up, we want to ack as quickly as possible. The
784 * problem is that "good" TCP's do slow start at the beginning of data
785 * transmission. The means that until we send the first few ACK's the
786 * sender will sit on his end and only queue most of his data, because
787 * he can only send snd_cwnd unacked packets at any given time. For
788 * each ACK we send, he increments snd_cwnd and transmits more of his
789 * queue. -DaveM
790 */
9e412ba7 791static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 792{
9e412ba7 793 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 794 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
795 u32 now;
796
463c84b9 797 inet_csk_schedule_ack(sk);
1da177e4 798
463c84b9 799 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
800
801 tcp_rcv_rtt_measure(tp);
e905a9ed 802
70eabf0e 803 now = tcp_jiffies32;
1da177e4 804
463c84b9 805 if (!icsk->icsk_ack.ato) {
1da177e4
LT
806 /* The _first_ data packet received, initialize
807 * delayed ACK engine.
808 */
9a9c9b51 809 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
463c84b9 810 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 811 } else {
463c84b9 812 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 813
056834d9 814 if (m <= TCP_ATO_MIN / 2) {
1da177e4 815 /* The fastest case is the first. */
463c84b9
ACM
816 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
817 } else if (m < icsk->icsk_ack.ato) {
818 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
819 if (icsk->icsk_ack.ato > icsk->icsk_rto)
820 icsk->icsk_ack.ato = icsk->icsk_rto;
821 } else if (m > icsk->icsk_rto) {
caa20d9a 822 /* Too long gap. Apparently sender failed to
1da177e4
LT
823 * restart window, so that we send ACKs quickly.
824 */
9a9c9b51 825 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
1da177e4
LT
826 }
827 }
463c84b9 828 icsk->icsk_ack.lrcvtime = now;
1da177e4 829
f4c9f85f 830 tcp_ecn_check_ce(sk, skb);
1da177e4
LT
831
832 if (skb->len >= 128)
240bfd13 833 tcp_grow_window(sk, skb, true);
1da177e4
LT
834}
835
1da177e4
LT
836/* Called to compute a smoothed rtt estimate. The data fed to this
837 * routine either comes from timestamps, or from segments that were
838 * known _not_ to have been retransmitted [see Karn/Partridge
839 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
840 * piece by Van Jacobson.
841 * NOTE: the next three routines used to be one big routine.
842 * To save cycles in the RFC 1323 implementation it was better to break
843 * it up into three procedures. -- erics
844 */
740b0f18 845static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 846{
6687e988 847 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
848 long m = mrtt_us; /* RTT */
849 u32 srtt = tp->srtt_us;
1da177e4 850
1da177e4
LT
851 /* The following amusing code comes from Jacobson's
852 * article in SIGCOMM '88. Note that rtt and mdev
853 * are scaled versions of rtt and mean deviation.
e905a9ed 854 * This is designed to be as fast as possible
1da177e4
LT
855 * m stands for "measurement".
856 *
857 * On a 1990 paper the rto value is changed to:
858 * RTO = rtt + 4 * mdev
859 *
860 * Funny. This algorithm seems to be very broken.
861 * These formulae increase RTO, when it should be decreased, increase
31f34269 862 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
863 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
864 * does not matter how to _calculate_ it. Seems, it was trap
865 * that VJ failed to avoid. 8)
866 */
4a5ab4e2
ED
867 if (srtt != 0) {
868 m -= (srtt >> 3); /* m is now error in rtt est */
869 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
870 if (m < 0) {
871 m = -m; /* m is now abs(error) */
740b0f18 872 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
873 /* This is similar to one of Eifel findings.
874 * Eifel blocks mdev updates when rtt decreases.
875 * This solution is a bit different: we use finer gain
876 * for mdev in this case (alpha*beta).
877 * Like Eifel it also prevents growth of rto,
878 * but also it limits too fast rto decreases,
879 * happening in pure Eifel.
880 */
881 if (m > 0)
882 m >>= 3;
883 } else {
740b0f18 884 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 885 }
740b0f18
ED
886 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
887 if (tp->mdev_us > tp->mdev_max_us) {
888 tp->mdev_max_us = tp->mdev_us;
889 if (tp->mdev_max_us > tp->rttvar_us)
890 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
891 }
892 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
893 if (tp->mdev_max_us < tp->rttvar_us)
894 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 895 tp->rtt_seq = tp->snd_nxt;
740b0f18 896 tp->mdev_max_us = tcp_rto_min_us(sk);
23729ff2
SF
897
898 tcp_bpf_rtt(sk);
1da177e4
LT
899 }
900 } else {
901 /* no previous measure. */
4a5ab4e2 902 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
903 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
904 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
905 tp->mdev_max_us = tp->rttvar_us;
1da177e4 906 tp->rtt_seq = tp->snd_nxt;
23729ff2
SF
907
908 tcp_bpf_rtt(sk);
1da177e4 909 }
740b0f18 910 tp->srtt_us = max(1U, srtt);
1da177e4
LT
911}
912
95bd09eb
ED
913static void tcp_update_pacing_rate(struct sock *sk)
914{
915 const struct tcp_sock *tp = tcp_sk(sk);
916 u64 rate;
917
918 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
919 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
920
921 /* current rate is (cwnd * mss) / srtt
922 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
923 * In Congestion Avoidance phase, set it to 120 % the current rate.
924 *
925 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
926 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
927 * end of slow start and should slow down.
928 */
40570375 929 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
59bf6c65 930 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
43e122b0 931 else
59bf6c65 932 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
95bd09eb 933
40570375 934 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
95bd09eb 935
740b0f18
ED
936 if (likely(tp->srtt_us))
937 do_div(rate, tp->srtt_us);
95bd09eb 938
a9da6f29 939 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
ba537427
ED
940 * without any lock. We want to make sure compiler wont store
941 * intermediate values in this location.
942 */
a9da6f29
MR
943 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
944 sk->sk_max_pacing_rate));
95bd09eb
ED
945}
946
1da177e4
LT
947/* Calculate rto without backoff. This is the second half of Van Jacobson's
948 * routine referred to above.
949 */
f7e56a76 950static void tcp_set_rto(struct sock *sk)
1da177e4 951{
463c84b9 952 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
953 /* Old crap is replaced with new one. 8)
954 *
955 * More seriously:
956 * 1. If rtt variance happened to be less 50msec, it is hallucination.
957 * It cannot be less due to utterly erratic ACK generation made
958 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
959 * to do with delayed acks, because at cwnd>2 true delack timeout
960 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 961 * ACKs in some circumstances.
1da177e4 962 */
f1ecd5d9 963 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
964
965 /* 2. Fixups made earlier cannot be right.
966 * If we do not estimate RTO correctly without them,
967 * all the algo is pure shit and should be replaced
caa20d9a 968 * with correct one. It is exactly, which we pretend to do.
1da177e4 969 */
1da177e4 970
ee6aac59
IJ
971 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
972 * guarantees that rto is higher.
973 */
f1ecd5d9 974 tcp_bound_rto(sk);
1da177e4
LT
975}
976
cf533ea5 977__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
978{
979 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
980
22b71c8f 981 if (!cwnd)
442b9635 982 cwnd = TCP_INIT_CWND;
1da177e4
LT
983 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
984}
985
a71d77e6
PJ
986struct tcp_sacktag_state {
987 /* Timestamps for earliest and latest never-retransmitted segment
988 * that was SACKed. RTO needs the earliest RTT to stay conservative,
989 * but congestion control should still get an accurate delay signal.
990 */
991 u64 first_sackt;
992 u64 last_sackt;
993 u32 reord;
994 u32 sack_delivered;
995 int flag;
996 unsigned int mss_now;
997 struct rate_sample *rate;
998};
999
ad2b9b0f
PJ
1000/* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1001 * and spurious retransmission information if this DSACK is unlikely caused by
1002 * sender's action:
1003 * - DSACKed sequence range is larger than maximum receiver's window.
1004 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1005 */
a71d77e6
PJ
1006static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1007 u32 end_seq, struct tcp_sacktag_state *state)
e60402d0 1008{
a71d77e6
PJ
1009 u32 seq_len, dup_segs = 1;
1010
ad2b9b0f
PJ
1011 if (!before(start_seq, end_seq))
1012 return 0;
1013
1014 seq_len = end_seq - start_seq;
1015 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1016 if (seq_len > tp->max_window)
1017 return 0;
1018 if (seq_len > tp->mss_cache)
1019 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
63f367d9
YC
1020 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1021 state->flag |= FLAG_DSACK_TLP;
ad2b9b0f
PJ
1022
1023 tp->dsack_dups += dup_segs;
1024 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1025 if (tp->dsack_dups > tp->total_retrans)
1026 return 0;
a71d77e6 1027
ab56222a 1028 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
a657db03
NC
1029 /* We increase the RACK ordering window in rounds where we receive
1030 * DSACKs that may have been due to reordering causing RACK to trigger
1031 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1032 * without having seen reordering, or that match TLP probes (TLP
1033 * is timer-driven, not triggered by RACK).
1034 */
1035 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1036 tp->rack.dsack_seen = 1;
a71d77e6
PJ
1037
1038 state->flag |= FLAG_DSACKING_ACK;
1039 /* A spurious retransmission is delivered */
1040 state->sack_delivered += dup_segs;
1041
1042 return dup_segs;
e60402d0
IJ
1043}
1044
737ff314
YC
1045/* It's reordering when higher sequence was delivered (i.e. sacked) before
1046 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1047 * distance is approximated in full-mss packet distance ("reordering").
1048 */
1049static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1050 const int ts)
1da177e4 1051{
6687e988 1052 struct tcp_sock *tp = tcp_sk(sk);
737ff314
YC
1053 const u32 mss = tp->mss_cache;
1054 u32 fack, metric;
40b215e5 1055
737ff314
YC
1056 fack = tcp_highest_sack_seq(tp);
1057 if (!before(low_seq, fack))
6f5b24ee
SHY
1058 return;
1059
737ff314
YC
1060 metric = fack - low_seq;
1061 if ((metric > tp->reordering * mss) && mss) {
1da177e4 1062#if FASTRETRANS_DEBUG > 1
91df42be
JP
1063 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1064 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1065 tp->reordering,
737ff314 1066 0,
91df42be
JP
1067 tp->sacked_out,
1068 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 1069#endif
737ff314 1070 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
a11e5b3e 1071 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1da177e4 1072 }
eed530b6 1073
2d2517ee 1074 /* This exciting event is worth to be remembered. 8) */
7ec65372 1075 tp->reord_seen++;
737ff314
YC
1076 NET_INC_STATS(sock_net(sk),
1077 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1da177e4
LT
1078}
1079
68698970
YC
1080 /* This must be called before lost_out or retrans_out are updated
1081 * on a new loss, because we want to know if all skbs previously
1082 * known to be lost have already been retransmitted, indicating
1083 * that this newly lost skb is our next skb to retransmit.
1084 */
c8c213f2
IJ
1085static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1086{
e176b1ba
PY
1087 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1088 (tp->retransmit_skb_hint &&
1089 before(TCP_SKB_CB(skb)->seq,
1090 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
006f582c 1091 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
1092}
1093
9cd8b6c9
YC
1094/* Sum the number of packets on the wire we have marked as lost, and
1095 * notify the congestion control module that the given skb was marked lost.
1096 */
1097static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1098{
1099 tp->lost += tcp_skb_pcount(skb);
1100}
1101
fd214674
YC
1102void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1103{
68698970 1104 __u8 sacked = TCP_SKB_CB(skb)->sacked;
fd214674
YC
1105 struct tcp_sock *tp = tcp_sk(sk);
1106
68698970
YC
1107 if (sacked & TCPCB_SACKED_ACKED)
1108 return;
0682e690 1109
68698970
YC
1110 tcp_verify_retransmit_hint(tp, skb);
1111 if (sacked & TCPCB_LOST) {
1112 if (sacked & TCPCB_SACKED_RETRANS) {
1113 /* Account for retransmits that are lost again */
1114 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1115 tp->retrans_out -= tcp_skb_pcount(skb);
1116 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1117 tcp_skb_pcount(skb));
9cd8b6c9 1118 tcp_notify_skb_loss_event(tp, skb);
68698970
YC
1119 }
1120 } else {
1121 tp->lost_out += tcp_skb_pcount(skb);
1122 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
9cd8b6c9 1123 tcp_notify_skb_loss_event(tp, skb);
68698970 1124 }
0682e690
NC
1125}
1126
082d4fa9
YS
1127/* Updates the delivered and delivered_ce counts */
1128static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1129 bool ece_ack)
1130{
1131 tp->delivered += delivered;
1132 if (ece_ack)
1133 tp->delivered_ce += delivered;
1134}
1135
1da177e4
LT
1136/* This procedure tags the retransmission queue when SACKs arrive.
1137 *
1138 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1139 * Packets in queue with these bits set are counted in variables
1140 * sacked_out, retrans_out and lost_out, correspondingly.
1141 *
1142 * Valid combinations are:
1143 * Tag InFlight Description
1144 * 0 1 - orig segment is in flight.
1145 * S 0 - nothing flies, orig reached receiver.
1146 * L 0 - nothing flies, orig lost by net.
1147 * R 2 - both orig and retransmit are in flight.
1148 * L|R 1 - orig is lost, retransmit is in flight.
1149 * S|R 1 - orig reached receiver, retrans is still in flight.
1150 * (L|S|R is logically valid, it could occur when L|R is sacked,
1151 * but it is equivalent to plain S and code short-curcuits it to S.
1152 * L|S is logically invalid, it would mean -1 packet in flight 8))
1153 *
1154 * These 6 states form finite state machine, controlled by the following events:
1155 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1156 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 1157 * 3. Loss detection event of two flavors:
1da177e4
LT
1158 * A. Scoreboard estimator decided the packet is lost.
1159 * A'. Reno "three dupacks" marks head of queue lost.
974c1236 1160 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
1161 * segment was retransmitted.
1162 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1163 *
1164 * It is pleasant to note, that state diagram turns out to be commutative,
1165 * so that we are allowed not to be bothered by order of our actions,
1166 * when multiple events arrive simultaneously. (see the function below).
1167 *
1168 * Reordering detection.
1169 * --------------------
1170 * Reordering metric is maximal distance, which a packet can be displaced
1171 * in packet stream. With SACKs we can estimate it:
1172 *
1173 * 1. SACK fills old hole and the corresponding segment was not
1174 * ever retransmitted -> reordering. Alas, we cannot use it
1175 * when segment was retransmitted.
1176 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1177 * for retransmitted and already SACKed segment -> reordering..
1178 * Both of these heuristics are not used in Loss state, when we cannot
1179 * account for retransmits accurately.
5b3c9882
IJ
1180 *
1181 * SACK block validation.
1182 * ----------------------
1183 *
1184 * SACK block range validation checks that the received SACK block fits to
1185 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1186 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1187 * it means that the receiver is rather inconsistent with itself reporting
1188 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1189 * perfectly valid, however, in light of RFC2018 which explicitly states
1190 * that "SACK block MUST reflect the newest segment. Even if the newest
1191 * segment is going to be discarded ...", not that it looks very clever
1192 * in case of head skb. Due to potentional receiver driven attacks, we
1193 * choose to avoid immediate execution of a walk in write queue due to
1194 * reneging and defer head skb's loss recovery to standard loss recovery
1195 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1196 *
1197 * Implements also blockage to start_seq wrap-around. Problem lies in the
1198 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1199 * there's no guarantee that it will be before snd_nxt (n). The problem
1200 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1201 * wrap (s_w):
1202 *
1203 * <- outs wnd -> <- wrapzone ->
1204 * u e n u_w e_w s n_w
1205 * | | | | | | |
1206 * |<------------+------+----- TCP seqno space --------------+---------->|
1207 * ...-- <2^31 ->| |<--------...
1208 * ...---- >2^31 ------>| |<--------...
1209 *
1210 * Current code wouldn't be vulnerable but it's better still to discard such
1211 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1212 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1213 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1214 * equal to the ideal case (infinite seqno space without wrap caused issues).
1215 *
1216 * With D-SACK the lower bound is extended to cover sequence space below
1217 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1218 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1219 * for the normal SACK blocks, explained above). But there all simplicity
1220 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1221 * fully below undo_marker they do not affect behavior in anyway and can
1222 * therefore be safely ignored. In rare cases (which are more or less
1223 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1224 * fragmentation and packet reordering past skb's retransmission. To consider
1225 * them correctly, the acceptable range must be extended even more though
1226 * the exact amount is rather hard to quantify. However, tp->max_window can
1227 * be used as an exaggerated estimate.
1da177e4 1228 */
a2a385d6
ED
1229static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1230 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1231{
1232 /* Too far in future, or reversed (interpretation is ambiguous) */
1233 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1234 return false;
5b3c9882
IJ
1235
1236 /* Nasty start_seq wrap-around check (see comments above) */
1237 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1238 return false;
5b3c9882 1239
564262c1 1240 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1241 * start_seq == snd_una is non-sensical (see comments above)
1242 */
1243 if (after(start_seq, tp->snd_una))
a2a385d6 1244 return true;
5b3c9882
IJ
1245
1246 if (!is_dsack || !tp->undo_marker)
a2a385d6 1247 return false;
5b3c9882
IJ
1248
1249 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1250 if (after(end_seq, tp->snd_una))
a2a385d6 1251 return false;
5b3c9882
IJ
1252
1253 if (!before(start_seq, tp->undo_marker))
a2a385d6 1254 return true;
5b3c9882
IJ
1255
1256 /* Too old */
1257 if (!after(end_seq, tp->undo_marker))
a2a385d6 1258 return false;
5b3c9882
IJ
1259
1260 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1261 * start_seq < undo_marker and end_seq >= undo_marker.
1262 */
1263 return !before(start_seq, end_seq - tp->max_window);
1264}
1265
a2a385d6
ED
1266static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1267 struct tcp_sack_block_wire *sp, int num_sacks,
a71d77e6 1268 u32 prior_snd_una, struct tcp_sacktag_state *state)
d06e021d 1269{
1ed83465 1270 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1271 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1272 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a71d77e6 1273 u32 dup_segs;
d06e021d
DM
1274
1275 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
c10d9310 1276 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1277 } else if (num_sacks > 1) {
d3e2ce3b
HH
1278 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1279 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d 1280
a71d77e6
PJ
1281 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1282 return false;
1283 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1284 } else {
1285 return false;
d06e021d
DM
1286 }
1287
a71d77e6 1288 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
ad2b9b0f
PJ
1289 if (!dup_segs) { /* Skip dubious DSACK */
1290 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1291 return false;
1292 }
1293
e3a5a1e8 1294 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
a71d77e6 1295
d06e021d 1296 /* D-SACK for already forgotten data... Do dumb counting. */
a71d77e6 1297 if (tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1298 !after(end_seq_0, prior_snd_una) &&
1299 after(end_seq_0, tp->undo_marker))
a71d77e6 1300 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
d06e021d 1301
a71d77e6 1302 return true;
d06e021d
DM
1303}
1304
d1935942
IJ
1305/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1306 * the incoming SACK may not exactly match but we can find smaller MSS
1307 * aligned portion of it that matches. Therefore we might need to fragment
1308 * which may fail and creates some hassle (caller must handle error case
1309 * returns).
832d11c5
IJ
1310 *
1311 * FIXME: this could be merged to shift decision code
d1935942 1312 */
0f79efdc 1313static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1314 u32 start_seq, u32 end_seq)
d1935942 1315{
a2a385d6
ED
1316 int err;
1317 bool in_sack;
d1935942 1318 unsigned int pkt_len;
adb92db8 1319 unsigned int mss;
d1935942
IJ
1320
1321 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1322 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1323
1324 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1325 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1326 mss = tcp_skb_mss(skb);
d1935942
IJ
1327 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1328
adb92db8 1329 if (!in_sack) {
d1935942 1330 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1331 if (pkt_len < mss)
1332 pkt_len = mss;
1333 } else {
d1935942 1334 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1335 if (pkt_len < mss)
1336 return -EINVAL;
1337 }
1338
1339 /* Round if necessary so that SACKs cover only full MSSes
1340 * and/or the remaining small portion (if present)
1341 */
1342 if (pkt_len > mss) {
1343 unsigned int new_len = (pkt_len / mss) * mss;
b451e5d2 1344 if (!in_sack && new_len < pkt_len)
adb92db8 1345 new_len += mss;
adb92db8
IJ
1346 pkt_len = new_len;
1347 }
b451e5d2
YC
1348
1349 if (pkt_len >= skb->len && !in_sack)
1350 return 0;
1351
75c119af
ED
1352 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1353 pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1354 if (err < 0)
1355 return err;
1356 }
1357
1358 return in_sack;
1359}
1360
cc9a672e
NC
1361/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1362static u8 tcp_sacktag_one(struct sock *sk,
1363 struct tcp_sacktag_state *state, u8 sacked,
1364 u32 start_seq, u32 end_seq,
740b0f18 1365 int dup_sack, int pcount,
9a568de4 1366 u64 xmit_time)
9e10c47c 1367{
6859d494 1368 struct tcp_sock *tp = tcp_sk(sk);
9e10c47c
IJ
1369
1370 /* Account D-SACK for retransmitted packet. */
1371 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1372 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1373 after(end_seq, tp->undo_marker))
4f884f39 1374 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
737ff314
YC
1375 if ((sacked & TCPCB_SACKED_ACKED) &&
1376 before(start_seq, state->reord))
1377 state->reord = start_seq;
9e10c47c
IJ
1378 }
1379
1380 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1381 if (!after(end_seq, tp->snd_una))
a1197f5a 1382 return sacked;
9e10c47c
IJ
1383
1384 if (!(sacked & TCPCB_SACKED_ACKED)) {
d2329f10 1385 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
659a8ad5 1386
9e10c47c
IJ
1387 if (sacked & TCPCB_SACKED_RETRANS) {
1388 /* If the segment is not tagged as lost,
1389 * we do not clear RETRANS, believing
1390 * that retransmission is still in flight.
1391 */
1392 if (sacked & TCPCB_LOST) {
a1197f5a 1393 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1394 tp->lost_out -= pcount;
1395 tp->retrans_out -= pcount;
9e10c47c
IJ
1396 }
1397 } else {
1398 if (!(sacked & TCPCB_RETRANS)) {
1399 /* New sack for not retransmitted frame,
1400 * which was in hole. It is reordering.
1401 */
cc9a672e 1402 if (before(start_seq,
737ff314
YC
1403 tcp_highest_sack_seq(tp)) &&
1404 before(start_seq, state->reord))
1405 state->reord = start_seq;
1406
e33099f9
YC
1407 if (!after(end_seq, tp->high_seq))
1408 state->flag |= FLAG_ORIG_SACK_ACKED;
9a568de4
ED
1409 if (state->first_sackt == 0)
1410 state->first_sackt = xmit_time;
1411 state->last_sackt = xmit_time;
9e10c47c
IJ
1412 }
1413
1414 if (sacked & TCPCB_LOST) {
a1197f5a 1415 sacked &= ~TCPCB_LOST;
f58b22fd 1416 tp->lost_out -= pcount;
9e10c47c
IJ
1417 }
1418 }
1419
a1197f5a
IJ
1420 sacked |= TCPCB_SACKED_ACKED;
1421 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1422 tp->sacked_out += pcount;
082d4fa9 1423 /* Out-of-order packets delivered */
f00394ce 1424 state->sack_delivered += pcount;
9e10c47c 1425
9e10c47c 1426 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
713bafea 1427 if (tp->lost_skb_hint &&
cc9a672e 1428 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1429 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1430 }
1431
1432 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1433 * frames and clear it. undo_retrans is decreased above, L|R frames
1434 * are accounted above as well.
1435 */
a1197f5a
IJ
1436 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1437 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1438 tp->retrans_out -= pcount;
9e10c47c
IJ
1439 }
1440
a1197f5a 1441 return sacked;
9e10c47c
IJ
1442}
1443
daef52ba
NC
1444/* Shift newly-SACKed bytes from this skb to the immediately previous
1445 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1446 */
f3319816
ED
1447static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1448 struct sk_buff *skb,
a2a385d6
ED
1449 struct tcp_sacktag_state *state,
1450 unsigned int pcount, int shifted, int mss,
1451 bool dup_sack)
832d11c5
IJ
1452{
1453 struct tcp_sock *tp = tcp_sk(sk);
daef52ba
NC
1454 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1455 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1456
1457 BUG_ON(!pcount);
1458
4c90d3b3
NC
1459 /* Adjust counters and hints for the newly sacked sequence
1460 * range but discard the return value since prev is already
1461 * marked. We must tag the range first because the seq
1462 * advancement below implicitly advances
1463 * tcp_highest_sack_seq() when skb is highest_sack.
1464 */
1465 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1466 start_seq, end_seq, dup_sack, pcount,
2fd66ffb 1467 tcp_skb_timestamp_us(skb));
b9f64820 1468 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1469
1470 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1471 tp->lost_cnt_hint += pcount;
1472
832d11c5
IJ
1473 TCP_SKB_CB(prev)->end_seq += shifted;
1474 TCP_SKB_CB(skb)->seq += shifted;
1475
cd7d8498 1476 tcp_skb_pcount_add(prev, pcount);
3b4929f6 1477 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
cd7d8498 1478 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1479
1480 /* When we're adding to gso_segs == 1, gso_size will be zero,
1481 * in theory this shouldn't be necessary but as long as DSACK
1482 * code can come after this skb later on it's better to keep
1483 * setting gso_size to something.
1484 */
f69ad292
ED
1485 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1486 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1487
1488 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1489 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1490 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1491
832d11c5
IJ
1492 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1493 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1494
832d11c5
IJ
1495 if (skb->len > 0) {
1496 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1497 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1498 return false;
832d11c5
IJ
1499 }
1500
1501 /* Whole SKB was eaten :-) */
1502
92ee76b6
IJ
1503 if (skb == tp->retransmit_skb_hint)
1504 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1505 if (skb == tp->lost_skb_hint) {
1506 tp->lost_skb_hint = prev;
1507 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1508 }
1509
5e8a402f 1510 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1511 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1512 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1513 TCP_SKB_CB(prev)->end_seq++;
1514
832d11c5
IJ
1515 if (skb == tcp_highest_sack(sk))
1516 tcp_advance_highest_sack(sk, skb);
1517
cfea5a68 1518 tcp_skb_collapse_tstamp(prev, skb);
9a568de4
ED
1519 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1520 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
b9f64820 1521
75c119af 1522 tcp_rtx_queue_unlink_and_free(skb, sk);
832d11c5 1523
c10d9310 1524 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1525
a2a385d6 1526 return true;
832d11c5
IJ
1527}
1528
1529/* I wish gso_size would have a bit more sane initialization than
1530 * something-or-zero which complicates things
1531 */
cf533ea5 1532static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1533{
775ffabf 1534 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1535}
1536
1537/* Shifting pages past head area doesn't work */
cf533ea5 1538static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1539{
1540 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1541}
1542
3b4929f6
ED
1543int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1544 int pcount, int shiftlen)
1545{
1546 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1547 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1548 * to make sure not storing more than 65535 * 8 bytes per skb,
1549 * even if current MSS is bigger.
1550 */
1551 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1552 return 0;
1553 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1554 return 0;
1555 return skb_shift(to, from, shiftlen);
1556}
1557
832d11c5
IJ
1558/* Try collapsing SACK blocks spanning across multiple skbs to a single
1559 * skb.
1560 */
1561static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1562 struct tcp_sacktag_state *state,
832d11c5 1563 u32 start_seq, u32 end_seq,
a2a385d6 1564 bool dup_sack)
832d11c5
IJ
1565{
1566 struct tcp_sock *tp = tcp_sk(sk);
1567 struct sk_buff *prev;
1568 int mss;
1569 int pcount = 0;
1570 int len;
1571 int in_sack;
1572
832d11c5
IJ
1573 /* Normally R but no L won't result in plain S */
1574 if (!dup_sack &&
9969ca5f 1575 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1576 goto fallback;
1577 if (!skb_can_shift(skb))
1578 goto fallback;
1579 /* This frame is about to be dropped (was ACKed). */
1580 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1581 goto fallback;
1582
1583 /* Can only happen with delayed DSACK + discard craziness */
75c119af
ED
1584 prev = skb_rb_prev(skb);
1585 if (!prev)
832d11c5 1586 goto fallback;
832d11c5
IJ
1587
1588 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1589 goto fallback;
1590
85712484 1591 if (!tcp_skb_can_collapse(prev, skb))
a643b5d4
MKL
1592 goto fallback;
1593
832d11c5
IJ
1594 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1595 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1596
1597 if (in_sack) {
1598 len = skb->len;
1599 pcount = tcp_skb_pcount(skb);
775ffabf 1600 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1601
1602 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1603 * drop this restriction as unnecessary
1604 */
775ffabf 1605 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1606 goto fallback;
1607 } else {
1608 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1609 goto noop;
1610 /* CHECKME: This is non-MSS split case only?, this will
1611 * cause skipped skbs due to advancing loop btw, original
1612 * has that feature too
1613 */
1614 if (tcp_skb_pcount(skb) <= 1)
1615 goto noop;
1616
1617 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1618 if (!in_sack) {
1619 /* TODO: head merge to next could be attempted here
1620 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1621 * though it might not be worth of the additional hassle
1622 *
1623 * ...we can probably just fallback to what was done
1624 * previously. We could try merging non-SACKed ones
1625 * as well but it probably isn't going to buy off
1626 * because later SACKs might again split them, and
1627 * it would make skb timestamp tracking considerably
1628 * harder problem.
1629 */
1630 goto fallback;
1631 }
1632
1633 len = end_seq - TCP_SKB_CB(skb)->seq;
1634 BUG_ON(len < 0);
1635 BUG_ON(len > skb->len);
1636
1637 /* MSS boundaries should be honoured or else pcount will
1638 * severely break even though it makes things bit trickier.
1639 * Optimize common case to avoid most of the divides
1640 */
1641 mss = tcp_skb_mss(skb);
1642
1643 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1644 * drop this restriction as unnecessary
1645 */
775ffabf 1646 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1647 goto fallback;
1648
1649 if (len == mss) {
1650 pcount = 1;
1651 } else if (len < mss) {
1652 goto noop;
1653 } else {
1654 pcount = len / mss;
1655 len = pcount * mss;
1656 }
1657 }
1658
4648dc97
NC
1659 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1660 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1661 goto fallback;
1662
3b4929f6 1663 if (!tcp_skb_shift(prev, skb, pcount, len))
832d11c5 1664 goto fallback;
f3319816 1665 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1666 goto out;
1667
1668 /* Hole filled allows collapsing with the next as well, this is very
1669 * useful when hole on every nth skb pattern happens
1670 */
75c119af
ED
1671 skb = skb_rb_next(prev);
1672 if (!skb)
832d11c5 1673 goto out;
832d11c5 1674
f0bc52f3 1675 if (!skb_can_shift(skb) ||
f0bc52f3 1676 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1677 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1678 goto out;
1679
b67985be
ED
1680 if (!tcp_skb_can_collapse(prev, skb))
1681 goto out;
832d11c5 1682 len = skb->len;
3b4929f6
ED
1683 pcount = tcp_skb_pcount(skb);
1684 if (tcp_skb_shift(prev, skb, pcount, len))
1685 tcp_shifted_skb(sk, prev, skb, state, pcount,
f3319816 1686 len, mss, 0);
832d11c5
IJ
1687
1688out:
832d11c5
IJ
1689 return prev;
1690
1691noop:
1692 return skb;
1693
1694fallback:
c10d9310 1695 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1696 return NULL;
1697}
1698
68f8353b
IJ
1699static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1700 struct tcp_sack_block *next_dup,
a1197f5a 1701 struct tcp_sacktag_state *state,
68f8353b 1702 u32 start_seq, u32 end_seq,
a2a385d6 1703 bool dup_sack_in)
68f8353b 1704{
832d11c5
IJ
1705 struct tcp_sock *tp = tcp_sk(sk);
1706 struct sk_buff *tmp;
1707
75c119af 1708 skb_rbtree_walk_from(skb) {
68f8353b 1709 int in_sack = 0;
a2a385d6 1710 bool dup_sack = dup_sack_in;
68f8353b 1711
68f8353b
IJ
1712 /* queue is in-order => we can short-circuit the walk early */
1713 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1714 break;
1715
00db4124 1716 if (next_dup &&
68f8353b
IJ
1717 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1718 in_sack = tcp_match_skb_to_sack(sk, skb,
1719 next_dup->start_seq,
1720 next_dup->end_seq);
1721 if (in_sack > 0)
a2a385d6 1722 dup_sack = true;
68f8353b
IJ
1723 }
1724
832d11c5
IJ
1725 /* skb reference here is a bit tricky to get right, since
1726 * shifting can eat and free both this skb and the next,
1727 * so not even _safe variant of the loop is enough.
1728 */
1729 if (in_sack <= 0) {
a1197f5a
IJ
1730 tmp = tcp_shift_skb_data(sk, skb, state,
1731 start_seq, end_seq, dup_sack);
00db4124 1732 if (tmp) {
832d11c5
IJ
1733 if (tmp != skb) {
1734 skb = tmp;
1735 continue;
1736 }
1737
1738 in_sack = 0;
1739 } else {
1740 in_sack = tcp_match_skb_to_sack(sk, skb,
1741 start_seq,
1742 end_seq);
1743 }
1744 }
1745
68f8353b
IJ
1746 if (unlikely(in_sack < 0))
1747 break;
1748
832d11c5 1749 if (in_sack) {
cc9a672e
NC
1750 TCP_SKB_CB(skb)->sacked =
1751 tcp_sacktag_one(sk,
1752 state,
1753 TCP_SKB_CB(skb)->sacked,
1754 TCP_SKB_CB(skb)->seq,
1755 TCP_SKB_CB(skb)->end_seq,
1756 dup_sack,
59c9af42 1757 tcp_skb_pcount(skb),
2fd66ffb 1758 tcp_skb_timestamp_us(skb));
b9f64820 1759 tcp_rate_skb_delivered(sk, skb, state->rate);
e2080072
ED
1760 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1761 list_del_init(&skb->tcp_tsorted_anchor);
68f8353b 1762
832d11c5
IJ
1763 if (!before(TCP_SKB_CB(skb)->seq,
1764 tcp_highest_sack_seq(tp)))
1765 tcp_advance_highest_sack(sk, skb);
1766 }
68f8353b
IJ
1767 }
1768 return skb;
1769}
1770
4bfabc46 1771static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
75c119af
ED
1772{
1773 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1774 struct sk_buff *skb;
75c119af
ED
1775
1776 while (*p) {
1777 parent = *p;
1778 skb = rb_to_skb(parent);
1779 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1780 p = &parent->rb_left;
1781 continue;
1782 }
1783 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1784 p = &parent->rb_right;
1785 continue;
1786 }
75c119af
ED
1787 return skb;
1788 }
1789 return NULL;
1790}
1791
68f8353b 1792static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a 1793 u32 skip_to_seq)
68f8353b 1794{
75c119af
ED
1795 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1796 return skb;
d152a7d8 1797
4bfabc46 1798 return tcp_sacktag_bsearch(sk, skip_to_seq);
68f8353b
IJ
1799}
1800
1801static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1802 struct sock *sk,
1803 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1804 struct tcp_sacktag_state *state,
1805 u32 skip_to_seq)
68f8353b 1806{
51456b29 1807 if (!next_dup)
68f8353b
IJ
1808 return skb;
1809
1810 if (before(next_dup->start_seq, skip_to_seq)) {
4bfabc46 1811 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
a1197f5a
IJ
1812 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1813 next_dup->start_seq, next_dup->end_seq,
1814 1);
68f8353b
IJ
1815 }
1816
1817 return skb;
1818}
1819
cf533ea5 1820static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1821{
1822 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1823}
1824
1da177e4 1825static int
cf533ea5 1826tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1827 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1828{
1829 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1830 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1831 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1832 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1833 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1834 struct tcp_sack_block *cache;
1835 struct sk_buff *skb;
4389dded 1836 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1837 int used_sacks;
a2a385d6 1838 bool found_dup_sack = false;
68f8353b 1839 int i, j;
fda03fbb 1840 int first_sack_index;
1da177e4 1841
196da974 1842 state->flag = 0;
737ff314 1843 state->reord = tp->snd_nxt;
a1197f5a 1844
737ff314 1845 if (!tp->sacked_out)
6859d494 1846 tcp_highest_sack_reset(sk);
1da177e4 1847
1ed83465 1848 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
a71d77e6 1849 num_sacks, prior_snd_una, state);
6f74651a
BE
1850
1851 /* Eliminate too old ACKs, but take into
1852 * account more or less fresh ones, they can
1853 * contain valid SACK info.
1854 */
1855 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1856 return 0;
1857