]> git.ipfire.org Git - thirdparty/qemu.git/blame - qemu-doc.texi
Revert "block: Remove deprecated -drive option addr"
[thirdparty/qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
a1a32b05
SW
14@ifinfo
15@direntry
16* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17@end direntry
18@end ifinfo
19
0806e3f6 20@iftex
386405f7
FB
21@titlepage
22@sp 7
44cb280d 23@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
24@sp 1
25@center @titlefont{User Documentation}
386405f7
FB
26@sp 3
27@end titlepage
0806e3f6 28@end iftex
386405f7 29
debc7065
FB
30@ifnottex
31@node Top
32@top
33
34@menu
35* Introduction::
debc7065
FB
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
3f2ce724 38* QEMU Guest Agent::
83195237 39* QEMU User space emulator::
78e87797 40* Implementation notes::
eb22aeca 41* Deprecated features::
45b47130 42* Supported build platforms::
7544a042 43* License::
debc7065
FB
44* Index::
45@end menu
46@end ifnottex
47
48@contents
49
50@node Introduction
386405f7
FB
51@chapter Introduction
52
debc7065
FB
53@menu
54* intro_features:: Features
55@end menu
56
57@node intro_features
322d0c66 58@section Features
386405f7 59
1f673135
FB
60QEMU is a FAST! processor emulator using dynamic translation to
61achieve good emulation speed.
1eb20527 62
1f3e7e41 63@cindex operating modes
1eb20527 64QEMU has two operating modes:
0806e3f6 65
d7e5edca 66@itemize
7544a042 67@cindex system emulation
1f3e7e41 68@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
69example a PC), including one or several processors and various
70peripherals. It can be used to launch different Operating Systems
71without rebooting the PC or to debug system code.
1eb20527 72
7544a042 73@cindex user mode emulation
1f3e7e41 74@item User mode emulation. In this mode, QEMU can launch
83195237 75processes compiled for one CPU on another CPU. It can be used to
70b7fba9 76launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
1f673135 77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
1f3e7e41
PB
81QEMU has the following features:
82
83@itemize
84@item QEMU can run without a host kernel driver and yet gives acceptable
85performance. It uses dynamic translation to native code for reasonable speed,
86with support for self-modifying code and precise exceptions.
87
88@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
89Windows) and architectures.
90
91@item It performs accurate software emulation of the FPU.
92@end itemize
322d0c66 93
1f3e7e41 94QEMU user mode emulation has the following features:
52c00a5f 95@itemize
1f3e7e41
PB
96@item Generic Linux system call converter, including most ioctls.
97
98@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
99
100@item Accurate signal handling by remapping host signals to target signals.
101@end itemize
102
103QEMU full system emulation has the following features:
104@itemize
105@item
106QEMU uses a full software MMU for maximum portability.
107
108@item
326c4c3c 109QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
1f3e7e41
PB
110execute most of the guest code natively, while
111continuing to emulate the rest of the machine.
112
113@item
114Various hardware devices can be emulated and in some cases, host
115devices (e.g. serial and parallel ports, USB, drives) can be used
116transparently by the guest Operating System. Host device passthrough
117can be used for talking to external physical peripherals (e.g. a
118webcam, modem or tape drive).
119
120@item
121Symmetric multiprocessing (SMP) support. Currently, an in-kernel
122accelerator is required to use more than one host CPU for emulation.
123
52c00a5f 124@end itemize
386405f7 125
0806e3f6 126
debc7065 127@node QEMU PC System emulator
3f9f3aa1 128@chapter QEMU PC System emulator
7544a042 129@cindex system emulation (PC)
1eb20527 130
debc7065
FB
131@menu
132* pcsys_introduction:: Introduction
133* pcsys_quickstart:: Quick Start
134* sec_invocation:: Invocation
a40db1b3
PM
135* pcsys_keys:: Keys in the graphical frontends
136* mux_keys:: Keys in the character backend multiplexer
debc7065
FB
137* pcsys_monitor:: QEMU Monitor
138* disk_images:: Disk Images
139* pcsys_network:: Network emulation
576fd0a1 140* pcsys_other_devs:: Other Devices
debc7065
FB
141* direct_linux_boot:: Direct Linux Boot
142* pcsys_usb:: USB emulation
f858dcae 143* vnc_security:: VNC security
5d19a6ea 144* network_tls:: TLS setup for network services
debc7065
FB
145* gdb_usage:: GDB usage
146* pcsys_os_specific:: Target OS specific information
147@end menu
148
149@node pcsys_introduction
0806e3f6
FB
150@section Introduction
151
152@c man begin DESCRIPTION
153
3f9f3aa1
FB
154The QEMU PC System emulator simulates the
155following peripherals:
0806e3f6
FB
156
157@itemize @minus
5fafdf24 158@item
15a34c63 159i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 160@item
15a34c63
FB
161Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
162extensions (hardware level, including all non standard modes).
0806e3f6
FB
163@item
164PS/2 mouse and keyboard
5fafdf24 165@item
15a34c63 1662 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
167@item
168Floppy disk
5fafdf24 169@item
3a2eeac0 170PCI and ISA network adapters
0806e3f6 171@item
05d5818c
FB
172Serial ports
173@item
23076bb3
CM
174IPMI BMC, either and internal or external one
175@item
c0fe3827
FB
176Creative SoundBlaster 16 sound card
177@item
178ENSONIQ AudioPCI ES1370 sound card
179@item
e5c9a13e
AZ
180Intel 82801AA AC97 Audio compatible sound card
181@item
7d72e762
GH
182Intel HD Audio Controller and HDA codec
183@item
2d983446 184Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 185@item
26463dbc
AZ
186Gravis Ultrasound GF1 sound card
187@item
cc53d26d 188CS4231A compatible sound card
189@item
a92ff8c1 190PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
191@end itemize
192
3f9f3aa1
FB
193SMP is supported with up to 255 CPUs.
194
a8ad4159 195QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
196VGA BIOS.
197
c0fe3827
FB
198QEMU uses YM3812 emulation by Tatsuyuki Satoh.
199
2d983446 200QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 201by Tibor "TS" Schütz.
423d65f4 202
1a1a0e20 203Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 204QEMU must be told to not have parallel ports to have working GUS.
720036a5 205
206@example
3804da9d 207qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 208@end example
209
210Alternatively:
211@example
3804da9d 212qemu-system-i386 dos.img -device gus,irq=5
720036a5 213@end example
214
215Or some other unclaimed IRQ.
216
cc53d26d 217CS4231A is the chip used in Windows Sound System and GUSMAX products
218
0806e3f6
FB
219@c man end
220
debc7065 221@node pcsys_quickstart
1eb20527 222@section Quick Start
7544a042 223@cindex quick start
1eb20527 224
285dc330 225Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
226
227@example
3804da9d 228qemu-system-i386 linux.img
0806e3f6
FB
229@end example
230
231Linux should boot and give you a prompt.
232
6cc721cf 233@node sec_invocation
ec410fc9
FB
234@section Invocation
235
236@example
0806e3f6 237@c man begin SYNOPSIS
8485140f 238@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 239@c man end
ec410fc9
FB
240@end example
241
0806e3f6 242@c man begin OPTIONS
d2c639d6
BS
243@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
244targets do not need a disk image.
ec410fc9 245
5824d651 246@include qemu-options.texi
ec410fc9 247
3e11db9a
FB
248@c man end
249
e896d0f9
MA
250@subsection Device URL Syntax
251@c TODO merge this with section Disk Images
252
253@c man begin NOTES
254
255In addition to using normal file images for the emulated storage devices,
256QEMU can also use networked resources such as iSCSI devices. These are
257specified using a special URL syntax.
258
259@table @option
260@item iSCSI
261iSCSI support allows QEMU to access iSCSI resources directly and use as
262images for the guest storage. Both disk and cdrom images are supported.
263
264Syntax for specifying iSCSI LUNs is
265``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
266
267By default qemu will use the iSCSI initiator-name
268'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
269line or a configuration file.
270
271Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
272stalled requests and force a reestablishment of the session. The timeout
273is specified in seconds. The default is 0 which means no timeout. Libiscsi
2741.15.0 or greater is required for this feature.
275
276Example (without authentication):
277@example
278qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
279 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
280 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
281@end example
282
283Example (CHAP username/password via URL):
284@example
285qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
286@end example
287
288Example (CHAP username/password via environment variables):
289@example
290LIBISCSI_CHAP_USERNAME="user" \
291LIBISCSI_CHAP_PASSWORD="password" \
292qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
293@end example
294
295@item NBD
296QEMU supports NBD (Network Block Devices) both using TCP protocol as well
297as Unix Domain Sockets.
298
299Syntax for specifying a NBD device using TCP
300``nbd:<server-ip>:<port>[:exportname=<export>]''
301
302Syntax for specifying a NBD device using Unix Domain Sockets
303``nbd:unix:<domain-socket>[:exportname=<export>]''
304
305Example for TCP
306@example
307qemu-system-i386 --drive file=nbd:192.0.2.1:30000
308@end example
309
310Example for Unix Domain Sockets
311@example
312qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
313@end example
314
315@item SSH
316QEMU supports SSH (Secure Shell) access to remote disks.
317
318Examples:
319@example
320qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
321qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
322@end example
323
324Currently authentication must be done using ssh-agent. Other
325authentication methods may be supported in future.
326
327@item Sheepdog
328Sheepdog is a distributed storage system for QEMU.
329QEMU supports using either local sheepdog devices or remote networked
330devices.
331
332Syntax for specifying a sheepdog device
333@example
334sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
335@end example
336
337Example
338@example
339qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
340@end example
341
342See also @url{https://sheepdog.github.io/sheepdog/}.
343
344@item GlusterFS
345GlusterFS is a user space distributed file system.
346QEMU supports the use of GlusterFS volumes for hosting VM disk images using
347TCP, Unix Domain Sockets and RDMA transport protocols.
348
349Syntax for specifying a VM disk image on GlusterFS volume is
350@example
351
352URI:
353gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
354
355JSON:
356'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
357@ "server":[@{"type":"tcp","host":"...","port":"..."@},
358@ @{"type":"unix","socket":"..."@}]@}@}'
359@end example
360
361
362Example
363@example
364URI:
365qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
366@ file.debug=9,file.logfile=/var/log/qemu-gluster.log
367
368JSON:
369qemu-system-x86_64 'json:@{"driver":"qcow2",
370@ "file":@{"driver":"gluster",
371@ "volume":"testvol","path":"a.img",
372@ "debug":9,"logfile":"/var/log/qemu-gluster.log",
373@ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
374@ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
375qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
376@ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
377@ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
378@ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
379@end example
380
381See also @url{http://www.gluster.org}.
382
383@item HTTP/HTTPS/FTP/FTPS
384QEMU supports read-only access to files accessed over http(s) and ftp(s).
385
386Syntax using a single filename:
387@example
388<protocol>://[<username>[:<password>]@@]<host>/<path>
389@end example
390
391where:
392@table @option
393@item protocol
394'http', 'https', 'ftp', or 'ftps'.
395
396@item username
397Optional username for authentication to the remote server.
398
399@item password
400Optional password for authentication to the remote server.
401
402@item host
403Address of the remote server.
404
405@item path
406Path on the remote server, including any query string.
407@end table
408
409The following options are also supported:
410@table @option
411@item url
412The full URL when passing options to the driver explicitly.
413
414@item readahead
415The amount of data to read ahead with each range request to the remote server.
416This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
417does not have a suffix, it will be assumed to be in bytes. The value must be a
418multiple of 512 bytes. It defaults to 256k.
419
420@item sslverify
421Whether to verify the remote server's certificate when connecting over SSL. It
422can have the value 'on' or 'off'. It defaults to 'on'.
423
424@item cookie
425Send this cookie (it can also be a list of cookies separated by ';') with
426each outgoing request. Only supported when using protocols such as HTTP
427which support cookies, otherwise ignored.
428
429@item timeout
430Set the timeout in seconds of the CURL connection. This timeout is the time
431that CURL waits for a response from the remote server to get the size of the
432image to be downloaded. If not set, the default timeout of 5 seconds is used.
433@end table
434
435Note that when passing options to qemu explicitly, @option{driver} is the value
436of <protocol>.
437
438Example: boot from a remote Fedora 20 live ISO image
439@example
440qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
441
442qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
443@end example
444
445Example: boot from a remote Fedora 20 cloud image using a local overlay for
446writes, copy-on-read, and a readahead of 64k
447@example
448qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
449
450qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
451@end example
452
453Example: boot from an image stored on a VMware vSphere server with a self-signed
454certificate using a local overlay for writes, a readahead of 64k and a timeout
455of 10 seconds.
456@example
457qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
458
459qemu-system-x86_64 -drive file=/tmp/test.qcow2
460@end example
461
462@end table
463
464@c man end
465
debc7065 466@node pcsys_keys
a40db1b3 467@section Keys in the graphical frontends
3e11db9a
FB
468
469@c man begin OPTIONS
470
de1db2a1
BH
471During the graphical emulation, you can use special key combinations to change
472modes. The default key mappings are shown below, but if you use @code{-alt-grab}
473then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
474@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
475
a1b74fe8 476@table @key
f9859310 477@item Ctrl-Alt-f
7544a042 478@kindex Ctrl-Alt-f
a1b74fe8 479Toggle full screen
a0a821a4 480
d6a65ba3
JK
481@item Ctrl-Alt-+
482@kindex Ctrl-Alt-+
483Enlarge the screen
484
485@item Ctrl-Alt--
486@kindex Ctrl-Alt--
487Shrink the screen
488
c4a735f9 489@item Ctrl-Alt-u
7544a042 490@kindex Ctrl-Alt-u
c4a735f9 491Restore the screen's un-scaled dimensions
492
f9859310 493@item Ctrl-Alt-n
7544a042 494@kindex Ctrl-Alt-n
a0a821a4
FB
495Switch to virtual console 'n'. Standard console mappings are:
496@table @emph
497@item 1
498Target system display
499@item 2
500Monitor
501@item 3
502Serial port
a1b74fe8
FB
503@end table
504
f9859310 505@item Ctrl-Alt
7544a042 506@kindex Ctrl-Alt
a0a821a4
FB
507Toggle mouse and keyboard grab.
508@end table
509
7544a042
SW
510@kindex Ctrl-Up
511@kindex Ctrl-Down
512@kindex Ctrl-PageUp
513@kindex Ctrl-PageDown
3e11db9a
FB
514In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
515@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
516
a40db1b3
PM
517@c man end
518
519@node mux_keys
520@section Keys in the character backend multiplexer
521
522@c man begin OPTIONS
523
524During emulation, if you are using a character backend multiplexer
525(which is the default if you are using @option{-nographic}) then
526several commands are available via an escape sequence. These
527key sequences all start with an escape character, which is @key{Ctrl-a}
528by default, but can be changed with @option{-echr}. The list below assumes
529you're using the default.
ec410fc9
FB
530
531@table @key
a1b74fe8 532@item Ctrl-a h
7544a042 533@kindex Ctrl-a h
ec410fc9 534Print this help
3b46e624 535@item Ctrl-a x
7544a042 536@kindex Ctrl-a x
366dfc52 537Exit emulator
3b46e624 538@item Ctrl-a s
7544a042 539@kindex Ctrl-a s
1f47a922 540Save disk data back to file (if -snapshot)
20d8a3ed 541@item Ctrl-a t
7544a042 542@kindex Ctrl-a t
d2c639d6 543Toggle console timestamps
a1b74fe8 544@item Ctrl-a b
7544a042 545@kindex Ctrl-a b
1f673135 546Send break (magic sysrq in Linux)
a1b74fe8 547@item Ctrl-a c
7544a042 548@kindex Ctrl-a c
a40db1b3
PM
549Rotate between the frontends connected to the multiplexer (usually
550this switches between the monitor and the console)
a1b74fe8 551@item Ctrl-a Ctrl-a
a40db1b3
PM
552@kindex Ctrl-a Ctrl-a
553Send the escape character to the frontend
ec410fc9 554@end table
0806e3f6
FB
555@c man end
556
557@ignore
558
1f673135
FB
559@c man begin SEEALSO
560The HTML documentation of QEMU for more precise information and Linux
561user mode emulator invocation.
562@c man end
563
564@c man begin AUTHOR
565Fabrice Bellard
566@c man end
567
568@end ignore
569
debc7065 570@node pcsys_monitor
1f673135 571@section QEMU Monitor
7544a042 572@cindex QEMU monitor
1f673135
FB
573
574The QEMU monitor is used to give complex commands to the QEMU
575emulator. You can use it to:
576
577@itemize @minus
578
579@item
e598752a 580Remove or insert removable media images
89dfe898 581(such as CD-ROM or floppies).
1f673135 582
5fafdf24 583@item
1f673135
FB
584Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
585from a disk file.
586
587@item Inspect the VM state without an external debugger.
588
589@end itemize
590
591@subsection Commands
592
593The following commands are available:
594
2313086a 595@include qemu-monitor.texi
0806e3f6 596
2cd8af2d
PB
597@include qemu-monitor-info.texi
598
1f673135
FB
599@subsection Integer expressions
600
601The monitor understands integers expressions for every integer
602argument. You can use register names to get the value of specifics
603CPU registers by prefixing them with @emph{$}.
ec410fc9 604
1f47a922
FB
605@node disk_images
606@section Disk Images
607
ee29bdb6
PB
608QEMU supports many disk image formats, including growable disk images
609(their size increase as non empty sectors are written), compressed and
610encrypted disk images.
1f47a922 611
debc7065
FB
612@menu
613* disk_images_quickstart:: Quick start for disk image creation
614* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 615* vm_snapshots:: VM snapshots
debc7065 616* qemu_img_invocation:: qemu-img Invocation
975b092b 617* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 618* disk_images_formats:: Disk image file formats
19cb3738 619* host_drives:: Using host drives
debc7065 620* disk_images_fat_images:: Virtual FAT disk images
75818250 621* disk_images_nbd:: NBD access
42af9c30 622* disk_images_sheepdog:: Sheepdog disk images
00984e39 623* disk_images_iscsi:: iSCSI LUNs
8809e289 624* disk_images_gluster:: GlusterFS disk images
0a12ec87 625* disk_images_ssh:: Secure Shell (ssh) disk images
e86de5e4 626* disk_images_nvme:: NVMe userspace driver
b1d1cb27 627* disk_image_locking:: Disk image file locking
debc7065
FB
628@end menu
629
630@node disk_images_quickstart
acd935ef
FB
631@subsection Quick start for disk image creation
632
633You can create a disk image with the command:
1f47a922 634@example
acd935ef 635qemu-img create myimage.img mysize
1f47a922 636@end example
acd935ef
FB
637where @var{myimage.img} is the disk image filename and @var{mysize} is its
638size in kilobytes. You can add an @code{M} suffix to give the size in
639megabytes and a @code{G} suffix for gigabytes.
640
debc7065 641See @ref{qemu_img_invocation} for more information.
1f47a922 642
debc7065 643@node disk_images_snapshot_mode
1f47a922
FB
644@subsection Snapshot mode
645
646If you use the option @option{-snapshot}, all disk images are
647considered as read only. When sectors in written, they are written in
648a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
649write back to the raw disk images by using the @code{commit} monitor
650command (or @key{C-a s} in the serial console).
1f47a922 651
13a2e80f
FB
652@node vm_snapshots
653@subsection VM snapshots
654
655VM snapshots are snapshots of the complete virtual machine including
656CPU state, RAM, device state and the content of all the writable
657disks. In order to use VM snapshots, you must have at least one non
658removable and writable block device using the @code{qcow2} disk image
659format. Normally this device is the first virtual hard drive.
660
661Use the monitor command @code{savevm} to create a new VM snapshot or
662replace an existing one. A human readable name can be assigned to each
19d36792 663snapshot in addition to its numerical ID.
13a2e80f
FB
664
665Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
666a VM snapshot. @code{info snapshots} lists the available snapshots
667with their associated information:
668
669@example
670(qemu) info snapshots
671Snapshot devices: hda
672Snapshot list (from hda):
673ID TAG VM SIZE DATE VM CLOCK
6741 start 41M 2006-08-06 12:38:02 00:00:14.954
6752 40M 2006-08-06 12:43:29 00:00:18.633
6763 msys 40M 2006-08-06 12:44:04 00:00:23.514
677@end example
678
679A VM snapshot is made of a VM state info (its size is shown in
680@code{info snapshots}) and a snapshot of every writable disk image.
681The VM state info is stored in the first @code{qcow2} non removable
682and writable block device. The disk image snapshots are stored in
683every disk image. The size of a snapshot in a disk image is difficult
684to evaluate and is not shown by @code{info snapshots} because the
685associated disk sectors are shared among all the snapshots to save
19d36792
FB
686disk space (otherwise each snapshot would need a full copy of all the
687disk images).
13a2e80f
FB
688
689When using the (unrelated) @code{-snapshot} option
690(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
691but they are deleted as soon as you exit QEMU.
692
693VM snapshots currently have the following known limitations:
694@itemize
5fafdf24 695@item
13a2e80f
FB
696They cannot cope with removable devices if they are removed or
697inserted after a snapshot is done.
5fafdf24 698@item
13a2e80f
FB
699A few device drivers still have incomplete snapshot support so their
700state is not saved or restored properly (in particular USB).
701@end itemize
702
acd935ef
FB
703@node qemu_img_invocation
704@subsection @code{qemu-img} Invocation
1f47a922 705
acd935ef 706@include qemu-img.texi
05efe46e 707
975b092b
TS
708@node qemu_nbd_invocation
709@subsection @code{qemu-nbd} Invocation
710
711@include qemu-nbd.texi
712
78aa8aa0 713@include docs/qemu-block-drivers.texi
0a12ec87 714
debc7065 715@node pcsys_network
9d4fb82e
FB
716@section Network emulation
717
0e0266c2
TH
718QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC
719target) and can connect them to a network backend on the host or an emulated
720hub. The various host network backends can either be used to connect the NIC of
721the guest to a real network (e.g. by using a TAP devices or the non-privileged
722user mode network stack), or to other guest instances running in another QEMU
723process (e.g. by using the socket host network backend).
9d4fb82e 724
41d03949
FB
725@subsection Using TAP network interfaces
726
727This is the standard way to connect QEMU to a real network. QEMU adds
728a virtual network device on your host (called @code{tapN}), and you
729can then configure it as if it was a real ethernet card.
9d4fb82e 730
8f40c388
FB
731@subsubsection Linux host
732
9d4fb82e
FB
733As an example, you can download the @file{linux-test-xxx.tar.gz}
734archive and copy the script @file{qemu-ifup} in @file{/etc} and
735configure properly @code{sudo} so that the command @code{ifconfig}
736contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 737that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
738device @file{/dev/net/tun} must be present.
739
ee0f4751
FB
740See @ref{sec_invocation} to have examples of command lines using the
741TAP network interfaces.
9d4fb82e 742
8f40c388
FB
743@subsubsection Windows host
744
745There is a virtual ethernet driver for Windows 2000/XP systems, called
746TAP-Win32. But it is not included in standard QEMU for Windows,
747so you will need to get it separately. It is part of OpenVPN package,
70b7fba9 748so download OpenVPN from : @url{https://openvpn.net/}.
8f40c388 749
9d4fb82e
FB
750@subsection Using the user mode network stack
751
41d03949
FB
752By using the option @option{-net user} (default configuration if no
753@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 754network stack (you don't need root privilege to use the virtual
41d03949 755network). The virtual network configuration is the following:
9d4fb82e
FB
756
757@example
758
0e0266c2 759 guest (10.0.2.15) <------> Firewall/DHCP server <-----> Internet
41d03949 760 | (10.0.2.2)
9d4fb82e 761 |
2518bd0d 762 ----> DNS server (10.0.2.3)
3b46e624 763 |
2518bd0d 764 ----> SMB server (10.0.2.4)
9d4fb82e
FB
765@end example
766
767The QEMU VM behaves as if it was behind a firewall which blocks all
768incoming connections. You can use a DHCP client to automatically
41d03949
FB
769configure the network in the QEMU VM. The DHCP server assign addresses
770to the hosts starting from 10.0.2.15.
9d4fb82e
FB
771
772In order to check that the user mode network is working, you can ping
773the address 10.0.2.2 and verify that you got an address in the range
77410.0.2.x from the QEMU virtual DHCP server.
775
37cbfcce
GH
776Note that ICMP traffic in general does not work with user mode networking.
777@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
778however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
779ping sockets to allow @code{ping} to the Internet. The host admin has to set
780the ping_group_range in order to grant access to those sockets. To allow ping
781for GID 100 (usually users group):
782
783@example
784echo 100 100 > /proc/sys/net/ipv4/ping_group_range
785@end example
b415a407 786
9bf05444
FB
787When using the built-in TFTP server, the router is also the TFTP
788server.
789
c8c6afa8
TH
790When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
791connections can be redirected from the host to the guest. It allows for
792example to redirect X11, telnet or SSH connections.
443f1376 793
0e0266c2
TH
794@subsection Hubs
795
796QEMU can simulate several hubs. A hub can be thought of as a virtual connection
797between several network devices. These devices can be for example QEMU virtual
798ethernet cards or virtual Host ethernet devices (TAP devices). You can connect
799guest NICs or host network backends to such a hub using the @option{-netdev
800hubport} or @option{-nic hubport} options. The legacy @option{-net} option
801also connects the given device to the emulated hub with ID 0 (i.e. the default
802hub) unless you specify a netdev with @option{-net nic,netdev=xxx} here.
41d03949 803
0e0266c2 804@subsection Connecting emulated networks between QEMU instances
41d03949 805
0e0266c2
TH
806Using the @option{-netdev socket} (or @option{-nic socket} or
807@option{-net socket}) option, it is possible to create emulated
808networks that span several QEMU instances.
809See the description of the @option{-netdev socket} option in the
810@ref{sec_invocation,,Invocation chapter} to have a basic example.
41d03949 811
576fd0a1 812@node pcsys_other_devs
6cbf4c8c
CM
813@section Other Devices
814
815@subsection Inter-VM Shared Memory device
816
5400c02b
MA
817On Linux hosts, a shared memory device is available. The basic syntax
818is:
6cbf4c8c
CM
819
820@example
5400c02b
MA
821qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
822@end example
823
824where @var{hostmem} names a host memory backend. For a POSIX shared
825memory backend, use something like
826
827@example
828-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
829@end example
830
831If desired, interrupts can be sent between guest VMs accessing the same shared
832memory region. Interrupt support requires using a shared memory server and
833using a chardev socket to connect to it. The code for the shared memory server
834is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
835memory server is:
836
837@example
a75eb03b 838# First start the ivshmem server once and for all
50d34c4e 839ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
840
841# Then start your qemu instances with matching arguments
5400c02b 842qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 843 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
844@end example
845
846When using the server, the guest will be assigned a VM ID (>=0) that allows guests
847using the same server to communicate via interrupts. Guests can read their
1309cf44 848VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 849
62a830b6
MA
850@subsubsection Migration with ivshmem
851
5400c02b
MA
852With device property @option{master=on}, the guest will copy the shared
853memory on migration to the destination host. With @option{master=off},
854the guest will not be able to migrate with the device attached. In the
855latter case, the device should be detached and then reattached after
856migration using the PCI hotplug support.
6cbf4c8c 857
62a830b6
MA
858At most one of the devices sharing the same memory can be master. The
859master must complete migration before you plug back the other devices.
860
7d4f4bda
MAL
861@subsubsection ivshmem and hugepages
862
863Instead of specifying the <shm size> using POSIX shm, you may specify
864a memory backend that has hugepage support:
865
866@example
5400c02b
MA
867qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
868 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
869@end example
870
871ivshmem-server also supports hugepages mount points with the
872@option{-m} memory path argument.
873
9d4fb82e
FB
874@node direct_linux_boot
875@section Direct Linux Boot
1f673135
FB
876
877This section explains how to launch a Linux kernel inside QEMU without
878having to make a full bootable image. It is very useful for fast Linux
ee0f4751 879kernel testing.
1f673135 880
ee0f4751 881The syntax is:
1f673135 882@example
3804da9d 883qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
884@end example
885
ee0f4751
FB
886Use @option{-kernel} to provide the Linux kernel image and
887@option{-append} to give the kernel command line arguments. The
888@option{-initrd} option can be used to provide an INITRD image.
1f673135 889
ee0f4751
FB
890When using the direct Linux boot, a disk image for the first hard disk
891@file{hda} is required because its boot sector is used to launch the
892Linux kernel.
1f673135 893
ee0f4751
FB
894If you do not need graphical output, you can disable it and redirect
895the virtual serial port and the QEMU monitor to the console with the
896@option{-nographic} option. The typical command line is:
1f673135 897@example
3804da9d
SW
898qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
899 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
900@end example
901
ee0f4751
FB
902Use @key{Ctrl-a c} to switch between the serial console and the
903monitor (@pxref{pcsys_keys}).
1f673135 904
debc7065 905@node pcsys_usb
b389dbfb
FB
906@section USB emulation
907
a92ff8c1
TH
908QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
909plug virtual USB devices or real host USB devices (only works with certain
910host operating systems). QEMU will automatically create and connect virtual
911USB hubs as necessary to connect multiple USB devices.
b389dbfb 912
0aff66b5
PB
913@menu
914* usb_devices::
915* host_usb_devices::
916@end menu
917@node usb_devices
918@subsection Connecting USB devices
b389dbfb 919
a92ff8c1
TH
920USB devices can be connected with the @option{-device usb-...} command line
921option or the @code{device_add} monitor command. Available devices are:
b389dbfb 922
db380c06 923@table @code
a92ff8c1 924@item usb-mouse
0aff66b5 925Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 926@item usb-tablet
c6d46c20 927Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 928This means QEMU is able to report the mouse position without having
0aff66b5 929to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
930@item usb-storage,drive=@var{drive_id}
931Mass storage device backed by @var{drive_id} (@pxref{disk_images})
932@item usb-uas
933USB attached SCSI device, see
70b7fba9 934@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
935for details
936@item usb-bot
937Bulk-only transport storage device, see
70b7fba9 938@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
939for details here, too
940@item usb-mtp,x-root=@var{dir}
941Media transfer protocol device, using @var{dir} as root of the file tree
942that is presented to the guest.
943@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
944Pass through the host device identified by @var{bus} and @var{addr}
945@item usb-host,vendorid=@var{vendor},productid=@var{product}
946Pass through the host device identified by @var{vendor} and @var{product} ID
947@item usb-wacom-tablet
f6d2a316
AZ
948Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
949above but it can be used with the tslib library because in addition to touch
950coordinates it reports touch pressure.
a92ff8c1 951@item usb-kbd
47b2d338 952Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 953@item usb-serial,chardev=@var{id}
db380c06 954Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
955device @var{id}.
956@item usb-braille,chardev=@var{id}
2e4d9fb1 957Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
958or fake device referenced by @var{id}.
959@item usb-net[,netdev=@var{id}]
960Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
961specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 962For instance, user-mode networking can be used with
6c9f886c 963@example
a92ff8c1 964qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 965@end example
a92ff8c1
TH
966@item usb-ccid
967Smartcard reader device
968@item usb-audio
969USB audio device
970@item usb-bt-dongle
971Bluetooth dongle for the transport layer of HCI. It is connected to HCI
972scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
973Note that the syntax for the @code{-device usb-bt-dongle} option is not as
974useful yet as it was with the legacy @code{-usbdevice} option. So to
975configure an USB bluetooth device, you might need to use
976"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
977bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
978the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
979no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
980This USB device implements the USB Transport Layer of HCI. Example
981usage:
982@example
8485140f 983@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 984@end example
0aff66b5 985@end table
b389dbfb 986
0aff66b5 987@node host_usb_devices
b389dbfb
FB
988@subsection Using host USB devices on a Linux host
989
990WARNING: this is an experimental feature. QEMU will slow down when
991using it. USB devices requiring real time streaming (i.e. USB Video
992Cameras) are not supported yet.
993
994@enumerate
5fafdf24 995@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
996is actually using the USB device. A simple way to do that is simply to
997disable the corresponding kernel module by renaming it from @file{mydriver.o}
998to @file{mydriver.o.disabled}.
999
1000@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1001@example
1002ls /proc/bus/usb
1003001 devices drivers
1004@end example
1005
1006@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1007@example
1008chown -R myuid /proc/bus/usb
1009@end example
1010
1011@item Launch QEMU and do in the monitor:
5fafdf24 1012@example
b389dbfb
FB
1013info usbhost
1014 Device 1.2, speed 480 Mb/s
1015 Class 00: USB device 1234:5678, USB DISK
1016@end example
1017You should see the list of the devices you can use (Never try to use
1018hubs, it won't work).
1019
1020@item Add the device in QEMU by using:
5fafdf24 1021@example
a92ff8c1 1022device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1023@end example
1024
a92ff8c1
TH
1025Normally the guest OS should report that a new USB device is plugged.
1026You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1027
1028@item Now you can try to use the host USB device in QEMU.
1029
1030@end enumerate
1031
1032When relaunching QEMU, you may have to unplug and plug again the USB
1033device to make it work again (this is a bug).
1034
f858dcae
TS
1035@node vnc_security
1036@section VNC security
1037
1038The VNC server capability provides access to the graphical console
1039of the guest VM across the network. This has a number of security
1040considerations depending on the deployment scenarios.
1041
1042@menu
1043* vnc_sec_none::
1044* vnc_sec_password::
1045* vnc_sec_certificate::
1046* vnc_sec_certificate_verify::
1047* vnc_sec_certificate_pw::
2f9606b3
AL
1048* vnc_sec_sasl::
1049* vnc_sec_certificate_sasl::
2f9606b3 1050* vnc_setup_sasl::
f858dcae
TS
1051@end menu
1052@node vnc_sec_none
1053@subsection Without passwords
1054
1055The simplest VNC server setup does not include any form of authentication.
1056For this setup it is recommended to restrict it to listen on a UNIX domain
1057socket only. For example
1058
1059@example
3804da9d 1060qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1061@end example
1062
1063This ensures that only users on local box with read/write access to that
1064path can access the VNC server. To securely access the VNC server from a
1065remote machine, a combination of netcat+ssh can be used to provide a secure
1066tunnel.
1067
1068@node vnc_sec_password
1069@subsection With passwords
1070
1071The VNC protocol has limited support for password based authentication. Since
1072the protocol limits passwords to 8 characters it should not be considered
1073to provide high security. The password can be fairly easily brute-forced by
1074a client making repeat connections. For this reason, a VNC server using password
1075authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1076or UNIX domain sockets. Password authentication is not supported when operating
1077in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1078authentication is requested with the @code{password} option, and then once QEMU
1079is running the password is set with the monitor. Until the monitor is used to
1080set the password all clients will be rejected.
f858dcae
TS
1081
1082@example
3804da9d 1083qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1084(qemu) change vnc password
1085Password: ********
1086(qemu)
1087@end example
1088
1089@node vnc_sec_certificate
1090@subsection With x509 certificates
1091
1092The QEMU VNC server also implements the VeNCrypt extension allowing use of
1093TLS for encryption of the session, and x509 certificates for authentication.
1094The use of x509 certificates is strongly recommended, because TLS on its
1095own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1096support provides a secure session, but no authentication. This allows any
1097client to connect, and provides an encrypted session.
1098
1099@example
3804da9d 1100qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1101@end example
1102
1103In the above example @code{/etc/pki/qemu} should contain at least three files,
1104@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1105users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1106NB the @code{server-key.pem} file should be protected with file mode 0600 to
1107only be readable by the user owning it.
1108
1109@node vnc_sec_certificate_verify
1110@subsection With x509 certificates and client verification
1111
1112Certificates can also provide a means to authenticate the client connecting.
1113The server will request that the client provide a certificate, which it will
1114then validate against the CA certificate. This is a good choice if deploying
1115in an environment with a private internal certificate authority.
1116
1117@example
3804da9d 1118qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1119@end example
1120
1121
1122@node vnc_sec_certificate_pw
1123@subsection With x509 certificates, client verification and passwords
1124
1125Finally, the previous method can be combined with VNC password authentication
1126to provide two layers of authentication for clients.
1127
1128@example
3804da9d 1129qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1130(qemu) change vnc password
1131Password: ********
1132(qemu)
1133@end example
1134
2f9606b3
AL
1135
1136@node vnc_sec_sasl
1137@subsection With SASL authentication
1138
1139The SASL authentication method is a VNC extension, that provides an
1140easily extendable, pluggable authentication method. This allows for
1141integration with a wide range of authentication mechanisms, such as
1142PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1143The strength of the authentication depends on the exact mechanism
1144configured. If the chosen mechanism also provides a SSF layer, then
1145it will encrypt the datastream as well.
1146
1147Refer to the later docs on how to choose the exact SASL mechanism
1148used for authentication, but assuming use of one supporting SSF,
1149then QEMU can be launched with:
1150
1151@example
3804da9d 1152qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1153@end example
1154
1155@node vnc_sec_certificate_sasl
1156@subsection With x509 certificates and SASL authentication
1157
1158If the desired SASL authentication mechanism does not supported
1159SSF layers, then it is strongly advised to run it in combination
1160with TLS and x509 certificates. This provides securely encrypted
1161data stream, avoiding risk of compromising of the security
1162credentials. This can be enabled, by combining the 'sasl' option
1163with the aforementioned TLS + x509 options:
1164
1165@example
3804da9d 1166qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1167@end example
1168
5d19a6ea
DB
1169@node vnc_setup_sasl
1170
1171@subsection Configuring SASL mechanisms
1172
1173The following documentation assumes use of the Cyrus SASL implementation on a
1174Linux host, but the principles should apply to any other SASL implementation
1175or host. When SASL is enabled, the mechanism configuration will be loaded from
1176system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1177unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1178it search alternate locations for the service config file.
1179
1180If the TLS option is enabled for VNC, then it will provide session encryption,
1181otherwise the SASL mechanism will have to provide encryption. In the latter
1182case the list of possible plugins that can be used is drastically reduced. In
1183fact only the GSSAPI SASL mechanism provides an acceptable level of security
1184by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1185mechanism, however, it has multiple serious flaws described in detail in
1186RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1187provides a simple username/password auth facility similar to DIGEST-MD5, but
1188does not support session encryption, so can only be used in combination with
1189TLS.
2f9606b3 1190
5d19a6ea 1191When not using TLS the recommended configuration is
f858dcae 1192
5d19a6ea
DB
1193@example
1194mech_list: gssapi
1195keytab: /etc/qemu/krb5.tab
1196@end example
1197
1198This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1199the server principal stored in /etc/qemu/krb5.tab. For this to work the
1200administrator of your KDC must generate a Kerberos principal for the server,
1201with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1202'somehost.example.com' with the fully qualified host name of the machine
1203running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1204
1205When using TLS, if username+password authentication is desired, then a
1206reasonable configuration is
1207
1208@example
1209mech_list: scram-sha-1
1210sasldb_path: /etc/qemu/passwd.db
1211@end example
1212
1213The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1214file with accounts.
1215
1216Other SASL configurations will be left as an exercise for the reader. Note that
1217all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1218secure data channel.
1219
1220
1221@node network_tls
1222@section TLS setup for network services
1223
1224Almost all network services in QEMU have the ability to use TLS for
1225session data encryption, along with x509 certificates for simple
1226client authentication. What follows is a description of how to
1227generate certificates suitable for usage with QEMU, and applies to
1228the VNC server, character devices with the TCP backend, NBD server
1229and client, and migration server and client.
1230
1231At a high level, QEMU requires certificates and private keys to be
1232provided in PEM format. Aside from the core fields, the certificates
1233should include various extension data sets, including v3 basic
1234constraints data, key purpose, key usage and subject alt name.
1235
1236The GnuTLS package includes a command called @code{certtool} which can
1237be used to easily generate certificates and keys in the required format
1238with expected data present. Alternatively a certificate management
1239service may be used.
1240
1241At a minimum it is necessary to setup a certificate authority, and
1242issue certificates to each server. If using x509 certificates for
1243authentication, then each client will also need to be issued a
1244certificate.
1245
1246Assuming that the QEMU network services will only ever be exposed to
1247clients on a private intranet, there is no need to use a commercial
1248certificate authority to create certificates. A self-signed CA is
1249sufficient, and in fact likely to be more secure since it removes
1250the ability of malicious 3rd parties to trick the CA into mis-issuing
1251certs for impersonating your services. The only likely exception
1252where a commercial CA might be desirable is if enabling the VNC
1253websockets server and exposing it directly to remote browser clients.
1254In such a case it might be useful to use a commercial CA to avoid
1255needing to install custom CA certs in the web browsers.
1256
1257The recommendation is for the server to keep its certificates in either
1258@code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
f858dcae
TS
1259
1260@menu
5d19a6ea
DB
1261* tls_generate_ca::
1262* tls_generate_server::
1263* tls_generate_client::
1264* tls_creds_setup::
e1a6dc91 1265* tls_psk::
f858dcae 1266@end menu
5d19a6ea
DB
1267@node tls_generate_ca
1268@subsection Setup the Certificate Authority
f858dcae
TS
1269
1270This step only needs to be performed once per organization / organizational
1271unit. First the CA needs a private key. This key must be kept VERY secret
1272and secure. If this key is compromised the entire trust chain of the certificates
1273issued with it is lost.
1274
1275@example
1276# certtool --generate-privkey > ca-key.pem
1277@end example
1278
5d19a6ea
DB
1279To generate a self-signed certificate requires one core piece of information,
1280the name of the organization. A template file @code{ca.info} should be
1281populated with the desired data to avoid having to deal with interactive
1282prompts from certtool:
f858dcae
TS
1283@example
1284# cat > ca.info <<EOF
1285cn = Name of your organization
1286ca
1287cert_signing_key
1288EOF
1289# certtool --generate-self-signed \
1290 --load-privkey ca-key.pem
1291 --template ca.info \
1292 --outfile ca-cert.pem
1293@end example
1294
5d19a6ea
DB
1295The @code{ca} keyword in the template sets the v3 basic constraints extension
1296to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1297the key usage extension to indicate this will be used for signing other keys.
1298The generated @code{ca-cert.pem} file should be copied to all servers and
1299clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1300must not be disclosed/copied anywhere except the host responsible for issuing
1301certificates.
f858dcae 1302
5d19a6ea
DB
1303@node tls_generate_server
1304@subsection Issuing server certificates
f858dcae
TS
1305
1306Each server (or host) needs to be issued with a key and certificate. When connecting
1307the certificate is sent to the client which validates it against the CA certificate.
5d19a6ea
DB
1308The core pieces of information for a server certificate are the hostnames and/or IP
1309addresses that will be used by clients when connecting. The hostname / IP address
1310that the client specifies when connecting will be validated against the hostname(s)
1311and IP address(es) recorded in the server certificate, and if no match is found
1312the client will close the connection.
1313
1314Thus it is recommended that the server certificate include both the fully qualified
1315and unqualified hostnames. If the server will have permanently assigned IP address(es),
1316and clients are likely to use them when connecting, they may also be included in the
1317certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1318only included 1 hostname in the @code{CN} field, however, usage of this field for
1319validation is now deprecated. Instead modern TLS clients will validate against the
1320Subject Alt Name extension data, which allows for multiple entries. In the future
1321usage of the @code{CN} field may be discontinued entirely, so providing SAN
1322extension data is strongly recommended.
1323
1324On the host holding the CA, create template files containing the information
1325for each server, and use it to issue server certificates.
f858dcae
TS
1326
1327@example
5d19a6ea 1328# cat > server-hostNNN.info <<EOF
f858dcae 1329organization = Name of your organization
5d19a6ea
DB
1330cn = hostNNN.foo.example.com
1331dns_name = hostNNN
1332dns_name = hostNNN.foo.example.com
1333ip_address = 10.0.1.87
1334ip_address = 192.8.0.92
1335ip_address = 2620:0:cafe::87
1336ip_address = 2001:24::92
f858dcae
TS
1337tls_www_server
1338encryption_key
1339signing_key
1340EOF
5d19a6ea 1341# certtool --generate-privkey > server-hostNNN-key.pem
f858dcae
TS
1342# certtool --generate-certificate \
1343 --load-ca-certificate ca-cert.pem \
1344 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1345 --load-privkey server-hostNNN-key.pem \
1346 --template server-hostNNN.info \
1347 --outfile server-hostNNN-cert.pem
f858dcae
TS
1348@end example
1349
5d19a6ea
DB
1350The @code{dns_name} and @code{ip_address} fields in the template are setting
1351the subject alt name extension data. The @code{tls_www_server} keyword is the
1352key purpose extension to indicate this certificate is intended for usage in
1353a web server. Although QEMU network services are not in fact HTTP servers
1354(except for VNC websockets), setting this key purpose is still recommended.
1355The @code{encryption_key} and @code{signing_key} keyword is the key usage
1356extension to indicate this certificate is intended for usage in the data
1357session.
1358
1359The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1360should now be securely copied to the server for which they were generated,
1361and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1362to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1363file is security sensitive and should be kept protected with file mode 0600
1364to prevent disclosure.
1365
1366@node tls_generate_client
1367@subsection Issuing client certificates
f858dcae 1368
5d19a6ea
DB
1369The QEMU x509 TLS credential setup defaults to enabling client verification
1370using certificates, providing a simple authentication mechanism. If this
1371default is used, each client also needs to be issued a certificate. The client
1372certificate contains enough metadata to uniquely identify the client with the
1373scope of the certificate authority. The client certificate would typically
1374include fields for organization, state, city, building, etc.
1375
1376Once again on the host holding the CA, create template files containing the
1377information for each client, and use it to issue client certificates.
f858dcae 1378
f858dcae
TS
1379
1380@example
5d19a6ea 1381# cat > client-hostNNN.info <<EOF
f858dcae
TS
1382country = GB
1383state = London
5d19a6ea 1384locality = City Of London
63c693f8 1385organization = Name of your organization
5d19a6ea 1386cn = hostNNN.foo.example.com
f858dcae
TS
1387tls_www_client
1388encryption_key
1389signing_key
1390EOF
5d19a6ea 1391# certtool --generate-privkey > client-hostNNN-key.pem
f858dcae
TS
1392# certtool --generate-certificate \
1393 --load-ca-certificate ca-cert.pem \
1394 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1395 --load-privkey client-hostNNN-key.pem \
1396 --template client-hostNNN.info \
1397 --outfile client-hostNNN-cert.pem
f858dcae
TS
1398@end example
1399
5d19a6ea
DB
1400The subject alt name extension data is not required for clients, so the
1401the @code{dns_name} and @code{ip_address} fields are not included.
1402The @code{tls_www_client} keyword is the key purpose extension to indicate
1403this certificate is intended for usage in a web client. Although QEMU
1404network clients are not in fact HTTP clients, setting this key purpose is
1405still recommended. The @code{encryption_key} and @code{signing_key} keyword
1406is the key usage extension to indicate this certificate is intended for
1407usage in the data session.
1408
1409The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1410should now be securely copied to the client for which they were generated,
1411and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1412to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1413file is security sensitive and should be kept protected with file mode 0600
1414to prevent disclosure.
1415
1416If a single host is going to be using TLS in both a client and server
1417role, it is possible to create a single certificate to cover both roles.
1418This would be quite common for the migration and NBD services, where a
1419QEMU process will be started by accepting a TLS protected incoming migration,
1420and later itself be migrated out to another host. To generate a single
1421certificate, simply include the template data from both the client and server
1422instructions in one.
2f9606b3 1423
5d19a6ea
DB
1424@example
1425# cat > both-hostNNN.info <<EOF
1426country = GB
1427state = London
1428locality = City Of London
1429organization = Name of your organization
1430cn = hostNNN.foo.example.com
1431dns_name = hostNNN
1432dns_name = hostNNN.foo.example.com
1433ip_address = 10.0.1.87
1434ip_address = 192.8.0.92
1435ip_address = 2620:0:cafe::87
1436ip_address = 2001:24::92
1437tls_www_server
1438tls_www_client
1439encryption_key
1440signing_key
1441EOF
1442# certtool --generate-privkey > both-hostNNN-key.pem
1443# certtool --generate-certificate \
1444 --load-ca-certificate ca-cert.pem \
1445 --load-ca-privkey ca-key.pem \
1446 --load-privkey both-hostNNN-key.pem \
1447 --template both-hostNNN.info \
1448 --outfile both-hostNNN-cert.pem
1449@end example
c6a9a9f5 1450
5d19a6ea
DB
1451When copying the PEM files to the target host, save them twice,
1452once as @code{server-cert.pem} and @code{server-key.pem}, and
1453again as @code{client-cert.pem} and @code{client-key.pem}.
1454
1455@node tls_creds_setup
1456@subsection TLS x509 credential configuration
1457
1458QEMU has a standard mechanism for loading x509 credentials that will be
1459used for network services and clients. It requires specifying the
1460@code{tls-creds-x509} class name to the @code{--object} command line
1461argument for the system emulators. Each set of credentials loaded should
1462be given a unique string identifier via the @code{id} parameter. A single
1463set of TLS credentials can be used for multiple network backends, so VNC,
1464migration, NBD, character devices can all share the same credentials. Note,
1465however, that credentials for use in a client endpoint must be loaded
1466separately from those used in a server endpoint.
1467
1468When specifying the object, the @code{dir} parameters specifies which
1469directory contains the credential files. This directory is expected to
1470contain files with the names mentioned previously, @code{ca-cert.pem},
1471@code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1472and @code{client-cert.pem} as appropriate. It is also possible to
1473include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1474@code{dh-params.pem}, which can be created using the
1475@code{certtool --generate-dh-params} command. If omitted, QEMU will
1476dynamically generate DH parameters when loading the credentials.
1477
1478The @code{endpoint} parameter indicates whether the credentials will
1479be used for a network client or server, and determines which PEM
1480files are loaded.
1481
1482The @code{verify} parameter determines whether x509 certificate
1483validation should be performed. This defaults to enabled, meaning
1484clients will always validate the server hostname against the
1485certificate subject alt name fields and/or CN field. It also
1486means that servers will request that clients provide a certificate
1487and validate them. Verification should never be turned off for
1488client endpoints, however, it may be turned off for server endpoints
1489if an alternative mechanism is used to authenticate clients. For
1490example, the VNC server can use SASL to authenticate clients
1491instead.
1492
1493To load server credentials with client certificate validation
1494enabled
2f9606b3
AL
1495
1496@example
5d19a6ea 1497$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
2f9606b3
AL
1498@end example
1499
5d19a6ea 1500while to load client credentials use
2f9606b3
AL
1501
1502@example
5d19a6ea 1503$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
2f9606b3
AL
1504@end example
1505
5d19a6ea
DB
1506Network services which support TLS will all have a @code{tls-creds}
1507parameter which expects the ID of the TLS credentials object. For
1508example with VNC:
2f9606b3 1509
5d19a6ea
DB
1510@example
1511$QEMU -vnc 0.0.0.0:0,tls-creds=tls0
1512@end example
2f9606b3 1513
e1a6dc91
RJ
1514@node tls_psk
1515@subsection TLS Pre-Shared Keys (PSK)
1516
1517Instead of using certificates, you may also use TLS Pre-Shared Keys
1518(TLS-PSK). This can be simpler to set up than certificates but is
1519less scalable.
1520
1521Use the GnuTLS @code{psktool} program to generate a @code{keys.psk}
1522file containing one or more usernames and random keys:
1523
1524@example
1525mkdir -m 0700 /tmp/keys
1526psktool -u rich -p /tmp/keys/keys.psk
1527@end example
1528
1529TLS-enabled servers such as qemu-nbd can use this directory like so:
1530
1531@example
1532qemu-nbd \
1533 -t -x / \
1534 --object tls-creds-psk,id=tls0,endpoint=server,dir=/tmp/keys \
1535 --tls-creds tls0 \
1536 image.qcow2
1537@end example
1538
1539When connecting from a qemu-based client you must specify the
1540directory containing @code{keys.psk} and an optional @var{username}
1541(defaults to ``qemu''):
1542
1543@example
1544qemu-img info \
1545 --object tls-creds-psk,id=tls0,dir=/tmp/keys,username=rich,endpoint=client \
1546 --image-opts \
1547 file.driver=nbd,file.host=localhost,file.port=10809,file.tls-creds=tls0,file.export=/
1548@end example
1549
0806e3f6 1550@node gdb_usage
da415d54
FB
1551@section GDB usage
1552
1553QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1554'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1555
b65ee4fa 1556In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1557gdb connection:
1558@example
3804da9d
SW
1559qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1560 -append "root=/dev/hda"
da415d54
FB
1561Connected to host network interface: tun0
1562Waiting gdb connection on port 1234
1563@end example
1564
1565Then launch gdb on the 'vmlinux' executable:
1566@example
1567> gdb vmlinux
1568@end example
1569
1570In gdb, connect to QEMU:
1571@example
6c9bf893 1572(gdb) target remote localhost:1234
da415d54
FB
1573@end example
1574
1575Then you can use gdb normally. For example, type 'c' to launch the kernel:
1576@example
1577(gdb) c
1578@end example
1579
0806e3f6
FB
1580Here are some useful tips in order to use gdb on system code:
1581
1582@enumerate
1583@item
1584Use @code{info reg} to display all the CPU registers.
1585@item
1586Use @code{x/10i $eip} to display the code at the PC position.
1587@item
1588Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1589@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1590@end enumerate
1591
60897d36
EI
1592Advanced debugging options:
1593
b6af0975 1594The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1595@table @code
60897d36
EI
1596@item maintenance packet qqemu.sstepbits
1597
1598This will display the MASK bits used to control the single stepping IE:
1599@example
1600(gdb) maintenance packet qqemu.sstepbits
1601sending: "qqemu.sstepbits"
1602received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1603@end example
1604@item maintenance packet qqemu.sstep
1605
1606This will display the current value of the mask used when single stepping IE:
1607@example
1608(gdb) maintenance packet qqemu.sstep
1609sending: "qqemu.sstep"
1610received: "0x7"
1611@end example
1612@item maintenance packet Qqemu.sstep=HEX_VALUE
1613
1614This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1615@example
1616(gdb) maintenance packet Qqemu.sstep=0x5
1617sending: "qemu.sstep=0x5"
1618received: "OK"
1619@end example
94d45e44 1620@end table
60897d36 1621
debc7065 1622@node pcsys_os_specific
1a084f3d
FB
1623@section Target OS specific information
1624
1625@subsection Linux
1626
15a34c63
FB
1627To have access to SVGA graphic modes under X11, use the @code{vesa} or
1628the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1629color depth in the guest and the host OS.
1a084f3d 1630
e3371e62
FB
1631When using a 2.6 guest Linux kernel, you should add the option
1632@code{clock=pit} on the kernel command line because the 2.6 Linux
1633kernels make very strict real time clock checks by default that QEMU
1634cannot simulate exactly.
1635
7c3fc84d
FB
1636When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1637not activated because QEMU is slower with this patch. The QEMU
1638Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1639Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1640patch by default. Newer kernels don't have it.
1641
1a084f3d
FB
1642@subsection Windows
1643
1644If you have a slow host, using Windows 95 is better as it gives the
1645best speed. Windows 2000 is also a good choice.
1646
e3371e62
FB
1647@subsubsection SVGA graphic modes support
1648
1649QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1650card. All Windows versions starting from Windows 95 should recognize
1651and use this graphic card. For optimal performances, use 16 bit color
1652depth in the guest and the host OS.
1a084f3d 1653
3cb0853a
FB
1654If you are using Windows XP as guest OS and if you want to use high
1655resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
16561280x1024x16), then you should use the VESA VBE virtual graphic card
1657(option @option{-std-vga}).
1658
e3371e62
FB
1659@subsubsection CPU usage reduction
1660
1661Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1662instruction. The result is that it takes host CPU cycles even when
1663idle. You can install the utility from
70b7fba9 1664@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
3ba34a70 1665to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1666
9d0a8e6f 1667@subsubsection Windows 2000 disk full problem
e3371e62 1668
9d0a8e6f
FB
1669Windows 2000 has a bug which gives a disk full problem during its
1670installation. When installing it, use the @option{-win2k-hack} QEMU
1671option to enable a specific workaround. After Windows 2000 is
1672installed, you no longer need this option (this option slows down the
1673IDE transfers).
e3371e62 1674
6cc721cf
FB
1675@subsubsection Windows 2000 shutdown
1676
1677Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1678can. It comes from the fact that Windows 2000 does not automatically
1679use the APM driver provided by the BIOS.
1680
1681In order to correct that, do the following (thanks to Struan
1682Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1683Add/Troubleshoot a device => Add a new device & Next => No, select the
1684hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1685(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1686correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1687
1688@subsubsection Share a directory between Unix and Windows
1689
c8c6afa8
TH
1690See @ref{sec_invocation} about the help of the option
1691@option{'-netdev user,smb=...'}.
6cc721cf 1692
2192c332 1693@subsubsection Windows XP security problem
e3371e62
FB
1694
1695Some releases of Windows XP install correctly but give a security
1696error when booting:
1697@example
1698A problem is preventing Windows from accurately checking the
1699license for this computer. Error code: 0x800703e6.
1700@end example
e3371e62 1701
2192c332
FB
1702The workaround is to install a service pack for XP after a boot in safe
1703mode. Then reboot, and the problem should go away. Since there is no
1704network while in safe mode, its recommended to download the full
1705installation of SP1 or SP2 and transfer that via an ISO or using the
1706vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1707
a0a821a4
FB
1708@subsection MS-DOS and FreeDOS
1709
1710@subsubsection CPU usage reduction
1711
1712DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70 1713it takes host CPU cycles even when idle. You can install the utility from
70b7fba9 1714@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
3ba34a70 1715to solve this problem.
a0a821a4 1716
debc7065 1717@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1718@chapter QEMU System emulator for non PC targets
1719
1720QEMU is a generic emulator and it emulates many non PC
1721machines. Most of the options are similar to the PC emulator. The
4be456f1 1722differences are mentioned in the following sections.
3f9f3aa1 1723
debc7065 1724@menu
7544a042 1725* PowerPC System emulator::
24d4de45
TS
1726* Sparc32 System emulator::
1727* Sparc64 System emulator::
1728* MIPS System emulator::
1729* ARM System emulator::
1730* ColdFire System emulator::
7544a042
SW
1731* Cris System emulator::
1732* Microblaze System emulator::
1733* SH4 System emulator::
3aeaea65 1734* Xtensa System emulator::
debc7065
FB
1735@end menu
1736
7544a042
SW
1737@node PowerPC System emulator
1738@section PowerPC System emulator
1739@cindex system emulation (PowerPC)
1a084f3d 1740
15a34c63
FB
1741Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1742or PowerMac PowerPC system.
1a084f3d 1743
b671f9ed 1744QEMU emulates the following PowerMac peripherals:
1a084f3d 1745
15a34c63 1746@itemize @minus
5fafdf24 1747@item
006f3a48 1748UniNorth or Grackle PCI Bridge
15a34c63
FB
1749@item
1750PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1751@item
15a34c63 17522 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1753@item
15a34c63
FB
1754NE2000 PCI adapters
1755@item
1756Non Volatile RAM
1757@item
1758VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1759@end itemize
1760
b671f9ed 1761QEMU emulates the following PREP peripherals:
52c00a5f
FB
1762
1763@itemize @minus
5fafdf24 1764@item
15a34c63
FB
1765PCI Bridge
1766@item
1767PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1768@item
52c00a5f
FB
17692 IDE interfaces with hard disk and CD-ROM support
1770@item
1771Floppy disk
5fafdf24 1772@item
15a34c63 1773NE2000 network adapters
52c00a5f
FB
1774@item
1775Serial port
1776@item
1777PREP Non Volatile RAM
15a34c63
FB
1778@item
1779PC compatible keyboard and mouse.
52c00a5f
FB
1780@end itemize
1781
15a34c63 1782QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1783@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1784
70b7fba9 1785Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
006f3a48
BS
1786for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1787v2) portable firmware implementation. The goal is to implement a 100%
1788IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1789
15a34c63
FB
1790@c man begin OPTIONS
1791
1792The following options are specific to the PowerPC emulation:
1793
1794@table @option
1795
4e257e5e 1796@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1797
340fb41b 1798Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1799
4e257e5e 1800@item -prom-env @var{string}
95efd11c
BS
1801
1802Set OpenBIOS variables in NVRAM, for example:
1803
1804@example
1805qemu-system-ppc -prom-env 'auto-boot?=false' \
1806 -prom-env 'boot-device=hd:2,\yaboot' \
1807 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1808@end example
1809
1810These variables are not used by Open Hack'Ware.
1811
15a34c63
FB
1812@end table
1813
5fafdf24 1814@c man end
15a34c63
FB
1815
1816
52c00a5f 1817More information is available at
3f9f3aa1 1818@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1819
24d4de45
TS
1820@node Sparc32 System emulator
1821@section Sparc32 System emulator
7544a042 1822@cindex system emulation (Sparc32)
e80cfcfc 1823
34a3d239
BS
1824Use the executable @file{qemu-system-sparc} to simulate the following
1825Sun4m architecture machines:
1826@itemize @minus
1827@item
1828SPARCstation 4
1829@item
1830SPARCstation 5
1831@item
1832SPARCstation 10
1833@item
1834SPARCstation 20
1835@item
1836SPARCserver 600MP
1837@item
1838SPARCstation LX
1839@item
1840SPARCstation Voyager
1841@item
1842SPARCclassic
1843@item
1844SPARCbook
1845@end itemize
1846
1847The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1848but Linux limits the number of usable CPUs to 4.
e80cfcfc 1849
6a4e1771 1850QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1851
1852@itemize @minus
3475187d 1853@item
6a4e1771 1854IOMMU
e80cfcfc 1855@item
33632788 1856TCX or cgthree Frame buffer
5fafdf24 1857@item
e80cfcfc
FB
1858Lance (Am7990) Ethernet
1859@item
34a3d239 1860Non Volatile RAM M48T02/M48T08
e80cfcfc 1861@item
3475187d
FB
1862Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1863and power/reset logic
1864@item
1865ESP SCSI controller with hard disk and CD-ROM support
1866@item
6a3b9cc9 1867Floppy drive (not on SS-600MP)
a2502b58
BS
1868@item
1869CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1870@end itemize
1871
6a3b9cc9
BS
1872The number of peripherals is fixed in the architecture. Maximum
1873memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1874others 2047MB.
3475187d 1875
30a604f3 1876Since version 0.8.2, QEMU uses OpenBIOS
70b7fba9 1877@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
0986ac3b
FB
1878firmware implementation. The goal is to implement a 100% IEEE
18791275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1880
1881A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 1882the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 1883most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
1884don't work probably due to interface issues between OpenBIOS and
1885Solaris.
3475187d
FB
1886
1887@c man begin OPTIONS
1888
a2502b58 1889The following options are specific to the Sparc32 emulation:
3475187d
FB
1890
1891@table @option
1892
4e257e5e 1893@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1894
33632788
MCA
1895Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1896option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1897of 1152x900x8 for people who wish to use OBP.
3475187d 1898
4e257e5e 1899@item -prom-env @var{string}
66508601
BS
1900
1901Set OpenBIOS variables in NVRAM, for example:
1902
1903@example
1904qemu-system-sparc -prom-env 'auto-boot?=false' \
1905 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1906@end example
1907
6a4e1771 1908@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
1909
1910Set the emulated machine type. Default is SS-5.
1911
3475187d
FB
1912@end table
1913
5fafdf24 1914@c man end
3475187d 1915
24d4de45
TS
1916@node Sparc64 System emulator
1917@section Sparc64 System emulator
7544a042 1918@cindex system emulation (Sparc64)
e80cfcfc 1919
34a3d239
BS
1920Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1921(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
1922Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1923able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
1924Sun4v emulator is still a work in progress.
1925
1926The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1927of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1928and is able to boot the disk.s10hw2 Solaris image.
1929@example
1930qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1931 -nographic -m 256 \
1932 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1933@end example
1934
b756921a 1935
c7ba218d 1936QEMU emulates the following peripherals:
83469015
FB
1937
1938@itemize @minus
1939@item
5fafdf24 1940UltraSparc IIi APB PCI Bridge
83469015
FB
1941@item
1942PCI VGA compatible card with VESA Bochs Extensions
1943@item
34a3d239
BS
1944PS/2 mouse and keyboard
1945@item
83469015
FB
1946Non Volatile RAM M48T59
1947@item
1948PC-compatible serial ports
c7ba218d
BS
1949@item
19502 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1951@item
1952Floppy disk
83469015
FB
1953@end itemize
1954
c7ba218d
BS
1955@c man begin OPTIONS
1956
1957The following options are specific to the Sparc64 emulation:
1958
1959@table @option
1960
4e257e5e 1961@item -prom-env @var{string}
34a3d239
BS
1962
1963Set OpenBIOS variables in NVRAM, for example:
1964
1965@example
1966qemu-system-sparc64 -prom-env 'auto-boot?=false'
1967@end example
1968
a2664ca0 1969@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
1970
1971Set the emulated machine type. The default is sun4u.
1972
1973@end table
1974
1975@c man end
1976
24d4de45
TS
1977@node MIPS System emulator
1978@section MIPS System emulator
7544a042 1979@cindex system emulation (MIPS)
9d0a8e6f 1980
d9aedc32
TS
1981Four executables cover simulation of 32 and 64-bit MIPS systems in
1982both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1983@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1984Five different machine types are emulated:
24d4de45
TS
1985
1986@itemize @minus
1987@item
1988A generic ISA PC-like machine "mips"
1989@item
1990The MIPS Malta prototype board "malta"
1991@item
d9aedc32 1992An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1993@item
f0fc6f8f 1994MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1995@item
1996A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1997@end itemize
1998
1999The generic emulation is supported by Debian 'Etch' and is able to
2000install Debian into a virtual disk image. The following devices are
2001emulated:
3f9f3aa1
FB
2002
2003@itemize @minus
5fafdf24 2004@item
6bf5b4e8 2005A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2006@item
2007PC style serial port
2008@item
24d4de45
TS
2009PC style IDE disk
2010@item
3f9f3aa1
FB
2011NE2000 network card
2012@end itemize
2013
24d4de45
TS
2014The Malta emulation supports the following devices:
2015
2016@itemize @minus
2017@item
0b64d008 2018Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2019@item
2020PIIX4 PCI/USB/SMbus controller
2021@item
2022The Multi-I/O chip's serial device
2023@item
3a2eeac0 2024PCI network cards (PCnet32 and others)
24d4de45
TS
2025@item
2026Malta FPGA serial device
2027@item
1f605a76 2028Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2029@end itemize
2030
2031The ACER Pica emulation supports:
2032
2033@itemize @minus
2034@item
2035MIPS R4000 CPU
2036@item
2037PC-style IRQ and DMA controllers
2038@item
2039PC Keyboard
2040@item
2041IDE controller
2042@end itemize
3f9f3aa1 2043
b5e4946f 2044The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2045to what the proprietary MIPS emulator uses for running Linux.
2046It supports:
6bf5b4e8
TS
2047
2048@itemize @minus
2049@item
2050A range of MIPS CPUs, default is the 24Kf
2051@item
2052PC style serial port
2053@item
2054MIPSnet network emulation
2055@end itemize
2056
88cb0a02
AJ
2057The MIPS Magnum R4000 emulation supports:
2058
2059@itemize @minus
2060@item
2061MIPS R4000 CPU
2062@item
2063PC-style IRQ controller
2064@item
2065PC Keyboard
2066@item
2067SCSI controller
2068@item
2069G364 framebuffer
2070@end itemize
2071
2072
24d4de45
TS
2073@node ARM System emulator
2074@section ARM System emulator
7544a042 2075@cindex system emulation (ARM)
3f9f3aa1
FB
2076
2077Use the executable @file{qemu-system-arm} to simulate a ARM
2078machine. The ARM Integrator/CP board is emulated with the following
2079devices:
2080
2081@itemize @minus
2082@item
9ee6e8bb 2083ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2084@item
2085Two PL011 UARTs
5fafdf24 2086@item
3f9f3aa1 2087SMC 91c111 Ethernet adapter
00a9bf19
PB
2088@item
2089PL110 LCD controller
2090@item
2091PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2092@item
2093PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2094@end itemize
2095
2096The ARM Versatile baseboard is emulated with the following devices:
2097
2098@itemize @minus
2099@item
9ee6e8bb 2100ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2101@item
2102PL190 Vectored Interrupt Controller
2103@item
2104Four PL011 UARTs
5fafdf24 2105@item
00a9bf19
PB
2106SMC 91c111 Ethernet adapter
2107@item
2108PL110 LCD controller
2109@item
2110PL050 KMI with PS/2 keyboard and mouse.
2111@item
2112PCI host bridge. Note the emulated PCI bridge only provides access to
2113PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2114This means some devices (eg. ne2k_pci NIC) are not usable, and others
2115(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2116mapped control registers.
e6de1bad
PB
2117@item
2118PCI OHCI USB controller.
2119@item
2120LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2121@item
2122PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2123@end itemize
2124
21a88941
PB
2125Several variants of the ARM RealView baseboard are emulated,
2126including the EB, PB-A8 and PBX-A9. Due to interactions with the
2127bootloader, only certain Linux kernel configurations work out
2128of the box on these boards.
2129
2130Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2131enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2132should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2133disabled and expect 1024M RAM.
2134
40c5c6cd 2135The following devices are emulated:
d7739d75
PB
2136
2137@itemize @minus
2138@item
f7c70325 2139ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2140@item
2141ARM AMBA Generic/Distributed Interrupt Controller
2142@item
2143Four PL011 UARTs
5fafdf24 2144@item
0ef849d7 2145SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2146@item
2147PL110 LCD controller
2148@item
2149PL050 KMI with PS/2 keyboard and mouse
2150@item
2151PCI host bridge
2152@item
2153PCI OHCI USB controller
2154@item
2155LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2156@item
2157PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2158@end itemize
2159
b00052e4
AZ
2160The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2161and "Terrier") emulation includes the following peripherals:
2162
2163@itemize @minus
2164@item
2165Intel PXA270 System-on-chip (ARM V5TE core)
2166@item
2167NAND Flash memory
2168@item
2169IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2170@item
2171On-chip OHCI USB controller
2172@item
2173On-chip LCD controller
2174@item
2175On-chip Real Time Clock
2176@item
2177TI ADS7846 touchscreen controller on SSP bus
2178@item
2179Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2180@item
2181GPIO-connected keyboard controller and LEDs
2182@item
549444e1 2183Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2184@item
2185Three on-chip UARTs
2186@item
2187WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2188@end itemize
2189
02645926
AZ
2190The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2191following elements:
2192
2193@itemize @minus
2194@item
2195Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2196@item
2197ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2198@item
2199On-chip LCD controller
2200@item
2201On-chip Real Time Clock
2202@item
2203TI TSC2102i touchscreen controller / analog-digital converter / Audio
2204CODEC, connected through MicroWire and I@math{^2}S busses
2205@item
2206GPIO-connected matrix keypad
2207@item
2208Secure Digital card connected to OMAP MMC/SD host
2209@item
2210Three on-chip UARTs
2211@end itemize
2212
c30bb264
AZ
2213Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2214emulation supports the following elements:
2215
2216@itemize @minus
2217@item
2218Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2219@item
2220RAM and non-volatile OneNAND Flash memories
2221@item
2222Display connected to EPSON remote framebuffer chip and OMAP on-chip
2223display controller and a LS041y3 MIPI DBI-C controller
2224@item
2225TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2226driven through SPI bus
2227@item
2228National Semiconductor LM8323-controlled qwerty keyboard driven
2229through I@math{^2}C bus
2230@item
2231Secure Digital card connected to OMAP MMC/SD host
2232@item
2233Three OMAP on-chip UARTs and on-chip STI debugging console
2234@item
40c5c6cd 2235A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2236@item
c30bb264
AZ
2237Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2238TUSB6010 chip - only USB host mode is supported
2239@item
2240TI TMP105 temperature sensor driven through I@math{^2}C bus
2241@item
2242TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2243@item
2244Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2245through CBUS
2246@end itemize
2247
9ee6e8bb
PB
2248The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2249devices:
2250
2251@itemize @minus
2252@item
2253Cortex-M3 CPU core.
2254@item
225564k Flash and 8k SRAM.
2256@item
2257Timers, UARTs, ADC and I@math{^2}C interface.
2258@item
2259OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2260@end itemize
2261
2262The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2263devices:
2264
2265@itemize @minus
2266@item
2267Cortex-M3 CPU core.
2268@item
2269256k Flash and 64k SRAM.
2270@item
2271Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2272@item
2273OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2274@end itemize
2275
57cd6e97
AZ
2276The Freecom MusicPal internet radio emulation includes the following
2277elements:
2278
2279@itemize @minus
2280@item
2281Marvell MV88W8618 ARM core.
2282@item
228332 MB RAM, 256 KB SRAM, 8 MB flash.
2284@item
2285Up to 2 16550 UARTs
2286@item
2287MV88W8xx8 Ethernet controller
2288@item
2289MV88W8618 audio controller, WM8750 CODEC and mixer
2290@item
e080e785 2291128×64 display with brightness control
57cd6e97
AZ
2292@item
22932 buttons, 2 navigation wheels with button function
2294@end itemize
2295
997641a8 2296The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2297The emulation includes the following elements:
997641a8
AZ
2298
2299@itemize @minus
2300@item
2301Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2302@item
2303ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2304V1
23051 Flash of 16MB and 1 Flash of 8MB
2306V2
23071 Flash of 32MB
2308@item
2309On-chip LCD controller
2310@item
2311On-chip Real Time Clock
2312@item
2313Secure Digital card connected to OMAP MMC/SD host
2314@item
2315Three on-chip UARTs
2316@end itemize
2317
3f9f3aa1
FB
2318A Linux 2.6 test image is available on the QEMU web site. More
2319information is available in the QEMU mailing-list archive.
9d0a8e6f 2320
d2c639d6
BS
2321@c man begin OPTIONS
2322
2323The following options are specific to the ARM emulation:
2324
2325@table @option
2326
2327@item -semihosting
2328Enable semihosting syscall emulation.
2329
2330On ARM this implements the "Angel" interface.
2331
2332Note that this allows guest direct access to the host filesystem,
2333so should only be used with trusted guest OS.
2334
2335@end table
2336
abc67eb6
TH
2337@c man end
2338
24d4de45
TS
2339@node ColdFire System emulator
2340@section ColdFire System emulator
7544a042
SW
2341@cindex system emulation (ColdFire)
2342@cindex system emulation (M68K)
209a4e69
PB
2343
2344Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2345The emulator is able to boot a uClinux kernel.
707e011b
PB
2346
2347The M5208EVB emulation includes the following devices:
2348
2349@itemize @minus
5fafdf24 2350@item
707e011b
PB
2351MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2352@item
2353Three Two on-chip UARTs.
2354@item
2355Fast Ethernet Controller (FEC)
2356@end itemize
2357
2358The AN5206 emulation includes the following devices:
209a4e69
PB
2359
2360@itemize @minus
5fafdf24 2361@item
209a4e69
PB
2362MCF5206 ColdFire V2 Microprocessor.
2363@item
2364Two on-chip UARTs.
2365@end itemize
2366
d2c639d6
BS
2367@c man begin OPTIONS
2368
7544a042 2369The following options are specific to the ColdFire emulation:
d2c639d6
BS
2370
2371@table @option
2372
2373@item -semihosting
2374Enable semihosting syscall emulation.
2375
2376On M68K this implements the "ColdFire GDB" interface used by libgloss.
2377
2378Note that this allows guest direct access to the host filesystem,
2379so should only be used with trusted guest OS.
2380
2381@end table
2382
abc67eb6
TH
2383@c man end
2384
7544a042
SW
2385@node Cris System emulator
2386@section Cris System emulator
2387@cindex system emulation (Cris)
2388
2389TODO
2390
2391@node Microblaze System emulator
2392@section Microblaze System emulator
2393@cindex system emulation (Microblaze)
2394
2395TODO
2396
2397@node SH4 System emulator
2398@section SH4 System emulator
2399@cindex system emulation (SH4)
2400
2401TODO
2402
3aeaea65
MF
2403@node Xtensa System emulator
2404@section Xtensa System emulator
2405@cindex system emulation (Xtensa)
2406
2407Two executables cover simulation of both Xtensa endian options,
2408@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2409Two different machine types are emulated:
2410
2411@itemize @minus
2412@item
2413Xtensa emulator pseudo board "sim"
2414@item
2415Avnet LX60/LX110/LX200 board
2416@end itemize
2417
b5e4946f 2418The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2419to one provided by the proprietary Tensilica ISS.
2420It supports:
2421
2422@itemize @minus
2423@item
2424A range of Xtensa CPUs, default is the DC232B
2425@item
2426Console and filesystem access via semihosting calls
2427@end itemize
2428
2429The Avnet LX60/LX110/LX200 emulation supports:
2430
2431@itemize @minus
2432@item
2433A range of Xtensa CPUs, default is the DC232B
2434@item
243516550 UART
2436@item
2437OpenCores 10/100 Mbps Ethernet MAC
2438@end itemize
2439
2440@c man begin OPTIONS
2441
2442The following options are specific to the Xtensa emulation:
2443
2444@table @option
2445
2446@item -semihosting
2447Enable semihosting syscall emulation.
2448
2449Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2450Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2451
2452Note that this allows guest direct access to the host filesystem,
2453so should only be used with trusted guest OS.
2454
2455@end table
3f2ce724 2456
abc67eb6
TH
2457@c man end
2458
3f2ce724
TH
2459@node QEMU Guest Agent
2460@chapter QEMU Guest Agent invocation
2461
2462@include qemu-ga.texi
2463
5fafdf24
TS
2464@node QEMU User space emulator
2465@chapter QEMU User space emulator
83195237
FB
2466
2467@menu
2468* Supported Operating Systems ::
0722cc42 2469* Features::
83195237 2470* Linux User space emulator::
84778508 2471* BSD User space emulator ::
83195237
FB
2472@end menu
2473
2474@node Supported Operating Systems
2475@section Supported Operating Systems
2476
2477The following OS are supported in user space emulation:
2478
2479@itemize @minus
2480@item
4be456f1 2481Linux (referred as qemu-linux-user)
83195237 2482@item
84778508 2483BSD (referred as qemu-bsd-user)
83195237
FB
2484@end itemize
2485
0722cc42
PB
2486@node Features
2487@section Features
2488
2489QEMU user space emulation has the following notable features:
2490
2491@table @strong
2492@item System call translation:
2493QEMU includes a generic system call translator. This means that
2494the parameters of the system calls can be converted to fix
2495endianness and 32/64-bit mismatches between hosts and targets.
2496IOCTLs can be converted too.
2497
2498@item POSIX signal handling:
2499QEMU can redirect to the running program all signals coming from
2500the host (such as @code{SIGALRM}), as well as synthesize signals from
2501virtual CPU exceptions (for example @code{SIGFPE} when the program
2502executes a division by zero).
2503
2504QEMU relies on the host kernel to emulate most signal system
2505calls, for example to emulate the signal mask. On Linux, QEMU
2506supports both normal and real-time signals.
2507
2508@item Threading:
2509On Linux, QEMU can emulate the @code{clone} syscall and create a real
2510host thread (with a separate virtual CPU) for each emulated thread.
2511Note that not all targets currently emulate atomic operations correctly.
2512x86 and ARM use a global lock in order to preserve their semantics.
2513@end table
2514
2515QEMU was conceived so that ultimately it can emulate itself. Although
2516it is not very useful, it is an important test to show the power of the
2517emulator.
2518
83195237
FB
2519@node Linux User space emulator
2520@section Linux User space emulator
386405f7 2521
debc7065
FB
2522@menu
2523* Quick Start::
2524* Wine launch::
2525* Command line options::
79737e4a 2526* Other binaries::
debc7065
FB
2527@end menu
2528
2529@node Quick Start
83195237 2530@subsection Quick Start
df0f11a0 2531
1f673135 2532In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2533itself and all the target (x86) dynamic libraries used by it.
386405f7 2534
1f673135 2535@itemize
386405f7 2536
1f673135
FB
2537@item On x86, you can just try to launch any process by using the native
2538libraries:
386405f7 2539
5fafdf24 2540@example
1f673135
FB
2541qemu-i386 -L / /bin/ls
2542@end example
386405f7 2543
1f673135
FB
2544@code{-L /} tells that the x86 dynamic linker must be searched with a
2545@file{/} prefix.
386405f7 2546
b65ee4fa
SW
2547@item Since QEMU is also a linux process, you can launch QEMU with
2548QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2549
5fafdf24 2550@example
1f673135
FB
2551qemu-i386 -L / qemu-i386 -L / /bin/ls
2552@end example
386405f7 2553
1f673135
FB
2554@item On non x86 CPUs, you need first to download at least an x86 glibc
2555(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2556@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2557
1f673135 2558@example
5fafdf24 2559unset LD_LIBRARY_PATH
1f673135 2560@end example
1eb87257 2561
1f673135 2562Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2563
1f673135
FB
2564@example
2565qemu-i386 tests/i386/ls
2566@end example
4c3b5a48 2567You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2568QEMU is automatically launched by the Linux kernel when you try to
2569launch x86 executables. It requires the @code{binfmt_misc} module in the
2570Linux kernel.
1eb87257 2571
1f673135
FB
2572@item The x86 version of QEMU is also included. You can try weird things such as:
2573@example
debc7065
FB
2574qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2575 /usr/local/qemu-i386/bin/ls-i386
1f673135 2576@end example
1eb20527 2577
1f673135 2578@end itemize
1eb20527 2579
debc7065 2580@node Wine launch
83195237 2581@subsection Wine launch
1eb20527 2582
1f673135 2583@itemize
386405f7 2584
1f673135
FB
2585@item Ensure that you have a working QEMU with the x86 glibc
2586distribution (see previous section). In order to verify it, you must be
2587able to do:
386405f7 2588
1f673135
FB
2589@example
2590qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2591@end example
386405f7 2592
1f673135 2593@item Download the binary x86 Wine install
5fafdf24 2594(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2595
1f673135 2596@item Configure Wine on your account. Look at the provided script
debc7065 2597@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2598@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2599
1f673135 2600@item Then you can try the example @file{putty.exe}:
386405f7 2601
1f673135 2602@example
debc7065
FB
2603qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2604 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2605@end example
386405f7 2606
1f673135 2607@end itemize
fd429f2f 2608
debc7065 2609@node Command line options
83195237 2610@subsection Command line options
1eb20527 2611
1f673135 2612@example
8485140f 2613@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2614@end example
1eb20527 2615
1f673135
FB
2616@table @option
2617@item -h
2618Print the help
3b46e624 2619@item -L path
1f673135
FB
2620Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2621@item -s size
2622Set the x86 stack size in bytes (default=524288)
34a3d239 2623@item -cpu model
c8057f95 2624Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2625@item -E @var{var}=@var{value}
2626Set environment @var{var} to @var{value}.
2627@item -U @var{var}
2628Remove @var{var} from the environment.
379f6698
PB
2629@item -B offset
2630Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2631the address region required by guest applications is reserved on the host.
2632This option is currently only supported on some hosts.
68a1c816
PB
2633@item -R size
2634Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2635"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2636@end table
2637
1f673135 2638Debug options:
386405f7 2639
1f673135 2640@table @option
989b697d
PM
2641@item -d item1,...
2642Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2643@item -p pagesize
2644Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2645@item -g port
2646Wait gdb connection to port
1b530a6d
AJ
2647@item -singlestep
2648Run the emulation in single step mode.
1f673135 2649@end table
386405f7 2650
b01bcae6
AZ
2651Environment variables:
2652
2653@table @env
2654@item QEMU_STRACE
2655Print system calls and arguments similar to the 'strace' program
2656(NOTE: the actual 'strace' program will not work because the user
2657space emulator hasn't implemented ptrace). At the moment this is
2658incomplete. All system calls that don't have a specific argument
2659format are printed with information for six arguments. Many
2660flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2661@end table
b01bcae6 2662
79737e4a 2663@node Other binaries
83195237 2664@subsection Other binaries
79737e4a 2665
7544a042
SW
2666@cindex user mode (Alpha)
2667@command{qemu-alpha} TODO.
2668
2669@cindex user mode (ARM)
2670@command{qemu-armeb} TODO.
2671
2672@cindex user mode (ARM)
79737e4a
PB
2673@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2674binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2675configurations), and arm-uclinux bFLT format binaries.
2676
7544a042
SW
2677@cindex user mode (ColdFire)
2678@cindex user mode (M68K)
e6e5906b
PB
2679@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2680(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2681coldfire uClinux bFLT format binaries.
2682
79737e4a
PB
2683The binary format is detected automatically.
2684
7544a042
SW
2685@cindex user mode (Cris)
2686@command{qemu-cris} TODO.
2687
2688@cindex user mode (i386)
2689@command{qemu-i386} TODO.
2690@command{qemu-x86_64} TODO.
2691
2692@cindex user mode (Microblaze)
2693@command{qemu-microblaze} TODO.
2694
2695@cindex user mode (MIPS)
2696@command{qemu-mips} TODO.
2697@command{qemu-mipsel} TODO.
2698
e671711c
MV
2699@cindex user mode (NiosII)
2700@command{qemu-nios2} TODO.
2701
7544a042
SW
2702@cindex user mode (PowerPC)
2703@command{qemu-ppc64abi32} TODO.
2704@command{qemu-ppc64} TODO.
2705@command{qemu-ppc} TODO.
2706
2707@cindex user mode (SH4)
2708@command{qemu-sh4eb} TODO.
2709@command{qemu-sh4} TODO.
2710
2711@cindex user mode (SPARC)
34a3d239
BS
2712@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2713
a785e42e
BS
2714@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2715(Sparc64 CPU, 32 bit ABI).
2716
2717@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2718SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2719
84778508
BS
2720@node BSD User space emulator
2721@section BSD User space emulator
2722
2723@menu
2724* BSD Status::
2725* BSD Quick Start::
2726* BSD Command line options::
2727@end menu
2728
2729@node BSD Status
2730@subsection BSD Status
2731
2732@itemize @minus
2733@item
2734target Sparc64 on Sparc64: Some trivial programs work.
2735@end itemize
2736
2737@node BSD Quick Start
2738@subsection Quick Start
2739
2740In order to launch a BSD process, QEMU needs the process executable
2741itself and all the target dynamic libraries used by it.
2742
2743@itemize
2744
2745@item On Sparc64, you can just try to launch any process by using the native
2746libraries:
2747
2748@example
2749qemu-sparc64 /bin/ls
2750@end example
2751
2752@end itemize
2753
2754@node BSD Command line options
2755@subsection Command line options
2756
2757@example
8485140f 2758@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2759@end example
2760
2761@table @option
2762@item -h
2763Print the help
2764@item -L path
2765Set the library root path (default=/)
2766@item -s size
2767Set the stack size in bytes (default=524288)
f66724c9
SW
2768@item -ignore-environment
2769Start with an empty environment. Without this option,
40c5c6cd 2770the initial environment is a copy of the caller's environment.
f66724c9
SW
2771@item -E @var{var}=@var{value}
2772Set environment @var{var} to @var{value}.
2773@item -U @var{var}
2774Remove @var{var} from the environment.
84778508
BS
2775@item -bsd type
2776Set the type of the emulated BSD Operating system. Valid values are
2777FreeBSD, NetBSD and OpenBSD (default).
2778@end table
2779
2780Debug options:
2781
2782@table @option
989b697d
PM
2783@item -d item1,...
2784Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2785@item -p pagesize
2786Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2787@item -singlestep
2788Run the emulation in single step mode.
84778508
BS
2789@end table
2790
47eacb4f 2791
78e87797
PB
2792@include qemu-tech.texi
2793
eb22aeca
DB
2794@node Deprecated features
2795@appendix Deprecated features
2796
2797In general features are intended to be supported indefinitely once
2798introduced into QEMU. In the event that a feature needs to be removed,
2799it will be listed in this appendix. The feature will remain functional
2800for 2 releases prior to actual removal. Deprecated features may also
2801generate warnings on the console when QEMU starts up, or if activated
2802via a monitor command, however, this is not a mandatory requirement.
2803
2804Prior to the 2.10.0 release there was no official policy on how
2805long features would be deprecated prior to their removal, nor
2806any documented list of which features were deprecated. Thus
2807any features deprecated prior to 2.10.0 will be treated as if
2808they were first deprecated in the 2.10.0 release.
2809
2810What follows is a list of all features currently marked as
2811deprecated.
2812
b7715af2
DB
2813@section Build options
2814
2815@subsection GTK 2.x
2816
2817Previously QEMU has supported building against both GTK 2.x
2818and 3.x series APIs. Support for the GTK 2.x builds will be
2819discontinued, so maintainers should switch to using GTK 3.x,
2820which is the default.
2821
e52c6ba3
DB
2822@subsection SDL 1.2
2823
2824Previously QEMU has supported building against both SDL 1.2
2825and 2.0 series APIs. Support for the SDL 1.2 builds will be
2826discontinued, so maintainers should switch to using SDL 2.0,
2827which is the default.
2828
eb22aeca
DB
2829@section System emulator command line arguments
2830
eb22aeca
DB
2831@subsection -no-kvm (since 1.3.0)
2832
2833The ``-no-kvm'' argument is now a synonym for setting
2834``-machine accel=tcg''.
2835
eb22aeca
DB
2836@subsection -vnc tls (since 2.5.0)
2837
2838The ``-vnc tls'' argument is now a synonym for setting
2839``-object tls-creds-anon,id=tls0'' combined with
2840``-vnc tls-creds=tls0'
2841
2842@subsection -vnc x509 (since 2.5.0)
2843
2844The ``-vnc x509=/path/to/certs'' argument is now a
2845synonym for setting
2846``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=no''
2847combined with ``-vnc tls-creds=tls0'
2848
2849@subsection -vnc x509verify (since 2.5.0)
2850
2851The ``-vnc x509verify=/path/to/certs'' argument is now a
2852synonym for setting
2853``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=yes''
2854combined with ``-vnc tls-creds=tls0'
2855
2856@subsection -tftp (since 2.6.0)
2857
fb815218
PB
2858The ``-tftp /some/dir'' argument is replaced by either
2859``-netdev user,id=x,tftp=/some/dir '' (for pluggable NICs, accompanied
2860with ``-device ...,netdev=x''), or ``-nic user,tftp=/some/dir''
0065e915
TH
2861(for embedded NICs). The new syntax allows different settings to be
2862provided per NIC.
eb22aeca
DB
2863
2864@subsection -bootp (since 2.6.0)
2865
fb815218
PB
2866The ``-bootp /some/file'' argument is replaced by either
2867``-netdev user,id=x,bootp=/some/file '' (for pluggable NICs, accompanied
2868with ``-device ...,netdev=x''), or ``-nic user,bootp=/some/file''
0065e915
TH
2869(for embedded NICs). The new syntax allows different settings to be
2870provided per NIC.
eb22aeca
DB
2871
2872@subsection -redir (since 2.6.0)
2873
0065e915 2874The ``-redir [tcp|udp]:hostport:[guestaddr]:guestport'' argument is
fb815218
PB
2875replaced by either
2876``-netdev user,id=x,hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport''
2877(for pluggable NICs, accompanied with ``-device ...,netdev=x'') or
2878``-nic user,hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport''
2879(for embedded NICs). The new syntax allows different settings to be
2880provided per NIC.
eb22aeca
DB
2881
2882@subsection -smb (since 2.6.0)
2883
fb815218
PB
2884The ``-smb /some/dir'' argument is replaced by either
2885``-netdev user,id=x,smb=/some/dir '' (for pluggable NICs, accompanied
2886with ``-device ...,netdev=x''), or ``-nic user,smb=/some/dir''
0065e915
TH
2887(for embedded NICs). The new syntax allows different settings to be
2888provided per NIC.
eb22aeca 2889
44e8b468
CH
2890@subsection -drive serial=... (since 2.10.0)
2891
2892The drive serial argument is replaced by the the serial argument
2893that can be specified with the ``-device'' parameter.
2894
75f4cd29
CH
2895@subsection -drive addr=... (since 2.10.0)
2896
2897The drive addr argument is replaced by the the addr argument
2898that can be specified with the ``-device'' parameter.
2899
eb22aeca
DB
2900@subsection -usbdevice (since 2.10.0)
2901
2902The ``-usbdevice DEV'' argument is now a synonym for setting
2903the ``-device usb-DEV'' argument instead. The deprecated syntax
2904would automatically enable USB support on the machine type.
2905If using the new syntax, USB support must be explicitly
2906enabled via the ``-machine usb=on'' argument.
2907
3478eae9
EH
2908@subsection -nodefconfig (since 2.11.0)
2909
2910The ``-nodefconfig`` argument is a synonym for ``-no-user-config``.
2911
4060e671
TH
2912@subsection -balloon (since 2.12.0)
2913
2914The @option{--balloon virtio} argument has been superseded by
2915@option{--device virtio-balloon}.
2916
d69969e5
HP
2917@subsection -machine s390-squash-mcss=on|off (since 2.12.0)
2918
2919The ``s390-squash-mcss=on`` property has been obsoleted by allowing the
2920cssid to be chosen freely. Instead of squashing subchannels into the
2921default channel subsystem image for guests that do not support multiple
2922channel subsystems, all devices can be put into the default channel
2923subsystem image.
2924
db3b3c72
GK
2925@subsection -fsdev handle (since 2.12.0)
2926
2927The ``handle'' fsdev backend does not support symlinks and causes the 9p
2928filesystem in the guest to fail a fair amount of tests from the PJD POSIX
2929filesystem test suite. Also it requires the CAP_DAC_READ_SEARCH capability,
2930which is not the recommended way to run QEMU. This backend should not be
2931used and it will be removed with no replacement.
2932
e12c8198
TH
2933@subsection -no-frame (since 2.12.0)
2934
2935The @code{--no-frame} argument works with SDL 1.2 only. The other user
2936interfaces never implemented this in the first place. So this will be
2937removed together with SDL 1.2 support.
2938
f29d4450 2939@subsection -rtc-td-hack (since 2.12.0)
67358447 2940
f29d4450
TH
2941The @code{-rtc-td-hack} option has been replaced by
2942@code{-rtc driftfix=slew}.
2943
2944@subsection -localtime (since 2.12.0)
2945
2946The @code{-localtime} option has been replaced by @code{-rtc base=localtime}.
2947
2948@subsection -startdate (since 2.12.0)
2949
2950The @code{-startdate} option has been replaced by @code{-rtc base=@var{date}}.
67358447 2951
dcd42560 2952@subsection -virtioconsole (since 3.0.0)
45401299
TH
2953
2954Option @option{-virtioconsole} has been replaced by
2955@option{-device virtconsole}.
2956
d7e19545
TH
2957@subsection -clock (since 3.0.0)
2958
2959The @code{-clock} option is ignored since QEMU version 1.7.0. There is no
2960replacement since it is not needed anymore.
2961
c44df2ff
TH
2962@subsection -enable-hax (since 3.0.0)
2963
2964The @option{-enable-hax} option has been replaced by @option{-accel hax}.
2965Both options have been introduced in QEMU version 2.9.0.
2966
3e99da5e
VSO
2967@section QEMU Machine Protocol (QMP) commands
2968
2969@subsection block-dirty-bitmap-add "autoload" parameter (since 2.12.0)
2970
2971"autoload" parameter is now ignored. All bitmaps are automatically loaded
2972from qcow2 images.
2973
ff9a9156
VM
2974@subsection query-cpus (since 2.12.0)
2975
2976The ``query-cpus'' command is replaced by the ``query-cpus-fast'' command.
2977
dcd42560 2978@subsection query-cpus-fast "arch" output member (since 3.0.0)
6ffa3ab4
LE
2979
2980The ``arch'' output member of the ``query-cpus-fast'' command is
2981replaced by the ``target'' output member.
2982
eb22aeca
DB
2983@section System emulator devices
2984
2985@subsection ivshmem (since 2.6.0)
2986
2987The ``ivshmem'' device type is replaced by either the ``ivshmem-plain''
2988or ``ivshmem-doorbell`` device types.
2989
64b47457
TH
2990@subsection Page size support < 4k for embedded PowerPC CPUs (since 2.12.0)
2991
2992qemu-system-ppcemb will be removed. qemu-system-ppc (or qemu-system-ppc64)
2993should be used instead. That means that embedded 4xx PowerPC CPUs will not
2994support page sizes < 4096 any longer.
2995
83926ad5
AF
2996@section System emulator machines
2997
08fe6824
TH
2998@subsection pc-0.10 and pc-0.11 (since 3.0)
2999
3000These machine types are very old and likely can not be used for live migration
3001from old QEMU versions anymore. A newer machine type should be used instead.
3002
efe2add7 3003@section Device options
4f7be280 3004
efe2add7
CLG
3005@subsection Block device options
3006
3007@subsubsection "backing": "" (since 2.12.0)
4f7be280
HR
3008
3009In order to prevent QEMU from automatically opening an image's backing
3010chain, use ``"backing": null'' instead.
3011
efe2add7
CLG
3012@subsection vio-spapr-device device options
3013
3014@subsubsection "irq": "" (since 3.0.0)
3015
3016The ``irq'' property is obsoleted.
3017
45b47130
DB
3018@node Supported build platforms
3019@appendix Supported build platforms
3020
3021QEMU aims to support building and executing on multiple host OS platforms.
3022This appendix outlines which platforms are the major build targets. These
3023platforms are used as the basis for deciding upon the minimum required
3024versions of 3rd party software QEMU depends on. The supported platforms
3025are the targets for automated testing performed by the project when patches
3026are submitted for review, and tested before and after merge.
3027
3028If a platform is not listed here, it does not imply that QEMU won't work.
3029If an unlisted platform has comparable software versions to a listed platform,
3030there is every expectation that it will work. Bug reports are welcome for
3031problems encountered on unlisted platforms unless they are clearly older
3032vintage than what is described here.
3033
3034Note that when considering software versions shipped in distros as support
3035targets, QEMU considers only the version number, and assumes the features in
3036that distro match the upstream release with the same version. In other words,
3037if a distro backports extra features to the software in their distro, QEMU
3038upstream code will not add explicit support for those backports, unless the
3039feature is auto-detectable in a manner that works for the upstream releases
3040too.
3041
3042The Repology site @url{https://repology.org} is a useful resource to identify
3043currently shipped versions of software in various operating systems, though
3044it does not cover all distros listed below.
3045
3046@section Linux OS
3047
3048For distributions with frequent, short-lifetime releases, the project will
3049aim to support all versions that are not end of life by their respective
3050vendors. For the purposes of identifying supported software versions, the
3051project will look at Fedora, Ubuntu, and openSUSE distros. Other short-
3052lifetime distros will be assumed to ship similar software versions.
3053
3054For distributions with long-lifetime releases, the project will aim to support
3055the most recent major version at all times. Support for the previous major
3056version will be dropped 2 years after the new major version is released. For
3057the purposes of identifying supported software versions, the project will look
3058at RHEL, Debian, Ubuntu LTS, and SLES distros. Other long-lifetime distros will
3059be assumed to ship similar software versions.
3060
3061@section Windows
3062
3063The project supports building with current versions of the MinGW toolchain,
3064hosted on Linux.
3065
3066@section macOS
3067
3068The project supports building with the two most recent versions of macOS, with
3069the current homebrew package set available.
3070
3071@section FreeBSD
3072
3073The project aims to support the all the versions which are not end of life.
3074
3075@section NetBSD
3076
3077The project aims to support the most recent major version at all times. Support
3078for the previous major version will be dropped 2 years after the new major
3079version is released.
3080
3081@section OpenBSD
3082
3083The project aims to support the all the versions which are not end of life.
3084
7544a042
SW
3085@node License
3086@appendix License
3087
3088QEMU is a trademark of Fabrice Bellard.
3089
2f8d8f01
TH
3090QEMU is released under the
3091@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
3092version 2. Parts of QEMU have specific licenses, see file
70b7fba9 3093@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 3094
debc7065 3095@node Index
7544a042
SW
3096@appendix Index
3097@menu
3098* Concept Index::
3099* Function Index::
3100* Keystroke Index::
3101* Program Index::
3102* Data Type Index::
3103* Variable Index::
3104@end menu
3105
3106@node Concept Index
3107@section Concept Index
3108This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3109@printindex cp
3110
7544a042
SW
3111@node Function Index
3112@section Function Index
3113This index could be used for command line options and monitor functions.
3114@printindex fn
3115
3116@node Keystroke Index
3117@section Keystroke Index
3118
3119This is a list of all keystrokes which have a special function
3120in system emulation.
3121
3122@printindex ky
3123
3124@node Program Index
3125@section Program Index
3126@printindex pg
3127
3128@node Data Type Index
3129@section Data Type Index
3130
3131This index could be used for qdev device names and options.
3132
3133@printindex tp
3134
3135@node Variable Index
3136@section Variable Index
3137@printindex vr
3138
debc7065 3139@bye