]> git.ipfire.org Git - thirdparty/openssl.git/blame - ssl/s3_cbc.c
Ensure all EVP calls have their returns checked where appropriate
[thirdparty/openssl.git] / ssl / s3_cbc.c
CommitLineData
a693ead6
BL
1/* ssl/s3_cbc.c */
2/* ====================================================================
3 * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55
68570797 56#include "internal/constant_time_locl.h"
a693ead6
BL
57#include "ssl_locl.h"
58
59#include <openssl/md5.h>
60#include <openssl/sha.h>
61
0f113f3e
MC
62/*
63 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
64 * length field. (SHA-384/512 have 128-bit length.)
65 */
a693ead6
BL
66#define MAX_HASH_BIT_COUNT_BYTES 16
67
0f113f3e
MC
68/*
69 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
a693ead6 70 * Currently SHA-384/512 has a 128-byte block size and that's the largest
0f113f3e
MC
71 * supported by TLS.)
72 */
a693ead6
BL
73#define MAX_HASH_BLOCK_SIZE 128
74
0f113f3e 75
a693ead6 76
0f113f3e
MC
77/*
78 * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
79 * little-endian order. The value of p is advanced by four.
80 */
32620fe9 81#define u32toLE(n, p) \
0f113f3e
MC
82 (*((p)++)=(unsigned char)(n), \
83 *((p)++)=(unsigned char)(n>>8), \
84 *((p)++)=(unsigned char)(n>>16), \
85 *((p)++)=(unsigned char)(n>>24))
86
87/*
88 * These functions serialize the state of a hash and thus perform the
89 * standard "final" operation without adding the padding and length that such
90 * a function typically does.
91 */
92static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
93{
94 MD5_CTX *md5 = ctx;
95 u32toLE(md5->A, md_out);
96 u32toLE(md5->B, md_out);
97 u32toLE(md5->C, md_out);
98 u32toLE(md5->D, md_out);
99}
100
101static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
102{
103 SHA_CTX *sha1 = ctx;
104 l2n(sha1->h0, md_out);
105 l2n(sha1->h1, md_out);
106 l2n(sha1->h2, md_out);
107 l2n(sha1->h3, md_out);
108 l2n(sha1->h4, md_out);
109}
110
0f113f3e
MC
111static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
112{
113 SHA256_CTX *sha256 = ctx;
114 unsigned i;
115
116 for (i = 0; i < 8; i++) {
117 l2n(sha256->h[i], md_out);
118 }
119}
120
0f113f3e
MC
121static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
122{
123 SHA512_CTX *sha512 = ctx;
124 unsigned i;
125
126 for (i = 0; i < 8; i++) {
127 l2n8(sha512->h[i], md_out);
128 }
129}
130
474e469b
RS
131#undef LARGEST_DIGEST_CTX
132#define LARGEST_DIGEST_CTX SHA512_CTX
a693ead6 133
0f113f3e
MC
134/*
135 * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
136 * which ssl3_cbc_digest_record supports.
137 */
a693ead6 138char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
0f113f3e
MC
139{
140 if (FIPS_mode())
141 return 0;
142 switch (EVP_MD_CTX_type(ctx)) {
143 case NID_md5:
144 case NID_sha1:
0f113f3e
MC
145 case NID_sha224:
146 case NID_sha256:
0f113f3e
MC
147 case NID_sha384:
148 case NID_sha512:
0f113f3e
MC
149 return 1;
150 default:
151 return 0;
152 }
153}
a693ead6 154
1d97c843
TH
155/*-
156 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
a693ead6
BL
157 * record.
158 *
159 * ctx: the EVP_MD_CTX from which we take the hash function.
160 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
161 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
162 * md_out_size: if non-NULL, the number of output bytes is written here.
163 * header: the 13-byte, TLS record header.
478b50cf 164 * data: the record data itself, less any preceding explicit IV.
a693ead6
BL
165 * data_plus_mac_size: the secret, reported length of the data and MAC
166 * once the padding has been removed.
167 * data_plus_mac_plus_padding_size: the public length of the whole
168 * record, including padding.
169 * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
170 *
171 * On entry: by virtue of having been through one of the remove_padding
172 * functions, above, we know that data_plus_mac_size is large enough to contain
173 * a padding byte and MAC. (If the padding was invalid, it might contain the
0f113f3e 174 * padding too. )
5f3d93e4 175 * Returns 1 on success or 0 on error
1d97c843 176 */
5f3d93e4 177int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
0f113f3e
MC
178 unsigned char *md_out,
179 size_t *md_out_size,
180 const unsigned char header[13],
181 const unsigned char *data,
182 size_t data_plus_mac_size,
183 size_t data_plus_mac_plus_padding_size,
184 const unsigned char *mac_secret,
185 unsigned mac_secret_length, char is_sslv3)
186{
187 union {
188 double align;
189 unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
190 } md_state;
191 void (*md_final_raw) (void *ctx, unsigned char *md_out);
192 void (*md_transform) (void *ctx, const unsigned char *block);
193 unsigned md_size, md_block_size = 64;
194 unsigned sslv3_pad_length = 40, header_length, variance_blocks,
195 len, max_mac_bytes, num_blocks,
196 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
197 unsigned int bits; /* at most 18 bits */
198 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
199 /* hmac_pad is the masked HMAC key. */
200 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
201 unsigned char first_block[MAX_HASH_BLOCK_SIZE];
202 unsigned char mac_out[EVP_MAX_MD_SIZE];
203 unsigned i, j, md_out_size_u;
204 EVP_MD_CTX md_ctx;
205 /*
206 * mdLengthSize is the number of bytes in the length field that
207 * terminates * the hash.
208 */
209 unsigned md_length_size = 8;
210 char length_is_big_endian = 1;
211 int ret;
212
213 /*
214 * This is a, hopefully redundant, check that allows us to forget about
215 * many possible overflows later in this function.
216 */
217 OPENSSL_assert(data_plus_mac_plus_padding_size < 1024 * 1024);
218
219 switch (EVP_MD_CTX_type(ctx)) {
220 case NID_md5:
5f3d93e4
MC
221 if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
222 return 0;
0f113f3e
MC
223 md_final_raw = tls1_md5_final_raw;
224 md_transform =
225 (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
226 md_size = 16;
227 sslv3_pad_length = 48;
228 length_is_big_endian = 0;
229 break;
230 case NID_sha1:
5f3d93e4
MC
231 if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
232 return 0;
0f113f3e
MC
233 md_final_raw = tls1_sha1_final_raw;
234 md_transform =
235 (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
236 md_size = 20;
237 break;
0f113f3e 238 case NID_sha224:
5f3d93e4
MC
239 if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
240 return 0;
0f113f3e
MC
241 md_final_raw = tls1_sha256_final_raw;
242 md_transform =
243 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
244 md_size = 224 / 8;
245 break;
246 case NID_sha256:
5f3d93e4
MC
247 if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
248 return 0;
0f113f3e
MC
249 md_final_raw = tls1_sha256_final_raw;
250 md_transform =
251 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
252 md_size = 32;
253 break;
0f113f3e 254 case NID_sha384:
5f3d93e4
MC
255 if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
256 return 0;
0f113f3e
MC
257 md_final_raw = tls1_sha512_final_raw;
258 md_transform =
259 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
260 md_size = 384 / 8;
261 md_block_size = 128;
262 md_length_size = 16;
263 break;
264 case NID_sha512:
5f3d93e4
MC
265 if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
266 return 0;
0f113f3e
MC
267 md_final_raw = tls1_sha512_final_raw;
268 md_transform =
269 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
270 md_size = 64;
271 md_block_size = 128;
272 md_length_size = 16;
273 break;
0f113f3e
MC
274 default:
275 /*
276 * ssl3_cbc_record_digest_supported should have been called first to
277 * check that the hash function is supported.
278 */
279 OPENSSL_assert(0);
280 if (md_out_size)
281 *md_out_size = -1;
5f3d93e4 282 return 0;
0f113f3e
MC
283 }
284
285 OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
286 OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
287 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
288
289 header_length = 13;
290 if (is_sslv3) {
291 header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
292 * number */ +
293 1 /* record type */ +
294 2 /* record length */ ;
295 }
296
297 /*
298 * variance_blocks is the number of blocks of the hash that we have to
299 * calculate in constant time because they could be altered by the
300 * padding value. In SSLv3, the padding must be minimal so the end of
301 * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
302 * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
303 * of hash termination (0x80 + 64-bit length) don't fit in the final
304 * block, we say that the final two blocks can vary based on the padding.
305 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
306 * required to be minimal. Therefore we say that the final six blocks can
307 * vary based on the padding. Later in the function, if the message is
308 * short and there obviously cannot be this many blocks then
309 * variance_blocks can be reduced.
310 */
311 variance_blocks = is_sslv3 ? 2 : 6;
312 /*
313 * From now on we're dealing with the MAC, which conceptually has 13
314 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
315 * (SSLv3)
316 */
317 len = data_plus_mac_plus_padding_size + header_length;
318 /*
319 * max_mac_bytes contains the maximum bytes of bytes in the MAC,
320 * including * |header|, assuming that there's no padding.
321 */
322 max_mac_bytes = len - md_size - 1;
323 /* num_blocks is the maximum number of hash blocks. */
324 num_blocks =
325 (max_mac_bytes + 1 + md_length_size + md_block_size -
326 1) / md_block_size;
327 /*
328 * In order to calculate the MAC in constant time we have to handle the
329 * final blocks specially because the padding value could cause the end
330 * to appear somewhere in the final |variance_blocks| blocks and we can't
331 * leak where. However, |num_starting_blocks| worth of data can be hashed
332 * right away because no padding value can affect whether they are
333 * plaintext.
334 */
335 num_starting_blocks = 0;
336 /*
337 * k is the starting byte offset into the conceptual header||data where
338 * we start processing.
339 */
340 k = 0;
341 /*
342 * mac_end_offset is the index just past the end of the data to be MACed.
343 */
344 mac_end_offset = data_plus_mac_size + header_length - md_size;
345 /*
346 * c is the index of the 0x80 byte in the final hash block that contains
347 * application data.
348 */
349 c = mac_end_offset % md_block_size;
350 /*
351 * index_a is the hash block number that contains the 0x80 terminating
352 * value.
353 */
354 index_a = mac_end_offset / md_block_size;
355 /*
356 * index_b is the hash block number that contains the 64-bit hash length,
357 * in bits.
358 */
359 index_b = (mac_end_offset + md_length_size) / md_block_size;
360 /*
361 * bits is the hash-length in bits. It includes the additional hash block
362 * for the masked HMAC key, or whole of |header| in the case of SSLv3.
363 */
364
365 /*
366 * For SSLv3, if we're going to have any starting blocks then we need at
367 * least two because the header is larger than a single block.
368 */
369 if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
370 num_starting_blocks = num_blocks - variance_blocks;
371 k = md_block_size * num_starting_blocks;
372 }
373
374 bits = 8 * mac_end_offset;
375 if (!is_sslv3) {
376 /*
377 * Compute the initial HMAC block. For SSLv3, the padding and secret
378 * bytes are included in |header| because they take more than a
379 * single block.
380 */
381 bits += 8 * md_block_size;
382 memset(hmac_pad, 0, md_block_size);
383 OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
384 memcpy(hmac_pad, mac_secret, mac_secret_length);
385 for (i = 0; i < md_block_size; i++)
386 hmac_pad[i] ^= 0x36;
387
388 md_transform(md_state.c, hmac_pad);
389 }
390
391 if (length_is_big_endian) {
392 memset(length_bytes, 0, md_length_size - 4);
393 length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
394 length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
395 length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
396 length_bytes[md_length_size - 1] = (unsigned char)bits;
397 } else {
398 memset(length_bytes, 0, md_length_size);
399 length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
400 length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
401 length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
402 length_bytes[md_length_size - 8] = (unsigned char)bits;
403 }
404
405 if (k > 0) {
406 if (is_sslv3) {
29b0a15a
MC
407 unsigned overhang;
408
0f113f3e
MC
409 /*
410 * The SSLv3 header is larger than a single block. overhang is
411 * the number of bytes beyond a single block that the header
29b0a15a
MC
412 * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
413 * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
414 * therefore we can be confident that the header_length will be
415 * greater than |md_block_size|. However we add a sanity check just
416 * in case
0f113f3e 417 */
29b0a15a
MC
418 if (header_length <= md_block_size) {
419 /* Should never happen */
5f3d93e4 420 return 0;
29b0a15a
MC
421 }
422 overhang = header_length - md_block_size;
0f113f3e
MC
423 md_transform(md_state.c, header);
424 memcpy(first_block, header + md_block_size, overhang);
425 memcpy(first_block + overhang, data, md_block_size - overhang);
426 md_transform(md_state.c, first_block);
427 for (i = 1; i < k / md_block_size - 1; i++)
428 md_transform(md_state.c, data + md_block_size * i - overhang);
429 } else {
430 /* k is a multiple of md_block_size. */
431 memcpy(first_block, header, 13);
432 memcpy(first_block + 13, data, md_block_size - 13);
433 md_transform(md_state.c, first_block);
434 for (i = 1; i < k / md_block_size; i++)
435 md_transform(md_state.c, data + md_block_size * i - 13);
436 }
437 }
438
439 memset(mac_out, 0, sizeof(mac_out));
440
441 /*
442 * We now process the final hash blocks. For each block, we construct it
443 * in constant time. If the |i==index_a| then we'll include the 0x80
444 * bytes and zero pad etc. For each block we selectively copy it, in
445 * constant time, to |mac_out|.
446 */
447 for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
448 i++) {
449 unsigned char block[MAX_HASH_BLOCK_SIZE];
450 unsigned char is_block_a = constant_time_eq_8(i, index_a);
451 unsigned char is_block_b = constant_time_eq_8(i, index_b);
452 for (j = 0; j < md_block_size; j++) {
453 unsigned char b = 0, is_past_c, is_past_cp1;
454 if (k < header_length)
455 b = header[k];
456 else if (k < data_plus_mac_plus_padding_size + header_length)
457 b = data[k - header_length];
458 k++;
459
460 is_past_c = is_block_a & constant_time_ge_8(j, c);
461 is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
462 /*
463 * If this is the block containing the end of the application
464 * data, and we are at the offset for the 0x80 value, then
465 * overwrite b with 0x80.
466 */
467 b = constant_time_select_8(is_past_c, 0x80, b);
468 /*
469 * If this the the block containing the end of the application
470 * data and we're past the 0x80 value then just write zero.
471 */
472 b = b & ~is_past_cp1;
473 /*
474 * If this is index_b (the final block), but not index_a (the end
475 * of the data), then the 64-bit length didn't fit into index_a
476 * and we're having to add an extra block of zeros.
477 */
478 b &= ~is_block_b | is_block_a;
479
480 /*
481 * The final bytes of one of the blocks contains the length.
482 */
483 if (j >= md_block_size - md_length_size) {
484 /* If this is index_b, write a length byte. */
485 b = constant_time_select_8(is_block_b,
486 length_bytes[j -
487 (md_block_size -
488 md_length_size)], b);
489 }
490 block[j] = b;
491 }
492
493 md_transform(md_state.c, block);
494 md_final_raw(md_state.c, block);
495 /* If this is index_b, copy the hash value to |mac_out|. */
496 for (j = 0; j < md_size; j++)
497 mac_out[j] |= block[j] & is_block_b;
498 }
499
500 EVP_MD_CTX_init(&md_ctx);
5f3d93e4
MC
501 if (EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */ ) <= 0)
502 goto err;
0f113f3e
MC
503 if (is_sslv3) {
504 /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
505 memset(hmac_pad, 0x5c, sslv3_pad_length);
506
5f3d93e4
MC
507 if (EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length) <= 0
508 || EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length) <= 0
509 || EVP_DigestUpdate(&md_ctx, mac_out, md_size) <= 0)
510 goto err;
0f113f3e
MC
511 } else {
512 /* Complete the HMAC in the standard manner. */
513 for (i = 0; i < md_block_size; i++)
514 hmac_pad[i] ^= 0x6a;
515
5f3d93e4
MC
516 if (EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size) <= 0
517 || EVP_DigestUpdate(&md_ctx, mac_out, md_size) <= 0)
518 goto err;
0f113f3e
MC
519 }
520 ret = EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
521 if (ret && md_out_size)
522 *md_out_size = md_out_size_u;
523 EVP_MD_CTX_cleanup(&md_ctx);
5f3d93e4
MC
524
525 return 1;
526err:
527 EVP_MD_CTX_cleanup(&md_ctx);
528 return 0;
0f113f3e
MC
529}
530
531/*
532 * Due to the need to use EVP in FIPS mode we can't reimplement digests but
533 * we can ensure the number of blocks processed is equal for all cases by
534 * digesting additional data.
c4e6fb15
DSH
535 */
536
0f113f3e
MC
537void tls_fips_digest_extra(const EVP_CIPHER_CTX *cipher_ctx,
538 EVP_MD_CTX *mac_ctx, const unsigned char *data,
539 size_t data_len, size_t orig_len)
540{
541 size_t block_size, digest_pad, blocks_data, blocks_orig;
542 if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
543 return;
544 block_size = EVP_MD_CTX_block_size(mac_ctx);
35a1cc90
MC
545 /*-
546 * We are in FIPS mode if we get this far so we know we have only SHA*
547 * digests and TLS to deal with.
548 * Minimum digest padding length is 17 for SHA384/SHA512 and 9
549 * otherwise.
550 * Additional header is 13 bytes. To get the number of digest blocks
551 * processed round up the amount of data plus padding to the nearest
552 * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
553 * So we have:
554 * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
555 * equivalently:
556 * blocks = (payload_len + digest_pad + 12)/block_size + 1
557 * HMAC adds a constant overhead.
558 * We're ultimately only interested in differences so this becomes
559 * blocks = (payload_len + 29)/128
560 * for SHA384/SHA512 and
561 * blocks = (payload_len + 21)/64
562 * otherwise.
563 */
0f113f3e
MC
564 digest_pad = block_size == 64 ? 21 : 29;
565 blocks_orig = (orig_len + digest_pad) / block_size;
566 blocks_data = (data_len + digest_pad) / block_size;
567 /*
568 * MAC enough blocks to make up the difference between the original and
569 * actual lengths plus one extra block to ensure this is never a no op.
570 * The "data" pointer should always have enough space to perform this
571 * operation as it is large enough for a maximum length TLS buffer.
572 */
573 EVP_DigestSignUpdate(mac_ctx, data,
574 (blocks_orig - blocks_data + 1) * block_size);
575}