]> git.ipfire.org Git - thirdparty/qemu.git/blame - qemu-doc.texi
util: const event_notifier_get_fd() argument
[thirdparty/qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
a8ad4159 217QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
218VGA BIOS.
219
c0fe3827
FB
220QEMU uses YM3812 emulation by Tatsuyuki Satoh.
221
2d983446 222QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 223by Tibor "TS" Schütz.
423d65f4 224
1a1a0e20 225Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 226QEMU must be told to not have parallel ports to have working GUS.
720036a5 227
228@example
3804da9d 229qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 230@end example
231
232Alternatively:
233@example
3804da9d 234qemu-system-i386 dos.img -device gus,irq=5
720036a5 235@end example
236
237Or some other unclaimed IRQ.
238
cc53d26d 239CS4231A is the chip used in Windows Sound System and GUSMAX products
240
0806e3f6
FB
241@c man end
242
debc7065 243@node pcsys_quickstart
1eb20527 244@section Quick Start
7544a042 245@cindex quick start
1eb20527 246
285dc330 247Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
248
249@example
3804da9d 250qemu-system-i386 linux.img
0806e3f6
FB
251@end example
252
253Linux should boot and give you a prompt.
254
6cc721cf 255@node sec_invocation
ec410fc9
FB
256@section Invocation
257
258@example
0806e3f6 259@c man begin SYNOPSIS
3804da9d 260usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 261@c man end
ec410fc9
FB
262@end example
263
0806e3f6 264@c man begin OPTIONS
d2c639d6
BS
265@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
266targets do not need a disk image.
ec410fc9 267
5824d651 268@include qemu-options.texi
ec410fc9 269
3e11db9a
FB
270@c man end
271
debc7065 272@node pcsys_keys
3e11db9a
FB
273@section Keys
274
275@c man begin OPTIONS
276
de1db2a1
BH
277During the graphical emulation, you can use special key combinations to change
278modes. The default key mappings are shown below, but if you use @code{-alt-grab}
279then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
280@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
281
a1b74fe8 282@table @key
f9859310 283@item Ctrl-Alt-f
7544a042 284@kindex Ctrl-Alt-f
a1b74fe8 285Toggle full screen
a0a821a4 286
d6a65ba3
JK
287@item Ctrl-Alt-+
288@kindex Ctrl-Alt-+
289Enlarge the screen
290
291@item Ctrl-Alt--
292@kindex Ctrl-Alt--
293Shrink the screen
294
c4a735f9 295@item Ctrl-Alt-u
7544a042 296@kindex Ctrl-Alt-u
c4a735f9 297Restore the screen's un-scaled dimensions
298
f9859310 299@item Ctrl-Alt-n
7544a042 300@kindex Ctrl-Alt-n
a0a821a4
FB
301Switch to virtual console 'n'. Standard console mappings are:
302@table @emph
303@item 1
304Target system display
305@item 2
306Monitor
307@item 3
308Serial port
a1b74fe8
FB
309@end table
310
f9859310 311@item Ctrl-Alt
7544a042 312@kindex Ctrl-Alt
a0a821a4
FB
313Toggle mouse and keyboard grab.
314@end table
315
7544a042
SW
316@kindex Ctrl-Up
317@kindex Ctrl-Down
318@kindex Ctrl-PageUp
319@kindex Ctrl-PageDown
3e11db9a
FB
320In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
321@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
322
7544a042 323@kindex Ctrl-a h
a0a821a4
FB
324During emulation, if you are using the @option{-nographic} option, use
325@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
326
327@table @key
a1b74fe8 328@item Ctrl-a h
7544a042 329@kindex Ctrl-a h
d2c639d6 330@item Ctrl-a ?
7544a042 331@kindex Ctrl-a ?
ec410fc9 332Print this help
3b46e624 333@item Ctrl-a x
7544a042 334@kindex Ctrl-a x
366dfc52 335Exit emulator
3b46e624 336@item Ctrl-a s
7544a042 337@kindex Ctrl-a s
1f47a922 338Save disk data back to file (if -snapshot)
20d8a3ed 339@item Ctrl-a t
7544a042 340@kindex Ctrl-a t
d2c639d6 341Toggle console timestamps
a1b74fe8 342@item Ctrl-a b
7544a042 343@kindex Ctrl-a b
1f673135 344Send break (magic sysrq in Linux)
a1b74fe8 345@item Ctrl-a c
7544a042 346@kindex Ctrl-a c
1f673135 347Switch between console and monitor
a1b74fe8 348@item Ctrl-a Ctrl-a
7544a042 349@kindex Ctrl-a a
a1b74fe8 350Send Ctrl-a
ec410fc9 351@end table
0806e3f6
FB
352@c man end
353
354@ignore
355
1f673135
FB
356@c man begin SEEALSO
357The HTML documentation of QEMU for more precise information and Linux
358user mode emulator invocation.
359@c man end
360
361@c man begin AUTHOR
362Fabrice Bellard
363@c man end
364
365@end ignore
366
debc7065 367@node pcsys_monitor
1f673135 368@section QEMU Monitor
7544a042 369@cindex QEMU monitor
1f673135
FB
370
371The QEMU monitor is used to give complex commands to the QEMU
372emulator. You can use it to:
373
374@itemize @minus
375
376@item
e598752a 377Remove or insert removable media images
89dfe898 378(such as CD-ROM or floppies).
1f673135 379
5fafdf24 380@item
1f673135
FB
381Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
382from a disk file.
383
384@item Inspect the VM state without an external debugger.
385
386@end itemize
387
388@subsection Commands
389
390The following commands are available:
391
2313086a 392@include qemu-monitor.texi
0806e3f6 393
2cd8af2d
PB
394@include qemu-monitor-info.texi
395
1f673135
FB
396@subsection Integer expressions
397
398The monitor understands integers expressions for every integer
399argument. You can use register names to get the value of specifics
400CPU registers by prefixing them with @emph{$}.
ec410fc9 401
1f47a922
FB
402@node disk_images
403@section Disk Images
404
acd935ef
FB
405Since version 0.6.1, QEMU supports many disk image formats, including
406growable disk images (their size increase as non empty sectors are
13a2e80f
FB
407written), compressed and encrypted disk images. Version 0.8.3 added
408the new qcow2 disk image format which is essential to support VM
409snapshots.
1f47a922 410
debc7065
FB
411@menu
412* disk_images_quickstart:: Quick start for disk image creation
413* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 414* vm_snapshots:: VM snapshots
debc7065 415* qemu_img_invocation:: qemu-img Invocation
975b092b 416* qemu_nbd_invocation:: qemu-nbd Invocation
665b5d0d 417* qemu_ga_invocation:: qemu-ga Invocation
d3067b02 418* disk_images_formats:: Disk image file formats
19cb3738 419* host_drives:: Using host drives
debc7065 420* disk_images_fat_images:: Virtual FAT disk images
75818250 421* disk_images_nbd:: NBD access
42af9c30 422* disk_images_sheepdog:: Sheepdog disk images
00984e39 423* disk_images_iscsi:: iSCSI LUNs
8809e289 424* disk_images_gluster:: GlusterFS disk images
0a12ec87 425* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
426@end menu
427
428@node disk_images_quickstart
acd935ef
FB
429@subsection Quick start for disk image creation
430
431You can create a disk image with the command:
1f47a922 432@example
acd935ef 433qemu-img create myimage.img mysize
1f47a922 434@end example
acd935ef
FB
435where @var{myimage.img} is the disk image filename and @var{mysize} is its
436size in kilobytes. You can add an @code{M} suffix to give the size in
437megabytes and a @code{G} suffix for gigabytes.
438
debc7065 439See @ref{qemu_img_invocation} for more information.
1f47a922 440
debc7065 441@node disk_images_snapshot_mode
1f47a922
FB
442@subsection Snapshot mode
443
444If you use the option @option{-snapshot}, all disk images are
445considered as read only. When sectors in written, they are written in
446a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
447write back to the raw disk images by using the @code{commit} monitor
448command (or @key{C-a s} in the serial console).
1f47a922 449
13a2e80f
FB
450@node vm_snapshots
451@subsection VM snapshots
452
453VM snapshots are snapshots of the complete virtual machine including
454CPU state, RAM, device state and the content of all the writable
455disks. In order to use VM snapshots, you must have at least one non
456removable and writable block device using the @code{qcow2} disk image
457format. Normally this device is the first virtual hard drive.
458
459Use the monitor command @code{savevm} to create a new VM snapshot or
460replace an existing one. A human readable name can be assigned to each
19d36792 461snapshot in addition to its numerical ID.
13a2e80f
FB
462
463Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
464a VM snapshot. @code{info snapshots} lists the available snapshots
465with their associated information:
466
467@example
468(qemu) info snapshots
469Snapshot devices: hda
470Snapshot list (from hda):
471ID TAG VM SIZE DATE VM CLOCK
4721 start 41M 2006-08-06 12:38:02 00:00:14.954
4732 40M 2006-08-06 12:43:29 00:00:18.633
4743 msys 40M 2006-08-06 12:44:04 00:00:23.514
475@end example
476
477A VM snapshot is made of a VM state info (its size is shown in
478@code{info snapshots}) and a snapshot of every writable disk image.
479The VM state info is stored in the first @code{qcow2} non removable
480and writable block device. The disk image snapshots are stored in
481every disk image. The size of a snapshot in a disk image is difficult
482to evaluate and is not shown by @code{info snapshots} because the
483associated disk sectors are shared among all the snapshots to save
19d36792
FB
484disk space (otherwise each snapshot would need a full copy of all the
485disk images).
13a2e80f
FB
486
487When using the (unrelated) @code{-snapshot} option
488(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
489but they are deleted as soon as you exit QEMU.
490
491VM snapshots currently have the following known limitations:
492@itemize
5fafdf24 493@item
13a2e80f
FB
494They cannot cope with removable devices if they are removed or
495inserted after a snapshot is done.
5fafdf24 496@item
13a2e80f
FB
497A few device drivers still have incomplete snapshot support so their
498state is not saved or restored properly (in particular USB).
499@end itemize
500
acd935ef
FB
501@node qemu_img_invocation
502@subsection @code{qemu-img} Invocation
1f47a922 503
acd935ef 504@include qemu-img.texi
05efe46e 505
975b092b
TS
506@node qemu_nbd_invocation
507@subsection @code{qemu-nbd} Invocation
508
509@include qemu-nbd.texi
510
665b5d0d
MAL
511@node qemu_ga_invocation
512@subsection @code{qemu-ga} Invocation
513
514@include qemu-ga.texi
515
d3067b02
KW
516@node disk_images_formats
517@subsection Disk image file formats
518
519QEMU supports many image file formats that can be used with VMs as well as with
520any of the tools (like @code{qemu-img}). This includes the preferred formats
521raw and qcow2 as well as formats that are supported for compatibility with
522older QEMU versions or other hypervisors.
523
524Depending on the image format, different options can be passed to
525@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
526This section describes each format and the options that are supported for it.
527
528@table @option
529@item raw
530
531Raw disk image format. This format has the advantage of
532being simple and easily exportable to all other emulators. If your
533file system supports @emph{holes} (for example in ext2 or ext3 on
534Linux or NTFS on Windows), then only the written sectors will reserve
535space. Use @code{qemu-img info} to know the real size used by the
536image or @code{ls -ls} on Unix/Linux.
537
06247428
HT
538Supported options:
539@table @code
540@item preallocation
541Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
542@code{falloc} mode preallocates space for image by calling posix_fallocate().
543@code{full} mode preallocates space for image by writing zeros to underlying
544storage.
545@end table
546
d3067b02
KW
547@item qcow2
548QEMU image format, the most versatile format. Use it to have smaller
549images (useful if your filesystem does not supports holes, for example
a1f688f4
MA
550on Windows), zlib based compression and support of multiple VM
551snapshots.
d3067b02
KW
552
553Supported options:
554@table @code
555@item compat
7fa9e1f9
SH
556Determines the qcow2 version to use. @code{compat=0.10} uses the
557traditional image format that can be read by any QEMU since 0.10.
d3067b02 558@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
559newer understand (this is the default). Amongst others, this includes
560zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
561
562@item backing_file
563File name of a base image (see @option{create} subcommand)
564@item backing_fmt
565Image format of the base image
566@item encryption
136cd19d 567If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 568
136cd19d
DB
569The use of encryption in qcow and qcow2 images is considered to be flawed by
570modern cryptography standards, suffering from a number of design problems:
571
572@itemize @minus
573@item The AES-CBC cipher is used with predictable initialization vectors based
574on the sector number. This makes it vulnerable to chosen plaintext attacks
575which can reveal the existence of encrypted data.
576@item The user passphrase is directly used as the encryption key. A poorly
577chosen or short passphrase will compromise the security of the encryption.
578@item In the event of the passphrase being compromised there is no way to
579change the passphrase to protect data in any qcow images. The files must
580be cloned, using a different encryption passphrase in the new file. The
581original file must then be securely erased using a program like shred,
582though even this is ineffective with many modern storage technologies.
583@end itemize
584
a1f688f4
MA
585Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
586it will go away in a future release. Users are recommended to use an
587alternative encryption technology such as the Linux dm-crypt / LUKS
588system.
d3067b02
KW
589
590@item cluster_size
591Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
592sizes can improve the image file size whereas larger cluster sizes generally
593provide better performance.
594
595@item preallocation
0e4271b7
HT
596Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
597@code{full}). An image with preallocated metadata is initially larger but can
598improve performance when the image needs to grow. @code{falloc} and @code{full}
599preallocations are like the same options of @code{raw} format, but sets up
600metadata also.
d3067b02
KW
601
602@item lazy_refcounts
603If this option is set to @code{on}, reference count updates are postponed with
604the goal of avoiding metadata I/O and improving performance. This is
605particularly interesting with @option{cache=writethrough} which doesn't batch
606metadata updates. The tradeoff is that after a host crash, the reference count
607tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
608check -r all} is required, which may take some time.
609
610This option can only be enabled if @code{compat=1.1} is specified.
611
4ab15590 612@item nocow
bc3a7f90 613If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
614valid on btrfs, no effect on other file systems.
615
616Btrfs has low performance when hosting a VM image file, even more when the guest
617on the VM also using btrfs as file system. Turning off COW is a way to mitigate
618this bad performance. Generally there are two ways to turn off COW on btrfs:
619a) Disable it by mounting with nodatacow, then all newly created files will be
620NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
621does.
622
623Note: this option is only valid to new or empty files. If there is an existing
624file which is COW and has data blocks already, it couldn't be changed to NOCOW
625by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 626the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 627
d3067b02
KW
628@end table
629
630@item qed
631Old QEMU image format with support for backing files and compact image files
632(when your filesystem or transport medium does not support holes).
633
634When converting QED images to qcow2, you might want to consider using the
635@code{lazy_refcounts=on} option to get a more QED-like behaviour.
636
637Supported options:
638@table @code
639@item backing_file
640File name of a base image (see @option{create} subcommand).
641@item backing_fmt
642Image file format of backing file (optional). Useful if the format cannot be
643autodetected because it has no header, like some vhd/vpc files.
644@item cluster_size
645Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
646cluster sizes can improve the image file size whereas larger cluster sizes
647generally provide better performance.
648@item table_size
649Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
650and 16). There is normally no need to change this value but this option can be
651used for performance benchmarking.
652@end table
653
654@item qcow
655Old QEMU image format with support for backing files, compact image files,
656encryption and compression.
657
658Supported options:
659@table @code
660@item backing_file
661File name of a base image (see @option{create} subcommand)
662@item encryption
663If this option is set to @code{on}, the image is encrypted.
664@end table
665
d3067b02
KW
666@item vdi
667VirtualBox 1.1 compatible image format.
668Supported options:
669@table @code
670@item static
671If this option is set to @code{on}, the image is created with metadata
672preallocation.
673@end table
674
675@item vmdk
676VMware 3 and 4 compatible image format.
677
678Supported options:
679@table @code
680@item backing_file
681File name of a base image (see @option{create} subcommand).
682@item compat6
683Create a VMDK version 6 image (instead of version 4)
684@item subformat
685Specifies which VMDK subformat to use. Valid options are
686@code{monolithicSparse} (default),
687@code{monolithicFlat},
688@code{twoGbMaxExtentSparse},
689@code{twoGbMaxExtentFlat} and
690@code{streamOptimized}.
691@end table
692
693@item vpc
694VirtualPC compatible image format (VHD).
695Supported options:
696@table @code
697@item subformat
698Specifies which VHD subformat to use. Valid options are
699@code{dynamic} (default) and @code{fixed}.
700@end table
8282db1b
JC
701
702@item VHDX
703Hyper-V compatible image format (VHDX).
704Supported options:
705@table @code
706@item subformat
707Specifies which VHDX subformat to use. Valid options are
708@code{dynamic} (default) and @code{fixed}.
709@item block_state_zero
30af51ce
JC
710Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
711or @code{off}. When set to @code{off}, new blocks will be created as
712@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
713arbitrary data for those blocks. Do not set to @code{off} when using
714@code{qemu-img convert} with @code{subformat=dynamic}.
8282db1b
JC
715@item block_size
716Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
717@item log_size
718Log size; min 1 MB.
719@end table
d3067b02
KW
720@end table
721
722@subsubsection Read-only formats
723More disk image file formats are supported in a read-only mode.
724@table @option
725@item bochs
726Bochs images of @code{growing} type.
727@item cloop
728Linux Compressed Loop image, useful only to reuse directly compressed
729CD-ROM images present for example in the Knoppix CD-ROMs.
730@item dmg
731Apple disk image.
732@item parallels
733Parallels disk image format.
734@end table
735
736
19cb3738
FB
737@node host_drives
738@subsection Using host drives
739
740In addition to disk image files, QEMU can directly access host
741devices. We describe here the usage for QEMU version >= 0.8.3.
742
743@subsubsection Linux
744
745On Linux, you can directly use the host device filename instead of a
4be456f1 746disk image filename provided you have enough privileges to access
92a539d2 747it. For example, use @file{/dev/cdrom} to access to the CDROM.
19cb3738 748
f542086d 749@table @code
19cb3738
FB
750@item CD
751You can specify a CDROM device even if no CDROM is loaded. QEMU has
752specific code to detect CDROM insertion or removal. CDROM ejection by
753the guest OS is supported. Currently only data CDs are supported.
754@item Floppy
755You can specify a floppy device even if no floppy is loaded. Floppy
756removal is currently not detected accurately (if you change floppy
757without doing floppy access while the floppy is not loaded, the guest
758OS will think that the same floppy is loaded).
92a539d2
MA
759Use of the host's floppy device is deprecated, and support for it will
760be removed in a future release.
19cb3738
FB
761@item Hard disks
762Hard disks can be used. Normally you must specify the whole disk
763(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
764see it as a partitioned disk. WARNING: unless you know what you do, it
765is better to only make READ-ONLY accesses to the hard disk otherwise
766you may corrupt your host data (use the @option{-snapshot} command
767line option or modify the device permissions accordingly).
768@end table
769
770@subsubsection Windows
771
01781963
FB
772@table @code
773@item CD
4be456f1 774The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
775alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
776supported as an alias to the first CDROM drive.
19cb3738 777
e598752a 778Currently there is no specific code to handle removable media, so it
19cb3738
FB
779is better to use the @code{change} or @code{eject} monitor commands to
780change or eject media.
01781963 781@item Hard disks
89dfe898 782Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
783where @var{N} is the drive number (0 is the first hard disk).
784
785WARNING: unless you know what you do, it is better to only make
786READ-ONLY accesses to the hard disk otherwise you may corrupt your
787host data (use the @option{-snapshot} command line so that the
788modifications are written in a temporary file).
789@end table
790
19cb3738
FB
791
792@subsubsection Mac OS X
793
5fafdf24 794@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 795
e598752a 796Currently there is no specific code to handle removable media, so it
19cb3738
FB
797is better to use the @code{change} or @code{eject} monitor commands to
798change or eject media.
799
debc7065 800@node disk_images_fat_images
2c6cadd4
FB
801@subsection Virtual FAT disk images
802
803QEMU can automatically create a virtual FAT disk image from a
804directory tree. In order to use it, just type:
805
5fafdf24 806@example
3804da9d 807qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
808@end example
809
810Then you access access to all the files in the @file{/my_directory}
811directory without having to copy them in a disk image or to export
812them via SAMBA or NFS. The default access is @emph{read-only}.
813
814Floppies can be emulated with the @code{:floppy:} option:
815
5fafdf24 816@example
3804da9d 817qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
818@end example
819
820A read/write support is available for testing (beta stage) with the
821@code{:rw:} option:
822
5fafdf24 823@example
3804da9d 824qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
825@end example
826
827What you should @emph{never} do:
828@itemize
829@item use non-ASCII filenames ;
830@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
831@item expect it to work when loadvm'ing ;
832@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
833@end itemize
834
75818250
TS
835@node disk_images_nbd
836@subsection NBD access
837
838QEMU can access directly to block device exported using the Network Block Device
839protocol.
840
841@example
1d7d2a9d 842qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
843@end example
844
845If the NBD server is located on the same host, you can use an unix socket instead
846of an inet socket:
847
848@example
1d7d2a9d 849qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
850@end example
851
852In this case, the block device must be exported using qemu-nbd:
853
854@example
855qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
856@end example
857
9d85d557 858The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
859@example
860qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
861@end example
862
1d7d2a9d 863@noindent
75818250
TS
864and then you can use it with two guests:
865@example
1d7d2a9d
PB
866qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
867qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
868@end example
869
1d7d2a9d
PB
870If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
871own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 872@example
1d7d2a9d
PB
873qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
874qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
875@end example
876
877The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
878also available. Here are some example of the older syntax:
879@example
880qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
881qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
882qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
883@end example
884
42af9c30
MK
885@node disk_images_sheepdog
886@subsection Sheepdog disk images
887
888Sheepdog is a distributed storage system for QEMU. It provides highly
889available block level storage volumes that can be attached to
890QEMU-based virtual machines.
891
892You can create a Sheepdog disk image with the command:
893@example
5d6768e3 894qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
895@end example
896where @var{image} is the Sheepdog image name and @var{size} is its
897size.
898
899To import the existing @var{filename} to Sheepdog, you can use a
900convert command.
901@example
5d6768e3 902qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
903@end example
904
905You can boot from the Sheepdog disk image with the command:
906@example
5d6768e3 907qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
908@end example
909
910You can also create a snapshot of the Sheepdog image like qcow2.
911@example
5d6768e3 912qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
913@end example
914where @var{tag} is a tag name of the newly created snapshot.
915
916To boot from the Sheepdog snapshot, specify the tag name of the
917snapshot.
918@example
5d6768e3 919qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
920@end example
921
922You can create a cloned image from the existing snapshot.
923@example
5d6768e3 924qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
925@end example
926where @var{base} is a image name of the source snapshot and @var{tag}
927is its tag name.
928
1b8bbb46
MK
929You can use an unix socket instead of an inet socket:
930
931@example
932qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
933@end example
934
42af9c30
MK
935If the Sheepdog daemon doesn't run on the local host, you need to
936specify one of the Sheepdog servers to connect to.
937@example
5d6768e3
MK
938qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
939qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
940@end example
941
00984e39
RS
942@node disk_images_iscsi
943@subsection iSCSI LUNs
944
945iSCSI is a popular protocol used to access SCSI devices across a computer
946network.
947
948There are two different ways iSCSI devices can be used by QEMU.
949
950The first method is to mount the iSCSI LUN on the host, and make it appear as
951any other ordinary SCSI device on the host and then to access this device as a
952/dev/sd device from QEMU. How to do this differs between host OSes.
953
954The second method involves using the iSCSI initiator that is built into
955QEMU. This provides a mechanism that works the same way regardless of which
956host OS you are running QEMU on. This section will describe this second method
957of using iSCSI together with QEMU.
958
959In QEMU, iSCSI devices are described using special iSCSI URLs
960
961@example
962URL syntax:
963iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
964@end example
965
966Username and password are optional and only used if your target is set up
967using CHAP authentication for access control.
968Alternatively the username and password can also be set via environment
969variables to have these not show up in the process list
970
971@example
972export LIBISCSI_CHAP_USERNAME=<username>
973export LIBISCSI_CHAP_PASSWORD=<password>
974iscsi://<host>/<target-iqn-name>/<lun>
975@end example
976
f9dadc98
RS
977Various session related parameters can be set via special options, either
978in a configuration file provided via '-readconfig' or directly on the
979command line.
980
31459f46
RS
981If the initiator-name is not specified qemu will use a default name
982of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
983virtual machine.
984
985
f9dadc98
RS
986@example
987Setting a specific initiator name to use when logging in to the target
988-iscsi initiator-name=iqn.qemu.test:my-initiator
989@end example
990
991@example
992Controlling which type of header digest to negotiate with the target
993-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
994@end example
995
996These can also be set via a configuration file
997@example
998[iscsi]
999 user = "CHAP username"
1000 password = "CHAP password"
1001 initiator-name = "iqn.qemu.test:my-initiator"
1002 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1003 header-digest = "CRC32C"
1004@end example
1005
1006
1007Setting the target name allows different options for different targets
1008@example
1009[iscsi "iqn.target.name"]
1010 user = "CHAP username"
1011 password = "CHAP password"
1012 initiator-name = "iqn.qemu.test:my-initiator"
1013 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1014 header-digest = "CRC32C"
1015@end example
1016
1017
1018Howto use a configuration file to set iSCSI configuration options:
1019@example
1020cat >iscsi.conf <<EOF
1021[iscsi]
1022 user = "me"
1023 password = "my password"
1024 initiator-name = "iqn.qemu.test:my-initiator"
1025 header-digest = "CRC32C"
1026EOF
1027
1028qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1029 -readconfig iscsi.conf
1030@end example
1031
1032
00984e39
RS
1033Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1034@example
1035This example shows how to set up an iSCSI target with one CDROM and one DISK
1036using the Linux STGT software target. This target is available on Red Hat based
1037systems as the package 'scsi-target-utils'.
1038
1039tgtd --iscsi portal=127.0.0.1:3260
1040tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1041tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1042 -b /IMAGES/disk.img --device-type=disk
1043tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1044 -b /IMAGES/cd.iso --device-type=cd
1045tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1046
f9dadc98
RS
1047qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1048 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1049 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1050@end example
1051
8809e289
BR
1052@node disk_images_gluster
1053@subsection GlusterFS disk images
00984e39 1054
8809e289
BR
1055GlusterFS is an user space distributed file system.
1056
1057You can boot from the GlusterFS disk image with the command:
1058@example
1059qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1060@end example
1061
1062@var{gluster} is the protocol.
1063
1064@var{transport} specifies the transport type used to connect to gluster
1065management daemon (glusterd). Valid transport types are
1066tcp, unix and rdma. If a transport type isn't specified, then tcp
1067type is assumed.
1068
1069@var{server} specifies the server where the volume file specification for
1070the given volume resides. This can be either hostname, ipv4 address
1071or ipv6 address. ipv6 address needs to be within square brackets [ ].
d274e07c 1072If transport type is unix, then @var{server} field should not be specified.
8809e289
BR
1073Instead @var{socket} field needs to be populated with the path to unix domain
1074socket.
1075
1076@var{port} is the port number on which glusterd is listening. This is optional
1077and if not specified, QEMU will send 0 which will make gluster to use the
1078default port. If the transport type is unix, then @var{port} should not be
1079specified.
1080
1081@var{volname} is the name of the gluster volume which contains the disk image.
1082
1083@var{image} is the path to the actual disk image that resides on gluster volume.
1084
1085You can create a GlusterFS disk image with the command:
1086@example
1087qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1088@end example
1089
1090Examples
1091@example
1092qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1093qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1094qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1095qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1096qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1097qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1098qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1099qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1100@end example
00984e39 1101
0a12ec87
RJ
1102@node disk_images_ssh
1103@subsection Secure Shell (ssh) disk images
1104
1105You can access disk images located on a remote ssh server
1106by using the ssh protocol:
1107
1108@example
1109qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1110@end example
1111
1112Alternative syntax using properties:
1113
1114@example
1115qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1116@end example
1117
1118@var{ssh} is the protocol.
1119
1120@var{user} is the remote user. If not specified, then the local
1121username is tried.
1122
1123@var{server} specifies the remote ssh server. Any ssh server can be
1124used, but it must implement the sftp-server protocol. Most Unix/Linux
1125systems should work without requiring any extra configuration.
1126
1127@var{port} is the port number on which sshd is listening. By default
1128the standard ssh port (22) is used.
1129
1130@var{path} is the path to the disk image.
1131
1132The optional @var{host_key_check} parameter controls how the remote
1133host's key is checked. The default is @code{yes} which means to use
1134the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1135turns off known-hosts checking. Or you can check that the host key
1136matches a specific fingerprint:
1137@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1138(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1139tools only use MD5 to print fingerprints).
1140
1141Currently authentication must be done using ssh-agent. Other
1142authentication methods may be supported in future.
1143
9a2d462e
RJ
1144Note: Many ssh servers do not support an @code{fsync}-style operation.
1145The ssh driver cannot guarantee that disk flush requests are
1146obeyed, and this causes a risk of disk corruption if the remote
1147server or network goes down during writes. The driver will
1148print a warning when @code{fsync} is not supported:
1149
1150warning: ssh server @code{ssh.example.com:22} does not support fsync
1151
1152With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1153supported.
0a12ec87 1154
debc7065 1155@node pcsys_network
9d4fb82e
FB
1156@section Network emulation
1157
4be456f1 1158QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1159target) and can connect them to an arbitrary number of Virtual Local
1160Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1161VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1162simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1163network stack can replace the TAP device to have a basic network
1164connection.
1165
1166@subsection VLANs
9d4fb82e 1167
41d03949
FB
1168QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1169connection between several network devices. These devices can be for
1170example QEMU virtual Ethernet cards or virtual Host ethernet devices
1171(TAP devices).
9d4fb82e 1172
41d03949
FB
1173@subsection Using TAP network interfaces
1174
1175This is the standard way to connect QEMU to a real network. QEMU adds
1176a virtual network device on your host (called @code{tapN}), and you
1177can then configure it as if it was a real ethernet card.
9d4fb82e 1178
8f40c388
FB
1179@subsubsection Linux host
1180
9d4fb82e
FB
1181As an example, you can download the @file{linux-test-xxx.tar.gz}
1182archive and copy the script @file{qemu-ifup} in @file{/etc} and
1183configure properly @code{sudo} so that the command @code{ifconfig}
1184contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1185that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1186device @file{/dev/net/tun} must be present.
1187
ee0f4751
FB
1188See @ref{sec_invocation} to have examples of command lines using the
1189TAP network interfaces.
9d4fb82e 1190
8f40c388
FB
1191@subsubsection Windows host
1192
1193There is a virtual ethernet driver for Windows 2000/XP systems, called
1194TAP-Win32. But it is not included in standard QEMU for Windows,
1195so you will need to get it separately. It is part of OpenVPN package,
1196so download OpenVPN from : @url{http://openvpn.net/}.
1197
9d4fb82e
FB
1198@subsection Using the user mode network stack
1199
41d03949
FB
1200By using the option @option{-net user} (default configuration if no
1201@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1202network stack (you don't need root privilege to use the virtual
41d03949 1203network). The virtual network configuration is the following:
9d4fb82e
FB
1204
1205@example
1206
41d03949
FB
1207 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1208 | (10.0.2.2)
9d4fb82e 1209 |
2518bd0d 1210 ----> DNS server (10.0.2.3)
3b46e624 1211 |
2518bd0d 1212 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1213@end example
1214
1215The QEMU VM behaves as if it was behind a firewall which blocks all
1216incoming connections. You can use a DHCP client to automatically
41d03949
FB
1217configure the network in the QEMU VM. The DHCP server assign addresses
1218to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1219
1220In order to check that the user mode network is working, you can ping
1221the address 10.0.2.2 and verify that you got an address in the range
122210.0.2.x from the QEMU virtual DHCP server.
1223
37cbfcce
GH
1224Note that ICMP traffic in general does not work with user mode networking.
1225@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1226however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1227ping sockets to allow @code{ping} to the Internet. The host admin has to set
1228the ping_group_range in order to grant access to those sockets. To allow ping
1229for GID 100 (usually users group):
1230
1231@example
1232echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1233@end example
b415a407 1234
9bf05444
FB
1235When using the built-in TFTP server, the router is also the TFTP
1236server.
1237
1238When using the @option{-redir} option, TCP or UDP connections can be
1239redirected from the host to the guest. It allows for example to
1240redirect X11, telnet or SSH connections.
443f1376 1241
41d03949
FB
1242@subsection Connecting VLANs between QEMU instances
1243
1244Using the @option{-net socket} option, it is possible to make VLANs
1245that span several QEMU instances. See @ref{sec_invocation} to have a
1246basic example.
1247
576fd0a1 1248@node pcsys_other_devs
6cbf4c8c
CM
1249@section Other Devices
1250
1251@subsection Inter-VM Shared Memory device
1252
1253With KVM enabled on a Linux host, a shared memory device is available. Guests
1254map a POSIX shared memory region into the guest as a PCI device that enables
1255zero-copy communication to the application level of the guests. The basic
1256syntax is:
1257
1258@example
3804da9d 1259qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
6cbf4c8c
CM
1260@end example
1261
1262If desired, interrupts can be sent between guest VMs accessing the same shared
1263memory region. Interrupt support requires using a shared memory server and
1264using a chardev socket to connect to it. The code for the shared memory server
1265is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1266memory server is:
1267
1268@example
3804da9d
SW
1269qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1270 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1271qemu-system-i386 -chardev socket,path=<path>,id=<id>
6cbf4c8c
CM
1272@end example
1273
1274When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1275using the same server to communicate via interrupts. Guests can read their
1276VM ID from a device register (see example code). Since receiving the shared
1277memory region from the server is asynchronous, there is a (small) chance the
1278guest may boot before the shared memory is attached. To allow an application
1279to ensure shared memory is attached, the VM ID register will return -1 (an
1280invalid VM ID) until the memory is attached. Once the shared memory is
1281attached, the VM ID will return the guest's valid VM ID. With these semantics,
1282the guest application can check to ensure the shared memory is attached to the
1283guest before proceeding.
1284
1285The @option{role} argument can be set to either master or peer and will affect
1286how the shared memory is migrated. With @option{role=master}, the guest will
1287copy the shared memory on migration to the destination host. With
1288@option{role=peer}, the guest will not be able to migrate with the device attached.
1289With the @option{peer} case, the device should be detached and then reattached
1290after migration using the PCI hotplug support.
1291
9d4fb82e
FB
1292@node direct_linux_boot
1293@section Direct Linux Boot
1f673135
FB
1294
1295This section explains how to launch a Linux kernel inside QEMU without
1296having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1297kernel testing.
1f673135 1298
ee0f4751 1299The syntax is:
1f673135 1300@example
3804da9d 1301qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1302@end example
1303
ee0f4751
FB
1304Use @option{-kernel} to provide the Linux kernel image and
1305@option{-append} to give the kernel command line arguments. The
1306@option{-initrd} option can be used to provide an INITRD image.
1f673135 1307
ee0f4751
FB
1308When using the direct Linux boot, a disk image for the first hard disk
1309@file{hda} is required because its boot sector is used to launch the
1310Linux kernel.
1f673135 1311
ee0f4751
FB
1312If you do not need graphical output, you can disable it and redirect
1313the virtual serial port and the QEMU monitor to the console with the
1314@option{-nographic} option. The typical command line is:
1f673135 1315@example
3804da9d
SW
1316qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1317 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1318@end example
1319
ee0f4751
FB
1320Use @key{Ctrl-a c} to switch between the serial console and the
1321monitor (@pxref{pcsys_keys}).
1f673135 1322
debc7065 1323@node pcsys_usb
b389dbfb
FB
1324@section USB emulation
1325
0aff66b5
PB
1326QEMU emulates a PCI UHCI USB controller. You can virtually plug
1327virtual USB devices or real host USB devices (experimental, works only
071c9394 1328on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1329as necessary to connect multiple USB devices.
b389dbfb 1330
0aff66b5
PB
1331@menu
1332* usb_devices::
1333* host_usb_devices::
1334@end menu
1335@node usb_devices
1336@subsection Connecting USB devices
b389dbfb 1337
0aff66b5
PB
1338USB devices can be connected with the @option{-usbdevice} commandline option
1339or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1340
db380c06
AZ
1341@table @code
1342@item mouse
0aff66b5 1343Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1344@item tablet
c6d46c20 1345Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1346This means QEMU is able to report the mouse position without having
0aff66b5 1347to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1348@item disk:@var{file}
0aff66b5 1349Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1350@item host:@var{bus.addr}
0aff66b5
PB
1351Pass through the host device identified by @var{bus.addr}
1352(Linux only)
db380c06 1353@item host:@var{vendor_id:product_id}
0aff66b5
PB
1354Pass through the host device identified by @var{vendor_id:product_id}
1355(Linux only)
db380c06 1356@item wacom-tablet
f6d2a316
AZ
1357Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1358above but it can be used with the tslib library because in addition to touch
1359coordinates it reports touch pressure.
db380c06 1360@item keyboard
47b2d338 1361Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1362@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1363Serial converter. This emulates an FTDI FT232BM chip connected to host character
1364device @var{dev}. The available character devices are the same as for the
1365@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1366used to override the default 0403:6001. For instance,
db380c06
AZ
1367@example
1368usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1369@end example
1370will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1371serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1372@item braille
1373Braille device. This will use BrlAPI to display the braille output on a real
1374or fake device.
9ad97e65
AZ
1375@item net:@var{options}
1376Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1377specifies NIC options as with @code{-net nic,}@var{options} (see description).
1378For instance, user-mode networking can be used with
6c9f886c 1379@example
3804da9d 1380qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1381@end example
1382Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1383@item bt[:@var{hci-type}]
1384Bluetooth dongle whose type is specified in the same format as with
1385the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1386no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1387This USB device implements the USB Transport Layer of HCI. Example
1388usage:
1389@example
3804da9d 1390qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1391@end example
0aff66b5 1392@end table
b389dbfb 1393
0aff66b5 1394@node host_usb_devices
b389dbfb
FB
1395@subsection Using host USB devices on a Linux host
1396
1397WARNING: this is an experimental feature. QEMU will slow down when
1398using it. USB devices requiring real time streaming (i.e. USB Video
1399Cameras) are not supported yet.
1400
1401@enumerate
5fafdf24 1402@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1403is actually using the USB device. A simple way to do that is simply to
1404disable the corresponding kernel module by renaming it from @file{mydriver.o}
1405to @file{mydriver.o.disabled}.
1406
1407@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1408@example
1409ls /proc/bus/usb
1410001 devices drivers
1411@end example
1412
1413@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1414@example
1415chown -R myuid /proc/bus/usb
1416@end example
1417
1418@item Launch QEMU and do in the monitor:
5fafdf24 1419@example
b389dbfb
FB
1420info usbhost
1421 Device 1.2, speed 480 Mb/s
1422 Class 00: USB device 1234:5678, USB DISK
1423@end example
1424You should see the list of the devices you can use (Never try to use
1425hubs, it won't work).
1426
1427@item Add the device in QEMU by using:
5fafdf24 1428@example
b389dbfb
FB
1429usb_add host:1234:5678
1430@end example
1431
1432Normally the guest OS should report that a new USB device is
1433plugged. You can use the option @option{-usbdevice} to do the same.
1434
1435@item Now you can try to use the host USB device in QEMU.
1436
1437@end enumerate
1438
1439When relaunching QEMU, you may have to unplug and plug again the USB
1440device to make it work again (this is a bug).
1441
f858dcae
TS
1442@node vnc_security
1443@section VNC security
1444
1445The VNC server capability provides access to the graphical console
1446of the guest VM across the network. This has a number of security
1447considerations depending on the deployment scenarios.
1448
1449@menu
1450* vnc_sec_none::
1451* vnc_sec_password::
1452* vnc_sec_certificate::
1453* vnc_sec_certificate_verify::
1454* vnc_sec_certificate_pw::
2f9606b3
AL
1455* vnc_sec_sasl::
1456* vnc_sec_certificate_sasl::
f858dcae 1457* vnc_generate_cert::
2f9606b3 1458* vnc_setup_sasl::
f858dcae
TS
1459@end menu
1460@node vnc_sec_none
1461@subsection Without passwords
1462
1463The simplest VNC server setup does not include any form of authentication.
1464For this setup it is recommended to restrict it to listen on a UNIX domain
1465socket only. For example
1466
1467@example
3804da9d 1468qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1469@end example
1470
1471This ensures that only users on local box with read/write access to that
1472path can access the VNC server. To securely access the VNC server from a
1473remote machine, a combination of netcat+ssh can be used to provide a secure
1474tunnel.
1475
1476@node vnc_sec_password
1477@subsection With passwords
1478
1479The VNC protocol has limited support for password based authentication. Since
1480the protocol limits passwords to 8 characters it should not be considered
1481to provide high security. The password can be fairly easily brute-forced by
1482a client making repeat connections. For this reason, a VNC server using password
1483authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1484or UNIX domain sockets. Password authentication is not supported when operating
1485in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1486authentication is requested with the @code{password} option, and then once QEMU
1487is running the password is set with the monitor. Until the monitor is used to
1488set the password all clients will be rejected.
f858dcae
TS
1489
1490@example
3804da9d 1491qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1492(qemu) change vnc password
1493Password: ********
1494(qemu)
1495@end example
1496
1497@node vnc_sec_certificate
1498@subsection With x509 certificates
1499
1500The QEMU VNC server also implements the VeNCrypt extension allowing use of
1501TLS for encryption of the session, and x509 certificates for authentication.
1502The use of x509 certificates is strongly recommended, because TLS on its
1503own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1504support provides a secure session, but no authentication. This allows any
1505client to connect, and provides an encrypted session.
1506
1507@example
3804da9d 1508qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1509@end example
1510
1511In the above example @code{/etc/pki/qemu} should contain at least three files,
1512@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1513users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1514NB the @code{server-key.pem} file should be protected with file mode 0600 to
1515only be readable by the user owning it.
1516
1517@node vnc_sec_certificate_verify
1518@subsection With x509 certificates and client verification
1519
1520Certificates can also provide a means to authenticate the client connecting.
1521The server will request that the client provide a certificate, which it will
1522then validate against the CA certificate. This is a good choice if deploying
1523in an environment with a private internal certificate authority.
1524
1525@example
3804da9d 1526qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1527@end example
1528
1529
1530@node vnc_sec_certificate_pw
1531@subsection With x509 certificates, client verification and passwords
1532
1533Finally, the previous method can be combined with VNC password authentication
1534to provide two layers of authentication for clients.
1535
1536@example
3804da9d 1537qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1538(qemu) change vnc password
1539Password: ********
1540(qemu)
1541@end example
1542
2f9606b3
AL
1543
1544@node vnc_sec_sasl
1545@subsection With SASL authentication
1546
1547The SASL authentication method is a VNC extension, that provides an
1548easily extendable, pluggable authentication method. This allows for
1549integration with a wide range of authentication mechanisms, such as
1550PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1551The strength of the authentication depends on the exact mechanism
1552configured. If the chosen mechanism also provides a SSF layer, then
1553it will encrypt the datastream as well.
1554
1555Refer to the later docs on how to choose the exact SASL mechanism
1556used for authentication, but assuming use of one supporting SSF,
1557then QEMU can be launched with:
1558
1559@example
3804da9d 1560qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1561@end example
1562
1563@node vnc_sec_certificate_sasl
1564@subsection With x509 certificates and SASL authentication
1565
1566If the desired SASL authentication mechanism does not supported
1567SSF layers, then it is strongly advised to run it in combination
1568with TLS and x509 certificates. This provides securely encrypted
1569data stream, avoiding risk of compromising of the security
1570credentials. This can be enabled, by combining the 'sasl' option
1571with the aforementioned TLS + x509 options:
1572
1573@example
3804da9d 1574qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1575@end example
1576
1577
f858dcae
TS
1578@node vnc_generate_cert
1579@subsection Generating certificates for VNC
1580
1581The GNU TLS packages provides a command called @code{certtool} which can
1582be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1583is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1584each server. If using certificates for authentication, then each client
1585will also need to be issued a certificate. The recommendation is for the
1586server to keep its certificates in either @code{/etc/pki/qemu} or for
1587unprivileged users in @code{$HOME/.pki/qemu}.
1588
1589@menu
1590* vnc_generate_ca::
1591* vnc_generate_server::
1592* vnc_generate_client::
1593@end menu
1594@node vnc_generate_ca
1595@subsubsection Setup the Certificate Authority
1596
1597This step only needs to be performed once per organization / organizational
1598unit. First the CA needs a private key. This key must be kept VERY secret
1599and secure. If this key is compromised the entire trust chain of the certificates
1600issued with it is lost.
1601
1602@example
1603# certtool --generate-privkey > ca-key.pem
1604@end example
1605
1606A CA needs to have a public certificate. For simplicity it can be a self-signed
1607certificate, or one issue by a commercial certificate issuing authority. To
1608generate a self-signed certificate requires one core piece of information, the
1609name of the organization.
1610
1611@example
1612# cat > ca.info <<EOF
1613cn = Name of your organization
1614ca
1615cert_signing_key
1616EOF
1617# certtool --generate-self-signed \
1618 --load-privkey ca-key.pem
1619 --template ca.info \
1620 --outfile ca-cert.pem
1621@end example
1622
1623The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1624TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1625
1626@node vnc_generate_server
1627@subsubsection Issuing server certificates
1628
1629Each server (or host) needs to be issued with a key and certificate. When connecting
1630the certificate is sent to the client which validates it against the CA certificate.
1631The core piece of information for a server certificate is the hostname. This should
1632be the fully qualified hostname that the client will connect with, since the client
1633will typically also verify the hostname in the certificate. On the host holding the
1634secure CA private key:
1635
1636@example
1637# cat > server.info <<EOF
1638organization = Name of your organization
1639cn = server.foo.example.com
1640tls_www_server
1641encryption_key
1642signing_key
1643EOF
1644# certtool --generate-privkey > server-key.pem
1645# certtool --generate-certificate \
1646 --load-ca-certificate ca-cert.pem \
1647 --load-ca-privkey ca-key.pem \
63c693f8 1648 --load-privkey server-key.pem \
f858dcae
TS
1649 --template server.info \
1650 --outfile server-cert.pem
1651@end example
1652
1653The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1654to the server for which they were generated. The @code{server-key.pem} is security
1655sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1656
1657@node vnc_generate_client
1658@subsubsection Issuing client certificates
1659
1660If the QEMU VNC server is to use the @code{x509verify} option to validate client
1661certificates as its authentication mechanism, each client also needs to be issued
1662a certificate. The client certificate contains enough metadata to uniquely identify
1663the client, typically organization, state, city, building, etc. On the host holding
1664the secure CA private key:
1665
1666@example
1667# cat > client.info <<EOF
1668country = GB
1669state = London
1670locality = London
63c693f8 1671organization = Name of your organization
f858dcae
TS
1672cn = client.foo.example.com
1673tls_www_client
1674encryption_key
1675signing_key
1676EOF
1677# certtool --generate-privkey > client-key.pem
1678# certtool --generate-certificate \
1679 --load-ca-certificate ca-cert.pem \
1680 --load-ca-privkey ca-key.pem \
1681 --load-privkey client-key.pem \
1682 --template client.info \
1683 --outfile client-cert.pem
1684@end example
1685
1686The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1687copied to the client for which they were generated.
1688
2f9606b3
AL
1689
1690@node vnc_setup_sasl
1691
1692@subsection Configuring SASL mechanisms
1693
1694The following documentation assumes use of the Cyrus SASL implementation on a
1695Linux host, but the principals should apply to any other SASL impl. When SASL
1696is enabled, the mechanism configuration will be loaded from system default
1697SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1698unprivileged user, an environment variable SASL_CONF_PATH can be used
1699to make it search alternate locations for the service config.
1700
1701The default configuration might contain
1702
1703@example
1704mech_list: digest-md5
1705sasldb_path: /etc/qemu/passwd.db
1706@end example
1707
1708This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1709Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1710in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1711command. While this mechanism is easy to configure and use, it is not
1712considered secure by modern standards, so only suitable for developers /
1713ad-hoc testing.
1714
1715A more serious deployment might use Kerberos, which is done with the 'gssapi'
1716mechanism
1717
1718@example
1719mech_list: gssapi
1720keytab: /etc/qemu/krb5.tab
1721@end example
1722
1723For this to work the administrator of your KDC must generate a Kerberos
1724principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1725replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1726machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1727
1728Other configurations will be left as an exercise for the reader. It should
1729be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1730encryption. For all other mechanisms, VNC should always be configured to
1731use TLS and x509 certificates to protect security credentials from snooping.
1732
0806e3f6 1733@node gdb_usage
da415d54
FB
1734@section GDB usage
1735
1736QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1737'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1738
b65ee4fa 1739In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1740gdb connection:
1741@example
3804da9d
SW
1742qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1743 -append "root=/dev/hda"
da415d54
FB
1744Connected to host network interface: tun0
1745Waiting gdb connection on port 1234
1746@end example
1747
1748Then launch gdb on the 'vmlinux' executable:
1749@example
1750> gdb vmlinux
1751@end example
1752
1753In gdb, connect to QEMU:
1754@example
6c9bf893 1755(gdb) target remote localhost:1234
da415d54
FB
1756@end example
1757
1758Then you can use gdb normally. For example, type 'c' to launch the kernel:
1759@example
1760(gdb) c
1761@end example
1762
0806e3f6
FB
1763Here are some useful tips in order to use gdb on system code:
1764
1765@enumerate
1766@item
1767Use @code{info reg} to display all the CPU registers.
1768@item
1769Use @code{x/10i $eip} to display the code at the PC position.
1770@item
1771Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1772@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1773@end enumerate
1774
60897d36
EI
1775Advanced debugging options:
1776
b6af0975 1777The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1778@table @code
60897d36
EI
1779@item maintenance packet qqemu.sstepbits
1780
1781This will display the MASK bits used to control the single stepping IE:
1782@example
1783(gdb) maintenance packet qqemu.sstepbits
1784sending: "qqemu.sstepbits"
1785received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1786@end example
1787@item maintenance packet qqemu.sstep
1788
1789This will display the current value of the mask used when single stepping IE:
1790@example
1791(gdb) maintenance packet qqemu.sstep
1792sending: "qqemu.sstep"
1793received: "0x7"
1794@end example
1795@item maintenance packet Qqemu.sstep=HEX_VALUE
1796
1797This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1798@example
1799(gdb) maintenance packet Qqemu.sstep=0x5
1800sending: "qemu.sstep=0x5"
1801received: "OK"
1802@end example
94d45e44 1803@end table
60897d36 1804
debc7065 1805@node pcsys_os_specific
1a084f3d
FB
1806@section Target OS specific information
1807
1808@subsection Linux
1809
15a34c63
FB
1810To have access to SVGA graphic modes under X11, use the @code{vesa} or
1811the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1812color depth in the guest and the host OS.
1a084f3d 1813
e3371e62
FB
1814When using a 2.6 guest Linux kernel, you should add the option
1815@code{clock=pit} on the kernel command line because the 2.6 Linux
1816kernels make very strict real time clock checks by default that QEMU
1817cannot simulate exactly.
1818
7c3fc84d
FB
1819When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1820not activated because QEMU is slower with this patch. The QEMU
1821Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1822Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1823patch by default. Newer kernels don't have it.
1824
1a084f3d
FB
1825@subsection Windows
1826
1827If you have a slow host, using Windows 95 is better as it gives the
1828best speed. Windows 2000 is also a good choice.
1829
e3371e62
FB
1830@subsubsection SVGA graphic modes support
1831
1832QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1833card. All Windows versions starting from Windows 95 should recognize
1834and use this graphic card. For optimal performances, use 16 bit color
1835depth in the guest and the host OS.
1a084f3d 1836
3cb0853a
FB
1837If you are using Windows XP as guest OS and if you want to use high
1838resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18391280x1024x16), then you should use the VESA VBE virtual graphic card
1840(option @option{-std-vga}).
1841
e3371e62
FB
1842@subsubsection CPU usage reduction
1843
1844Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1845instruction. The result is that it takes host CPU cycles even when
1846idle. You can install the utility from
1847@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1848problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1849
9d0a8e6f 1850@subsubsection Windows 2000 disk full problem
e3371e62 1851
9d0a8e6f
FB
1852Windows 2000 has a bug which gives a disk full problem during its
1853installation. When installing it, use the @option{-win2k-hack} QEMU
1854option to enable a specific workaround. After Windows 2000 is
1855installed, you no longer need this option (this option slows down the
1856IDE transfers).
e3371e62 1857
6cc721cf
FB
1858@subsubsection Windows 2000 shutdown
1859
1860Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1861can. It comes from the fact that Windows 2000 does not automatically
1862use the APM driver provided by the BIOS.
1863
1864In order to correct that, do the following (thanks to Struan
1865Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1866Add/Troubleshoot a device => Add a new device & Next => No, select the
1867hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1868(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1869correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1870
1871@subsubsection Share a directory between Unix and Windows
1872
1873See @ref{sec_invocation} about the help of the option @option{-smb}.
1874
2192c332 1875@subsubsection Windows XP security problem
e3371e62
FB
1876
1877Some releases of Windows XP install correctly but give a security
1878error when booting:
1879@example
1880A problem is preventing Windows from accurately checking the
1881license for this computer. Error code: 0x800703e6.
1882@end example
e3371e62 1883
2192c332
FB
1884The workaround is to install a service pack for XP after a boot in safe
1885mode. Then reboot, and the problem should go away. Since there is no
1886network while in safe mode, its recommended to download the full
1887installation of SP1 or SP2 and transfer that via an ISO or using the
1888vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1889
a0a821a4
FB
1890@subsection MS-DOS and FreeDOS
1891
1892@subsubsection CPU usage reduction
1893
1894DOS does not correctly use the CPU HLT instruction. The result is that
1895it takes host CPU cycles even when idle. You can install the utility
1896from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1897problem.
1898
debc7065 1899@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1900@chapter QEMU System emulator for non PC targets
1901
1902QEMU is a generic emulator and it emulates many non PC
1903machines. Most of the options are similar to the PC emulator. The
4be456f1 1904differences are mentioned in the following sections.
3f9f3aa1 1905
debc7065 1906@menu
7544a042 1907* PowerPC System emulator::
24d4de45
TS
1908* Sparc32 System emulator::
1909* Sparc64 System emulator::
1910* MIPS System emulator::
1911* ARM System emulator::
1912* ColdFire System emulator::
7544a042
SW
1913* Cris System emulator::
1914* Microblaze System emulator::
1915* SH4 System emulator::
3aeaea65 1916* Xtensa System emulator::
debc7065
FB
1917@end menu
1918
7544a042
SW
1919@node PowerPC System emulator
1920@section PowerPC System emulator
1921@cindex system emulation (PowerPC)
1a084f3d 1922
15a34c63
FB
1923Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1924or PowerMac PowerPC system.
1a084f3d 1925
b671f9ed 1926QEMU emulates the following PowerMac peripherals:
1a084f3d 1927
15a34c63 1928@itemize @minus
5fafdf24 1929@item
006f3a48 1930UniNorth or Grackle PCI Bridge
15a34c63
FB
1931@item
1932PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1933@item
15a34c63 19342 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1935@item
15a34c63
FB
1936NE2000 PCI adapters
1937@item
1938Non Volatile RAM
1939@item
1940VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1941@end itemize
1942
b671f9ed 1943QEMU emulates the following PREP peripherals:
52c00a5f
FB
1944
1945@itemize @minus
5fafdf24 1946@item
15a34c63
FB
1947PCI Bridge
1948@item
1949PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1950@item
52c00a5f
FB
19512 IDE interfaces with hard disk and CD-ROM support
1952@item
1953Floppy disk
5fafdf24 1954@item
15a34c63 1955NE2000 network adapters
52c00a5f
FB
1956@item
1957Serial port
1958@item
1959PREP Non Volatile RAM
15a34c63
FB
1960@item
1961PC compatible keyboard and mouse.
52c00a5f
FB
1962@end itemize
1963
15a34c63 1964QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1965@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1966
992e5acd 1967Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1968for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1969v2) portable firmware implementation. The goal is to implement a 100%
1970IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1971
15a34c63
FB
1972@c man begin OPTIONS
1973
1974The following options are specific to the PowerPC emulation:
1975
1976@table @option
1977
4e257e5e 1978@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1979
340fb41b 1980Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1981
4e257e5e 1982@item -prom-env @var{string}
95efd11c
BS
1983
1984Set OpenBIOS variables in NVRAM, for example:
1985
1986@example
1987qemu-system-ppc -prom-env 'auto-boot?=false' \
1988 -prom-env 'boot-device=hd:2,\yaboot' \
1989 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1990@end example
1991
1992These variables are not used by Open Hack'Ware.
1993
15a34c63
FB
1994@end table
1995
5fafdf24 1996@c man end
15a34c63
FB
1997
1998
52c00a5f 1999More information is available at
3f9f3aa1 2000@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2001
24d4de45
TS
2002@node Sparc32 System emulator
2003@section Sparc32 System emulator
7544a042 2004@cindex system emulation (Sparc32)
e80cfcfc 2005
34a3d239
BS
2006Use the executable @file{qemu-system-sparc} to simulate the following
2007Sun4m architecture machines:
2008@itemize @minus
2009@item
2010SPARCstation 4
2011@item
2012SPARCstation 5
2013@item
2014SPARCstation 10
2015@item
2016SPARCstation 20
2017@item
2018SPARCserver 600MP
2019@item
2020SPARCstation LX
2021@item
2022SPARCstation Voyager
2023@item
2024SPARCclassic
2025@item
2026SPARCbook
2027@end itemize
2028
2029The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2030but Linux limits the number of usable CPUs to 4.
e80cfcfc 2031
6a4e1771 2032QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2033
2034@itemize @minus
3475187d 2035@item
6a4e1771 2036IOMMU
e80cfcfc 2037@item
33632788 2038TCX or cgthree Frame buffer
5fafdf24 2039@item
e80cfcfc
FB
2040Lance (Am7990) Ethernet
2041@item
34a3d239 2042Non Volatile RAM M48T02/M48T08
e80cfcfc 2043@item
3475187d
FB
2044Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2045and power/reset logic
2046@item
2047ESP SCSI controller with hard disk and CD-ROM support
2048@item
6a3b9cc9 2049Floppy drive (not on SS-600MP)
a2502b58
BS
2050@item
2051CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2052@end itemize
2053
6a3b9cc9
BS
2054The number of peripherals is fixed in the architecture. Maximum
2055memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2056others 2047MB.
3475187d 2057
30a604f3 2058Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2059@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2060firmware implementation. The goal is to implement a 100% IEEE
20611275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2062
2063A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2064the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 2065most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2066don't work probably due to interface issues between OpenBIOS and
2067Solaris.
3475187d
FB
2068
2069@c man begin OPTIONS
2070
a2502b58 2071The following options are specific to the Sparc32 emulation:
3475187d
FB
2072
2073@table @option
2074
4e257e5e 2075@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2076
33632788
MCA
2077Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2078option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2079of 1152x900x8 for people who wish to use OBP.
3475187d 2080
4e257e5e 2081@item -prom-env @var{string}
66508601
BS
2082
2083Set OpenBIOS variables in NVRAM, for example:
2084
2085@example
2086qemu-system-sparc -prom-env 'auto-boot?=false' \
2087 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2088@end example
2089
6a4e1771 2090@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2091
2092Set the emulated machine type. Default is SS-5.
2093
3475187d
FB
2094@end table
2095
5fafdf24 2096@c man end
3475187d 2097
24d4de45
TS
2098@node Sparc64 System emulator
2099@section Sparc64 System emulator
7544a042 2100@cindex system emulation (Sparc64)
e80cfcfc 2101
34a3d239
BS
2102Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2103(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
2104Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2105able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2106Sun4v and Niagara emulators are still a work in progress.
b756921a 2107
c7ba218d 2108QEMU emulates the following peripherals:
83469015
FB
2109
2110@itemize @minus
2111@item
5fafdf24 2112UltraSparc IIi APB PCI Bridge
83469015
FB
2113@item
2114PCI VGA compatible card with VESA Bochs Extensions
2115@item
34a3d239
BS
2116PS/2 mouse and keyboard
2117@item
83469015
FB
2118Non Volatile RAM M48T59
2119@item
2120PC-compatible serial ports
c7ba218d
BS
2121@item
21222 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2123@item
2124Floppy disk
83469015
FB
2125@end itemize
2126
c7ba218d
BS
2127@c man begin OPTIONS
2128
2129The following options are specific to the Sparc64 emulation:
2130
2131@table @option
2132
4e257e5e 2133@item -prom-env @var{string}
34a3d239
BS
2134
2135Set OpenBIOS variables in NVRAM, for example:
2136
2137@example
2138qemu-system-sparc64 -prom-env 'auto-boot?=false'
2139@end example
2140
2141@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2142
2143Set the emulated machine type. The default is sun4u.
2144
2145@end table
2146
2147@c man end
2148
24d4de45
TS
2149@node MIPS System emulator
2150@section MIPS System emulator
7544a042 2151@cindex system emulation (MIPS)
9d0a8e6f 2152
d9aedc32
TS
2153Four executables cover simulation of 32 and 64-bit MIPS systems in
2154both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2155@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2156Five different machine types are emulated:
24d4de45
TS
2157
2158@itemize @minus
2159@item
2160A generic ISA PC-like machine "mips"
2161@item
2162The MIPS Malta prototype board "malta"
2163@item
d9aedc32 2164An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2165@item
f0fc6f8f 2166MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2167@item
2168A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2169@end itemize
2170
2171The generic emulation is supported by Debian 'Etch' and is able to
2172install Debian into a virtual disk image. The following devices are
2173emulated:
3f9f3aa1
FB
2174
2175@itemize @minus
5fafdf24 2176@item
6bf5b4e8 2177A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2178@item
2179PC style serial port
2180@item
24d4de45
TS
2181PC style IDE disk
2182@item
3f9f3aa1
FB
2183NE2000 network card
2184@end itemize
2185
24d4de45
TS
2186The Malta emulation supports the following devices:
2187
2188@itemize @minus
2189@item
0b64d008 2190Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2191@item
2192PIIX4 PCI/USB/SMbus controller
2193@item
2194The Multi-I/O chip's serial device
2195@item
3a2eeac0 2196PCI network cards (PCnet32 and others)
24d4de45
TS
2197@item
2198Malta FPGA serial device
2199@item
1f605a76 2200Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2201@end itemize
2202
2203The ACER Pica emulation supports:
2204
2205@itemize @minus
2206@item
2207MIPS R4000 CPU
2208@item
2209PC-style IRQ and DMA controllers
2210@item
2211PC Keyboard
2212@item
2213IDE controller
2214@end itemize
3f9f3aa1 2215
b5e4946f 2216The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2217to what the proprietary MIPS emulator uses for running Linux.
2218It supports:
6bf5b4e8
TS
2219
2220@itemize @minus
2221@item
2222A range of MIPS CPUs, default is the 24Kf
2223@item
2224PC style serial port
2225@item
2226MIPSnet network emulation
2227@end itemize
2228
88cb0a02
AJ
2229The MIPS Magnum R4000 emulation supports:
2230
2231@itemize @minus
2232@item
2233MIPS R4000 CPU
2234@item
2235PC-style IRQ controller
2236@item
2237PC Keyboard
2238@item
2239SCSI controller
2240@item
2241G364 framebuffer
2242@end itemize
2243
2244
24d4de45
TS
2245@node ARM System emulator
2246@section ARM System emulator
7544a042 2247@cindex system emulation (ARM)
3f9f3aa1
FB
2248
2249Use the executable @file{qemu-system-arm} to simulate a ARM
2250machine. The ARM Integrator/CP board is emulated with the following
2251devices:
2252
2253@itemize @minus
2254@item
9ee6e8bb 2255ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2256@item
2257Two PL011 UARTs
5fafdf24 2258@item
3f9f3aa1 2259SMC 91c111 Ethernet adapter
00a9bf19
PB
2260@item
2261PL110 LCD controller
2262@item
2263PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2264@item
2265PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2266@end itemize
2267
2268The ARM Versatile baseboard is emulated with the following devices:
2269
2270@itemize @minus
2271@item
9ee6e8bb 2272ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2273@item
2274PL190 Vectored Interrupt Controller
2275@item
2276Four PL011 UARTs
5fafdf24 2277@item
00a9bf19
PB
2278SMC 91c111 Ethernet adapter
2279@item
2280PL110 LCD controller
2281@item
2282PL050 KMI with PS/2 keyboard and mouse.
2283@item
2284PCI host bridge. Note the emulated PCI bridge only provides access to
2285PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2286This means some devices (eg. ne2k_pci NIC) are not usable, and others
2287(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2288mapped control registers.
e6de1bad
PB
2289@item
2290PCI OHCI USB controller.
2291@item
2292LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2293@item
2294PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2295@end itemize
2296
21a88941
PB
2297Several variants of the ARM RealView baseboard are emulated,
2298including the EB, PB-A8 and PBX-A9. Due to interactions with the
2299bootloader, only certain Linux kernel configurations work out
2300of the box on these boards.
2301
2302Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2303enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2304should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2305disabled and expect 1024M RAM.
2306
40c5c6cd 2307The following devices are emulated:
d7739d75
PB
2308
2309@itemize @minus
2310@item
f7c70325 2311ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2312@item
2313ARM AMBA Generic/Distributed Interrupt Controller
2314@item
2315Four PL011 UARTs
5fafdf24 2316@item
0ef849d7 2317SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2318@item
2319PL110 LCD controller
2320@item
2321PL050 KMI with PS/2 keyboard and mouse
2322@item
2323PCI host bridge
2324@item
2325PCI OHCI USB controller
2326@item
2327LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2328@item
2329PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2330@end itemize
2331
b00052e4
AZ
2332The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2333and "Terrier") emulation includes the following peripherals:
2334
2335@itemize @minus
2336@item
2337Intel PXA270 System-on-chip (ARM V5TE core)
2338@item
2339NAND Flash memory
2340@item
2341IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2342@item
2343On-chip OHCI USB controller
2344@item
2345On-chip LCD controller
2346@item
2347On-chip Real Time Clock
2348@item
2349TI ADS7846 touchscreen controller on SSP bus
2350@item
2351Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2352@item
2353GPIO-connected keyboard controller and LEDs
2354@item
549444e1 2355Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2356@item
2357Three on-chip UARTs
2358@item
2359WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2360@end itemize
2361
02645926
AZ
2362The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2363following elements:
2364
2365@itemize @minus
2366@item
2367Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2368@item
2369ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2370@item
2371On-chip LCD controller
2372@item
2373On-chip Real Time Clock
2374@item
2375TI TSC2102i touchscreen controller / analog-digital converter / Audio
2376CODEC, connected through MicroWire and I@math{^2}S busses
2377@item
2378GPIO-connected matrix keypad
2379@item
2380Secure Digital card connected to OMAP MMC/SD host
2381@item
2382Three on-chip UARTs
2383@end itemize
2384
c30bb264
AZ
2385Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2386emulation supports the following elements:
2387
2388@itemize @minus
2389@item
2390Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2391@item
2392RAM and non-volatile OneNAND Flash memories
2393@item
2394Display connected to EPSON remote framebuffer chip and OMAP on-chip
2395display controller and a LS041y3 MIPI DBI-C controller
2396@item
2397TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2398driven through SPI bus
2399@item
2400National Semiconductor LM8323-controlled qwerty keyboard driven
2401through I@math{^2}C bus
2402@item
2403Secure Digital card connected to OMAP MMC/SD host
2404@item
2405Three OMAP on-chip UARTs and on-chip STI debugging console
2406@item
40c5c6cd 2407A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2408@item
c30bb264
AZ
2409Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2410TUSB6010 chip - only USB host mode is supported
2411@item
2412TI TMP105 temperature sensor driven through I@math{^2}C bus
2413@item
2414TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2415@item
2416Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2417through CBUS
2418@end itemize
2419
9ee6e8bb
PB
2420The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2421devices:
2422
2423@itemize @minus
2424@item
2425Cortex-M3 CPU core.
2426@item
242764k Flash and 8k SRAM.
2428@item
2429Timers, UARTs, ADC and I@math{^2}C interface.
2430@item
2431OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2432@end itemize
2433
2434The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2435devices:
2436
2437@itemize @minus
2438@item
2439Cortex-M3 CPU core.
2440@item
2441256k Flash and 64k SRAM.
2442@item
2443Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2444@item
2445OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2446@end itemize
2447
57cd6e97
AZ
2448The Freecom MusicPal internet radio emulation includes the following
2449elements:
2450
2451@itemize @minus
2452@item
2453Marvell MV88W8618 ARM core.
2454@item
245532 MB RAM, 256 KB SRAM, 8 MB flash.
2456@item
2457Up to 2 16550 UARTs
2458@item
2459MV88W8xx8 Ethernet controller
2460@item
2461MV88W8618 audio controller, WM8750 CODEC and mixer
2462@item
e080e785 2463128×64 display with brightness control
57cd6e97
AZ
2464@item
24652 buttons, 2 navigation wheels with button function
2466@end itemize
2467
997641a8 2468The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2469The emulation includes the following elements:
997641a8
AZ
2470
2471@itemize @minus
2472@item
2473Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2474@item
2475ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2476V1
24771 Flash of 16MB and 1 Flash of 8MB
2478V2
24791 Flash of 32MB
2480@item
2481On-chip LCD controller
2482@item
2483On-chip Real Time Clock
2484@item
2485Secure Digital card connected to OMAP MMC/SD host
2486@item
2487Three on-chip UARTs
2488@end itemize
2489
3f9f3aa1
FB
2490A Linux 2.6 test image is available on the QEMU web site. More
2491information is available in the QEMU mailing-list archive.
9d0a8e6f 2492
d2c639d6
BS
2493@c man begin OPTIONS
2494
2495The following options are specific to the ARM emulation:
2496
2497@table @option
2498
2499@item -semihosting
2500Enable semihosting syscall emulation.
2501
2502On ARM this implements the "Angel" interface.
2503
2504Note that this allows guest direct access to the host filesystem,
2505so should only be used with trusted guest OS.
2506
2507@end table
2508
24d4de45
TS
2509@node ColdFire System emulator
2510@section ColdFire System emulator
7544a042
SW
2511@cindex system emulation (ColdFire)
2512@cindex system emulation (M68K)
209a4e69
PB
2513
2514Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2515The emulator is able to boot a uClinux kernel.
707e011b
PB
2516
2517The M5208EVB emulation includes the following devices:
2518
2519@itemize @minus
5fafdf24 2520@item
707e011b
PB
2521MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2522@item
2523Three Two on-chip UARTs.
2524@item
2525Fast Ethernet Controller (FEC)
2526@end itemize
2527
2528The AN5206 emulation includes the following devices:
209a4e69
PB
2529
2530@itemize @minus
5fafdf24 2531@item
209a4e69
PB
2532MCF5206 ColdFire V2 Microprocessor.
2533@item
2534Two on-chip UARTs.
2535@end itemize
2536
d2c639d6
BS
2537@c man begin OPTIONS
2538
7544a042 2539The following options are specific to the ColdFire emulation:
d2c639d6
BS
2540
2541@table @option
2542
2543@item -semihosting
2544Enable semihosting syscall emulation.
2545
2546On M68K this implements the "ColdFire GDB" interface used by libgloss.
2547
2548Note that this allows guest direct access to the host filesystem,
2549so should only be used with trusted guest OS.
2550
2551@end table
2552
7544a042
SW
2553@node Cris System emulator
2554@section Cris System emulator
2555@cindex system emulation (Cris)
2556
2557TODO
2558
2559@node Microblaze System emulator
2560@section Microblaze System emulator
2561@cindex system emulation (Microblaze)
2562
2563TODO
2564
2565@node SH4 System emulator
2566@section SH4 System emulator
2567@cindex system emulation (SH4)
2568
2569TODO
2570
3aeaea65
MF
2571@node Xtensa System emulator
2572@section Xtensa System emulator
2573@cindex system emulation (Xtensa)
2574
2575Two executables cover simulation of both Xtensa endian options,
2576@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2577Two different machine types are emulated:
2578
2579@itemize @minus
2580@item
2581Xtensa emulator pseudo board "sim"
2582@item
2583Avnet LX60/LX110/LX200 board
2584@end itemize
2585
b5e4946f 2586The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2587to one provided by the proprietary Tensilica ISS.
2588It supports:
2589
2590@itemize @minus
2591@item
2592A range of Xtensa CPUs, default is the DC232B
2593@item
2594Console and filesystem access via semihosting calls
2595@end itemize
2596
2597The Avnet LX60/LX110/LX200 emulation supports:
2598
2599@itemize @minus
2600@item
2601A range of Xtensa CPUs, default is the DC232B
2602@item
260316550 UART
2604@item
2605OpenCores 10/100 Mbps Ethernet MAC
2606@end itemize
2607
2608@c man begin OPTIONS
2609
2610The following options are specific to the Xtensa emulation:
2611
2612@table @option
2613
2614@item -semihosting
2615Enable semihosting syscall emulation.
2616
2617Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2618Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2619
2620Note that this allows guest direct access to the host filesystem,
2621so should only be used with trusted guest OS.
2622
2623@end table
5fafdf24
TS
2624@node QEMU User space emulator
2625@chapter QEMU User space emulator
83195237
FB
2626
2627@menu
2628* Supported Operating Systems ::
2629* Linux User space emulator::
84778508 2630* BSD User space emulator ::
83195237
FB
2631@end menu
2632
2633@node Supported Operating Systems
2634@section Supported Operating Systems
2635
2636The following OS are supported in user space emulation:
2637
2638@itemize @minus
2639@item
4be456f1 2640Linux (referred as qemu-linux-user)
83195237 2641@item
84778508 2642BSD (referred as qemu-bsd-user)
83195237
FB
2643@end itemize
2644
2645@node Linux User space emulator
2646@section Linux User space emulator
386405f7 2647
debc7065
FB
2648@menu
2649* Quick Start::
2650* Wine launch::
2651* Command line options::
79737e4a 2652* Other binaries::
debc7065
FB
2653@end menu
2654
2655@node Quick Start
83195237 2656@subsection Quick Start
df0f11a0 2657
1f673135 2658In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2659itself and all the target (x86) dynamic libraries used by it.
386405f7 2660
1f673135 2661@itemize
386405f7 2662
1f673135
FB
2663@item On x86, you can just try to launch any process by using the native
2664libraries:
386405f7 2665
5fafdf24 2666@example
1f673135
FB
2667qemu-i386 -L / /bin/ls
2668@end example
386405f7 2669
1f673135
FB
2670@code{-L /} tells that the x86 dynamic linker must be searched with a
2671@file{/} prefix.
386405f7 2672
b65ee4fa
SW
2673@item Since QEMU is also a linux process, you can launch QEMU with
2674QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2675
5fafdf24 2676@example
1f673135
FB
2677qemu-i386 -L / qemu-i386 -L / /bin/ls
2678@end example
386405f7 2679
1f673135
FB
2680@item On non x86 CPUs, you need first to download at least an x86 glibc
2681(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2682@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2683
1f673135 2684@example
5fafdf24 2685unset LD_LIBRARY_PATH
1f673135 2686@end example
1eb87257 2687
1f673135 2688Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2689
1f673135
FB
2690@example
2691qemu-i386 tests/i386/ls
2692@end example
4c3b5a48 2693You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2694QEMU is automatically launched by the Linux kernel when you try to
2695launch x86 executables. It requires the @code{binfmt_misc} module in the
2696Linux kernel.
1eb87257 2697
1f673135
FB
2698@item The x86 version of QEMU is also included. You can try weird things such as:
2699@example
debc7065
FB
2700qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2701 /usr/local/qemu-i386/bin/ls-i386
1f673135 2702@end example
1eb20527 2703
1f673135 2704@end itemize
1eb20527 2705
debc7065 2706@node Wine launch
83195237 2707@subsection Wine launch
1eb20527 2708
1f673135 2709@itemize
386405f7 2710
1f673135
FB
2711@item Ensure that you have a working QEMU with the x86 glibc
2712distribution (see previous section). In order to verify it, you must be
2713able to do:
386405f7 2714
1f673135
FB
2715@example
2716qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2717@end example
386405f7 2718
1f673135 2719@item Download the binary x86 Wine install
5fafdf24 2720(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2721
1f673135 2722@item Configure Wine on your account. Look at the provided script
debc7065 2723@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2724@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2725
1f673135 2726@item Then you can try the example @file{putty.exe}:
386405f7 2727
1f673135 2728@example
debc7065
FB
2729qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2730 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2731@end example
386405f7 2732
1f673135 2733@end itemize
fd429f2f 2734
debc7065 2735@node Command line options
83195237 2736@subsection Command line options
1eb20527 2737
1f673135 2738@example
68a1c816 2739usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2740@end example
1eb20527 2741
1f673135
FB
2742@table @option
2743@item -h
2744Print the help
3b46e624 2745@item -L path
1f673135
FB
2746Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2747@item -s size
2748Set the x86 stack size in bytes (default=524288)
34a3d239 2749@item -cpu model
c8057f95 2750Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2751@item -E @var{var}=@var{value}
2752Set environment @var{var} to @var{value}.
2753@item -U @var{var}
2754Remove @var{var} from the environment.
379f6698
PB
2755@item -B offset
2756Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2757the address region required by guest applications is reserved on the host.
2758This option is currently only supported on some hosts.
68a1c816
PB
2759@item -R size
2760Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2761"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2762@end table
2763
1f673135 2764Debug options:
386405f7 2765
1f673135 2766@table @option
989b697d
PM
2767@item -d item1,...
2768Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2769@item -p pagesize
2770Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2771@item -g port
2772Wait gdb connection to port
1b530a6d
AJ
2773@item -singlestep
2774Run the emulation in single step mode.
1f673135 2775@end table
386405f7 2776
b01bcae6
AZ
2777Environment variables:
2778
2779@table @env
2780@item QEMU_STRACE
2781Print system calls and arguments similar to the 'strace' program
2782(NOTE: the actual 'strace' program will not work because the user
2783space emulator hasn't implemented ptrace). At the moment this is
2784incomplete. All system calls that don't have a specific argument
2785format are printed with information for six arguments. Many
2786flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2787@end table
b01bcae6 2788
79737e4a 2789@node Other binaries
83195237 2790@subsection Other binaries
79737e4a 2791
7544a042
SW
2792@cindex user mode (Alpha)
2793@command{qemu-alpha} TODO.
2794
2795@cindex user mode (ARM)
2796@command{qemu-armeb} TODO.
2797
2798@cindex user mode (ARM)
79737e4a
PB
2799@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2800binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2801configurations), and arm-uclinux bFLT format binaries.
2802
7544a042
SW
2803@cindex user mode (ColdFire)
2804@cindex user mode (M68K)
e6e5906b
PB
2805@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2806(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2807coldfire uClinux bFLT format binaries.
2808
79737e4a
PB
2809The binary format is detected automatically.
2810
7544a042
SW
2811@cindex user mode (Cris)
2812@command{qemu-cris} TODO.
2813
2814@cindex user mode (i386)
2815@command{qemu-i386} TODO.
2816@command{qemu-x86_64} TODO.
2817
2818@cindex user mode (Microblaze)
2819@command{qemu-microblaze} TODO.
2820
2821@cindex user mode (MIPS)
2822@command{qemu-mips} TODO.
2823@command{qemu-mipsel} TODO.
2824
2825@cindex user mode (PowerPC)
2826@command{qemu-ppc64abi32} TODO.
2827@command{qemu-ppc64} TODO.
2828@command{qemu-ppc} TODO.
2829
2830@cindex user mode (SH4)
2831@command{qemu-sh4eb} TODO.
2832@command{qemu-sh4} TODO.
2833
2834@cindex user mode (SPARC)
34a3d239
BS
2835@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2836
a785e42e
BS
2837@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2838(Sparc64 CPU, 32 bit ABI).
2839
2840@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2841SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2842
84778508
BS
2843@node BSD User space emulator
2844@section BSD User space emulator
2845
2846@menu
2847* BSD Status::
2848* BSD Quick Start::
2849* BSD Command line options::
2850@end menu
2851
2852@node BSD Status
2853@subsection BSD Status
2854
2855@itemize @minus
2856@item
2857target Sparc64 on Sparc64: Some trivial programs work.
2858@end itemize
2859
2860@node BSD Quick Start
2861@subsection Quick Start
2862
2863In order to launch a BSD process, QEMU needs the process executable
2864itself and all the target dynamic libraries used by it.
2865
2866@itemize
2867
2868@item On Sparc64, you can just try to launch any process by using the native
2869libraries:
2870
2871@example
2872qemu-sparc64 /bin/ls
2873@end example
2874
2875@end itemize
2876
2877@node BSD Command line options
2878@subsection Command line options
2879
2880@example
2881usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2882@end example
2883
2884@table @option
2885@item -h
2886Print the help
2887@item -L path
2888Set the library root path (default=/)
2889@item -s size
2890Set the stack size in bytes (default=524288)
f66724c9
SW
2891@item -ignore-environment
2892Start with an empty environment. Without this option,
40c5c6cd 2893the initial environment is a copy of the caller's environment.
f66724c9
SW
2894@item -E @var{var}=@var{value}
2895Set environment @var{var} to @var{value}.
2896@item -U @var{var}
2897Remove @var{var} from the environment.
84778508
BS
2898@item -bsd type
2899Set the type of the emulated BSD Operating system. Valid values are
2900FreeBSD, NetBSD and OpenBSD (default).
2901@end table
2902
2903Debug options:
2904
2905@table @option
989b697d
PM
2906@item -d item1,...
2907Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2908@item -p pagesize
2909Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2910@item -singlestep
2911Run the emulation in single step mode.
84778508
BS
2912@end table
2913
15a34c63
FB
2914@node compilation
2915@chapter Compilation from the sources
2916
debc7065
FB
2917@menu
2918* Linux/Unix::
2919* Windows::
2920* Cross compilation for Windows with Linux::
2921* Mac OS X::
47eacb4f 2922* Make targets::
debc7065
FB
2923@end menu
2924
2925@node Linux/Unix
7c3fc84d
FB
2926@section Linux/Unix
2927
2928@subsection Compilation
2929
2930First you must decompress the sources:
2931@example
2932cd /tmp
2933tar zxvf qemu-x.y.z.tar.gz
2934cd qemu-x.y.z
2935@end example
2936
2937Then you configure QEMU and build it (usually no options are needed):
2938@example
2939./configure
2940make
2941@end example
2942
2943Then type as root user:
2944@example
2945make install
2946@end example
2947to install QEMU in @file{/usr/local}.
2948
debc7065 2949@node Windows
15a34c63
FB
2950@section Windows
2951
2952@itemize
2953@item Install the current versions of MSYS and MinGW from
2954@url{http://www.mingw.org/}. You can find detailed installation
2955instructions in the download section and the FAQ.
2956
5fafdf24 2957@item Download
15a34c63 2958the MinGW development library of SDL 1.2.x
debc7065 2959(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2960@url{http://www.libsdl.org}. Unpack it in a temporary place and
2961edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2962correct SDL directory when invoked.
2963
d0a96f3d
ST
2964@item Install the MinGW version of zlib and make sure
2965@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2966MinGW's default header and linker search paths.
d0a96f3d 2967
15a34c63 2968@item Extract the current version of QEMU.
5fafdf24 2969
15a34c63
FB
2970@item Start the MSYS shell (file @file{msys.bat}).
2971
5fafdf24 2972@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2973@file{make}. If you have problems using SDL, verify that
2974@file{sdl-config} can be launched from the MSYS command line.
2975
c5ec15ea 2976@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2977@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2978@file{Program Files/QEMU}.
15a34c63
FB
2979
2980@end itemize
2981
debc7065 2982@node Cross compilation for Windows with Linux
15a34c63
FB
2983@section Cross compilation for Windows with Linux
2984
2985@itemize
2986@item
2987Install the MinGW cross compilation tools available at
2988@url{http://www.mingw.org/}.
2989
d0a96f3d
ST
2990@item Download
2991the MinGW development library of SDL 1.2.x
2992(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2993@url{http://www.libsdl.org}. Unpack it in a temporary place and
2994edit the @file{sdl-config} script so that it gives the
2995correct SDL directory when invoked. Set up the @code{PATH} environment
2996variable so that @file{sdl-config} can be launched by
15a34c63
FB
2997the QEMU configuration script.
2998
d0a96f3d
ST
2999@item Install the MinGW version of zlib and make sure
3000@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 3001MinGW's default header and linker search paths.
d0a96f3d 3002
5fafdf24 3003@item
15a34c63
FB
3004Configure QEMU for Windows cross compilation:
3005@example
d0a96f3d
ST
3006PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
3007@end example
3008The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
3009MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 3010We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 3011use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 3012You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
3013
3014Under Fedora Linux, you can run:
3015@example
3016yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 3017@end example
d0a96f3d 3018to get a suitable cross compilation environment.
15a34c63 3019
5fafdf24 3020@item You can install QEMU in the installation directory by typing
d0a96f3d 3021@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 3022installation directory.
15a34c63
FB
3023
3024@end itemize
3025
3804da9d
SW
3026Wine can be used to launch the resulting qemu-system-i386.exe
3027and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 3028
debc7065 3029@node Mac OS X
15a34c63
FB
3030@section Mac OS X
3031
b352153f
JA
3032System Requirements:
3033@itemize
3034@item Mac OS 10.5 or higher
3035@item The clang compiler shipped with Xcode 4.2 or higher,
3036or GCC 4.3 or higher
3037@end itemize
3038
3039Additional Requirements (install in order):
3040@enumerate
3041@item libffi: @uref{https://sourceware.org/libffi/}
3042@item gettext: @uref{http://www.gnu.org/software/gettext/}
3043@item glib: @uref{http://ftp.gnome.org/pub/GNOME/sources/glib/}
3044@item pkg-config: @uref{http://www.freedesktop.org/wiki/Software/pkg-config/}
3045@item autoconf: @uref{http://www.gnu.org/software/autoconf/autoconf.html}
3046@item automake: @uref{http://www.gnu.org/software/automake/}
3047@item libtool: @uref{http://www.gnu.org/software/libtool/}
3048@item pixman: @uref{http://www.pixman.org/}
3049@end enumerate
3050
3051* You may find it easiest to get these from a third-party packager
3052such as Homebrew, Macports, or Fink.
3053
3054After downloading the QEMU source code, double-click it to expand it.
3055
3056Then configure and make QEMU:
3057@example
3058./configure
3059make
3060@end example
3061
3062If you have a recent version of Mac OS X (OSX 10.7 or better
3063with Xcode 4.2 or better) we recommend building QEMU with the
3064default compiler provided by Apple, for your version of Mac OS X
3065(which will be 'clang'). The configure script will
3066automatically pick this.
3067
3068Note: If after the configure step you see a message like this:
3069@example
3070ERROR: Your compiler does not support the __thread specifier for
3071 Thread-Local Storage (TLS). Please upgrade to a version that does.
3072@end example
6c76ec68 3073you may have to build your own version of gcc from source. Expect that to take
b352153f
JA
3074several hours. More information can be found here:
3075@uref{https://gcc.gnu.org/install/} @*
3076
3077These are some of the third party binaries of gcc available for download:
3078@itemize
3079@item Homebrew: @uref{http://brew.sh/}
3080@item @uref{https://www.litebeam.net/gcc/gcc_472.pkg}
3081@item @uref{http://www.macports.org/ports.php?by=name&substr=gcc}
3082@end itemize
3083
3084You can have several versions of GCC on your system. To specify a certain version,
3085use the --cc and --cxx options.
3086@example
3087./configure --cxx=<path of your c++ compiler> --cc=<path of your c compiler> <other options>
3088@end example
15a34c63 3089
47eacb4f
SW
3090@node Make targets
3091@section Make targets
3092
3093@table @code
3094
3095@item make
3096@item make all
3097Make everything which is typically needed.
3098
3099@item install
3100TODO
3101
3102@item install-doc
3103TODO
3104
3105@item make clean
3106Remove most files which were built during make.
3107
3108@item make distclean
3109Remove everything which was built during make.
3110
3111@item make dvi
3112@item make html
3113@item make info
3114@item make pdf
3115Create documentation in dvi, html, info or pdf format.
3116
3117@item make cscope
3118TODO
3119
3120@item make defconfig
3121(Re-)create some build configuration files.
3122User made changes will be overwritten.
3123
3124@item tar
3125@item tarbin
3126TODO
3127
3128@end table
3129
7544a042
SW
3130@node License
3131@appendix License
3132
3133QEMU is a trademark of Fabrice Bellard.
3134
3135QEMU is released under the GNU General Public License (TODO: add link).
3136Parts of QEMU have specific licenses, see file LICENSE.
3137
3138TODO (refer to file LICENSE, include it, include the GPL?)
3139
debc7065 3140@node Index
7544a042
SW
3141@appendix Index
3142@menu
3143* Concept Index::
3144* Function Index::
3145* Keystroke Index::
3146* Program Index::
3147* Data Type Index::
3148* Variable Index::
3149@end menu
3150
3151@node Concept Index
3152@section Concept Index
3153This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3154@printindex cp
3155
7544a042
SW
3156@node Function Index
3157@section Function Index
3158This index could be used for command line options and monitor functions.
3159@printindex fn
3160
3161@node Keystroke Index
3162@section Keystroke Index
3163
3164This is a list of all keystrokes which have a special function
3165in system emulation.
3166
3167@printindex ky
3168
3169@node Program Index
3170@section Program Index
3171@printindex pg
3172
3173@node Data Type Index
3174@section Data Type Index
3175
3176This index could be used for qdev device names and options.
3177
3178@printindex tp
3179
3180@node Variable Index
3181@section Variable Index
3182@printindex vr
3183
debc7065 3184@bye