]> git.ipfire.org Git - thirdparty/qemu.git/blame - target-i386/kvm.c
kvm: Pass CPUState to kvm_arch_*
[thirdparty/qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
24#include "sysemu.h"
25#include "kvm.h"
1d31f66b 26#include "kvm_i386.h"
05330448 27#include "cpu.h"
e22a25c9 28#include "gdbstub.h"
0e607a80 29#include "host-utils.h"
4c5b10b7 30#include "hw/pc.h"
408392b3 31#include "hw/apic.h"
35bed8ee 32#include "ioport.h"
eab70139 33#include "hyperv.h"
b139bd30 34#include "hw/pci.h"
05330448
AL
35
36//#define DEBUG_KVM
37
38#ifdef DEBUG_KVM
8c0d577e 39#define DPRINTF(fmt, ...) \
05330448
AL
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41#else
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { } while (0)
44#endif
45
1a03675d
GC
46#define MSR_KVM_WALL_CLOCK 0x11
47#define MSR_KVM_SYSTEM_TIME 0x12
48
c0532a76
MT
49#ifndef BUS_MCEERR_AR
50#define BUS_MCEERR_AR 4
51#endif
52#ifndef BUS_MCEERR_AO
53#define BUS_MCEERR_AO 5
54#endif
55
94a8d39a
JK
56const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61};
25d2e361 62
c3a3a7d3
JK
63static bool has_msr_star;
64static bool has_msr_hsave_pa;
aa82ba54 65static bool has_msr_tsc_deadline;
c5999bfc 66static bool has_msr_async_pf_en;
bc9a839d 67static bool has_msr_pv_eoi_en;
21e87c46 68static bool has_msr_misc_enable;
25d2e361 69static int lm_capable_kernel;
b827df58 70
1d31f66b
PM
71bool kvm_allows_irq0_override(void)
72{
73 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
74}
75
b827df58
AK
76static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
77{
78 struct kvm_cpuid2 *cpuid;
79 int r, size;
80
81 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
7267c094 82 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
b827df58
AK
83 cpuid->nent = max;
84 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
85 if (r == 0 && cpuid->nent >= max) {
86 r = -E2BIG;
87 }
b827df58
AK
88 if (r < 0) {
89 if (r == -E2BIG) {
7267c094 90 g_free(cpuid);
b827df58
AK
91 return NULL;
92 } else {
93 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
94 strerror(-r));
95 exit(1);
96 }
97 }
98 return cpuid;
99}
100
dd87f8a6
EH
101/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
102 * for all entries.
103 */
104static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
105{
106 struct kvm_cpuid2 *cpuid;
107 int max = 1;
108 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
109 max *= 2;
110 }
111 return cpuid;
112}
113
0c31b744
GC
114struct kvm_para_features {
115 int cap;
116 int feature;
117} para_features[] = {
118 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
119 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
120 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 121 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
122 { -1, -1 }
123};
124
ba9bc59e 125static int get_para_features(KVMState *s)
0c31b744
GC
126{
127 int i, features = 0;
128
129 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
ba9bc59e 130 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
131 features |= (1 << para_features[i].feature);
132 }
133 }
134
135 return features;
136}
0c31b744
GC
137
138
829ae2f9
EH
139/* Returns the value for a specific register on the cpuid entry
140 */
141static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
142{
143 uint32_t ret = 0;
144 switch (reg) {
145 case R_EAX:
146 ret = entry->eax;
147 break;
148 case R_EBX:
149 ret = entry->ebx;
150 break;
151 case R_ECX:
152 ret = entry->ecx;
153 break;
154 case R_EDX:
155 ret = entry->edx;
156 break;
157 }
158 return ret;
159}
160
4fb73f1d
EH
161/* Find matching entry for function/index on kvm_cpuid2 struct
162 */
163static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
164 uint32_t function,
165 uint32_t index)
166{
167 int i;
168 for (i = 0; i < cpuid->nent; ++i) {
169 if (cpuid->entries[i].function == function &&
170 cpuid->entries[i].index == index) {
171 return &cpuid->entries[i];
172 }
173 }
174 /* not found: */
175 return NULL;
176}
177
ba9bc59e 178uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 179 uint32_t index, int reg)
b827df58
AK
180{
181 struct kvm_cpuid2 *cpuid;
b827df58
AK
182 uint32_t ret = 0;
183 uint32_t cpuid_1_edx;
8c723b79 184 bool found = false;
b827df58 185
dd87f8a6 186 cpuid = get_supported_cpuid(s);
b827df58 187
4fb73f1d
EH
188 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
189 if (entry) {
190 found = true;
191 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
192 }
193
7b46e5ce
EH
194 /* Fixups for the data returned by KVM, below */
195
c2acb022
EH
196 if (function == 1 && reg == R_EDX) {
197 /* KVM before 2.6.30 misreports the following features */
198 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
199 } else if (function == 1 && reg == R_ECX) {
200 /* We can set the hypervisor flag, even if KVM does not return it on
201 * GET_SUPPORTED_CPUID
202 */
203 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
204 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
205 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
206 * and the irqchip is in the kernel.
207 */
208 if (kvm_irqchip_in_kernel() &&
209 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
210 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
211 }
41e5e76d
EH
212
213 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
214 * without the in-kernel irqchip
215 */
216 if (!kvm_irqchip_in_kernel()) {
217 ret &= ~CPUID_EXT_X2APIC;
b827df58 218 }
c2acb022
EH
219 } else if (function == 0x80000001 && reg == R_EDX) {
220 /* On Intel, kvm returns cpuid according to the Intel spec,
221 * so add missing bits according to the AMD spec:
222 */
223 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
224 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
b827df58
AK
225 }
226
7267c094 227 g_free(cpuid);
b827df58 228
0c31b744 229 /* fallback for older kernels */
8c723b79 230 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 231 ret = get_para_features(s);
b9bec74b 232 }
0c31b744
GC
233
234 return ret;
bb0300dc 235}
bb0300dc 236
3c85e74f
HY
237typedef struct HWPoisonPage {
238 ram_addr_t ram_addr;
239 QLIST_ENTRY(HWPoisonPage) list;
240} HWPoisonPage;
241
242static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
243 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
244
245static void kvm_unpoison_all(void *param)
246{
247 HWPoisonPage *page, *next_page;
248
249 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
250 QLIST_REMOVE(page, list);
251 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 252 g_free(page);
3c85e74f
HY
253 }
254}
255
3c85e74f
HY
256static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
257{
258 HWPoisonPage *page;
259
260 QLIST_FOREACH(page, &hwpoison_page_list, list) {
261 if (page->ram_addr == ram_addr) {
262 return;
263 }
264 }
7267c094 265 page = g_malloc(sizeof(HWPoisonPage));
3c85e74f
HY
266 page->ram_addr = ram_addr;
267 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
268}
269
e7701825
MT
270static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
271 int *max_banks)
272{
273 int r;
274
14a09518 275 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
276 if (r > 0) {
277 *max_banks = r;
278 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
279 }
280 return -ENOSYS;
281}
282
bee615d4 283static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 284{
bee615d4 285 CPUX86State *env = &cpu->env;
c34d440a
JK
286 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
287 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
288 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 289
c34d440a
JK
290 if (code == BUS_MCEERR_AR) {
291 status |= MCI_STATUS_AR | 0x134;
292 mcg_status |= MCG_STATUS_EIPV;
293 } else {
294 status |= 0xc0;
295 mcg_status |= MCG_STATUS_RIPV;
419fb20a 296 }
8c5cf3b6 297 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
c34d440a
JK
298 (MCM_ADDR_PHYS << 6) | 0xc,
299 cpu_x86_support_mca_broadcast(env) ?
300 MCE_INJECT_BROADCAST : 0);
419fb20a 301}
419fb20a
JK
302
303static void hardware_memory_error(void)
304{
305 fprintf(stderr, "Hardware memory error!\n");
306 exit(1);
307}
308
20d695a9 309int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 310{
20d695a9
AF
311 X86CPU *cpu = X86_CPU(c);
312 CPUX86State *env = &cpu->env;
419fb20a 313 ram_addr_t ram_addr;
a8170e5e 314 hwaddr paddr;
419fb20a
JK
315
316 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a
JK
317 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
318 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
9f213ed9 319 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
419fb20a
JK
320 fprintf(stderr, "Hardware memory error for memory used by "
321 "QEMU itself instead of guest system!\n");
322 /* Hope we are lucky for AO MCE */
323 if (code == BUS_MCEERR_AO) {
324 return 0;
325 } else {
326 hardware_memory_error();
327 }
328 }
3c85e74f 329 kvm_hwpoison_page_add(ram_addr);
bee615d4 330 kvm_mce_inject(cpu, paddr, code);
e56ff191 331 } else {
419fb20a
JK
332 if (code == BUS_MCEERR_AO) {
333 return 0;
334 } else if (code == BUS_MCEERR_AR) {
335 hardware_memory_error();
336 } else {
337 return 1;
338 }
339 }
340 return 0;
341}
342
343int kvm_arch_on_sigbus(int code, void *addr)
344{
419fb20a 345 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a 346 ram_addr_t ram_addr;
a8170e5e 347 hwaddr paddr;
419fb20a
JK
348
349 /* Hope we are lucky for AO MCE */
c34d440a 350 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
9f213ed9
AK
351 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
352 &paddr)) {
419fb20a
JK
353 fprintf(stderr, "Hardware memory error for memory used by "
354 "QEMU itself instead of guest system!: %p\n", addr);
355 return 0;
356 }
3c85e74f 357 kvm_hwpoison_page_add(ram_addr);
bee615d4 358 kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code);
e56ff191 359 } else {
419fb20a
JK
360 if (code == BUS_MCEERR_AO) {
361 return 0;
362 } else if (code == BUS_MCEERR_AR) {
363 hardware_memory_error();
364 } else {
365 return 1;
366 }
367 }
368 return 0;
369}
e7701825 370
317ac620 371static int kvm_inject_mce_oldstyle(CPUX86State *env)
ab443475 372{
ab443475
JK
373 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
374 unsigned int bank, bank_num = env->mcg_cap & 0xff;
375 struct kvm_x86_mce mce;
376
377 env->exception_injected = -1;
378
379 /*
380 * There must be at least one bank in use if an MCE is pending.
381 * Find it and use its values for the event injection.
382 */
383 for (bank = 0; bank < bank_num; bank++) {
384 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
385 break;
386 }
387 }
388 assert(bank < bank_num);
389
390 mce.bank = bank;
391 mce.status = env->mce_banks[bank * 4 + 1];
392 mce.mcg_status = env->mcg_status;
393 mce.addr = env->mce_banks[bank * 4 + 2];
394 mce.misc = env->mce_banks[bank * 4 + 3];
395
396 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
397 }
ab443475
JK
398 return 0;
399}
400
1dfb4dd9 401static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 402{
317ac620 403 CPUX86State *env = opaque;
b8cc45d6
GC
404
405 if (running) {
406 env->tsc_valid = false;
407 }
408}
409
20d695a9 410int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
411{
412 struct {
486bd5a2
AL
413 struct kvm_cpuid2 cpuid;
414 struct kvm_cpuid_entry2 entries[100];
541dc0d4 415 } QEMU_PACKED cpuid_data;
20d695a9
AF
416 X86CPU *cpu = X86_CPU(cs);
417 CPUX86State *env = &cpu->env;
486bd5a2 418 uint32_t limit, i, j, cpuid_i;
a33609ca 419 uint32_t unused;
bb0300dc 420 struct kvm_cpuid_entry2 *c;
bb0300dc 421 uint32_t signature[3];
e7429073 422 int r;
05330448
AL
423
424 cpuid_i = 0;
425
bb0300dc 426 /* Paravirtualization CPUIDs */
bb0300dc
GN
427 c = &cpuid_data.entries[cpuid_i++];
428 memset(c, 0, sizeof(*c));
429 c->function = KVM_CPUID_SIGNATURE;
eab70139
VR
430 if (!hyperv_enabled()) {
431 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
432 c->eax = 0;
433 } else {
434 memcpy(signature, "Microsoft Hv", 12);
435 c->eax = HYPERV_CPUID_MIN;
436 }
bb0300dc
GN
437 c->ebx = signature[0];
438 c->ecx = signature[1];
439 c->edx = signature[2];
440
441 c = &cpuid_data.entries[cpuid_i++];
442 memset(c, 0, sizeof(*c));
443 c->function = KVM_CPUID_FEATURES;
ea85c9e4 444 c->eax = env->cpuid_kvm_features;
0c31b744 445
eab70139
VR
446 if (hyperv_enabled()) {
447 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
448 c->eax = signature[0];
449
450 c = &cpuid_data.entries[cpuid_i++];
451 memset(c, 0, sizeof(*c));
452 c->function = HYPERV_CPUID_VERSION;
453 c->eax = 0x00001bbc;
454 c->ebx = 0x00060001;
455
456 c = &cpuid_data.entries[cpuid_i++];
457 memset(c, 0, sizeof(*c));
458 c->function = HYPERV_CPUID_FEATURES;
459 if (hyperv_relaxed_timing_enabled()) {
460 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
461 }
462 if (hyperv_vapic_recommended()) {
463 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
464 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
465 }
466
467 c = &cpuid_data.entries[cpuid_i++];
468 memset(c, 0, sizeof(*c));
469 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
470 if (hyperv_relaxed_timing_enabled()) {
471 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
472 }
473 if (hyperv_vapic_recommended()) {
474 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
475 }
476 c->ebx = hyperv_get_spinlock_retries();
477
478 c = &cpuid_data.entries[cpuid_i++];
479 memset(c, 0, sizeof(*c));
480 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
481 c->eax = 0x40;
482 c->ebx = 0x40;
483
484 c = &cpuid_data.entries[cpuid_i++];
485 memset(c, 0, sizeof(*c));
486 c->function = KVM_CPUID_SIGNATURE_NEXT;
487 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
488 c->eax = 0;
489 c->ebx = signature[0];
490 c->ecx = signature[1];
491 c->edx = signature[2];
492 }
493
0c31b744 494 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 495
bc9a839d
MT
496 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
497
a33609ca 498 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
499
500 for (i = 0; i <= limit; i++) {
bb0300dc 501 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
502
503 switch (i) {
a36b1029
AL
504 case 2: {
505 /* Keep reading function 2 till all the input is received */
506 int times;
507
a36b1029 508 c->function = i;
a33609ca
AL
509 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
510 KVM_CPUID_FLAG_STATE_READ_NEXT;
511 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
512 times = c->eax & 0xff;
a36b1029
AL
513
514 for (j = 1; j < times; ++j) {
a33609ca 515 c = &cpuid_data.entries[cpuid_i++];
a36b1029 516 c->function = i;
a33609ca
AL
517 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
518 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
519 }
520 break;
521 }
486bd5a2
AL
522 case 4:
523 case 0xb:
524 case 0xd:
525 for (j = 0; ; j++) {
31e8c696
AP
526 if (i == 0xd && j == 64) {
527 break;
528 }
486bd5a2
AL
529 c->function = i;
530 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
531 c->index = j;
a33609ca 532 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 533
b9bec74b 534 if (i == 4 && c->eax == 0) {
486bd5a2 535 break;
b9bec74b
JK
536 }
537 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 538 break;
b9bec74b
JK
539 }
540 if (i == 0xd && c->eax == 0) {
31e8c696 541 continue;
b9bec74b 542 }
a33609ca 543 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
544 }
545 break;
546 default:
486bd5a2 547 c->function = i;
a33609ca
AL
548 c->flags = 0;
549 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
550 break;
551 }
05330448 552 }
a33609ca 553 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
554
555 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 556 c = &cpuid_data.entries[cpuid_i++];
05330448 557
05330448 558 c->function = i;
a33609ca
AL
559 c->flags = 0;
560 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
561 }
562
b3baa152
BW
563 /* Call Centaur's CPUID instructions they are supported. */
564 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
565 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
566
567 for (i = 0xC0000000; i <= limit; i++) {
568 c = &cpuid_data.entries[cpuid_i++];
569
570 c->function = i;
571 c->flags = 0;
572 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
573 }
574 }
575
05330448
AL
576 cpuid_data.cpuid.nent = cpuid_i;
577
e7701825
MT
578 if (((env->cpuid_version >> 8)&0xF) >= 6
579 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
580 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
581 uint64_t mcg_cap;
582 int banks;
32a42024 583 int ret;
e7701825 584
75d49497
JK
585 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
586 if (ret < 0) {
587 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
588 return ret;
e7701825 589 }
75d49497
JK
590
591 if (banks > MCE_BANKS_DEF) {
592 banks = MCE_BANKS_DEF;
593 }
594 mcg_cap &= MCE_CAP_DEF;
595 mcg_cap |= banks;
596 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
597 if (ret < 0) {
598 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
599 return ret;
600 }
601
602 env->mcg_cap = mcg_cap;
e7701825 603 }
e7701825 604
b8cc45d6
GC
605 qemu_add_vm_change_state_handler(cpu_update_state, env);
606
7e680753 607 cpuid_data.cpuid.padding = 0;
e7429073 608 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
609 if (r) {
610 return r;
611 }
e7429073 612
e7429073
JR
613 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
614 if (r && env->tsc_khz) {
615 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
616 if (r < 0) {
617 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
618 return r;
619 }
620 }
e7429073 621
fabacc0f
JK
622 if (kvm_has_xsave()) {
623 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
624 }
625
e7429073 626 return 0;
05330448
AL
627}
628
20d695a9 629void kvm_arch_reset_vcpu(CPUState *cs)
caa5af0f 630{
20d695a9
AF
631 X86CPU *cpu = X86_CPU(cs);
632 CPUX86State *env = &cpu->env;
dd673288 633
e73223a5 634 env->exception_injected = -1;
0e607a80 635 env->interrupt_injected = -1;
1a5e9d2f 636 env->xcr0 = 1;
ddced198 637 if (kvm_irqchip_in_kernel()) {
dd673288 638 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
639 KVM_MP_STATE_UNINITIALIZED;
640 } else {
641 env->mp_state = KVM_MP_STATE_RUNNABLE;
642 }
caa5af0f
JK
643}
644
c3a3a7d3 645static int kvm_get_supported_msrs(KVMState *s)
05330448 646{
75b10c43 647 static int kvm_supported_msrs;
c3a3a7d3 648 int ret = 0;
05330448
AL
649
650 /* first time */
75b10c43 651 if (kvm_supported_msrs == 0) {
05330448
AL
652 struct kvm_msr_list msr_list, *kvm_msr_list;
653
75b10c43 654 kvm_supported_msrs = -1;
05330448
AL
655
656 /* Obtain MSR list from KVM. These are the MSRs that we must
657 * save/restore */
4c9f7372 658 msr_list.nmsrs = 0;
c3a3a7d3 659 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 660 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 661 return ret;
6fb6d245 662 }
d9db889f
JK
663 /* Old kernel modules had a bug and could write beyond the provided
664 memory. Allocate at least a safe amount of 1K. */
7267c094 665 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
666 msr_list.nmsrs *
667 sizeof(msr_list.indices[0])));
05330448 668
55308450 669 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 670 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
671 if (ret >= 0) {
672 int i;
673
674 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
675 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 676 has_msr_star = true;
75b10c43
MT
677 continue;
678 }
679 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 680 has_msr_hsave_pa = true;
75b10c43 681 continue;
05330448 682 }
aa82ba54
LJ
683 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
684 has_msr_tsc_deadline = true;
685 continue;
686 }
21e87c46
AK
687 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
688 has_msr_misc_enable = true;
689 continue;
690 }
05330448
AL
691 }
692 }
693
7267c094 694 g_free(kvm_msr_list);
05330448
AL
695 }
696
c3a3a7d3 697 return ret;
05330448
AL
698}
699
cad1e282 700int kvm_arch_init(KVMState *s)
20420430 701{
39d6960a 702 QemuOptsList *list = qemu_find_opts("machine");
11076198 703 uint64_t identity_base = 0xfffbc000;
39d6960a 704 uint64_t shadow_mem;
20420430 705 int ret;
25d2e361 706 struct utsname utsname;
20420430 707
c3a3a7d3 708 ret = kvm_get_supported_msrs(s);
20420430 709 if (ret < 0) {
20420430
SY
710 return ret;
711 }
25d2e361
MT
712
713 uname(&utsname);
714 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
715
4c5b10b7 716 /*
11076198
JK
717 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
718 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
719 * Since these must be part of guest physical memory, we need to allocate
720 * them, both by setting their start addresses in the kernel and by
721 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
722 *
723 * Older KVM versions may not support setting the identity map base. In
724 * that case we need to stick with the default, i.e. a 256K maximum BIOS
725 * size.
4c5b10b7 726 */
11076198
JK
727 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
728 /* Allows up to 16M BIOSes. */
729 identity_base = 0xfeffc000;
730
731 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
732 if (ret < 0) {
733 return ret;
734 }
4c5b10b7 735 }
e56ff191 736
11076198
JK
737 /* Set TSS base one page after EPT identity map. */
738 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
739 if (ret < 0) {
740 return ret;
741 }
742
11076198
JK
743 /* Tell fw_cfg to notify the BIOS to reserve the range. */
744 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 745 if (ret < 0) {
11076198 746 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
747 return ret;
748 }
3c85e74f 749 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 750
39d6960a
JK
751 if (!QTAILQ_EMPTY(&list->head)) {
752 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
753 "kvm_shadow_mem", -1);
754 if (shadow_mem != -1) {
755 shadow_mem /= 4096;
756 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
757 if (ret < 0) {
758 return ret;
759 }
760 }
761 }
11076198 762 return 0;
05330448 763}
b9bec74b 764
05330448
AL
765static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
766{
767 lhs->selector = rhs->selector;
768 lhs->base = rhs->base;
769 lhs->limit = rhs->limit;
770 lhs->type = 3;
771 lhs->present = 1;
772 lhs->dpl = 3;
773 lhs->db = 0;
774 lhs->s = 1;
775 lhs->l = 0;
776 lhs->g = 0;
777 lhs->avl = 0;
778 lhs->unusable = 0;
779}
780
781static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
782{
783 unsigned flags = rhs->flags;
784 lhs->selector = rhs->selector;
785 lhs->base = rhs->base;
786 lhs->limit = rhs->limit;
787 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
788 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 789 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
790 lhs->db = (flags >> DESC_B_SHIFT) & 1;
791 lhs->s = (flags & DESC_S_MASK) != 0;
792 lhs->l = (flags >> DESC_L_SHIFT) & 1;
793 lhs->g = (flags & DESC_G_MASK) != 0;
794 lhs->avl = (flags & DESC_AVL_MASK) != 0;
795 lhs->unusable = 0;
7e680753 796 lhs->padding = 0;
05330448
AL
797}
798
799static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
800{
801 lhs->selector = rhs->selector;
802 lhs->base = rhs->base;
803 lhs->limit = rhs->limit;
b9bec74b
JK
804 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
805 (rhs->present * DESC_P_MASK) |
806 (rhs->dpl << DESC_DPL_SHIFT) |
807 (rhs->db << DESC_B_SHIFT) |
808 (rhs->s * DESC_S_MASK) |
809 (rhs->l << DESC_L_SHIFT) |
810 (rhs->g * DESC_G_MASK) |
811 (rhs->avl * DESC_AVL_MASK);
05330448
AL
812}
813
814static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
815{
b9bec74b 816 if (set) {
05330448 817 *kvm_reg = *qemu_reg;
b9bec74b 818 } else {
05330448 819 *qemu_reg = *kvm_reg;
b9bec74b 820 }
05330448
AL
821}
822
317ac620 823static int kvm_getput_regs(CPUX86State *env, int set)
05330448
AL
824{
825 struct kvm_regs regs;
826 int ret = 0;
827
828 if (!set) {
829 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 830 if (ret < 0) {
05330448 831 return ret;
b9bec74b 832 }
05330448
AL
833 }
834
835 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
836 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
837 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
838 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
839 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
840 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
841 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
842 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
843#ifdef TARGET_X86_64
844 kvm_getput_reg(&regs.r8, &env->regs[8], set);
845 kvm_getput_reg(&regs.r9, &env->regs[9], set);
846 kvm_getput_reg(&regs.r10, &env->regs[10], set);
847 kvm_getput_reg(&regs.r11, &env->regs[11], set);
848 kvm_getput_reg(&regs.r12, &env->regs[12], set);
849 kvm_getput_reg(&regs.r13, &env->regs[13], set);
850 kvm_getput_reg(&regs.r14, &env->regs[14], set);
851 kvm_getput_reg(&regs.r15, &env->regs[15], set);
852#endif
853
854 kvm_getput_reg(&regs.rflags, &env->eflags, set);
855 kvm_getput_reg(&regs.rip, &env->eip, set);
856
b9bec74b 857 if (set) {
05330448 858 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 859 }
05330448
AL
860
861 return ret;
862}
863
317ac620 864static int kvm_put_fpu(CPUX86State *env)
05330448
AL
865{
866 struct kvm_fpu fpu;
867 int i;
868
869 memset(&fpu, 0, sizeof fpu);
870 fpu.fsw = env->fpus & ~(7 << 11);
871 fpu.fsw |= (env->fpstt & 7) << 11;
872 fpu.fcw = env->fpuc;
42cc8fa6
JK
873 fpu.last_opcode = env->fpop;
874 fpu.last_ip = env->fpip;
875 fpu.last_dp = env->fpdp;
b9bec74b
JK
876 for (i = 0; i < 8; ++i) {
877 fpu.ftwx |= (!env->fptags[i]) << i;
878 }
05330448
AL
879 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
880 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
881 fpu.mxcsr = env->mxcsr;
882
883 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
884}
885
6b42494b
JK
886#define XSAVE_FCW_FSW 0
887#define XSAVE_FTW_FOP 1
f1665b21
SY
888#define XSAVE_CWD_RIP 2
889#define XSAVE_CWD_RDP 4
890#define XSAVE_MXCSR 6
891#define XSAVE_ST_SPACE 8
892#define XSAVE_XMM_SPACE 40
893#define XSAVE_XSTATE_BV 128
894#define XSAVE_YMMH_SPACE 144
f1665b21 895
317ac620 896static int kvm_put_xsave(CPUX86State *env)
f1665b21 897{
fabacc0f 898 struct kvm_xsave* xsave = env->kvm_xsave_buf;
42cc8fa6 899 uint16_t cwd, swd, twd;
fabacc0f 900 int i, r;
f1665b21 901
b9bec74b 902 if (!kvm_has_xsave()) {
f1665b21 903 return kvm_put_fpu(env);
b9bec74b 904 }
f1665b21 905
f1665b21 906 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 907 twd = 0;
f1665b21
SY
908 swd = env->fpus & ~(7 << 11);
909 swd |= (env->fpstt & 7) << 11;
910 cwd = env->fpuc;
b9bec74b 911 for (i = 0; i < 8; ++i) {
f1665b21 912 twd |= (!env->fptags[i]) << i;
b9bec74b 913 }
6b42494b
JK
914 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
915 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
42cc8fa6
JK
916 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
917 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
f1665b21
SY
918 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
919 sizeof env->fpregs);
920 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
921 sizeof env->xmm_regs);
922 xsave->region[XSAVE_MXCSR] = env->mxcsr;
923 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
924 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
925 sizeof env->ymmh_regs);
0f53994f 926 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
0f53994f 927 return r;
f1665b21
SY
928}
929
317ac620 930static int kvm_put_xcrs(CPUX86State *env)
f1665b21 931{
f1665b21
SY
932 struct kvm_xcrs xcrs;
933
b9bec74b 934 if (!kvm_has_xcrs()) {
f1665b21 935 return 0;
b9bec74b 936 }
f1665b21
SY
937
938 xcrs.nr_xcrs = 1;
939 xcrs.flags = 0;
940 xcrs.xcrs[0].xcr = 0;
941 xcrs.xcrs[0].value = env->xcr0;
942 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
f1665b21
SY
943}
944
317ac620 945static int kvm_put_sregs(CPUX86State *env)
05330448
AL
946{
947 struct kvm_sregs sregs;
948
0e607a80
JK
949 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
950 if (env->interrupt_injected >= 0) {
951 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
952 (uint64_t)1 << (env->interrupt_injected % 64);
953 }
05330448
AL
954
955 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
956 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
957 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
958 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
959 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
960 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
961 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 962 } else {
b9bec74b
JK
963 set_seg(&sregs.cs, &env->segs[R_CS]);
964 set_seg(&sregs.ds, &env->segs[R_DS]);
965 set_seg(&sregs.es, &env->segs[R_ES]);
966 set_seg(&sregs.fs, &env->segs[R_FS]);
967 set_seg(&sregs.gs, &env->segs[R_GS]);
968 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
969 }
970
971 set_seg(&sregs.tr, &env->tr);
972 set_seg(&sregs.ldt, &env->ldt);
973
974 sregs.idt.limit = env->idt.limit;
975 sregs.idt.base = env->idt.base;
7e680753 976 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
977 sregs.gdt.limit = env->gdt.limit;
978 sregs.gdt.base = env->gdt.base;
7e680753 979 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
980
981 sregs.cr0 = env->cr[0];
982 sregs.cr2 = env->cr[2];
983 sregs.cr3 = env->cr[3];
984 sregs.cr4 = env->cr[4];
985
4a942cea
BS
986 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
987 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
988
989 sregs.efer = env->efer;
990
991 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
992}
993
994static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
995 uint32_t index, uint64_t value)
996{
997 entry->index = index;
998 entry->data = value;
999}
1000
317ac620 1001static int kvm_put_msrs(CPUX86State *env, int level)
05330448
AL
1002{
1003 struct {
1004 struct kvm_msrs info;
1005 struct kvm_msr_entry entries[100];
1006 } msr_data;
1007 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 1008 int n = 0;
05330448
AL
1009
1010 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1011 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1012 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 1013 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 1014 if (has_msr_star) {
b9bec74b
JK
1015 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1016 }
c3a3a7d3 1017 if (has_msr_hsave_pa) {
75b10c43 1018 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 1019 }
aa82ba54
LJ
1020 if (has_msr_tsc_deadline) {
1021 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1022 }
21e87c46
AK
1023 if (has_msr_misc_enable) {
1024 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1025 env->msr_ia32_misc_enable);
1026 }
05330448 1027#ifdef TARGET_X86_64
25d2e361
MT
1028 if (lm_capable_kernel) {
1029 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1030 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1031 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1032 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1033 }
05330448 1034#endif
ea643051 1035 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
1036 /*
1037 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1038 * writeback. Until this is fixed, we only write the offset to SMP
1039 * guests after migration, desynchronizing the VCPUs, but avoiding
1040 * huge jump-backs that would occur without any writeback at all.
1041 */
1042 if (smp_cpus == 1 || env->tsc != 0) {
1043 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1044 }
ff5c186b
JK
1045 }
1046 /*
1047 * The following paravirtual MSRs have side effects on the guest or are
1048 * too heavy for normal writeback. Limit them to reset or full state
1049 * updates.
1050 */
1051 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
1052 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1053 env->system_time_msr);
1054 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
1055 if (has_msr_async_pf_en) {
1056 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1057 env->async_pf_en_msr);
1058 }
bc9a839d
MT
1059 if (has_msr_pv_eoi_en) {
1060 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1061 env->pv_eoi_en_msr);
1062 }
eab70139
VR
1063 if (hyperv_hypercall_available()) {
1064 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1065 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1066 }
1067 if (hyperv_vapic_recommended()) {
1068 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1069 }
ea643051 1070 }
57780495 1071 if (env->mcg_cap) {
d8da8574 1072 int i;
b9bec74b 1073
c34d440a
JK
1074 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1075 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1076 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1077 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
1078 }
1079 }
1a03675d 1080
05330448
AL
1081 msr_data.info.nmsrs = n;
1082
1083 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1084
1085}
1086
1087
317ac620 1088static int kvm_get_fpu(CPUX86State *env)
05330448
AL
1089{
1090 struct kvm_fpu fpu;
1091 int i, ret;
1092
1093 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 1094 if (ret < 0) {
05330448 1095 return ret;
b9bec74b 1096 }
05330448
AL
1097
1098 env->fpstt = (fpu.fsw >> 11) & 7;
1099 env->fpus = fpu.fsw;
1100 env->fpuc = fpu.fcw;
42cc8fa6
JK
1101 env->fpop = fpu.last_opcode;
1102 env->fpip = fpu.last_ip;
1103 env->fpdp = fpu.last_dp;
b9bec74b
JK
1104 for (i = 0; i < 8; ++i) {
1105 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1106 }
05330448
AL
1107 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1108 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1109 env->mxcsr = fpu.mxcsr;
1110
1111 return 0;
1112}
1113
317ac620 1114static int kvm_get_xsave(CPUX86State *env)
f1665b21 1115{
fabacc0f 1116 struct kvm_xsave* xsave = env->kvm_xsave_buf;
f1665b21 1117 int ret, i;
42cc8fa6 1118 uint16_t cwd, swd, twd;
f1665b21 1119
b9bec74b 1120 if (!kvm_has_xsave()) {
f1665b21 1121 return kvm_get_fpu(env);
b9bec74b 1122 }
f1665b21 1123
f1665b21 1124 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f 1125 if (ret < 0) {
f1665b21 1126 return ret;
0f53994f 1127 }
f1665b21 1128
6b42494b
JK
1129 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1130 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1131 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1132 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
f1665b21
SY
1133 env->fpstt = (swd >> 11) & 7;
1134 env->fpus = swd;
1135 env->fpuc = cwd;
b9bec74b 1136 for (i = 0; i < 8; ++i) {
f1665b21 1137 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1138 }
42cc8fa6
JK
1139 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1140 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
f1665b21
SY
1141 env->mxcsr = xsave->region[XSAVE_MXCSR];
1142 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1143 sizeof env->fpregs);
1144 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1145 sizeof env->xmm_regs);
1146 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1147 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1148 sizeof env->ymmh_regs);
1149 return 0;
f1665b21
SY
1150}
1151
317ac620 1152static int kvm_get_xcrs(CPUX86State *env)
f1665b21 1153{
f1665b21
SY
1154 int i, ret;
1155 struct kvm_xcrs xcrs;
1156
b9bec74b 1157 if (!kvm_has_xcrs()) {
f1665b21 1158 return 0;
b9bec74b 1159 }
f1665b21
SY
1160
1161 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 1162 if (ret < 0) {
f1665b21 1163 return ret;
b9bec74b 1164 }
f1665b21 1165
b9bec74b 1166 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
1167 /* Only support xcr0 now */
1168 if (xcrs.xcrs[0].xcr == 0) {
1169 env->xcr0 = xcrs.xcrs[0].value;
1170 break;
1171 }
b9bec74b 1172 }
f1665b21 1173 return 0;
f1665b21
SY
1174}
1175
317ac620 1176static int kvm_get_sregs(CPUX86State *env)
05330448
AL
1177{
1178 struct kvm_sregs sregs;
1179 uint32_t hflags;
0e607a80 1180 int bit, i, ret;
05330448
AL
1181
1182 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 1183 if (ret < 0) {
05330448 1184 return ret;
b9bec74b 1185 }
05330448 1186
0e607a80
JK
1187 /* There can only be one pending IRQ set in the bitmap at a time, so try
1188 to find it and save its number instead (-1 for none). */
1189 env->interrupt_injected = -1;
1190 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1191 if (sregs.interrupt_bitmap[i]) {
1192 bit = ctz64(sregs.interrupt_bitmap[i]);
1193 env->interrupt_injected = i * 64 + bit;
1194 break;
1195 }
1196 }
05330448
AL
1197
1198 get_seg(&env->segs[R_CS], &sregs.cs);
1199 get_seg(&env->segs[R_DS], &sregs.ds);
1200 get_seg(&env->segs[R_ES], &sregs.es);
1201 get_seg(&env->segs[R_FS], &sregs.fs);
1202 get_seg(&env->segs[R_GS], &sregs.gs);
1203 get_seg(&env->segs[R_SS], &sregs.ss);
1204
1205 get_seg(&env->tr, &sregs.tr);
1206 get_seg(&env->ldt, &sregs.ldt);
1207
1208 env->idt.limit = sregs.idt.limit;
1209 env->idt.base = sregs.idt.base;
1210 env->gdt.limit = sregs.gdt.limit;
1211 env->gdt.base = sregs.gdt.base;
1212
1213 env->cr[0] = sregs.cr0;
1214 env->cr[2] = sregs.cr2;
1215 env->cr[3] = sregs.cr3;
1216 env->cr[4] = sregs.cr4;
1217
05330448 1218 env->efer = sregs.efer;
cce47516
JK
1219
1220 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
05330448 1221
b9bec74b
JK
1222#define HFLAG_COPY_MASK \
1223 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1224 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1225 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1226 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1227
1228 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1229 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1230 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1231 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1232 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1233 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1234 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1235
1236 if (env->efer & MSR_EFER_LMA) {
1237 hflags |= HF_LMA_MASK;
1238 }
1239
1240 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1241 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1242 } else {
1243 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1244 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1245 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1246 (DESC_B_SHIFT - HF_SS32_SHIFT);
1247 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1248 !(hflags & HF_CS32_MASK)) {
1249 hflags |= HF_ADDSEG_MASK;
1250 } else {
1251 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1252 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1253 }
05330448
AL
1254 }
1255 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1256
1257 return 0;
1258}
1259
317ac620 1260static int kvm_get_msrs(CPUX86State *env)
05330448
AL
1261{
1262 struct {
1263 struct kvm_msrs info;
1264 struct kvm_msr_entry entries[100];
1265 } msr_data;
1266 struct kvm_msr_entry *msrs = msr_data.entries;
1267 int ret, i, n;
1268
1269 n = 0;
1270 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1271 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1272 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1273 msrs[n++].index = MSR_PAT;
c3a3a7d3 1274 if (has_msr_star) {
b9bec74b
JK
1275 msrs[n++].index = MSR_STAR;
1276 }
c3a3a7d3 1277 if (has_msr_hsave_pa) {
75b10c43 1278 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1279 }
aa82ba54
LJ
1280 if (has_msr_tsc_deadline) {
1281 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1282 }
21e87c46
AK
1283 if (has_msr_misc_enable) {
1284 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1285 }
b8cc45d6
GC
1286
1287 if (!env->tsc_valid) {
1288 msrs[n++].index = MSR_IA32_TSC;
1354869c 1289 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
1290 }
1291
05330448 1292#ifdef TARGET_X86_64
25d2e361
MT
1293 if (lm_capable_kernel) {
1294 msrs[n++].index = MSR_CSTAR;
1295 msrs[n++].index = MSR_KERNELGSBASE;
1296 msrs[n++].index = MSR_FMASK;
1297 msrs[n++].index = MSR_LSTAR;
1298 }
05330448 1299#endif
1a03675d
GC
1300 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1301 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
1302 if (has_msr_async_pf_en) {
1303 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1304 }
bc9a839d
MT
1305 if (has_msr_pv_eoi_en) {
1306 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1307 }
1a03675d 1308
57780495
MT
1309 if (env->mcg_cap) {
1310 msrs[n++].index = MSR_MCG_STATUS;
1311 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1312 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1313 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1314 }
57780495 1315 }
57780495 1316
05330448
AL
1317 msr_data.info.nmsrs = n;
1318 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1319 if (ret < 0) {
05330448 1320 return ret;
b9bec74b 1321 }
05330448
AL
1322
1323 for (i = 0; i < ret; i++) {
1324 switch (msrs[i].index) {
1325 case MSR_IA32_SYSENTER_CS:
1326 env->sysenter_cs = msrs[i].data;
1327 break;
1328 case MSR_IA32_SYSENTER_ESP:
1329 env->sysenter_esp = msrs[i].data;
1330 break;
1331 case MSR_IA32_SYSENTER_EIP:
1332 env->sysenter_eip = msrs[i].data;
1333 break;
0c03266a
JK
1334 case MSR_PAT:
1335 env->pat = msrs[i].data;
1336 break;
05330448
AL
1337 case MSR_STAR:
1338 env->star = msrs[i].data;
1339 break;
1340#ifdef TARGET_X86_64
1341 case MSR_CSTAR:
1342 env->cstar = msrs[i].data;
1343 break;
1344 case MSR_KERNELGSBASE:
1345 env->kernelgsbase = msrs[i].data;
1346 break;
1347 case MSR_FMASK:
1348 env->fmask = msrs[i].data;
1349 break;
1350 case MSR_LSTAR:
1351 env->lstar = msrs[i].data;
1352 break;
1353#endif
1354 case MSR_IA32_TSC:
1355 env->tsc = msrs[i].data;
1356 break;
aa82ba54
LJ
1357 case MSR_IA32_TSCDEADLINE:
1358 env->tsc_deadline = msrs[i].data;
1359 break;
aa851e36
MT
1360 case MSR_VM_HSAVE_PA:
1361 env->vm_hsave = msrs[i].data;
1362 break;
1a03675d
GC
1363 case MSR_KVM_SYSTEM_TIME:
1364 env->system_time_msr = msrs[i].data;
1365 break;
1366 case MSR_KVM_WALL_CLOCK:
1367 env->wall_clock_msr = msrs[i].data;
1368 break;
57780495
MT
1369 case MSR_MCG_STATUS:
1370 env->mcg_status = msrs[i].data;
1371 break;
1372 case MSR_MCG_CTL:
1373 env->mcg_ctl = msrs[i].data;
1374 break;
21e87c46
AK
1375 case MSR_IA32_MISC_ENABLE:
1376 env->msr_ia32_misc_enable = msrs[i].data;
1377 break;
57780495 1378 default:
57780495
MT
1379 if (msrs[i].index >= MSR_MC0_CTL &&
1380 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1381 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 1382 }
d8da8574 1383 break;
f6584ee2
GN
1384 case MSR_KVM_ASYNC_PF_EN:
1385 env->async_pf_en_msr = msrs[i].data;
1386 break;
bc9a839d
MT
1387 case MSR_KVM_PV_EOI_EN:
1388 env->pv_eoi_en_msr = msrs[i].data;
1389 break;
05330448
AL
1390 }
1391 }
1392
1393 return 0;
1394}
1395
317ac620 1396static int kvm_put_mp_state(CPUX86State *env)
9bdbe550
HB
1397{
1398 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1399
1400 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1401}
1402
23d02d9b 1403static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 1404{
23d02d9b 1405 CPUX86State *env = &cpu->env;
9bdbe550
HB
1406 struct kvm_mp_state mp_state;
1407 int ret;
1408
1409 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1410 if (ret < 0) {
1411 return ret;
1412 }
1413 env->mp_state = mp_state.mp_state;
c14750e8
JK
1414 if (kvm_irqchip_in_kernel()) {
1415 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1416 }
9bdbe550
HB
1417 return 0;
1418}
1419
317ac620 1420static int kvm_get_apic(CPUX86State *env)
680c1c6f
JK
1421{
1422 DeviceState *apic = env->apic_state;
1423 struct kvm_lapic_state kapic;
1424 int ret;
1425
3d4b2649 1426 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1427 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1428 if (ret < 0) {
1429 return ret;
1430 }
1431
1432 kvm_get_apic_state(apic, &kapic);
1433 }
1434 return 0;
1435}
1436
317ac620 1437static int kvm_put_apic(CPUX86State *env)
680c1c6f
JK
1438{
1439 DeviceState *apic = env->apic_state;
1440 struct kvm_lapic_state kapic;
1441
3d4b2649 1442 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1443 kvm_put_apic_state(apic, &kapic);
1444
1445 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1446 }
1447 return 0;
1448}
1449
317ac620 1450static int kvm_put_vcpu_events(CPUX86State *env, int level)
a0fb002c 1451{
a0fb002c
JK
1452 struct kvm_vcpu_events events;
1453
1454 if (!kvm_has_vcpu_events()) {
1455 return 0;
1456 }
1457
31827373
JK
1458 events.exception.injected = (env->exception_injected >= 0);
1459 events.exception.nr = env->exception_injected;
a0fb002c
JK
1460 events.exception.has_error_code = env->has_error_code;
1461 events.exception.error_code = env->error_code;
7e680753 1462 events.exception.pad = 0;
a0fb002c
JK
1463
1464 events.interrupt.injected = (env->interrupt_injected >= 0);
1465 events.interrupt.nr = env->interrupt_injected;
1466 events.interrupt.soft = env->soft_interrupt;
1467
1468 events.nmi.injected = env->nmi_injected;
1469 events.nmi.pending = env->nmi_pending;
1470 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
7e680753 1471 events.nmi.pad = 0;
a0fb002c
JK
1472
1473 events.sipi_vector = env->sipi_vector;
1474
ea643051
JK
1475 events.flags = 0;
1476 if (level >= KVM_PUT_RESET_STATE) {
1477 events.flags |=
1478 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1479 }
aee028b9 1480
a0fb002c 1481 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
1482}
1483
317ac620 1484static int kvm_get_vcpu_events(CPUX86State *env)
a0fb002c 1485{
a0fb002c
JK
1486 struct kvm_vcpu_events events;
1487 int ret;
1488
1489 if (!kvm_has_vcpu_events()) {
1490 return 0;
1491 }
1492
1493 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1494 if (ret < 0) {
1495 return ret;
1496 }
31827373 1497 env->exception_injected =
a0fb002c
JK
1498 events.exception.injected ? events.exception.nr : -1;
1499 env->has_error_code = events.exception.has_error_code;
1500 env->error_code = events.exception.error_code;
1501
1502 env->interrupt_injected =
1503 events.interrupt.injected ? events.interrupt.nr : -1;
1504 env->soft_interrupt = events.interrupt.soft;
1505
1506 env->nmi_injected = events.nmi.injected;
1507 env->nmi_pending = events.nmi.pending;
1508 if (events.nmi.masked) {
1509 env->hflags2 |= HF2_NMI_MASK;
1510 } else {
1511 env->hflags2 &= ~HF2_NMI_MASK;
1512 }
1513
1514 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
1515
1516 return 0;
1517}
1518
317ac620 1519static int kvm_guest_debug_workarounds(CPUX86State *env)
b0b1d690
JK
1520{
1521 int ret = 0;
b0b1d690
JK
1522 unsigned long reinject_trap = 0;
1523
1524 if (!kvm_has_vcpu_events()) {
1525 if (env->exception_injected == 1) {
1526 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1527 } else if (env->exception_injected == 3) {
1528 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1529 }
1530 env->exception_injected = -1;
1531 }
1532
1533 /*
1534 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1535 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1536 * by updating the debug state once again if single-stepping is on.
1537 * Another reason to call kvm_update_guest_debug here is a pending debug
1538 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1539 * reinject them via SET_GUEST_DEBUG.
1540 */
1541 if (reinject_trap ||
1542 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1543 ret = kvm_update_guest_debug(env, reinject_trap);
1544 }
b0b1d690
JK
1545 return ret;
1546}
1547
317ac620 1548static int kvm_put_debugregs(CPUX86State *env)
ff44f1a3 1549{
ff44f1a3
JK
1550 struct kvm_debugregs dbgregs;
1551 int i;
1552
1553 if (!kvm_has_debugregs()) {
1554 return 0;
1555 }
1556
1557 for (i = 0; i < 4; i++) {
1558 dbgregs.db[i] = env->dr[i];
1559 }
1560 dbgregs.dr6 = env->dr[6];
1561 dbgregs.dr7 = env->dr[7];
1562 dbgregs.flags = 0;
1563
1564 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
1565}
1566
317ac620 1567static int kvm_get_debugregs(CPUX86State *env)
ff44f1a3 1568{
ff44f1a3
JK
1569 struct kvm_debugregs dbgregs;
1570 int i, ret;
1571
1572 if (!kvm_has_debugregs()) {
1573 return 0;
1574 }
1575
1576 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1577 if (ret < 0) {
b9bec74b 1578 return ret;
ff44f1a3
JK
1579 }
1580 for (i = 0; i < 4; i++) {
1581 env->dr[i] = dbgregs.db[i];
1582 }
1583 env->dr[4] = env->dr[6] = dbgregs.dr6;
1584 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
1585
1586 return 0;
1587}
1588
20d695a9 1589int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 1590{
20d695a9
AF
1591 X86CPU *x86_cpu = X86_CPU(cpu);
1592 CPUX86State *env = &x86_cpu->env;
05330448
AL
1593 int ret;
1594
2fa45344 1595 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 1596
05330448 1597 ret = kvm_getput_regs(env, 1);
b9bec74b 1598 if (ret < 0) {
05330448 1599 return ret;
b9bec74b 1600 }
f1665b21 1601 ret = kvm_put_xsave(env);
b9bec74b 1602 if (ret < 0) {
f1665b21 1603 return ret;
b9bec74b 1604 }
f1665b21 1605 ret = kvm_put_xcrs(env);
b9bec74b 1606 if (ret < 0) {
05330448 1607 return ret;
b9bec74b 1608 }
05330448 1609 ret = kvm_put_sregs(env);
b9bec74b 1610 if (ret < 0) {
05330448 1611 return ret;
b9bec74b 1612 }
ab443475
JK
1613 /* must be before kvm_put_msrs */
1614 ret = kvm_inject_mce_oldstyle(env);
1615 if (ret < 0) {
1616 return ret;
1617 }
ea643051 1618 ret = kvm_put_msrs(env, level);
b9bec74b 1619 if (ret < 0) {
05330448 1620 return ret;
b9bec74b 1621 }
ea643051
JK
1622 if (level >= KVM_PUT_RESET_STATE) {
1623 ret = kvm_put_mp_state(env);
b9bec74b 1624 if (ret < 0) {
ea643051 1625 return ret;
b9bec74b 1626 }
680c1c6f
JK
1627 ret = kvm_put_apic(env);
1628 if (ret < 0) {
1629 return ret;
1630 }
ea643051 1631 }
ea643051 1632 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1633 if (ret < 0) {
a0fb002c 1634 return ret;
b9bec74b 1635 }
0d75a9ec 1636 ret = kvm_put_debugregs(env);
b9bec74b 1637 if (ret < 0) {
b0b1d690 1638 return ret;
b9bec74b 1639 }
b0b1d690
JK
1640 /* must be last */
1641 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1642 if (ret < 0) {
ff44f1a3 1643 return ret;
b9bec74b 1644 }
05330448
AL
1645 return 0;
1646}
1647
20d695a9 1648int kvm_arch_get_registers(CPUState *cs)
05330448 1649{
20d695a9
AF
1650 X86CPU *cpu = X86_CPU(cs);
1651 CPUX86State *env = &cpu->env;
05330448
AL
1652 int ret;
1653
20d695a9 1654 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 1655
05330448 1656 ret = kvm_getput_regs(env, 0);
b9bec74b 1657 if (ret < 0) {
05330448 1658 return ret;
b9bec74b 1659 }
f1665b21 1660 ret = kvm_get_xsave(env);
b9bec74b 1661 if (ret < 0) {
f1665b21 1662 return ret;
b9bec74b 1663 }
f1665b21 1664 ret = kvm_get_xcrs(env);
b9bec74b 1665 if (ret < 0) {
05330448 1666 return ret;
b9bec74b 1667 }
05330448 1668 ret = kvm_get_sregs(env);
b9bec74b 1669 if (ret < 0) {
05330448 1670 return ret;
b9bec74b 1671 }
05330448 1672 ret = kvm_get_msrs(env);
b9bec74b 1673 if (ret < 0) {
05330448 1674 return ret;
b9bec74b 1675 }
23d02d9b 1676 ret = kvm_get_mp_state(cpu);
b9bec74b 1677 if (ret < 0) {
5a2e3c2e 1678 return ret;
b9bec74b 1679 }
680c1c6f
JK
1680 ret = kvm_get_apic(env);
1681 if (ret < 0) {
1682 return ret;
1683 }
a0fb002c 1684 ret = kvm_get_vcpu_events(env);
b9bec74b 1685 if (ret < 0) {
a0fb002c 1686 return ret;
b9bec74b 1687 }
ff44f1a3 1688 ret = kvm_get_debugregs(env);
b9bec74b 1689 if (ret < 0) {
ff44f1a3 1690 return ret;
b9bec74b 1691 }
05330448
AL
1692 return 0;
1693}
1694
20d695a9 1695void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 1696{
20d695a9
AF
1697 X86CPU *x86_cpu = X86_CPU(cpu);
1698 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
1699 int ret;
1700
276ce815
LJ
1701 /* Inject NMI */
1702 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1703 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1704 DPRINTF("injected NMI\n");
ce377af3
JK
1705 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1706 if (ret < 0) {
1707 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1708 strerror(-ret));
1709 }
276ce815
LJ
1710 }
1711
db1669bc 1712 if (!kvm_irqchip_in_kernel()) {
d362e757
JK
1713 /* Force the VCPU out of its inner loop to process any INIT requests
1714 * or pending TPR access reports. */
1715 if (env->interrupt_request &
1716 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
db1669bc 1717 env->exit_request = 1;
05330448 1718 }
05330448 1719
db1669bc
JK
1720 /* Try to inject an interrupt if the guest can accept it */
1721 if (run->ready_for_interrupt_injection &&
1722 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1723 (env->eflags & IF_MASK)) {
1724 int irq;
1725
1726 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1727 irq = cpu_get_pic_interrupt(env);
1728 if (irq >= 0) {
1729 struct kvm_interrupt intr;
1730
1731 intr.irq = irq;
db1669bc 1732 DPRINTF("injected interrupt %d\n", irq);
ce377af3
JK
1733 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1734 if (ret < 0) {
1735 fprintf(stderr,
1736 "KVM: injection failed, interrupt lost (%s)\n",
1737 strerror(-ret));
1738 }
db1669bc
JK
1739 }
1740 }
05330448 1741
db1669bc
JK
1742 /* If we have an interrupt but the guest is not ready to receive an
1743 * interrupt, request an interrupt window exit. This will
1744 * cause a return to userspace as soon as the guest is ready to
1745 * receive interrupts. */
1746 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1747 run->request_interrupt_window = 1;
1748 } else {
1749 run->request_interrupt_window = 0;
1750 }
1751
1752 DPRINTF("setting tpr\n");
1753 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1754 }
05330448
AL
1755}
1756
20d695a9 1757void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 1758{
20d695a9
AF
1759 X86CPU *x86_cpu = X86_CPU(cpu);
1760 CPUX86State *env = &x86_cpu->env;
1761
b9bec74b 1762 if (run->if_flag) {
05330448 1763 env->eflags |= IF_MASK;
b9bec74b 1764 } else {
05330448 1765 env->eflags &= ~IF_MASK;
b9bec74b 1766 }
4a942cea
BS
1767 cpu_set_apic_tpr(env->apic_state, run->cr8);
1768 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1769}
1770
20d695a9 1771int kvm_arch_process_async_events(CPUState *cs)
0af691d7 1772{
20d695a9
AF
1773 X86CPU *cpu = X86_CPU(cs);
1774 CPUX86State *env = &cpu->env;
232fc23b 1775
ab443475
JK
1776 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1777 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1778 assert(env->mcg_cap);
1779
1780 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1781
1782 kvm_cpu_synchronize_state(env);
1783
1784 if (env->exception_injected == EXCP08_DBLE) {
1785 /* this means triple fault */
1786 qemu_system_reset_request();
1787 env->exit_request = 1;
1788 return 0;
1789 }
1790 env->exception_injected = EXCP12_MCHK;
1791 env->has_error_code = 0;
1792
1793 env->halted = 0;
1794 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1795 env->mp_state = KVM_MP_STATE_RUNNABLE;
1796 }
1797 }
1798
db1669bc
JK
1799 if (kvm_irqchip_in_kernel()) {
1800 return 0;
1801 }
1802
5d62c43a
JK
1803 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1804 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1805 apic_poll_irq(env->apic_state);
1806 }
4601f7b0
JK
1807 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1808 (env->eflags & IF_MASK)) ||
1809 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
6792a57b
JK
1810 env->halted = 0;
1811 }
0af691d7
MT
1812 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1813 kvm_cpu_synchronize_state(env);
232fc23b 1814 do_cpu_init(cpu);
0af691d7 1815 }
0af691d7
MT
1816 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1817 kvm_cpu_synchronize_state(env);
232fc23b 1818 do_cpu_sipi(cpu);
0af691d7 1819 }
d362e757
JK
1820 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1821 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1822 kvm_cpu_synchronize_state(env);
1823 apic_handle_tpr_access_report(env->apic_state, env->eip,
1824 env->tpr_access_type);
1825 }
0af691d7
MT
1826
1827 return env->halted;
1828}
1829
839b5630 1830static int kvm_handle_halt(X86CPU *cpu)
05330448 1831{
839b5630
AF
1832 CPUX86State *env = &cpu->env;
1833
05330448
AL
1834 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1835 (env->eflags & IF_MASK)) &&
1836 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1837 env->halted = 1;
bb4ea393 1838 return EXCP_HLT;
05330448
AL
1839 }
1840
bb4ea393 1841 return 0;
05330448
AL
1842}
1843
317ac620 1844static int kvm_handle_tpr_access(CPUX86State *env)
d362e757
JK
1845{
1846 struct kvm_run *run = env->kvm_run;
1847
1848 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1849 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1850 : TPR_ACCESS_READ);
1851 return 1;
1852}
1853
20d695a9 1854int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
e22a25c9 1855{
20d695a9 1856 CPUX86State *env = &X86_CPU(cpu)->env;
38972938 1857 static const uint8_t int3 = 0xcc;
64bf3f4e 1858
e22a25c9 1859 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1860 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1861 return -EINVAL;
b9bec74b 1862 }
e22a25c9
AL
1863 return 0;
1864}
1865
20d695a9 1866int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
e22a25c9 1867{
20d695a9 1868 CPUX86State *env = &X86_CPU(cpu)->env;
e22a25c9
AL
1869 uint8_t int3;
1870
1871 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1872 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1873 return -EINVAL;
b9bec74b 1874 }
e22a25c9
AL
1875 return 0;
1876}
1877
1878static struct {
1879 target_ulong addr;
1880 int len;
1881 int type;
1882} hw_breakpoint[4];
1883
1884static int nb_hw_breakpoint;
1885
1886static int find_hw_breakpoint(target_ulong addr, int len, int type)
1887{
1888 int n;
1889
b9bec74b 1890 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1891 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1892 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1893 return n;
b9bec74b
JK
1894 }
1895 }
e22a25c9
AL
1896 return -1;
1897}
1898
1899int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1900 target_ulong len, int type)
1901{
1902 switch (type) {
1903 case GDB_BREAKPOINT_HW:
1904 len = 1;
1905 break;
1906 case GDB_WATCHPOINT_WRITE:
1907 case GDB_WATCHPOINT_ACCESS:
1908 switch (len) {
1909 case 1:
1910 break;
1911 case 2:
1912 case 4:
1913 case 8:
b9bec74b 1914 if (addr & (len - 1)) {
e22a25c9 1915 return -EINVAL;
b9bec74b 1916 }
e22a25c9
AL
1917 break;
1918 default:
1919 return -EINVAL;
1920 }
1921 break;
1922 default:
1923 return -ENOSYS;
1924 }
1925
b9bec74b 1926 if (nb_hw_breakpoint == 4) {
e22a25c9 1927 return -ENOBUFS;
b9bec74b
JK
1928 }
1929 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1930 return -EEXIST;
b9bec74b 1931 }
e22a25c9
AL
1932 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1933 hw_breakpoint[nb_hw_breakpoint].len = len;
1934 hw_breakpoint[nb_hw_breakpoint].type = type;
1935 nb_hw_breakpoint++;
1936
1937 return 0;
1938}
1939
1940int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1941 target_ulong len, int type)
1942{
1943 int n;
1944
1945 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1946 if (n < 0) {
e22a25c9 1947 return -ENOENT;
b9bec74b 1948 }
e22a25c9
AL
1949 nb_hw_breakpoint--;
1950 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1951
1952 return 0;
1953}
1954
1955void kvm_arch_remove_all_hw_breakpoints(void)
1956{
1957 nb_hw_breakpoint = 0;
1958}
1959
1960static CPUWatchpoint hw_watchpoint;
1961
48405526
BS
1962static int kvm_handle_debug(CPUX86State *env,
1963 struct kvm_debug_exit_arch *arch_info)
e22a25c9 1964{
f2574737 1965 int ret = 0;
e22a25c9
AL
1966 int n;
1967
1968 if (arch_info->exception == 1) {
1969 if (arch_info->dr6 & (1 << 14)) {
48405526 1970 if (env->singlestep_enabled) {
f2574737 1971 ret = EXCP_DEBUG;
b9bec74b 1972 }
e22a25c9 1973 } else {
b9bec74b
JK
1974 for (n = 0; n < 4; n++) {
1975 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1976 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1977 case 0x0:
f2574737 1978 ret = EXCP_DEBUG;
e22a25c9
AL
1979 break;
1980 case 0x1:
f2574737 1981 ret = EXCP_DEBUG;
48405526 1982 env->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
1983 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1984 hw_watchpoint.flags = BP_MEM_WRITE;
1985 break;
1986 case 0x3:
f2574737 1987 ret = EXCP_DEBUG;
48405526 1988 env->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
1989 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1990 hw_watchpoint.flags = BP_MEM_ACCESS;
1991 break;
1992 }
b9bec74b
JK
1993 }
1994 }
e22a25c9 1995 }
48405526 1996 } else if (kvm_find_sw_breakpoint(env, arch_info->pc)) {
f2574737 1997 ret = EXCP_DEBUG;
b9bec74b 1998 }
f2574737 1999 if (ret == 0) {
48405526
BS
2000 cpu_synchronize_state(env);
2001 assert(env->exception_injected == -1);
b0b1d690 2002
f2574737 2003 /* pass to guest */
48405526
BS
2004 env->exception_injected = arch_info->exception;
2005 env->has_error_code = 0;
b0b1d690 2006 }
e22a25c9 2007
f2574737 2008 return ret;
e22a25c9
AL
2009}
2010
20d695a9 2011void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9 2012{
20d695a9 2013 CPUX86State *env = &X86_CPU(cpu)->env;
e22a25c9
AL
2014 const uint8_t type_code[] = {
2015 [GDB_BREAKPOINT_HW] = 0x0,
2016 [GDB_WATCHPOINT_WRITE] = 0x1,
2017 [GDB_WATCHPOINT_ACCESS] = 0x3
2018 };
2019 const uint8_t len_code[] = {
2020 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2021 };
2022 int n;
2023
b9bec74b 2024 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 2025 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 2026 }
e22a25c9
AL
2027 if (nb_hw_breakpoint > 0) {
2028 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2029 dbg->arch.debugreg[7] = 0x0600;
2030 for (n = 0; n < nb_hw_breakpoint; n++) {
2031 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2032 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2033 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 2034 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
2035 }
2036 }
2037}
4513d923 2038
2a4dac83
JK
2039static bool host_supports_vmx(void)
2040{
2041 uint32_t ecx, unused;
2042
2043 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2044 return ecx & CPUID_EXT_VMX;
2045}
2046
2047#define VMX_INVALID_GUEST_STATE 0x80000021
2048
20d695a9 2049int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 2050{
20d695a9
AF
2051 X86CPU *cpu = X86_CPU(cs);
2052 CPUX86State *env = &cpu->env;
2a4dac83
JK
2053 uint64_t code;
2054 int ret;
2055
2056 switch (run->exit_reason) {
2057 case KVM_EXIT_HLT:
2058 DPRINTF("handle_hlt\n");
839b5630 2059 ret = kvm_handle_halt(cpu);
2a4dac83
JK
2060 break;
2061 case KVM_EXIT_SET_TPR:
2062 ret = 0;
2063 break;
d362e757
JK
2064 case KVM_EXIT_TPR_ACCESS:
2065 ret = kvm_handle_tpr_access(env);
2066 break;
2a4dac83
JK
2067 case KVM_EXIT_FAIL_ENTRY:
2068 code = run->fail_entry.hardware_entry_failure_reason;
2069 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2070 code);
2071 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2072 fprintf(stderr,
12619721 2073 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
2074 "unrestricted mode\n"
2075 "support, the failure can be most likely due to the guest "
2076 "entering an invalid\n"
2077 "state for Intel VT. For example, the guest maybe running "
2078 "in big real mode\n"
2079 "which is not supported on less recent Intel processors."
2080 "\n\n");
2081 }
2082 ret = -1;
2083 break;
2084 case KVM_EXIT_EXCEPTION:
2085 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2086 run->ex.exception, run->ex.error_code);
2087 ret = -1;
2088 break;
f2574737
JK
2089 case KVM_EXIT_DEBUG:
2090 DPRINTF("kvm_exit_debug\n");
48405526 2091 ret = kvm_handle_debug(env, &run->debug.arch);
f2574737 2092 break;
2a4dac83
JK
2093 default:
2094 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2095 ret = -1;
2096 break;
2097 }
2098
2099 return ret;
2100}
2101
20d695a9 2102bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 2103{
20d695a9
AF
2104 X86CPU *cpu = X86_CPU(cs);
2105 CPUX86State *env = &cpu->env;
2106
d1f86636 2107 kvm_cpu_synchronize_state(env);
b9bec74b
JK
2108 return !(env->cr[0] & CR0_PE_MASK) ||
2109 ((env->segs[R_CS].selector & 3) != 3);
4513d923 2110}
84b058d7
JK
2111
2112void kvm_arch_init_irq_routing(KVMState *s)
2113{
2114 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2115 /* If kernel can't do irq routing, interrupt source
2116 * override 0->2 cannot be set up as required by HPET.
2117 * So we have to disable it.
2118 */
2119 no_hpet = 1;
2120 }
cc7e0ddf 2121 /* We know at this point that we're using the in-kernel
614e41bc 2122 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 2123 * we can use msi via irqfd and GSI routing.
cc7e0ddf
PM
2124 */
2125 kvm_irqfds_allowed = true;
614e41bc 2126 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 2127 kvm_gsi_routing_allowed = true;
84b058d7 2128}
b139bd30
JK
2129
2130/* Classic KVM device assignment interface. Will remain x86 only. */
2131int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2132 uint32_t flags, uint32_t *dev_id)
2133{
2134 struct kvm_assigned_pci_dev dev_data = {
2135 .segnr = dev_addr->domain,
2136 .busnr = dev_addr->bus,
2137 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2138 .flags = flags,
2139 };
2140 int ret;
2141
2142 dev_data.assigned_dev_id =
2143 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2144
2145 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2146 if (ret < 0) {
2147 return ret;
2148 }
2149
2150 *dev_id = dev_data.assigned_dev_id;
2151
2152 return 0;
2153}
2154
2155int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2156{
2157 struct kvm_assigned_pci_dev dev_data = {
2158 .assigned_dev_id = dev_id,
2159 };
2160
2161 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2162}
2163
2164static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2165 uint32_t irq_type, uint32_t guest_irq)
2166{
2167 struct kvm_assigned_irq assigned_irq = {
2168 .assigned_dev_id = dev_id,
2169 .guest_irq = guest_irq,
2170 .flags = irq_type,
2171 };
2172
2173 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2174 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2175 } else {
2176 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2177 }
2178}
2179
2180int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2181 uint32_t guest_irq)
2182{
2183 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2184 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2185
2186 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2187}
2188
2189int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2190{
2191 struct kvm_assigned_pci_dev dev_data = {
2192 .assigned_dev_id = dev_id,
2193 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2194 };
2195
2196 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2197}
2198
2199static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2200 uint32_t type)
2201{
2202 struct kvm_assigned_irq assigned_irq = {
2203 .assigned_dev_id = dev_id,
2204 .flags = type,
2205 };
2206
2207 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2208}
2209
2210int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2211{
2212 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2213 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2214}
2215
2216int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2217{
2218 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2219 KVM_DEV_IRQ_GUEST_MSI, virq);
2220}
2221
2222int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2223{
2224 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2225 KVM_DEV_IRQ_HOST_MSI);
2226}
2227
2228bool kvm_device_msix_supported(KVMState *s)
2229{
2230 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2231 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2232 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2233}
2234
2235int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2236 uint32_t nr_vectors)
2237{
2238 struct kvm_assigned_msix_nr msix_nr = {
2239 .assigned_dev_id = dev_id,
2240 .entry_nr = nr_vectors,
2241 };
2242
2243 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2244}
2245
2246int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2247 int virq)
2248{
2249 struct kvm_assigned_msix_entry msix_entry = {
2250 .assigned_dev_id = dev_id,
2251 .gsi = virq,
2252 .entry = vector,
2253 };
2254
2255 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2256}
2257
2258int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2259{
2260 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2261 KVM_DEV_IRQ_GUEST_MSIX, 0);
2262}
2263
2264int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2265{
2266 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2267 KVM_DEV_IRQ_HOST_MSIX);
2268}