]> git.ipfire.org Git - thirdparty/qemu.git/blame - target/i386/kvm.c
Merge remote-tracking branch 'remotes/berrange/tags/misc-next-pull-request' into...
[thirdparty/qemu.git] / target / i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
b6a0aa05 15#include "qemu/osdep.h"
da34e65c 16#include "qapi/error.h"
05330448 17#include <sys/ioctl.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
1814eab6 21#include "standard-headers/asm-x86/kvm_para.h"
05330448 22
33c11879 23#include "cpu.h"
9c17d615 24#include "sysemu/sysemu.h"
b3946626 25#include "sysemu/hw_accel.h"
6410848b 26#include "sysemu/kvm_int.h"
1d31f66b 27#include "kvm_i386.h"
50efe82c 28#include "hyperv.h"
5e953812 29#include "hyperv-proto.h"
50efe82c 30
022c62cb 31#include "exec/gdbstub.h"
1de7afc9
PB
32#include "qemu/host-utils.h"
33#include "qemu/config-file.h"
1c4a55db 34#include "qemu/error-report.h"
0d09e41a
PB
35#include "hw/i386/pc.h"
36#include "hw/i386/apic.h"
e0723c45
PB
37#include "hw/i386/apic_internal.h"
38#include "hw/i386/apic-msidef.h"
8b5ed7df 39#include "hw/i386/intel_iommu.h"
e1d4fb2d 40#include "hw/i386/x86-iommu.h"
50efe82c 41
a2cb15b0 42#include "hw/pci/pci.h"
15eafc2e 43#include "hw/pci/msi.h"
fd563564 44#include "hw/pci/msix.h"
795c40b8 45#include "migration/blocker.h"
4c663752 46#include "exec/memattrs.h"
8b5ed7df 47#include "trace.h"
05330448
AL
48
49//#define DEBUG_KVM
50
51#ifdef DEBUG_KVM
8c0d577e 52#define DPRINTF(fmt, ...) \
05330448
AL
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54#else
8c0d577e 55#define DPRINTF(fmt, ...) \
05330448
AL
56 do { } while (0)
57#endif
58
1a03675d
GC
59#define MSR_KVM_WALL_CLOCK 0x11
60#define MSR_KVM_SYSTEM_TIME 0x12
61
d1138251
EH
62/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
63 * 255 kvm_msr_entry structs */
64#define MSR_BUF_SIZE 4096
d71b62a1 65
94a8d39a
JK
66const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
67 KVM_CAP_INFO(SET_TSS_ADDR),
68 KVM_CAP_INFO(EXT_CPUID),
69 KVM_CAP_INFO(MP_STATE),
70 KVM_CAP_LAST_INFO
71};
25d2e361 72
c3a3a7d3
JK
73static bool has_msr_star;
74static bool has_msr_hsave_pa;
c9b8f6b6 75static bool has_msr_tsc_aux;
f28558d3 76static bool has_msr_tsc_adjust;
aa82ba54 77static bool has_msr_tsc_deadline;
df67696e 78static bool has_msr_feature_control;
21e87c46 79static bool has_msr_misc_enable;
fc12d72e 80static bool has_msr_smbase;
79e9ebeb 81static bool has_msr_bndcfgs;
25d2e361 82static int lm_capable_kernel;
7bc3d711 83static bool has_msr_hv_hypercall;
f2a53c9e 84static bool has_msr_hv_crash;
744b8a94 85static bool has_msr_hv_reset;
8c145d7c 86static bool has_msr_hv_vpindex;
e9688fab 87static bool hv_vpindex_settable;
46eb8f98 88static bool has_msr_hv_runtime;
866eea9a 89static bool has_msr_hv_synic;
ff99aa64 90static bool has_msr_hv_stimer;
d72bc7f6 91static bool has_msr_hv_frequencies;
ba6a4fd9 92static bool has_msr_hv_reenlightenment;
18cd2c17 93static bool has_msr_xss;
a33a2cfe 94static bool has_msr_spec_ctrl;
cfeea0c0 95static bool has_msr_virt_ssbd;
e13713db 96static bool has_msr_smi_count;
aec5e9c3 97static bool has_msr_arch_capabs;
597360c0 98static bool has_msr_core_capabs;
b827df58 99
0b368a10
JD
100static uint32_t has_architectural_pmu_version;
101static uint32_t num_architectural_pmu_gp_counters;
102static uint32_t num_architectural_pmu_fixed_counters;
0d894367 103
28143b40
TH
104static int has_xsave;
105static int has_xcrs;
106static int has_pit_state2;
fd13f23b 107static int has_exception_payload;
28143b40 108
87f8b626
AR
109static bool has_msr_mcg_ext_ctl;
110
494e95e9 111static struct kvm_cpuid2 *cpuid_cache;
f57bceb6 112static struct kvm_msr_list *kvm_feature_msrs;
494e95e9 113
28143b40
TH
114int kvm_has_pit_state2(void)
115{
116 return has_pit_state2;
117}
118
355023f2
PB
119bool kvm_has_smm(void)
120{
121 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
122}
123
6053a86f
MT
124bool kvm_has_adjust_clock_stable(void)
125{
126 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
127
128 return (ret == KVM_CLOCK_TSC_STABLE);
129}
130
1d31f66b
PM
131bool kvm_allows_irq0_override(void)
132{
133 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
134}
135
fb506e70
RK
136static bool kvm_x2apic_api_set_flags(uint64_t flags)
137{
138 KVMState *s = KVM_STATE(current_machine->accelerator);
139
140 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
141}
142
e391c009 143#define MEMORIZE(fn, _result) \
2a138ec3 144 ({ \
2a138ec3
RK
145 static bool _memorized; \
146 \
147 if (_memorized) { \
148 return _result; \
149 } \
150 _memorized = true; \
151 _result = fn; \
152 })
153
e391c009
IM
154static bool has_x2apic_api;
155
156bool kvm_has_x2apic_api(void)
157{
158 return has_x2apic_api;
159}
160
fb506e70
RK
161bool kvm_enable_x2apic(void)
162{
2a138ec3
RK
163 return MEMORIZE(
164 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
e391c009
IM
165 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
166 has_x2apic_api);
fb506e70
RK
167}
168
e9688fab
RK
169bool kvm_hv_vpindex_settable(void)
170{
171 return hv_vpindex_settable;
172}
173
0fd7e098
LL
174static int kvm_get_tsc(CPUState *cs)
175{
176 X86CPU *cpu = X86_CPU(cs);
177 CPUX86State *env = &cpu->env;
178 struct {
179 struct kvm_msrs info;
180 struct kvm_msr_entry entries[1];
181 } msr_data;
182 int ret;
183
184 if (env->tsc_valid) {
185 return 0;
186 }
187
188 msr_data.info.nmsrs = 1;
189 msr_data.entries[0].index = MSR_IA32_TSC;
190 env->tsc_valid = !runstate_is_running();
191
192 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
193 if (ret < 0) {
194 return ret;
195 }
196
48e1a45c 197 assert(ret == 1);
0fd7e098
LL
198 env->tsc = msr_data.entries[0].data;
199 return 0;
200}
201
14e6fe12 202static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
0fd7e098 203{
0fd7e098
LL
204 kvm_get_tsc(cpu);
205}
206
207void kvm_synchronize_all_tsc(void)
208{
209 CPUState *cpu;
210
211 if (kvm_enabled()) {
212 CPU_FOREACH(cpu) {
14e6fe12 213 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
0fd7e098
LL
214 }
215 }
216}
217
b827df58
AK
218static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
219{
220 struct kvm_cpuid2 *cpuid;
221 int r, size;
222
223 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
e42a92ae 224 cpuid = g_malloc0(size);
b827df58
AK
225 cpuid->nent = max;
226 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
227 if (r == 0 && cpuid->nent >= max) {
228 r = -E2BIG;
229 }
b827df58
AK
230 if (r < 0) {
231 if (r == -E2BIG) {
7267c094 232 g_free(cpuid);
b827df58
AK
233 return NULL;
234 } else {
235 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
236 strerror(-r));
237 exit(1);
238 }
239 }
240 return cpuid;
241}
242
dd87f8a6
EH
243/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
244 * for all entries.
245 */
246static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
247{
248 struct kvm_cpuid2 *cpuid;
249 int max = 1;
494e95e9
CP
250
251 if (cpuid_cache != NULL) {
252 return cpuid_cache;
253 }
dd87f8a6
EH
254 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
255 max *= 2;
256 }
494e95e9 257 cpuid_cache = cpuid;
dd87f8a6
EH
258 return cpuid;
259}
260
a443bc34 261static const struct kvm_para_features {
0c31b744
GC
262 int cap;
263 int feature;
264} para_features[] = {
265 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
266 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
267 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 268 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
269};
270
ba9bc59e 271static int get_para_features(KVMState *s)
0c31b744
GC
272{
273 int i, features = 0;
274
8e03c100 275 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
ba9bc59e 276 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
277 features |= (1 << para_features[i].feature);
278 }
279 }
280
281 return features;
282}
0c31b744 283
40e80ee4
EH
284static bool host_tsx_blacklisted(void)
285{
286 int family, model, stepping;\
287 char vendor[CPUID_VENDOR_SZ + 1];
288
289 host_vendor_fms(vendor, &family, &model, &stepping);
290
291 /* Check if we are running on a Haswell host known to have broken TSX */
292 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
293 (family == 6) &&
294 ((model == 63 && stepping < 4) ||
295 model == 60 || model == 69 || model == 70);
296}
0c31b744 297
829ae2f9
EH
298/* Returns the value for a specific register on the cpuid entry
299 */
300static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
301{
302 uint32_t ret = 0;
303 switch (reg) {
304 case R_EAX:
305 ret = entry->eax;
306 break;
307 case R_EBX:
308 ret = entry->ebx;
309 break;
310 case R_ECX:
311 ret = entry->ecx;
312 break;
313 case R_EDX:
314 ret = entry->edx;
315 break;
316 }
317 return ret;
318}
319
4fb73f1d
EH
320/* Find matching entry for function/index on kvm_cpuid2 struct
321 */
322static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
323 uint32_t function,
324 uint32_t index)
325{
326 int i;
327 for (i = 0; i < cpuid->nent; ++i) {
328 if (cpuid->entries[i].function == function &&
329 cpuid->entries[i].index == index) {
330 return &cpuid->entries[i];
331 }
332 }
333 /* not found: */
334 return NULL;
335}
336
ba9bc59e 337uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 338 uint32_t index, int reg)
b827df58
AK
339{
340 struct kvm_cpuid2 *cpuid;
b827df58
AK
341 uint32_t ret = 0;
342 uint32_t cpuid_1_edx;
8c723b79 343 bool found = false;
b827df58 344
dd87f8a6 345 cpuid = get_supported_cpuid(s);
b827df58 346
4fb73f1d
EH
347 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
348 if (entry) {
349 found = true;
350 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
351 }
352
7b46e5ce
EH
353 /* Fixups for the data returned by KVM, below */
354
c2acb022
EH
355 if (function == 1 && reg == R_EDX) {
356 /* KVM before 2.6.30 misreports the following features */
357 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
358 } else if (function == 1 && reg == R_ECX) {
359 /* We can set the hypervisor flag, even if KVM does not return it on
360 * GET_SUPPORTED_CPUID
361 */
362 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
363 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
364 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
365 * and the irqchip is in the kernel.
366 */
367 if (kvm_irqchip_in_kernel() &&
368 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
369 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
370 }
41e5e76d
EH
371
372 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
373 * without the in-kernel irqchip
374 */
375 if (!kvm_irqchip_in_kernel()) {
376 ret &= ~CPUID_EXT_X2APIC;
b827df58 377 }
2266d443
MT
378
379 if (enable_cpu_pm) {
380 int disable_exits = kvm_check_extension(s,
381 KVM_CAP_X86_DISABLE_EXITS);
382
383 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
384 ret |= CPUID_EXT_MONITOR;
385 }
386 }
28b8e4d0
JK
387 } else if (function == 6 && reg == R_EAX) {
388 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
40e80ee4
EH
389 } else if (function == 7 && index == 0 && reg == R_EBX) {
390 if (host_tsx_blacklisted()) {
391 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
392 }
485b1d25
EH
393 } else if (function == 7 && index == 0 && reg == R_EDX) {
394 /*
395 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
396 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
397 * returned by KVM_GET_MSR_INDEX_LIST.
398 */
399 if (!has_msr_arch_capabs) {
400 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
401 }
f98bbd83
BM
402 } else if (function == 0x80000001 && reg == R_ECX) {
403 /*
404 * It's safe to enable TOPOEXT even if it's not returned by
405 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
406 * us to keep CPU models including TOPOEXT runnable on older kernels.
407 */
408 ret |= CPUID_EXT3_TOPOEXT;
c2acb022
EH
409 } else if (function == 0x80000001 && reg == R_EDX) {
410 /* On Intel, kvm returns cpuid according to the Intel spec,
411 * so add missing bits according to the AMD spec:
412 */
413 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
414 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
64877477
EH
415 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
416 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
417 * be enabled without the in-kernel irqchip
418 */
419 if (!kvm_irqchip_in_kernel()) {
420 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
421 }
be777326 422 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
2af1acad 423 ret |= 1U << KVM_HINTS_REALTIME;
be777326 424 found = 1;
b827df58
AK
425 }
426
0c31b744 427 /* fallback for older kernels */
8c723b79 428 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 429 ret = get_para_features(s);
b9bec74b 430 }
0c31b744
GC
431
432 return ret;
bb0300dc 433}
bb0300dc 434
f57bceb6
RH
435uint32_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
436{
437 struct {
438 struct kvm_msrs info;
439 struct kvm_msr_entry entries[1];
440 } msr_data;
441 uint32_t ret;
442
443 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
444 return 0;
445 }
446
447 /* Check if requested MSR is supported feature MSR */
448 int i;
449 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
450 if (kvm_feature_msrs->indices[i] == index) {
451 break;
452 }
453 if (i == kvm_feature_msrs->nmsrs) {
454 return 0; /* if the feature MSR is not supported, simply return 0 */
455 }
456
457 msr_data.info.nmsrs = 1;
458 msr_data.entries[0].index = index;
459
460 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
461 if (ret != 1) {
462 error_report("KVM get MSR (index=0x%x) feature failed, %s",
463 index, strerror(-ret));
464 exit(1);
465 }
466
467 return msr_data.entries[0].data;
468}
469
470
3c85e74f
HY
471typedef struct HWPoisonPage {
472 ram_addr_t ram_addr;
473 QLIST_ENTRY(HWPoisonPage) list;
474} HWPoisonPage;
475
476static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
477 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
478
479static void kvm_unpoison_all(void *param)
480{
481 HWPoisonPage *page, *next_page;
482
483 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
484 QLIST_REMOVE(page, list);
485 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 486 g_free(page);
3c85e74f
HY
487 }
488}
489
3c85e74f
HY
490static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
491{
492 HWPoisonPage *page;
493
494 QLIST_FOREACH(page, &hwpoison_page_list, list) {
495 if (page->ram_addr == ram_addr) {
496 return;
497 }
498 }
ab3ad07f 499 page = g_new(HWPoisonPage, 1);
3c85e74f
HY
500 page->ram_addr = ram_addr;
501 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
502}
503
e7701825
MT
504static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
505 int *max_banks)
506{
507 int r;
508
14a09518 509 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
510 if (r > 0) {
511 *max_banks = r;
512 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
513 }
514 return -ENOSYS;
515}
516
bee615d4 517static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 518{
87f8b626 519 CPUState *cs = CPU(cpu);
bee615d4 520 CPUX86State *env = &cpu->env;
c34d440a
JK
521 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
522 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
523 uint64_t mcg_status = MCG_STATUS_MCIP;
87f8b626 524 int flags = 0;
e7701825 525
c34d440a
JK
526 if (code == BUS_MCEERR_AR) {
527 status |= MCI_STATUS_AR | 0x134;
528 mcg_status |= MCG_STATUS_EIPV;
529 } else {
530 status |= 0xc0;
531 mcg_status |= MCG_STATUS_RIPV;
419fb20a 532 }
87f8b626
AR
533
534 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
535 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
536 * guest kernel back into env->mcg_ext_ctl.
537 */
538 cpu_synchronize_state(cs);
539 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
540 mcg_status |= MCG_STATUS_LMCE;
541 flags = 0;
542 }
543
8c5cf3b6 544 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
87f8b626 545 (MCM_ADDR_PHYS << 6) | 0xc, flags);
419fb20a 546}
419fb20a
JK
547
548static void hardware_memory_error(void)
549{
550 fprintf(stderr, "Hardware memory error!\n");
551 exit(1);
552}
553
2ae41db2 554void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 555{
20d695a9
AF
556 X86CPU *cpu = X86_CPU(c);
557 CPUX86State *env = &cpu->env;
419fb20a 558 ram_addr_t ram_addr;
a8170e5e 559 hwaddr paddr;
419fb20a 560
4d39892c
PB
561 /* If we get an action required MCE, it has been injected by KVM
562 * while the VM was running. An action optional MCE instead should
563 * be coming from the main thread, which qemu_init_sigbus identifies
564 * as the "early kill" thread.
565 */
a16fc07e 566 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
20e0ff59 567
20e0ff59 568 if ((env->mcg_cap & MCG_SER_P) && addr) {
07bdaa41 569 ram_addr = qemu_ram_addr_from_host(addr);
20e0ff59
PB
570 if (ram_addr != RAM_ADDR_INVALID &&
571 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
572 kvm_hwpoison_page_add(ram_addr);
573 kvm_mce_inject(cpu, paddr, code);
2ae41db2 574 return;
419fb20a 575 }
20e0ff59
PB
576
577 fprintf(stderr, "Hardware memory error for memory used by "
578 "QEMU itself instead of guest system!\n");
419fb20a 579 }
20e0ff59
PB
580
581 if (code == BUS_MCEERR_AR) {
582 hardware_memory_error();
583 }
584
585 /* Hope we are lucky for AO MCE */
419fb20a
JK
586}
587
fd13f23b
LA
588static void kvm_reset_exception(CPUX86State *env)
589{
590 env->exception_nr = -1;
591 env->exception_pending = 0;
592 env->exception_injected = 0;
593 env->exception_has_payload = false;
594 env->exception_payload = 0;
595}
596
597static void kvm_queue_exception(CPUX86State *env,
598 int32_t exception_nr,
599 uint8_t exception_has_payload,
600 uint64_t exception_payload)
601{
602 assert(env->exception_nr == -1);
603 assert(!env->exception_pending);
604 assert(!env->exception_injected);
605 assert(!env->exception_has_payload);
606
607 env->exception_nr = exception_nr;
608
609 if (has_exception_payload) {
610 env->exception_pending = 1;
611
612 env->exception_has_payload = exception_has_payload;
613 env->exception_payload = exception_payload;
614 } else {
615 env->exception_injected = 1;
616
617 if (exception_nr == EXCP01_DB) {
618 assert(exception_has_payload);
619 env->dr[6] = exception_payload;
620 } else if (exception_nr == EXCP0E_PAGE) {
621 assert(exception_has_payload);
622 env->cr[2] = exception_payload;
623 } else {
624 assert(!exception_has_payload);
625 }
626 }
627}
628
1bc22652 629static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 630{
1bc22652
AF
631 CPUX86State *env = &cpu->env;
632
fd13f23b 633 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
ab443475
JK
634 unsigned int bank, bank_num = env->mcg_cap & 0xff;
635 struct kvm_x86_mce mce;
636
fd13f23b 637 kvm_reset_exception(env);
ab443475
JK
638
639 /*
640 * There must be at least one bank in use if an MCE is pending.
641 * Find it and use its values for the event injection.
642 */
643 for (bank = 0; bank < bank_num; bank++) {
644 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
645 break;
646 }
647 }
648 assert(bank < bank_num);
649
650 mce.bank = bank;
651 mce.status = env->mce_banks[bank * 4 + 1];
652 mce.mcg_status = env->mcg_status;
653 mce.addr = env->mce_banks[bank * 4 + 2];
654 mce.misc = env->mce_banks[bank * 4 + 3];
655
1bc22652 656 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 657 }
ab443475
JK
658 return 0;
659}
660
1dfb4dd9 661static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 662{
317ac620 663 CPUX86State *env = opaque;
b8cc45d6
GC
664
665 if (running) {
666 env->tsc_valid = false;
667 }
668}
669
83b17af5 670unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 671{
83b17af5 672 X86CPU *cpu = X86_CPU(cs);
7e72a45c 673 return cpu->apic_id;
b164e48e
EH
674}
675
92067bf4
IM
676#ifndef KVM_CPUID_SIGNATURE_NEXT
677#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
678#endif
679
92067bf4
IM
680static bool hyperv_enabled(X86CPU *cpu)
681{
7bc3d711
PB
682 CPUState *cs = CPU(cpu);
683 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
2d384d7c 684 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) ||
e48ddcc6 685 cpu->hyperv_features || cpu->hyperv_passthrough);
92067bf4
IM
686}
687
5031283d
HZ
688static int kvm_arch_set_tsc_khz(CPUState *cs)
689{
690 X86CPU *cpu = X86_CPU(cs);
691 CPUX86State *env = &cpu->env;
692 int r;
693
694 if (!env->tsc_khz) {
695 return 0;
696 }
697
698 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
699 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
700 -ENOTSUP;
701 if (r < 0) {
702 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
703 * TSC frequency doesn't match the one we want.
704 */
705 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
706 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
707 -ENOTSUP;
708 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
3dc6f869
AF
709 warn_report("TSC frequency mismatch between "
710 "VM (%" PRId64 " kHz) and host (%d kHz), "
711 "and TSC scaling unavailable",
712 env->tsc_khz, cur_freq);
5031283d
HZ
713 return r;
714 }
715 }
716
717 return 0;
718}
719
4bb95b82
LP
720static bool tsc_is_stable_and_known(CPUX86State *env)
721{
722 if (!env->tsc_khz) {
723 return false;
724 }
725 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
726 || env->user_tsc_khz;
727}
728
6760bd20
VK
729static struct {
730 const char *desc;
731 struct {
732 uint32_t fw;
733 uint32_t bits;
734 } flags[2];
c6861930 735 uint64_t dependencies;
6760bd20
VK
736} kvm_hyperv_properties[] = {
737 [HYPERV_FEAT_RELAXED] = {
738 .desc = "relaxed timing (hv-relaxed)",
739 .flags = {
740 {.fw = FEAT_HYPERV_EAX,
741 .bits = HV_HYPERCALL_AVAILABLE},
742 {.fw = FEAT_HV_RECOMM_EAX,
743 .bits = HV_RELAXED_TIMING_RECOMMENDED}
744 }
745 },
746 [HYPERV_FEAT_VAPIC] = {
747 .desc = "virtual APIC (hv-vapic)",
748 .flags = {
749 {.fw = FEAT_HYPERV_EAX,
750 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
751 {.fw = FEAT_HV_RECOMM_EAX,
752 .bits = HV_APIC_ACCESS_RECOMMENDED}
753 }
754 },
755 [HYPERV_FEAT_TIME] = {
756 .desc = "clocksources (hv-time)",
757 .flags = {
758 {.fw = FEAT_HYPERV_EAX,
759 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
760 HV_REFERENCE_TSC_AVAILABLE}
761 }
762 },
763 [HYPERV_FEAT_CRASH] = {
764 .desc = "crash MSRs (hv-crash)",
765 .flags = {
766 {.fw = FEAT_HYPERV_EDX,
767 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
768 }
769 },
770 [HYPERV_FEAT_RESET] = {
771 .desc = "reset MSR (hv-reset)",
772 .flags = {
773 {.fw = FEAT_HYPERV_EAX,
774 .bits = HV_RESET_AVAILABLE}
775 }
776 },
777 [HYPERV_FEAT_VPINDEX] = {
778 .desc = "VP_INDEX MSR (hv-vpindex)",
779 .flags = {
780 {.fw = FEAT_HYPERV_EAX,
781 .bits = HV_VP_INDEX_AVAILABLE}
782 }
783 },
784 [HYPERV_FEAT_RUNTIME] = {
785 .desc = "VP_RUNTIME MSR (hv-runtime)",
786 .flags = {
787 {.fw = FEAT_HYPERV_EAX,
788 .bits = HV_VP_RUNTIME_AVAILABLE}
789 }
790 },
791 [HYPERV_FEAT_SYNIC] = {
792 .desc = "synthetic interrupt controller (hv-synic)",
793 .flags = {
794 {.fw = FEAT_HYPERV_EAX,
795 .bits = HV_SYNIC_AVAILABLE}
796 }
797 },
798 [HYPERV_FEAT_STIMER] = {
799 .desc = "synthetic timers (hv-stimer)",
800 .flags = {
801 {.fw = FEAT_HYPERV_EAX,
802 .bits = HV_SYNTIMERS_AVAILABLE}
c6861930
VK
803 },
804 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
6760bd20
VK
805 },
806 [HYPERV_FEAT_FREQUENCIES] = {
807 .desc = "frequency MSRs (hv-frequencies)",
808 .flags = {
809 {.fw = FEAT_HYPERV_EAX,
810 .bits = HV_ACCESS_FREQUENCY_MSRS},
811 {.fw = FEAT_HYPERV_EDX,
812 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
813 }
814 },
815 [HYPERV_FEAT_REENLIGHTENMENT] = {
816 .desc = "reenlightenment MSRs (hv-reenlightenment)",
817 .flags = {
818 {.fw = FEAT_HYPERV_EAX,
819 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
820 }
821 },
822 [HYPERV_FEAT_TLBFLUSH] = {
823 .desc = "paravirtualized TLB flush (hv-tlbflush)",
824 .flags = {
825 {.fw = FEAT_HV_RECOMM_EAX,
826 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
827 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
828 },
829 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20
VK
830 },
831 [HYPERV_FEAT_EVMCS] = {
832 .desc = "enlightened VMCS (hv-evmcs)",
833 .flags = {
834 {.fw = FEAT_HV_RECOMM_EAX,
835 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
8caba36d
VK
836 },
837 .dependencies = BIT(HYPERV_FEAT_VAPIC)
6760bd20
VK
838 },
839 [HYPERV_FEAT_IPI] = {
840 .desc = "paravirtualized IPI (hv-ipi)",
841 .flags = {
842 {.fw = FEAT_HV_RECOMM_EAX,
843 .bits = HV_CLUSTER_IPI_RECOMMENDED |
844 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
bd59fbdf
VK
845 },
846 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
6760bd20 847 },
128531d9
VK
848 [HYPERV_FEAT_STIMER_DIRECT] = {
849 .desc = "direct mode synthetic timers (hv-stimer-direct)",
850 .flags = {
851 {.fw = FEAT_HYPERV_EDX,
852 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
853 },
854 .dependencies = BIT(HYPERV_FEAT_STIMER)
855 },
6760bd20
VK
856};
857
858static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
859{
860 struct kvm_cpuid2 *cpuid;
861 int r, size;
862
863 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
864 cpuid = g_malloc0(size);
865 cpuid->nent = max;
866
867 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
868 if (r == 0 && cpuid->nent >= max) {
869 r = -E2BIG;
870 }
871 if (r < 0) {
872 if (r == -E2BIG) {
873 g_free(cpuid);
874 return NULL;
875 } else {
876 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
877 strerror(-r));
878 exit(1);
879 }
880 }
881 return cpuid;
882}
883
884/*
885 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
886 * for all entries.
887 */
888static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
889{
890 struct kvm_cpuid2 *cpuid;
891 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
892
893 /*
894 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
895 * -E2BIG, however, it doesn't report back the right size. Keep increasing
896 * it and re-trying until we succeed.
897 */
898 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
899 max++;
900 }
901 return cpuid;
902}
903
904/*
905 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
906 * leaves from KVM_CAP_HYPERV* and present MSRs data.
907 */
908static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
c35bd19a
EY
909{
910 X86CPU *cpu = X86_CPU(cs);
6760bd20
VK
911 struct kvm_cpuid2 *cpuid;
912 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
913
914 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
915 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
916 cpuid->nent = 2;
917
918 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
919 entry_feat = &cpuid->entries[0];
920 entry_feat->function = HV_CPUID_FEATURES;
921
922 entry_recomm = &cpuid->entries[1];
923 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
924 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
925
926 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
927 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
928 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
929 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
930 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
931 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
932 }
c35bd19a 933
6760bd20
VK
934 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
935 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
936 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
c35bd19a 937 }
6760bd20
VK
938
939 if (has_msr_hv_frequencies) {
940 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
941 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
c35bd19a 942 }
6760bd20
VK
943
944 if (has_msr_hv_crash) {
945 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
9445597b 946 }
6760bd20
VK
947
948 if (has_msr_hv_reenlightenment) {
949 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
c35bd19a 950 }
6760bd20
VK
951
952 if (has_msr_hv_reset) {
953 entry_feat->eax |= HV_RESET_AVAILABLE;
c35bd19a 954 }
6760bd20
VK
955
956 if (has_msr_hv_vpindex) {
957 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
ba6a4fd9 958 }
6760bd20
VK
959
960 if (has_msr_hv_runtime) {
961 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
c35bd19a 962 }
6760bd20
VK
963
964 if (has_msr_hv_synic) {
965 unsigned int cap = cpu->hyperv_synic_kvm_only ?
966 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
967
968 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
969 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1221f150 970 }
c35bd19a 971 }
6760bd20
VK
972
973 if (has_msr_hv_stimer) {
974 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
c35bd19a 975 }
9b4cf107 976
6760bd20
VK
977 if (kvm_check_extension(cs->kvm_state,
978 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
979 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
980 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
981 }
c35bd19a 982
6760bd20
VK
983 if (kvm_check_extension(cs->kvm_state,
984 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
985 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
c35bd19a 986 }
6760bd20
VK
987
988 if (kvm_check_extension(cs->kvm_state,
989 KVM_CAP_HYPERV_SEND_IPI) > 0) {
990 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
991 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
c35bd19a 992 }
6760bd20
VK
993
994 return cpuid;
995}
996
997static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
998{
999 struct kvm_cpuid_entry2 *entry;
1000 uint32_t func;
1001 int reg;
1002
1003 switch (fw) {
1004 case FEAT_HYPERV_EAX:
1005 reg = R_EAX;
1006 func = HV_CPUID_FEATURES;
1007 break;
1008 case FEAT_HYPERV_EDX:
1009 reg = R_EDX;
1010 func = HV_CPUID_FEATURES;
1011 break;
1012 case FEAT_HV_RECOMM_EAX:
1013 reg = R_EAX;
1014 func = HV_CPUID_ENLIGHTMENT_INFO;
1015 break;
1016 default:
1017 return -EINVAL;
a2b107db 1018 }
6760bd20
VK
1019
1020 entry = cpuid_find_entry(cpuid, func, 0);
1021 if (!entry) {
1022 return -ENOENT;
a2b107db 1023 }
6760bd20
VK
1024
1025 switch (reg) {
1026 case R_EAX:
1027 *r = entry->eax;
1028 break;
1029 case R_EDX:
1030 *r = entry->edx;
1031 break;
1032 default:
1033 return -EINVAL;
a2b107db 1034 }
6760bd20
VK
1035
1036 return 0;
1037}
1038
1039static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1040 int feature)
1041{
1042 X86CPU *cpu = X86_CPU(cs);
1043 CPUX86State *env = &cpu->env;
e48ddcc6 1044 uint32_t r, fw, bits;
c6861930 1045 uint64_t deps;
9dc83cd9 1046 int i, dep_feat;
6760bd20 1047
e48ddcc6 1048 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
6760bd20
VK
1049 return 0;
1050 }
1051
c6861930 1052 deps = kvm_hyperv_properties[feature].dependencies;
9dc83cd9
HR
1053 while (deps) {
1054 dep_feat = ctz64(deps);
c6861930
VK
1055 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1056 fprintf(stderr,
1057 "Hyper-V %s requires Hyper-V %s\n",
1058 kvm_hyperv_properties[feature].desc,
1059 kvm_hyperv_properties[dep_feat].desc);
1060 return 1;
1061 }
9dc83cd9 1062 deps &= ~(1ull << dep_feat);
c6861930
VK
1063 }
1064
6760bd20
VK
1065 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1066 fw = kvm_hyperv_properties[feature].flags[i].fw;
1067 bits = kvm_hyperv_properties[feature].flags[i].bits;
1068
1069 if (!fw) {
1070 continue;
a2b107db 1071 }
6760bd20
VK
1072
1073 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
e48ddcc6
VK
1074 if (hyperv_feat_enabled(cpu, feature)) {
1075 fprintf(stderr,
1076 "Hyper-V %s is not supported by kernel\n",
1077 kvm_hyperv_properties[feature].desc);
1078 return 1;
1079 } else {
1080 return 0;
1081 }
6760bd20
VK
1082 }
1083
1084 env->features[fw] |= bits;
a2b107db 1085 }
6760bd20 1086
e48ddcc6
VK
1087 if (cpu->hyperv_passthrough) {
1088 cpu->hyperv_features |= BIT(feature);
1089 }
1090
6760bd20
VK
1091 return 0;
1092}
1093
2344d22e
VK
1094/*
1095 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1096 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1097 * extentions are enabled.
1098 */
1099static int hyperv_handle_properties(CPUState *cs,
1100 struct kvm_cpuid_entry2 *cpuid_ent)
6760bd20
VK
1101{
1102 X86CPU *cpu = X86_CPU(cs);
1103 CPUX86State *env = &cpu->env;
1104 struct kvm_cpuid2 *cpuid;
2344d22e
VK
1105 struct kvm_cpuid_entry2 *c;
1106 uint32_t signature[3];
1107 uint32_t cpuid_i = 0;
e48ddcc6 1108 int r;
6760bd20 1109
2344d22e
VK
1110 if (!hyperv_enabled(cpu))
1111 return 0;
1112
e48ddcc6
VK
1113 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1114 cpu->hyperv_passthrough) {
a2b107db
VK
1115 uint16_t evmcs_version;
1116
e48ddcc6
VK
1117 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1118 (uintptr_t)&evmcs_version);
1119
1120 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
6760bd20
VK
1121 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1122 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
a2b107db
VK
1123 return -ENOSYS;
1124 }
e48ddcc6
VK
1125
1126 if (!r) {
1127 env->features[FEAT_HV_RECOMM_EAX] |=
1128 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1129 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1130 }
a2b107db
VK
1131 }
1132
6760bd20
VK
1133 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1134 cpuid = get_supported_hv_cpuid(cs);
1135 } else {
1136 cpuid = get_supported_hv_cpuid_legacy(cs);
1137 }
1138
e48ddcc6
VK
1139 if (cpu->hyperv_passthrough) {
1140 memcpy(cpuid_ent, &cpuid->entries[0],
1141 cpuid->nent * sizeof(cpuid->entries[0]));
1142
1143 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1144 if (c) {
1145 env->features[FEAT_HYPERV_EAX] = c->eax;
1146 env->features[FEAT_HYPERV_EBX] = c->ebx;
1147 env->features[FEAT_HYPERV_EDX] = c->eax;
1148 }
1149 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1150 if (c) {
1151 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1152
1153 /* hv-spinlocks may have been overriden */
1154 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) {
1155 c->ebx = cpu->hyperv_spinlock_attempts;
1156 }
1157 }
1158 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1159 if (c) {
1160 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1161 }
1162 }
1163
6760bd20 1164 /* Features */
e48ddcc6 1165 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
6760bd20
VK
1166 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1167 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1168 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1169 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1170 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1171 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1172 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1173 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1174 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1175 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1176 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1177 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1178 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
128531d9 1179 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
6760bd20 1180
c6861930 1181 /* Additional dependencies not covered by kvm_hyperv_properties[] */
6760bd20
VK
1182 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1183 !cpu->hyperv_synic_kvm_only &&
1184 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
c6861930 1185 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
6760bd20
VK
1186 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1187 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1188 r |= 1;
1189 }
1190
1191 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1192 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1193
2344d22e
VK
1194 if (r) {
1195 r = -ENOSYS;
1196 goto free;
1197 }
1198
e48ddcc6
VK
1199 if (cpu->hyperv_passthrough) {
1200 /* We already copied all feature words from KVM as is */
1201 r = cpuid->nent;
1202 goto free;
1203 }
1204
2344d22e
VK
1205 c = &cpuid_ent[cpuid_i++];
1206 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1207 if (!cpu->hyperv_vendor_id) {
1208 memcpy(signature, "Microsoft Hv", 12);
1209 } else {
1210 size_t len = strlen(cpu->hyperv_vendor_id);
1211
1212 if (len > 12) {
1213 error_report("hv-vendor-id truncated to 12 characters");
1214 len = 12;
1215 }
1216 memset(signature, 0, 12);
1217 memcpy(signature, cpu->hyperv_vendor_id, len);
1218 }
1219 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1220 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1221 c->ebx = signature[0];
1222 c->ecx = signature[1];
1223 c->edx = signature[2];
1224
1225 c = &cpuid_ent[cpuid_i++];
1226 c->function = HV_CPUID_INTERFACE;
1227 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1228 c->eax = signature[0];
1229 c->ebx = 0;
1230 c->ecx = 0;
1231 c->edx = 0;
1232
1233 c = &cpuid_ent[cpuid_i++];
1234 c->function = HV_CPUID_VERSION;
1235 c->eax = 0x00001bbc;
1236 c->ebx = 0x00060001;
1237
1238 c = &cpuid_ent[cpuid_i++];
1239 c->function = HV_CPUID_FEATURES;
1240 c->eax = env->features[FEAT_HYPERV_EAX];
1241 c->ebx = env->features[FEAT_HYPERV_EBX];
1242 c->edx = env->features[FEAT_HYPERV_EDX];
1243
1244 c = &cpuid_ent[cpuid_i++];
1245 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1246 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1247 c->ebx = cpu->hyperv_spinlock_attempts;
1248
1249 c = &cpuid_ent[cpuid_i++];
1250 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1251 c->eax = cpu->hv_max_vps;
1252 c->ebx = 0x40;
1253
1254 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1255 __u32 function;
1256
1257 /* Create zeroed 0x40000006..0x40000009 leaves */
1258 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1259 function < HV_CPUID_NESTED_FEATURES; function++) {
1260 c = &cpuid_ent[cpuid_i++];
1261 c->function = function;
1262 }
1263
1264 c = &cpuid_ent[cpuid_i++];
1265 c->function = HV_CPUID_NESTED_FEATURES;
1266 c->eax = env->features[FEAT_HV_NESTED_EAX];
1267 }
1268 r = cpuid_i;
1269
1270free:
6760bd20
VK
1271 g_free(cpuid);
1272
2344d22e 1273 return r;
c35bd19a
EY
1274}
1275
e48ddcc6
VK
1276static Error *hv_passthrough_mig_blocker;
1277
e9688fab
RK
1278static int hyperv_init_vcpu(X86CPU *cpu)
1279{
729ce7e1 1280 CPUState *cs = CPU(cpu);
e48ddcc6 1281 Error *local_err = NULL;
729ce7e1
RK
1282 int ret;
1283
e48ddcc6
VK
1284 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1285 error_setg(&hv_passthrough_mig_blocker,
1286 "'hv-passthrough' CPU flag prevents migration, use explicit"
1287 " set of hv-* flags instead");
1288 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1289 if (local_err) {
1290 error_report_err(local_err);
1291 error_free(hv_passthrough_mig_blocker);
1292 return ret;
1293 }
1294 }
1295
2d384d7c 1296 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
e9688fab
RK
1297 /*
1298 * the kernel doesn't support setting vp_index; assert that its value
1299 * is in sync
1300 */
e9688fab
RK
1301 struct {
1302 struct kvm_msrs info;
1303 struct kvm_msr_entry entries[1];
1304 } msr_data = {
1305 .info.nmsrs = 1,
1306 .entries[0].index = HV_X64_MSR_VP_INDEX,
1307 };
1308
729ce7e1 1309 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
e9688fab
RK
1310 if (ret < 0) {
1311 return ret;
1312 }
1313 assert(ret == 1);
1314
701189e3 1315 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
e9688fab
RK
1316 error_report("kernel's vp_index != QEMU's vp_index");
1317 return -ENXIO;
1318 }
1319 }
1320
2d384d7c 1321 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
9b4cf107
RK
1322 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1323 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1324 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
729ce7e1
RK
1325 if (ret < 0) {
1326 error_report("failed to turn on HyperV SynIC in KVM: %s",
1327 strerror(-ret));
1328 return ret;
1329 }
606c34bf 1330
9b4cf107
RK
1331 if (!cpu->hyperv_synic_kvm_only) {
1332 ret = hyperv_x86_synic_add(cpu);
1333 if (ret < 0) {
1334 error_report("failed to create HyperV SynIC: %s",
1335 strerror(-ret));
1336 return ret;
1337 }
606c34bf 1338 }
729ce7e1
RK
1339 }
1340
e9688fab
RK
1341 return 0;
1342}
1343
68bfd0ad 1344static Error *invtsc_mig_blocker;
18ab37ba 1345static Error *nested_virt_mig_blocker;
68bfd0ad 1346
f8bb0565 1347#define KVM_MAX_CPUID_ENTRIES 100
0893d460 1348
20d695a9 1349int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
1350{
1351 struct {
486bd5a2 1352 struct kvm_cpuid2 cpuid;
f8bb0565 1353 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
9115bb12
PM
1354 } cpuid_data;
1355 /*
1356 * The kernel defines these structs with padding fields so there
1357 * should be no extra padding in our cpuid_data struct.
1358 */
1359 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1360 sizeof(struct kvm_cpuid2) +
1361 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1362
20d695a9
AF
1363 X86CPU *cpu = X86_CPU(cs);
1364 CPUX86State *env = &cpu->env;
486bd5a2 1365 uint32_t limit, i, j, cpuid_i;
a33609ca 1366 uint32_t unused;
bb0300dc 1367 struct kvm_cpuid_entry2 *c;
bb0300dc 1368 uint32_t signature[3];
234cc647 1369 int kvm_base = KVM_CPUID_SIGNATURE;
ebbfef2f 1370 int max_nested_state_len;
e7429073 1371 int r;
fe44dc91 1372 Error *local_err = NULL;
05330448 1373
ef4cbe14
SW
1374 memset(&cpuid_data, 0, sizeof(cpuid_data));
1375
05330448
AL
1376 cpuid_i = 0;
1377
ddb98b5a
LP
1378 r = kvm_arch_set_tsc_khz(cs);
1379 if (r < 0) {
6b2341ee 1380 return r;
ddb98b5a
LP
1381 }
1382
1383 /* vcpu's TSC frequency is either specified by user, or following
1384 * the value used by KVM if the former is not present. In the
1385 * latter case, we query it from KVM and record in env->tsc_khz,
1386 * so that vcpu's TSC frequency can be migrated later via this field.
1387 */
1388 if (!env->tsc_khz) {
1389 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1390 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1391 -ENOTSUP;
1392 if (r > 0) {
1393 env->tsc_khz = r;
1394 }
1395 }
1396
bb0300dc 1397 /* Paravirtualization CPUIDs */
2344d22e
VK
1398 r = hyperv_handle_properties(cs, cpuid_data.entries);
1399 if (r < 0) {
1400 return r;
1401 } else if (r > 0) {
1402 cpuid_i = r;
234cc647 1403 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 1404 has_msr_hv_hypercall = true;
eab70139
VR
1405 }
1406
f522d2ac
AW
1407 if (cpu->expose_kvm) {
1408 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1409 c = &cpuid_data.entries[cpuid_i++];
1410 c->function = KVM_CPUID_SIGNATURE | kvm_base;
79b6f2f6 1411 c->eax = KVM_CPUID_FEATURES | kvm_base;
f522d2ac
AW
1412 c->ebx = signature[0];
1413 c->ecx = signature[1];
1414 c->edx = signature[2];
234cc647 1415
f522d2ac
AW
1416 c = &cpuid_data.entries[cpuid_i++];
1417 c->function = KVM_CPUID_FEATURES | kvm_base;
1418 c->eax = env->features[FEAT_KVM];
be777326 1419 c->edx = env->features[FEAT_KVM_HINTS];
f522d2ac 1420 }
917367aa 1421
a33609ca 1422 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
1423
1424 for (i = 0; i <= limit; i++) {
f8bb0565
IM
1425 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1426 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1427 abort();
1428 }
bb0300dc 1429 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1430
1431 switch (i) {
a36b1029
AL
1432 case 2: {
1433 /* Keep reading function 2 till all the input is received */
1434 int times;
1435
a36b1029 1436 c->function = i;
a33609ca
AL
1437 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1438 KVM_CPUID_FLAG_STATE_READ_NEXT;
1439 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1440 times = c->eax & 0xff;
a36b1029
AL
1441
1442 for (j = 1; j < times; ++j) {
f8bb0565
IM
1443 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1444 fprintf(stderr, "cpuid_data is full, no space for "
1445 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1446 abort();
1447 }
a33609ca 1448 c = &cpuid_data.entries[cpuid_i++];
a36b1029 1449 c->function = i;
a33609ca
AL
1450 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1451 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
1452 }
1453 break;
1454 }
a94e1428
LX
1455 case 0x1f:
1456 if (env->nr_dies < 2) {
1457 break;
1458 }
486bd5a2
AL
1459 case 4:
1460 case 0xb:
1461 case 0xd:
1462 for (j = 0; ; j++) {
31e8c696
AP
1463 if (i == 0xd && j == 64) {
1464 break;
1465 }
a94e1428
LX
1466
1467 if (i == 0x1f && j == 64) {
1468 break;
1469 }
1470
486bd5a2
AL
1471 c->function = i;
1472 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1473 c->index = j;
a33609ca 1474 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 1475
b9bec74b 1476 if (i == 4 && c->eax == 0) {
486bd5a2 1477 break;
b9bec74b
JK
1478 }
1479 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 1480 break;
b9bec74b 1481 }
a94e1428
LX
1482 if (i == 0x1f && !(c->ecx & 0xff00)) {
1483 break;
1484 }
b9bec74b 1485 if (i == 0xd && c->eax == 0) {
31e8c696 1486 continue;
b9bec74b 1487 }
f8bb0565
IM
1488 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1489 fprintf(stderr, "cpuid_data is full, no space for "
1490 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1491 abort();
1492 }
a33609ca 1493 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
1494 }
1495 break;
e37a5c7f
CP
1496 case 0x14: {
1497 uint32_t times;
1498
1499 c->function = i;
1500 c->index = 0;
1501 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1502 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1503 times = c->eax;
1504
1505 for (j = 1; j <= times; ++j) {
1506 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1507 fprintf(stderr, "cpuid_data is full, no space for "
1508 "cpuid(eax:0x14,ecx:0x%x)\n", j);
1509 abort();
1510 }
1511 c = &cpuid_data.entries[cpuid_i++];
1512 c->function = i;
1513 c->index = j;
1514 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1515 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1516 }
1517 break;
1518 }
486bd5a2 1519 default:
486bd5a2 1520 c->function = i;
a33609ca
AL
1521 c->flags = 0;
1522 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
1523 break;
1524 }
05330448 1525 }
0d894367
PB
1526
1527 if (limit >= 0x0a) {
0b368a10 1528 uint32_t eax, edx;
0d894367 1529
0b368a10
JD
1530 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1531
1532 has_architectural_pmu_version = eax & 0xff;
1533 if (has_architectural_pmu_version > 0) {
1534 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
0d894367
PB
1535
1536 /* Shouldn't be more than 32, since that's the number of bits
1537 * available in EBX to tell us _which_ counters are available.
1538 * Play it safe.
1539 */
0b368a10
JD
1540 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1541 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1542 }
1543
1544 if (has_architectural_pmu_version > 1) {
1545 num_architectural_pmu_fixed_counters = edx & 0x1f;
1546
1547 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1548 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1549 }
0d894367
PB
1550 }
1551 }
1552 }
1553
a33609ca 1554 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
1555
1556 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
1557 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1558 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1559 abort();
1560 }
bb0300dc 1561 c = &cpuid_data.entries[cpuid_i++];
05330448 1562
8f4202fb
BM
1563 switch (i) {
1564 case 0x8000001d:
1565 /* Query for all AMD cache information leaves */
1566 for (j = 0; ; j++) {
1567 c->function = i;
1568 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1569 c->index = j;
1570 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1571
1572 if (c->eax == 0) {
1573 break;
1574 }
1575 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1576 fprintf(stderr, "cpuid_data is full, no space for "
1577 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1578 abort();
1579 }
1580 c = &cpuid_data.entries[cpuid_i++];
1581 }
1582 break;
1583 default:
1584 c->function = i;
1585 c->flags = 0;
1586 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1587 break;
1588 }
05330448
AL
1589 }
1590
b3baa152
BW
1591 /* Call Centaur's CPUID instructions they are supported. */
1592 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
1593 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1594
1595 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
1596 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1597 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1598 abort();
1599 }
b3baa152
BW
1600 c = &cpuid_data.entries[cpuid_i++];
1601
1602 c->function = i;
1603 c->flags = 0;
1604 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1605 }
1606 }
1607
05330448
AL
1608 cpuid_data.cpuid.nent = cpuid_i;
1609
e7701825 1610 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 1611 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 1612 (CPUID_MCE | CPUID_MCA)
a60f24b5 1613 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
5120901a 1614 uint64_t mcg_cap, unsupported_caps;
e7701825 1615 int banks;
32a42024 1616 int ret;
e7701825 1617
a60f24b5 1618 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
1619 if (ret < 0) {
1620 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1621 return ret;
e7701825 1622 }
75d49497 1623
2590f15b 1624 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
49b69cbf 1625 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2590f15b 1626 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
49b69cbf 1627 return -ENOTSUP;
75d49497 1628 }
49b69cbf 1629
5120901a
EH
1630 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1631 if (unsupported_caps) {
87f8b626
AR
1632 if (unsupported_caps & MCG_LMCE_P) {
1633 error_report("kvm: LMCE not supported");
1634 return -ENOTSUP;
1635 }
3dc6f869
AF
1636 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1637 unsupported_caps);
5120901a
EH
1638 }
1639
2590f15b
EH
1640 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1641 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
75d49497
JK
1642 if (ret < 0) {
1643 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1644 return ret;
1645 }
e7701825 1646 }
e7701825 1647
b8cc45d6
GC
1648 qemu_add_vm_change_state_handler(cpu_update_state, env);
1649
df67696e
LJ
1650 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1651 if (c) {
1652 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1653 !!(c->ecx & CPUID_EXT_SMX);
1654 }
1655
12604092
LA
1656 if (cpu_has_vmx(env) && !nested_virt_mig_blocker &&
1657 ((kvm_max_nested_state_length() <= 0) || !has_exception_payload)) {
18ab37ba 1658 error_setg(&nested_virt_mig_blocker,
12604092
LA
1659 "Kernel do not provide required capabilities for "
1660 "nested virtualization migration. "
1661 "(CAP_NESTED_STATE=%d, CAP_EXCEPTION_PAYLOAD=%d)",
1662 kvm_max_nested_state_length() > 0,
1663 has_exception_payload);
18ab37ba 1664 r = migrate_add_blocker(nested_virt_mig_blocker, &local_err);
d98f2607
PB
1665 if (local_err) {
1666 error_report_err(local_err);
18ab37ba 1667 error_free(nested_virt_mig_blocker);
d98f2607
PB
1668 return r;
1669 }
1670 }
1671
87f8b626
AR
1672 if (env->mcg_cap & MCG_LMCE_P) {
1673 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1674 }
1675
d99569d9
EH
1676 if (!env->user_tsc_khz) {
1677 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1678 invtsc_mig_blocker == NULL) {
d99569d9
EH
1679 error_setg(&invtsc_mig_blocker,
1680 "State blocked by non-migratable CPU device"
1681 " (invtsc flag)");
fe44dc91
AA
1682 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1683 if (local_err) {
1684 error_report_err(local_err);
1685 error_free(invtsc_mig_blocker);
6b2341ee 1686 goto fail2;
fe44dc91 1687 }
d99569d9 1688 }
68bfd0ad
MT
1689 }
1690
9954a158
PDJ
1691 if (cpu->vmware_cpuid_freq
1692 /* Guests depend on 0x40000000 to detect this feature, so only expose
1693 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1694 && cpu->expose_kvm
1695 && kvm_base == KVM_CPUID_SIGNATURE
1696 /* TSC clock must be stable and known for this feature. */
4bb95b82 1697 && tsc_is_stable_and_known(env)) {
9954a158
PDJ
1698
1699 c = &cpuid_data.entries[cpuid_i++];
1700 c->function = KVM_CPUID_SIGNATURE | 0x10;
1701 c->eax = env->tsc_khz;
1702 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1703 * APIC_BUS_CYCLE_NS */
1704 c->ebx = 1000000;
1705 c->ecx = c->edx = 0;
1706
1707 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1708 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1709 }
1710
1711 cpuid_data.cpuid.nent = cpuid_i;
1712
1713 cpuid_data.cpuid.padding = 0;
1714 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1715 if (r) {
1716 goto fail;
1717 }
1718
28143b40 1719 if (has_xsave) {
5b8063c4 1720 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
fabacc0f 1721 }
ebbfef2f
LA
1722
1723 max_nested_state_len = kvm_max_nested_state_length();
1724 if (max_nested_state_len > 0) {
1725 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1726 env->nested_state = g_malloc0(max_nested_state_len);
1727
1728 env->nested_state->size = max_nested_state_len;
1729
1730 if (IS_INTEL_CPU(env)) {
1731 struct kvm_vmx_nested_state_hdr *vmx_hdr =
1732 &env->nested_state->hdr.vmx;
1733
1734 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1735 vmx_hdr->vmxon_pa = -1ull;
1736 vmx_hdr->vmcs12_pa = -1ull;
1737 }
1738 }
1739
d71b62a1 1740 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
fabacc0f 1741
273c515c
PB
1742 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1743 has_msr_tsc_aux = false;
1744 }
d1ae67f6 1745
e9688fab
RK
1746 r = hyperv_init_vcpu(cpu);
1747 if (r) {
1748 goto fail;
1749 }
1750
e7429073 1751 return 0;
fe44dc91
AA
1752
1753 fail:
1754 migrate_del_blocker(invtsc_mig_blocker);
6b2341ee 1755 fail2:
18ab37ba 1756 migrate_del_blocker(nested_virt_mig_blocker);
6b2341ee 1757
fe44dc91 1758 return r;
05330448
AL
1759}
1760
b1115c99
LA
1761int kvm_arch_destroy_vcpu(CPUState *cs)
1762{
1763 X86CPU *cpu = X86_CPU(cs);
ebbfef2f 1764 CPUX86State *env = &cpu->env;
b1115c99
LA
1765
1766 if (cpu->kvm_msr_buf) {
1767 g_free(cpu->kvm_msr_buf);
1768 cpu->kvm_msr_buf = NULL;
1769 }
1770
ebbfef2f
LA
1771 if (env->nested_state) {
1772 g_free(env->nested_state);
1773 env->nested_state = NULL;
1774 }
1775
b1115c99
LA
1776 return 0;
1777}
1778
50a2c6e5 1779void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 1780{
20d695a9 1781 CPUX86State *env = &cpu->env;
dd673288 1782
1a5e9d2f 1783 env->xcr0 = 1;
ddced198 1784 if (kvm_irqchip_in_kernel()) {
dd673288 1785 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
1786 KVM_MP_STATE_UNINITIALIZED;
1787 } else {
1788 env->mp_state = KVM_MP_STATE_RUNNABLE;
1789 }
689141dd 1790
2d384d7c 1791 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
689141dd
RK
1792 int i;
1793 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1794 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1795 }
606c34bf
RK
1796
1797 hyperv_x86_synic_reset(cpu);
689141dd 1798 }
caa5af0f
JK
1799}
1800
e0723c45
PB
1801void kvm_arch_do_init_vcpu(X86CPU *cpu)
1802{
1803 CPUX86State *env = &cpu->env;
1804
1805 /* APs get directly into wait-for-SIPI state. */
1806 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1807 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1808 }
1809}
1810
f57bceb6
RH
1811static int kvm_get_supported_feature_msrs(KVMState *s)
1812{
1813 int ret = 0;
1814
1815 if (kvm_feature_msrs != NULL) {
1816 return 0;
1817 }
1818
1819 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1820 return 0;
1821 }
1822
1823 struct kvm_msr_list msr_list;
1824
1825 msr_list.nmsrs = 0;
1826 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1827 if (ret < 0 && ret != -E2BIG) {
1828 error_report("Fetch KVM feature MSR list failed: %s",
1829 strerror(-ret));
1830 return ret;
1831 }
1832
1833 assert(msr_list.nmsrs > 0);
1834 kvm_feature_msrs = (struct kvm_msr_list *) \
1835 g_malloc0(sizeof(msr_list) +
1836 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1837
1838 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1839 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1840
1841 if (ret < 0) {
1842 error_report("Fetch KVM feature MSR list failed: %s",
1843 strerror(-ret));
1844 g_free(kvm_feature_msrs);
1845 kvm_feature_msrs = NULL;
1846 return ret;
1847 }
1848
1849 return 0;
1850}
1851
c3a3a7d3 1852static int kvm_get_supported_msrs(KVMState *s)
05330448 1853{
75b10c43 1854 static int kvm_supported_msrs;
c3a3a7d3 1855 int ret = 0;
05330448
AL
1856
1857 /* first time */
75b10c43 1858 if (kvm_supported_msrs == 0) {
05330448
AL
1859 struct kvm_msr_list msr_list, *kvm_msr_list;
1860
75b10c43 1861 kvm_supported_msrs = -1;
05330448
AL
1862
1863 /* Obtain MSR list from KVM. These are the MSRs that we must
1864 * save/restore */
4c9f7372 1865 msr_list.nmsrs = 0;
c3a3a7d3 1866 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 1867 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 1868 return ret;
6fb6d245 1869 }
d9db889f
JK
1870 /* Old kernel modules had a bug and could write beyond the provided
1871 memory. Allocate at least a safe amount of 1K. */
7267c094 1872 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
1873 msr_list.nmsrs *
1874 sizeof(msr_list.indices[0])));
05330448 1875
55308450 1876 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 1877 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
1878 if (ret >= 0) {
1879 int i;
1880
1881 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1d268dec
LP
1882 switch (kvm_msr_list->indices[i]) {
1883 case MSR_STAR:
c3a3a7d3 1884 has_msr_star = true;
1d268dec
LP
1885 break;
1886 case MSR_VM_HSAVE_PA:
c3a3a7d3 1887 has_msr_hsave_pa = true;
1d268dec
LP
1888 break;
1889 case MSR_TSC_AUX:
c9b8f6b6 1890 has_msr_tsc_aux = true;
1d268dec
LP
1891 break;
1892 case MSR_TSC_ADJUST:
f28558d3 1893 has_msr_tsc_adjust = true;
1d268dec
LP
1894 break;
1895 case MSR_IA32_TSCDEADLINE:
aa82ba54 1896 has_msr_tsc_deadline = true;
1d268dec
LP
1897 break;
1898 case MSR_IA32_SMBASE:
fc12d72e 1899 has_msr_smbase = true;
1d268dec 1900 break;
e13713db
LA
1901 case MSR_SMI_COUNT:
1902 has_msr_smi_count = true;
1903 break;
1d268dec 1904 case MSR_IA32_MISC_ENABLE:
21e87c46 1905 has_msr_misc_enable = true;
1d268dec
LP
1906 break;
1907 case MSR_IA32_BNDCFGS:
79e9ebeb 1908 has_msr_bndcfgs = true;
1d268dec
LP
1909 break;
1910 case MSR_IA32_XSS:
18cd2c17 1911 has_msr_xss = true;
3c254ab8 1912 break;
1d268dec 1913 case HV_X64_MSR_CRASH_CTL:
f2a53c9e 1914 has_msr_hv_crash = true;
1d268dec
LP
1915 break;
1916 case HV_X64_MSR_RESET:
744b8a94 1917 has_msr_hv_reset = true;
1d268dec
LP
1918 break;
1919 case HV_X64_MSR_VP_INDEX:
8c145d7c 1920 has_msr_hv_vpindex = true;
1d268dec
LP
1921 break;
1922 case HV_X64_MSR_VP_RUNTIME:
46eb8f98 1923 has_msr_hv_runtime = true;
1d268dec
LP
1924 break;
1925 case HV_X64_MSR_SCONTROL:
866eea9a 1926 has_msr_hv_synic = true;
1d268dec
LP
1927 break;
1928 case HV_X64_MSR_STIMER0_CONFIG:
ff99aa64 1929 has_msr_hv_stimer = true;
1d268dec 1930 break;
d72bc7f6
LP
1931 case HV_X64_MSR_TSC_FREQUENCY:
1932 has_msr_hv_frequencies = true;
1933 break;
ba6a4fd9
VK
1934 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1935 has_msr_hv_reenlightenment = true;
1936 break;
a33a2cfe
PB
1937 case MSR_IA32_SPEC_CTRL:
1938 has_msr_spec_ctrl = true;
1939 break;
cfeea0c0
KRW
1940 case MSR_VIRT_SSBD:
1941 has_msr_virt_ssbd = true;
1942 break;
aec5e9c3
BD
1943 case MSR_IA32_ARCH_CAPABILITIES:
1944 has_msr_arch_capabs = true;
1945 break;
597360c0
XL
1946 case MSR_IA32_CORE_CAPABILITY:
1947 has_msr_core_capabs = true;
1948 break;
ff99aa64 1949 }
05330448
AL
1950 }
1951 }
1952
7267c094 1953 g_free(kvm_msr_list);
05330448
AL
1954 }
1955
c3a3a7d3 1956 return ret;
05330448
AL
1957}
1958
6410848b
PB
1959static Notifier smram_machine_done;
1960static KVMMemoryListener smram_listener;
1961static AddressSpace smram_address_space;
1962static MemoryRegion smram_as_root;
1963static MemoryRegion smram_as_mem;
1964
1965static void register_smram_listener(Notifier *n, void *unused)
1966{
1967 MemoryRegion *smram =
1968 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1969
1970 /* Outer container... */
1971 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1972 memory_region_set_enabled(&smram_as_root, true);
1973
1974 /* ... with two regions inside: normal system memory with low
1975 * priority, and...
1976 */
1977 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1978 get_system_memory(), 0, ~0ull);
1979 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1980 memory_region_set_enabled(&smram_as_mem, true);
1981
1982 if (smram) {
1983 /* ... SMRAM with higher priority */
1984 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1985 memory_region_set_enabled(smram, true);
1986 }
1987
1988 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1989 kvm_memory_listener_register(kvm_state, &smram_listener,
1990 &smram_address_space, 1);
1991}
1992
b16565b3 1993int kvm_arch_init(MachineState *ms, KVMState *s)
20420430 1994{
11076198 1995 uint64_t identity_base = 0xfffbc000;
39d6960a 1996 uint64_t shadow_mem;
20420430 1997 int ret;
25d2e361 1998 struct utsname utsname;
20420430 1999
28143b40 2000 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
28143b40 2001 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
28143b40 2002 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
28143b40 2003
e9688fab
RK
2004 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2005
fd13f23b
LA
2006 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2007 if (has_exception_payload) {
2008 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2009 if (ret < 0) {
2010 error_report("kvm: Failed to enable exception payload cap: %s",
2011 strerror(-ret));
2012 return ret;
2013 }
2014 }
2015
c3a3a7d3 2016 ret = kvm_get_supported_msrs(s);
20420430 2017 if (ret < 0) {
20420430
SY
2018 return ret;
2019 }
25d2e361 2020
f57bceb6
RH
2021 kvm_get_supported_feature_msrs(s);
2022
25d2e361
MT
2023 uname(&utsname);
2024 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2025
4c5b10b7 2026 /*
11076198
JK
2027 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2028 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2029 * Since these must be part of guest physical memory, we need to allocate
2030 * them, both by setting their start addresses in the kernel and by
2031 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2032 *
2033 * Older KVM versions may not support setting the identity map base. In
2034 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2035 * size.
4c5b10b7 2036 */
11076198
JK
2037 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2038 /* Allows up to 16M BIOSes. */
2039 identity_base = 0xfeffc000;
2040
2041 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2042 if (ret < 0) {
2043 return ret;
2044 }
4c5b10b7 2045 }
e56ff191 2046
11076198
JK
2047 /* Set TSS base one page after EPT identity map. */
2048 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
2049 if (ret < 0) {
2050 return ret;
2051 }
2052
11076198
JK
2053 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2054 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 2055 if (ret < 0) {
11076198 2056 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
2057 return ret;
2058 }
3c85e74f 2059 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 2060
4689b77b 2061 shadow_mem = machine_kvm_shadow_mem(ms);
36ad0e94
MA
2062 if (shadow_mem != -1) {
2063 shadow_mem /= 4096;
2064 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2065 if (ret < 0) {
2066 return ret;
39d6960a
JK
2067 }
2068 }
6410848b 2069
d870cfde
GA
2070 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2071 object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
2072 pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
6410848b
PB
2073 smram_machine_done.notify = register_smram_listener;
2074 qemu_add_machine_init_done_notifier(&smram_machine_done);
2075 }
6f131f13
MT
2076
2077 if (enable_cpu_pm) {
2078 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2079 int ret;
2080
2081/* Work around for kernel header with a typo. TODO: fix header and drop. */
2082#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2083#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2084#endif
2085 if (disable_exits) {
2086 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2087 KVM_X86_DISABLE_EXITS_HLT |
2088 KVM_X86_DISABLE_EXITS_PAUSE);
2089 }
2090
2091 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2092 disable_exits);
2093 if (ret < 0) {
2094 error_report("kvm: guest stopping CPU not supported: %s",
2095 strerror(-ret));
2096 }
2097 }
2098
11076198 2099 return 0;
05330448 2100}
b9bec74b 2101
05330448
AL
2102static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2103{
2104 lhs->selector = rhs->selector;
2105 lhs->base = rhs->base;
2106 lhs->limit = rhs->limit;
2107 lhs->type = 3;
2108 lhs->present = 1;
2109 lhs->dpl = 3;
2110 lhs->db = 0;
2111 lhs->s = 1;
2112 lhs->l = 0;
2113 lhs->g = 0;
2114 lhs->avl = 0;
2115 lhs->unusable = 0;
2116}
2117
2118static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2119{
2120 unsigned flags = rhs->flags;
2121 lhs->selector = rhs->selector;
2122 lhs->base = rhs->base;
2123 lhs->limit = rhs->limit;
2124 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2125 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 2126 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
2127 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2128 lhs->s = (flags & DESC_S_MASK) != 0;
2129 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2130 lhs->g = (flags & DESC_G_MASK) != 0;
2131 lhs->avl = (flags & DESC_AVL_MASK) != 0;
4cae9c97 2132 lhs->unusable = !lhs->present;
7e680753 2133 lhs->padding = 0;
05330448
AL
2134}
2135
2136static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2137{
2138 lhs->selector = rhs->selector;
2139 lhs->base = rhs->base;
2140 lhs->limit = rhs->limit;
d45fc087
RP
2141 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2142 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2143 (rhs->dpl << DESC_DPL_SHIFT) |
2144 (rhs->db << DESC_B_SHIFT) |
2145 (rhs->s * DESC_S_MASK) |
2146 (rhs->l << DESC_L_SHIFT) |
2147 (rhs->g * DESC_G_MASK) |
2148 (rhs->avl * DESC_AVL_MASK);
05330448
AL
2149}
2150
2151static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2152{
b9bec74b 2153 if (set) {
05330448 2154 *kvm_reg = *qemu_reg;
b9bec74b 2155 } else {
05330448 2156 *qemu_reg = *kvm_reg;
b9bec74b 2157 }
05330448
AL
2158}
2159
1bc22652 2160static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 2161{
1bc22652 2162 CPUX86State *env = &cpu->env;
05330448
AL
2163 struct kvm_regs regs;
2164 int ret = 0;
2165
2166 if (!set) {
1bc22652 2167 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 2168 if (ret < 0) {
05330448 2169 return ret;
b9bec74b 2170 }
05330448
AL
2171 }
2172
2173 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2174 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2175 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2176 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2177 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2178 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2179 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2180 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2181#ifdef TARGET_X86_64
2182 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2183 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2184 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2185 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2186 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2187 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2188 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2189 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2190#endif
2191
2192 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2193 kvm_getput_reg(&regs.rip, &env->eip, set);
2194
b9bec74b 2195 if (set) {
1bc22652 2196 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 2197 }
05330448
AL
2198
2199 return ret;
2200}
2201
1bc22652 2202static int kvm_put_fpu(X86CPU *cpu)
05330448 2203{
1bc22652 2204 CPUX86State *env = &cpu->env;
05330448
AL
2205 struct kvm_fpu fpu;
2206 int i;
2207
2208 memset(&fpu, 0, sizeof fpu);
2209 fpu.fsw = env->fpus & ~(7 << 11);
2210 fpu.fsw |= (env->fpstt & 7) << 11;
2211 fpu.fcw = env->fpuc;
42cc8fa6
JK
2212 fpu.last_opcode = env->fpop;
2213 fpu.last_ip = env->fpip;
2214 fpu.last_dp = env->fpdp;
b9bec74b
JK
2215 for (i = 0; i < 8; ++i) {
2216 fpu.ftwx |= (!env->fptags[i]) << i;
2217 }
05330448 2218 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
bee81887 2219 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
2220 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2221 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
bee81887 2222 }
05330448
AL
2223 fpu.mxcsr = env->mxcsr;
2224
1bc22652 2225 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
2226}
2227
6b42494b
JK
2228#define XSAVE_FCW_FSW 0
2229#define XSAVE_FTW_FOP 1
f1665b21
SY
2230#define XSAVE_CWD_RIP 2
2231#define XSAVE_CWD_RDP 4
2232#define XSAVE_MXCSR 6
2233#define XSAVE_ST_SPACE 8
2234#define XSAVE_XMM_SPACE 40
2235#define XSAVE_XSTATE_BV 128
2236#define XSAVE_YMMH_SPACE 144
79e9ebeb
LJ
2237#define XSAVE_BNDREGS 240
2238#define XSAVE_BNDCSR 256
9aecd6f8
CP
2239#define XSAVE_OPMASK 272
2240#define XSAVE_ZMM_Hi256 288
2241#define XSAVE_Hi16_ZMM 416
f74eefe0 2242#define XSAVE_PKRU 672
f1665b21 2243
b503717d 2244#define XSAVE_BYTE_OFFSET(word_offset) \
f18793b0 2245 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
b503717d
EH
2246
2247#define ASSERT_OFFSET(word_offset, field) \
2248 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2249 offsetof(X86XSaveArea, field))
2250
2251ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2252ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2253ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2254ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2255ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2256ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2257ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2258ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2259ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2260ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2261ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2262ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2263ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2264ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2265ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2266
1bc22652 2267static int kvm_put_xsave(X86CPU *cpu)
f1665b21 2268{
1bc22652 2269 CPUX86State *env = &cpu->env;
5b8063c4 2270 X86XSaveArea *xsave = env->xsave_buf;
f1665b21 2271
28143b40 2272 if (!has_xsave) {
1bc22652 2273 return kvm_put_fpu(cpu);
b9bec74b 2274 }
86a57621 2275 x86_cpu_xsave_all_areas(cpu, xsave);
f1665b21 2276
9be38598 2277 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
f1665b21
SY
2278}
2279
1bc22652 2280static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 2281{
1bc22652 2282 CPUX86State *env = &cpu->env;
bdfc8480 2283 struct kvm_xcrs xcrs = {};
f1665b21 2284
28143b40 2285 if (!has_xcrs) {
f1665b21 2286 return 0;
b9bec74b 2287 }
f1665b21
SY
2288
2289 xcrs.nr_xcrs = 1;
2290 xcrs.flags = 0;
2291 xcrs.xcrs[0].xcr = 0;
2292 xcrs.xcrs[0].value = env->xcr0;
1bc22652 2293 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
2294}
2295
1bc22652 2296static int kvm_put_sregs(X86CPU *cpu)
05330448 2297{
1bc22652 2298 CPUX86State *env = &cpu->env;
05330448
AL
2299 struct kvm_sregs sregs;
2300
0e607a80
JK
2301 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2302 if (env->interrupt_injected >= 0) {
2303 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2304 (uint64_t)1 << (env->interrupt_injected % 64);
2305 }
05330448
AL
2306
2307 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
2308 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2309 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2310 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2311 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2312 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2313 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 2314 } else {
b9bec74b
JK
2315 set_seg(&sregs.cs, &env->segs[R_CS]);
2316 set_seg(&sregs.ds, &env->segs[R_DS]);
2317 set_seg(&sregs.es, &env->segs[R_ES]);
2318 set_seg(&sregs.fs, &env->segs[R_FS]);
2319 set_seg(&sregs.gs, &env->segs[R_GS]);
2320 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
2321 }
2322
2323 set_seg(&sregs.tr, &env->tr);
2324 set_seg(&sregs.ldt, &env->ldt);
2325
2326 sregs.idt.limit = env->idt.limit;
2327 sregs.idt.base = env->idt.base;
7e680753 2328 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
2329 sregs.gdt.limit = env->gdt.limit;
2330 sregs.gdt.base = env->gdt.base;
7e680753 2331 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
2332
2333 sregs.cr0 = env->cr[0];
2334 sregs.cr2 = env->cr[2];
2335 sregs.cr3 = env->cr[3];
2336 sregs.cr4 = env->cr[4];
2337
02e51483
CF
2338 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2339 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
2340
2341 sregs.efer = env->efer;
2342
1bc22652 2343 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
2344}
2345
d71b62a1
EH
2346static void kvm_msr_buf_reset(X86CPU *cpu)
2347{
2348 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2349}
2350
9c600a84
EH
2351static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2352{
2353 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2354 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2355 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2356
2357 assert((void *)(entry + 1) <= limit);
2358
1abc2cae
EH
2359 entry->index = index;
2360 entry->reserved = 0;
2361 entry->data = value;
9c600a84
EH
2362 msrs->nmsrs++;
2363}
2364
73e1b8f2
PB
2365static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2366{
2367 kvm_msr_buf_reset(cpu);
2368 kvm_msr_entry_add(cpu, index, value);
2369
2370 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2371}
2372
f8d9ccf8
DDAG
2373void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2374{
2375 int ret;
2376
2377 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2378 assert(ret == 1);
2379}
2380
7477cd38
MT
2381static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2382{
2383 CPUX86State *env = &cpu->env;
48e1a45c 2384 int ret;
7477cd38
MT
2385
2386 if (!has_msr_tsc_deadline) {
2387 return 0;
2388 }
2389
73e1b8f2 2390 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
48e1a45c
PB
2391 if (ret < 0) {
2392 return ret;
2393 }
2394
2395 assert(ret == 1);
2396 return 0;
7477cd38
MT
2397}
2398
6bdf863d
JK
2399/*
2400 * Provide a separate write service for the feature control MSR in order to
2401 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2402 * before writing any other state because forcibly leaving nested mode
2403 * invalidates the VCPU state.
2404 */
2405static int kvm_put_msr_feature_control(X86CPU *cpu)
2406{
48e1a45c
PB
2407 int ret;
2408
2409 if (!has_msr_feature_control) {
2410 return 0;
2411 }
6bdf863d 2412
73e1b8f2
PB
2413 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2414 cpu->env.msr_ia32_feature_control);
48e1a45c
PB
2415 if (ret < 0) {
2416 return ret;
2417 }
2418
2419 assert(ret == 1);
2420 return 0;
6bdf863d
JK
2421}
2422
1bc22652 2423static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 2424{
1bc22652 2425 CPUX86State *env = &cpu->env;
9c600a84 2426 int i;
48e1a45c 2427 int ret;
05330448 2428
d71b62a1
EH
2429 kvm_msr_buf_reset(cpu);
2430
9c600a84
EH
2431 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2432 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2433 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2434 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
c3a3a7d3 2435 if (has_msr_star) {
9c600a84 2436 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
b9bec74b 2437 }
c3a3a7d3 2438 if (has_msr_hsave_pa) {
9c600a84 2439 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 2440 }
c9b8f6b6 2441 if (has_msr_tsc_aux) {
9c600a84 2442 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
c9b8f6b6 2443 }
f28558d3 2444 if (has_msr_tsc_adjust) {
9c600a84 2445 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
f28558d3 2446 }
21e87c46 2447 if (has_msr_misc_enable) {
9c600a84 2448 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
21e87c46
AK
2449 env->msr_ia32_misc_enable);
2450 }
fc12d72e 2451 if (has_msr_smbase) {
9c600a84 2452 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
fc12d72e 2453 }
e13713db
LA
2454 if (has_msr_smi_count) {
2455 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2456 }
439d19f2 2457 if (has_msr_bndcfgs) {
9c600a84 2458 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
439d19f2 2459 }
18cd2c17 2460 if (has_msr_xss) {
9c600a84 2461 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
18cd2c17 2462 }
a33a2cfe
PB
2463 if (has_msr_spec_ctrl) {
2464 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2465 }
cfeea0c0
KRW
2466 if (has_msr_virt_ssbd) {
2467 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2468 }
2469
05330448 2470#ifdef TARGET_X86_64
25d2e361 2471 if (lm_capable_kernel) {
9c600a84
EH
2472 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2473 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2474 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2475 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
25d2e361 2476 }
05330448 2477#endif
a33a2cfe 2478
d86f9636 2479 /* If host supports feature MSR, write down. */
aec5e9c3
BD
2480 if (has_msr_arch_capabs) {
2481 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2482 env->features[FEAT_ARCH_CAPABILITIES]);
d86f9636
RH
2483 }
2484
597360c0
XL
2485 if (has_msr_core_capabs) {
2486 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2487 env->features[FEAT_CORE_CAPABILITY]);
2488 }
2489
ff5c186b 2490 /*
0d894367
PB
2491 * The following MSRs have side effects on the guest or are too heavy
2492 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
2493 */
2494 if (level >= KVM_PUT_RESET_STATE) {
9c600a84
EH
2495 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2496 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2497 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
55c911a5 2498 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 2499 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
c5999bfc 2500 }
55c911a5 2501 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 2502 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
bc9a839d 2503 }
55c911a5 2504 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 2505 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
917367aa 2506 }
0b368a10
JD
2507 if (has_architectural_pmu_version > 0) {
2508 if (has_architectural_pmu_version > 1) {
2509 /* Stop the counter. */
2510 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2511 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2512 }
0d894367
PB
2513
2514 /* Set the counter values. */
0b368a10 2515 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 2516 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
0d894367
PB
2517 env->msr_fixed_counters[i]);
2518 }
0b368a10 2519 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84 2520 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
0d894367 2521 env->msr_gp_counters[i]);
9c600a84 2522 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
0d894367
PB
2523 env->msr_gp_evtsel[i]);
2524 }
0b368a10
JD
2525 if (has_architectural_pmu_version > 1) {
2526 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2527 env->msr_global_status);
2528 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2529 env->msr_global_ovf_ctrl);
2530
2531 /* Now start the PMU. */
2532 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2533 env->msr_fixed_ctr_ctrl);
2534 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2535 env->msr_global_ctrl);
2536 }
0d894367 2537 }
da1cc323
EY
2538 /*
2539 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2540 * only sync them to KVM on the first cpu
2541 */
2542 if (current_cpu == first_cpu) {
2543 if (has_msr_hv_hypercall) {
2544 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2545 env->msr_hv_guest_os_id);
2546 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2547 env->msr_hv_hypercall);
2548 }
2d384d7c 2549 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
da1cc323
EY
2550 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2551 env->msr_hv_tsc);
2552 }
2d384d7c 2553 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
2554 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2555 env->msr_hv_reenlightenment_control);
2556 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2557 env->msr_hv_tsc_emulation_control);
2558 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2559 env->msr_hv_tsc_emulation_status);
2560 }
eab70139 2561 }
2d384d7c 2562 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 2563 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
5ef68987 2564 env->msr_hv_vapic);
eab70139 2565 }
f2a53c9e
AS
2566 if (has_msr_hv_crash) {
2567 int j;
2568
5e953812 2569 for (j = 0; j < HV_CRASH_PARAMS; j++)
9c600a84 2570 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
f2a53c9e
AS
2571 env->msr_hv_crash_params[j]);
2572
5e953812 2573 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
f2a53c9e 2574 }
46eb8f98 2575 if (has_msr_hv_runtime) {
9c600a84 2576 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
46eb8f98 2577 }
2d384d7c
VK
2578 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2579 && hv_vpindex_settable) {
701189e3
RK
2580 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2581 hyperv_vp_index(CPU(cpu)));
e9688fab 2582 }
2d384d7c 2583 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
2584 int j;
2585
09df29b6
RK
2586 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2587
9c600a84 2588 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
866eea9a 2589 env->msr_hv_synic_control);
9c600a84 2590 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
866eea9a 2591 env->msr_hv_synic_evt_page);
9c600a84 2592 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
866eea9a
AS
2593 env->msr_hv_synic_msg_page);
2594
2595 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
9c600a84 2596 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
866eea9a
AS
2597 env->msr_hv_synic_sint[j]);
2598 }
2599 }
ff99aa64
AS
2600 if (has_msr_hv_stimer) {
2601 int j;
2602
2603 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
9c600a84 2604 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
ff99aa64
AS
2605 env->msr_hv_stimer_config[j]);
2606 }
2607
2608 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
9c600a84 2609 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
ff99aa64
AS
2610 env->msr_hv_stimer_count[j]);
2611 }
2612 }
1eabfce6 2613 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
112dad69
DDAG
2614 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2615
9c600a84
EH
2616 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2617 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2618 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2619 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2620 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2621 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2622 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2623 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2624 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2625 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2626 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2627 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
d1ae67f6 2628 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
112dad69
DDAG
2629 /* The CPU GPs if we write to a bit above the physical limit of
2630 * the host CPU (and KVM emulates that)
2631 */
2632 uint64_t mask = env->mtrr_var[i].mask;
2633 mask &= phys_mask;
2634
9c600a84
EH
2635 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2636 env->mtrr_var[i].base);
112dad69 2637 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
d1ae67f6
AW
2638 }
2639 }
b77146e9
CP
2640 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2641 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2642 0x14, 1, R_EAX) & 0x7;
2643
2644 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2645 env->msr_rtit_ctrl);
2646 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2647 env->msr_rtit_status);
2648 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2649 env->msr_rtit_output_base);
2650 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2651 env->msr_rtit_output_mask);
2652 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2653 env->msr_rtit_cr3_match);
2654 for (i = 0; i < addr_num; i++) {
2655 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2656 env->msr_rtit_addrs[i]);
2657 }
2658 }
6bdf863d
JK
2659
2660 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2661 * kvm_put_msr_feature_control. */
ea643051 2662 }
57780495 2663 if (env->mcg_cap) {
d8da8574 2664 int i;
b9bec74b 2665
9c600a84
EH
2666 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2667 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
87f8b626
AR
2668 if (has_msr_mcg_ext_ctl) {
2669 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2670 }
c34d440a 2671 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 2672 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
2673 }
2674 }
1a03675d 2675
d71b62a1 2676 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
48e1a45c
PB
2677 if (ret < 0) {
2678 return ret;
2679 }
05330448 2680
c70b11d1
EH
2681 if (ret < cpu->kvm_msr_buf->nmsrs) {
2682 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2683 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2684 (uint32_t)e->index, (uint64_t)e->data);
2685 }
2686
9c600a84 2687 assert(ret == cpu->kvm_msr_buf->nmsrs);
48e1a45c 2688 return 0;
05330448
AL
2689}
2690
2691
1bc22652 2692static int kvm_get_fpu(X86CPU *cpu)
05330448 2693{
1bc22652 2694 CPUX86State *env = &cpu->env;
05330448
AL
2695 struct kvm_fpu fpu;
2696 int i, ret;
2697
1bc22652 2698 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 2699 if (ret < 0) {
05330448 2700 return ret;
b9bec74b 2701 }
05330448
AL
2702
2703 env->fpstt = (fpu.fsw >> 11) & 7;
2704 env->fpus = fpu.fsw;
2705 env->fpuc = fpu.fcw;
42cc8fa6
JK
2706 env->fpop = fpu.last_opcode;
2707 env->fpip = fpu.last_ip;
2708 env->fpdp = fpu.last_dp;
b9bec74b
JK
2709 for (i = 0; i < 8; ++i) {
2710 env->fptags[i] = !((fpu.ftwx >> i) & 1);
2711 }
05330448 2712 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
bee81887 2713 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
2714 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2715 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
bee81887 2716 }
05330448
AL
2717 env->mxcsr = fpu.mxcsr;
2718
2719 return 0;
2720}
2721
1bc22652 2722static int kvm_get_xsave(X86CPU *cpu)
f1665b21 2723{
1bc22652 2724 CPUX86State *env = &cpu->env;
5b8063c4 2725 X86XSaveArea *xsave = env->xsave_buf;
86a57621 2726 int ret;
f1665b21 2727
28143b40 2728 if (!has_xsave) {
1bc22652 2729 return kvm_get_fpu(cpu);
b9bec74b 2730 }
f1665b21 2731
1bc22652 2732 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 2733 if (ret < 0) {
f1665b21 2734 return ret;
0f53994f 2735 }
86a57621 2736 x86_cpu_xrstor_all_areas(cpu, xsave);
f1665b21 2737
f1665b21 2738 return 0;
f1665b21
SY
2739}
2740
1bc22652 2741static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 2742{
1bc22652 2743 CPUX86State *env = &cpu->env;
f1665b21
SY
2744 int i, ret;
2745 struct kvm_xcrs xcrs;
2746
28143b40 2747 if (!has_xcrs) {
f1665b21 2748 return 0;
b9bec74b 2749 }
f1665b21 2750
1bc22652 2751 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 2752 if (ret < 0) {
f1665b21 2753 return ret;
b9bec74b 2754 }
f1665b21 2755
b9bec74b 2756 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 2757 /* Only support xcr0 now */
0fd53fec
PB
2758 if (xcrs.xcrs[i].xcr == 0) {
2759 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
2760 break;
2761 }
b9bec74b 2762 }
f1665b21 2763 return 0;
f1665b21
SY
2764}
2765
1bc22652 2766static int kvm_get_sregs(X86CPU *cpu)
05330448 2767{
1bc22652 2768 CPUX86State *env = &cpu->env;
05330448 2769 struct kvm_sregs sregs;
0e607a80 2770 int bit, i, ret;
05330448 2771
1bc22652 2772 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 2773 if (ret < 0) {
05330448 2774 return ret;
b9bec74b 2775 }
05330448 2776
0e607a80
JK
2777 /* There can only be one pending IRQ set in the bitmap at a time, so try
2778 to find it and save its number instead (-1 for none). */
2779 env->interrupt_injected = -1;
2780 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
2781 if (sregs.interrupt_bitmap[i]) {
2782 bit = ctz64(sregs.interrupt_bitmap[i]);
2783 env->interrupt_injected = i * 64 + bit;
2784 break;
2785 }
2786 }
05330448
AL
2787
2788 get_seg(&env->segs[R_CS], &sregs.cs);
2789 get_seg(&env->segs[R_DS], &sregs.ds);
2790 get_seg(&env->segs[R_ES], &sregs.es);
2791 get_seg(&env->segs[R_FS], &sregs.fs);
2792 get_seg(&env->segs[R_GS], &sregs.gs);
2793 get_seg(&env->segs[R_SS], &sregs.ss);
2794
2795 get_seg(&env->tr, &sregs.tr);
2796 get_seg(&env->ldt, &sregs.ldt);
2797
2798 env->idt.limit = sregs.idt.limit;
2799 env->idt.base = sregs.idt.base;
2800 env->gdt.limit = sregs.gdt.limit;
2801 env->gdt.base = sregs.gdt.base;
2802
2803 env->cr[0] = sregs.cr0;
2804 env->cr[2] = sregs.cr2;
2805 env->cr[3] = sregs.cr3;
2806 env->cr[4] = sregs.cr4;
2807
05330448 2808 env->efer = sregs.efer;
cce47516
JK
2809
2810 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
35b1b927 2811 x86_update_hflags(env);
05330448
AL
2812
2813 return 0;
2814}
2815
1bc22652 2816static int kvm_get_msrs(X86CPU *cpu)
05330448 2817{
1bc22652 2818 CPUX86State *env = &cpu->env;
d71b62a1 2819 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
9c600a84 2820 int ret, i;
fcc35e7c 2821 uint64_t mtrr_top_bits;
05330448 2822
d71b62a1
EH
2823 kvm_msr_buf_reset(cpu);
2824
9c600a84
EH
2825 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
2826 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
2827 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
2828 kvm_msr_entry_add(cpu, MSR_PAT, 0);
c3a3a7d3 2829 if (has_msr_star) {
9c600a84 2830 kvm_msr_entry_add(cpu, MSR_STAR, 0);
b9bec74b 2831 }
c3a3a7d3 2832 if (has_msr_hsave_pa) {
9c600a84 2833 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
b9bec74b 2834 }
c9b8f6b6 2835 if (has_msr_tsc_aux) {
9c600a84 2836 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
c9b8f6b6 2837 }
f28558d3 2838 if (has_msr_tsc_adjust) {
9c600a84 2839 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
f28558d3 2840 }
aa82ba54 2841 if (has_msr_tsc_deadline) {
9c600a84 2842 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
aa82ba54 2843 }
21e87c46 2844 if (has_msr_misc_enable) {
9c600a84 2845 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
21e87c46 2846 }
fc12d72e 2847 if (has_msr_smbase) {
9c600a84 2848 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
fc12d72e 2849 }
e13713db
LA
2850 if (has_msr_smi_count) {
2851 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
2852 }
df67696e 2853 if (has_msr_feature_control) {
9c600a84 2854 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
df67696e 2855 }
79e9ebeb 2856 if (has_msr_bndcfgs) {
9c600a84 2857 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
79e9ebeb 2858 }
18cd2c17 2859 if (has_msr_xss) {
9c600a84 2860 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
18cd2c17 2861 }
a33a2cfe
PB
2862 if (has_msr_spec_ctrl) {
2863 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
2864 }
cfeea0c0
KRW
2865 if (has_msr_virt_ssbd) {
2866 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
2867 }
b8cc45d6 2868 if (!env->tsc_valid) {
9c600a84 2869 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
1354869c 2870 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
2871 }
2872
05330448 2873#ifdef TARGET_X86_64
25d2e361 2874 if (lm_capable_kernel) {
9c600a84
EH
2875 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
2876 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
2877 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
2878 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
25d2e361 2879 }
05330448 2880#endif
9c600a84
EH
2881 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
2882 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
55c911a5 2883 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
9c600a84 2884 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
c5999bfc 2885 }
55c911a5 2886 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
9c600a84 2887 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
bc9a839d 2888 }
55c911a5 2889 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
9c600a84 2890 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
917367aa 2891 }
0b368a10
JD
2892 if (has_architectural_pmu_version > 0) {
2893 if (has_architectural_pmu_version > 1) {
2894 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2895 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2896 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
2897 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
2898 }
2899 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
9c600a84 2900 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
0d894367 2901 }
0b368a10 2902 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
9c600a84
EH
2903 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
2904 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
0d894367
PB
2905 }
2906 }
1a03675d 2907
57780495 2908 if (env->mcg_cap) {
9c600a84
EH
2909 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
2910 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
87f8b626
AR
2911 if (has_msr_mcg_ext_ctl) {
2912 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
2913 }
b9bec74b 2914 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
9c600a84 2915 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
b9bec74b 2916 }
57780495 2917 }
57780495 2918
1c90ef26 2919 if (has_msr_hv_hypercall) {
9c600a84
EH
2920 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
2921 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
1c90ef26 2922 }
2d384d7c 2923 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
9c600a84 2924 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
5ef68987 2925 }
2d384d7c 2926 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
9c600a84 2927 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
48a5f3bc 2928 }
2d384d7c 2929 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
ba6a4fd9
VK
2930 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
2931 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
2932 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
2933 }
f2a53c9e
AS
2934 if (has_msr_hv_crash) {
2935 int j;
2936
5e953812 2937 for (j = 0; j < HV_CRASH_PARAMS; j++) {
9c600a84 2938 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
f2a53c9e
AS
2939 }
2940 }
46eb8f98 2941 if (has_msr_hv_runtime) {
9c600a84 2942 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
46eb8f98 2943 }
2d384d7c 2944 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
866eea9a
AS
2945 uint32_t msr;
2946
9c600a84 2947 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
9c600a84
EH
2948 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
2949 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
866eea9a 2950 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
9c600a84 2951 kvm_msr_entry_add(cpu, msr, 0);
866eea9a
AS
2952 }
2953 }
ff99aa64
AS
2954 if (has_msr_hv_stimer) {
2955 uint32_t msr;
2956
2957 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2958 msr++) {
9c600a84 2959 kvm_msr_entry_add(cpu, msr, 0);
ff99aa64
AS
2960 }
2961 }
1eabfce6 2962 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
9c600a84
EH
2963 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
2964 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
2965 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
2966 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
2967 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
2968 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
2969 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
2970 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
2971 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
2972 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
2973 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
2974 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
d1ae67f6 2975 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
9c600a84
EH
2976 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
2977 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
d1ae67f6
AW
2978 }
2979 }
5ef68987 2980
b77146e9
CP
2981 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2982 int addr_num =
2983 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
2984
2985 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
2986 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
2987 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
2988 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
2989 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
2990 for (i = 0; i < addr_num; i++) {
2991 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
2992 }
2993 }
2994
d71b62a1 2995 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
b9bec74b 2996 if (ret < 0) {
05330448 2997 return ret;
b9bec74b 2998 }
05330448 2999
c70b11d1
EH
3000 if (ret < cpu->kvm_msr_buf->nmsrs) {
3001 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3002 error_report("error: failed to get MSR 0x%" PRIx32,
3003 (uint32_t)e->index);
3004 }
3005
9c600a84 3006 assert(ret == cpu->kvm_msr_buf->nmsrs);
fcc35e7c
DDAG
3007 /*
3008 * MTRR masks: Each mask consists of 5 parts
3009 * a 10..0: must be zero
3010 * b 11 : valid bit
3011 * c n-1.12: actual mask bits
3012 * d 51..n: reserved must be zero
3013 * e 63.52: reserved must be zero
3014 *
3015 * 'n' is the number of physical bits supported by the CPU and is
3016 * apparently always <= 52. We know our 'n' but don't know what
3017 * the destinations 'n' is; it might be smaller, in which case
3018 * it masks (c) on loading. It might be larger, in which case
3019 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3020 * we're migrating to.
3021 */
3022
3023 if (cpu->fill_mtrr_mask) {
3024 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3025 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3026 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3027 } else {
3028 mtrr_top_bits = 0;
3029 }
3030
05330448 3031 for (i = 0; i < ret; i++) {
0d894367
PB
3032 uint32_t index = msrs[i].index;
3033 switch (index) {
05330448
AL
3034 case MSR_IA32_SYSENTER_CS:
3035 env->sysenter_cs = msrs[i].data;
3036 break;
3037 case MSR_IA32_SYSENTER_ESP:
3038 env->sysenter_esp = msrs[i].data;
3039 break;
3040 case MSR_IA32_SYSENTER_EIP:
3041 env->sysenter_eip = msrs[i].data;
3042 break;
0c03266a
JK
3043 case MSR_PAT:
3044 env->pat = msrs[i].data;
3045 break;
05330448
AL
3046 case MSR_STAR:
3047 env->star = msrs[i].data;
3048 break;
3049#ifdef TARGET_X86_64
3050 case MSR_CSTAR:
3051 env->cstar = msrs[i].data;
3052 break;
3053 case MSR_KERNELGSBASE:
3054 env->kernelgsbase = msrs[i].data;
3055 break;
3056 case MSR_FMASK:
3057 env->fmask = msrs[i].data;
3058 break;
3059 case MSR_LSTAR:
3060 env->lstar = msrs[i].data;
3061 break;
3062#endif
3063 case MSR_IA32_TSC:
3064 env->tsc = msrs[i].data;
3065 break;
c9b8f6b6
AS
3066 case MSR_TSC_AUX:
3067 env->tsc_aux = msrs[i].data;
3068 break;
f28558d3
WA
3069 case MSR_TSC_ADJUST:
3070 env->tsc_adjust = msrs[i].data;
3071 break;
aa82ba54
LJ
3072 case MSR_IA32_TSCDEADLINE:
3073 env->tsc_deadline = msrs[i].data;
3074 break;
aa851e36
MT
3075 case MSR_VM_HSAVE_PA:
3076 env->vm_hsave = msrs[i].data;
3077 break;
1a03675d
GC
3078 case MSR_KVM_SYSTEM_TIME:
3079 env->system_time_msr = msrs[i].data;
3080 break;
3081 case MSR_KVM_WALL_CLOCK:
3082 env->wall_clock_msr = msrs[i].data;
3083 break;
57780495
MT
3084 case MSR_MCG_STATUS:
3085 env->mcg_status = msrs[i].data;
3086 break;
3087 case MSR_MCG_CTL:
3088 env->mcg_ctl = msrs[i].data;
3089 break;
87f8b626
AR
3090 case MSR_MCG_EXT_CTL:
3091 env->mcg_ext_ctl = msrs[i].data;
3092 break;
21e87c46
AK
3093 case MSR_IA32_MISC_ENABLE:
3094 env->msr_ia32_misc_enable = msrs[i].data;
3095 break;
fc12d72e
PB
3096 case MSR_IA32_SMBASE:
3097 env->smbase = msrs[i].data;
3098 break;
e13713db
LA
3099 case MSR_SMI_COUNT:
3100 env->msr_smi_count = msrs[i].data;
3101 break;
0779caeb
ACL
3102 case MSR_IA32_FEATURE_CONTROL:
3103 env->msr_ia32_feature_control = msrs[i].data;
df67696e 3104 break;
79e9ebeb
LJ
3105 case MSR_IA32_BNDCFGS:
3106 env->msr_bndcfgs = msrs[i].data;
3107 break;
18cd2c17
WL
3108 case MSR_IA32_XSS:
3109 env->xss = msrs[i].data;
3110 break;
57780495 3111 default:
57780495
MT
3112 if (msrs[i].index >= MSR_MC0_CTL &&
3113 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3114 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 3115 }
d8da8574 3116 break;
f6584ee2
GN
3117 case MSR_KVM_ASYNC_PF_EN:
3118 env->async_pf_en_msr = msrs[i].data;
3119 break;
bc9a839d
MT
3120 case MSR_KVM_PV_EOI_EN:
3121 env->pv_eoi_en_msr = msrs[i].data;
3122 break;
917367aa
MT
3123 case MSR_KVM_STEAL_TIME:
3124 env->steal_time_msr = msrs[i].data;
3125 break;
0d894367
PB
3126 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3127 env->msr_fixed_ctr_ctrl = msrs[i].data;
3128 break;
3129 case MSR_CORE_PERF_GLOBAL_CTRL:
3130 env->msr_global_ctrl = msrs[i].data;
3131 break;
3132 case MSR_CORE_PERF_GLOBAL_STATUS:
3133 env->msr_global_status = msrs[i].data;
3134 break;
3135 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3136 env->msr_global_ovf_ctrl = msrs[i].data;
3137 break;
3138 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3139 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3140 break;
3141 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3142 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3143 break;
3144 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3145 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3146 break;
1c90ef26
VR
3147 case HV_X64_MSR_HYPERCALL:
3148 env->msr_hv_hypercall = msrs[i].data;
3149 break;
3150 case HV_X64_MSR_GUEST_OS_ID:
3151 env->msr_hv_guest_os_id = msrs[i].data;
3152 break;
5ef68987
VR
3153 case HV_X64_MSR_APIC_ASSIST_PAGE:
3154 env->msr_hv_vapic = msrs[i].data;
3155 break;
48a5f3bc
VR
3156 case HV_X64_MSR_REFERENCE_TSC:
3157 env->msr_hv_tsc = msrs[i].data;
3158 break;
f2a53c9e
AS
3159 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3160 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3161 break;
46eb8f98
AS
3162 case HV_X64_MSR_VP_RUNTIME:
3163 env->msr_hv_runtime = msrs[i].data;
3164 break;
866eea9a
AS
3165 case HV_X64_MSR_SCONTROL:
3166 env->msr_hv_synic_control = msrs[i].data;
3167 break;
866eea9a
AS
3168 case HV_X64_MSR_SIEFP:
3169 env->msr_hv_synic_evt_page = msrs[i].data;
3170 break;
3171 case HV_X64_MSR_SIMP:
3172 env->msr_hv_synic_msg_page = msrs[i].data;
3173 break;
3174 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3175 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
ff99aa64
AS
3176 break;
3177 case HV_X64_MSR_STIMER0_CONFIG:
3178 case HV_X64_MSR_STIMER1_CONFIG:
3179 case HV_X64_MSR_STIMER2_CONFIG:
3180 case HV_X64_MSR_STIMER3_CONFIG:
3181 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3182 msrs[i].data;
3183 break;
3184 case HV_X64_MSR_STIMER0_COUNT:
3185 case HV_X64_MSR_STIMER1_COUNT:
3186 case HV_X64_MSR_STIMER2_COUNT:
3187 case HV_X64_MSR_STIMER3_COUNT:
3188 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3189 msrs[i].data;
866eea9a 3190 break;
ba6a4fd9
VK
3191 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3192 env->msr_hv_reenlightenment_control = msrs[i].data;
3193 break;
3194 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3195 env->msr_hv_tsc_emulation_control = msrs[i].data;
3196 break;
3197 case HV_X64_MSR_TSC_EMULATION_STATUS:
3198 env->msr_hv_tsc_emulation_status = msrs[i].data;
3199 break;
d1ae67f6
AW
3200 case MSR_MTRRdefType:
3201 env->mtrr_deftype = msrs[i].data;
3202 break;
3203 case MSR_MTRRfix64K_00000:
3204 env->mtrr_fixed[0] = msrs[i].data;
3205 break;
3206 case MSR_MTRRfix16K_80000:
3207 env->mtrr_fixed[1] = msrs[i].data;
3208 break;
3209 case MSR_MTRRfix16K_A0000:
3210 env->mtrr_fixed[2] = msrs[i].data;
3211 break;
3212 case MSR_MTRRfix4K_C0000:
3213 env->mtrr_fixed[3] = msrs[i].data;
3214 break;
3215 case MSR_MTRRfix4K_C8000:
3216 env->mtrr_fixed[4] = msrs[i].data;
3217 break;
3218 case MSR_MTRRfix4K_D0000:
3219 env->mtrr_fixed[5] = msrs[i].data;
3220 break;
3221 case MSR_MTRRfix4K_D8000:
3222 env->mtrr_fixed[6] = msrs[i].data;
3223 break;
3224 case MSR_MTRRfix4K_E0000:
3225 env->mtrr_fixed[7] = msrs[i].data;
3226 break;
3227 case MSR_MTRRfix4K_E8000:
3228 env->mtrr_fixed[8] = msrs[i].data;
3229 break;
3230 case MSR_MTRRfix4K_F0000:
3231 env->mtrr_fixed[9] = msrs[i].data;
3232 break;
3233 case MSR_MTRRfix4K_F8000:
3234 env->mtrr_fixed[10] = msrs[i].data;
3235 break;
3236 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3237 if (index & 1) {
fcc35e7c
DDAG
3238 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3239 mtrr_top_bits;
d1ae67f6
AW
3240 } else {
3241 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3242 }
3243 break;
a33a2cfe
PB
3244 case MSR_IA32_SPEC_CTRL:
3245 env->spec_ctrl = msrs[i].data;
3246 break;
cfeea0c0
KRW
3247 case MSR_VIRT_SSBD:
3248 env->virt_ssbd = msrs[i].data;
3249 break;
b77146e9
CP
3250 case MSR_IA32_RTIT_CTL:
3251 env->msr_rtit_ctrl = msrs[i].data;
3252 break;
3253 case MSR_IA32_RTIT_STATUS:
3254 env->msr_rtit_status = msrs[i].data;
3255 break;
3256 case MSR_IA32_RTIT_OUTPUT_BASE:
3257 env->msr_rtit_output_base = msrs[i].data;
3258 break;
3259 case MSR_IA32_RTIT_OUTPUT_MASK:
3260 env->msr_rtit_output_mask = msrs[i].data;
3261 break;
3262 case MSR_IA32_RTIT_CR3_MATCH:
3263 env->msr_rtit_cr3_match = msrs[i].data;
3264 break;
3265 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3266 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3267 break;
05330448
AL
3268 }
3269 }
3270
3271 return 0;
3272}
3273
1bc22652 3274static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 3275{
1bc22652 3276 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 3277
1bc22652 3278 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
3279}
3280
23d02d9b 3281static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 3282{
259186a7 3283 CPUState *cs = CPU(cpu);
23d02d9b 3284 CPUX86State *env = &cpu->env;
9bdbe550
HB
3285 struct kvm_mp_state mp_state;
3286 int ret;
3287
259186a7 3288 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
3289 if (ret < 0) {
3290 return ret;
3291 }
3292 env->mp_state = mp_state.mp_state;
c14750e8 3293 if (kvm_irqchip_in_kernel()) {
259186a7 3294 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 3295 }
9bdbe550
HB
3296 return 0;
3297}
3298
1bc22652 3299static int kvm_get_apic(X86CPU *cpu)
680c1c6f 3300{
02e51483 3301 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
3302 struct kvm_lapic_state kapic;
3303 int ret;
3304
3d4b2649 3305 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 3306 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
3307 if (ret < 0) {
3308 return ret;
3309 }
3310
3311 kvm_get_apic_state(apic, &kapic);
3312 }
3313 return 0;
3314}
3315
1bc22652 3316static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 3317{
fc12d72e 3318 CPUState *cs = CPU(cpu);
1bc22652 3319 CPUX86State *env = &cpu->env;
076796f8 3320 struct kvm_vcpu_events events = {};
a0fb002c
JK
3321
3322 if (!kvm_has_vcpu_events()) {
3323 return 0;
3324 }
3325
fd13f23b
LA
3326 events.flags = 0;
3327
3328 if (has_exception_payload) {
3329 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3330 events.exception.pending = env->exception_pending;
3331 events.exception_has_payload = env->exception_has_payload;
3332 events.exception_payload = env->exception_payload;
3333 }
3334 events.exception.nr = env->exception_nr;
3335 events.exception.injected = env->exception_injected;
a0fb002c
JK
3336 events.exception.has_error_code = env->has_error_code;
3337 events.exception.error_code = env->error_code;
3338
3339 events.interrupt.injected = (env->interrupt_injected >= 0);
3340 events.interrupt.nr = env->interrupt_injected;
3341 events.interrupt.soft = env->soft_interrupt;
3342
3343 events.nmi.injected = env->nmi_injected;
3344 events.nmi.pending = env->nmi_pending;
3345 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3346
3347 events.sipi_vector = env->sipi_vector;
3348
fc12d72e
PB
3349 if (has_msr_smbase) {
3350 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3351 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3352 if (kvm_irqchip_in_kernel()) {
3353 /* As soon as these are moved to the kernel, remove them
3354 * from cs->interrupt_request.
3355 */
3356 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3357 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3358 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3359 } else {
3360 /* Keep these in cs->interrupt_request. */
3361 events.smi.pending = 0;
3362 events.smi.latched_init = 0;
3363 }
fc3a1fd7
DDAG
3364 /* Stop SMI delivery on old machine types to avoid a reboot
3365 * on an inward migration of an old VM.
3366 */
3367 if (!cpu->kvm_no_smi_migration) {
3368 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3369 }
fc12d72e
PB
3370 }
3371
ea643051 3372 if (level >= KVM_PUT_RESET_STATE) {
4fadfa00
PH
3373 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3374 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3375 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3376 }
ea643051 3377 }
aee028b9 3378
1bc22652 3379 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
3380}
3381
1bc22652 3382static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 3383{
1bc22652 3384 CPUX86State *env = &cpu->env;
a0fb002c
JK
3385 struct kvm_vcpu_events events;
3386 int ret;
3387
3388 if (!kvm_has_vcpu_events()) {
3389 return 0;
3390 }
3391
fc12d72e 3392 memset(&events, 0, sizeof(events));
1bc22652 3393 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
3394 if (ret < 0) {
3395 return ret;
3396 }
fd13f23b
LA
3397
3398 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3399 env->exception_pending = events.exception.pending;
3400 env->exception_has_payload = events.exception_has_payload;
3401 env->exception_payload = events.exception_payload;
3402 } else {
3403 env->exception_pending = 0;
3404 env->exception_has_payload = false;
3405 }
3406 env->exception_injected = events.exception.injected;
3407 env->exception_nr =
3408 (env->exception_pending || env->exception_injected) ?
3409 events.exception.nr : -1;
a0fb002c
JK
3410 env->has_error_code = events.exception.has_error_code;
3411 env->error_code = events.exception.error_code;
3412
3413 env->interrupt_injected =
3414 events.interrupt.injected ? events.interrupt.nr : -1;
3415 env->soft_interrupt = events.interrupt.soft;
3416
3417 env->nmi_injected = events.nmi.injected;
3418 env->nmi_pending = events.nmi.pending;
3419 if (events.nmi.masked) {
3420 env->hflags2 |= HF2_NMI_MASK;
3421 } else {
3422 env->hflags2 &= ~HF2_NMI_MASK;
3423 }
3424
fc12d72e
PB
3425 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3426 if (events.smi.smm) {
3427 env->hflags |= HF_SMM_MASK;
3428 } else {
3429 env->hflags &= ~HF_SMM_MASK;
3430 }
3431 if (events.smi.pending) {
3432 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3433 } else {
3434 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3435 }
3436 if (events.smi.smm_inside_nmi) {
3437 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3438 } else {
3439 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3440 }
3441 if (events.smi.latched_init) {
3442 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3443 } else {
3444 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3445 }
3446 }
3447
a0fb002c 3448 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
3449
3450 return 0;
3451}
3452
1bc22652 3453static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 3454{
ed2803da 3455 CPUState *cs = CPU(cpu);
1bc22652 3456 CPUX86State *env = &cpu->env;
b0b1d690 3457 int ret = 0;
b0b1d690
JK
3458 unsigned long reinject_trap = 0;
3459
3460 if (!kvm_has_vcpu_events()) {
fd13f23b 3461 if (env->exception_nr == EXCP01_DB) {
b0b1d690 3462 reinject_trap = KVM_GUESTDBG_INJECT_DB;
37936ac7 3463 } else if (env->exception_injected == EXCP03_INT3) {
b0b1d690
JK
3464 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3465 }
fd13f23b 3466 kvm_reset_exception(env);
b0b1d690
JK
3467 }
3468
3469 /*
3470 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3471 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3472 * by updating the debug state once again if single-stepping is on.
3473 * Another reason to call kvm_update_guest_debug here is a pending debug
3474 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3475 * reinject them via SET_GUEST_DEBUG.
3476 */
3477 if (reinject_trap ||
ed2803da 3478 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 3479 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 3480 }
b0b1d690
JK
3481 return ret;
3482}
3483
1bc22652 3484static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 3485{
1bc22652 3486 CPUX86State *env = &cpu->env;
ff44f1a3
JK
3487 struct kvm_debugregs dbgregs;
3488 int i;
3489
3490 if (!kvm_has_debugregs()) {
3491 return 0;
3492 }
3493
3494 for (i = 0; i < 4; i++) {
3495 dbgregs.db[i] = env->dr[i];
3496 }
3497 dbgregs.dr6 = env->dr[6];
3498 dbgregs.dr7 = env->dr[7];
3499 dbgregs.flags = 0;
3500
1bc22652 3501 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
3502}
3503
1bc22652 3504static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 3505{
1bc22652 3506 CPUX86State *env = &cpu->env;
ff44f1a3
JK
3507 struct kvm_debugregs dbgregs;
3508 int i, ret;
3509
3510 if (!kvm_has_debugregs()) {
3511 return 0;
3512 }
3513
1bc22652 3514 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 3515 if (ret < 0) {
b9bec74b 3516 return ret;
ff44f1a3
JK
3517 }
3518 for (i = 0; i < 4; i++) {
3519 env->dr[i] = dbgregs.db[i];
3520 }
3521 env->dr[4] = env->dr[6] = dbgregs.dr6;
3522 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
3523
3524 return 0;
3525}
3526
ebbfef2f
LA
3527static int kvm_put_nested_state(X86CPU *cpu)
3528{
3529 CPUX86State *env = &cpu->env;
3530 int max_nested_state_len = kvm_max_nested_state_length();
3531
3532 if (max_nested_state_len <= 0) {
3533 return 0;
3534 }
3535
3536 assert(env->nested_state->size <= max_nested_state_len);
3537 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3538}
3539
3540static int kvm_get_nested_state(X86CPU *cpu)
3541{
3542 CPUX86State *env = &cpu->env;
3543 int max_nested_state_len = kvm_max_nested_state_length();
3544 int ret;
3545
3546 if (max_nested_state_len <= 0) {
3547 return 0;
3548 }
3549
3550 /*
3551 * It is possible that migration restored a smaller size into
3552 * nested_state->hdr.size than what our kernel support.
3553 * We preserve migration origin nested_state->hdr.size for
3554 * call to KVM_SET_NESTED_STATE but wish that our next call
3555 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3556 */
3557 env->nested_state->size = max_nested_state_len;
3558
3559 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3560 if (ret < 0) {
3561 return ret;
3562 }
3563
3564 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3565 env->hflags |= HF_GUEST_MASK;
3566 } else {
3567 env->hflags &= ~HF_GUEST_MASK;
3568 }
3569
3570 return ret;
3571}
3572
20d695a9 3573int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 3574{
20d695a9 3575 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
3576 int ret;
3577
2fa45344 3578 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 3579
ebbfef2f
LA
3580 ret = kvm_put_nested_state(x86_cpu);
3581 if (ret < 0) {
3582 return ret;
3583 }
3584
48e1a45c 3585 if (level >= KVM_PUT_RESET_STATE) {
6bdf863d
JK
3586 ret = kvm_put_msr_feature_control(x86_cpu);
3587 if (ret < 0) {
3588 return ret;
3589 }
3590 }
3591
36f96c4b
HZ
3592 if (level == KVM_PUT_FULL_STATE) {
3593 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3594 * because TSC frequency mismatch shouldn't abort migration,
3595 * unless the user explicitly asked for a more strict TSC
3596 * setting (e.g. using an explicit "tsc-freq" option).
3597 */
3598 kvm_arch_set_tsc_khz(cpu);
3599 }
3600
1bc22652 3601 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 3602 if (ret < 0) {
05330448 3603 return ret;
b9bec74b 3604 }
1bc22652 3605 ret = kvm_put_xsave(x86_cpu);
b9bec74b 3606 if (ret < 0) {
f1665b21 3607 return ret;
b9bec74b 3608 }
1bc22652 3609 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 3610 if (ret < 0) {
05330448 3611 return ret;
b9bec74b 3612 }
1bc22652 3613 ret = kvm_put_sregs(x86_cpu);
b9bec74b 3614 if (ret < 0) {
05330448 3615 return ret;
b9bec74b 3616 }
ab443475 3617 /* must be before kvm_put_msrs */
1bc22652 3618 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
3619 if (ret < 0) {
3620 return ret;
3621 }
1bc22652 3622 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 3623 if (ret < 0) {
05330448 3624 return ret;
b9bec74b 3625 }
4fadfa00
PH
3626 ret = kvm_put_vcpu_events(x86_cpu, level);
3627 if (ret < 0) {
3628 return ret;
3629 }
ea643051 3630 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 3631 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 3632 if (ret < 0) {
680c1c6f
JK
3633 return ret;
3634 }
ea643051 3635 }
7477cd38
MT
3636
3637 ret = kvm_put_tscdeadline_msr(x86_cpu);
3638 if (ret < 0) {
3639 return ret;
3640 }
1bc22652 3641 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 3642 if (ret < 0) {
b0b1d690 3643 return ret;
b9bec74b 3644 }
b0b1d690 3645 /* must be last */
1bc22652 3646 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 3647 if (ret < 0) {
ff44f1a3 3648 return ret;
b9bec74b 3649 }
05330448
AL
3650 return 0;
3651}
3652
20d695a9 3653int kvm_arch_get_registers(CPUState *cs)
05330448 3654{
20d695a9 3655 X86CPU *cpu = X86_CPU(cs);
05330448
AL
3656 int ret;
3657
20d695a9 3658 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 3659
4fadfa00 3660 ret = kvm_get_vcpu_events(cpu);
b9bec74b 3661 if (ret < 0) {
f4f1110e 3662 goto out;
b9bec74b 3663 }
4fadfa00
PH
3664 /*
3665 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3666 * KVM_GET_REGS and KVM_GET_SREGS.
3667 */
3668 ret = kvm_get_mp_state(cpu);
b9bec74b 3669 if (ret < 0) {
f4f1110e 3670 goto out;
b9bec74b 3671 }
4fadfa00 3672 ret = kvm_getput_regs(cpu, 0);
b9bec74b 3673 if (ret < 0) {
f4f1110e 3674 goto out;
b9bec74b 3675 }
4fadfa00 3676 ret = kvm_get_xsave(cpu);
b9bec74b 3677 if (ret < 0) {
f4f1110e 3678 goto out;
b9bec74b 3679 }
4fadfa00 3680 ret = kvm_get_xcrs(cpu);
b9bec74b 3681 if (ret < 0) {
f4f1110e 3682 goto out;
b9bec74b 3683 }
4fadfa00 3684 ret = kvm_get_sregs(cpu);
b9bec74b 3685 if (ret < 0) {
f4f1110e 3686 goto out;
b9bec74b 3687 }
4fadfa00 3688 ret = kvm_get_msrs(cpu);
680c1c6f 3689 if (ret < 0) {
f4f1110e 3690 goto out;
680c1c6f 3691 }
4fadfa00 3692 ret = kvm_get_apic(cpu);
b9bec74b 3693 if (ret < 0) {
f4f1110e 3694 goto out;
b9bec74b 3695 }
1bc22652 3696 ret = kvm_get_debugregs(cpu);
b9bec74b 3697 if (ret < 0) {
f4f1110e 3698 goto out;
b9bec74b 3699 }
ebbfef2f
LA
3700 ret = kvm_get_nested_state(cpu);
3701 if (ret < 0) {
3702 goto out;
3703 }
f4f1110e
RH
3704 ret = 0;
3705 out:
3706 cpu_sync_bndcs_hflags(&cpu->env);
3707 return ret;
05330448
AL
3708}
3709
20d695a9 3710void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 3711{
20d695a9
AF
3712 X86CPU *x86_cpu = X86_CPU(cpu);
3713 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
3714 int ret;
3715
276ce815 3716 /* Inject NMI */
fc12d72e
PB
3717 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
3718 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
3719 qemu_mutex_lock_iothread();
3720 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
3721 qemu_mutex_unlock_iothread();
3722 DPRINTF("injected NMI\n");
3723 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
3724 if (ret < 0) {
3725 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
3726 strerror(-ret));
3727 }
3728 }
3729 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
3730 qemu_mutex_lock_iothread();
3731 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
3732 qemu_mutex_unlock_iothread();
3733 DPRINTF("injected SMI\n");
3734 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
3735 if (ret < 0) {
3736 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
3737 strerror(-ret));
3738 }
ce377af3 3739 }
276ce815
LJ
3740 }
3741
15eafc2e 3742 if (!kvm_pic_in_kernel()) {
4b8523ee
JK
3743 qemu_mutex_lock_iothread();
3744 }
3745
e0723c45
PB
3746 /* Force the VCPU out of its inner loop to process any INIT requests
3747 * or (for userspace APIC, but it is cheap to combine the checks here)
3748 * pending TPR access reports.
3749 */
3750 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fc12d72e
PB
3751 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
3752 !(env->hflags & HF_SMM_MASK)) {
3753 cpu->exit_request = 1;
3754 }
3755 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
3756 cpu->exit_request = 1;
3757 }
e0723c45 3758 }
05330448 3759
15eafc2e 3760 if (!kvm_pic_in_kernel()) {
db1669bc
JK
3761 /* Try to inject an interrupt if the guest can accept it */
3762 if (run->ready_for_interrupt_injection &&
259186a7 3763 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
3764 (env->eflags & IF_MASK)) {
3765 int irq;
3766
259186a7 3767 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
3768 irq = cpu_get_pic_interrupt(env);
3769 if (irq >= 0) {
3770 struct kvm_interrupt intr;
3771
3772 intr.irq = irq;
db1669bc 3773 DPRINTF("injected interrupt %d\n", irq);
1bc22652 3774 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
3775 if (ret < 0) {
3776 fprintf(stderr,
3777 "KVM: injection failed, interrupt lost (%s)\n",
3778 strerror(-ret));
3779 }
db1669bc
JK
3780 }
3781 }
05330448 3782
db1669bc
JK
3783 /* If we have an interrupt but the guest is not ready to receive an
3784 * interrupt, request an interrupt window exit. This will
3785 * cause a return to userspace as soon as the guest is ready to
3786 * receive interrupts. */
259186a7 3787 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
3788 run->request_interrupt_window = 1;
3789 } else {
3790 run->request_interrupt_window = 0;
3791 }
3792
3793 DPRINTF("setting tpr\n");
02e51483 3794 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4b8523ee
JK
3795
3796 qemu_mutex_unlock_iothread();
db1669bc 3797 }
05330448
AL
3798}
3799
4c663752 3800MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 3801{
20d695a9
AF
3802 X86CPU *x86_cpu = X86_CPU(cpu);
3803 CPUX86State *env = &x86_cpu->env;
3804
fc12d72e
PB
3805 if (run->flags & KVM_RUN_X86_SMM) {
3806 env->hflags |= HF_SMM_MASK;
3807 } else {
f5c052b9 3808 env->hflags &= ~HF_SMM_MASK;
fc12d72e 3809 }
b9bec74b 3810 if (run->if_flag) {
05330448 3811 env->eflags |= IF_MASK;
b9bec74b 3812 } else {
05330448 3813 env->eflags &= ~IF_MASK;
b9bec74b 3814 }
4b8523ee
JK
3815
3816 /* We need to protect the apic state against concurrent accesses from
3817 * different threads in case the userspace irqchip is used. */
3818 if (!kvm_irqchip_in_kernel()) {
3819 qemu_mutex_lock_iothread();
3820 }
02e51483
CF
3821 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
3822 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4b8523ee
JK
3823 if (!kvm_irqchip_in_kernel()) {
3824 qemu_mutex_unlock_iothread();
3825 }
f794aa4a 3826 return cpu_get_mem_attrs(env);
05330448
AL
3827}
3828
20d695a9 3829int kvm_arch_process_async_events(CPUState *cs)
0af691d7 3830{
20d695a9
AF
3831 X86CPU *cpu = X86_CPU(cs);
3832 CPUX86State *env = &cpu->env;
232fc23b 3833
259186a7 3834 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
3835 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
3836 assert(env->mcg_cap);
3837
259186a7 3838 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 3839
dd1750d7 3840 kvm_cpu_synchronize_state(cs);
ab443475 3841
fd13f23b 3842 if (env->exception_nr == EXCP08_DBLE) {
ab443475 3843 /* this means triple fault */
cf83f140 3844 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
fcd7d003 3845 cs->exit_request = 1;
ab443475
JK
3846 return 0;
3847 }
fd13f23b 3848 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
ab443475
JK
3849 env->has_error_code = 0;
3850
259186a7 3851 cs->halted = 0;
ab443475
JK
3852 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
3853 env->mp_state = KVM_MP_STATE_RUNNABLE;
3854 }
3855 }
3856
fc12d72e
PB
3857 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
3858 !(env->hflags & HF_SMM_MASK)) {
e0723c45
PB
3859 kvm_cpu_synchronize_state(cs);
3860 do_cpu_init(cpu);
3861 }
3862
db1669bc
JK
3863 if (kvm_irqchip_in_kernel()) {
3864 return 0;
3865 }
3866
259186a7
AF
3867 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
3868 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 3869 apic_poll_irq(cpu->apic_state);
5d62c43a 3870 }
259186a7 3871 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 3872 (env->eflags & IF_MASK)) ||
259186a7
AF
3873 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3874 cs->halted = 0;
6792a57b 3875 }
259186a7 3876 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 3877 kvm_cpu_synchronize_state(cs);
232fc23b 3878 do_cpu_sipi(cpu);
0af691d7 3879 }
259186a7
AF
3880 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
3881 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 3882 kvm_cpu_synchronize_state(cs);
02e51483 3883 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
3884 env->tpr_access_type);
3885 }
0af691d7 3886
259186a7 3887 return cs->halted;
0af691d7
MT
3888}
3889
839b5630 3890static int kvm_handle_halt(X86CPU *cpu)
05330448 3891{
259186a7 3892 CPUState *cs = CPU(cpu);
839b5630
AF
3893 CPUX86State *env = &cpu->env;
3894
259186a7 3895 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 3896 (env->eflags & IF_MASK)) &&
259186a7
AF
3897 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3898 cs->halted = 1;
bb4ea393 3899 return EXCP_HLT;
05330448
AL
3900 }
3901
bb4ea393 3902 return 0;
05330448
AL
3903}
3904
f7575c96 3905static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 3906{
f7575c96
AF
3907 CPUState *cs = CPU(cpu);
3908 struct kvm_run *run = cs->kvm_run;
d362e757 3909
02e51483 3910 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
3911 run->tpr_access.is_write ? TPR_ACCESS_WRITE
3912 : TPR_ACCESS_READ);
3913 return 1;
3914}
3915
f17ec444 3916int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 3917{
38972938 3918 static const uint8_t int3 = 0xcc;
64bf3f4e 3919
f17ec444
AF
3920 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
3921 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 3922 return -EINVAL;
b9bec74b 3923 }
e22a25c9
AL
3924 return 0;
3925}
3926
f17ec444 3927int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
3928{
3929 uint8_t int3;
3930
f17ec444
AF
3931 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
3932 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 3933 return -EINVAL;
b9bec74b 3934 }
e22a25c9
AL
3935 return 0;
3936}
3937
3938static struct {
3939 target_ulong addr;
3940 int len;
3941 int type;
3942} hw_breakpoint[4];
3943
3944static int nb_hw_breakpoint;
3945
3946static int find_hw_breakpoint(target_ulong addr, int len, int type)
3947{
3948 int n;
3949
b9bec74b 3950 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 3951 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 3952 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 3953 return n;
b9bec74b
JK
3954 }
3955 }
e22a25c9
AL
3956 return -1;
3957}
3958
3959int kvm_arch_insert_hw_breakpoint(target_ulong addr,
3960 target_ulong len, int type)
3961{
3962 switch (type) {
3963 case GDB_BREAKPOINT_HW:
3964 len = 1;
3965 break;
3966 case GDB_WATCHPOINT_WRITE:
3967 case GDB_WATCHPOINT_ACCESS:
3968 switch (len) {
3969 case 1:
3970 break;
3971 case 2:
3972 case 4:
3973 case 8:
b9bec74b 3974 if (addr & (len - 1)) {
e22a25c9 3975 return -EINVAL;
b9bec74b 3976 }
e22a25c9
AL
3977 break;
3978 default:
3979 return -EINVAL;
3980 }
3981 break;
3982 default:
3983 return -ENOSYS;
3984 }
3985
b9bec74b 3986 if (nb_hw_breakpoint == 4) {
e22a25c9 3987 return -ENOBUFS;
b9bec74b
JK
3988 }
3989 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 3990 return -EEXIST;
b9bec74b 3991 }
e22a25c9
AL
3992 hw_breakpoint[nb_hw_breakpoint].addr = addr;
3993 hw_breakpoint[nb_hw_breakpoint].len = len;
3994 hw_breakpoint[nb_hw_breakpoint].type = type;
3995 nb_hw_breakpoint++;
3996
3997 return 0;
3998}
3999
4000int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4001 target_ulong len, int type)
4002{
4003 int n;
4004
4005 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 4006 if (n < 0) {
e22a25c9 4007 return -ENOENT;
b9bec74b 4008 }
e22a25c9
AL
4009 nb_hw_breakpoint--;
4010 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4011
4012 return 0;
4013}
4014
4015void kvm_arch_remove_all_hw_breakpoints(void)
4016{
4017 nb_hw_breakpoint = 0;
4018}
4019
4020static CPUWatchpoint hw_watchpoint;
4021
a60f24b5 4022static int kvm_handle_debug(X86CPU *cpu,
48405526 4023 struct kvm_debug_exit_arch *arch_info)
e22a25c9 4024{
ed2803da 4025 CPUState *cs = CPU(cpu);
a60f24b5 4026 CPUX86State *env = &cpu->env;
f2574737 4027 int ret = 0;
e22a25c9
AL
4028 int n;
4029
37936ac7
LA
4030 if (arch_info->exception == EXCP01_DB) {
4031 if (arch_info->dr6 & DR6_BS) {
ed2803da 4032 if (cs->singlestep_enabled) {
f2574737 4033 ret = EXCP_DEBUG;
b9bec74b 4034 }
e22a25c9 4035 } else {
b9bec74b
JK
4036 for (n = 0; n < 4; n++) {
4037 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
4038 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4039 case 0x0:
f2574737 4040 ret = EXCP_DEBUG;
e22a25c9
AL
4041 break;
4042 case 0x1:
f2574737 4043 ret = EXCP_DEBUG;
ff4700b0 4044 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4045 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4046 hw_watchpoint.flags = BP_MEM_WRITE;
4047 break;
4048 case 0x3:
f2574737 4049 ret = EXCP_DEBUG;
ff4700b0 4050 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
4051 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4052 hw_watchpoint.flags = BP_MEM_ACCESS;
4053 break;
4054 }
b9bec74b
JK
4055 }
4056 }
e22a25c9 4057 }
ff4700b0 4058 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 4059 ret = EXCP_DEBUG;
b9bec74b 4060 }
f2574737 4061 if (ret == 0) {
ff4700b0 4062 cpu_synchronize_state(cs);
fd13f23b 4063 assert(env->exception_nr == -1);
b0b1d690 4064
f2574737 4065 /* pass to guest */
fd13f23b
LA
4066 kvm_queue_exception(env, arch_info->exception,
4067 arch_info->exception == EXCP01_DB,
4068 arch_info->dr6);
48405526 4069 env->has_error_code = 0;
b0b1d690 4070 }
e22a25c9 4071
f2574737 4072 return ret;
e22a25c9
AL
4073}
4074
20d695a9 4075void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
4076{
4077 const uint8_t type_code[] = {
4078 [GDB_BREAKPOINT_HW] = 0x0,
4079 [GDB_WATCHPOINT_WRITE] = 0x1,
4080 [GDB_WATCHPOINT_ACCESS] = 0x3
4081 };
4082 const uint8_t len_code[] = {
4083 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4084 };
4085 int n;
4086
a60f24b5 4087 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 4088 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 4089 }
e22a25c9
AL
4090 if (nb_hw_breakpoint > 0) {
4091 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4092 dbg->arch.debugreg[7] = 0x0600;
4093 for (n = 0; n < nb_hw_breakpoint; n++) {
4094 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4095 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4096 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 4097 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
4098 }
4099 }
4100}
4513d923 4101
2a4dac83
JK
4102static bool host_supports_vmx(void)
4103{
4104 uint32_t ecx, unused;
4105
4106 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4107 return ecx & CPUID_EXT_VMX;
4108}
4109
4110#define VMX_INVALID_GUEST_STATE 0x80000021
4111
20d695a9 4112int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 4113{
20d695a9 4114 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
4115 uint64_t code;
4116 int ret;
4117
4118 switch (run->exit_reason) {
4119 case KVM_EXIT_HLT:
4120 DPRINTF("handle_hlt\n");
4b8523ee 4121 qemu_mutex_lock_iothread();
839b5630 4122 ret = kvm_handle_halt(cpu);
4b8523ee 4123 qemu_mutex_unlock_iothread();
2a4dac83
JK
4124 break;
4125 case KVM_EXIT_SET_TPR:
4126 ret = 0;
4127 break;
d362e757 4128 case KVM_EXIT_TPR_ACCESS:
4b8523ee 4129 qemu_mutex_lock_iothread();
f7575c96 4130 ret = kvm_handle_tpr_access(cpu);
4b8523ee 4131 qemu_mutex_unlock_iothread();
d362e757 4132 break;
2a4dac83
JK
4133 case KVM_EXIT_FAIL_ENTRY:
4134 code = run->fail_entry.hardware_entry_failure_reason;
4135 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4136 code);
4137 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4138 fprintf(stderr,
12619721 4139 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
4140 "unrestricted mode\n"
4141 "support, the failure can be most likely due to the guest "
4142 "entering an invalid\n"
4143 "state for Intel VT. For example, the guest maybe running "
4144 "in big real mode\n"
4145 "which is not supported on less recent Intel processors."
4146 "\n\n");
4147 }
4148 ret = -1;
4149 break;
4150 case KVM_EXIT_EXCEPTION:
4151 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4152 run->ex.exception, run->ex.error_code);
4153 ret = -1;
4154 break;
f2574737
JK
4155 case KVM_EXIT_DEBUG:
4156 DPRINTF("kvm_exit_debug\n");
4b8523ee 4157 qemu_mutex_lock_iothread();
a60f24b5 4158 ret = kvm_handle_debug(cpu, &run->debug.arch);
4b8523ee 4159 qemu_mutex_unlock_iothread();
f2574737 4160 break;
50efe82c
AS
4161 case KVM_EXIT_HYPERV:
4162 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4163 break;
15eafc2e
PB
4164 case KVM_EXIT_IOAPIC_EOI:
4165 ioapic_eoi_broadcast(run->eoi.vector);
4166 ret = 0;
4167 break;
2a4dac83
JK
4168 default:
4169 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4170 ret = -1;
4171 break;
4172 }
4173
4174 return ret;
4175}
4176
20d695a9 4177bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 4178{
20d695a9
AF
4179 X86CPU *cpu = X86_CPU(cs);
4180 CPUX86State *env = &cpu->env;
4181
dd1750d7 4182 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
4183 return !(env->cr[0] & CR0_PE_MASK) ||
4184 ((env->segs[R_CS].selector & 3) != 3);
4513d923 4185}
84b058d7
JK
4186
4187void kvm_arch_init_irq_routing(KVMState *s)
4188{
4189 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
4190 /* If kernel can't do irq routing, interrupt source
4191 * override 0->2 cannot be set up as required by HPET.
4192 * So we have to disable it.
4193 */
4194 no_hpet = 1;
4195 }
cc7e0ddf 4196 /* We know at this point that we're using the in-kernel
614e41bc 4197 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 4198 * we can use msi via irqfd and GSI routing.
cc7e0ddf 4199 */
614e41bc 4200 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 4201 kvm_gsi_routing_allowed = true;
15eafc2e
PB
4202
4203 if (kvm_irqchip_is_split()) {
4204 int i;
4205
4206 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4207 MSI routes for signaling interrupts to the local apics. */
4208 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
d1f6af6a 4209 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
15eafc2e
PB
4210 error_report("Could not enable split IRQ mode.");
4211 exit(1);
4212 }
4213 }
4214 }
4215}
4216
4217int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
4218{
4219 int ret;
4220 if (machine_kernel_irqchip_split(ms)) {
4221 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4222 if (ret) {
df3c286c 4223 error_report("Could not enable split irqchip mode: %s",
15eafc2e
PB
4224 strerror(-ret));
4225 exit(1);
4226 } else {
4227 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4228 kvm_split_irqchip = true;
4229 return 1;
4230 }
4231 } else {
4232 return 0;
4233 }
84b058d7 4234}
b139bd30
JK
4235
4236/* Classic KVM device assignment interface. Will remain x86 only. */
4237int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
4238 uint32_t flags, uint32_t *dev_id)
4239{
4240 struct kvm_assigned_pci_dev dev_data = {
4241 .segnr = dev_addr->domain,
4242 .busnr = dev_addr->bus,
4243 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
4244 .flags = flags,
4245 };
4246 int ret;
4247
4248 dev_data.assigned_dev_id =
4249 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
4250
4251 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
4252 if (ret < 0) {
4253 return ret;
4254 }
4255
4256 *dev_id = dev_data.assigned_dev_id;
4257
4258 return 0;
4259}
4260
4261int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
4262{
4263 struct kvm_assigned_pci_dev dev_data = {
4264 .assigned_dev_id = dev_id,
4265 };
4266
4267 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
4268}
4269
4270static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
4271 uint32_t irq_type, uint32_t guest_irq)
4272{
4273 struct kvm_assigned_irq assigned_irq = {
4274 .assigned_dev_id = dev_id,
4275 .guest_irq = guest_irq,
4276 .flags = irq_type,
4277 };
4278
4279 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
4280 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
4281 } else {
4282 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
4283 }
4284}
4285
4286int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
4287 uint32_t guest_irq)
4288{
4289 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
4290 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
4291
4292 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
4293}
4294
4295int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
4296{
4297 struct kvm_assigned_pci_dev dev_data = {
4298 .assigned_dev_id = dev_id,
4299 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
4300 };
4301
4302 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
4303}
4304
4305static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
4306 uint32_t type)
4307{
4308 struct kvm_assigned_irq assigned_irq = {
4309 .assigned_dev_id = dev_id,
4310 .flags = type,
4311 };
4312
4313 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
4314}
4315
4316int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
4317{
4318 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
4319 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
4320}
4321
4322int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
4323{
4324 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
4325 KVM_DEV_IRQ_GUEST_MSI, virq);
4326}
4327
4328int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
4329{
4330 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
4331 KVM_DEV_IRQ_HOST_MSI);
4332}
4333
4334bool kvm_device_msix_supported(KVMState *s)
4335{
4336 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
4337 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
4338 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
4339}
4340
4341int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
4342 uint32_t nr_vectors)
4343{
4344 struct kvm_assigned_msix_nr msix_nr = {
4345 .assigned_dev_id = dev_id,
4346 .entry_nr = nr_vectors,
4347 };
4348
4349 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
4350}
4351
4352int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
4353 int virq)
4354{
4355 struct kvm_assigned_msix_entry msix_entry = {
4356 .assigned_dev_id = dev_id,
4357 .gsi = virq,
4358 .entry = vector,
4359 };
4360
4361 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
4362}
4363
4364int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
4365{
4366 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
4367 KVM_DEV_IRQ_GUEST_MSIX, 0);
4368}
4369
4370int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
4371{
4372 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
4373 KVM_DEV_IRQ_HOST_MSIX);
4374}
9e03a040
FB
4375
4376int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 4377 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040 4378{
8b5ed7df
PX
4379 X86IOMMUState *iommu = x86_iommu_get_default();
4380
4381 if (iommu) {
4382 int ret;
4383 MSIMessage src, dst;
4384 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
4385
0ea1472d
JK
4386 if (!class->int_remap) {
4387 return 0;
4388 }
4389
8b5ed7df
PX
4390 src.address = route->u.msi.address_hi;
4391 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4392 src.address |= route->u.msi.address_lo;
4393 src.data = route->u.msi.data;
4394
4395 ret = class->int_remap(iommu, &src, &dst, dev ? \
4396 pci_requester_id(dev) : \
4397 X86_IOMMU_SID_INVALID);
4398 if (ret) {
4399 trace_kvm_x86_fixup_msi_error(route->gsi);
4400 return 1;
4401 }
4402
4403 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4404 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4405 route->u.msi.data = dst.data;
4406 }
4407
9e03a040
FB
4408 return 0;
4409}
1850b6b7 4410
38d87493
PX
4411typedef struct MSIRouteEntry MSIRouteEntry;
4412
4413struct MSIRouteEntry {
4414 PCIDevice *dev; /* Device pointer */
4415 int vector; /* MSI/MSIX vector index */
4416 int virq; /* Virtual IRQ index */
4417 QLIST_ENTRY(MSIRouteEntry) list;
4418};
4419
4420/* List of used GSI routes */
4421static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4422 QLIST_HEAD_INITIALIZER(msi_route_list);
4423
e1d4fb2d
PX
4424static void kvm_update_msi_routes_all(void *private, bool global,
4425 uint32_t index, uint32_t mask)
4426{
a56de056 4427 int cnt = 0, vector;
e1d4fb2d
PX
4428 MSIRouteEntry *entry;
4429 MSIMessage msg;
fd563564
PX
4430 PCIDevice *dev;
4431
e1d4fb2d
PX
4432 /* TODO: explicit route update */
4433 QLIST_FOREACH(entry, &msi_route_list, list) {
4434 cnt++;
a56de056 4435 vector = entry->vector;
fd563564 4436 dev = entry->dev;
a56de056
PX
4437 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4438 msg = msix_get_message(dev, vector);
4439 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4440 msg = msi_get_message(dev, vector);
4441 } else {
4442 /*
4443 * Either MSI/MSIX is disabled for the device, or the
4444 * specific message was masked out. Skip this one.
4445 */
fd563564
PX
4446 continue;
4447 }
fd563564 4448 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
e1d4fb2d 4449 }
3f1fea0f 4450 kvm_irqchip_commit_routes(kvm_state);
e1d4fb2d
PX
4451 trace_kvm_x86_update_msi_routes(cnt);
4452}
4453
38d87493
PX
4454int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4455 int vector, PCIDevice *dev)
4456{
e1d4fb2d 4457 static bool notify_list_inited = false;
38d87493
PX
4458 MSIRouteEntry *entry;
4459
4460 if (!dev) {
4461 /* These are (possibly) IOAPIC routes only used for split
4462 * kernel irqchip mode, while what we are housekeeping are
4463 * PCI devices only. */
4464 return 0;
4465 }
4466
4467 entry = g_new0(MSIRouteEntry, 1);
4468 entry->dev = dev;
4469 entry->vector = vector;
4470 entry->virq = route->gsi;
4471 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4472
4473 trace_kvm_x86_add_msi_route(route->gsi);
e1d4fb2d
PX
4474
4475 if (!notify_list_inited) {
4476 /* For the first time we do add route, add ourselves into
4477 * IOMMU's IEC notify list if needed. */
4478 X86IOMMUState *iommu = x86_iommu_get_default();
4479 if (iommu) {
4480 x86_iommu_iec_register_notifier(iommu,
4481 kvm_update_msi_routes_all,
4482 NULL);
4483 }
4484 notify_list_inited = true;
4485 }
38d87493
PX
4486 return 0;
4487}
4488
4489int kvm_arch_release_virq_post(int virq)
4490{
4491 MSIRouteEntry *entry, *next;
4492 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4493 if (entry->virq == virq) {
4494 trace_kvm_x86_remove_msi_route(virq);
4495 QLIST_REMOVE(entry, list);
01960e6d 4496 g_free(entry);
38d87493
PX
4497 break;
4498 }
4499 }
9e03a040
FB
4500 return 0;
4501}
1850b6b7
EA
4502
4503int kvm_arch_msi_data_to_gsi(uint32_t data)
4504{
4505 abort();
4506}