]> git.ipfire.org Git - thirdparty/systemd.git/blame - src/partition/repart.c
mkfs-util: add support for making vfat partitions
[thirdparty/systemd.git] / src / partition / repart.c
CommitLineData
e594a3b1
LP
1/* SPDX-License-Identifier: LGPL-2.1+ */
2
3#if HAVE_VALGRIND_MEMCHECK_H
4#include <valgrind/memcheck.h>
5#endif
6
7#include <fcntl.h>
8#include <getopt.h>
9#include <libfdisk.h>
10#include <linux/fs.h>
11#include <linux/loop.h>
12#include <sys/file.h>
13#include <sys/ioctl.h>
14#include <sys/stat.h>
15
16#include <openssl/hmac.h>
17#include <openssl/sha.h>
18
19#include "sd-id128.h"
20
21#include "alloc-util.h"
22#include "blkid-util.h"
23#include "blockdev-util.h"
24#include "btrfs-util.h"
25#include "conf-files.h"
26#include "conf-parser.h"
27#include "def.h"
28#include "efivars.h"
29#include "errno-util.h"
30#include "fd-util.h"
31#include "format-table.h"
32#include "format-util.h"
33#include "fs-util.h"
34#include "gpt.h"
35#include "id128-util.h"
a015fbe7 36#include "json.h"
e594a3b1
LP
37#include "list.h"
38#include "locale-util.h"
53171c04 39#include "loop-util.h"
e594a3b1 40#include "main-func.h"
53171c04 41#include "mkfs-util.h"
e594a3b1
LP
42#include "parse-util.h"
43#include "path-util.h"
44#include "pretty-print.h"
45#include "proc-cmdline.h"
46#include "sort-util.h"
e031166e 47#include "specifier.h"
e594a3b1
LP
48#include "stat-util.h"
49#include "stdio-util.h"
50#include "string-util.h"
51#include "strv.h"
52#include "terminal-util.h"
53#include "utf8.h"
54
fb08381c
LP
55/* If not configured otherwise use a minimal partition size of 10M */
56#define DEFAULT_MIN_SIZE (10*1024*1024)
57
58/* Hard lower limit for new partition sizes */
59#define HARD_MIN_SIZE 4096
60
e594a3b1
LP
61/* Note: When growing and placing new partitions we always align to 4K sector size. It's how newer hard disks
62 * are designed, and if everything is aligned to that performance is best. And for older hard disks with 512B
63 * sector size devices were generally assumed to have an even number of sectors, hence at the worst we'll
64 * waste 3K per partition, which is probably fine. */
65
66static enum {
67 EMPTY_REFUSE, /* refuse empty disks, never create a partition table */
68 EMPTY_ALLOW, /* allow empty disks, create partition table if necessary */
69 EMPTY_REQUIRE, /* require an empty disk, create a partition table */
70 EMPTY_FORCE, /* make disk empty, erase everything, create a partition table always */
a26f4a49 71 EMPTY_CREATE, /* create disk as loopback file, create a partition table always */
e594a3b1
LP
72} arg_empty = EMPTY_REFUSE;
73
74static bool arg_dry_run = true;
75static const char *arg_node = NULL;
76static char *arg_root = NULL;
77static char *arg_definitions = NULL;
78static bool arg_discard = true;
79static bool arg_can_factory_reset = false;
80static int arg_factory_reset = -1;
81static sd_id128_t arg_seed = SD_ID128_NULL;
82static bool arg_randomize = false;
83static int arg_pretty = -1;
a26f4a49 84static uint64_t arg_size = UINT64_MAX;
a015fbe7
TH
85static bool arg_json = false;
86static JsonFormatFlags arg_json_format_flags = 0;
e594a3b1
LP
87
88STATIC_DESTRUCTOR_REGISTER(arg_root, freep);
89STATIC_DESTRUCTOR_REGISTER(arg_definitions, freep);
90
91typedef struct Partition Partition;
92typedef struct FreeArea FreeArea;
93typedef struct Context Context;
94
95struct Partition {
96 char *definition_path;
97
98 sd_id128_t type_uuid;
99 sd_id128_t current_uuid, new_uuid;
100 char *current_label, *new_label;
101
102 bool dropped;
103 bool factory_reset;
104 int32_t priority;
105
106 uint32_t weight, padding_weight;
107
108 uint64_t current_size, new_size;
109 uint64_t size_min, size_max;
110
111 uint64_t current_padding, new_padding;
112 uint64_t padding_min, padding_max;
113
114 uint64_t partno;
115 uint64_t offset;
116
117 struct fdisk_partition *current_partition;
118 struct fdisk_partition *new_partition;
119 FreeArea *padding_area;
120 FreeArea *allocated_to_area;
121
757bc2e4
LP
122 char *copy_blocks_path;
123 int copy_blocks_fd;
124 uint64_t copy_blocks_size;
125
53171c04
LP
126 char *format;
127
e594a3b1
LP
128 LIST_FIELDS(Partition, partitions);
129};
130
131#define PARTITION_IS_FOREIGN(p) (!(p)->definition_path)
132#define PARTITION_EXISTS(p) (!!(p)->current_partition)
133
134struct FreeArea {
135 Partition *after;
136 uint64_t size;
137 uint64_t allocated;
138};
139
140struct Context {
141 LIST_HEAD(Partition, partitions);
142 size_t n_partitions;
143
144 FreeArea **free_areas;
145 size_t n_free_areas, n_allocated_free_areas;
146
147 uint64_t start, end, total;
148
149 struct fdisk_context *fdisk_context;
150
151 sd_id128_t seed;
152};
153
154static uint64_t round_down_size(uint64_t v, uint64_t p) {
155 return (v / p) * p;
156}
157
158static uint64_t round_up_size(uint64_t v, uint64_t p) {
159
160 v = DIV_ROUND_UP(v, p);
161
162 if (v > UINT64_MAX / p)
163 return UINT64_MAX; /* overflow */
164
165 return v * p;
166}
167
168static Partition *partition_new(void) {
169 Partition *p;
170
171 p = new(Partition, 1);
172 if (!p)
173 return NULL;
174
175 *p = (Partition) {
176 .weight = 1000,
177 .padding_weight = 0,
178 .current_size = UINT64_MAX,
179 .new_size = UINT64_MAX,
180 .size_min = UINT64_MAX,
181 .size_max = UINT64_MAX,
182 .current_padding = UINT64_MAX,
183 .new_padding = UINT64_MAX,
184 .padding_min = UINT64_MAX,
185 .padding_max = UINT64_MAX,
186 .partno = UINT64_MAX,
187 .offset = UINT64_MAX,
757bc2e4
LP
188 .copy_blocks_fd = -1,
189 .copy_blocks_size = UINT64_MAX,
e594a3b1
LP
190 };
191
192 return p;
193}
194
195static Partition* partition_free(Partition *p) {
196 if (!p)
197 return NULL;
198
199 free(p->current_label);
200 free(p->new_label);
201 free(p->definition_path);
202
203 if (p->current_partition)
204 fdisk_unref_partition(p->current_partition);
205 if (p->new_partition)
206 fdisk_unref_partition(p->new_partition);
207
757bc2e4
LP
208 free(p->copy_blocks_path);
209 safe_close(p->copy_blocks_fd);
210
53171c04
LP
211 free(p->format);
212
e594a3b1
LP
213 return mfree(p);
214}
215
216static Partition* partition_unlink_and_free(Context *context, Partition *p) {
217 if (!p)
218 return NULL;
219
220 LIST_REMOVE(partitions, context->partitions, p);
221
222 assert(context->n_partitions > 0);
223 context->n_partitions--;
224
225 return partition_free(p);
226}
227
228DEFINE_TRIVIAL_CLEANUP_FUNC(Partition*, partition_free);
229
230static Context *context_new(sd_id128_t seed) {
231 Context *context;
232
233 context = new(Context, 1);
234 if (!context)
235 return NULL;
236
237 *context = (Context) {
238 .start = UINT64_MAX,
239 .end = UINT64_MAX,
240 .total = UINT64_MAX,
241 .seed = seed,
242 };
243
244 return context;
245}
246
247static void context_free_free_areas(Context *context) {
248 assert(context);
249
250 for (size_t i = 0; i < context->n_free_areas; i++)
251 free(context->free_areas[i]);
252
253 context->free_areas = mfree(context->free_areas);
254 context->n_free_areas = 0;
255 context->n_allocated_free_areas = 0;
256}
257
258static Context *context_free(Context *context) {
259 if (!context)
260 return NULL;
261
262 while (context->partitions)
263 partition_unlink_and_free(context, context->partitions);
264 assert(context->n_partitions == 0);
265
266 context_free_free_areas(context);
267
268 if (context->fdisk_context)
269 fdisk_unref_context(context->fdisk_context);
270
271 return mfree(context);
272}
273
274DEFINE_TRIVIAL_CLEANUP_FUNC(Context*, context_free);
275
276static int context_add_free_area(
277 Context *context,
278 uint64_t size,
279 Partition *after) {
280
281 FreeArea *a;
282
283 assert(context);
284 assert(!after || !after->padding_area);
285
286 if (!GREEDY_REALLOC(context->free_areas, context->n_allocated_free_areas, context->n_free_areas + 1))
287 return -ENOMEM;
288
289 a = new(FreeArea, 1);
290 if (!a)
291 return -ENOMEM;
292
293 *a = (FreeArea) {
294 .size = size,
295 .after = after,
296 };
297
298 context->free_areas[context->n_free_areas++] = a;
299
300 if (after)
301 after->padding_area = a;
302
303 return 0;
304}
305
306static bool context_drop_one_priority(Context *context) {
307 int32_t priority = 0;
308 Partition *p;
309 bool exists = false;
310
311 LIST_FOREACH(partitions, p, context->partitions) {
312 if (p->dropped)
313 continue;
314 if (p->priority < priority)
315 continue;
316 if (p->priority == priority) {
317 exists = exists || PARTITION_EXISTS(p);
318 continue;
319 }
320
321 priority = p->priority;
322 exists = PARTITION_EXISTS(p);
323 }
324
325 /* Refuse to drop partitions with 0 or negative priorities or partitions of priorities that have at
326 * least one existing priority */
327 if (priority <= 0 || exists)
328 return false;
329
330 LIST_FOREACH(partitions, p, context->partitions) {
331 if (p->priority < priority)
332 continue;
333
334 if (p->dropped)
335 continue;
336
337 p->dropped = true;
338 log_info("Can't fit partition %s of priority %" PRIi32 ", dropping.", p->definition_path, p->priority);
339 }
340
341 return true;
342}
343
344static uint64_t partition_min_size(const Partition *p) {
345 uint64_t sz;
346
347 /* Calculate the disk space we really need at minimum for this partition. If the partition already
348 * exists the current size is what we really need. If it doesn't exist yet refuse to allocate less
fb08381c
LP
349 * than 4K.
350 *
351 * DEFAULT_MIN_SIZE is the default SizeMin= we configure if nothing else is specified. */
e594a3b1
LP
352
353 if (PARTITION_IS_FOREIGN(p)) {
354 /* Don't allow changing size of partitions not managed by us */
355 assert(p->current_size != UINT64_MAX);
356 return p->current_size;
357 }
358
fb08381c 359 sz = p->current_size != UINT64_MAX ? p->current_size : HARD_MIN_SIZE;
757bc2e4
LP
360
361 if (p->copy_blocks_size != UINT64_MAX)
362 sz = MAX(p->copy_blocks_size, sz);
363
364 return MAX(p->size_min != UINT64_MAX ? p->size_min : DEFAULT_MIN_SIZE, sz);
e594a3b1
LP
365}
366
367static uint64_t partition_max_size(const Partition *p) {
368 /* Calculate how large the partition may become at max. This is generally the configured maximum
369 * size, except when it already exists and is larger than that. In that case it's the existing size,
370 * since we never want to shrink partitions. */
371
372 if (PARTITION_IS_FOREIGN(p)) {
373 /* Don't allow changing size of partitions not managed by us */
374 assert(p->current_size != UINT64_MAX);
375 return p->current_size;
376 }
377
378 if (p->current_size != UINT64_MAX)
379 return MAX(p->current_size, p->size_max);
380
381 return p->size_max;
382}
383
384static uint64_t partition_min_size_with_padding(const Partition *p) {
385 uint64_t sz;
386
387 /* Calculate the disk space we need for this partition plus any free space coming after it. This
388 * takes user configured padding into account as well as any additional whitespace needed to align
389 * the next partition to 4K again. */
390
391 sz = partition_min_size(p);
392
393 if (p->padding_min != UINT64_MAX)
394 sz += p->padding_min;
395
396 if (PARTITION_EXISTS(p)) {
397 /* If the partition wasn't aligned, add extra space so that any we might add will be aligned */
398 assert(p->offset != UINT64_MAX);
399 return round_up_size(p->offset + sz, 4096) - p->offset;
400 }
401
402 /* If this is a new partition we'll place it aligned, hence we just need to round up the required size here */
403 return round_up_size(sz, 4096);
404}
405
406static uint64_t free_area_available(const FreeArea *a) {
407 assert(a);
408
409 /* Determines how much of this free area is not allocated yet */
410
411 assert(a->size >= a->allocated);
412 return a->size - a->allocated;
413}
414
415static uint64_t free_area_available_for_new_partitions(const FreeArea *a) {
416 uint64_t avail;
417
418 /* Similar to free_area_available(), but takes into account that the required size and padding of the
162392b7 419 * preceding partition is honoured. */
e594a3b1
LP
420
421 avail = free_area_available(a);
422 if (a->after) {
423 uint64_t need, space;
424
425 need = partition_min_size_with_padding(a->after);
426
427 assert(a->after->offset != UINT64_MAX);
428 assert(a->after->current_size != UINT64_MAX);
429
430 space = round_up_size(a->after->offset + a->after->current_size, 4096) - a->after->offset + avail;
431 if (need >= space)
432 return 0;
433
434 return space - need;
435 }
436
437 return avail;
438}
439
440static int free_area_compare(FreeArea *const *a, FreeArea *const*b) {
441 return CMP(free_area_available_for_new_partitions(*a),
442 free_area_available_for_new_partitions(*b));
443}
444
445static uint64_t charge_size(uint64_t total, uint64_t amount) {
446 uint64_t rounded;
447
448 assert(amount <= total);
449
450 /* Subtract the specified amount from total, rounding up to multiple of 4K if there's room */
451 rounded = round_up_size(amount, 4096);
452 if (rounded >= total)
453 return 0;
454
455 return total - rounded;
456}
457
458static uint64_t charge_weight(uint64_t total, uint64_t amount) {
459 assert(amount <= total);
460 return total - amount;
461}
462
463static bool context_allocate_partitions(Context *context) {
464 Partition *p;
465
466 assert(context);
467
468 /* A simple first-fit algorithm, assuming the array of free areas is sorted by size in decreasing
469 * order. */
470
471 LIST_FOREACH(partitions, p, context->partitions) {
472 bool fits = false;
473 uint64_t required;
474 FreeArea *a = NULL;
475
476 /* Skip partitions we already dropped or that already exist */
477 if (p->dropped || PARTITION_EXISTS(p))
478 continue;
479
480 /* Sort by size */
481 typesafe_qsort(context->free_areas, context->n_free_areas, free_area_compare);
482
483 /* How much do we need to fit? */
484 required = partition_min_size_with_padding(p);
485 assert(required % 4096 == 0);
486
487 for (size_t i = 0; i < context->n_free_areas; i++) {
488 a = context->free_areas[i];
489
490 if (free_area_available_for_new_partitions(a) >= required) {
491 fits = true;
492 break;
493 }
494 }
495
496 if (!fits)
497 return false; /* 😢 Oh no! We can't fit this partition into any free area! */
498
499 /* Assign the partition to this free area */
500 p->allocated_to_area = a;
501
502 /* Budget the minimal partition size */
503 a->allocated += required;
504 }
505
506 return true;
507}
508
509static int context_sum_weights(Context *context, FreeArea *a, uint64_t *ret) {
510 uint64_t weight_sum = 0;
511 Partition *p;
512
513 assert(context);
514 assert(a);
515 assert(ret);
516
517 /* Determine the sum of the weights of all partitions placed in or before the specified free area */
518
519 LIST_FOREACH(partitions, p, context->partitions) {
520 if (p->padding_area != a && p->allocated_to_area != a)
521 continue;
522
523 if (p->weight > UINT64_MAX - weight_sum)
524 goto overflow_sum;
525 weight_sum += p->weight;
526
527 if (p->padding_weight > UINT64_MAX - weight_sum)
528 goto overflow_sum;
529 weight_sum += p->padding_weight;
530 }
531
532 *ret = weight_sum;
533 return 0;
534
535overflow_sum:
536 return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Combined weight of partition exceeds unsigned 64bit range, refusing.");
537}
538
539static int scale_by_weight(uint64_t value, uint64_t weight, uint64_t weight_sum, uint64_t *ret) {
540 assert(weight_sum >= weight);
541 assert(ret);
542
543 if (weight == 0) {
544 *ret = 0;
545 return 0;
546 }
547
548 if (value > UINT64_MAX / weight)
549 return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Scaling by weight of partition exceeds unsigned 64bit range, refusing.");
550
551 *ret = value * weight / weight_sum;
552 return 0;
553}
554
555typedef enum GrowPartitionPhase {
556 /* The first phase: we charge partitions which need more (according to constraints) than their weight-based share. */
557 PHASE_OVERCHARGE,
558
559 /* The second phase: we charge partitions which need less (according to constraints) than their weight-based share. */
560 PHASE_UNDERCHARGE,
561
562 /* The third phase: we distribute what remains among the remaining partitions, according to the weights */
563 PHASE_DISTRIBUTE,
564} GrowPartitionPhase;
565
566static int context_grow_partitions_phase(
567 Context *context,
568 FreeArea *a,
569 GrowPartitionPhase phase,
570 uint64_t *span,
571 uint64_t *weight_sum) {
572
573 Partition *p;
574 int r;
575
576 assert(context);
577 assert(a);
578
579 /* Now let's look at the intended weights and adjust them taking the minimum space assignments into
580 * account. i.e. if a partition has a small weight but a high minimum space value set it should not
581 * get any additional room from the left-overs. Similar, if two partitions have the same weight they
582 * should get the same space if possible, even if one has a smaller minimum size than the other. */
583 LIST_FOREACH(partitions, p, context->partitions) {
584
585 /* Look only at partitions associated with this free area, i.e. immediately
162392b7 586 * preceding it, or allocated into it */
e594a3b1
LP
587 if (p->allocated_to_area != a && p->padding_area != a)
588 continue;
589
590 if (p->new_size == UINT64_MAX) {
591 bool charge = false, try_again = false;
592 uint64_t share, rsz, xsz;
593
594 /* Calculate how much this space this partition needs if everyone would get
595 * the weight based share */
596 r = scale_by_weight(*span, p->weight, *weight_sum, &share);
597 if (r < 0)
598 return r;
599
600 rsz = partition_min_size(p);
601 xsz = partition_max_size(p);
602
603 if (phase == PHASE_OVERCHARGE && rsz > share) {
604 /* This partition needs more than its calculated share. Let's assign
605 * it that, and take this partition out of all calculations and start
606 * again. */
607
608 p->new_size = rsz;
609 charge = try_again = true;
610
611 } else if (phase == PHASE_UNDERCHARGE && xsz != UINT64_MAX && xsz < share) {
612 /* This partition accepts less than its calculated
613 * share. Let's assign it that, and take this partition out
614 * of all calculations and start again. */
615
616 p->new_size = xsz;
617 charge = try_again = true;
618
619 } else if (phase == PHASE_DISTRIBUTE) {
620 /* This partition can accept its calculated share. Let's
621 * assign it. There's no need to restart things here since
622 * assigning this shouldn't impact the shares of the other
623 * partitions. */
624
625 if (PARTITION_IS_FOREIGN(p))
626 /* Never change of foreign partitions (i.e. those we don't manage) */
627 p->new_size = p->current_size;
628 else
629 p->new_size = MAX(round_down_size(share, 4096), rsz);
630
631 charge = true;
632 }
633
634 if (charge) {
635 *span = charge_size(*span, p->new_size);
636 *weight_sum = charge_weight(*weight_sum, p->weight);
637 }
638
639 if (try_again)
640 return 0; /* try again */
641 }
642
643 if (p->new_padding == UINT64_MAX) {
644 bool charge = false, try_again = false;
645 uint64_t share;
646
647 r = scale_by_weight(*span, p->padding_weight, *weight_sum, &share);
648 if (r < 0)
649 return r;
650
651 if (phase == PHASE_OVERCHARGE && p->padding_min != UINT64_MAX && p->padding_min > share) {
652 p->new_padding = p->padding_min;
653 charge = try_again = true;
654 } else if (phase == PHASE_UNDERCHARGE && p->padding_max != UINT64_MAX && p->padding_max < share) {
655 p->new_padding = p->padding_max;
656 charge = try_again = true;
657 } else if (phase == PHASE_DISTRIBUTE) {
658
659 p->new_padding = round_down_size(share, 4096);
660 if (p->padding_min != UINT64_MAX && p->new_padding < p->padding_min)
661 p->new_padding = p->padding_min;
662
663 charge = true;
664 }
665
666 if (charge) {
667 *span = charge_size(*span, p->new_padding);
668 *weight_sum = charge_weight(*weight_sum, p->padding_weight);
669 }
670
671 if (try_again)
672 return 0; /* try again */
673 }
674 }
675
676 return 1; /* done */
677}
678
679static int context_grow_partitions_on_free_area(Context *context, FreeArea *a) {
680 uint64_t weight_sum = 0, span;
681 int r;
682
683 assert(context);
684 assert(a);
685
686 r = context_sum_weights(context, a, &weight_sum);
687 if (r < 0)
688 return r;
689
690 /* Let's calculate the total area covered by this free area and the partition before it */
691 span = a->size;
692 if (a->after) {
693 assert(a->after->offset != UINT64_MAX);
694 assert(a->after->current_size != UINT64_MAX);
695
696 span += round_up_size(a->after->offset + a->after->current_size, 4096) - a->after->offset;
697 }
698
699 GrowPartitionPhase phase = PHASE_OVERCHARGE;
700 for (;;) {
701 r = context_grow_partitions_phase(context, a, phase, &span, &weight_sum);
702 if (r < 0)
703 return r;
704 if (r == 0) /* not done yet, re-run this phase */
705 continue;
706
707 if (phase == PHASE_OVERCHARGE)
708 phase = PHASE_UNDERCHARGE;
709 else if (phase == PHASE_UNDERCHARGE)
710 phase = PHASE_DISTRIBUTE;
711 else if (phase == PHASE_DISTRIBUTE)
712 break;
713 }
714
162392b7 715 /* We still have space left over? Donate to preceding partition if we have one */
e594a3b1
LP
716 if (span > 0 && a->after && !PARTITION_IS_FOREIGN(a->after)) {
717 uint64_t m, xsz;
718
719 assert(a->after->new_size != UINT64_MAX);
720 m = a->after->new_size + span;
721
722 xsz = partition_max_size(a->after);
723 if (xsz != UINT64_MAX && m > xsz)
724 m = xsz;
725
726 span = charge_size(span, m - a->after->new_size);
727 a->after->new_size = m;
728 }
729
162392b7 730 /* What? Even still some space left (maybe because there was no preceding partition, or it had a
e594a3b1
LP
731 * size limit), then let's donate it to whoever wants it. */
732 if (span > 0) {
733 Partition *p;
734
735 LIST_FOREACH(partitions, p, context->partitions) {
736 uint64_t m, xsz;
737
738 if (p->allocated_to_area != a)
739 continue;
740
741 if (PARTITION_IS_FOREIGN(p))
742 continue;
743
744 assert(p->new_size != UINT64_MAX);
745 m = p->new_size + span;
746
db144226 747 xsz = partition_max_size(p);
e594a3b1
LP
748 if (xsz != UINT64_MAX && m > xsz)
749 m = xsz;
750
751 span = charge_size(span, m - p->new_size);
752 p->new_size = m;
753
754 if (span == 0)
755 break;
756 }
757 }
758
162392b7 759 /* Yuck, still no one? Then make it padding */
e594a3b1
LP
760 if (span > 0 && a->after) {
761 assert(a->after->new_padding != UINT64_MAX);
762 a->after->new_padding += span;
763 }
764
765 return 0;
766}
767
768static int context_grow_partitions(Context *context) {
769 Partition *p;
770 int r;
771
772 assert(context);
773
774 for (size_t i = 0; i < context->n_free_areas; i++) {
775 r = context_grow_partitions_on_free_area(context, context->free_areas[i]);
776 if (r < 0)
777 return r;
778 }
779
780 /* All existing partitions that have no free space after them can't change size */
781 LIST_FOREACH(partitions, p, context->partitions) {
782 if (p->dropped)
783 continue;
784
785 if (!PARTITION_EXISTS(p) || p->padding_area) {
786 /* The algorithm above must have initialized this already */
787 assert(p->new_size != UINT64_MAX);
788 continue;
789 }
790
791 assert(p->new_size == UINT64_MAX);
792 p->new_size = p->current_size;
793
794 assert(p->new_padding == UINT64_MAX);
795 p->new_padding = p->current_padding;
796 }
797
798 return 0;
799}
800
801static void context_place_partitions(Context *context) {
802 uint64_t partno = 0;
803 Partition *p;
804
805 assert(context);
806
807 /* Determine next partition number to assign */
808 LIST_FOREACH(partitions, p, context->partitions) {
809 if (!PARTITION_EXISTS(p))
810 continue;
811
812 assert(p->partno != UINT64_MAX);
813 if (p->partno >= partno)
814 partno = p->partno + 1;
815 }
816
817 for (size_t i = 0; i < context->n_free_areas; i++) {
818 FreeArea *a = context->free_areas[i];
819 uint64_t start, left;
820
821 if (a->after) {
822 assert(a->after->offset != UINT64_MAX);
823 assert(a->after->new_size != UINT64_MAX);
824 assert(a->after->new_padding != UINT64_MAX);
825
826 start = a->after->offset + a->after->new_size + a->after->new_padding;
827 } else
828 start = context->start;
829
830 start = round_up_size(start, 4096);
831 left = a->size;
832
833 LIST_FOREACH(partitions, p, context->partitions) {
834 if (p->allocated_to_area != a)
835 continue;
836
837 p->offset = start;
838 p->partno = partno++;
839
840 assert(left >= p->new_size);
841 start += p->new_size;
842 left -= p->new_size;
843
844 assert(left >= p->new_padding);
845 start += p->new_padding;
846 left -= p->new_padding;
847 }
848 }
849}
850
e594a3b1
LP
851static int config_parse_type(
852 const char *unit,
853 const char *filename,
854 unsigned line,
855 const char *section,
856 unsigned section_line,
857 const char *lvalue,
858 int ltype,
859 const char *rvalue,
860 void *data,
861 void *userdata) {
862
863 sd_id128_t *type_uuid = data;
864 int r;
865
866 assert(rvalue);
867 assert(type_uuid);
868
869 r = gpt_partition_type_uuid_from_string(rvalue, type_uuid);
870 if (r < 0)
871 return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse partition type: %s", rvalue);
872
873 return 0;
874}
875
876static int config_parse_label(
877 const char *unit,
878 const char *filename,
879 unsigned line,
880 const char *section,
881 unsigned section_line,
882 const char *lvalue,
883 int ltype,
884 const char *rvalue,
885 void *data,
886 void *userdata) {
887
e031166e
LP
888 static const Specifier specifier_table[] = {
889 { 'm', specifier_machine_id, NULL },
890 { 'b', specifier_boot_id, NULL },
891 { 'H', specifier_host_name, NULL },
892 { 'l', specifier_short_host_name, NULL },
893 { 'v', specifier_kernel_release, NULL },
894 { 'a', specifier_architecture, NULL },
895 { 'o', specifier_os_id, NULL },
896 { 'w', specifier_os_version_id, NULL },
897 { 'B', specifier_os_build_id, NULL },
898 { 'W', specifier_os_variant_id, NULL },
899 {}
900 };
901
e594a3b1 902 _cleanup_free_ char16_t *recoded = NULL;
e031166e 903 _cleanup_free_ char *resolved = NULL;
e594a3b1
LP
904 char **label = data;
905 int r;
906
907 assert(rvalue);
908 assert(label);
909
e031166e
LP
910 r = specifier_printf(rvalue, specifier_table, NULL, &resolved);
911 if (r < 0) {
912 log_syntax(unit, LOG_ERR, filename, line, r,
913 "Failed to expand specifiers in Label=, ignoring: %s", rvalue);
914 return 0;
915 }
916
917 if (!utf8_is_valid(resolved)) {
e594a3b1
LP
918 log_syntax(unit, LOG_WARNING, filename, line, 0,
919 "Partition label not valid UTF-8, ignoring: %s", rvalue);
920 return 0;
921 }
922
e031166e 923 recoded = utf8_to_utf16(resolved, strlen(resolved));
e594a3b1
LP
924 if (!recoded)
925 return log_oom();
926
927 if (char16_strlen(recoded) > 36) {
928 log_syntax(unit, LOG_WARNING, filename, line, 0,
46072ae3
ZJS
929 "Partition label too long for GPT table, ignoring: \"%s\" (from \"%s\")",
930 resolved, rvalue);
e594a3b1
LP
931 return 0;
932 }
933
e031166e 934 free_and_replace(*label, resolved);
e594a3b1
LP
935 return 0;
936}
937
938static int config_parse_weight(
939 const char *unit,
940 const char *filename,
941 unsigned line,
942 const char *section,
943 unsigned section_line,
944 const char *lvalue,
945 int ltype,
946 const char *rvalue,
947 void *data,
948 void *userdata) {
949
950 uint32_t *priority = data, v;
951 int r;
952
953 assert(rvalue);
954 assert(priority);
955
956 r = safe_atou32(rvalue, &v);
957 if (r < 0) {
958 log_syntax(unit, LOG_WARNING, filename, line, r,
959 "Failed to parse weight value, ignoring: %s", rvalue);
960 return 0;
961 }
962
963 if (v > 1000U*1000U) {
c8f3d767 964 log_syntax(unit, LOG_WARNING, filename, line, 0,
e594a3b1
LP
965 "Weight needs to be in range 0…10000000, ignoring: %" PRIu32, v);
966 return 0;
967 }
968
969 *priority = v;
970 return 0;
971}
972
973static int config_parse_size4096(
974 const char *unit,
975 const char *filename,
976 unsigned line,
977 const char *section,
978 unsigned section_line,
979 const char *lvalue,
980 int ltype,
981 const char *rvalue,
982 void *data,
983 void *userdata) {
984
985 uint64_t *sz = data, parsed;
986 int r;
987
988 assert(rvalue);
989 assert(data);
990
991 r = parse_size(rvalue, 1024, &parsed);
992 if (r < 0)
c8f3d767 993 return log_syntax(unit, LOG_ERR, filename, line, r,
e594a3b1
LP
994 "Failed to parse size value: %s", rvalue);
995
996 if (ltype > 0)
997 *sz = round_up_size(parsed, 4096);
998 else if (ltype < 0)
999 *sz = round_down_size(parsed, 4096);
1000 else
1001 *sz = parsed;
1002
1003 if (*sz != parsed)
1004 log_syntax(unit, LOG_NOTICE, filename, line, r, "Rounded %s= size %" PRIu64 " → %" PRIu64 ", a multiple of 4096.", lvalue, parsed, *sz);
1005
1006 return 0;
1007}
1008
53171c04
LP
1009static int config_parse_fstype(
1010 const char *unit,
1011 const char *filename,
1012 unsigned line,
1013 const char *section,
1014 unsigned section_line,
1015 const char *lvalue,
1016 int ltype,
1017 const char *rvalue,
1018 void *data,
1019 void *userdata) {
1020
1021 char **fstype = data;
1022
1023 assert(rvalue);
1024 assert(data);
1025
1026 if (!filename_is_valid(rvalue))
1027 return log_syntax(unit, LOG_ERR, filename, line, 0,
1028 "File system type is not valid, refusing: %s", rvalue);
1029
1030 return free_and_strdup_warn(fstype, rvalue);
1031}
1032
e594a3b1
LP
1033static int partition_read_definition(Partition *p, const char *path) {
1034
1035 ConfigTableItem table[] = {
757bc2e4
LP
1036 { "Partition", "Type", config_parse_type, 0, &p->type_uuid },
1037 { "Partition", "Label", config_parse_label, 0, &p->new_label },
1038 { "Partition", "UUID", config_parse_id128, 0, &p->new_uuid },
1039 { "Partition", "Priority", config_parse_int32, 0, &p->priority },
1040 { "Partition", "Weight", config_parse_weight, 0, &p->weight },
1041 { "Partition", "PaddingWeight", config_parse_weight, 0, &p->padding_weight },
1042 { "Partition", "SizeMinBytes", config_parse_size4096, 1, &p->size_min },
1043 { "Partition", "SizeMaxBytes", config_parse_size4096, -1, &p->size_max },
1044 { "Partition", "PaddingMinBytes", config_parse_size4096, 1, &p->padding_min },
1045 { "Partition", "PaddingMaxBytes", config_parse_size4096, -1, &p->padding_max },
1046 { "Partition", "FactoryReset", config_parse_bool, 0, &p->factory_reset },
1047 { "Partition", "CopyBlocks", config_parse_path, 0, &p->copy_blocks_path },
53171c04 1048 { "Partition", "Format", config_parse_fstype, 0, &p->format },
e594a3b1
LP
1049 {}
1050 };
1051 int r;
1052
4f9ff96a
LP
1053 r = config_parse(NULL, path, NULL,
1054 "Partition\0",
1055 config_item_table_lookup, table,
1056 CONFIG_PARSE_WARN,
1057 p,
1058 NULL);
e594a3b1
LP
1059 if (r < 0)
1060 return r;
1061
1062 if (p->size_min != UINT64_MAX && p->size_max != UINT64_MAX && p->size_min > p->size_max)
1063 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1064 "SizeMinBytes= larger than SizeMaxBytes=, refusing.");
1065
1066 if (p->padding_min != UINT64_MAX && p->padding_max != UINT64_MAX && p->padding_min > p->padding_max)
1067 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1068 "PaddingMinBytes= larger than PaddingMaxBytes=, refusing.");
1069
1070 if (sd_id128_is_null(p->type_uuid))
1071 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1072 "Type= not defined, refusing.");
1073
53171c04
LP
1074 if (p->copy_blocks_path && p->format)
1075 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1076 "Format= and CopyBlocks= cannot be combined, refusing.");
1077
e594a3b1
LP
1078 return 0;
1079}
1080
1081static int context_read_definitions(
1082 Context *context,
1083 const char *directory,
1084 const char *root) {
1085
1086 _cleanup_strv_free_ char **files = NULL;
1087 Partition *last = NULL;
1088 char **f;
1089 int r;
1090
1091 assert(context);
1092
1093 if (directory)
1094 r = conf_files_list_strv(&files, ".conf", NULL, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, (const char**) STRV_MAKE(directory));
1095 else
1096 r = conf_files_list_strv(&files, ".conf", root, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, (const char**) CONF_PATHS_STRV("repart.d"));
1097 if (r < 0)
1098 return log_error_errno(r, "Failed to enumerate *.conf files: %m");
1099
1100 STRV_FOREACH(f, files) {
1101 _cleanup_(partition_freep) Partition *p = NULL;
1102
1103 p = partition_new();
1104 if (!p)
1105 return log_oom();
1106
1107 p->definition_path = strdup(*f);
1108 if (!p->definition_path)
1109 return log_oom();
1110
1111 r = partition_read_definition(p, *f);
1112 if (r < 0)
1113 return r;
1114
1115 LIST_INSERT_AFTER(partitions, context->partitions, last, p);
1116 last = TAKE_PTR(p);
1117 context->n_partitions++;
1118 }
1119
1120 return 0;
1121}
1122
1123DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_context*, fdisk_unref_context);
1124DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_partition*, fdisk_unref_partition);
1125DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_parttype*, fdisk_unref_parttype);
1126DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_table*, fdisk_unref_table);
1127
1128static int determine_current_padding(
1129 struct fdisk_context *c,
1130 struct fdisk_table *t,
1131 struct fdisk_partition *p,
1132 uint64_t *ret) {
1133
1134 size_t n_partitions;
1135 uint64_t offset, next = UINT64_MAX;
1136
1137 assert(c);
1138 assert(t);
1139 assert(p);
1140
1141 if (!fdisk_partition_has_end(p))
1142 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition has no end!");
1143
1144 offset = fdisk_partition_get_end(p);
1145 assert(offset < UINT64_MAX / 512);
1146 offset *= 512;
1147
1148 n_partitions = fdisk_table_get_nents(t);
1149 for (size_t i = 0; i < n_partitions; i++) {
1150 struct fdisk_partition *q;
1151 uint64_t start;
1152
1153 q = fdisk_table_get_partition(t, i);
1154 if (!q)
1155 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m");
1156
1157 if (fdisk_partition_is_used(q) <= 0)
1158 continue;
1159
1160 if (!fdisk_partition_has_start(q))
1161 continue;
1162
1163 start = fdisk_partition_get_start(q);
1164 assert(start < UINT64_MAX / 512);
1165 start *= 512;
1166
1167 if (start >= offset && (next == UINT64_MAX || next > start))
1168 next = start;
1169 }
1170
1171 if (next == UINT64_MAX) {
1172 /* No later partition? In that case check the end of the usable area */
1173 next = fdisk_get_last_lba(c);
1174 assert(next < UINT64_MAX);
1175 next++; /* The last LBA is one sector before the end */
1176
1177 assert(next < UINT64_MAX / 512);
1178 next *= 512;
1179
1180 if (offset > next)
1181 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end.");
1182 }
1183
1184 assert(next >= offset);
1185 offset = round_up_size(offset, 4096);
1186 next = round_down_size(next, 4096);
1187
1188 if (next >= offset) /* Check again, rounding might have fucked things up */
1189 *ret = next - offset;
1190 else
1191 *ret = 0;
1192
1193 return 0;
1194}
1195
1196static int fdisk_ask_cb(struct fdisk_context *c, struct fdisk_ask *ask, void *data) {
1197 _cleanup_free_ char *ids = NULL;
1198 int r;
1199
1200 if (fdisk_ask_get_type(ask) != FDISK_ASKTYPE_STRING)
1201 return -EINVAL;
1202
1203 ids = new(char, ID128_UUID_STRING_MAX);
1204 if (!ids)
1205 return -ENOMEM;
1206
1207 r = fdisk_ask_string_set_result(ask, id128_to_uuid_string(*(sd_id128_t*) data, ids));
1208 if (r < 0)
1209 return r;
1210
1211 TAKE_PTR(ids);
1212 return 0;
1213}
1214
1215static int fdisk_set_disklabel_id_by_uuid(struct fdisk_context *c, sd_id128_t id) {
1216 int r;
1217
1218 r = fdisk_set_ask(c, fdisk_ask_cb, &id);
1219 if (r < 0)
1220 return r;
1221
1222 r = fdisk_set_disklabel_id(c);
1223 if (r < 0)
1224 return r;
1225
1226 return fdisk_set_ask(c, NULL, NULL);
1227}
1228
53171c04 1229static int derive_uuid(sd_id128_t base, const char *token, sd_id128_t *ret) {
e594a3b1
LP
1230 union {
1231 unsigned char md[SHA256_DIGEST_LENGTH];
1232 sd_id128_t id;
1233 } result;
1234
53171c04 1235 assert(token);
e594a3b1
LP
1236 assert(ret);
1237
53171c04
LP
1238 /* Derive a new UUID from the specified UUID in a stable and reasonably safe way. Specifically, we
1239 * calculate the HMAC-SHA256 of the specified token string, keyed by the supplied base (typically the
1240 * machine ID). We use the machine ID as key (and not as cleartext!) of the HMAC operation since it's
1241 * the machine ID we don't want to leak. */
e594a3b1
LP
1242
1243 if (!HMAC(EVP_sha256(),
53171c04
LP
1244 &base, sizeof(base),
1245 (const unsigned char*) token, strlen(token),
e594a3b1
LP
1246 result.md, NULL))
1247 return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE), "HMAC-SHA256 calculation failed.");
1248
1249 /* Take the first half, mark it as v4 UUID */
1250 assert_cc(sizeof(result.md) == sizeof(result.id) * 2);
1251 *ret = id128_make_v4_uuid(result.id);
1252 return 0;
1253}
1254
a26f4a49
LP
1255static int context_load_partition_table(
1256 Context *context,
1257 const char *node,
1258 int *backing_fd) {
1259
e594a3b1
LP
1260 _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL;
1261 _cleanup_(fdisk_unref_tablep) struct fdisk_table *t = NULL;
1262 uint64_t left_boundary = UINT64_MAX, first_lba, last_lba, nsectors;
1263 _cleanup_free_ char *disk_uuid_string = NULL;
1264 bool from_scratch = false;
1265 sd_id128_t disk_uuid;
1266 size_t n_partitions;
1267 int r;
1268
1269 assert(context);
1270 assert(node);
a26f4a49 1271 assert(backing_fd);
e594a3b1
LP
1272
1273 c = fdisk_new_context();
1274 if (!c)
1275 return log_oom();
1276
a26f4a49
LP
1277 /* libfdisk doesn't have an API to operate on arbitrary fds, hence reopen the fd going via the
1278 * /proc/self/fd/ magic path if we have an existing fd. Open the original file otherwise. */
1279 if (*backing_fd < 0)
1280 r = fdisk_assign_device(c, node, arg_dry_run);
1281 else {
1282 char procfs_path[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(int)];
1283 xsprintf(procfs_path, "/proc/self/fd/%i", *backing_fd);
1284
1285 r = fdisk_assign_device(c, procfs_path, arg_dry_run);
1286 }
e594a3b1 1287 if (r < 0)
a26f4a49
LP
1288 return log_error_errno(r, "Failed to open device '%s': %m", node);
1289
1290 if (*backing_fd < 0) {
1291 /* If we have no fd referencing the device yet, make a copy of the fd now, so that we have one */
1292 *backing_fd = fcntl(fdisk_get_devfd(c), F_DUPFD_CLOEXEC, 3);
1293 if (*backing_fd < 0)
1294 return log_error_errno(errno, "Failed to duplicate fdisk fd: %m");
1295 }
e594a3b1
LP
1296
1297 /* Tell udev not to interfere while we are processing the device */
1298 if (flock(fdisk_get_devfd(c), arg_dry_run ? LOCK_SH : LOCK_EX) < 0)
1299 return log_error_errno(errno, "Failed to lock block device: %m");
1300
1301 switch (arg_empty) {
1302
1303 case EMPTY_REFUSE:
1304 /* Refuse empty disks, insist on an existing GPT partition table */
1305 if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT))
1306 return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has no GPT disk label, not repartitioning.", node);
1307
1308 break;
1309
1310 case EMPTY_REQUIRE:
1311 /* Require an empty disk, refuse any existing partition table */
1312 r = fdisk_has_label(c);
1313 if (r < 0)
1314 return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node);
1315 if (r > 0)
1316 return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s already has a disk label, refusing.", node);
1317
1318 from_scratch = true;
1319 break;
1320
1321 case EMPTY_ALLOW:
1322 /* Allow both an empty disk and an existing partition table, but only GPT */
1323 r = fdisk_has_label(c);
1324 if (r < 0)
1325 return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node);
1326 if (r > 0) {
1327 if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT))
1328 return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has non-GPT disk label, not repartitioning.", node);
1329 } else
1330 from_scratch = true;
1331
1332 break;
1333
1334 case EMPTY_FORCE:
a26f4a49 1335 case EMPTY_CREATE:
e594a3b1
LP
1336 /* Always reinitiaize the disk, don't consider what there was on the disk before */
1337 from_scratch = true;
1338 break;
1339 }
1340
1341 if (from_scratch) {
1342 r = fdisk_enable_wipe(c, true);
1343 if (r < 0)
1344 return log_error_errno(r, "Failed to enable wiping of disk signature: %m");
1345
1346 r = fdisk_create_disklabel(c, "gpt");
1347 if (r < 0)
1348 return log_error_errno(r, "Failed to create GPT disk label: %m");
1349
53171c04 1350 r = derive_uuid(context->seed, "disk-uuid", &disk_uuid);
e594a3b1
LP
1351 if (r < 0)
1352 return log_error_errno(r, "Failed to acquire disk GPT uuid: %m");
1353
1354 r = fdisk_set_disklabel_id_by_uuid(c, disk_uuid);
1355 if (r < 0)
1356 return log_error_errno(r, "Failed to set GPT disk label: %m");
1357
1358 goto add_initial_free_area;
1359 }
1360
1361 r = fdisk_get_disklabel_id(c, &disk_uuid_string);
1362 if (r < 0)
1363 return log_error_errno(r, "Failed to get current GPT disk label UUID: %m");
1364
1365 r = sd_id128_from_string(disk_uuid_string, &disk_uuid);
1366 if (r < 0)
1367 return log_error_errno(r, "Failed to parse current GPT disk label UUID: %m");
1368
1369 if (sd_id128_is_null(disk_uuid)) {
53171c04 1370 r = derive_uuid(context->seed, "disk-uuid", &disk_uuid);
e594a3b1
LP
1371 if (r < 0)
1372 return log_error_errno(r, "Failed to acquire disk GPT uuid: %m");
1373
1374 r = fdisk_set_disklabel_id(c);
1375 if (r < 0)
1376 return log_error_errno(r, "Failed to set GPT disk label: %m");
1377 }
1378
1379 r = fdisk_get_partitions(c, &t);
1380 if (r < 0)
1381 return log_error_errno(r, "Failed to acquire partition table: %m");
1382
1383 n_partitions = fdisk_table_get_nents(t);
1384 for (size_t i = 0; i < n_partitions; i++) {
1385 _cleanup_free_ char *label_copy = NULL;
1386 Partition *pp, *last = NULL;
1387 struct fdisk_partition *p;
1388 struct fdisk_parttype *pt;
1389 const char *pts, *ids, *label;
1390 uint64_t sz, start;
1391 bool found = false;
1392 sd_id128_t ptid, id;
1393 size_t partno;
1394
1395 p = fdisk_table_get_partition(t, i);
1396 if (!p)
1397 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m");
1398
1399 if (fdisk_partition_is_used(p) <= 0)
1400 continue;
1401
1402 if (fdisk_partition_has_start(p) <= 0 ||
1403 fdisk_partition_has_size(p) <= 0 ||
1404 fdisk_partition_has_partno(p) <= 0)
1405 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a position, size or number.");
1406
1407 pt = fdisk_partition_get_type(p);
1408 if (!pt)
1409 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition: %m");
1410
1411 pts = fdisk_parttype_get_string(pt);
1412 if (!pts)
1413 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition as string: %m");
1414
1415 r = sd_id128_from_string(pts, &ptid);
1416 if (r < 0)
1417 return log_error_errno(r, "Failed to parse partition type UUID %s: %m", pts);
1418
1419 ids = fdisk_partition_get_uuid(p);
1420 if (!ids)
1421 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a UUID.");
1422
1423 r = sd_id128_from_string(ids, &id);
1424 if (r < 0)
1425 return log_error_errno(r, "Failed to parse partition UUID %s: %m", ids);
1426
1427 label = fdisk_partition_get_name(p);
1428 if (!isempty(label)) {
1429 label_copy = strdup(label);
1430 if (!label_copy)
1431 return log_oom();
1432 }
1433
1434 sz = fdisk_partition_get_size(p);
1435 assert_se(sz <= UINT64_MAX/512);
1436 sz *= 512;
1437
1438 start = fdisk_partition_get_start(p);
1439 assert_se(start <= UINT64_MAX/512);
1440 start *= 512;
1441
1442 partno = fdisk_partition_get_partno(p);
1443
1444 if (left_boundary == UINT64_MAX || left_boundary > start)
1445 left_boundary = start;
1446
1447 /* Assign this existing partition to the first partition of the right type that doesn't have
1448 * an existing one assigned yet. */
1449 LIST_FOREACH(partitions, pp, context->partitions) {
1450 last = pp;
1451
1452 if (!sd_id128_equal(pp->type_uuid, ptid))
1453 continue;
1454
1455 if (!pp->current_partition) {
1456 pp->current_uuid = id;
1457 pp->current_size = sz;
1458 pp->offset = start;
1459 pp->partno = partno;
1460 pp->current_label = TAKE_PTR(label_copy);
1461
1462 pp->current_partition = p;
1463 fdisk_ref_partition(p);
1464
1465 r = determine_current_padding(c, t, p, &pp->current_padding);
1466 if (r < 0)
1467 return r;
1468
1469 if (pp->current_padding > 0) {
1470 r = context_add_free_area(context, pp->current_padding, pp);
1471 if (r < 0)
1472 return r;
1473 }
1474
1475 found = true;
1476 break;
1477 }
1478 }
1479
1480 /* If we have no matching definition, create a new one. */
1481 if (!found) {
1482 _cleanup_(partition_freep) Partition *np = NULL;
1483
1484 np = partition_new();
1485 if (!np)
1486 return log_oom();
1487
1488 np->current_uuid = id;
1489 np->type_uuid = ptid;
1490 np->current_size = sz;
1491 np->offset = start;
1492 np->partno = partno;
1493 np->current_label = TAKE_PTR(label_copy);
1494
1495 np->current_partition = p;
1496 fdisk_ref_partition(p);
1497
1498 r = determine_current_padding(c, t, p, &np->current_padding);
1499 if (r < 0)
1500 return r;
1501
1502 if (np->current_padding > 0) {
1503 r = context_add_free_area(context, np->current_padding, np);
1504 if (r < 0)
1505 return r;
1506 }
1507
1508 LIST_INSERT_AFTER(partitions, context->partitions, last, TAKE_PTR(np));
1509 context->n_partitions++;
1510 }
1511 }
1512
1513add_initial_free_area:
1514 nsectors = fdisk_get_nsectors(c);
1515 assert(nsectors <= UINT64_MAX/512);
1516 nsectors *= 512;
1517
1518 first_lba = fdisk_get_first_lba(c);
1519 assert(first_lba <= UINT64_MAX/512);
1520 first_lba *= 512;
1521
1522 last_lba = fdisk_get_last_lba(c);
1523 assert(last_lba < UINT64_MAX);
1524 last_lba++;
1525 assert(last_lba <= UINT64_MAX/512);
1526 last_lba *= 512;
1527
1528 assert(last_lba >= first_lba);
1529
1530 if (left_boundary == UINT64_MAX) {
1531 /* No partitions at all? Then the whole disk is up for grabs. */
1532
1533 first_lba = round_up_size(first_lba, 4096);
1534 last_lba = round_down_size(last_lba, 4096);
1535
1536 if (last_lba > first_lba) {
1537 r = context_add_free_area(context, last_lba - first_lba, NULL);
1538 if (r < 0)
1539 return r;
1540 }
1541 } else {
1542 /* Add space left of first partition */
1543 assert(left_boundary >= first_lba);
1544
1545 first_lba = round_up_size(first_lba, 4096);
1546 left_boundary = round_down_size(left_boundary, 4096);
1547 last_lba = round_down_size(last_lba, 4096);
1548
1549 if (left_boundary > first_lba) {
1550 r = context_add_free_area(context, left_boundary - first_lba, NULL);
1551 if (r < 0)
1552 return r;
1553 }
1554 }
1555
1556 context->start = first_lba;
1557 context->end = last_lba;
1558 context->total = nsectors;
1559 context->fdisk_context = TAKE_PTR(c);
1560
1561 return from_scratch;
1562}
1563
1564static void context_unload_partition_table(Context *context) {
1565 Partition *p, *next;
1566
1567 assert(context);
1568
1569 LIST_FOREACH_SAFE(partitions, p, next, context->partitions) {
1570
1571 /* Entirely remove partitions that have no configuration */
1572 if (PARTITION_IS_FOREIGN(p)) {
1573 partition_unlink_and_free(context, p);
1574 continue;
1575 }
1576
1577 /* Otherwise drop all data we read off the block device and everything we might have
1578 * calculated based on it */
1579
1580 p->dropped = false;
1581 p->current_size = UINT64_MAX;
1582 p->new_size = UINT64_MAX;
1583 p->current_padding = UINT64_MAX;
1584 p->new_padding = UINT64_MAX;
1585 p->partno = UINT64_MAX;
1586 p->offset = UINT64_MAX;
1587
1588 if (p->current_partition) {
1589 fdisk_unref_partition(p->current_partition);
1590 p->current_partition = NULL;
1591 }
1592
1593 if (p->new_partition) {
1594 fdisk_unref_partition(p->new_partition);
1595 p->new_partition = NULL;
1596 }
1597
1598 p->padding_area = NULL;
1599 p->allocated_to_area = NULL;
1600
15d43e30
LP
1601 p->current_uuid = SD_ID128_NULL;
1602 p->current_label = mfree(p->current_label);
e594a3b1
LP
1603 }
1604
1605 context->start = UINT64_MAX;
1606 context->end = UINT64_MAX;
1607 context->total = UINT64_MAX;
1608
1609 if (context->fdisk_context) {
1610 fdisk_unref_context(context->fdisk_context);
1611 context->fdisk_context = NULL;
1612 }
1613
1614 context_free_free_areas(context);
1615}
1616
1617static int format_size_change(uint64_t from, uint64_t to, char **ret) {
1618 char format_buffer1[FORMAT_BYTES_MAX], format_buffer2[FORMAT_BYTES_MAX], *buf;
1619
1620 if (from != UINT64_MAX)
1621 format_bytes(format_buffer1, sizeof(format_buffer1), from);
1622 if (to != UINT64_MAX)
1623 format_bytes(format_buffer2, sizeof(format_buffer2), to);
1624
1625 if (from != UINT64_MAX) {
1626 if (from == to || to == UINT64_MAX)
1627 buf = strdup(format_buffer1);
1628 else
1629 buf = strjoin(format_buffer1, " ", special_glyph(SPECIAL_GLYPH_ARROW), " ", format_buffer2);
1630 } else if (to != UINT64_MAX)
1631 buf = strjoin(special_glyph(SPECIAL_GLYPH_ARROW), " ", format_buffer2);
1632 else {
1633 *ret = NULL;
1634 return 0;
1635 }
1636
1637 if (!buf)
1638 return log_oom();
1639
1640 *ret = TAKE_PTR(buf);
1641 return 1;
1642}
1643
1644static const char *partition_label(const Partition *p) {
1645 assert(p);
1646
1647 if (p->new_label)
1648 return p->new_label;
1649
1650 if (p->current_label)
1651 return p->current_label;
1652
1653 return gpt_partition_type_uuid_to_string(p->type_uuid);
1654}
1655
1656static int context_dump_partitions(Context *context, const char *node) {
1657 _cleanup_(table_unrefp) Table *t = NULL;
1658 uint64_t sum_padding = 0, sum_size = 0;
1659 Partition *p;
1660 int r;
1661
a015fbe7
TH
1662 if (!arg_json && context->n_partitions == 0) {
1663 log_info("Empty partition table.");
1664 return 0;
1665 }
1666
1667 t = table_new("type", "label", "uuid", "file", "node", "offset", "old size", "raw size", "size", "old padding", "raw padding", "padding", "activity");
e594a3b1
LP
1668 if (!t)
1669 return log_oom();
1670
a015fbe7
TH
1671 if (!DEBUG_LOGGING) {
1672 if (arg_json)
1673 (void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4,
1674 (size_t) 5, (size_t) 6, (size_t) 7, (size_t) 9, (size_t) 10, (size_t) 12, (size_t) -1);
1675 else
1676 (void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4,
1677 (size_t) 8, (size_t) 11, (size_t) -1);
1678 }
e594a3b1
LP
1679
1680 (void) table_set_align_percent(t, table_get_cell(t, 0, 4), 100);
1681 (void) table_set_align_percent(t, table_get_cell(t, 0, 5), 100);
1682
1683 LIST_FOREACH(partitions, p, context->partitions) {
1684 _cleanup_free_ char *size_change = NULL, *padding_change = NULL, *partname = NULL;
1685 char uuid_buffer[ID128_UUID_STRING_MAX];
a015fbe7 1686 const char *label, *activity = NULL;
e594a3b1
LP
1687
1688 if (p->dropped)
1689 continue;
1690
a015fbe7
TH
1691 if (p->current_size == UINT64_MAX)
1692 activity = "create";
1693 else if (p->current_size != p->new_size)
1694 activity = "resize";
1695
e594a3b1
LP
1696 label = partition_label(p);
1697 partname = p->partno != UINT64_MAX ? fdisk_partname(node, p->partno+1) : NULL;
1698
1699 r = format_size_change(p->current_size, p->new_size, &size_change);
1700 if (r < 0)
1701 return r;
1702
1703 r = format_size_change(p->current_padding, p->new_padding, &padding_change);
1704 if (r < 0)
1705 return r;
1706
1707 if (p->new_size != UINT64_MAX)
1708 sum_size += p->new_size;
1709 if (p->new_padding != UINT64_MAX)
1710 sum_padding += p->new_padding;
1711
1712 r = table_add_many(
1713 t,
1714 TABLE_STRING, gpt_partition_type_uuid_to_string_harder(p->type_uuid, uuid_buffer),
1715 TABLE_STRING, label ?: "-", TABLE_SET_COLOR, label ? NULL : ansi_grey(),
1716 TABLE_UUID, sd_id128_is_null(p->new_uuid) ? p->current_uuid : p->new_uuid,
1717 TABLE_STRING, p->definition_path ? basename(p->definition_path) : "-", TABLE_SET_COLOR, p->definition_path ? NULL : ansi_grey(),
a015fbe7 1718 TABLE_STRING, partname ?: "-", TABLE_SET_COLOR, partname ? NULL : ansi_highlight(),
e594a3b1 1719 TABLE_UINT64, p->offset,
a015fbe7 1720 TABLE_UINT64, p->current_size == UINT64_MAX ? 0 : p->current_size,
e594a3b1
LP
1721 TABLE_UINT64, p->new_size,
1722 TABLE_STRING, size_change, TABLE_SET_COLOR, !p->partitions_next && sum_size > 0 ? ansi_underline() : NULL,
a015fbe7 1723 TABLE_UINT64, p->current_padding == UINT64_MAX ? 0 : p->current_padding,
e594a3b1 1724 TABLE_UINT64, p->new_padding,
a015fbe7
TH
1725 TABLE_STRING, padding_change, TABLE_SET_COLOR, !p->partitions_next && sum_padding > 0 ? ansi_underline() : NULL,
1726 TABLE_STRING, activity ?: "unknown");
e594a3b1 1727 if (r < 0)
f987a261 1728 return table_log_add_error(r);
e594a3b1
LP
1729 }
1730
a015fbe7 1731 if (!arg_json && (sum_padding > 0 || sum_size > 0)) {
e594a3b1
LP
1732 char s[FORMAT_BYTES_MAX];
1733 const char *a, *b;
1734
1735 a = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", format_bytes(s, sizeof(s), sum_size));
1736 b = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", format_bytes(s, sizeof(s), sum_padding));
1737
1738 r = table_add_many(
1739 t,
1740 TABLE_EMPTY,
1741 TABLE_EMPTY,
1742 TABLE_EMPTY,
1743 TABLE_EMPTY,
1744 TABLE_EMPTY,
1745 TABLE_EMPTY,
1746 TABLE_EMPTY,
a015fbe7 1747 TABLE_EMPTY,
e594a3b1
LP
1748 TABLE_STRING, a,
1749 TABLE_EMPTY,
a015fbe7
TH
1750 TABLE_EMPTY,
1751 TABLE_STRING, b,
1752 TABLE_EMPTY);
e594a3b1 1753 if (r < 0)
f987a261 1754 return table_log_add_error(r);
e594a3b1
LP
1755 }
1756
a015fbe7
TH
1757 if (arg_json)
1758 r = table_print_json(t, stdout, arg_json_format_flags);
1759 else
1760 r = table_print(t, stdout);
e594a3b1
LP
1761 if (r < 0)
1762 return log_error_errno(r, "Failed to dump table: %m");
1763
1764 return 0;
1765}
1766
1767static void context_bar_char_process_partition(
1768 Context *context,
1769 Partition *bar[],
1770 size_t n,
1771 Partition *p,
1772 size_t *ret_start) {
1773
1774 uint64_t from, to, total;
1775 size_t x, y;
1776
1777 assert(context);
1778 assert(bar);
1779 assert(n > 0);
1780 assert(p);
1781
1782 if (p->dropped)
1783 return;
1784
1785 assert(p->offset != UINT64_MAX);
1786 assert(p->new_size != UINT64_MAX);
1787
1788 from = p->offset;
1789 to = from + p->new_size;
1790
1791 assert(context->end >= context->start);
1792 total = context->end - context->start;
1793
1794 assert(from >= context->start);
1795 assert(from <= context->end);
1796 x = (from - context->start) * n / total;
1797
1798 assert(to >= context->start);
1799 assert(to <= context->end);
1800 y = (to - context->start) * n / total;
1801
1802 assert(x <= y);
1803 assert(y <= n);
1804
1805 for (size_t i = x; i < y; i++)
1806 bar[i] = p;
1807
1808 *ret_start = x;
1809}
1810
1811static int partition_hint(const Partition *p, const char *node, char **ret) {
1812 _cleanup_free_ char *buf = NULL;
1813 char ids[ID128_UUID_STRING_MAX];
1814 const char *label;
1815 sd_id128_t id;
1816
1817 /* Tries really hard to find a suitable description for this partition */
1818
1819 if (p->definition_path) {
1820 buf = strdup(basename(p->definition_path));
1821 goto done;
1822 }
1823
1824 label = partition_label(p);
1825 if (!isempty(label)) {
1826 buf = strdup(label);
1827 goto done;
1828 }
1829
1830 if (p->partno != UINT64_MAX) {
1831 buf = fdisk_partname(node, p->partno+1);
1832 goto done;
1833 }
1834
1835 if (!sd_id128_is_null(p->new_uuid))
1836 id = p->new_uuid;
1837 else if (!sd_id128_is_null(p->current_uuid))
1838 id = p->current_uuid;
1839 else
1840 id = p->type_uuid;
1841
1842 buf = strdup(id128_to_uuid_string(id, ids));
1843
1844done:
1845 if (!buf)
1846 return -ENOMEM;
1847
1848 *ret = TAKE_PTR(buf);
1849 return 0;
1850}
1851
1852static int context_dump_partition_bar(Context *context, const char *node) {
1853 _cleanup_free_ Partition **bar = NULL;
1854 _cleanup_free_ size_t *start_array = NULL;
1855 Partition *p, *last = NULL;
1856 bool z = false;
1857 size_t c, j = 0;
1858
f391597c 1859 assert_se((c = columns()) >= 2);
e594a3b1
LP
1860 c -= 2; /* We do not use the leftmost and rightmost character cell */
1861
1862 bar = new0(Partition*, c);
1863 if (!bar)
1864 return log_oom();
1865
1866 start_array = new(size_t, context->n_partitions);
1867 if (!start_array)
1868 return log_oom();
1869
1870 LIST_FOREACH(partitions, p, context->partitions)
1871 context_bar_char_process_partition(context, bar, c, p, start_array + j++);
1872
1873 putc(' ', stdout);
1874
1875 for (size_t i = 0; i < c; i++) {
1876 if (bar[i]) {
1877 if (last != bar[i])
1878 z = !z;
1879
1880 fputs(z ? ansi_green() : ansi_yellow(), stdout);
1881 fputs(special_glyph(SPECIAL_GLYPH_DARK_SHADE), stdout);
1882 } else {
1883 fputs(ansi_normal(), stdout);
1884 fputs(special_glyph(SPECIAL_GLYPH_LIGHT_SHADE), stdout);
1885 }
1886
1887 last = bar[i];
1888 }
1889
1890 fputs(ansi_normal(), stdout);
1891 putc('\n', stdout);
1892
1893 for (size_t i = 0; i < context->n_partitions; i++) {
1894 _cleanup_free_ char **line = NULL;
1895
1896 line = new0(char*, c);
1897 if (!line)
1898 return log_oom();
1899
1900 j = 0;
1901 LIST_FOREACH(partitions, p, context->partitions) {
1902 _cleanup_free_ char *d = NULL;
1903 j++;
1904
1905 if (i < context->n_partitions - j) {
1906
1907 if (line[start_array[j-1]]) {
1908 const char *e;
1909
1910 /* Upgrade final corner to the right with a branch to the right */
1911 e = startswith(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_RIGHT));
1912 if (e) {
1913 d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), e);
1914 if (!d)
1915 return log_oom();
1916 }
1917 }
1918
1919 if (!d) {
1920 d = strdup(special_glyph(SPECIAL_GLYPH_TREE_VERTICAL));
1921 if (!d)
1922 return log_oom();
1923 }
1924
1925 } else if (i == context->n_partitions - j) {
1926 _cleanup_free_ char *hint = NULL;
1927
1928 (void) partition_hint(p, node, &hint);
1929
1930 if (streq_ptr(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_VERTICAL)))
1931 d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), " ", strna(hint));
1932 else
1933 d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_RIGHT), " ", strna(hint));
1934
1935 if (!d)
1936 return log_oom();
1937 }
1938
1939 if (d)
1940 free_and_replace(line[start_array[j-1]], d);
1941 }
1942
1943 putc(' ', stdout);
1944
1945 j = 0;
1946 while (j < c) {
1947 if (line[j]) {
1948 fputs(line[j], stdout);
1949 j += utf8_console_width(line[j]);
1950 } else {
1951 putc(' ', stdout);
1952 j++;
1953 }
1954 }
1955
1956 putc('\n', stdout);
1957
1958 for (j = 0; j < c; j++)
1959 free(line[j]);
1960 }
1961
1962 return 0;
1963}
1964
1965static bool context_changed(const Context *context) {
1966 Partition *p;
1967
1968 LIST_FOREACH(partitions, p, context->partitions) {
1969 if (p->dropped)
1970 continue;
1971
1972 if (p->allocated_to_area)
1973 return true;
1974
1975 if (p->new_size != p->current_size)
1976 return true;
1977 }
1978
1979 return false;
1980}
1981
1982static int context_wipe_partition(Context *context, Partition *p) {
1983 _cleanup_(blkid_free_probep) blkid_probe probe = NULL;
1984 int r;
1985
1986 assert(context);
1987 assert(p);
1988 assert(!PARTITION_EXISTS(p)); /* Safety check: never wipe existing partitions */
1989
1990 probe = blkid_new_probe();
1991 if (!probe)
1992 return log_oom();
1993
1994 assert(p->offset != UINT64_MAX);
1995 assert(p->new_size != UINT64_MAX);
1996
1997 errno = 0;
1998 r = blkid_probe_set_device(probe, fdisk_get_devfd(context->fdisk_context), p->offset, p->new_size);
1999 if (r < 0)
2000 return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to allocate device probe for partition %" PRIu64 ".", p->partno);
2001
2002 errno = 0;
2003 if (blkid_probe_enable_superblocks(probe, true) < 0 ||
2004 blkid_probe_set_superblocks_flags(probe, BLKID_SUBLKS_MAGIC|BLKID_SUBLKS_BADCSUM) < 0 ||
2005 blkid_probe_enable_partitions(probe, true) < 0 ||
2006 blkid_probe_set_partitions_flags(probe, BLKID_PARTS_MAGIC) < 0)
2007 return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to enable superblock and partition probing for partition %" PRIu64 ".", p->partno);
2008
2009 for (;;) {
2010 errno = 0;
2011 r = blkid_do_probe(probe);
2012 if (r < 0)
2013 return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to probe for file systems.");
2014 if (r > 0)
2015 break;
2016
2017 errno = 0;
2018 if (blkid_do_wipe(probe, false) < 0)
2019 return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to wipe file system signature.");
2020 }
2021
2022 log_info("Successfully wiped file system signatures from partition %" PRIu64 ".", p->partno);
2023 return 0;
2024}
2025
2026static int context_discard_range(Context *context, uint64_t offset, uint64_t size) {
2027 struct stat st;
2028 int fd;
2029
2030 assert(context);
2031 assert(offset != UINT64_MAX);
2032 assert(size != UINT64_MAX);
2033
2034 if (size <= 0)
2035 return 0;
2036
a26f4a49 2037 assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0);
e594a3b1
LP
2038
2039 if (fstat(fd, &st) < 0)
2040 return -errno;
2041
2042 if (S_ISREG(st.st_mode)) {
2043 if (fallocate(fd, FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE, offset, size) < 0) {
2044 if (ERRNO_IS_NOT_SUPPORTED(errno))
2045 return -EOPNOTSUPP;
2046
2047 return -errno;
2048 }
2049
2050 return 1;
2051 }
2052
2053 if (S_ISBLK(st.st_mode)) {
2054 uint64_t range[2], end;
2055
2056 range[0] = round_up_size(offset, 512);
2057
2058 end = offset + size;
2059 if (end <= range[0])
2060 return 0;
2061
2062 range[1] = round_down_size(end - range[0], 512);
2063 if (range[1] <= 0)
2064 return 0;
2065
2066 if (ioctl(fd, BLKDISCARD, range) < 0) {
2067 if (ERRNO_IS_NOT_SUPPORTED(errno))
2068 return -EOPNOTSUPP;
2069
2070 return -errno;
2071 }
2072
2073 return 1;
2074 }
2075
2076 return -EOPNOTSUPP;
2077}
2078
2079static int context_discard_partition(Context *context, Partition *p) {
2080 int r;
2081
2082 assert(context);
2083 assert(p);
2084
2085 assert(p->offset != UINT64_MAX);
2086 assert(p->new_size != UINT64_MAX);
2087 assert(!PARTITION_EXISTS(p)); /* Safety check: never discard existing partitions */
2088
2089 if (!arg_discard)
2090 return 0;
2091
2092 r = context_discard_range(context, p->offset, p->new_size);
2093 if (r == -EOPNOTSUPP) {
2094 log_info("Storage does not support discarding, not discarding data in new partition %" PRIu64 ".", p->partno);
2095 return 0;
2096 }
2097 if (r == 0) {
2098 log_info("Partition %" PRIu64 " too short for discard, skipping.", p->partno);
2099 return 0;
2100 }
2101 if (r < 0)
2102 return log_error_errno(r, "Failed to discard data for new partition %" PRIu64 ".", p->partno);
2103
2104 log_info("Successfully discarded data from partition %" PRIu64 ".", p->partno);
2105 return 1;
2106}
2107
2108static int context_discard_gap_after(Context *context, Partition *p) {
2109 uint64_t gap, next = UINT64_MAX;
2110 Partition *q;
2111 int r;
2112
2113 assert(context);
2114 assert(!p || (p->offset != UINT64_MAX && p->new_size != UINT64_MAX));
2115
2116 if (p)
2117 gap = p->offset + p->new_size;
2118 else
2119 gap = context->start;
2120
2121 LIST_FOREACH(partitions, q, context->partitions) {
2122 if (q->dropped)
2123 continue;
2124
2125 assert(q->offset != UINT64_MAX);
2126 assert(q->new_size != UINT64_MAX);
2127
2128 if (q->offset < gap)
2129 continue;
2130
2131 if (next == UINT64_MAX || q->offset < next)
2132 next = q->offset;
2133 }
2134
2135 if (next == UINT64_MAX) {
2136 next = context->end;
2137 if (gap > next)
2138 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end.");
2139 }
2140
2141 assert(next >= gap);
2142 r = context_discard_range(context, gap, next - gap);
2143 if (r == -EOPNOTSUPP) {
2144 if (p)
2145 log_info("Storage does not support discarding, not discarding gap after partition %" PRIu64 ".", p->partno);
2146 else
2147 log_info("Storage does not support discarding, not discarding gap at beginning of disk.");
2148 return 0;
2149 }
2150 if (r == 0) /* Too short */
2151 return 0;
2152 if (r < 0) {
2153 if (p)
2154 return log_error_errno(r, "Failed to discard gap after partition %" PRIu64 ".", p->partno);
2155 else
2156 return log_error_errno(r, "Failed to discard gap at beginning of disk.");
2157 }
2158
2159 if (p)
2160 log_info("Successfully discarded gap after partition %" PRIu64 ".", p->partno);
2161 else
2162 log_info("Successfully discarded gap at beginning of disk.");
2163
2164 return 0;
2165}
2166
2167static int context_wipe_and_discard(Context *context, bool from_scratch) {
2168 Partition *p;
2169 int r;
2170
2171 assert(context);
2172
2173 /* Wipe and discard the contents of all partitions we are about to create. We skip the discarding if
2174 * we were supposed to start from scratch anyway, as in that case we just discard the whole block
2175 * device in one go early on. */
2176
2177 LIST_FOREACH(partitions, p, context->partitions) {
2178
2179 if (!p->allocated_to_area)
2180 continue;
2181
2182 if (!from_scratch) {
2183 r = context_discard_partition(context, p);
2184 if (r < 0)
2185 return r;
2186 }
2187
2188 r = context_wipe_partition(context, p);
2189 if (r < 0)
2190 return r;
2191
2192 if (!from_scratch) {
2193 r = context_discard_gap_after(context, p);
2194 if (r < 0)
2195 return r;
2196 }
2197 }
2198
2199 if (!from_scratch) {
2200 r = context_discard_gap_after(context, NULL);
2201 if (r < 0)
2202 return r;
2203 }
2204
2205 return 0;
2206}
2207
757bc2e4
LP
2208static int context_copy_blocks(Context *context) {
2209 Partition *p;
2210 int fd = -1, r;
2211
2212 assert(context);
2213
2214 /* Copy in file systems on the block level */
2215
2216 LIST_FOREACH(partitions, p, context->partitions) {
2217 char buf[FORMAT_BYTES_MAX];
2218
2219 if (p->copy_blocks_fd < 0)
2220 continue;
2221
2222 if (p->dropped)
2223 continue;
2224
2225 if (PARTITION_EXISTS(p)) /* Never copy over existing partitions */
2226 continue;
2227
2228 assert(p->new_size != UINT64_MAX);
2229 assert(p->copy_blocks_size != UINT64_MAX);
2230 assert(p->new_size >= p->copy_blocks_size);
2231
2232 if (fd < 0)
2233 assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0);
2234
2235 if (lseek(fd, p->offset, SEEK_SET) == (off_t) -1)
2236 return log_error_errno(errno, "Failed to seek to partition offset: %m");
2237
2238 log_info("Copying in '%s' (%s) on block level into partition %" PRIu64 ".", p->copy_blocks_path, format_bytes(buf, sizeof(buf), p->copy_blocks_size), p->partno);
2239
2240 r = copy_bytes_full(p->copy_blocks_fd, fd, p->copy_blocks_size, 0, NULL, NULL, NULL, NULL);
2241 if (r < 0)
2242 return log_error_errno(r, "Failed to copy in data from '%s': %m", p->copy_blocks_path);
2243
2244 log_info("Copying in of '%s' on block level completed.", p->copy_blocks_path);
2245 }
2246
2247 return 0;
2248}
2249
53171c04
LP
2250static int context_mkfs(Context *context) {
2251 Partition *p;
2252 int fd = -1, r;
2253
2254 assert(context);
2255
2256 /* Make a file system */
2257
2258 LIST_FOREACH(partitions, p, context->partitions) {
2259 _cleanup_(loop_device_unrefp) LoopDevice *d = NULL;
2260 sd_id128_t fs_uuid;
2261
2262 if (p->dropped)
2263 continue;
2264
2265 if (PARTITION_EXISTS(p)) /* Never format existing partitions */
2266 continue;
2267
2268 if (!p->format)
2269 continue;
2270
2271 assert(p->offset != UINT64_MAX);
2272 assert(p->new_size != UINT64_MAX);
2273
2274 if (fd < 0)
2275 assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0);
2276
2277 /* Loopback block devices are not only useful to turn regular files into block devices, but
2278 * also to cut out sections of block devices into new block devices. */
2279
2280 r = loop_device_make(fd, O_RDWR, p->offset, p->new_size, 0, &d);
2281 if (r < 0)
2282 return log_error_errno(r, "Failed to make loopback device of partition %" PRIu64 ": %m", p->partno);
2283
2284 r = loop_device_flock(d, LOCK_EX);
2285 if (r < 0)
2286 return log_error_errno(r, "Failed to lock loopback device: %m");
2287
2288 log_info("Formatting future partition %" PRIu64 ".", p->partno);
2289
2290 /* Calculate the UUID for the file system as HMAC-SHA256 of the string "file-system-uuid",
2291 * keyed off the partition UUID. */
2292 r = derive_uuid(p->new_uuid, "file-system-uuid", &fs_uuid);
2293 if (r < 0)
2294 return r;
2295
2296 r = make_filesystem(d->node, p->format, p->new_label, fs_uuid, arg_discard);
2297 if (r < 0)
2298 return r;
2299
2300 log_info("Successfully formatted future partition %" PRIu64 ".", p->partno);
2301
2302 r = loop_device_sync(d);
2303 if (r < 0)
2304 return log_error_errno(r, "Failed to sync loopback device: %m");
2305 }
2306
2307 return 0;
2308}
2309
e594a3b1
LP
2310static int partition_acquire_uuid(Context *context, Partition *p, sd_id128_t *ret) {
2311 struct {
2312 sd_id128_t type_uuid;
2313 uint64_t counter;
2314 } _packed_ plaintext = {};
2315 union {
2316 unsigned char md[SHA256_DIGEST_LENGTH];
2317 sd_id128_t id;
2318 } result;
2319
2320 uint64_t k = 0;
2321 Partition *q;
2322 int r;
2323
2324 assert(context);
2325 assert(p);
2326 assert(ret);
2327
2328 /* Calculate a good UUID for the indicated partition. We want a certain degree of reproducibility,
2329 * hence we won't generate the UUIDs randomly. Instead we use a cryptographic hash (precisely:
2330 * HMAC-SHA256) to derive them from a single seed. The seed is generally the machine ID of the
2331 * installation we are processing, but if random behaviour is desired can be random, too. We use the
2332 * seed value as key for the HMAC (since the machine ID is something we generally don't want to leak)
2333 * and the partition type as plaintext. The partition type is suffixed with a counter (only for the
2334 * second and later partition of the same type) if we have more than one partition of the same
2335 * time. Or in other words:
2336 *
2337 * With:
2338 * SEED := /etc/machine-id
2339 *
2340 * If first partition instance of type TYPE_UUID:
2341 * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID)
2342 *
2343 * For all later partition instances of type TYPE_UUID with INSTANCE being the LE64 encoded instance number:
2344 * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID || INSTANCE)
2345 */
2346
2347 LIST_FOREACH(partitions, q, context->partitions) {
2348 if (p == q)
2349 break;
2350
2351 if (!sd_id128_equal(p->type_uuid, q->type_uuid))
2352 continue;
2353
2354 k++;
2355 }
2356
2357 plaintext.type_uuid = p->type_uuid;
2358 plaintext.counter = htole64(k);
2359
2360 if (!HMAC(EVP_sha256(),
2361 &context->seed, sizeof(context->seed),
2362 (const unsigned char*) &plaintext, k == 0 ? sizeof(sd_id128_t) : sizeof(plaintext),
2363 result.md, NULL))
2364 return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE), "SHA256 calculation failed.");
2365
2366 /* Take the first half, mark it as v4 UUID */
2367 assert_cc(sizeof(result.md) == sizeof(result.id) * 2);
2368 result.id = id128_make_v4_uuid(result.id);
2369
2370 /* Ensure this partition UUID is actually unique, and there's no remaining partition from an earlier run? */
2371 LIST_FOREACH(partitions, q, context->partitions) {
2372 if (p == q)
2373 continue;
2374
2375 if (sd_id128_equal(q->current_uuid, result.id) ||
2376 sd_id128_equal(q->new_uuid, result.id)) {
2377 log_warning("Partition UUID calculated from seed for partition %" PRIu64 " exists already, reverting to randomized UUID.", p->partno);
2378
2379 r = sd_id128_randomize(&result.id);
2380 if (r < 0)
2381 return log_error_errno(r, "Failed to generate randomized UUID: %m");
2382
2383 break;
2384 }
2385 }
2386
2387 *ret = result.id;
2388 return 0;
2389}
2390
2391static int partition_acquire_label(Context *context, Partition *p, char **ret) {
2392 _cleanup_free_ char *label = NULL;
2393 const char *prefix;
2394 unsigned k = 1;
2395
2396 assert(context);
2397 assert(p);
2398 assert(ret);
2399
2400 prefix = gpt_partition_type_uuid_to_string(p->type_uuid);
2401 if (!prefix)
2402 prefix = "linux";
2403
2404 for (;;) {
2405 const char *ll = label ?: prefix;
2406 bool retry = false;
2407 Partition *q;
2408
2409 LIST_FOREACH(partitions, q, context->partitions) {
2410 if (p == q)
2411 break;
2412
2413 if (streq_ptr(ll, q->current_label) ||
2414 streq_ptr(ll, q->new_label)) {
2415 retry = true;
2416 break;
2417 }
2418 }
2419
2420 if (!retry)
2421 break;
2422
2423 label = mfree(label);
2424
2425
2426 if (asprintf(&label, "%s-%u", prefix, ++k) < 0)
2427 return log_oom();
2428 }
2429
2430 if (!label) {
2431 label = strdup(prefix);
2432 if (!label)
2433 return log_oom();
2434 }
2435
2436 *ret = TAKE_PTR(label);
2437 return 0;
2438}
2439
2440static int context_acquire_partition_uuids_and_labels(Context *context) {
2441 Partition *p;
2442 int r;
2443
2444 assert(context);
2445
2446 LIST_FOREACH(partitions, p, context->partitions) {
e594a3b1
LP
2447 /* Never touch foreign partitions */
2448 if (PARTITION_IS_FOREIGN(p)) {
2449 p->new_uuid = p->current_uuid;
2450
2451 if (p->current_label) {
12963533 2452 free(p->new_label);
e594a3b1
LP
2453 p->new_label = strdup(p->current_label);
2454 if (!p->new_label)
2455 return log_oom();
2456 }
2457
2458 continue;
2459 }
2460
2461 if (!sd_id128_is_null(p->current_uuid))
2462 p->new_uuid = p->current_uuid; /* Never change initialized UUIDs */
12963533
TH
2463 else if (sd_id128_is_null(p->new_uuid)) {
2464 /* Not explicitly set by user! */
e594a3b1
LP
2465 r = partition_acquire_uuid(context, p, &p->new_uuid);
2466 if (r < 0)
2467 return r;
2468 }
2469
2470 if (!isempty(p->current_label)) {
12963533 2471 free(p->new_label);
e594a3b1
LP
2472 p->new_label = strdup(p->current_label); /* never change initialized labels */
2473 if (!p->new_label)
2474 return log_oom();
12963533
TH
2475 } else if (!p->new_label) {
2476 /* Not explicitly set by user! */
2477
e594a3b1
LP
2478 r = partition_acquire_label(context, p, &p->new_label);
2479 if (r < 0)
2480 return r;
2481 }
2482 }
2483
2484 return 0;
2485}
2486
2487static int device_kernel_partitions_supported(int fd) {
2488 struct loop_info64 info;
2489 struct stat st;
2490
2491 assert(fd >= 0);
2492
2493 if (fstat(fd, &st) < 0)
2494 return log_error_errno(fd, "Failed to fstat() image file: %m");
2495 if (!S_ISBLK(st.st_mode))
9a1deb85 2496 return -ENOTBLK; /* we do not log in this one special case about errors */
e594a3b1
LP
2497
2498 if (ioctl(fd, LOOP_GET_STATUS64, &info) < 0) {
2499
2500 if (ERRNO_IS_NOT_SUPPORTED(errno) || errno == EINVAL)
2501 return true; /* not a loopback device, let's assume partition are supported */
2502
2503 return log_error_errno(fd, "Failed to issue LOOP_GET_STATUS64 on block device: %m");
2504 }
2505
2506#if HAVE_VALGRIND_MEMCHECK_H
2507 /* Valgrind currently doesn't know LOOP_GET_STATUS64. Remove this once it does */
2508 VALGRIND_MAKE_MEM_DEFINED(&info, sizeof(info));
2509#endif
2510
2511 return FLAGS_SET(info.lo_flags, LO_FLAGS_PARTSCAN);
2512}
2513
2514static int context_write_partition_table(
2515 Context *context,
2516 const char *node,
2517 bool from_scratch) {
2518
2519 _cleanup_(fdisk_unref_tablep) struct fdisk_table *original_table = NULL;
2520 int capable, r;
2521 Partition *p;
2522
2523 assert(context);
2524
2525 if (arg_pretty > 0 ||
a015fbe7 2526 (arg_pretty < 0 && isatty(STDOUT_FILENO) > 0) || arg_json) {
e594a3b1 2527
a015fbe7 2528 (void) context_dump_partitions(context, node);
e594a3b1
LP
2529
2530 putc('\n', stdout);
2531
a015fbe7
TH
2532 if (!arg_json)
2533 (void) context_dump_partition_bar(context, node);
e594a3b1
LP
2534 putc('\n', stdout);
2535 fflush(stdout);
2536 }
2537
2538 if (!from_scratch && !context_changed(context)) {
2539 log_info("No changes.");
2540 return 0;
2541 }
2542
2543 if (arg_dry_run) {
2544 log_notice("Refusing to repartition, please re-run with --dry-run=no.");
2545 return 0;
2546 }
2547
2548 log_info("Applying changes.");
2549
2550 if (from_scratch) {
2551 r = context_discard_range(context, 0, context->total);
2552 if (r == -EOPNOTSUPP)
2553 log_info("Storage does not support discarding, not discarding entire block device data.");
2554 else if (r < 0)
2555 return log_error_errno(r, "Failed to discard entire block device: %m");
2556 else if (r > 0)
2557 log_info("Discarded entire block device.");
2558 }
2559
2560 r = fdisk_get_partitions(context->fdisk_context, &original_table);
2561 if (r < 0)
2562 return log_error_errno(r, "Failed to acquire partition table: %m");
2563
2564 /* Wipe fs signatures and discard sectors where the new partitions are going to be placed and in the
2565 * gaps between partitions, just to be sure. */
2566 r = context_wipe_and_discard(context, from_scratch);
2567 if (r < 0)
2568 return r;
2569
757bc2e4
LP
2570 r = context_copy_blocks(context);
2571 if (r < 0)
2572 return r;
2573
53171c04
LP
2574 r = context_mkfs(context);
2575 if (r < 0)
2576 return r;
2577
e594a3b1
LP
2578 LIST_FOREACH(partitions, p, context->partitions) {
2579 if (p->dropped)
2580 continue;
2581
2582 assert(p->new_size != UINT64_MAX);
2583 assert(p->offset != UINT64_MAX);
2584 assert(p->partno != UINT64_MAX);
2585
2586 if (PARTITION_EXISTS(p)) {
2587 bool changed = false;
2588
2589 assert(p->current_partition);
2590
2591 if (p->new_size != p->current_size) {
2592 assert(p->new_size >= p->current_size);
2593 assert(p->new_size % 512 == 0);
2594
2595 r = fdisk_partition_size_explicit(p->current_partition, true);
2596 if (r < 0)
2597 return log_error_errno(r, "Failed to enable explicit sizing: %m");
2598
2599 r = fdisk_partition_set_size(p->current_partition, p->new_size / 512);
2600 if (r < 0)
2601 return log_error_errno(r, "Failed to grow partition: %m");
2602
2603 log_info("Growing existing partition %" PRIu64 ".", p->partno);
2604 changed = true;
2605 }
2606
2607 if (!sd_id128_equal(p->new_uuid, p->current_uuid)) {
2608 char buf[ID128_UUID_STRING_MAX];
2609
2610 assert(!sd_id128_is_null(p->new_uuid));
2611
2612 r = fdisk_partition_set_uuid(p->current_partition, id128_to_uuid_string(p->new_uuid, buf));
2613 if (r < 0)
2614 return log_error_errno(r, "Failed to set partition UUID: %m");
2615
2616 log_info("Initializing UUID of existing partition %" PRIu64 ".", p->partno);
2617 changed = true;
2618 }
2619
2620 if (!streq_ptr(p->new_label, p->current_label)) {
2621 assert(!isempty(p->new_label));
2622
2623 r = fdisk_partition_set_name(p->current_partition, p->new_label);
2624 if (r < 0)
2625 return log_error_errno(r, "Failed to set partition label: %m");
2626
2627 log_info("Setting partition label of existing partition %" PRIu64 ".", p->partno);
2628 changed = true;
2629 }
2630
2631 if (changed) {
2632 assert(!PARTITION_IS_FOREIGN(p)); /* never touch foreign partitions */
2633
2634 r = fdisk_set_partition(context->fdisk_context, p->partno, p->current_partition);
2635 if (r < 0)
2636 return log_error_errno(r, "Failed to update partition: %m");
2637 }
2638 } else {
2639 _cleanup_(fdisk_unref_partitionp) struct fdisk_partition *q = NULL;
2640 _cleanup_(fdisk_unref_parttypep) struct fdisk_parttype *t = NULL;
2641 char ids[ID128_UUID_STRING_MAX];
2642
2643 assert(!p->new_partition);
2644 assert(p->offset % 512 == 0);
2645 assert(p->new_size % 512 == 0);
2646 assert(!sd_id128_is_null(p->new_uuid));
2647 assert(!isempty(p->new_label));
2648
2649 t = fdisk_new_parttype();
2650 if (!t)
2651 return log_oom();
2652
2653 r = fdisk_parttype_set_typestr(t, id128_to_uuid_string(p->type_uuid, ids));
2654 if (r < 0)
2655 return log_error_errno(r, "Failed to initialize partition type: %m");
2656
2657 q = fdisk_new_partition();
2658 if (!q)
2659 return log_oom();
2660
2661 r = fdisk_partition_set_type(q, t);
2662 if (r < 0)
2663 return log_error_errno(r, "Failed to set partition type: %m");
2664
2665 r = fdisk_partition_size_explicit(q, true);
2666 if (r < 0)
2667 return log_error_errno(r, "Failed to enable explicit sizing: %m");
2668
2669 r = fdisk_partition_set_start(q, p->offset / 512);
2670 if (r < 0)
2671 return log_error_errno(r, "Failed to position partition: %m");
2672
2673 r = fdisk_partition_set_size(q, p->new_size / 512);
2674 if (r < 0)
2675 return log_error_errno(r, "Failed to grow partition: %m");
2676
2677 r = fdisk_partition_set_partno(q, p->partno);
2678 if (r < 0)
2679 return log_error_errno(r, "Failed to set partition number: %m");
2680
2681 r = fdisk_partition_set_uuid(q, id128_to_uuid_string(p->new_uuid, ids));
2682 if (r < 0)
2683 return log_error_errno(r, "Failed to set partition UUID: %m");
2684
2685 r = fdisk_partition_set_name(q, p->new_label);
2686 if (r < 0)
2687 return log_error_errno(r, "Failed to set partition label: %m");
2688
2689 log_info("Creating new partition %" PRIu64 ".", p->partno);
2690
2691 r = fdisk_add_partition(context->fdisk_context, q, NULL);
2692 if (r < 0)
2693 return log_error_errno(r, "Failed to add partition: %m");
2694
2695 assert(!p->new_partition);
2696 p->new_partition = TAKE_PTR(q);
2697 }
2698 }
2699
2700 log_info("Writing new partition table.");
2701
2702 r = fdisk_write_disklabel(context->fdisk_context);
2703 if (r < 0)
2704 return log_error_errno(r, "Failed to write partition table: %m");
2705
2706 capable = device_kernel_partitions_supported(fdisk_get_devfd(context->fdisk_context));
9a1deb85
LP
2707 if (capable == -ENOTBLK)
2708 log_debug("Not telling kernel to reread partition table, since we are not operating on a block device.");
2709 else if (capable < 0)
e594a3b1 2710 return capable;
9a1deb85 2711 else if (capable > 0) {
e594a3b1
LP
2712 log_info("Telling kernel to reread partition table.");
2713
2714 if (from_scratch)
2715 r = fdisk_reread_partition_table(context->fdisk_context);
2716 else
2717 r = fdisk_reread_changes(context->fdisk_context, original_table);
2718 if (r < 0)
2719 return log_error_errno(r, "Failed to reread partition table: %m");
2720 } else
2721 log_notice("Not telling kernel to reread partition table, because selected image does not support kernel partition block devices.");
2722
2723 log_info("All done.");
2724
2725 return 0;
2726}
2727
2728static int context_read_seed(Context *context, const char *root) {
2729 int r;
2730
2731 assert(context);
2732
2733 if (!sd_id128_is_null(context->seed))
2734 return 0;
2735
2736 if (!arg_randomize) {
2737 _cleanup_close_ int fd = -1;
2738
2739 fd = chase_symlinks_and_open("/etc/machine-id", root, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC, NULL);
2740 if (fd == -ENOENT)
2741 log_info("No machine ID set, using randomized partition UUIDs.");
2742 else if (fd < 0)
2743 return log_error_errno(fd, "Failed to determine machine ID of image: %m");
2744 else {
2745 r = id128_read_fd(fd, ID128_PLAIN, &context->seed);
2746 if (r == -ENOMEDIUM)
2747 log_info("No machine ID set, using randomized partition UUIDs.");
2748 else if (r < 0)
2749 return log_error_errno(r, "Failed to parse machine ID of image: %m");
2750
2751 return 0;
2752 }
2753 }
2754
2755 r = sd_id128_randomize(&context->seed);
2756 if (r < 0)
2757 return log_error_errno(r, "Failed to generate randomized seed: %m");
2758
2759 return 0;
2760}
2761
2762static int context_factory_reset(Context *context, bool from_scratch) {
2763 Partition *p;
2764 size_t n = 0;
2765 int r;
2766
2767 assert(context);
2768
2769 if (arg_factory_reset <= 0)
2770 return 0;
2771
2772 if (from_scratch) /* Nothing to reset if we start from scratch */
2773 return 0;
2774
2775 if (arg_dry_run) {
2776 log_notice("Refusing to factory reset, please re-run with --dry-run=no.");
2777 return 0;
2778 }
2779
2780 log_info("Applying factory reset.");
2781
2782 LIST_FOREACH(partitions, p, context->partitions) {
2783
2784 if (!p->factory_reset || !PARTITION_EXISTS(p))
2785 continue;
2786
2787 assert(p->partno != UINT64_MAX);
2788
2789 log_info("Removing partition %" PRIu64 " for factory reset.", p->partno);
2790
2791 r = fdisk_delete_partition(context->fdisk_context, p->partno);
2792 if (r < 0)
2793 return log_error_errno(r, "Failed to remove partition %" PRIu64 ": %m", p->partno);
2794
2795 n++;
2796 }
2797
2798 if (n == 0) {
2799 log_info("Factory reset requested, but no partitions to delete found.");
2800 return 0;
2801 }
2802
2803 r = fdisk_write_disklabel(context->fdisk_context);
2804 if (r < 0)
2805 return log_error_errno(r, "Failed to write disk label: %m");
2806
2807 log_info("Successfully deleted %zu partitions.", n);
2808 return 1;
2809}
2810
2811static int context_can_factory_reset(Context *context) {
2812 Partition *p;
2813
2814 assert(context);
2815
2816 LIST_FOREACH(partitions, p, context->partitions)
2817 if (p->factory_reset && PARTITION_EXISTS(p))
2818 return true;
2819
2820 return false;
2821}
2822
757bc2e4
LP
2823static int context_open_copy_block_paths(Context *context) {
2824 Partition *p;
2825 int r;
2826
2827 assert(context);
2828
2829 LIST_FOREACH(partitions, p, context->partitions) {
2830 _cleanup_close_ int source_fd = -1;
2831 uint64_t size;
2832 struct stat st;
2833
2834 assert(p->copy_blocks_fd < 0);
2835 assert(p->copy_blocks_size == UINT64_MAX);
2836
2837 if (PARTITION_EXISTS(p)) /* Never copy over partitions that already exist! */
2838 continue;
2839
2840 if (!p->copy_blocks_path)
2841 continue;
2842
2843 source_fd = open(p->copy_blocks_path, O_RDONLY|O_CLOEXEC|O_NOCTTY);
2844 if (source_fd < 0)
2845 return log_error_errno(errno, "Failed to open block copy file '%s': %m", p->copy_blocks_path);
2846
2847 if (fstat(source_fd, &st) < 0)
2848 return log_error_errno(errno, "Failed to stat block copy file '%s': %m", p->copy_blocks_path);
2849
2850 if (S_ISDIR(st.st_mode)) {
2851 _cleanup_free_ char *bdev = NULL;
2852
2853 /* If the file is a directory, automatically find the backing block device */
2854
2855 if (major(st.st_dev) != 0)
2856 r = device_path_make_major_minor(S_IFBLK, st.st_dev, &bdev);
2857 else {
2858 dev_t devt;
2859
2860 /* Special support for btrfs */
2861
2862 r = btrfs_get_block_device_fd(source_fd, &devt);
2863 if (r < 0)
2864 return log_error_errno(r, "Unable to determine backing block device of '%s': %m", p->copy_blocks_path);
2865
2866 r = device_path_make_major_minor(S_IFBLK, devt, &bdev);
2867 }
2868 if (r < 0)
2869 return log_error_errno(r, "Failed to determine block device path for block device backing '%s': %m", p->copy_blocks_path);
2870
2871 safe_close(source_fd);
2872
2873 source_fd = open(bdev, O_RDONLY|O_CLOEXEC|O_NOCTTY);
2874 if (source_fd < 0)
2875 return log_error_errno(errno, "Failed to open block device '%s': %m", bdev);
2876
2877 if (fstat(source_fd, &st) < 0)
2878 return log_error_errno(errno, "Failed to stat block device '%s': %m", bdev);
2879
2880 if (!S_ISBLK(st.st_mode))
2881 return log_error_errno(SYNTHETIC_ERRNO(ENOTBLK), "Block device '%s' is not actually a block device, refusing.", bdev);
2882 }
2883
2884 if (S_ISREG(st.st_mode))
2885 size = st.st_size;
2886 else if (S_ISBLK(st.st_mode)) {
2887 if (ioctl(source_fd, BLKGETSIZE64, &size) != 0)
2888 return log_error_errno(errno, "Failed to determine size of block device to copy from: %m");
2889 } else
2890 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Specified path to copy blocks from '%s' is not a regular file, block device or directory, refusing: %m", p->copy_blocks_path);
2891
2892 if (size <= 0)
2893 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "File to copy bytes from '%s' has zero size, refusing.", p->copy_blocks_path);
2894 if (size % 512 != 0)
2895 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "File to copy bytes from '%s' has size that is not multiple of 512, refusing.", p->copy_blocks_path);
2896
2897 p->copy_blocks_fd = TAKE_FD(source_fd);
2898 p->copy_blocks_size = size;
2899 }
2900
2901 return 0;
2902}
2903
e594a3b1
LP
2904static int help(void) {
2905 _cleanup_free_ char *link = NULL;
2906 int r;
2907
2908 r = terminal_urlify_man("systemd-repart", "1", &link);
2909 if (r < 0)
2910 return log_oom();
2911
2912 printf("%s [OPTIONS...] [DEVICE]\n"
2913 "\n%sGrow and add partitions to partition table.%s\n\n"
2914 " -h --help Show this help\n"
2915 " --version Show package version\n"
2916 " --dry-run=BOOL Whether to run dry-run operation\n"
a26f4a49
LP
2917 " --empty=MODE One of refuse, allow, require, force, create; controls\n"
2918 " how to handle empty disks lacking partition tables\n"
e594a3b1 2919 " --discard=BOOL Whether to discard backing blocks for new partitions\n"
2d2d0a57 2920 " --pretty=BOOL Whether to show pretty summary before doing changes\n"
e594a3b1
LP
2921 " --factory-reset=BOOL Whether to remove data partitions before recreating\n"
2922 " them\n"
2923 " --can-factory-reset Test whether factory reset is defined\n"
2924 " --root=PATH Operate relative to root path\n"
2925 " --definitions=DIR Find partitions in specified directory\n"
2926 " --seed=UUID 128bit seed UUID to derive all UUIDs from\n"
a26f4a49 2927 " --size=BYTES Grow loopback file to specified size\n"
2d2d0a57 2928 " --json=pretty|short|off\n"
de8231b0 2929 " Generate JSON output\n"
e594a3b1
LP
2930 "\nSee the %s for details.\n"
2931 , program_invocation_short_name
2932 , ansi_highlight(), ansi_normal()
2933 , link
2934 );
2935
2936 return 0;
2937}
2938
2939static int parse_argv(int argc, char *argv[]) {
2940
2941 enum {
2942 ARG_VERSION = 0x100,
2943 ARG_DRY_RUN,
2944 ARG_EMPTY,
2945 ARG_DISCARD,
2946 ARG_FACTORY_RESET,
2947 ARG_CAN_FACTORY_RESET,
2948 ARG_ROOT,
2949 ARG_SEED,
2950 ARG_PRETTY,
2951 ARG_DEFINITIONS,
a26f4a49 2952 ARG_SIZE,
a015fbe7 2953 ARG_JSON,
e594a3b1
LP
2954 };
2955
2956 static const struct option options[] = {
2957 { "help", no_argument, NULL, 'h' },
2958 { "version", no_argument, NULL, ARG_VERSION },
2959 { "dry-run", required_argument, NULL, ARG_DRY_RUN },
2960 { "empty", required_argument, NULL, ARG_EMPTY },
2961 { "discard", required_argument, NULL, ARG_DISCARD },
2962 { "factory-reset", required_argument, NULL, ARG_FACTORY_RESET },
2963 { "can-factory-reset", no_argument, NULL, ARG_CAN_FACTORY_RESET },
2964 { "root", required_argument, NULL, ARG_ROOT },
2965 { "seed", required_argument, NULL, ARG_SEED },
2966 { "pretty", required_argument, NULL, ARG_PRETTY },
2967 { "definitions", required_argument, NULL, ARG_DEFINITIONS },
a26f4a49 2968 { "size", required_argument, NULL, ARG_SIZE },
a015fbe7 2969 { "json", required_argument, NULL, ARG_JSON },
e594a3b1
LP
2970 {}
2971 };
2972
a26f4a49 2973 int c, r, dry_run = -1;
e594a3b1
LP
2974
2975 assert(argc >= 0);
2976 assert(argv);
2977
2978 while ((c = getopt_long(argc, argv, "h", options, NULL)) >= 0)
2979
2980 switch (c) {
2981
2982 case 'h':
2983 return help();
2984
2985 case ARG_VERSION:
2986 return version();
2987
2988 case ARG_DRY_RUN:
2989 r = parse_boolean(optarg);
2990 if (r < 0)
2991 return log_error_errno(r, "Failed to parse --dry-run= parameter: %s", optarg);
2992
a26f4a49 2993 dry_run = r;
e594a3b1
LP
2994 break;
2995
2996 case ARG_EMPTY:
2997 if (isempty(optarg) || streq(optarg, "refuse"))
2998 arg_empty = EMPTY_REFUSE;
2999 else if (streq(optarg, "allow"))
3000 arg_empty = EMPTY_ALLOW;
3001 else if (streq(optarg, "require"))
3002 arg_empty = EMPTY_REQUIRE;
3003 else if (streq(optarg, "force"))
3004 arg_empty = EMPTY_FORCE;
a26f4a49
LP
3005 else if (streq(optarg, "create")) {
3006 arg_empty = EMPTY_CREATE;
3007
3008 if (dry_run < 0)
3009 dry_run = false; /* Imply --dry-run=no if we create the loopback file
3010 * anew. After all we cannot really break anyone's
3011 * partition tables that way. */
3012 } else
e594a3b1
LP
3013 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
3014 "Failed to parse --empty= parameter: %s", optarg);
3015 break;
3016
3017 case ARG_DISCARD:
3018 r = parse_boolean(optarg);
3019 if (r < 0)
3020 return log_error_errno(r, "Failed to parse --discard= parameter: %s", optarg);
3021
3022 arg_discard = r;
3023 break;
3024
3025 case ARG_FACTORY_RESET:
3026 r = parse_boolean(optarg);
3027 if (r < 0)
3028 return log_error_errno(r, "Failed to parse --factory-reset= parameter: %s", optarg);
3029
3030 arg_factory_reset = r;
3031 break;
3032
3033 case ARG_CAN_FACTORY_RESET:
3034 arg_can_factory_reset = true;
3035 break;
3036
3037 case ARG_ROOT:
3038 r = parse_path_argument_and_warn(optarg, false, &arg_root);
3039 if (r < 0)
3040 return r;
3041 break;
3042
3043 case ARG_SEED:
3044 if (isempty(optarg)) {
3045 arg_seed = SD_ID128_NULL;
3046 arg_randomize = false;
3047 } else if (streq(optarg, "random"))
3048 arg_randomize = true;
3049 else {
3050 r = sd_id128_from_string(optarg, &arg_seed);
3051 if (r < 0)
3052 return log_error_errno(r, "Failed to parse seed: %s", optarg);
3053
3054 arg_randomize = false;
3055 }
3056
3057 break;
3058
3059 case ARG_PRETTY:
3060 r = parse_boolean(optarg);
3061 if (r < 0)
3062 return log_error_errno(r, "Failed to parse --pretty= parameter: %s", optarg);
3063
3064 arg_pretty = r;
3065 break;
3066
3067 case ARG_DEFINITIONS:
3068 r = parse_path_argument_and_warn(optarg, false, &arg_definitions);
3069 if (r < 0)
3070 return r;
3071 break;
3072
a26f4a49
LP
3073 case ARG_SIZE: {
3074 uint64_t parsed, rounded;
3075
3076 r = parse_size(optarg, 1024, &parsed);
3077 if (r < 0)
3078 return log_error_errno(r, "Failed to parse --size= parameter: %s", optarg);
3079
3080 rounded = round_up_size(parsed, 4096);
3081 if (rounded == 0)
3082 return log_error_errno(SYNTHETIC_ERRNO(ERANGE), "Specified image size too small, refusing.");
3083 if (rounded == UINT64_MAX)
3084 return log_error_errno(SYNTHETIC_ERRNO(ERANGE), "Specified image size too large, refusing.");
3085
3086 if (rounded != parsed)
3087 log_warning("Specified size is not a multiple of 4096, rounding up automatically. (%" PRIu64 " → %" PRIu64 ")",
3088 parsed, rounded);
3089
3090 arg_size = rounded;
3091 break;
3092 }
a015fbe7
TH
3093 case ARG_JSON:
3094 if (streq(optarg, "pretty")) {
3095 arg_json = true;
3096 arg_json_format_flags = JSON_FORMAT_PRETTY|JSON_FORMAT_COLOR_AUTO;
3097 } else if (streq(optarg, "short")) {
3098 arg_json = true;
3099 arg_json_format_flags = JSON_FORMAT_NEWLINE;
3100 } else if (streq(optarg, "off")) {
3101 arg_json = false;
3102 arg_json_format_flags = 0;
3103 } else if (streq(optarg, "help")) {
3104 puts("pretty\n"
3105 "short\n"
3106 "off");
3107 return 0;
3108 } else
3109 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Unknown argument to --json=: %s", optarg);
3110
3111 break;
3112
a26f4a49 3113
e594a3b1
LP
3114 case '?':
3115 return -EINVAL;
3116
3117 default:
3118 assert_not_reached("Unhandled option");
3119 }
3120
3121 if (argc - optind > 1)
3122 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
3123 "Expected at most one argument, the path to the block device.");
3124
a26f4a49 3125 if (arg_factory_reset > 0 && IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE, EMPTY_CREATE))
e594a3b1 3126 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
a26f4a49 3127 "Combination of --factory-reset=yes and --empty=force/--empty=require/--empty=create is invalid.");
e594a3b1
LP
3128
3129 if (arg_can_factory_reset)
a26f4a49
LP
3130 arg_dry_run = true; /* When --can-factory-reset is specified we don't make changes, hence
3131 * non-dry-run mode makes no sense. Thus, imply dry run mode so that we
3132 * open things strictly read-only. */
3133 else if (dry_run >= 0)
3134 arg_dry_run = dry_run;
3135
3136 if (arg_empty == EMPTY_CREATE && arg_size == UINT64_MAX)
3137 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
3138 "If --empty=create is specified, --size= must be specified, too.");
e594a3b1
LP
3139
3140 arg_node = argc > optind ? argv[optind] : NULL;
a26f4a49
LP
3141
3142 if (IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE, EMPTY_CREATE) && !arg_node)
3143 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
3144 "A path to a device node or loopback file must be specified when --empty=force, --empty=require or --empty=create are used.");
3145
e594a3b1
LP
3146 return 1;
3147}
3148
3149static int parse_proc_cmdline_factory_reset(void) {
3150 bool b;
3151 int r;
3152
3153 if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */
3154 return 0;
3155
3156 if (!in_initrd()) /* Never honour kernel command line factory reset request outside of the initrd */
3157 return 0;
3158
3159 r = proc_cmdline_get_bool("systemd.factory_reset", &b);
3160 if (r < 0)
3161 return log_error_errno(r, "Failed to parse systemd.factory_reset kernel command line argument: %m");
3162 if (r > 0) {
3163 arg_factory_reset = b;
3164
3165 if (b)
3166 log_notice("Honouring factory reset requested via kernel command line.");
3167 }
3168
3169 return 0;
3170}
3171
3172static int parse_efi_variable_factory_reset(void) {
3173 _cleanup_free_ char *value = NULL;
3174 int r;
3175
3176 if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */
3177 return 0;
3178
3179 if (!in_initrd()) /* Never honour EFI variable factory reset request outside of the initrd */
3180 return 0;
3181
3182 r = efi_get_variable_string(EFI_VENDOR_SYSTEMD, "FactoryReset", &value);
3183 if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r))
3184 return 0;
3185 if (r < 0)
3186 return log_error_errno(r, "Failed to read EFI variable FactoryReset: %m");
3187
3188 r = parse_boolean(value);
3189 if (r < 0)
3190 return log_error_errno(r, "Failed to parse EFI variable FactoryReset: %m");
3191
3192 arg_factory_reset = r;
3193 if (r)
3194 log_notice("Honouring factory reset requested via EFI variable FactoryReset: %m");
3195
3196 return 0;
3197}
3198
3199static int remove_efi_variable_factory_reset(void) {
3200 int r;
3201
3202 r = efi_set_variable(EFI_VENDOR_SYSTEMD, "FactoryReset", NULL, 0);
3203 if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r))
3204 return 0;
3205 if (r < 0)
3206 return log_error_errno(r, "Failed to remove EFI variable FactoryReset: %m");
3207
3208 log_info("Successfully unset EFI variable FactoryReset.");
3209 return 0;
3210}
3211
a26f4a49 3212static int acquire_root_devno(const char *p, int mode, char **ret, int *ret_fd) {
e594a3b1
LP
3213 _cleanup_close_ int fd = -1;
3214 struct stat st;
a26f4a49 3215 dev_t devno, fd_devno = (mode_t) -1;
e594a3b1
LP
3216 int r;
3217
a26f4a49
LP
3218 assert(p);
3219 assert(ret);
3220 assert(ret_fd);
3221
e594a3b1
LP
3222 fd = open(p, mode);
3223 if (fd < 0)
3224 return -errno;
3225
3226 if (fstat(fd, &st) < 0)
3227 return -errno;
3228
3229 if (S_ISREG(st.st_mode)) {
3230 char *s;
3231
3232 s = strdup(p);
3233 if (!s)
3234 return log_oom();
3235
3236 *ret = s;
a26f4a49
LP
3237 *ret_fd = TAKE_FD(fd);
3238
e594a3b1
LP
3239 return 0;
3240 }
3241
3242 if (S_ISBLK(st.st_mode))
a26f4a49 3243 fd_devno = devno = st.st_rdev;
e594a3b1
LP
3244 else if (S_ISDIR(st.st_mode)) {
3245
3246 devno = st.st_dev;
a26f4a49 3247 if (major(devno) == 0) {
e594a3b1
LP
3248 r = btrfs_get_block_device_fd(fd, &devno);
3249 if (r == -ENOTTY) /* not btrfs */
3250 return -ENODEV;
3251 if (r < 0)
3252 return r;
3253 }
e594a3b1
LP
3254 } else
3255 return -ENOTBLK;
3256
3257 /* From dm-crypt to backing partition */
3258 r = block_get_originating(devno, &devno);
3259 if (r < 0)
3260 log_debug_errno(r, "Failed to find underlying block device for '%s', ignoring: %m", p);
3261
3262 /* From partition to whole disk containing it */
3263 r = block_get_whole_disk(devno, &devno);
3264 if (r < 0)
162392b7 3265 log_debug_errno(r, "Failed to find whole disk block device for '%s', ignoring: %m", p);
e594a3b1 3266
a26f4a49
LP
3267 r = device_path_make_canonical(S_IFBLK, devno, ret);
3268 if (r < 0)
3269 return log_debug_errno(r, "Failed to determine canonical path for '%s': %m", p);
3270
3271 /* Only if we still lock at the same block device we can reuse the fd. Otherwise return an
3272 * invalidated fd. */
3273 *ret_fd = fd_devno != (mode_t) -1 && fd_devno == devno ? TAKE_FD(fd) : -1;
3274 return 0;
e594a3b1
LP
3275}
3276
a26f4a49 3277static int find_root(char **ret, int *ret_fd) {
e594a3b1
LP
3278 const char *t;
3279 int r;
3280
a26f4a49
LP
3281 assert(ret);
3282 assert(ret_fd);
3283
e594a3b1 3284 if (arg_node) {
a26f4a49
LP
3285 if (arg_empty == EMPTY_CREATE) {
3286 _cleanup_close_ int fd = -1;
3287 _cleanup_free_ char *s = NULL;
3288
3289 s = strdup(arg_node);
3290 if (!s)
3291 return log_oom();
3292
3293 fd = open(arg_node, O_RDONLY|O_CREAT|O_EXCL|O_CLOEXEC|O_NOFOLLOW, 0777);
3294 if (fd < 0)
3295 return log_error_errno(errno, "Failed to create '%s': %m", arg_node);
3296
3297 *ret = TAKE_PTR(s);
3298 *ret_fd = TAKE_FD(fd);
3299 return 0;
3300 }
3301
3302 r = acquire_root_devno(arg_node, O_RDONLY|O_CLOEXEC, ret, ret_fd);
e594a3b1 3303 if (r < 0)
aa2a74ad 3304 return log_error_errno(r, "Failed to open file or determine backing device of %s: %m", arg_node);
e594a3b1
LP
3305
3306 return 0;
3307 }
3308
a26f4a49
LP
3309 assert(IN_SET(arg_empty, EMPTY_REFUSE, EMPTY_ALLOW));
3310
e594a3b1
LP
3311 /* Let's search for the root device. We look for two cases here: first in /, and then in /usr. The
3312 * latter we check for cases where / is a tmpfs and only /usr is an actual persistent block device
3313 * (think: volatile setups) */
3314
3315 FOREACH_STRING(t, "/", "/usr") {
3316 _cleanup_free_ char *j = NULL;
3317 const char *p;
3318
3319 if (in_initrd()) {
3320 j = path_join("/sysroot", t);
3321 if (!j)
3322 return log_oom();
3323
3324 p = j;
3325 } else
3326 p = t;
3327
a26f4a49 3328 r = acquire_root_devno(p, O_RDONLY|O_DIRECTORY|O_CLOEXEC, ret, ret_fd);
e594a3b1
LP
3329 if (r < 0) {
3330 if (r != -ENODEV)
3331 return log_error_errno(r, "Failed to determine backing device of %s: %m", p);
3332 } else
3333 return 0;
3334 }
3335
3336 return log_error_errno(SYNTHETIC_ERRNO(ENODEV), "Failed to discover root block device.");
3337}
3338
a26f4a49
LP
3339static int resize_backing_fd(const char *node, int *fd) {
3340 char buf1[FORMAT_BYTES_MAX], buf2[FORMAT_BYTES_MAX];
3341 _cleanup_close_ int writable_fd = -1;
3342 struct stat st;
3343 int r;
3344
3345 assert(node);
3346 assert(fd);
3347
3348 if (arg_size == UINT64_MAX) /* Nothing to do */
3349 return 0;
3350
3351 if (*fd < 0) {
3352 /* Open the file if we haven't opened it yet. Note that we open it read-only here, just to
3353 * keep a reference to the file we can pass around. */
3354 *fd = open(node, O_RDONLY|O_CLOEXEC);
3355 if (*fd < 0)
3356 return log_error_errno(errno, "Failed to open '%s' in order to adjust size: %m", node);
3357 }
3358
3359 if (fstat(*fd, &st) < 0)
3360 return log_error_errno(errno, "Failed to stat '%s': %m", node);
3361
3362 r = stat_verify_regular(&st);
3363 if (r < 0)
3364 return log_error_errno(r, "Specified path '%s' is not a regular file, cannot resize: %m", node);
3365
3366 assert_se(format_bytes(buf1, sizeof(buf1), st.st_size));
3367 assert_se(format_bytes(buf2, sizeof(buf2), arg_size));
3368
3369 if ((uint64_t) st.st_size >= arg_size) {
3370 log_info("File '%s' already is of requested size or larger, not growing. (%s >= %s)", node, buf1, buf2);
3371 return 0;
3372 }
3373
3374 /* The file descriptor is read-only. In order to grow the file we need to have a writable fd. We
3375 * reopen the file for that temporarily. We keep the writable fd only open for this operation though,
3376 * as fdisk can't accept it anyway. */
3377
3378 writable_fd = fd_reopen(*fd, O_WRONLY|O_CLOEXEC);
3379 if (writable_fd < 0)
3380 return log_error_errno(writable_fd, "Failed to reopen backing file '%s' writable: %m", node);
3381
3382 if (!arg_discard) {
3383 if (fallocate(writable_fd, 0, 0, arg_size) < 0) {
3384 if (!ERRNO_IS_NOT_SUPPORTED(errno))
3385 return log_error_errno(errno, "Failed to grow '%s' from %s to %s by allocation: %m",
3386 node, buf1, buf2);
3387
3388 /* Fallback to truncation, if fallocate() is not supported. */
3389 log_debug("Backing file system does not support fallocate(), falling back to ftruncate().");
3390 } else {
3391 if (st.st_size == 0) /* Likely regular file just created by us */
3392 log_info("Allocated %s for '%s'.", buf2, node);
3393 else
3394 log_info("File '%s' grown from %s to %s by allocation.", node, buf1, buf2);
3395
3396 return 1;
3397 }
3398 }
3399
3400 if (ftruncate(writable_fd, arg_size) < 0)
3401 return log_error_errno(errno, "Failed to grow '%s' from %s to %s by truncation: %m",
3402 node, buf1, buf2);
3403
3404 if (st.st_size == 0) /* Likely regular file just created by us */
3405 log_info("Sized '%s' to %s.", node, buf2);
3406 else
3407 log_info("File '%s' grown from %s to %s by truncation.", node, buf1, buf2);
3408
3409 return 1;
3410}
3411
e594a3b1
LP
3412static int run(int argc, char *argv[]) {
3413 _cleanup_(context_freep) Context* context = NULL;
3414 _cleanup_free_ char *node = NULL;
a26f4a49 3415 _cleanup_close_ int backing_fd = -1;
e594a3b1
LP
3416 bool from_scratch;
3417 int r;
3418
3419 log_show_color(true);
3420 log_parse_environment();
3421 log_open();
3422
3423 if (in_initrd()) {
3424 /* Default to operation on /sysroot when invoked in the initrd! */
3425 arg_root = strdup("/sysroot");
3426 if (!arg_root)
3427 return log_oom();
3428 }
3429
3430 r = parse_argv(argc, argv);
3431 if (r <= 0)
3432 return r;
3433
3434 r = parse_proc_cmdline_factory_reset();
3435 if (r < 0)
3436 return r;
3437
3438 r = parse_efi_variable_factory_reset();
3439 if (r < 0)
3440 return r;
3441
e594a3b1
LP
3442 context = context_new(arg_seed);
3443 if (!context)
3444 return log_oom();
3445
3446 r = context_read_definitions(context, arg_definitions, arg_root);
3447 if (r < 0)
3448 return r;
3449
a26f4a49 3450 if (context->n_partitions <= 0 && arg_empty == EMPTY_REFUSE) {
e2d65cd2 3451 log_info("Didn't find any partition definition files, nothing to do.");
0ae5ffe0 3452 return 0;
e2d65cd2 3453 }
0ae5ffe0 3454
a26f4a49 3455 r = find_root(&node, &backing_fd);
0ae5ffe0
YW
3456 if (r < 0)
3457 return r;
3458
a26f4a49
LP
3459 if (arg_size != UINT64_MAX) {
3460 r = resize_backing_fd(node, &backing_fd);
3461 if (r < 0)
3462 return r;
3463 }
3464
3465 r = context_load_partition_table(context, node, &backing_fd);
e594a3b1
LP
3466 if (r == -EHWPOISON)
3467 return 77; /* Special return value which means "Not GPT, so not doing anything". This isn't
3468 * really an error when called at boot. */
3469 if (r < 0)
3470 return r;
3471 from_scratch = r > 0; /* Starting from scratch */
3472
3473 if (arg_can_factory_reset) {
3474 r = context_can_factory_reset(context);
3475 if (r < 0)
3476 return r;
3477 if (r == 0)
3478 return EXIT_FAILURE;
3479
3480 return 0;
3481 }
3482
3483 r = context_factory_reset(context, from_scratch);
3484 if (r < 0)
3485 return r;
3486 if (r > 0) {
3487 /* We actually did a factory reset! */
3488 r = remove_efi_variable_factory_reset();
3489 if (r < 0)
3490 return r;
3491
3492 /* Reload the reduced partition table */
3493 context_unload_partition_table(context);
a26f4a49 3494 r = context_load_partition_table(context, node, &backing_fd);
e594a3b1
LP
3495 if (r < 0)
3496 return r;
3497 }
3498
3499#if 0
3500 (void) context_dump_partitions(context, node);
3501 putchar('\n');
3502#endif
3503
3504 r = context_read_seed(context, arg_root);
3505 if (r < 0)
3506 return r;
3507
757bc2e4
LP
3508 /* Open all files to copy blocks from now, since we want to take their size into consideration */
3509 r = context_open_copy_block_paths(context);
3510 if (r < 0)
3511 return r;
3512
e594a3b1
LP
3513 /* First try to fit new partitions in, dropping by priority until it fits */
3514 for (;;) {
3515 if (context_allocate_partitions(context))
3516 break; /* Success! */
3517
3518 if (!context_drop_one_priority(context))
3519 return log_error_errno(SYNTHETIC_ERRNO(ENOSPC),
3520 "Can't fit requested partitions into free space, refusing.");
3521 }
3522
3523 /* Now assign free space according to the weight logic */
3524 r = context_grow_partitions(context);
3525 if (r < 0)
3526 return r;
3527
3528 /* Now calculate where each partition gets placed */
3529 context_place_partitions(context);
3530
3531 /* Make sure each partition has a unique UUID and unique label */
3532 r = context_acquire_partition_uuids_and_labels(context);
3533 if (r < 0)
3534 return r;
3535
3536 r = context_write_partition_table(context, node, from_scratch);
3537 if (r < 0)
3538 return r;
3539
3540 return 0;
3541}
3542
3543DEFINE_MAIN_FUNCTION_WITH_POSITIVE_FAILURE(run);