]> git.ipfire.org Git - thirdparty/qemu.git/blame - qemu-doc.texi
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20160218-1' into...
[thirdparty/qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
23076bb3
CM
198IPMI BMC, either and internal or external one
199@item
c0fe3827
FB
200Creative SoundBlaster 16 sound card
201@item
202ENSONIQ AudioPCI ES1370 sound card
203@item
e5c9a13e
AZ
204Intel 82801AA AC97 Audio compatible sound card
205@item
7d72e762
GH
206Intel HD Audio Controller and HDA codec
207@item
2d983446 208Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 209@item
26463dbc
AZ
210Gravis Ultrasound GF1 sound card
211@item
cc53d26d 212CS4231A compatible sound card
213@item
b389dbfb 214PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
215@end itemize
216
3f9f3aa1
FB
217SMP is supported with up to 255 CPUs.
218
a8ad4159 219QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
220VGA BIOS.
221
c0fe3827
FB
222QEMU uses YM3812 emulation by Tatsuyuki Satoh.
223
2d983446 224QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 225by Tibor "TS" Schütz.
423d65f4 226
1a1a0e20 227Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 228QEMU must be told to not have parallel ports to have working GUS.
720036a5 229
230@example
3804da9d 231qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 232@end example
233
234Alternatively:
235@example
3804da9d 236qemu-system-i386 dos.img -device gus,irq=5
720036a5 237@end example
238
239Or some other unclaimed IRQ.
240
cc53d26d 241CS4231A is the chip used in Windows Sound System and GUSMAX products
242
0806e3f6
FB
243@c man end
244
debc7065 245@node pcsys_quickstart
1eb20527 246@section Quick Start
7544a042 247@cindex quick start
1eb20527 248
285dc330 249Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
250
251@example
3804da9d 252qemu-system-i386 linux.img
0806e3f6
FB
253@end example
254
255Linux should boot and give you a prompt.
256
6cc721cf 257@node sec_invocation
ec410fc9
FB
258@section Invocation
259
260@example
0806e3f6 261@c man begin SYNOPSIS
8485140f 262@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 263@c man end
ec410fc9
FB
264@end example
265
0806e3f6 266@c man begin OPTIONS
d2c639d6
BS
267@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
268targets do not need a disk image.
ec410fc9 269
5824d651 270@include qemu-options.texi
ec410fc9 271
3e11db9a
FB
272@c man end
273
debc7065 274@node pcsys_keys
3e11db9a
FB
275@section Keys
276
277@c man begin OPTIONS
278
de1db2a1
BH
279During the graphical emulation, you can use special key combinations to change
280modes. The default key mappings are shown below, but if you use @code{-alt-grab}
281then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
282@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
283
a1b74fe8 284@table @key
f9859310 285@item Ctrl-Alt-f
7544a042 286@kindex Ctrl-Alt-f
a1b74fe8 287Toggle full screen
a0a821a4 288
d6a65ba3
JK
289@item Ctrl-Alt-+
290@kindex Ctrl-Alt-+
291Enlarge the screen
292
293@item Ctrl-Alt--
294@kindex Ctrl-Alt--
295Shrink the screen
296
c4a735f9 297@item Ctrl-Alt-u
7544a042 298@kindex Ctrl-Alt-u
c4a735f9 299Restore the screen's un-scaled dimensions
300
f9859310 301@item Ctrl-Alt-n
7544a042 302@kindex Ctrl-Alt-n
a0a821a4
FB
303Switch to virtual console 'n'. Standard console mappings are:
304@table @emph
305@item 1
306Target system display
307@item 2
308Monitor
309@item 3
310Serial port
a1b74fe8
FB
311@end table
312
f9859310 313@item Ctrl-Alt
7544a042 314@kindex Ctrl-Alt
a0a821a4
FB
315Toggle mouse and keyboard grab.
316@end table
317
7544a042
SW
318@kindex Ctrl-Up
319@kindex Ctrl-Down
320@kindex Ctrl-PageUp
321@kindex Ctrl-PageDown
3e11db9a
FB
322In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
323@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
324
7544a042 325@kindex Ctrl-a h
a0a821a4
FB
326During emulation, if you are using the @option{-nographic} option, use
327@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
328
329@table @key
a1b74fe8 330@item Ctrl-a h
7544a042 331@kindex Ctrl-a h
d2c639d6 332@item Ctrl-a ?
7544a042 333@kindex Ctrl-a ?
ec410fc9 334Print this help
3b46e624 335@item Ctrl-a x
7544a042 336@kindex Ctrl-a x
366dfc52 337Exit emulator
3b46e624 338@item Ctrl-a s
7544a042 339@kindex Ctrl-a s
1f47a922 340Save disk data back to file (if -snapshot)
20d8a3ed 341@item Ctrl-a t
7544a042 342@kindex Ctrl-a t
d2c639d6 343Toggle console timestamps
a1b74fe8 344@item Ctrl-a b
7544a042 345@kindex Ctrl-a b
1f673135 346Send break (magic sysrq in Linux)
a1b74fe8 347@item Ctrl-a c
7544a042 348@kindex Ctrl-a c
1f673135 349Switch between console and monitor
a1b74fe8 350@item Ctrl-a Ctrl-a
7544a042 351@kindex Ctrl-a a
a1b74fe8 352Send Ctrl-a
ec410fc9 353@end table
0806e3f6
FB
354@c man end
355
356@ignore
357
1f673135
FB
358@c man begin SEEALSO
359The HTML documentation of QEMU for more precise information and Linux
360user mode emulator invocation.
361@c man end
362
363@c man begin AUTHOR
364Fabrice Bellard
365@c man end
366
367@end ignore
368
debc7065 369@node pcsys_monitor
1f673135 370@section QEMU Monitor
7544a042 371@cindex QEMU monitor
1f673135
FB
372
373The QEMU monitor is used to give complex commands to the QEMU
374emulator. You can use it to:
375
376@itemize @minus
377
378@item
e598752a 379Remove or insert removable media images
89dfe898 380(such as CD-ROM or floppies).
1f673135 381
5fafdf24 382@item
1f673135
FB
383Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
384from a disk file.
385
386@item Inspect the VM state without an external debugger.
387
388@end itemize
389
390@subsection Commands
391
392The following commands are available:
393
2313086a 394@include qemu-monitor.texi
0806e3f6 395
2cd8af2d
PB
396@include qemu-monitor-info.texi
397
1f673135
FB
398@subsection Integer expressions
399
400The monitor understands integers expressions for every integer
401argument. You can use register names to get the value of specifics
402CPU registers by prefixing them with @emph{$}.
ec410fc9 403
1f47a922
FB
404@node disk_images
405@section Disk Images
406
acd935ef
FB
407Since version 0.6.1, QEMU supports many disk image formats, including
408growable disk images (their size increase as non empty sectors are
13a2e80f
FB
409written), compressed and encrypted disk images. Version 0.8.3 added
410the new qcow2 disk image format which is essential to support VM
411snapshots.
1f47a922 412
debc7065
FB
413@menu
414* disk_images_quickstart:: Quick start for disk image creation
415* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 416* vm_snapshots:: VM snapshots
debc7065 417* qemu_img_invocation:: qemu-img Invocation
975b092b 418* qemu_nbd_invocation:: qemu-nbd Invocation
665b5d0d 419* qemu_ga_invocation:: qemu-ga Invocation
d3067b02 420* disk_images_formats:: Disk image file formats
19cb3738 421* host_drives:: Using host drives
debc7065 422* disk_images_fat_images:: Virtual FAT disk images
75818250 423* disk_images_nbd:: NBD access
42af9c30 424* disk_images_sheepdog:: Sheepdog disk images
00984e39 425* disk_images_iscsi:: iSCSI LUNs
8809e289 426* disk_images_gluster:: GlusterFS disk images
0a12ec87 427* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
428@end menu
429
430@node disk_images_quickstart
acd935ef
FB
431@subsection Quick start for disk image creation
432
433You can create a disk image with the command:
1f47a922 434@example
acd935ef 435qemu-img create myimage.img mysize
1f47a922 436@end example
acd935ef
FB
437where @var{myimage.img} is the disk image filename and @var{mysize} is its
438size in kilobytes. You can add an @code{M} suffix to give the size in
439megabytes and a @code{G} suffix for gigabytes.
440
debc7065 441See @ref{qemu_img_invocation} for more information.
1f47a922 442
debc7065 443@node disk_images_snapshot_mode
1f47a922
FB
444@subsection Snapshot mode
445
446If you use the option @option{-snapshot}, all disk images are
447considered as read only. When sectors in written, they are written in
448a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
449write back to the raw disk images by using the @code{commit} monitor
450command (or @key{C-a s} in the serial console).
1f47a922 451
13a2e80f
FB
452@node vm_snapshots
453@subsection VM snapshots
454
455VM snapshots are snapshots of the complete virtual machine including
456CPU state, RAM, device state and the content of all the writable
457disks. In order to use VM snapshots, you must have at least one non
458removable and writable block device using the @code{qcow2} disk image
459format. Normally this device is the first virtual hard drive.
460
461Use the monitor command @code{savevm} to create a new VM snapshot or
462replace an existing one. A human readable name can be assigned to each
19d36792 463snapshot in addition to its numerical ID.
13a2e80f
FB
464
465Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
466a VM snapshot. @code{info snapshots} lists the available snapshots
467with their associated information:
468
469@example
470(qemu) info snapshots
471Snapshot devices: hda
472Snapshot list (from hda):
473ID TAG VM SIZE DATE VM CLOCK
4741 start 41M 2006-08-06 12:38:02 00:00:14.954
4752 40M 2006-08-06 12:43:29 00:00:18.633
4763 msys 40M 2006-08-06 12:44:04 00:00:23.514
477@end example
478
479A VM snapshot is made of a VM state info (its size is shown in
480@code{info snapshots}) and a snapshot of every writable disk image.
481The VM state info is stored in the first @code{qcow2} non removable
482and writable block device. The disk image snapshots are stored in
483every disk image. The size of a snapshot in a disk image is difficult
484to evaluate and is not shown by @code{info snapshots} because the
485associated disk sectors are shared among all the snapshots to save
19d36792
FB
486disk space (otherwise each snapshot would need a full copy of all the
487disk images).
13a2e80f
FB
488
489When using the (unrelated) @code{-snapshot} option
490(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
491but they are deleted as soon as you exit QEMU.
492
493VM snapshots currently have the following known limitations:
494@itemize
5fafdf24 495@item
13a2e80f
FB
496They cannot cope with removable devices if they are removed or
497inserted after a snapshot is done.
5fafdf24 498@item
13a2e80f
FB
499A few device drivers still have incomplete snapshot support so their
500state is not saved or restored properly (in particular USB).
501@end itemize
502
acd935ef
FB
503@node qemu_img_invocation
504@subsection @code{qemu-img} Invocation
1f47a922 505
acd935ef 506@include qemu-img.texi
05efe46e 507
975b092b
TS
508@node qemu_nbd_invocation
509@subsection @code{qemu-nbd} Invocation
510
511@include qemu-nbd.texi
512
665b5d0d
MAL
513@node qemu_ga_invocation
514@subsection @code{qemu-ga} Invocation
515
516@include qemu-ga.texi
517
d3067b02
KW
518@node disk_images_formats
519@subsection Disk image file formats
520
521QEMU supports many image file formats that can be used with VMs as well as with
522any of the tools (like @code{qemu-img}). This includes the preferred formats
523raw and qcow2 as well as formats that are supported for compatibility with
524older QEMU versions or other hypervisors.
525
526Depending on the image format, different options can be passed to
527@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
528This section describes each format and the options that are supported for it.
529
530@table @option
531@item raw
532
533Raw disk image format. This format has the advantage of
534being simple and easily exportable to all other emulators. If your
535file system supports @emph{holes} (for example in ext2 or ext3 on
536Linux or NTFS on Windows), then only the written sectors will reserve
537space. Use @code{qemu-img info} to know the real size used by the
538image or @code{ls -ls} on Unix/Linux.
539
06247428
HT
540Supported options:
541@table @code
542@item preallocation
543Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
544@code{falloc} mode preallocates space for image by calling posix_fallocate().
545@code{full} mode preallocates space for image by writing zeros to underlying
546storage.
547@end table
548
d3067b02
KW
549@item qcow2
550QEMU image format, the most versatile format. Use it to have smaller
551images (useful if your filesystem does not supports holes, for example
a1f688f4
MA
552on Windows), zlib based compression and support of multiple VM
553snapshots.
d3067b02
KW
554
555Supported options:
556@table @code
557@item compat
7fa9e1f9
SH
558Determines the qcow2 version to use. @code{compat=0.10} uses the
559traditional image format that can be read by any QEMU since 0.10.
d3067b02 560@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
561newer understand (this is the default). Amongst others, this includes
562zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
563
564@item backing_file
565File name of a base image (see @option{create} subcommand)
566@item backing_fmt
567Image format of the base image
568@item encryption
136cd19d 569If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 570
136cd19d
DB
571The use of encryption in qcow and qcow2 images is considered to be flawed by
572modern cryptography standards, suffering from a number of design problems:
573
574@itemize @minus
575@item The AES-CBC cipher is used with predictable initialization vectors based
576on the sector number. This makes it vulnerable to chosen plaintext attacks
577which can reveal the existence of encrypted data.
578@item The user passphrase is directly used as the encryption key. A poorly
579chosen or short passphrase will compromise the security of the encryption.
580@item In the event of the passphrase being compromised there is no way to
581change the passphrase to protect data in any qcow images. The files must
582be cloned, using a different encryption passphrase in the new file. The
583original file must then be securely erased using a program like shred,
584though even this is ineffective with many modern storage technologies.
585@end itemize
586
a1f688f4
MA
587Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
588it will go away in a future release. Users are recommended to use an
589alternative encryption technology such as the Linux dm-crypt / LUKS
590system.
d3067b02
KW
591
592@item cluster_size
593Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
594sizes can improve the image file size whereas larger cluster sizes generally
595provide better performance.
596
597@item preallocation
0e4271b7
HT
598Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
599@code{full}). An image with preallocated metadata is initially larger but can
600improve performance when the image needs to grow. @code{falloc} and @code{full}
601preallocations are like the same options of @code{raw} format, but sets up
602metadata also.
d3067b02
KW
603
604@item lazy_refcounts
605If this option is set to @code{on}, reference count updates are postponed with
606the goal of avoiding metadata I/O and improving performance. This is
607particularly interesting with @option{cache=writethrough} which doesn't batch
608metadata updates. The tradeoff is that after a host crash, the reference count
609tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
610check -r all} is required, which may take some time.
611
612This option can only be enabled if @code{compat=1.1} is specified.
613
4ab15590 614@item nocow
bc3a7f90 615If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
616valid on btrfs, no effect on other file systems.
617
618Btrfs has low performance when hosting a VM image file, even more when the guest
619on the VM also using btrfs as file system. Turning off COW is a way to mitigate
620this bad performance. Generally there are two ways to turn off COW on btrfs:
621a) Disable it by mounting with nodatacow, then all newly created files will be
622NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
623does.
624
625Note: this option is only valid to new or empty files. If there is an existing
626file which is COW and has data blocks already, it couldn't be changed to NOCOW
627by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 628the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 629
d3067b02
KW
630@end table
631
632@item qed
633Old QEMU image format with support for backing files and compact image files
634(when your filesystem or transport medium does not support holes).
635
636When converting QED images to qcow2, you might want to consider using the
637@code{lazy_refcounts=on} option to get a more QED-like behaviour.
638
639Supported options:
640@table @code
641@item backing_file
642File name of a base image (see @option{create} subcommand).
643@item backing_fmt
644Image file format of backing file (optional). Useful if the format cannot be
645autodetected because it has no header, like some vhd/vpc files.
646@item cluster_size
647Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
648cluster sizes can improve the image file size whereas larger cluster sizes
649generally provide better performance.
650@item table_size
651Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
652and 16). There is normally no need to change this value but this option can be
653used for performance benchmarking.
654@end table
655
656@item qcow
657Old QEMU image format with support for backing files, compact image files,
658encryption and compression.
659
660Supported options:
661@table @code
662@item backing_file
663File name of a base image (see @option{create} subcommand)
664@item encryption
665If this option is set to @code{on}, the image is encrypted.
666@end table
667
d3067b02
KW
668@item vdi
669VirtualBox 1.1 compatible image format.
670Supported options:
671@table @code
672@item static
673If this option is set to @code{on}, the image is created with metadata
674preallocation.
675@end table
676
677@item vmdk
678VMware 3 and 4 compatible image format.
679
680Supported options:
681@table @code
682@item backing_file
683File name of a base image (see @option{create} subcommand).
684@item compat6
685Create a VMDK version 6 image (instead of version 4)
686@item subformat
687Specifies which VMDK subformat to use. Valid options are
688@code{monolithicSparse} (default),
689@code{monolithicFlat},
690@code{twoGbMaxExtentSparse},
691@code{twoGbMaxExtentFlat} and
692@code{streamOptimized}.
693@end table
694
695@item vpc
696VirtualPC compatible image format (VHD).
697Supported options:
698@table @code
699@item subformat
700Specifies which VHD subformat to use. Valid options are
701@code{dynamic} (default) and @code{fixed}.
702@end table
8282db1b
JC
703
704@item VHDX
705Hyper-V compatible image format (VHDX).
706Supported options:
707@table @code
708@item subformat
709Specifies which VHDX subformat to use. Valid options are
710@code{dynamic} (default) and @code{fixed}.
711@item block_state_zero
30af51ce
JC
712Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
713or @code{off}. When set to @code{off}, new blocks will be created as
714@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
715arbitrary data for those blocks. Do not set to @code{off} when using
716@code{qemu-img convert} with @code{subformat=dynamic}.
8282db1b
JC
717@item block_size
718Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
719@item log_size
720Log size; min 1 MB.
721@end table
d3067b02
KW
722@end table
723
724@subsubsection Read-only formats
725More disk image file formats are supported in a read-only mode.
726@table @option
727@item bochs
728Bochs images of @code{growing} type.
729@item cloop
730Linux Compressed Loop image, useful only to reuse directly compressed
731CD-ROM images present for example in the Knoppix CD-ROMs.
732@item dmg
733Apple disk image.
734@item parallels
735Parallels disk image format.
736@end table
737
738
19cb3738
FB
739@node host_drives
740@subsection Using host drives
741
742In addition to disk image files, QEMU can directly access host
743devices. We describe here the usage for QEMU version >= 0.8.3.
744
745@subsubsection Linux
746
747On Linux, you can directly use the host device filename instead of a
4be456f1 748disk image filename provided you have enough privileges to access
92a539d2 749it. For example, use @file{/dev/cdrom} to access to the CDROM.
19cb3738 750
f542086d 751@table @code
19cb3738
FB
752@item CD
753You can specify a CDROM device even if no CDROM is loaded. QEMU has
754specific code to detect CDROM insertion or removal. CDROM ejection by
755the guest OS is supported. Currently only data CDs are supported.
756@item Floppy
757You can specify a floppy device even if no floppy is loaded. Floppy
758removal is currently not detected accurately (if you change floppy
759without doing floppy access while the floppy is not loaded, the guest
760OS will think that the same floppy is loaded).
92a539d2
MA
761Use of the host's floppy device is deprecated, and support for it will
762be removed in a future release.
19cb3738
FB
763@item Hard disks
764Hard disks can be used. Normally you must specify the whole disk
765(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
766see it as a partitioned disk. WARNING: unless you know what you do, it
767is better to only make READ-ONLY accesses to the hard disk otherwise
768you may corrupt your host data (use the @option{-snapshot} command
769line option or modify the device permissions accordingly).
770@end table
771
772@subsubsection Windows
773
01781963
FB
774@table @code
775@item CD
4be456f1 776The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
777alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
778supported as an alias to the first CDROM drive.
19cb3738 779
e598752a 780Currently there is no specific code to handle removable media, so it
19cb3738
FB
781is better to use the @code{change} or @code{eject} monitor commands to
782change or eject media.
01781963 783@item Hard disks
89dfe898 784Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
785where @var{N} is the drive number (0 is the first hard disk).
786
787WARNING: unless you know what you do, it is better to only make
788READ-ONLY accesses to the hard disk otherwise you may corrupt your
789host data (use the @option{-snapshot} command line so that the
790modifications are written in a temporary file).
791@end table
792
19cb3738
FB
793
794@subsubsection Mac OS X
795
5fafdf24 796@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 797
e598752a 798Currently there is no specific code to handle removable media, so it
19cb3738
FB
799is better to use the @code{change} or @code{eject} monitor commands to
800change or eject media.
801
debc7065 802@node disk_images_fat_images
2c6cadd4
FB
803@subsection Virtual FAT disk images
804
805QEMU can automatically create a virtual FAT disk image from a
806directory tree. In order to use it, just type:
807
5fafdf24 808@example
3804da9d 809qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
810@end example
811
812Then you access access to all the files in the @file{/my_directory}
813directory without having to copy them in a disk image or to export
814them via SAMBA or NFS. The default access is @emph{read-only}.
815
816Floppies can be emulated with the @code{:floppy:} option:
817
5fafdf24 818@example
3804da9d 819qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
820@end example
821
822A read/write support is available for testing (beta stage) with the
823@code{:rw:} option:
824
5fafdf24 825@example
3804da9d 826qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
827@end example
828
829What you should @emph{never} do:
830@itemize
831@item use non-ASCII filenames ;
832@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
833@item expect it to work when loadvm'ing ;
834@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
835@end itemize
836
75818250
TS
837@node disk_images_nbd
838@subsection NBD access
839
840QEMU can access directly to block device exported using the Network Block Device
841protocol.
842
843@example
1d7d2a9d 844qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
845@end example
846
847If the NBD server is located on the same host, you can use an unix socket instead
848of an inet socket:
849
850@example
1d7d2a9d 851qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
852@end example
853
854In this case, the block device must be exported using qemu-nbd:
855
856@example
857qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
858@end example
859
9d85d557 860The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
861@example
862qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
863@end example
864
1d7d2a9d 865@noindent
75818250
TS
866and then you can use it with two guests:
867@example
1d7d2a9d
PB
868qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
869qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
870@end example
871
1d7d2a9d
PB
872If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
873own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 874@example
1d7d2a9d
PB
875qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
876qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
877@end example
878
879The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
880also available. Here are some example of the older syntax:
881@example
882qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
883qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
884qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
885@end example
886
42af9c30
MK
887@node disk_images_sheepdog
888@subsection Sheepdog disk images
889
890Sheepdog is a distributed storage system for QEMU. It provides highly
891available block level storage volumes that can be attached to
892QEMU-based virtual machines.
893
894You can create a Sheepdog disk image with the command:
895@example
5d6768e3 896qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
897@end example
898where @var{image} is the Sheepdog image name and @var{size} is its
899size.
900
901To import the existing @var{filename} to Sheepdog, you can use a
902convert command.
903@example
5d6768e3 904qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
905@end example
906
907You can boot from the Sheepdog disk image with the command:
908@example
5d6768e3 909qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
910@end example
911
912You can also create a snapshot of the Sheepdog image like qcow2.
913@example
5d6768e3 914qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
915@end example
916where @var{tag} is a tag name of the newly created snapshot.
917
918To boot from the Sheepdog snapshot, specify the tag name of the
919snapshot.
920@example
5d6768e3 921qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
922@end example
923
924You can create a cloned image from the existing snapshot.
925@example
5d6768e3 926qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
927@end example
928where @var{base} is a image name of the source snapshot and @var{tag}
929is its tag name.
930
1b8bbb46
MK
931You can use an unix socket instead of an inet socket:
932
933@example
934qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
935@end example
936
42af9c30
MK
937If the Sheepdog daemon doesn't run on the local host, you need to
938specify one of the Sheepdog servers to connect to.
939@example
5d6768e3
MK
940qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
941qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
942@end example
943
00984e39
RS
944@node disk_images_iscsi
945@subsection iSCSI LUNs
946
947iSCSI is a popular protocol used to access SCSI devices across a computer
948network.
949
950There are two different ways iSCSI devices can be used by QEMU.
951
952The first method is to mount the iSCSI LUN on the host, and make it appear as
953any other ordinary SCSI device on the host and then to access this device as a
954/dev/sd device from QEMU. How to do this differs between host OSes.
955
956The second method involves using the iSCSI initiator that is built into
957QEMU. This provides a mechanism that works the same way regardless of which
958host OS you are running QEMU on. This section will describe this second method
959of using iSCSI together with QEMU.
960
961In QEMU, iSCSI devices are described using special iSCSI URLs
962
963@example
964URL syntax:
965iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
966@end example
967
968Username and password are optional and only used if your target is set up
969using CHAP authentication for access control.
970Alternatively the username and password can also be set via environment
971variables to have these not show up in the process list
972
973@example
974export LIBISCSI_CHAP_USERNAME=<username>
975export LIBISCSI_CHAP_PASSWORD=<password>
976iscsi://<host>/<target-iqn-name>/<lun>
977@end example
978
f9dadc98
RS
979Various session related parameters can be set via special options, either
980in a configuration file provided via '-readconfig' or directly on the
981command line.
982
31459f46
RS
983If the initiator-name is not specified qemu will use a default name
984of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
985virtual machine.
986
987
f9dadc98
RS
988@example
989Setting a specific initiator name to use when logging in to the target
990-iscsi initiator-name=iqn.qemu.test:my-initiator
991@end example
992
993@example
994Controlling which type of header digest to negotiate with the target
995-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
996@end example
997
998These can also be set via a configuration file
999@example
1000[iscsi]
1001 user = "CHAP username"
1002 password = "CHAP password"
1003 initiator-name = "iqn.qemu.test:my-initiator"
1004 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1005 header-digest = "CRC32C"
1006@end example
1007
1008
1009Setting the target name allows different options for different targets
1010@example
1011[iscsi "iqn.target.name"]
1012 user = "CHAP username"
1013 password = "CHAP password"
1014 initiator-name = "iqn.qemu.test:my-initiator"
1015 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1016 header-digest = "CRC32C"
1017@end example
1018
1019
1020Howto use a configuration file to set iSCSI configuration options:
1021@example
1022cat >iscsi.conf <<EOF
1023[iscsi]
1024 user = "me"
1025 password = "my password"
1026 initiator-name = "iqn.qemu.test:my-initiator"
1027 header-digest = "CRC32C"
1028EOF
1029
1030qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1031 -readconfig iscsi.conf
1032@end example
1033
1034
00984e39
RS
1035Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1036@example
1037This example shows how to set up an iSCSI target with one CDROM and one DISK
1038using the Linux STGT software target. This target is available on Red Hat based
1039systems as the package 'scsi-target-utils'.
1040
1041tgtd --iscsi portal=127.0.0.1:3260
1042tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1043tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1044 -b /IMAGES/disk.img --device-type=disk
1045tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1046 -b /IMAGES/cd.iso --device-type=cd
1047tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1048
f9dadc98
RS
1049qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1050 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1051 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1052@end example
1053
8809e289
BR
1054@node disk_images_gluster
1055@subsection GlusterFS disk images
00984e39 1056
8809e289
BR
1057GlusterFS is an user space distributed file system.
1058
1059You can boot from the GlusterFS disk image with the command:
1060@example
1061qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1062@end example
1063
1064@var{gluster} is the protocol.
1065
1066@var{transport} specifies the transport type used to connect to gluster
1067management daemon (glusterd). Valid transport types are
1068tcp, unix and rdma. If a transport type isn't specified, then tcp
1069type is assumed.
1070
1071@var{server} specifies the server where the volume file specification for
1072the given volume resides. This can be either hostname, ipv4 address
1073or ipv6 address. ipv6 address needs to be within square brackets [ ].
d274e07c 1074If transport type is unix, then @var{server} field should not be specified.
8809e289
BR
1075Instead @var{socket} field needs to be populated with the path to unix domain
1076socket.
1077
1078@var{port} is the port number on which glusterd is listening. This is optional
1079and if not specified, QEMU will send 0 which will make gluster to use the
1080default port. If the transport type is unix, then @var{port} should not be
1081specified.
1082
1083@var{volname} is the name of the gluster volume which contains the disk image.
1084
1085@var{image} is the path to the actual disk image that resides on gluster volume.
1086
1087You can create a GlusterFS disk image with the command:
1088@example
1089qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1090@end example
1091
1092Examples
1093@example
1094qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1095qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1096qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1097qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1098qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1099qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1100qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1101qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1102@end example
00984e39 1103
0a12ec87
RJ
1104@node disk_images_ssh
1105@subsection Secure Shell (ssh) disk images
1106
1107You can access disk images located on a remote ssh server
1108by using the ssh protocol:
1109
1110@example
1111qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1112@end example
1113
1114Alternative syntax using properties:
1115
1116@example
1117qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1118@end example
1119
1120@var{ssh} is the protocol.
1121
1122@var{user} is the remote user. If not specified, then the local
1123username is tried.
1124
1125@var{server} specifies the remote ssh server. Any ssh server can be
1126used, but it must implement the sftp-server protocol. Most Unix/Linux
1127systems should work without requiring any extra configuration.
1128
1129@var{port} is the port number on which sshd is listening. By default
1130the standard ssh port (22) is used.
1131
1132@var{path} is the path to the disk image.
1133
1134The optional @var{host_key_check} parameter controls how the remote
1135host's key is checked. The default is @code{yes} which means to use
1136the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1137turns off known-hosts checking. Or you can check that the host key
1138matches a specific fingerprint:
1139@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1140(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1141tools only use MD5 to print fingerprints).
1142
1143Currently authentication must be done using ssh-agent. Other
1144authentication methods may be supported in future.
1145
9a2d462e
RJ
1146Note: Many ssh servers do not support an @code{fsync}-style operation.
1147The ssh driver cannot guarantee that disk flush requests are
1148obeyed, and this causes a risk of disk corruption if the remote
1149server or network goes down during writes. The driver will
1150print a warning when @code{fsync} is not supported:
1151
1152warning: ssh server @code{ssh.example.com:22} does not support fsync
1153
1154With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1155supported.
0a12ec87 1156
debc7065 1157@node pcsys_network
9d4fb82e
FB
1158@section Network emulation
1159
4be456f1 1160QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1161target) and can connect them to an arbitrary number of Virtual Local
1162Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1163VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1164simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1165network stack can replace the TAP device to have a basic network
1166connection.
1167
1168@subsection VLANs
9d4fb82e 1169
41d03949
FB
1170QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1171connection between several network devices. These devices can be for
1172example QEMU virtual Ethernet cards or virtual Host ethernet devices
1173(TAP devices).
9d4fb82e 1174
41d03949
FB
1175@subsection Using TAP network interfaces
1176
1177This is the standard way to connect QEMU to a real network. QEMU adds
1178a virtual network device on your host (called @code{tapN}), and you
1179can then configure it as if it was a real ethernet card.
9d4fb82e 1180
8f40c388
FB
1181@subsubsection Linux host
1182
9d4fb82e
FB
1183As an example, you can download the @file{linux-test-xxx.tar.gz}
1184archive and copy the script @file{qemu-ifup} in @file{/etc} and
1185configure properly @code{sudo} so that the command @code{ifconfig}
1186contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1187that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1188device @file{/dev/net/tun} must be present.
1189
ee0f4751
FB
1190See @ref{sec_invocation} to have examples of command lines using the
1191TAP network interfaces.
9d4fb82e 1192
8f40c388
FB
1193@subsubsection Windows host
1194
1195There is a virtual ethernet driver for Windows 2000/XP systems, called
1196TAP-Win32. But it is not included in standard QEMU for Windows,
1197so you will need to get it separately. It is part of OpenVPN package,
1198so download OpenVPN from : @url{http://openvpn.net/}.
1199
9d4fb82e
FB
1200@subsection Using the user mode network stack
1201
41d03949
FB
1202By using the option @option{-net user} (default configuration if no
1203@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1204network stack (you don't need root privilege to use the virtual
41d03949 1205network). The virtual network configuration is the following:
9d4fb82e
FB
1206
1207@example
1208
41d03949
FB
1209 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1210 | (10.0.2.2)
9d4fb82e 1211 |
2518bd0d 1212 ----> DNS server (10.0.2.3)
3b46e624 1213 |
2518bd0d 1214 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1215@end example
1216
1217The QEMU VM behaves as if it was behind a firewall which blocks all
1218incoming connections. You can use a DHCP client to automatically
41d03949
FB
1219configure the network in the QEMU VM. The DHCP server assign addresses
1220to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1221
1222In order to check that the user mode network is working, you can ping
1223the address 10.0.2.2 and verify that you got an address in the range
122410.0.2.x from the QEMU virtual DHCP server.
1225
37cbfcce
GH
1226Note that ICMP traffic in general does not work with user mode networking.
1227@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1228however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1229ping sockets to allow @code{ping} to the Internet. The host admin has to set
1230the ping_group_range in order to grant access to those sockets. To allow ping
1231for GID 100 (usually users group):
1232
1233@example
1234echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1235@end example
b415a407 1236
9bf05444
FB
1237When using the built-in TFTP server, the router is also the TFTP
1238server.
1239
c8c6afa8
TH
1240When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
1241connections can be redirected from the host to the guest. It allows for
1242example to redirect X11, telnet or SSH connections.
443f1376 1243
41d03949
FB
1244@subsection Connecting VLANs between QEMU instances
1245
1246Using the @option{-net socket} option, it is possible to make VLANs
1247that span several QEMU instances. See @ref{sec_invocation} to have a
1248basic example.
1249
576fd0a1 1250@node pcsys_other_devs
6cbf4c8c
CM
1251@section Other Devices
1252
1253@subsection Inter-VM Shared Memory device
1254
1255With KVM enabled on a Linux host, a shared memory device is available. Guests
1256map a POSIX shared memory region into the guest as a PCI device that enables
1257zero-copy communication to the application level of the guests. The basic
1258syntax is:
1259
1260@example
a9282c25 1261qemu-system-i386 -device ivshmem,size=@var{size},shm=@var{shm-name}
6cbf4c8c
CM
1262@end example
1263
1264If desired, interrupts can be sent between guest VMs accessing the same shared
1265memory region. Interrupt support requires using a shared memory server and
1266using a chardev socket to connect to it. The code for the shared memory server
1267is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1268memory server is:
1269
1270@example
a75eb03b 1271# First start the ivshmem server once and for all
50d34c4e 1272ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
1273
1274# Then start your qemu instances with matching arguments
50d34c4e 1275qemu-system-i386 -device ivshmem,size=@var{shm-size},vectors=@var{vectors},chardev=@var{id}
a75eb03b 1276 [,msi=on][,ioeventfd=on][,role=peer|master]
50d34c4e 1277 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
1278@end example
1279
1280When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1281using the same server to communicate via interrupts. Guests can read their
1282VM ID from a device register (see example code). Since receiving the shared
1283memory region from the server is asynchronous, there is a (small) chance the
1284guest may boot before the shared memory is attached. To allow an application
1285to ensure shared memory is attached, the VM ID register will return -1 (an
1286invalid VM ID) until the memory is attached. Once the shared memory is
1287attached, the VM ID will return the guest's valid VM ID. With these semantics,
1288the guest application can check to ensure the shared memory is attached to the
1289guest before proceeding.
1290
1291The @option{role} argument can be set to either master or peer and will affect
1292how the shared memory is migrated. With @option{role=master}, the guest will
1293copy the shared memory on migration to the destination host. With
1294@option{role=peer}, the guest will not be able to migrate with the device attached.
1295With the @option{peer} case, the device should be detached and then reattached
1296after migration using the PCI hotplug support.
1297
7d4f4bda
MAL
1298@subsubsection ivshmem and hugepages
1299
1300Instead of specifying the <shm size> using POSIX shm, you may specify
1301a memory backend that has hugepage support:
1302
1303@example
8d31d6b6 1304qemu-system-i386 -object memory-backend-file,size=1G,mem-path=/mnt/hugepages/my-shmem-file,id=mb1
1d649244 1305 -device ivshmem,x-memdev=mb1
7d4f4bda
MAL
1306@end example
1307
1308ivshmem-server also supports hugepages mount points with the
1309@option{-m} memory path argument.
1310
9d4fb82e
FB
1311@node direct_linux_boot
1312@section Direct Linux Boot
1f673135
FB
1313
1314This section explains how to launch a Linux kernel inside QEMU without
1315having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1316kernel testing.
1f673135 1317
ee0f4751 1318The syntax is:
1f673135 1319@example
3804da9d 1320qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1321@end example
1322
ee0f4751
FB
1323Use @option{-kernel} to provide the Linux kernel image and
1324@option{-append} to give the kernel command line arguments. The
1325@option{-initrd} option can be used to provide an INITRD image.
1f673135 1326
ee0f4751
FB
1327When using the direct Linux boot, a disk image for the first hard disk
1328@file{hda} is required because its boot sector is used to launch the
1329Linux kernel.
1f673135 1330
ee0f4751
FB
1331If you do not need graphical output, you can disable it and redirect
1332the virtual serial port and the QEMU monitor to the console with the
1333@option{-nographic} option. The typical command line is:
1f673135 1334@example
3804da9d
SW
1335qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1336 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1337@end example
1338
ee0f4751
FB
1339Use @key{Ctrl-a c} to switch between the serial console and the
1340monitor (@pxref{pcsys_keys}).
1f673135 1341
debc7065 1342@node pcsys_usb
b389dbfb
FB
1343@section USB emulation
1344
0aff66b5
PB
1345QEMU emulates a PCI UHCI USB controller. You can virtually plug
1346virtual USB devices or real host USB devices (experimental, works only
071c9394 1347on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1348as necessary to connect multiple USB devices.
b389dbfb 1349
0aff66b5
PB
1350@menu
1351* usb_devices::
1352* host_usb_devices::
1353@end menu
1354@node usb_devices
1355@subsection Connecting USB devices
b389dbfb 1356
0aff66b5
PB
1357USB devices can be connected with the @option{-usbdevice} commandline option
1358or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1359
db380c06
AZ
1360@table @code
1361@item mouse
0aff66b5 1362Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1363@item tablet
c6d46c20 1364Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1365This means QEMU is able to report the mouse position without having
0aff66b5 1366to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1367@item disk:@var{file}
0aff66b5 1368Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1369@item host:@var{bus.addr}
0aff66b5
PB
1370Pass through the host device identified by @var{bus.addr}
1371(Linux only)
db380c06 1372@item host:@var{vendor_id:product_id}
0aff66b5
PB
1373Pass through the host device identified by @var{vendor_id:product_id}
1374(Linux only)
db380c06 1375@item wacom-tablet
f6d2a316
AZ
1376Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1377above but it can be used with the tslib library because in addition to touch
1378coordinates it reports touch pressure.
db380c06 1379@item keyboard
47b2d338 1380Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1381@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1382Serial converter. This emulates an FTDI FT232BM chip connected to host character
1383device @var{dev}. The available character devices are the same as for the
1384@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1385used to override the default 0403:6001. For instance,
db380c06
AZ
1386@example
1387usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1388@end example
1389will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1390serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1391@item braille
1392Braille device. This will use BrlAPI to display the braille output on a real
1393or fake device.
9ad97e65
AZ
1394@item net:@var{options}
1395Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1396specifies NIC options as with @code{-net nic,}@var{options} (see description).
1397For instance, user-mode networking can be used with
6c9f886c 1398@example
3804da9d 1399qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1400@end example
1401Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1402@item bt[:@var{hci-type}]
1403Bluetooth dongle whose type is specified in the same format as with
1404the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1405no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1406This USB device implements the USB Transport Layer of HCI. Example
1407usage:
1408@example
8485140f 1409@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 1410@end example
0aff66b5 1411@end table
b389dbfb 1412
0aff66b5 1413@node host_usb_devices
b389dbfb
FB
1414@subsection Using host USB devices on a Linux host
1415
1416WARNING: this is an experimental feature. QEMU will slow down when
1417using it. USB devices requiring real time streaming (i.e. USB Video
1418Cameras) are not supported yet.
1419
1420@enumerate
5fafdf24 1421@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1422is actually using the USB device. A simple way to do that is simply to
1423disable the corresponding kernel module by renaming it from @file{mydriver.o}
1424to @file{mydriver.o.disabled}.
1425
1426@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1427@example
1428ls /proc/bus/usb
1429001 devices drivers
1430@end example
1431
1432@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1433@example
1434chown -R myuid /proc/bus/usb
1435@end example
1436
1437@item Launch QEMU and do in the monitor:
5fafdf24 1438@example
b389dbfb
FB
1439info usbhost
1440 Device 1.2, speed 480 Mb/s
1441 Class 00: USB device 1234:5678, USB DISK
1442@end example
1443You should see the list of the devices you can use (Never try to use
1444hubs, it won't work).
1445
1446@item Add the device in QEMU by using:
5fafdf24 1447@example
b389dbfb
FB
1448usb_add host:1234:5678
1449@end example
1450
1451Normally the guest OS should report that a new USB device is
1452plugged. You can use the option @option{-usbdevice} to do the same.
1453
1454@item Now you can try to use the host USB device in QEMU.
1455
1456@end enumerate
1457
1458When relaunching QEMU, you may have to unplug and plug again the USB
1459device to make it work again (this is a bug).
1460
f858dcae
TS
1461@node vnc_security
1462@section VNC security
1463
1464The VNC server capability provides access to the graphical console
1465of the guest VM across the network. This has a number of security
1466considerations depending on the deployment scenarios.
1467
1468@menu
1469* vnc_sec_none::
1470* vnc_sec_password::
1471* vnc_sec_certificate::
1472* vnc_sec_certificate_verify::
1473* vnc_sec_certificate_pw::
2f9606b3
AL
1474* vnc_sec_sasl::
1475* vnc_sec_certificate_sasl::
f858dcae 1476* vnc_generate_cert::
2f9606b3 1477* vnc_setup_sasl::
f858dcae
TS
1478@end menu
1479@node vnc_sec_none
1480@subsection Without passwords
1481
1482The simplest VNC server setup does not include any form of authentication.
1483For this setup it is recommended to restrict it to listen on a UNIX domain
1484socket only. For example
1485
1486@example
3804da9d 1487qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1488@end example
1489
1490This ensures that only users on local box with read/write access to that
1491path can access the VNC server. To securely access the VNC server from a
1492remote machine, a combination of netcat+ssh can be used to provide a secure
1493tunnel.
1494
1495@node vnc_sec_password
1496@subsection With passwords
1497
1498The VNC protocol has limited support for password based authentication. Since
1499the protocol limits passwords to 8 characters it should not be considered
1500to provide high security. The password can be fairly easily brute-forced by
1501a client making repeat connections. For this reason, a VNC server using password
1502authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1503or UNIX domain sockets. Password authentication is not supported when operating
1504in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1505authentication is requested with the @code{password} option, and then once QEMU
1506is running the password is set with the monitor. Until the monitor is used to
1507set the password all clients will be rejected.
f858dcae
TS
1508
1509@example
3804da9d 1510qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1511(qemu) change vnc password
1512Password: ********
1513(qemu)
1514@end example
1515
1516@node vnc_sec_certificate
1517@subsection With x509 certificates
1518
1519The QEMU VNC server also implements the VeNCrypt extension allowing use of
1520TLS for encryption of the session, and x509 certificates for authentication.
1521The use of x509 certificates is strongly recommended, because TLS on its
1522own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1523support provides a secure session, but no authentication. This allows any
1524client to connect, and provides an encrypted session.
1525
1526@example
3804da9d 1527qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1528@end example
1529
1530In the above example @code{/etc/pki/qemu} should contain at least three files,
1531@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1532users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1533NB the @code{server-key.pem} file should be protected with file mode 0600 to
1534only be readable by the user owning it.
1535
1536@node vnc_sec_certificate_verify
1537@subsection With x509 certificates and client verification
1538
1539Certificates can also provide a means to authenticate the client connecting.
1540The server will request that the client provide a certificate, which it will
1541then validate against the CA certificate. This is a good choice if deploying
1542in an environment with a private internal certificate authority.
1543
1544@example
3804da9d 1545qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1546@end example
1547
1548
1549@node vnc_sec_certificate_pw
1550@subsection With x509 certificates, client verification and passwords
1551
1552Finally, the previous method can be combined with VNC password authentication
1553to provide two layers of authentication for clients.
1554
1555@example
3804da9d 1556qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1557(qemu) change vnc password
1558Password: ********
1559(qemu)
1560@end example
1561
2f9606b3
AL
1562
1563@node vnc_sec_sasl
1564@subsection With SASL authentication
1565
1566The SASL authentication method is a VNC extension, that provides an
1567easily extendable, pluggable authentication method. This allows for
1568integration with a wide range of authentication mechanisms, such as
1569PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1570The strength of the authentication depends on the exact mechanism
1571configured. If the chosen mechanism also provides a SSF layer, then
1572it will encrypt the datastream as well.
1573
1574Refer to the later docs on how to choose the exact SASL mechanism
1575used for authentication, but assuming use of one supporting SSF,
1576then QEMU can be launched with:
1577
1578@example
3804da9d 1579qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1580@end example
1581
1582@node vnc_sec_certificate_sasl
1583@subsection With x509 certificates and SASL authentication
1584
1585If the desired SASL authentication mechanism does not supported
1586SSF layers, then it is strongly advised to run it in combination
1587with TLS and x509 certificates. This provides securely encrypted
1588data stream, avoiding risk of compromising of the security
1589credentials. This can be enabled, by combining the 'sasl' option
1590with the aforementioned TLS + x509 options:
1591
1592@example
3804da9d 1593qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1594@end example
1595
1596
f858dcae
TS
1597@node vnc_generate_cert
1598@subsection Generating certificates for VNC
1599
1600The GNU TLS packages provides a command called @code{certtool} which can
1601be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1602is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1603each server. If using certificates for authentication, then each client
1604will also need to be issued a certificate. The recommendation is for the
1605server to keep its certificates in either @code{/etc/pki/qemu} or for
1606unprivileged users in @code{$HOME/.pki/qemu}.
1607
1608@menu
1609* vnc_generate_ca::
1610* vnc_generate_server::
1611* vnc_generate_client::
1612@end menu
1613@node vnc_generate_ca
1614@subsubsection Setup the Certificate Authority
1615
1616This step only needs to be performed once per organization / organizational
1617unit. First the CA needs a private key. This key must be kept VERY secret
1618and secure. If this key is compromised the entire trust chain of the certificates
1619issued with it is lost.
1620
1621@example
1622# certtool --generate-privkey > ca-key.pem
1623@end example
1624
1625A CA needs to have a public certificate. For simplicity it can be a self-signed
1626certificate, or one issue by a commercial certificate issuing authority. To
1627generate a self-signed certificate requires one core piece of information, the
1628name of the organization.
1629
1630@example
1631# cat > ca.info <<EOF
1632cn = Name of your organization
1633ca
1634cert_signing_key
1635EOF
1636# certtool --generate-self-signed \
1637 --load-privkey ca-key.pem
1638 --template ca.info \
1639 --outfile ca-cert.pem
1640@end example
1641
1642The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1643TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1644
1645@node vnc_generate_server
1646@subsubsection Issuing server certificates
1647
1648Each server (or host) needs to be issued with a key and certificate. When connecting
1649the certificate is sent to the client which validates it against the CA certificate.
1650The core piece of information for a server certificate is the hostname. This should
1651be the fully qualified hostname that the client will connect with, since the client
1652will typically also verify the hostname in the certificate. On the host holding the
1653secure CA private key:
1654
1655@example
1656# cat > server.info <<EOF
1657organization = Name of your organization
1658cn = server.foo.example.com
1659tls_www_server
1660encryption_key
1661signing_key
1662EOF
1663# certtool --generate-privkey > server-key.pem
1664# certtool --generate-certificate \
1665 --load-ca-certificate ca-cert.pem \
1666 --load-ca-privkey ca-key.pem \
63c693f8 1667 --load-privkey server-key.pem \
f858dcae
TS
1668 --template server.info \
1669 --outfile server-cert.pem
1670@end example
1671
1672The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1673to the server for which they were generated. The @code{server-key.pem} is security
1674sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1675
1676@node vnc_generate_client
1677@subsubsection Issuing client certificates
1678
1679If the QEMU VNC server is to use the @code{x509verify} option to validate client
1680certificates as its authentication mechanism, each client also needs to be issued
1681a certificate. The client certificate contains enough metadata to uniquely identify
1682the client, typically organization, state, city, building, etc. On the host holding
1683the secure CA private key:
1684
1685@example
1686# cat > client.info <<EOF
1687country = GB
1688state = London
1689locality = London
63c693f8 1690organization = Name of your organization
f858dcae
TS
1691cn = client.foo.example.com
1692tls_www_client
1693encryption_key
1694signing_key
1695EOF
1696# certtool --generate-privkey > client-key.pem
1697# certtool --generate-certificate \
1698 --load-ca-certificate ca-cert.pem \
1699 --load-ca-privkey ca-key.pem \
1700 --load-privkey client-key.pem \
1701 --template client.info \
1702 --outfile client-cert.pem
1703@end example
1704
1705The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1706copied to the client for which they were generated.
1707
2f9606b3
AL
1708
1709@node vnc_setup_sasl
1710
1711@subsection Configuring SASL mechanisms
1712
1713The following documentation assumes use of the Cyrus SASL implementation on a
1714Linux host, but the principals should apply to any other SASL impl. When SASL
1715is enabled, the mechanism configuration will be loaded from system default
1716SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1717unprivileged user, an environment variable SASL_CONF_PATH can be used
1718to make it search alternate locations for the service config.
1719
1720The default configuration might contain
1721
1722@example
1723mech_list: digest-md5
1724sasldb_path: /etc/qemu/passwd.db
1725@end example
1726
1727This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1728Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1729in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1730command. While this mechanism is easy to configure and use, it is not
1731considered secure by modern standards, so only suitable for developers /
1732ad-hoc testing.
1733
1734A more serious deployment might use Kerberos, which is done with the 'gssapi'
1735mechanism
1736
1737@example
1738mech_list: gssapi
1739keytab: /etc/qemu/krb5.tab
1740@end example
1741
1742For this to work the administrator of your KDC must generate a Kerberos
1743principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1744replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1745machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1746
1747Other configurations will be left as an exercise for the reader. It should
1748be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1749encryption. For all other mechanisms, VNC should always be configured to
1750use TLS and x509 certificates to protect security credentials from snooping.
1751
0806e3f6 1752@node gdb_usage
da415d54
FB
1753@section GDB usage
1754
1755QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1756'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1757
b65ee4fa 1758In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1759gdb connection:
1760@example
3804da9d
SW
1761qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1762 -append "root=/dev/hda"
da415d54
FB
1763Connected to host network interface: tun0
1764Waiting gdb connection on port 1234
1765@end example
1766
1767Then launch gdb on the 'vmlinux' executable:
1768@example
1769> gdb vmlinux
1770@end example
1771
1772In gdb, connect to QEMU:
1773@example
6c9bf893 1774(gdb) target remote localhost:1234
da415d54
FB
1775@end example
1776
1777Then you can use gdb normally. For example, type 'c' to launch the kernel:
1778@example
1779(gdb) c
1780@end example
1781
0806e3f6
FB
1782Here are some useful tips in order to use gdb on system code:
1783
1784@enumerate
1785@item
1786Use @code{info reg} to display all the CPU registers.
1787@item
1788Use @code{x/10i $eip} to display the code at the PC position.
1789@item
1790Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1791@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1792@end enumerate
1793
60897d36
EI
1794Advanced debugging options:
1795
b6af0975 1796The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1797@table @code
60897d36
EI
1798@item maintenance packet qqemu.sstepbits
1799
1800This will display the MASK bits used to control the single stepping IE:
1801@example
1802(gdb) maintenance packet qqemu.sstepbits
1803sending: "qqemu.sstepbits"
1804received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1805@end example
1806@item maintenance packet qqemu.sstep
1807
1808This will display the current value of the mask used when single stepping IE:
1809@example
1810(gdb) maintenance packet qqemu.sstep
1811sending: "qqemu.sstep"
1812received: "0x7"
1813@end example
1814@item maintenance packet Qqemu.sstep=HEX_VALUE
1815
1816This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1817@example
1818(gdb) maintenance packet Qqemu.sstep=0x5
1819sending: "qemu.sstep=0x5"
1820received: "OK"
1821@end example
94d45e44 1822@end table
60897d36 1823
debc7065 1824@node pcsys_os_specific
1a084f3d
FB
1825@section Target OS specific information
1826
1827@subsection Linux
1828
15a34c63
FB
1829To have access to SVGA graphic modes under X11, use the @code{vesa} or
1830the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1831color depth in the guest and the host OS.
1a084f3d 1832
e3371e62
FB
1833When using a 2.6 guest Linux kernel, you should add the option
1834@code{clock=pit} on the kernel command line because the 2.6 Linux
1835kernels make very strict real time clock checks by default that QEMU
1836cannot simulate exactly.
1837
7c3fc84d
FB
1838When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1839not activated because QEMU is slower with this patch. The QEMU
1840Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1841Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1842patch by default. Newer kernels don't have it.
1843
1a084f3d
FB
1844@subsection Windows
1845
1846If you have a slow host, using Windows 95 is better as it gives the
1847best speed. Windows 2000 is also a good choice.
1848
e3371e62
FB
1849@subsubsection SVGA graphic modes support
1850
1851QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1852card. All Windows versions starting from Windows 95 should recognize
1853and use this graphic card. For optimal performances, use 16 bit color
1854depth in the guest and the host OS.
1a084f3d 1855
3cb0853a
FB
1856If you are using Windows XP as guest OS and if you want to use high
1857resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18581280x1024x16), then you should use the VESA VBE virtual graphic card
1859(option @option{-std-vga}).
1860
e3371e62
FB
1861@subsubsection CPU usage reduction
1862
1863Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1864instruction. The result is that it takes host CPU cycles even when
1865idle. You can install the utility from
1866@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1867problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1868
9d0a8e6f 1869@subsubsection Windows 2000 disk full problem
e3371e62 1870
9d0a8e6f
FB
1871Windows 2000 has a bug which gives a disk full problem during its
1872installation. When installing it, use the @option{-win2k-hack} QEMU
1873option to enable a specific workaround. After Windows 2000 is
1874installed, you no longer need this option (this option slows down the
1875IDE transfers).
e3371e62 1876
6cc721cf
FB
1877@subsubsection Windows 2000 shutdown
1878
1879Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1880can. It comes from the fact that Windows 2000 does not automatically
1881use the APM driver provided by the BIOS.
1882
1883In order to correct that, do the following (thanks to Struan
1884Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1885Add/Troubleshoot a device => Add a new device & Next => No, select the
1886hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1887(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1888correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1889
1890@subsubsection Share a directory between Unix and Windows
1891
c8c6afa8
TH
1892See @ref{sec_invocation} about the help of the option
1893@option{'-netdev user,smb=...'}.
6cc721cf 1894
2192c332 1895@subsubsection Windows XP security problem
e3371e62
FB
1896
1897Some releases of Windows XP install correctly but give a security
1898error when booting:
1899@example
1900A problem is preventing Windows from accurately checking the
1901license for this computer. Error code: 0x800703e6.
1902@end example
e3371e62 1903
2192c332
FB
1904The workaround is to install a service pack for XP after a boot in safe
1905mode. Then reboot, and the problem should go away. Since there is no
1906network while in safe mode, its recommended to download the full
1907installation of SP1 or SP2 and transfer that via an ISO or using the
1908vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1909
a0a821a4
FB
1910@subsection MS-DOS and FreeDOS
1911
1912@subsubsection CPU usage reduction
1913
1914DOS does not correctly use the CPU HLT instruction. The result is that
1915it takes host CPU cycles even when idle. You can install the utility
1916from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1917problem.
1918
debc7065 1919@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1920@chapter QEMU System emulator for non PC targets
1921
1922QEMU is a generic emulator and it emulates many non PC
1923machines. Most of the options are similar to the PC emulator. The
4be456f1 1924differences are mentioned in the following sections.
3f9f3aa1 1925
debc7065 1926@menu
7544a042 1927* PowerPC System emulator::
24d4de45
TS
1928* Sparc32 System emulator::
1929* Sparc64 System emulator::
1930* MIPS System emulator::
1931* ARM System emulator::
1932* ColdFire System emulator::
7544a042
SW
1933* Cris System emulator::
1934* Microblaze System emulator::
1935* SH4 System emulator::
3aeaea65 1936* Xtensa System emulator::
debc7065
FB
1937@end menu
1938
7544a042
SW
1939@node PowerPC System emulator
1940@section PowerPC System emulator
1941@cindex system emulation (PowerPC)
1a084f3d 1942
15a34c63
FB
1943Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1944or PowerMac PowerPC system.
1a084f3d 1945
b671f9ed 1946QEMU emulates the following PowerMac peripherals:
1a084f3d 1947
15a34c63 1948@itemize @minus
5fafdf24 1949@item
006f3a48 1950UniNorth or Grackle PCI Bridge
15a34c63
FB
1951@item
1952PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1953@item
15a34c63 19542 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1955@item
15a34c63
FB
1956NE2000 PCI adapters
1957@item
1958Non Volatile RAM
1959@item
1960VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1961@end itemize
1962
b671f9ed 1963QEMU emulates the following PREP peripherals:
52c00a5f
FB
1964
1965@itemize @minus
5fafdf24 1966@item
15a34c63
FB
1967PCI Bridge
1968@item
1969PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1970@item
52c00a5f
FB
19712 IDE interfaces with hard disk and CD-ROM support
1972@item
1973Floppy disk
5fafdf24 1974@item
15a34c63 1975NE2000 network adapters
52c00a5f
FB
1976@item
1977Serial port
1978@item
1979PREP Non Volatile RAM
15a34c63
FB
1980@item
1981PC compatible keyboard and mouse.
52c00a5f
FB
1982@end itemize
1983
15a34c63 1984QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1985@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1986
992e5acd 1987Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1988for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1989v2) portable firmware implementation. The goal is to implement a 100%
1990IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1991
15a34c63
FB
1992@c man begin OPTIONS
1993
1994The following options are specific to the PowerPC emulation:
1995
1996@table @option
1997
4e257e5e 1998@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1999
340fb41b 2000Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 2001
4e257e5e 2002@item -prom-env @var{string}
95efd11c
BS
2003
2004Set OpenBIOS variables in NVRAM, for example:
2005
2006@example
2007qemu-system-ppc -prom-env 'auto-boot?=false' \
2008 -prom-env 'boot-device=hd:2,\yaboot' \
2009 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2010@end example
2011
2012These variables are not used by Open Hack'Ware.
2013
15a34c63
FB
2014@end table
2015
5fafdf24 2016@c man end
15a34c63
FB
2017
2018
52c00a5f 2019More information is available at
3f9f3aa1 2020@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2021
24d4de45
TS
2022@node Sparc32 System emulator
2023@section Sparc32 System emulator
7544a042 2024@cindex system emulation (Sparc32)
e80cfcfc 2025
34a3d239
BS
2026Use the executable @file{qemu-system-sparc} to simulate the following
2027Sun4m architecture machines:
2028@itemize @minus
2029@item
2030SPARCstation 4
2031@item
2032SPARCstation 5
2033@item
2034SPARCstation 10
2035@item
2036SPARCstation 20
2037@item
2038SPARCserver 600MP
2039@item
2040SPARCstation LX
2041@item
2042SPARCstation Voyager
2043@item
2044SPARCclassic
2045@item
2046SPARCbook
2047@end itemize
2048
2049The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2050but Linux limits the number of usable CPUs to 4.
e80cfcfc 2051
6a4e1771 2052QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2053
2054@itemize @minus
3475187d 2055@item
6a4e1771 2056IOMMU
e80cfcfc 2057@item
33632788 2058TCX or cgthree Frame buffer
5fafdf24 2059@item
e80cfcfc
FB
2060Lance (Am7990) Ethernet
2061@item
34a3d239 2062Non Volatile RAM M48T02/M48T08
e80cfcfc 2063@item
3475187d
FB
2064Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2065and power/reset logic
2066@item
2067ESP SCSI controller with hard disk and CD-ROM support
2068@item
6a3b9cc9 2069Floppy drive (not on SS-600MP)
a2502b58
BS
2070@item
2071CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2072@end itemize
2073
6a3b9cc9
BS
2074The number of peripherals is fixed in the architecture. Maximum
2075memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2076others 2047MB.
3475187d 2077
30a604f3 2078Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2079@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2080firmware implementation. The goal is to implement a 100% IEEE
20811275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2082
2083A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2084the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 2085most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2086don't work probably due to interface issues between OpenBIOS and
2087Solaris.
3475187d
FB
2088
2089@c man begin OPTIONS
2090
a2502b58 2091The following options are specific to the Sparc32 emulation:
3475187d
FB
2092
2093@table @option
2094
4e257e5e 2095@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2096
33632788
MCA
2097Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2098option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2099of 1152x900x8 for people who wish to use OBP.
3475187d 2100
4e257e5e 2101@item -prom-env @var{string}
66508601
BS
2102
2103Set OpenBIOS variables in NVRAM, for example:
2104
2105@example
2106qemu-system-sparc -prom-env 'auto-boot?=false' \
2107 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2108@end example
2109
6a4e1771 2110@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2111
2112Set the emulated machine type. Default is SS-5.
2113
3475187d
FB
2114@end table
2115
5fafdf24 2116@c man end
3475187d 2117
24d4de45
TS
2118@node Sparc64 System emulator
2119@section Sparc64 System emulator
7544a042 2120@cindex system emulation (Sparc64)
e80cfcfc 2121
34a3d239
BS
2122Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2123(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
2124Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2125able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2126Sun4v and Niagara emulators are still a work in progress.
b756921a 2127
c7ba218d 2128QEMU emulates the following peripherals:
83469015
FB
2129
2130@itemize @minus
2131@item
5fafdf24 2132UltraSparc IIi APB PCI Bridge
83469015
FB
2133@item
2134PCI VGA compatible card with VESA Bochs Extensions
2135@item
34a3d239
BS
2136PS/2 mouse and keyboard
2137@item
83469015
FB
2138Non Volatile RAM M48T59
2139@item
2140PC-compatible serial ports
c7ba218d
BS
2141@item
21422 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2143@item
2144Floppy disk
83469015
FB
2145@end itemize
2146
c7ba218d
BS
2147@c man begin OPTIONS
2148
2149The following options are specific to the Sparc64 emulation:
2150
2151@table @option
2152
4e257e5e 2153@item -prom-env @var{string}
34a3d239
BS
2154
2155Set OpenBIOS variables in NVRAM, for example:
2156
2157@example
2158qemu-system-sparc64 -prom-env 'auto-boot?=false'
2159@end example
2160
2161@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2162
2163Set the emulated machine type. The default is sun4u.
2164
2165@end table
2166
2167@c man end
2168
24d4de45
TS
2169@node MIPS System emulator
2170@section MIPS System emulator
7544a042 2171@cindex system emulation (MIPS)
9d0a8e6f 2172
d9aedc32
TS
2173Four executables cover simulation of 32 and 64-bit MIPS systems in
2174both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2175@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2176Five different machine types are emulated:
24d4de45
TS
2177
2178@itemize @minus
2179@item
2180A generic ISA PC-like machine "mips"
2181@item
2182The MIPS Malta prototype board "malta"
2183@item
d9aedc32 2184An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2185@item
f0fc6f8f 2186MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2187@item
2188A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2189@end itemize
2190
2191The generic emulation is supported by Debian 'Etch' and is able to
2192install Debian into a virtual disk image. The following devices are
2193emulated:
3f9f3aa1
FB
2194
2195@itemize @minus
5fafdf24 2196@item
6bf5b4e8 2197A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2198@item
2199PC style serial port
2200@item
24d4de45
TS
2201PC style IDE disk
2202@item
3f9f3aa1
FB
2203NE2000 network card
2204@end itemize
2205
24d4de45
TS
2206The Malta emulation supports the following devices:
2207
2208@itemize @minus
2209@item
0b64d008 2210Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2211@item
2212PIIX4 PCI/USB/SMbus controller
2213@item
2214The Multi-I/O chip's serial device
2215@item
3a2eeac0 2216PCI network cards (PCnet32 and others)
24d4de45
TS
2217@item
2218Malta FPGA serial device
2219@item
1f605a76 2220Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2221@end itemize
2222
2223The ACER Pica emulation supports:
2224
2225@itemize @minus
2226@item
2227MIPS R4000 CPU
2228@item
2229PC-style IRQ and DMA controllers
2230@item
2231PC Keyboard
2232@item
2233IDE controller
2234@end itemize
3f9f3aa1 2235
b5e4946f 2236The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2237to what the proprietary MIPS emulator uses for running Linux.
2238It supports:
6bf5b4e8
TS
2239
2240@itemize @minus
2241@item
2242A range of MIPS CPUs, default is the 24Kf
2243@item
2244PC style serial port
2245@item
2246MIPSnet network emulation
2247@end itemize
2248
88cb0a02
AJ
2249The MIPS Magnum R4000 emulation supports:
2250
2251@itemize @minus
2252@item
2253MIPS R4000 CPU
2254@item
2255PC-style IRQ controller
2256@item
2257PC Keyboard
2258@item
2259SCSI controller
2260@item
2261G364 framebuffer
2262@end itemize
2263
2264
24d4de45
TS
2265@node ARM System emulator
2266@section ARM System emulator
7544a042 2267@cindex system emulation (ARM)
3f9f3aa1
FB
2268
2269Use the executable @file{qemu-system-arm} to simulate a ARM
2270machine. The ARM Integrator/CP board is emulated with the following
2271devices:
2272
2273@itemize @minus
2274@item
9ee6e8bb 2275ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2276@item
2277Two PL011 UARTs
5fafdf24 2278@item
3f9f3aa1 2279SMC 91c111 Ethernet adapter
00a9bf19
PB
2280@item
2281PL110 LCD controller
2282@item
2283PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2284@item
2285PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2286@end itemize
2287
2288The ARM Versatile baseboard is emulated with the following devices:
2289
2290@itemize @minus
2291@item
9ee6e8bb 2292ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2293@item
2294PL190 Vectored Interrupt Controller
2295@item
2296Four PL011 UARTs
5fafdf24 2297@item
00a9bf19
PB
2298SMC 91c111 Ethernet adapter
2299@item
2300PL110 LCD controller
2301@item
2302PL050 KMI with PS/2 keyboard and mouse.
2303@item
2304PCI host bridge. Note the emulated PCI bridge only provides access to
2305PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2306This means some devices (eg. ne2k_pci NIC) are not usable, and others
2307(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2308mapped control registers.
e6de1bad
PB
2309@item
2310PCI OHCI USB controller.
2311@item
2312LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2313@item
2314PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2315@end itemize
2316
21a88941
PB
2317Several variants of the ARM RealView baseboard are emulated,
2318including the EB, PB-A8 and PBX-A9. Due to interactions with the
2319bootloader, only certain Linux kernel configurations work out
2320of the box on these boards.
2321
2322Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2323enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2324should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2325disabled and expect 1024M RAM.
2326
40c5c6cd 2327The following devices are emulated:
d7739d75
PB
2328
2329@itemize @minus
2330@item
f7c70325 2331ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2332@item
2333ARM AMBA Generic/Distributed Interrupt Controller
2334@item
2335Four PL011 UARTs
5fafdf24 2336@item
0ef849d7 2337SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2338@item
2339PL110 LCD controller
2340@item
2341PL050 KMI with PS/2 keyboard and mouse
2342@item
2343PCI host bridge
2344@item
2345PCI OHCI USB controller
2346@item
2347LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2348@item
2349PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2350@end itemize
2351
b00052e4
AZ
2352The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2353and "Terrier") emulation includes the following peripherals:
2354
2355@itemize @minus
2356@item
2357Intel PXA270 System-on-chip (ARM V5TE core)
2358@item
2359NAND Flash memory
2360@item
2361IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2362@item
2363On-chip OHCI USB controller
2364@item
2365On-chip LCD controller
2366@item
2367On-chip Real Time Clock
2368@item
2369TI ADS7846 touchscreen controller on SSP bus
2370@item
2371Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2372@item
2373GPIO-connected keyboard controller and LEDs
2374@item
549444e1 2375Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2376@item
2377Three on-chip UARTs
2378@item
2379WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2380@end itemize
2381
02645926
AZ
2382The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2383following elements:
2384
2385@itemize @minus
2386@item
2387Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2388@item
2389ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2390@item
2391On-chip LCD controller
2392@item
2393On-chip Real Time Clock
2394@item
2395TI TSC2102i touchscreen controller / analog-digital converter / Audio
2396CODEC, connected through MicroWire and I@math{^2}S busses
2397@item
2398GPIO-connected matrix keypad
2399@item
2400Secure Digital card connected to OMAP MMC/SD host
2401@item
2402Three on-chip UARTs
2403@end itemize
2404
c30bb264
AZ
2405Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2406emulation supports the following elements:
2407
2408@itemize @minus
2409@item
2410Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2411@item
2412RAM and non-volatile OneNAND Flash memories
2413@item
2414Display connected to EPSON remote framebuffer chip and OMAP on-chip
2415display controller and a LS041y3 MIPI DBI-C controller
2416@item
2417TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2418driven through SPI bus
2419@item
2420National Semiconductor LM8323-controlled qwerty keyboard driven
2421through I@math{^2}C bus
2422@item
2423Secure Digital card connected to OMAP MMC/SD host
2424@item
2425Three OMAP on-chip UARTs and on-chip STI debugging console
2426@item
40c5c6cd 2427A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2428@item
c30bb264
AZ
2429Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2430TUSB6010 chip - only USB host mode is supported
2431@item
2432TI TMP105 temperature sensor driven through I@math{^2}C bus
2433@item
2434TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2435@item
2436Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2437through CBUS
2438@end itemize
2439
9ee6e8bb
PB
2440The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2441devices:
2442
2443@itemize @minus
2444@item
2445Cortex-M3 CPU core.
2446@item
244764k Flash and 8k SRAM.
2448@item
2449Timers, UARTs, ADC and I@math{^2}C interface.
2450@item
2451OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2452@end itemize
2453
2454The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2455devices:
2456
2457@itemize @minus
2458@item
2459Cortex-M3 CPU core.
2460@item
2461256k Flash and 64k SRAM.
2462@item
2463Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2464@item
2465OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2466@end itemize
2467
57cd6e97
AZ
2468The Freecom MusicPal internet radio emulation includes the following
2469elements:
2470
2471@itemize @minus
2472@item
2473Marvell MV88W8618 ARM core.
2474@item
247532 MB RAM, 256 KB SRAM, 8 MB flash.
2476@item
2477Up to 2 16550 UARTs
2478@item
2479MV88W8xx8 Ethernet controller
2480@item
2481MV88W8618 audio controller, WM8750 CODEC and mixer
2482@item
e080e785 2483128×64 display with brightness control
57cd6e97
AZ
2484@item
24852 buttons, 2 navigation wheels with button function
2486@end itemize
2487
997641a8 2488The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2489The emulation includes the following elements:
997641a8
AZ
2490
2491@itemize @minus
2492@item
2493Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2494@item
2495ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2496V1
24971 Flash of 16MB and 1 Flash of 8MB
2498V2
24991 Flash of 32MB
2500@item
2501On-chip LCD controller
2502@item
2503On-chip Real Time Clock
2504@item
2505Secure Digital card connected to OMAP MMC/SD host
2506@item
2507Three on-chip UARTs
2508@end itemize
2509
3f9f3aa1
FB
2510A Linux 2.6 test image is available on the QEMU web site. More
2511information is available in the QEMU mailing-list archive.
9d0a8e6f 2512
d2c639d6
BS
2513@c man begin OPTIONS
2514
2515The following options are specific to the ARM emulation:
2516
2517@table @option
2518
2519@item -semihosting
2520Enable semihosting syscall emulation.
2521
2522On ARM this implements the "Angel" interface.
2523
2524Note that this allows guest direct access to the host filesystem,
2525so should only be used with trusted guest OS.
2526
2527@end table
2528
24d4de45
TS
2529@node ColdFire System emulator
2530@section ColdFire System emulator
7544a042
SW
2531@cindex system emulation (ColdFire)
2532@cindex system emulation (M68K)
209a4e69
PB
2533
2534Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2535The emulator is able to boot a uClinux kernel.
707e011b
PB
2536
2537The M5208EVB emulation includes the following devices:
2538
2539@itemize @minus
5fafdf24 2540@item
707e011b
PB
2541MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2542@item
2543Three Two on-chip UARTs.
2544@item
2545Fast Ethernet Controller (FEC)
2546@end itemize
2547
2548The AN5206 emulation includes the following devices:
209a4e69
PB
2549
2550@itemize @minus
5fafdf24 2551@item
209a4e69
PB
2552MCF5206 ColdFire V2 Microprocessor.
2553@item
2554Two on-chip UARTs.
2555@end itemize
2556
d2c639d6
BS
2557@c man begin OPTIONS
2558
7544a042 2559The following options are specific to the ColdFire emulation:
d2c639d6
BS
2560
2561@table @option
2562
2563@item -semihosting
2564Enable semihosting syscall emulation.
2565
2566On M68K this implements the "ColdFire GDB" interface used by libgloss.
2567
2568Note that this allows guest direct access to the host filesystem,
2569so should only be used with trusted guest OS.
2570
2571@end table
2572
7544a042
SW
2573@node Cris System emulator
2574@section Cris System emulator
2575@cindex system emulation (Cris)
2576
2577TODO
2578
2579@node Microblaze System emulator
2580@section Microblaze System emulator
2581@cindex system emulation (Microblaze)
2582
2583TODO
2584
2585@node SH4 System emulator
2586@section SH4 System emulator
2587@cindex system emulation (SH4)
2588
2589TODO
2590
3aeaea65
MF
2591@node Xtensa System emulator
2592@section Xtensa System emulator
2593@cindex system emulation (Xtensa)
2594
2595Two executables cover simulation of both Xtensa endian options,
2596@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2597Two different machine types are emulated:
2598
2599@itemize @minus
2600@item
2601Xtensa emulator pseudo board "sim"
2602@item
2603Avnet LX60/LX110/LX200 board
2604@end itemize
2605
b5e4946f 2606The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2607to one provided by the proprietary Tensilica ISS.
2608It supports:
2609
2610@itemize @minus
2611@item
2612A range of Xtensa CPUs, default is the DC232B
2613@item
2614Console and filesystem access via semihosting calls
2615@end itemize
2616
2617The Avnet LX60/LX110/LX200 emulation supports:
2618
2619@itemize @minus
2620@item
2621A range of Xtensa CPUs, default is the DC232B
2622@item
262316550 UART
2624@item
2625OpenCores 10/100 Mbps Ethernet MAC
2626@end itemize
2627
2628@c man begin OPTIONS
2629
2630The following options are specific to the Xtensa emulation:
2631
2632@table @option
2633
2634@item -semihosting
2635Enable semihosting syscall emulation.
2636
2637Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2638Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2639
2640Note that this allows guest direct access to the host filesystem,
2641so should only be used with trusted guest OS.
2642
2643@end table
5fafdf24
TS
2644@node QEMU User space emulator
2645@chapter QEMU User space emulator
83195237
FB
2646
2647@menu
2648* Supported Operating Systems ::
2649* Linux User space emulator::
84778508 2650* BSD User space emulator ::
83195237
FB
2651@end menu
2652
2653@node Supported Operating Systems
2654@section Supported Operating Systems
2655
2656The following OS are supported in user space emulation:
2657
2658@itemize @minus
2659@item
4be456f1 2660Linux (referred as qemu-linux-user)
83195237 2661@item
84778508 2662BSD (referred as qemu-bsd-user)
83195237
FB
2663@end itemize
2664
2665@node Linux User space emulator
2666@section Linux User space emulator
386405f7 2667
debc7065
FB
2668@menu
2669* Quick Start::
2670* Wine launch::
2671* Command line options::
79737e4a 2672* Other binaries::
debc7065
FB
2673@end menu
2674
2675@node Quick Start
83195237 2676@subsection Quick Start
df0f11a0 2677
1f673135 2678In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2679itself and all the target (x86) dynamic libraries used by it.
386405f7 2680
1f673135 2681@itemize
386405f7 2682
1f673135
FB
2683@item On x86, you can just try to launch any process by using the native
2684libraries:
386405f7 2685
5fafdf24 2686@example
1f673135
FB
2687qemu-i386 -L / /bin/ls
2688@end example
386405f7 2689
1f673135
FB
2690@code{-L /} tells that the x86 dynamic linker must be searched with a
2691@file{/} prefix.
386405f7 2692
b65ee4fa
SW
2693@item Since QEMU is also a linux process, you can launch QEMU with
2694QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2695
5fafdf24 2696@example
1f673135
FB
2697qemu-i386 -L / qemu-i386 -L / /bin/ls
2698@end example
386405f7 2699
1f673135
FB
2700@item On non x86 CPUs, you need first to download at least an x86 glibc
2701(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2702@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2703
1f673135 2704@example
5fafdf24 2705unset LD_LIBRARY_PATH
1f673135 2706@end example
1eb87257 2707
1f673135 2708Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2709
1f673135
FB
2710@example
2711qemu-i386 tests/i386/ls
2712@end example
4c3b5a48 2713You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2714QEMU is automatically launched by the Linux kernel when you try to
2715launch x86 executables. It requires the @code{binfmt_misc} module in the
2716Linux kernel.
1eb87257 2717
1f673135
FB
2718@item The x86 version of QEMU is also included. You can try weird things such as:
2719@example
debc7065
FB
2720qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2721 /usr/local/qemu-i386/bin/ls-i386
1f673135 2722@end example
1eb20527 2723
1f673135 2724@end itemize
1eb20527 2725
debc7065 2726@node Wine launch
83195237 2727@subsection Wine launch
1eb20527 2728
1f673135 2729@itemize
386405f7 2730
1f673135
FB
2731@item Ensure that you have a working QEMU with the x86 glibc
2732distribution (see previous section). In order to verify it, you must be
2733able to do:
386405f7 2734
1f673135
FB
2735@example
2736qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2737@end example
386405f7 2738
1f673135 2739@item Download the binary x86 Wine install
5fafdf24 2740(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2741
1f673135 2742@item Configure Wine on your account. Look at the provided script
debc7065 2743@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2744@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2745
1f673135 2746@item Then you can try the example @file{putty.exe}:
386405f7 2747
1f673135 2748@example
debc7065
FB
2749qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2750 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2751@end example
386405f7 2752
1f673135 2753@end itemize
fd429f2f 2754
debc7065 2755@node Command line options
83195237 2756@subsection Command line options
1eb20527 2757
1f673135 2758@example
8485140f 2759@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2760@end example
1eb20527 2761
1f673135
FB
2762@table @option
2763@item -h
2764Print the help
3b46e624 2765@item -L path
1f673135
FB
2766Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2767@item -s size
2768Set the x86 stack size in bytes (default=524288)
34a3d239 2769@item -cpu model
c8057f95 2770Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2771@item -E @var{var}=@var{value}
2772Set environment @var{var} to @var{value}.
2773@item -U @var{var}
2774Remove @var{var} from the environment.
379f6698
PB
2775@item -B offset
2776Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2777the address region required by guest applications is reserved on the host.
2778This option is currently only supported on some hosts.
68a1c816
PB
2779@item -R size
2780Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2781"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2782@end table
2783
1f673135 2784Debug options:
386405f7 2785
1f673135 2786@table @option
989b697d
PM
2787@item -d item1,...
2788Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2789@item -p pagesize
2790Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2791@item -g port
2792Wait gdb connection to port
1b530a6d
AJ
2793@item -singlestep
2794Run the emulation in single step mode.
1f673135 2795@end table
386405f7 2796
b01bcae6
AZ
2797Environment variables:
2798
2799@table @env
2800@item QEMU_STRACE
2801Print system calls and arguments similar to the 'strace' program
2802(NOTE: the actual 'strace' program will not work because the user
2803space emulator hasn't implemented ptrace). At the moment this is
2804incomplete. All system calls that don't have a specific argument
2805format are printed with information for six arguments. Many
2806flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2807@end table
b01bcae6 2808
79737e4a 2809@node Other binaries
83195237 2810@subsection Other binaries
79737e4a 2811
7544a042
SW
2812@cindex user mode (Alpha)
2813@command{qemu-alpha} TODO.
2814
2815@cindex user mode (ARM)
2816@command{qemu-armeb} TODO.
2817
2818@cindex user mode (ARM)
79737e4a
PB
2819@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2820binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2821configurations), and arm-uclinux bFLT format binaries.
2822
7544a042
SW
2823@cindex user mode (ColdFire)
2824@cindex user mode (M68K)
e6e5906b
PB
2825@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2826(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2827coldfire uClinux bFLT format binaries.
2828
79737e4a
PB
2829The binary format is detected automatically.
2830
7544a042
SW
2831@cindex user mode (Cris)
2832@command{qemu-cris} TODO.
2833
2834@cindex user mode (i386)
2835@command{qemu-i386} TODO.
2836@command{qemu-x86_64} TODO.
2837
2838@cindex user mode (Microblaze)
2839@command{qemu-microblaze} TODO.
2840
2841@cindex user mode (MIPS)
2842@command{qemu-mips} TODO.
2843@command{qemu-mipsel} TODO.
2844
2845@cindex user mode (PowerPC)
2846@command{qemu-ppc64abi32} TODO.
2847@command{qemu-ppc64} TODO.
2848@command{qemu-ppc} TODO.
2849
2850@cindex user mode (SH4)
2851@command{qemu-sh4eb} TODO.
2852@command{qemu-sh4} TODO.
2853
2854@cindex user mode (SPARC)
34a3d239
BS
2855@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2856
a785e42e
BS
2857@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2858(Sparc64 CPU, 32 bit ABI).
2859
2860@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2861SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2862
84778508
BS
2863@node BSD User space emulator
2864@section BSD User space emulator
2865
2866@menu
2867* BSD Status::
2868* BSD Quick Start::
2869* BSD Command line options::
2870@end menu
2871
2872@node BSD Status
2873@subsection BSD Status
2874
2875@itemize @minus
2876@item
2877target Sparc64 on Sparc64: Some trivial programs work.
2878@end itemize
2879
2880@node BSD Quick Start
2881@subsection Quick Start
2882
2883In order to launch a BSD process, QEMU needs the process executable
2884itself and all the target dynamic libraries used by it.
2885
2886@itemize
2887
2888@item On Sparc64, you can just try to launch any process by using the native
2889libraries:
2890
2891@example
2892qemu-sparc64 /bin/ls
2893@end example
2894
2895@end itemize
2896
2897@node BSD Command line options
2898@subsection Command line options
2899
2900@example
8485140f 2901@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2902@end example
2903
2904@table @option
2905@item -h
2906Print the help
2907@item -L path
2908Set the library root path (default=/)
2909@item -s size
2910Set the stack size in bytes (default=524288)
f66724c9
SW
2911@item -ignore-environment
2912Start with an empty environment. Without this option,
40c5c6cd 2913the initial environment is a copy of the caller's environment.
f66724c9
SW
2914@item -E @var{var}=@var{value}
2915Set environment @var{var} to @var{value}.
2916@item -U @var{var}
2917Remove @var{var} from the environment.
84778508
BS
2918@item -bsd type
2919Set the type of the emulated BSD Operating system. Valid values are
2920FreeBSD, NetBSD and OpenBSD (default).
2921@end table
2922
2923Debug options:
2924
2925@table @option
989b697d
PM
2926@item -d item1,...
2927Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2928@item -p pagesize
2929Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2930@item -singlestep
2931Run the emulation in single step mode.
84778508
BS
2932@end table
2933
15a34c63
FB
2934@node compilation
2935@chapter Compilation from the sources
2936
debc7065
FB
2937@menu
2938* Linux/Unix::
2939* Windows::
2940* Cross compilation for Windows with Linux::
2941* Mac OS X::
47eacb4f 2942* Make targets::
debc7065
FB
2943@end menu
2944
2945@node Linux/Unix
7c3fc84d
FB
2946@section Linux/Unix
2947
2948@subsection Compilation
2949
2950First you must decompress the sources:
2951@example
2952cd /tmp
2953tar zxvf qemu-x.y.z.tar.gz
2954cd qemu-x.y.z
2955@end example
2956
2957Then you configure QEMU and build it (usually no options are needed):
2958@example
2959./configure
2960make
2961@end example
2962
2963Then type as root user:
2964@example
2965make install
2966@end example
2967to install QEMU in @file{/usr/local}.
2968
debc7065 2969@node Windows
15a34c63
FB
2970@section Windows
2971
2972@itemize
2973@item Install the current versions of MSYS and MinGW from
2974@url{http://www.mingw.org/}. You can find detailed installation
2975instructions in the download section and the FAQ.
2976
5fafdf24 2977@item Download
15a34c63 2978the MinGW development library of SDL 1.2.x
debc7065 2979(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2980@url{http://www.libsdl.org}. Unpack it in a temporary place and
2981edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2982correct SDL directory when invoked.
2983
d0a96f3d
ST
2984@item Install the MinGW version of zlib and make sure
2985@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2986MinGW's default header and linker search paths.
d0a96f3d 2987
15a34c63 2988@item Extract the current version of QEMU.
5fafdf24 2989
15a34c63
FB
2990@item Start the MSYS shell (file @file{msys.bat}).
2991
5fafdf24 2992@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2993@file{make}. If you have problems using SDL, verify that
2994@file{sdl-config} can be launched from the MSYS command line.
2995
c5ec15ea 2996@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2997@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2998@file{Program Files/QEMU}.
15a34c63
FB
2999
3000@end itemize
3001
debc7065 3002@node Cross compilation for Windows with Linux
15a34c63
FB
3003@section Cross compilation for Windows with Linux
3004
3005@itemize
3006@item
3007Install the MinGW cross compilation tools available at
3008@url{http://www.mingw.org/}.
3009
d0a96f3d
ST
3010@item Download
3011the MinGW development library of SDL 1.2.x
3012(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3013@url{http://www.libsdl.org}. Unpack it in a temporary place and
3014edit the @file{sdl-config} script so that it gives the
3015correct SDL directory when invoked. Set up the @code{PATH} environment
3016variable so that @file{sdl-config} can be launched by
15a34c63
FB
3017the QEMU configuration script.
3018
d0a96f3d
ST
3019@item Install the MinGW version of zlib and make sure
3020@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 3021MinGW's default header and linker search paths.
d0a96f3d 3022
5fafdf24 3023@item
15a34c63
FB
3024Configure QEMU for Windows cross compilation:
3025@example
d0a96f3d
ST
3026PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
3027@end example
3028The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
3029MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 3030We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 3031use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 3032You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
3033
3034Under Fedora Linux, you can run:
3035@example
3036yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 3037@end example
d0a96f3d 3038to get a suitable cross compilation environment.
15a34c63 3039
5fafdf24 3040@item You can install QEMU in the installation directory by typing
d0a96f3d 3041@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 3042installation directory.
15a34c63
FB
3043
3044@end itemize
3045
3804da9d
SW
3046Wine can be used to launch the resulting qemu-system-i386.exe
3047and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 3048
debc7065 3049@node Mac OS X
15a34c63
FB
3050@section Mac OS X
3051
b352153f
JA
3052System Requirements:
3053@itemize
3054@item Mac OS 10.5 or higher
3055@item The clang compiler shipped with Xcode 4.2 or higher,
3056or GCC 4.3 or higher
3057@end itemize
3058
3059Additional Requirements (install in order):
3060@enumerate
3061@item libffi: @uref{https://sourceware.org/libffi/}
3062@item gettext: @uref{http://www.gnu.org/software/gettext/}
3063@item glib: @uref{http://ftp.gnome.org/pub/GNOME/sources/glib/}
3064@item pkg-config: @uref{http://www.freedesktop.org/wiki/Software/pkg-config/}
3065@item autoconf: @uref{http://www.gnu.org/software/autoconf/autoconf.html}
3066@item automake: @uref{http://www.gnu.org/software/automake/}
b352153f
JA
3067@item pixman: @uref{http://www.pixman.org/}
3068@end enumerate
3069
3070* You may find it easiest to get these from a third-party packager
3071such as Homebrew, Macports, or Fink.
3072
3073After downloading the QEMU source code, double-click it to expand it.
3074
3075Then configure and make QEMU:
3076@example
3077./configure
3078make
3079@end example
3080
3081If you have a recent version of Mac OS X (OSX 10.7 or better
3082with Xcode 4.2 or better) we recommend building QEMU with the
3083default compiler provided by Apple, for your version of Mac OS X
3084(which will be 'clang'). The configure script will
3085automatically pick this.
3086
3087Note: If after the configure step you see a message like this:
3088@example
3089ERROR: Your compiler does not support the __thread specifier for
3090 Thread-Local Storage (TLS). Please upgrade to a version that does.
3091@end example
6c76ec68 3092you may have to build your own version of gcc from source. Expect that to take
b352153f
JA
3093several hours. More information can be found here:
3094@uref{https://gcc.gnu.org/install/} @*
3095
3096These are some of the third party binaries of gcc available for download:
3097@itemize
3098@item Homebrew: @uref{http://brew.sh/}
3099@item @uref{https://www.litebeam.net/gcc/gcc_472.pkg}
3100@item @uref{http://www.macports.org/ports.php?by=name&substr=gcc}
3101@end itemize
3102
3103You can have several versions of GCC on your system. To specify a certain version,
3104use the --cc and --cxx options.
3105@example
3106./configure --cxx=<path of your c++ compiler> --cc=<path of your c compiler> <other options>
3107@end example
15a34c63 3108
47eacb4f
SW
3109@node Make targets
3110@section Make targets
3111
3112@table @code
3113
3114@item make
3115@item make all
3116Make everything which is typically needed.
3117
3118@item install
3119TODO
3120
3121@item install-doc
3122TODO
3123
3124@item make clean
3125Remove most files which were built during make.
3126
3127@item make distclean
3128Remove everything which was built during make.
3129
3130@item make dvi
3131@item make html
3132@item make info
3133@item make pdf
3134Create documentation in dvi, html, info or pdf format.
3135
3136@item make cscope
3137TODO
3138
3139@item make defconfig
3140(Re-)create some build configuration files.
3141User made changes will be overwritten.
3142
3143@item tar
3144@item tarbin
3145TODO
3146
3147@end table
3148
7544a042
SW
3149@node License
3150@appendix License
3151
3152QEMU is a trademark of Fabrice Bellard.
3153
3154QEMU is released under the GNU General Public License (TODO: add link).
3155Parts of QEMU have specific licenses, see file LICENSE.
3156
3157TODO (refer to file LICENSE, include it, include the GPL?)
3158
debc7065 3159@node Index
7544a042
SW
3160@appendix Index
3161@menu
3162* Concept Index::
3163* Function Index::
3164* Keystroke Index::
3165* Program Index::
3166* Data Type Index::
3167* Variable Index::
3168@end menu
3169
3170@node Concept Index
3171@section Concept Index
3172This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3173@printindex cp
3174
7544a042
SW
3175@node Function Index
3176@section Function Index
3177This index could be used for command line options and monitor functions.
3178@printindex fn
3179
3180@node Keystroke Index
3181@section Keystroke Index
3182
3183This is a list of all keystrokes which have a special function
3184in system emulation.
3185
3186@printindex ky
3187
3188@node Program Index
3189@section Program Index
3190@printindex pg
3191
3192@node Data Type Index
3193@section Data Type Index
3194
3195This index could be used for qdev device names and options.
3196
3197@printindex tp
3198
3199@node Variable Index
3200@section Variable Index
3201@printindex vr
3202
debc7065 3203@bye