]> git.ipfire.org Git - thirdparty/qemu.git/blame - target-i386/kvm.c
target-i386: Call cpu_exec_init() on realize
[thirdparty/qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
b6a0aa05 15#include "qemu/osdep.h"
da34e65c 16#include "qapi/error.h"
05330448
AL
17#include <sys/ioctl.h>
18#include <sys/mman.h>
25d2e361 19#include <sys/utsname.h>
05330448
AL
20
21#include <linux/kvm.h>
5802e066 22#include <linux/kvm_para.h>
05330448
AL
23
24#include "qemu-common.h"
33c11879 25#include "cpu.h"
9c17d615 26#include "sysemu/sysemu.h"
6410848b 27#include "sysemu/kvm_int.h"
1d31f66b 28#include "kvm_i386.h"
50efe82c
AS
29#include "hyperv.h"
30
022c62cb 31#include "exec/gdbstub.h"
1de7afc9
PB
32#include "qemu/host-utils.h"
33#include "qemu/config-file.h"
1c4a55db 34#include "qemu/error-report.h"
0d09e41a
PB
35#include "hw/i386/pc.h"
36#include "hw/i386/apic.h"
e0723c45
PB
37#include "hw/i386/apic_internal.h"
38#include "hw/i386/apic-msidef.h"
50efe82c 39
022c62cb 40#include "exec/ioport.h"
73aa529a 41#include "standard-headers/asm-x86/hyperv.h"
a2cb15b0 42#include "hw/pci/pci.h"
15eafc2e 43#include "hw/pci/msi.h"
68bfd0ad 44#include "migration/migration.h"
4c663752 45#include "exec/memattrs.h"
05330448
AL
46
47//#define DEBUG_KVM
48
49#ifdef DEBUG_KVM
8c0d577e 50#define DPRINTF(fmt, ...) \
05330448
AL
51 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
52#else
8c0d577e 53#define DPRINTF(fmt, ...) \
05330448
AL
54 do { } while (0)
55#endif
56
1a03675d
GC
57#define MSR_KVM_WALL_CLOCK 0x11
58#define MSR_KVM_SYSTEM_TIME 0x12
59
c0532a76
MT
60#ifndef BUS_MCEERR_AR
61#define BUS_MCEERR_AR 4
62#endif
63#ifndef BUS_MCEERR_AO
64#define BUS_MCEERR_AO 5
65#endif
66
94a8d39a
JK
67const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
68 KVM_CAP_INFO(SET_TSS_ADDR),
69 KVM_CAP_INFO(EXT_CPUID),
70 KVM_CAP_INFO(MP_STATE),
71 KVM_CAP_LAST_INFO
72};
25d2e361 73
c3a3a7d3
JK
74static bool has_msr_star;
75static bool has_msr_hsave_pa;
c9b8f6b6 76static bool has_msr_tsc_aux;
f28558d3 77static bool has_msr_tsc_adjust;
aa82ba54 78static bool has_msr_tsc_deadline;
df67696e 79static bool has_msr_feature_control;
c5999bfc 80static bool has_msr_async_pf_en;
bc9a839d 81static bool has_msr_pv_eoi_en;
21e87c46 82static bool has_msr_misc_enable;
fc12d72e 83static bool has_msr_smbase;
79e9ebeb 84static bool has_msr_bndcfgs;
917367aa 85static bool has_msr_kvm_steal_time;
25d2e361 86static int lm_capable_kernel;
7bc3d711
PB
87static bool has_msr_hv_hypercall;
88static bool has_msr_hv_vapic;
48a5f3bc 89static bool has_msr_hv_tsc;
f2a53c9e 90static bool has_msr_hv_crash;
744b8a94 91static bool has_msr_hv_reset;
8c145d7c 92static bool has_msr_hv_vpindex;
46eb8f98 93static bool has_msr_hv_runtime;
866eea9a 94static bool has_msr_hv_synic;
ff99aa64 95static bool has_msr_hv_stimer;
d1ae67f6 96static bool has_msr_mtrr;
18cd2c17 97static bool has_msr_xss;
b827df58 98
0d894367
PB
99static bool has_msr_architectural_pmu;
100static uint32_t num_architectural_pmu_counters;
101
28143b40
TH
102static int has_xsave;
103static int has_xcrs;
104static int has_pit_state2;
105
106int kvm_has_pit_state2(void)
107{
108 return has_pit_state2;
109}
110
355023f2
PB
111bool kvm_has_smm(void)
112{
113 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
114}
115
1d31f66b
PM
116bool kvm_allows_irq0_override(void)
117{
118 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
119}
120
0fd7e098
LL
121static int kvm_get_tsc(CPUState *cs)
122{
123 X86CPU *cpu = X86_CPU(cs);
124 CPUX86State *env = &cpu->env;
125 struct {
126 struct kvm_msrs info;
127 struct kvm_msr_entry entries[1];
128 } msr_data;
129 int ret;
130
131 if (env->tsc_valid) {
132 return 0;
133 }
134
135 msr_data.info.nmsrs = 1;
136 msr_data.entries[0].index = MSR_IA32_TSC;
137 env->tsc_valid = !runstate_is_running();
138
139 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
140 if (ret < 0) {
141 return ret;
142 }
143
48e1a45c 144 assert(ret == 1);
0fd7e098
LL
145 env->tsc = msr_data.entries[0].data;
146 return 0;
147}
148
149static inline void do_kvm_synchronize_tsc(void *arg)
150{
151 CPUState *cpu = arg;
152
153 kvm_get_tsc(cpu);
154}
155
156void kvm_synchronize_all_tsc(void)
157{
158 CPUState *cpu;
159
160 if (kvm_enabled()) {
161 CPU_FOREACH(cpu) {
162 run_on_cpu(cpu, do_kvm_synchronize_tsc, cpu);
163 }
164 }
165}
166
b827df58
AK
167static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
168{
169 struct kvm_cpuid2 *cpuid;
170 int r, size;
171
172 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
e42a92ae 173 cpuid = g_malloc0(size);
b827df58
AK
174 cpuid->nent = max;
175 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
176 if (r == 0 && cpuid->nent >= max) {
177 r = -E2BIG;
178 }
b827df58
AK
179 if (r < 0) {
180 if (r == -E2BIG) {
7267c094 181 g_free(cpuid);
b827df58
AK
182 return NULL;
183 } else {
184 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
185 strerror(-r));
186 exit(1);
187 }
188 }
189 return cpuid;
190}
191
dd87f8a6
EH
192/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
193 * for all entries.
194 */
195static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
196{
197 struct kvm_cpuid2 *cpuid;
198 int max = 1;
199 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
200 max *= 2;
201 }
202 return cpuid;
203}
204
a443bc34 205static const struct kvm_para_features {
0c31b744
GC
206 int cap;
207 int feature;
208} para_features[] = {
209 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
210 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
211 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 212 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
213};
214
ba9bc59e 215static int get_para_features(KVMState *s)
0c31b744
GC
216{
217 int i, features = 0;
218
8e03c100 219 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
ba9bc59e 220 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
221 features |= (1 << para_features[i].feature);
222 }
223 }
224
225 return features;
226}
0c31b744
GC
227
228
829ae2f9
EH
229/* Returns the value for a specific register on the cpuid entry
230 */
231static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
232{
233 uint32_t ret = 0;
234 switch (reg) {
235 case R_EAX:
236 ret = entry->eax;
237 break;
238 case R_EBX:
239 ret = entry->ebx;
240 break;
241 case R_ECX:
242 ret = entry->ecx;
243 break;
244 case R_EDX:
245 ret = entry->edx;
246 break;
247 }
248 return ret;
249}
250
4fb73f1d
EH
251/* Find matching entry for function/index on kvm_cpuid2 struct
252 */
253static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
254 uint32_t function,
255 uint32_t index)
256{
257 int i;
258 for (i = 0; i < cpuid->nent; ++i) {
259 if (cpuid->entries[i].function == function &&
260 cpuid->entries[i].index == index) {
261 return &cpuid->entries[i];
262 }
263 }
264 /* not found: */
265 return NULL;
266}
267
ba9bc59e 268uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 269 uint32_t index, int reg)
b827df58
AK
270{
271 struct kvm_cpuid2 *cpuid;
b827df58
AK
272 uint32_t ret = 0;
273 uint32_t cpuid_1_edx;
8c723b79 274 bool found = false;
b827df58 275
dd87f8a6 276 cpuid = get_supported_cpuid(s);
b827df58 277
4fb73f1d
EH
278 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
279 if (entry) {
280 found = true;
281 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
282 }
283
7b46e5ce
EH
284 /* Fixups for the data returned by KVM, below */
285
c2acb022
EH
286 if (function == 1 && reg == R_EDX) {
287 /* KVM before 2.6.30 misreports the following features */
288 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
289 } else if (function == 1 && reg == R_ECX) {
290 /* We can set the hypervisor flag, even if KVM does not return it on
291 * GET_SUPPORTED_CPUID
292 */
293 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
294 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
295 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
296 * and the irqchip is in the kernel.
297 */
298 if (kvm_irqchip_in_kernel() &&
299 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
300 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
301 }
41e5e76d
EH
302
303 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
304 * without the in-kernel irqchip
305 */
306 if (!kvm_irqchip_in_kernel()) {
307 ret &= ~CPUID_EXT_X2APIC;
b827df58 308 }
28b8e4d0
JK
309 } else if (function == 6 && reg == R_EAX) {
310 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
c2acb022
EH
311 } else if (function == 0x80000001 && reg == R_EDX) {
312 /* On Intel, kvm returns cpuid according to the Intel spec,
313 * so add missing bits according to the AMD spec:
314 */
315 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
316 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
b827df58
AK
317 }
318
7267c094 319 g_free(cpuid);
b827df58 320
0c31b744 321 /* fallback for older kernels */
8c723b79 322 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 323 ret = get_para_features(s);
b9bec74b 324 }
0c31b744
GC
325
326 return ret;
bb0300dc 327}
bb0300dc 328
3c85e74f
HY
329typedef struct HWPoisonPage {
330 ram_addr_t ram_addr;
331 QLIST_ENTRY(HWPoisonPage) list;
332} HWPoisonPage;
333
334static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
335 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
336
337static void kvm_unpoison_all(void *param)
338{
339 HWPoisonPage *page, *next_page;
340
341 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
342 QLIST_REMOVE(page, list);
343 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 344 g_free(page);
3c85e74f
HY
345 }
346}
347
3c85e74f
HY
348static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
349{
350 HWPoisonPage *page;
351
352 QLIST_FOREACH(page, &hwpoison_page_list, list) {
353 if (page->ram_addr == ram_addr) {
354 return;
355 }
356 }
ab3ad07f 357 page = g_new(HWPoisonPage, 1);
3c85e74f
HY
358 page->ram_addr = ram_addr;
359 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
360}
361
e7701825
MT
362static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
363 int *max_banks)
364{
365 int r;
366
14a09518 367 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
368 if (r > 0) {
369 *max_banks = r;
370 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
371 }
372 return -ENOSYS;
373}
374
bee615d4 375static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 376{
bee615d4 377 CPUX86State *env = &cpu->env;
c34d440a
JK
378 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
379 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
380 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 381
c34d440a
JK
382 if (code == BUS_MCEERR_AR) {
383 status |= MCI_STATUS_AR | 0x134;
384 mcg_status |= MCG_STATUS_EIPV;
385 } else {
386 status |= 0xc0;
387 mcg_status |= MCG_STATUS_RIPV;
419fb20a 388 }
8c5cf3b6 389 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
c34d440a
JK
390 (MCM_ADDR_PHYS << 6) | 0xc,
391 cpu_x86_support_mca_broadcast(env) ?
392 MCE_INJECT_BROADCAST : 0);
419fb20a 393}
419fb20a
JK
394
395static void hardware_memory_error(void)
396{
397 fprintf(stderr, "Hardware memory error!\n");
398 exit(1);
399}
400
20d695a9 401int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 402{
20d695a9
AF
403 X86CPU *cpu = X86_CPU(c);
404 CPUX86State *env = &cpu->env;
419fb20a 405 ram_addr_t ram_addr;
a8170e5e 406 hwaddr paddr;
419fb20a
JK
407
408 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a 409 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
1b5ec234 410 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
a60f24b5 411 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
419fb20a
JK
412 fprintf(stderr, "Hardware memory error for memory used by "
413 "QEMU itself instead of guest system!\n");
414 /* Hope we are lucky for AO MCE */
415 if (code == BUS_MCEERR_AO) {
416 return 0;
417 } else {
418 hardware_memory_error();
419 }
420 }
3c85e74f 421 kvm_hwpoison_page_add(ram_addr);
bee615d4 422 kvm_mce_inject(cpu, paddr, code);
e56ff191 423 } else {
419fb20a
JK
424 if (code == BUS_MCEERR_AO) {
425 return 0;
426 } else if (code == BUS_MCEERR_AR) {
427 hardware_memory_error();
428 } else {
429 return 1;
430 }
431 }
432 return 0;
433}
434
435int kvm_arch_on_sigbus(int code, void *addr)
436{
182735ef
AF
437 X86CPU *cpu = X86_CPU(first_cpu);
438
439 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a 440 ram_addr_t ram_addr;
a8170e5e 441 hwaddr paddr;
419fb20a
JK
442
443 /* Hope we are lucky for AO MCE */
1b5ec234 444 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
182735ef 445 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
a60f24b5 446 addr, &paddr)) {
419fb20a
JK
447 fprintf(stderr, "Hardware memory error for memory used by "
448 "QEMU itself instead of guest system!: %p\n", addr);
449 return 0;
450 }
3c85e74f 451 kvm_hwpoison_page_add(ram_addr);
182735ef 452 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
e56ff191 453 } else {
419fb20a
JK
454 if (code == BUS_MCEERR_AO) {
455 return 0;
456 } else if (code == BUS_MCEERR_AR) {
457 hardware_memory_error();
458 } else {
459 return 1;
460 }
461 }
462 return 0;
463}
e7701825 464
1bc22652 465static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 466{
1bc22652
AF
467 CPUX86State *env = &cpu->env;
468
ab443475
JK
469 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
470 unsigned int bank, bank_num = env->mcg_cap & 0xff;
471 struct kvm_x86_mce mce;
472
473 env->exception_injected = -1;
474
475 /*
476 * There must be at least one bank in use if an MCE is pending.
477 * Find it and use its values for the event injection.
478 */
479 for (bank = 0; bank < bank_num; bank++) {
480 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
481 break;
482 }
483 }
484 assert(bank < bank_num);
485
486 mce.bank = bank;
487 mce.status = env->mce_banks[bank * 4 + 1];
488 mce.mcg_status = env->mcg_status;
489 mce.addr = env->mce_banks[bank * 4 + 2];
490 mce.misc = env->mce_banks[bank * 4 + 3];
491
1bc22652 492 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 493 }
ab443475
JK
494 return 0;
495}
496
1dfb4dd9 497static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 498{
317ac620 499 CPUX86State *env = opaque;
b8cc45d6
GC
500
501 if (running) {
502 env->tsc_valid = false;
503 }
504}
505
83b17af5 506unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 507{
83b17af5 508 X86CPU *cpu = X86_CPU(cs);
7e72a45c 509 return cpu->apic_id;
b164e48e
EH
510}
511
92067bf4
IM
512#ifndef KVM_CPUID_SIGNATURE_NEXT
513#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
514#endif
515
516static bool hyperv_hypercall_available(X86CPU *cpu)
517{
518 return cpu->hyperv_vapic ||
519 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
520}
521
522static bool hyperv_enabled(X86CPU *cpu)
523{
7bc3d711
PB
524 CPUState *cs = CPU(cpu);
525 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
526 (hyperv_hypercall_available(cpu) ||
48a5f3bc 527 cpu->hyperv_time ||
f2a53c9e 528 cpu->hyperv_relaxed_timing ||
744b8a94 529 cpu->hyperv_crash ||
8c145d7c 530 cpu->hyperv_reset ||
46eb8f98 531 cpu->hyperv_vpindex ||
866eea9a 532 cpu->hyperv_runtime ||
ff99aa64
AS
533 cpu->hyperv_synic ||
534 cpu->hyperv_stimer);
92067bf4
IM
535}
536
5031283d
HZ
537static int kvm_arch_set_tsc_khz(CPUState *cs)
538{
539 X86CPU *cpu = X86_CPU(cs);
540 CPUX86State *env = &cpu->env;
541 int r;
542
543 if (!env->tsc_khz) {
544 return 0;
545 }
546
547 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
548 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
549 -ENOTSUP;
550 if (r < 0) {
551 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
552 * TSC frequency doesn't match the one we want.
553 */
554 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
555 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
556 -ENOTSUP;
557 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
558 error_report("warning: TSC frequency mismatch between "
559 "VM and host, and TSC scaling unavailable");
560 return r;
561 }
562 }
563
564 return 0;
565}
566
68bfd0ad
MT
567static Error *invtsc_mig_blocker;
568
f8bb0565 569#define KVM_MAX_CPUID_ENTRIES 100
0893d460 570
20d695a9 571int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
572{
573 struct {
486bd5a2 574 struct kvm_cpuid2 cpuid;
f8bb0565 575 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
541dc0d4 576 } QEMU_PACKED cpuid_data;
20d695a9
AF
577 X86CPU *cpu = X86_CPU(cs);
578 CPUX86State *env = &cpu->env;
486bd5a2 579 uint32_t limit, i, j, cpuid_i;
a33609ca 580 uint32_t unused;
bb0300dc 581 struct kvm_cpuid_entry2 *c;
bb0300dc 582 uint32_t signature[3];
234cc647 583 int kvm_base = KVM_CPUID_SIGNATURE;
e7429073 584 int r;
05330448 585
ef4cbe14
SW
586 memset(&cpuid_data, 0, sizeof(cpuid_data));
587
05330448
AL
588 cpuid_i = 0;
589
bb0300dc 590 /* Paravirtualization CPUIDs */
234cc647
PB
591 if (hyperv_enabled(cpu)) {
592 c = &cpuid_data.entries[cpuid_i++];
593 c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1c4a55db
AW
594 if (!cpu->hyperv_vendor_id) {
595 memcpy(signature, "Microsoft Hv", 12);
596 } else {
597 size_t len = strlen(cpu->hyperv_vendor_id);
598
599 if (len > 12) {
600 error_report("hv-vendor-id truncated to 12 characters");
601 len = 12;
602 }
603 memset(signature, 0, 12);
604 memcpy(signature, cpu->hyperv_vendor_id, len);
605 }
eab70139 606 c->eax = HYPERV_CPUID_MIN;
234cc647
PB
607 c->ebx = signature[0];
608 c->ecx = signature[1];
609 c->edx = signature[2];
0c31b744 610
234cc647
PB
611 c = &cpuid_data.entries[cpuid_i++];
612 c->function = HYPERV_CPUID_INTERFACE;
eab70139
VR
613 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
614 c->eax = signature[0];
234cc647
PB
615 c->ebx = 0;
616 c->ecx = 0;
617 c->edx = 0;
eab70139
VR
618
619 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
620 c->function = HYPERV_CPUID_VERSION;
621 c->eax = 0x00001bbc;
622 c->ebx = 0x00060001;
623
624 c = &cpuid_data.entries[cpuid_i++];
eab70139 625 c->function = HYPERV_CPUID_FEATURES;
92067bf4 626 if (cpu->hyperv_relaxed_timing) {
eab70139
VR
627 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
628 }
92067bf4 629 if (cpu->hyperv_vapic) {
eab70139
VR
630 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
631 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
7bc3d711 632 has_msr_hv_vapic = true;
eab70139 633 }
48a5f3bc
VR
634 if (cpu->hyperv_time &&
635 kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
636 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
637 c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE;
638 c->eax |= 0x200;
639 has_msr_hv_tsc = true;
640 }
f2a53c9e
AS
641 if (cpu->hyperv_crash && has_msr_hv_crash) {
642 c->edx |= HV_X64_GUEST_CRASH_MSR_AVAILABLE;
643 }
4467c6c1 644 c->edx |= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
744b8a94
AS
645 if (cpu->hyperv_reset && has_msr_hv_reset) {
646 c->eax |= HV_X64_MSR_RESET_AVAILABLE;
647 }
8c145d7c
AS
648 if (cpu->hyperv_vpindex && has_msr_hv_vpindex) {
649 c->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
650 }
46eb8f98
AS
651 if (cpu->hyperv_runtime && has_msr_hv_runtime) {
652 c->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
653 }
866eea9a
AS
654 if (cpu->hyperv_synic) {
655 int sint;
656
657 if (!has_msr_hv_synic ||
658 kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0)) {
659 fprintf(stderr, "Hyper-V SynIC is not supported by kernel\n");
660 return -ENOSYS;
661 }
662
663 c->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
664 env->msr_hv_synic_version = HV_SYNIC_VERSION_1;
665 for (sint = 0; sint < ARRAY_SIZE(env->msr_hv_synic_sint); sint++) {
666 env->msr_hv_synic_sint[sint] = HV_SYNIC_SINT_MASKED;
667 }
668 }
ff99aa64
AS
669 if (cpu->hyperv_stimer) {
670 if (!has_msr_hv_stimer) {
671 fprintf(stderr, "Hyper-V timers aren't supported by kernel\n");
672 return -ENOSYS;
673 }
674 c->eax |= HV_X64_MSR_SYNTIMER_AVAILABLE;
675 }
eab70139 676 c = &cpuid_data.entries[cpuid_i++];
eab70139 677 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
92067bf4 678 if (cpu->hyperv_relaxed_timing) {
eab70139
VR
679 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
680 }
7bc3d711 681 if (has_msr_hv_vapic) {
eab70139
VR
682 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
683 }
92067bf4 684 c->ebx = cpu->hyperv_spinlock_attempts;
eab70139
VR
685
686 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
687 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
688 c->eax = 0x40;
689 c->ebx = 0x40;
690
234cc647 691 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 692 has_msr_hv_hypercall = true;
eab70139
VR
693 }
694
f522d2ac
AW
695 if (cpu->expose_kvm) {
696 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
697 c = &cpuid_data.entries[cpuid_i++];
698 c->function = KVM_CPUID_SIGNATURE | kvm_base;
79b6f2f6 699 c->eax = KVM_CPUID_FEATURES | kvm_base;
f522d2ac
AW
700 c->ebx = signature[0];
701 c->ecx = signature[1];
702 c->edx = signature[2];
234cc647 703
f522d2ac
AW
704 c = &cpuid_data.entries[cpuid_i++];
705 c->function = KVM_CPUID_FEATURES | kvm_base;
706 c->eax = env->features[FEAT_KVM];
234cc647 707
f522d2ac 708 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 709
f522d2ac 710 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
bc9a839d 711
f522d2ac
AW
712 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
713 }
917367aa 714
a33609ca 715 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
716
717 for (i = 0; i <= limit; i++) {
f8bb0565
IM
718 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
719 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
720 abort();
721 }
bb0300dc 722 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
723
724 switch (i) {
a36b1029
AL
725 case 2: {
726 /* Keep reading function 2 till all the input is received */
727 int times;
728
a36b1029 729 c->function = i;
a33609ca
AL
730 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
731 KVM_CPUID_FLAG_STATE_READ_NEXT;
732 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
733 times = c->eax & 0xff;
a36b1029
AL
734
735 for (j = 1; j < times; ++j) {
f8bb0565
IM
736 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
737 fprintf(stderr, "cpuid_data is full, no space for "
738 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
739 abort();
740 }
a33609ca 741 c = &cpuid_data.entries[cpuid_i++];
a36b1029 742 c->function = i;
a33609ca
AL
743 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
744 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
745 }
746 break;
747 }
486bd5a2
AL
748 case 4:
749 case 0xb:
750 case 0xd:
751 for (j = 0; ; j++) {
31e8c696
AP
752 if (i == 0xd && j == 64) {
753 break;
754 }
486bd5a2
AL
755 c->function = i;
756 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
757 c->index = j;
a33609ca 758 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 759
b9bec74b 760 if (i == 4 && c->eax == 0) {
486bd5a2 761 break;
b9bec74b
JK
762 }
763 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 764 break;
b9bec74b
JK
765 }
766 if (i == 0xd && c->eax == 0) {
31e8c696 767 continue;
b9bec74b 768 }
f8bb0565
IM
769 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
770 fprintf(stderr, "cpuid_data is full, no space for "
771 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
772 abort();
773 }
a33609ca 774 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
775 }
776 break;
777 default:
486bd5a2 778 c->function = i;
a33609ca
AL
779 c->flags = 0;
780 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
781 break;
782 }
05330448 783 }
0d894367
PB
784
785 if (limit >= 0x0a) {
786 uint32_t ver;
787
788 cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
789 if ((ver & 0xff) > 0) {
790 has_msr_architectural_pmu = true;
791 num_architectural_pmu_counters = (ver & 0xff00) >> 8;
792
793 /* Shouldn't be more than 32, since that's the number of bits
794 * available in EBX to tell us _which_ counters are available.
795 * Play it safe.
796 */
797 if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
798 num_architectural_pmu_counters = MAX_GP_COUNTERS;
799 }
800 }
801 }
802
a33609ca 803 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
804
805 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
806 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
807 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
808 abort();
809 }
bb0300dc 810 c = &cpuid_data.entries[cpuid_i++];
05330448 811
05330448 812 c->function = i;
a33609ca
AL
813 c->flags = 0;
814 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
815 }
816
b3baa152
BW
817 /* Call Centaur's CPUID instructions they are supported. */
818 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
819 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
820
821 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
822 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
823 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
824 abort();
825 }
b3baa152
BW
826 c = &cpuid_data.entries[cpuid_i++];
827
828 c->function = i;
829 c->flags = 0;
830 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
831 }
832 }
833
05330448
AL
834 cpuid_data.cpuid.nent = cpuid_i;
835
e7701825 836 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 837 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 838 (CPUID_MCE | CPUID_MCA)
a60f24b5 839 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
5120901a 840 uint64_t mcg_cap, unsupported_caps;
e7701825 841 int banks;
32a42024 842 int ret;
e7701825 843
a60f24b5 844 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
845 if (ret < 0) {
846 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
847 return ret;
e7701825 848 }
75d49497 849
2590f15b 850 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
49b69cbf 851 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2590f15b 852 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
49b69cbf 853 return -ENOTSUP;
75d49497 854 }
49b69cbf 855
5120901a
EH
856 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
857 if (unsupported_caps) {
858 error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64,
859 unsupported_caps);
860 }
861
2590f15b
EH
862 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
863 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
75d49497
JK
864 if (ret < 0) {
865 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
866 return ret;
867 }
e7701825 868 }
e7701825 869
b8cc45d6
GC
870 qemu_add_vm_change_state_handler(cpu_update_state, env);
871
df67696e
LJ
872 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
873 if (c) {
874 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
875 !!(c->ecx & CPUID_EXT_SMX);
876 }
877
68bfd0ad
MT
878 c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0);
879 if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) {
880 /* for migration */
881 error_setg(&invtsc_mig_blocker,
882 "State blocked by non-migratable CPU device"
883 " (invtsc flag)");
884 migrate_add_blocker(invtsc_mig_blocker);
885 /* for savevm */
886 vmstate_x86_cpu.unmigratable = 1;
887 }
888
7e680753 889 cpuid_data.cpuid.padding = 0;
1bc22652 890 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
891 if (r) {
892 return r;
893 }
e7429073 894
5031283d
HZ
895 r = kvm_arch_set_tsc_khz(cs);
896 if (r < 0) {
897 return r;
e7429073 898 }
e7429073 899
bcffbeeb
HZ
900 /* vcpu's TSC frequency is either specified by user, or following
901 * the value used by KVM if the former is not present. In the
902 * latter case, we query it from KVM and record in env->tsc_khz,
903 * so that vcpu's TSC frequency can be migrated later via this field.
904 */
905 if (!env->tsc_khz) {
906 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
907 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
908 -ENOTSUP;
909 if (r > 0) {
910 env->tsc_khz = r;
911 }
912 }
913
28143b40 914 if (has_xsave) {
fabacc0f
JK
915 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
916 }
917
d1ae67f6
AW
918 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
919 has_msr_mtrr = true;
920 }
273c515c
PB
921 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
922 has_msr_tsc_aux = false;
923 }
d1ae67f6 924
e7429073 925 return 0;
05330448
AL
926}
927
50a2c6e5 928void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 929{
20d695a9 930 CPUX86State *env = &cpu->env;
dd673288 931
e73223a5 932 env->exception_injected = -1;
0e607a80 933 env->interrupt_injected = -1;
1a5e9d2f 934 env->xcr0 = 1;
ddced198 935 if (kvm_irqchip_in_kernel()) {
dd673288 936 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
937 KVM_MP_STATE_UNINITIALIZED;
938 } else {
939 env->mp_state = KVM_MP_STATE_RUNNABLE;
940 }
caa5af0f
JK
941}
942
e0723c45
PB
943void kvm_arch_do_init_vcpu(X86CPU *cpu)
944{
945 CPUX86State *env = &cpu->env;
946
947 /* APs get directly into wait-for-SIPI state. */
948 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
949 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
950 }
951}
952
c3a3a7d3 953static int kvm_get_supported_msrs(KVMState *s)
05330448 954{
75b10c43 955 static int kvm_supported_msrs;
c3a3a7d3 956 int ret = 0;
05330448
AL
957
958 /* first time */
75b10c43 959 if (kvm_supported_msrs == 0) {
05330448
AL
960 struct kvm_msr_list msr_list, *kvm_msr_list;
961
75b10c43 962 kvm_supported_msrs = -1;
05330448
AL
963
964 /* Obtain MSR list from KVM. These are the MSRs that we must
965 * save/restore */
4c9f7372 966 msr_list.nmsrs = 0;
c3a3a7d3 967 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 968 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 969 return ret;
6fb6d245 970 }
d9db889f
JK
971 /* Old kernel modules had a bug and could write beyond the provided
972 memory. Allocate at least a safe amount of 1K. */
7267c094 973 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
974 msr_list.nmsrs *
975 sizeof(msr_list.indices[0])));
05330448 976
55308450 977 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 978 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
979 if (ret >= 0) {
980 int i;
981
982 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
983 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 984 has_msr_star = true;
75b10c43
MT
985 continue;
986 }
987 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 988 has_msr_hsave_pa = true;
75b10c43 989 continue;
05330448 990 }
c9b8f6b6
AS
991 if (kvm_msr_list->indices[i] == MSR_TSC_AUX) {
992 has_msr_tsc_aux = true;
993 continue;
994 }
f28558d3
WA
995 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
996 has_msr_tsc_adjust = true;
997 continue;
998 }
aa82ba54
LJ
999 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
1000 has_msr_tsc_deadline = true;
1001 continue;
1002 }
fc12d72e
PB
1003 if (kvm_msr_list->indices[i] == MSR_IA32_SMBASE) {
1004 has_msr_smbase = true;
1005 continue;
1006 }
21e87c46
AK
1007 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
1008 has_msr_misc_enable = true;
1009 continue;
1010 }
79e9ebeb
LJ
1011 if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) {
1012 has_msr_bndcfgs = true;
1013 continue;
1014 }
18cd2c17
WL
1015 if (kvm_msr_list->indices[i] == MSR_IA32_XSS) {
1016 has_msr_xss = true;
1017 continue;
1018 }
f2a53c9e
AS
1019 if (kvm_msr_list->indices[i] == HV_X64_MSR_CRASH_CTL) {
1020 has_msr_hv_crash = true;
1021 continue;
1022 }
744b8a94
AS
1023 if (kvm_msr_list->indices[i] == HV_X64_MSR_RESET) {
1024 has_msr_hv_reset = true;
1025 continue;
1026 }
8c145d7c
AS
1027 if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_INDEX) {
1028 has_msr_hv_vpindex = true;
1029 continue;
1030 }
46eb8f98
AS
1031 if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_RUNTIME) {
1032 has_msr_hv_runtime = true;
1033 continue;
1034 }
866eea9a
AS
1035 if (kvm_msr_list->indices[i] == HV_X64_MSR_SCONTROL) {
1036 has_msr_hv_synic = true;
1037 continue;
1038 }
ff99aa64
AS
1039 if (kvm_msr_list->indices[i] == HV_X64_MSR_STIMER0_CONFIG) {
1040 has_msr_hv_stimer = true;
1041 continue;
1042 }
05330448
AL
1043 }
1044 }
1045
7267c094 1046 g_free(kvm_msr_list);
05330448
AL
1047 }
1048
c3a3a7d3 1049 return ret;
05330448
AL
1050}
1051
6410848b
PB
1052static Notifier smram_machine_done;
1053static KVMMemoryListener smram_listener;
1054static AddressSpace smram_address_space;
1055static MemoryRegion smram_as_root;
1056static MemoryRegion smram_as_mem;
1057
1058static void register_smram_listener(Notifier *n, void *unused)
1059{
1060 MemoryRegion *smram =
1061 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1062
1063 /* Outer container... */
1064 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1065 memory_region_set_enabled(&smram_as_root, true);
1066
1067 /* ... with two regions inside: normal system memory with low
1068 * priority, and...
1069 */
1070 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1071 get_system_memory(), 0, ~0ull);
1072 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1073 memory_region_set_enabled(&smram_as_mem, true);
1074
1075 if (smram) {
1076 /* ... SMRAM with higher priority */
1077 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1078 memory_region_set_enabled(smram, true);
1079 }
1080
1081 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1082 kvm_memory_listener_register(kvm_state, &smram_listener,
1083 &smram_address_space, 1);
1084}
1085
b16565b3 1086int kvm_arch_init(MachineState *ms, KVMState *s)
20420430 1087{
11076198 1088 uint64_t identity_base = 0xfffbc000;
39d6960a 1089 uint64_t shadow_mem;
20420430 1090 int ret;
25d2e361 1091 struct utsname utsname;
20420430 1092
28143b40
TH
1093#ifdef KVM_CAP_XSAVE
1094 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1095#endif
1096
1097#ifdef KVM_CAP_XCRS
1098 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1099#endif
1100
1101#ifdef KVM_CAP_PIT_STATE2
1102 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1103#endif
1104
c3a3a7d3 1105 ret = kvm_get_supported_msrs(s);
20420430 1106 if (ret < 0) {
20420430
SY
1107 return ret;
1108 }
25d2e361
MT
1109
1110 uname(&utsname);
1111 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
1112
4c5b10b7 1113 /*
11076198
JK
1114 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1115 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1116 * Since these must be part of guest physical memory, we need to allocate
1117 * them, both by setting their start addresses in the kernel and by
1118 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1119 *
1120 * Older KVM versions may not support setting the identity map base. In
1121 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1122 * size.
4c5b10b7 1123 */
11076198
JK
1124 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
1125 /* Allows up to 16M BIOSes. */
1126 identity_base = 0xfeffc000;
1127
1128 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
1129 if (ret < 0) {
1130 return ret;
1131 }
4c5b10b7 1132 }
e56ff191 1133
11076198
JK
1134 /* Set TSS base one page after EPT identity map. */
1135 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
1136 if (ret < 0) {
1137 return ret;
1138 }
1139
11076198
JK
1140 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1141 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 1142 if (ret < 0) {
11076198 1143 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
1144 return ret;
1145 }
3c85e74f 1146 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 1147
4689b77b 1148 shadow_mem = machine_kvm_shadow_mem(ms);
36ad0e94
MA
1149 if (shadow_mem != -1) {
1150 shadow_mem /= 4096;
1151 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
1152 if (ret < 0) {
1153 return ret;
39d6960a
JK
1154 }
1155 }
6410848b
PB
1156
1157 if (kvm_check_extension(s, KVM_CAP_X86_SMM)) {
1158 smram_machine_done.notify = register_smram_listener;
1159 qemu_add_machine_init_done_notifier(&smram_machine_done);
1160 }
11076198 1161 return 0;
05330448 1162}
b9bec74b 1163
05330448
AL
1164static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1165{
1166 lhs->selector = rhs->selector;
1167 lhs->base = rhs->base;
1168 lhs->limit = rhs->limit;
1169 lhs->type = 3;
1170 lhs->present = 1;
1171 lhs->dpl = 3;
1172 lhs->db = 0;
1173 lhs->s = 1;
1174 lhs->l = 0;
1175 lhs->g = 0;
1176 lhs->avl = 0;
1177 lhs->unusable = 0;
1178}
1179
1180static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1181{
1182 unsigned flags = rhs->flags;
1183 lhs->selector = rhs->selector;
1184 lhs->base = rhs->base;
1185 lhs->limit = rhs->limit;
1186 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
1187 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 1188 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
1189 lhs->db = (flags >> DESC_B_SHIFT) & 1;
1190 lhs->s = (flags & DESC_S_MASK) != 0;
1191 lhs->l = (flags >> DESC_L_SHIFT) & 1;
1192 lhs->g = (flags & DESC_G_MASK) != 0;
1193 lhs->avl = (flags & DESC_AVL_MASK) != 0;
4cae9c97 1194 lhs->unusable = !lhs->present;
7e680753 1195 lhs->padding = 0;
05330448
AL
1196}
1197
1198static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
1199{
1200 lhs->selector = rhs->selector;
1201 lhs->base = rhs->base;
1202 lhs->limit = rhs->limit;
4cae9c97
MC
1203 if (rhs->unusable) {
1204 lhs->flags = 0;
1205 } else {
1206 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
1207 (rhs->present * DESC_P_MASK) |
1208 (rhs->dpl << DESC_DPL_SHIFT) |
1209 (rhs->db << DESC_B_SHIFT) |
1210 (rhs->s * DESC_S_MASK) |
1211 (rhs->l << DESC_L_SHIFT) |
1212 (rhs->g * DESC_G_MASK) |
1213 (rhs->avl * DESC_AVL_MASK);
1214 }
05330448
AL
1215}
1216
1217static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
1218{
b9bec74b 1219 if (set) {
05330448 1220 *kvm_reg = *qemu_reg;
b9bec74b 1221 } else {
05330448 1222 *qemu_reg = *kvm_reg;
b9bec74b 1223 }
05330448
AL
1224}
1225
1bc22652 1226static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 1227{
1bc22652 1228 CPUX86State *env = &cpu->env;
05330448
AL
1229 struct kvm_regs regs;
1230 int ret = 0;
1231
1232 if (!set) {
1bc22652 1233 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 1234 if (ret < 0) {
05330448 1235 return ret;
b9bec74b 1236 }
05330448
AL
1237 }
1238
1239 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
1240 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
1241 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
1242 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
1243 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
1244 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
1245 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
1246 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
1247#ifdef TARGET_X86_64
1248 kvm_getput_reg(&regs.r8, &env->regs[8], set);
1249 kvm_getput_reg(&regs.r9, &env->regs[9], set);
1250 kvm_getput_reg(&regs.r10, &env->regs[10], set);
1251 kvm_getput_reg(&regs.r11, &env->regs[11], set);
1252 kvm_getput_reg(&regs.r12, &env->regs[12], set);
1253 kvm_getput_reg(&regs.r13, &env->regs[13], set);
1254 kvm_getput_reg(&regs.r14, &env->regs[14], set);
1255 kvm_getput_reg(&regs.r15, &env->regs[15], set);
1256#endif
1257
1258 kvm_getput_reg(&regs.rflags, &env->eflags, set);
1259 kvm_getput_reg(&regs.rip, &env->eip, set);
1260
b9bec74b 1261 if (set) {
1bc22652 1262 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 1263 }
05330448
AL
1264
1265 return ret;
1266}
1267
1bc22652 1268static int kvm_put_fpu(X86CPU *cpu)
05330448 1269{
1bc22652 1270 CPUX86State *env = &cpu->env;
05330448
AL
1271 struct kvm_fpu fpu;
1272 int i;
1273
1274 memset(&fpu, 0, sizeof fpu);
1275 fpu.fsw = env->fpus & ~(7 << 11);
1276 fpu.fsw |= (env->fpstt & 7) << 11;
1277 fpu.fcw = env->fpuc;
42cc8fa6
JK
1278 fpu.last_opcode = env->fpop;
1279 fpu.last_ip = env->fpip;
1280 fpu.last_dp = env->fpdp;
b9bec74b
JK
1281 for (i = 0; i < 8; ++i) {
1282 fpu.ftwx |= (!env->fptags[i]) << i;
1283 }
05330448 1284 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
bee81887 1285 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
1286 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
1287 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
bee81887 1288 }
05330448
AL
1289 fpu.mxcsr = env->mxcsr;
1290
1bc22652 1291 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
1292}
1293
6b42494b
JK
1294#define XSAVE_FCW_FSW 0
1295#define XSAVE_FTW_FOP 1
f1665b21
SY
1296#define XSAVE_CWD_RIP 2
1297#define XSAVE_CWD_RDP 4
1298#define XSAVE_MXCSR 6
1299#define XSAVE_ST_SPACE 8
1300#define XSAVE_XMM_SPACE 40
1301#define XSAVE_XSTATE_BV 128
1302#define XSAVE_YMMH_SPACE 144
79e9ebeb
LJ
1303#define XSAVE_BNDREGS 240
1304#define XSAVE_BNDCSR 256
9aecd6f8
CP
1305#define XSAVE_OPMASK 272
1306#define XSAVE_ZMM_Hi256 288
1307#define XSAVE_Hi16_ZMM 416
f74eefe0 1308#define XSAVE_PKRU 672
f1665b21 1309
b503717d
EH
1310#define XSAVE_BYTE_OFFSET(word_offset) \
1311 ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0]))
1312
1313#define ASSERT_OFFSET(word_offset, field) \
1314 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1315 offsetof(X86XSaveArea, field))
1316
1317ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
1318ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
1319ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
1320ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
1321ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
1322ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
1323ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
1324ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
1325ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
1326ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
1327ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
1328ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
1329ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
1330ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
1331ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
1332
1bc22652 1333static int kvm_put_xsave(X86CPU *cpu)
f1665b21 1334{
1bc22652 1335 CPUX86State *env = &cpu->env;
86cd2ea0 1336 X86XSaveArea *xsave = env->kvm_xsave_buf;
42cc8fa6 1337 uint16_t cwd, swd, twd;
fabacc0f 1338 int i, r;
f1665b21 1339
28143b40 1340 if (!has_xsave) {
1bc22652 1341 return kvm_put_fpu(cpu);
b9bec74b 1342 }
f1665b21 1343
f1665b21 1344 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 1345 twd = 0;
f1665b21
SY
1346 swd = env->fpus & ~(7 << 11);
1347 swd |= (env->fpstt & 7) << 11;
1348 cwd = env->fpuc;
b9bec74b 1349 for (i = 0; i < 8; ++i) {
f1665b21 1350 twd |= (!env->fptags[i]) << i;
b9bec74b 1351 }
86cd2ea0
EH
1352 xsave->legacy.fcw = cwd;
1353 xsave->legacy.fsw = swd;
1354 xsave->legacy.ftw = twd;
1355 xsave->legacy.fpop = env->fpop;
1356 xsave->legacy.fpip = env->fpip;
1357 xsave->legacy.fpdp = env->fpdp;
1358 memcpy(&xsave->legacy.fpregs, env->fpregs,
f1665b21 1359 sizeof env->fpregs);
86cd2ea0
EH
1360 xsave->legacy.mxcsr = env->mxcsr;
1361 xsave->header.xstate_bv = env->xstate_bv;
1362 memcpy(&xsave->bndreg_state.bnd_regs, env->bnd_regs,
79e9ebeb 1363 sizeof env->bnd_regs);
86cd2ea0
EH
1364 xsave->bndcsr_state.bndcsr = env->bndcs_regs;
1365 memcpy(&xsave->opmask_state.opmask_regs, env->opmask_regs,
9aecd6f8 1366 sizeof env->opmask_regs);
bee81887 1367
86cd2ea0
EH
1368 for (i = 0; i < CPU_NB_REGS; i++) {
1369 uint8_t *xmm = xsave->legacy.xmm_regs[i];
1370 uint8_t *ymmh = xsave->avx_state.ymmh[i];
1371 uint8_t *zmmh = xsave->zmm_hi256_state.zmm_hi256[i];
19cbd87c
EH
1372 stq_p(xmm, env->xmm_regs[i].ZMM_Q(0));
1373 stq_p(xmm+8, env->xmm_regs[i].ZMM_Q(1));
1374 stq_p(ymmh, env->xmm_regs[i].ZMM_Q(2));
1375 stq_p(ymmh+8, env->xmm_regs[i].ZMM_Q(3));
1376 stq_p(zmmh, env->xmm_regs[i].ZMM_Q(4));
1377 stq_p(zmmh+8, env->xmm_regs[i].ZMM_Q(5));
1378 stq_p(zmmh+16, env->xmm_regs[i].ZMM_Q(6));
1379 stq_p(zmmh+24, env->xmm_regs[i].ZMM_Q(7));
bee81887
PB
1380 }
1381
9aecd6f8 1382#ifdef TARGET_X86_64
86cd2ea0 1383 memcpy(&xsave->hi16_zmm_state.hi16_zmm, &env->xmm_regs[16],
b7711471 1384 16 * sizeof env->xmm_regs[16]);
86cd2ea0 1385 memcpy(&xsave->pkru_state, &env->pkru, sizeof env->pkru);
9aecd6f8 1386#endif
1bc22652 1387 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
0f53994f 1388 return r;
f1665b21
SY
1389}
1390
1bc22652 1391static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 1392{
1bc22652 1393 CPUX86State *env = &cpu->env;
bdfc8480 1394 struct kvm_xcrs xcrs = {};
f1665b21 1395
28143b40 1396 if (!has_xcrs) {
f1665b21 1397 return 0;
b9bec74b 1398 }
f1665b21
SY
1399
1400 xcrs.nr_xcrs = 1;
1401 xcrs.flags = 0;
1402 xcrs.xcrs[0].xcr = 0;
1403 xcrs.xcrs[0].value = env->xcr0;
1bc22652 1404 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
1405}
1406
1bc22652 1407static int kvm_put_sregs(X86CPU *cpu)
05330448 1408{
1bc22652 1409 CPUX86State *env = &cpu->env;
05330448
AL
1410 struct kvm_sregs sregs;
1411
0e607a80
JK
1412 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1413 if (env->interrupt_injected >= 0) {
1414 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1415 (uint64_t)1 << (env->interrupt_injected % 64);
1416 }
05330448
AL
1417
1418 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
1419 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1420 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1421 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1422 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1423 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1424 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 1425 } else {
b9bec74b
JK
1426 set_seg(&sregs.cs, &env->segs[R_CS]);
1427 set_seg(&sregs.ds, &env->segs[R_DS]);
1428 set_seg(&sregs.es, &env->segs[R_ES]);
1429 set_seg(&sregs.fs, &env->segs[R_FS]);
1430 set_seg(&sregs.gs, &env->segs[R_GS]);
1431 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
1432 }
1433
1434 set_seg(&sregs.tr, &env->tr);
1435 set_seg(&sregs.ldt, &env->ldt);
1436
1437 sregs.idt.limit = env->idt.limit;
1438 sregs.idt.base = env->idt.base;
7e680753 1439 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
1440 sregs.gdt.limit = env->gdt.limit;
1441 sregs.gdt.base = env->gdt.base;
7e680753 1442 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
1443
1444 sregs.cr0 = env->cr[0];
1445 sregs.cr2 = env->cr[2];
1446 sregs.cr3 = env->cr[3];
1447 sregs.cr4 = env->cr[4];
1448
02e51483
CF
1449 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1450 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
1451
1452 sregs.efer = env->efer;
1453
1bc22652 1454 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
1455}
1456
1457static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1458 uint32_t index, uint64_t value)
1459{
1460 entry->index = index;
c7fe4b12 1461 entry->reserved = 0;
05330448
AL
1462 entry->data = value;
1463}
1464
7477cd38
MT
1465static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1466{
1467 CPUX86State *env = &cpu->env;
1468 struct {
1469 struct kvm_msrs info;
1470 struct kvm_msr_entry entries[1];
1471 } msr_data;
1472 struct kvm_msr_entry *msrs = msr_data.entries;
48e1a45c 1473 int ret;
7477cd38
MT
1474
1475 if (!has_msr_tsc_deadline) {
1476 return 0;
1477 }
1478
1479 kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1480
c7fe4b12
CB
1481 msr_data.info = (struct kvm_msrs) {
1482 .nmsrs = 1,
1483 };
7477cd38 1484
48e1a45c
PB
1485 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1486 if (ret < 0) {
1487 return ret;
1488 }
1489
1490 assert(ret == 1);
1491 return 0;
7477cd38
MT
1492}
1493
6bdf863d
JK
1494/*
1495 * Provide a separate write service for the feature control MSR in order to
1496 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1497 * before writing any other state because forcibly leaving nested mode
1498 * invalidates the VCPU state.
1499 */
1500static int kvm_put_msr_feature_control(X86CPU *cpu)
1501{
1502 struct {
1503 struct kvm_msrs info;
1504 struct kvm_msr_entry entry;
1505 } msr_data;
48e1a45c
PB
1506 int ret;
1507
1508 if (!has_msr_feature_control) {
1509 return 0;
1510 }
6bdf863d
JK
1511
1512 kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL,
1513 cpu->env.msr_ia32_feature_control);
c7fe4b12
CB
1514
1515 msr_data.info = (struct kvm_msrs) {
1516 .nmsrs = 1,
1517 };
1518
48e1a45c
PB
1519 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1520 if (ret < 0) {
1521 return ret;
1522 }
1523
1524 assert(ret == 1);
1525 return 0;
6bdf863d
JK
1526}
1527
1bc22652 1528static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 1529{
1bc22652 1530 CPUX86State *env = &cpu->env;
05330448
AL
1531 struct {
1532 struct kvm_msrs info;
d1ae67f6 1533 struct kvm_msr_entry entries[150];
05330448
AL
1534 } msr_data;
1535 struct kvm_msr_entry *msrs = msr_data.entries;
0d894367 1536 int n = 0, i;
48e1a45c 1537 int ret;
05330448
AL
1538
1539 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1540 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1541 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 1542 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 1543 if (has_msr_star) {
b9bec74b
JK
1544 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1545 }
c3a3a7d3 1546 if (has_msr_hsave_pa) {
75b10c43 1547 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 1548 }
c9b8f6b6
AS
1549 if (has_msr_tsc_aux) {
1550 kvm_msr_entry_set(&msrs[n++], MSR_TSC_AUX, env->tsc_aux);
1551 }
f28558d3
WA
1552 if (has_msr_tsc_adjust) {
1553 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1554 }
21e87c46
AK
1555 if (has_msr_misc_enable) {
1556 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1557 env->msr_ia32_misc_enable);
1558 }
fc12d72e
PB
1559 if (has_msr_smbase) {
1560 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SMBASE, env->smbase);
1561 }
439d19f2
PB
1562 if (has_msr_bndcfgs) {
1563 kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1564 }
18cd2c17
WL
1565 if (has_msr_xss) {
1566 kvm_msr_entry_set(&msrs[n++], MSR_IA32_XSS, env->xss);
1567 }
05330448 1568#ifdef TARGET_X86_64
25d2e361
MT
1569 if (lm_capable_kernel) {
1570 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1571 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1572 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1573 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1574 }
05330448 1575#endif
ff5c186b 1576 /*
0d894367
PB
1577 * The following MSRs have side effects on the guest or are too heavy
1578 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
1579 */
1580 if (level >= KVM_PUT_RESET_STATE) {
0522604b 1581 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
ea643051
JK
1582 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1583 env->system_time_msr);
1584 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
1585 if (has_msr_async_pf_en) {
1586 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1587 env->async_pf_en_msr);
1588 }
bc9a839d
MT
1589 if (has_msr_pv_eoi_en) {
1590 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1591 env->pv_eoi_en_msr);
1592 }
917367aa
MT
1593 if (has_msr_kvm_steal_time) {
1594 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1595 env->steal_time_msr);
1596 }
0d894367
PB
1597 if (has_msr_architectural_pmu) {
1598 /* Stop the counter. */
1599 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1600 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
1601
1602 /* Set the counter values. */
1603 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1604 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
1605 env->msr_fixed_counters[i]);
1606 }
1607 for (i = 0; i < num_architectural_pmu_counters; i++) {
1608 kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
1609 env->msr_gp_counters[i]);
1610 kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
1611 env->msr_gp_evtsel[i]);
1612 }
1613 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
1614 env->msr_global_status);
1615 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1616 env->msr_global_ovf_ctrl);
1617
1618 /* Now start the PMU. */
1619 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
1620 env->msr_fixed_ctr_ctrl);
1621 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
1622 env->msr_global_ctrl);
1623 }
7bc3d711 1624 if (has_msr_hv_hypercall) {
1c90ef26
VR
1625 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID,
1626 env->msr_hv_guest_os_id);
1627 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL,
1628 env->msr_hv_hypercall);
eab70139 1629 }
7bc3d711 1630 if (has_msr_hv_vapic) {
5ef68987
VR
1631 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE,
1632 env->msr_hv_vapic);
eab70139 1633 }
48a5f3bc
VR
1634 if (has_msr_hv_tsc) {
1635 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC,
1636 env->msr_hv_tsc);
1637 }
f2a53c9e
AS
1638 if (has_msr_hv_crash) {
1639 int j;
1640
1641 for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++)
1642 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_CRASH_P0 + j,
1643 env->msr_hv_crash_params[j]);
1644
1645 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_CRASH_CTL,
1646 HV_X64_MSR_CRASH_CTL_NOTIFY);
1647 }
46eb8f98
AS
1648 if (has_msr_hv_runtime) {
1649 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_VP_RUNTIME,
1650 env->msr_hv_runtime);
1651 }
866eea9a
AS
1652 if (cpu->hyperv_synic) {
1653 int j;
1654
1655 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SCONTROL,
1656 env->msr_hv_synic_control);
1657 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SVERSION,
1658 env->msr_hv_synic_version);
1659 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SIEFP,
1660 env->msr_hv_synic_evt_page);
1661 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SIMP,
1662 env->msr_hv_synic_msg_page);
1663
1664 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
1665 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SINT0 + j,
1666 env->msr_hv_synic_sint[j]);
1667 }
1668 }
ff99aa64
AS
1669 if (has_msr_hv_stimer) {
1670 int j;
1671
1672 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
1673 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_STIMER0_CONFIG + j*2,
1674 env->msr_hv_stimer_config[j]);
1675 }
1676
1677 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
1678 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_STIMER0_COUNT + j*2,
1679 env->msr_hv_stimer_count[j]);
1680 }
1681 }
d1ae67f6
AW
1682 if (has_msr_mtrr) {
1683 kvm_msr_entry_set(&msrs[n++], MSR_MTRRdefType, env->mtrr_deftype);
1684 kvm_msr_entry_set(&msrs[n++],
1685 MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
1686 kvm_msr_entry_set(&msrs[n++],
1687 MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
1688 kvm_msr_entry_set(&msrs[n++],
1689 MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
1690 kvm_msr_entry_set(&msrs[n++],
1691 MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
1692 kvm_msr_entry_set(&msrs[n++],
1693 MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
1694 kvm_msr_entry_set(&msrs[n++],
1695 MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
1696 kvm_msr_entry_set(&msrs[n++],
1697 MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
1698 kvm_msr_entry_set(&msrs[n++],
1699 MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
1700 kvm_msr_entry_set(&msrs[n++],
1701 MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
1702 kvm_msr_entry_set(&msrs[n++],
1703 MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
1704 kvm_msr_entry_set(&msrs[n++],
1705 MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
1706 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
1707 kvm_msr_entry_set(&msrs[n++],
1708 MSR_MTRRphysBase(i), env->mtrr_var[i].base);
1709 kvm_msr_entry_set(&msrs[n++],
1710 MSR_MTRRphysMask(i), env->mtrr_var[i].mask);
1711 }
1712 }
6bdf863d
JK
1713
1714 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1715 * kvm_put_msr_feature_control. */
ea643051 1716 }
57780495 1717 if (env->mcg_cap) {
d8da8574 1718 int i;
b9bec74b 1719
c34d440a
JK
1720 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1721 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1722 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1723 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
1724 }
1725 }
1a03675d 1726
c7fe4b12
CB
1727 msr_data.info = (struct kvm_msrs) {
1728 .nmsrs = n,
1729 };
05330448 1730
48e1a45c
PB
1731 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1732 if (ret < 0) {
1733 return ret;
1734 }
05330448 1735
48e1a45c
PB
1736 assert(ret == n);
1737 return 0;
05330448
AL
1738}
1739
1740
1bc22652 1741static int kvm_get_fpu(X86CPU *cpu)
05330448 1742{
1bc22652 1743 CPUX86State *env = &cpu->env;
05330448
AL
1744 struct kvm_fpu fpu;
1745 int i, ret;
1746
1bc22652 1747 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 1748 if (ret < 0) {
05330448 1749 return ret;
b9bec74b 1750 }
05330448
AL
1751
1752 env->fpstt = (fpu.fsw >> 11) & 7;
1753 env->fpus = fpu.fsw;
1754 env->fpuc = fpu.fcw;
42cc8fa6
JK
1755 env->fpop = fpu.last_opcode;
1756 env->fpip = fpu.last_ip;
1757 env->fpdp = fpu.last_dp;
b9bec74b
JK
1758 for (i = 0; i < 8; ++i) {
1759 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1760 }
05330448 1761 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
bee81887 1762 for (i = 0; i < CPU_NB_REGS; i++) {
19cbd87c
EH
1763 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
1764 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
bee81887 1765 }
05330448
AL
1766 env->mxcsr = fpu.mxcsr;
1767
1768 return 0;
1769}
1770
1bc22652 1771static int kvm_get_xsave(X86CPU *cpu)
f1665b21 1772{
1bc22652 1773 CPUX86State *env = &cpu->env;
86cd2ea0 1774 X86XSaveArea *xsave = env->kvm_xsave_buf;
f1665b21 1775 int ret, i;
42cc8fa6 1776 uint16_t cwd, swd, twd;
f1665b21 1777
28143b40 1778 if (!has_xsave) {
1bc22652 1779 return kvm_get_fpu(cpu);
b9bec74b 1780 }
f1665b21 1781
1bc22652 1782 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 1783 if (ret < 0) {
f1665b21 1784 return ret;
0f53994f 1785 }
f1665b21 1786
86cd2ea0
EH
1787 cwd = xsave->legacy.fcw;
1788 swd = xsave->legacy.fsw;
1789 twd = xsave->legacy.ftw;
1790 env->fpop = xsave->legacy.fpop;
f1665b21
SY
1791 env->fpstt = (swd >> 11) & 7;
1792 env->fpus = swd;
1793 env->fpuc = cwd;
b9bec74b 1794 for (i = 0; i < 8; ++i) {
f1665b21 1795 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1796 }
86cd2ea0
EH
1797 env->fpip = xsave->legacy.fpip;
1798 env->fpdp = xsave->legacy.fpdp;
1799 env->mxcsr = xsave->legacy.mxcsr;
1800 memcpy(env->fpregs, &xsave->legacy.fpregs,
f1665b21 1801 sizeof env->fpregs);
86cd2ea0
EH
1802 env->xstate_bv = xsave->header.xstate_bv;
1803 memcpy(env->bnd_regs, &xsave->bndreg_state.bnd_regs,
79e9ebeb 1804 sizeof env->bnd_regs);
86cd2ea0
EH
1805 env->bndcs_regs = xsave->bndcsr_state.bndcsr;
1806 memcpy(env->opmask_regs, &xsave->opmask_state.opmask_regs,
9aecd6f8 1807 sizeof env->opmask_regs);
bee81887 1808
86cd2ea0
EH
1809 for (i = 0; i < CPU_NB_REGS; i++) {
1810 uint8_t *xmm = xsave->legacy.xmm_regs[i];
1811 uint8_t *ymmh = xsave->avx_state.ymmh[i];
1812 uint8_t *zmmh = xsave->zmm_hi256_state.zmm_hi256[i];
19cbd87c
EH
1813 env->xmm_regs[i].ZMM_Q(0) = ldq_p(xmm);
1814 env->xmm_regs[i].ZMM_Q(1) = ldq_p(xmm+8);
1815 env->xmm_regs[i].ZMM_Q(2) = ldq_p(ymmh);
1816 env->xmm_regs[i].ZMM_Q(3) = ldq_p(ymmh+8);
1817 env->xmm_regs[i].ZMM_Q(4) = ldq_p(zmmh);
1818 env->xmm_regs[i].ZMM_Q(5) = ldq_p(zmmh+8);
1819 env->xmm_regs[i].ZMM_Q(6) = ldq_p(zmmh+16);
1820 env->xmm_regs[i].ZMM_Q(7) = ldq_p(zmmh+24);
bee81887
PB
1821 }
1822
9aecd6f8 1823#ifdef TARGET_X86_64
86cd2ea0 1824 memcpy(&env->xmm_regs[16], &xsave->hi16_zmm_state.hi16_zmm,
b7711471 1825 16 * sizeof env->xmm_regs[16]);
86cd2ea0 1826 memcpy(&env->pkru, &xsave->pkru_state, sizeof env->pkru);
9aecd6f8 1827#endif
f1665b21 1828 return 0;
f1665b21
SY
1829}
1830
1bc22652 1831static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 1832{
1bc22652 1833 CPUX86State *env = &cpu->env;
f1665b21
SY
1834 int i, ret;
1835 struct kvm_xcrs xcrs;
1836
28143b40 1837 if (!has_xcrs) {
f1665b21 1838 return 0;
b9bec74b 1839 }
f1665b21 1840
1bc22652 1841 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 1842 if (ret < 0) {
f1665b21 1843 return ret;
b9bec74b 1844 }
f1665b21 1845
b9bec74b 1846 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 1847 /* Only support xcr0 now */
0fd53fec
PB
1848 if (xcrs.xcrs[i].xcr == 0) {
1849 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
1850 break;
1851 }
b9bec74b 1852 }
f1665b21 1853 return 0;
f1665b21
SY
1854}
1855
1bc22652 1856static int kvm_get_sregs(X86CPU *cpu)
05330448 1857{
1bc22652 1858 CPUX86State *env = &cpu->env;
05330448
AL
1859 struct kvm_sregs sregs;
1860 uint32_t hflags;
0e607a80 1861 int bit, i, ret;
05330448 1862
1bc22652 1863 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 1864 if (ret < 0) {
05330448 1865 return ret;
b9bec74b 1866 }
05330448 1867
0e607a80
JK
1868 /* There can only be one pending IRQ set in the bitmap at a time, so try
1869 to find it and save its number instead (-1 for none). */
1870 env->interrupt_injected = -1;
1871 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1872 if (sregs.interrupt_bitmap[i]) {
1873 bit = ctz64(sregs.interrupt_bitmap[i]);
1874 env->interrupt_injected = i * 64 + bit;
1875 break;
1876 }
1877 }
05330448
AL
1878
1879 get_seg(&env->segs[R_CS], &sregs.cs);
1880 get_seg(&env->segs[R_DS], &sregs.ds);
1881 get_seg(&env->segs[R_ES], &sregs.es);
1882 get_seg(&env->segs[R_FS], &sregs.fs);
1883 get_seg(&env->segs[R_GS], &sregs.gs);
1884 get_seg(&env->segs[R_SS], &sregs.ss);
1885
1886 get_seg(&env->tr, &sregs.tr);
1887 get_seg(&env->ldt, &sregs.ldt);
1888
1889 env->idt.limit = sregs.idt.limit;
1890 env->idt.base = sregs.idt.base;
1891 env->gdt.limit = sregs.gdt.limit;
1892 env->gdt.base = sregs.gdt.base;
1893
1894 env->cr[0] = sregs.cr0;
1895 env->cr[2] = sregs.cr2;
1896 env->cr[3] = sregs.cr3;
1897 env->cr[4] = sregs.cr4;
1898
05330448 1899 env->efer = sregs.efer;
cce47516
JK
1900
1901 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
05330448 1902
b9bec74b
JK
1903#define HFLAG_COPY_MASK \
1904 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1905 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1906 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1907 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448 1908
19dc85db
RH
1909 hflags = env->hflags & HFLAG_COPY_MASK;
1910 hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
05330448
AL
1911 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1912 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1913 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448 1914 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
19dc85db
RH
1915
1916 if (env->cr[4] & CR4_OSFXSR_MASK) {
1917 hflags |= HF_OSFXSR_MASK;
1918 }
05330448
AL
1919
1920 if (env->efer & MSR_EFER_LMA) {
1921 hflags |= HF_LMA_MASK;
1922 }
1923
1924 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1925 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1926 } else {
1927 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1928 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1929 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1930 (DESC_B_SHIFT - HF_SS32_SHIFT);
1931 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1932 !(hflags & HF_CS32_MASK)) {
1933 hflags |= HF_ADDSEG_MASK;
1934 } else {
1935 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1936 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1937 }
05330448 1938 }
19dc85db 1939 env->hflags = hflags;
05330448
AL
1940
1941 return 0;
1942}
1943
1bc22652 1944static int kvm_get_msrs(X86CPU *cpu)
05330448 1945{
1bc22652 1946 CPUX86State *env = &cpu->env;
05330448
AL
1947 struct {
1948 struct kvm_msrs info;
d1ae67f6 1949 struct kvm_msr_entry entries[150];
05330448
AL
1950 } msr_data;
1951 struct kvm_msr_entry *msrs = msr_data.entries;
1952 int ret, i, n;
1953
1954 n = 0;
1955 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1956 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1957 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1958 msrs[n++].index = MSR_PAT;
c3a3a7d3 1959 if (has_msr_star) {
b9bec74b
JK
1960 msrs[n++].index = MSR_STAR;
1961 }
c3a3a7d3 1962 if (has_msr_hsave_pa) {
75b10c43 1963 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1964 }
c9b8f6b6
AS
1965 if (has_msr_tsc_aux) {
1966 msrs[n++].index = MSR_TSC_AUX;
1967 }
f28558d3
WA
1968 if (has_msr_tsc_adjust) {
1969 msrs[n++].index = MSR_TSC_ADJUST;
1970 }
aa82ba54
LJ
1971 if (has_msr_tsc_deadline) {
1972 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1973 }
21e87c46
AK
1974 if (has_msr_misc_enable) {
1975 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1976 }
fc12d72e
PB
1977 if (has_msr_smbase) {
1978 msrs[n++].index = MSR_IA32_SMBASE;
1979 }
df67696e
LJ
1980 if (has_msr_feature_control) {
1981 msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1982 }
79e9ebeb
LJ
1983 if (has_msr_bndcfgs) {
1984 msrs[n++].index = MSR_IA32_BNDCFGS;
1985 }
18cd2c17
WL
1986 if (has_msr_xss) {
1987 msrs[n++].index = MSR_IA32_XSS;
1988 }
1989
b8cc45d6
GC
1990
1991 if (!env->tsc_valid) {
1992 msrs[n++].index = MSR_IA32_TSC;
1354869c 1993 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
1994 }
1995
05330448 1996#ifdef TARGET_X86_64
25d2e361
MT
1997 if (lm_capable_kernel) {
1998 msrs[n++].index = MSR_CSTAR;
1999 msrs[n++].index = MSR_KERNELGSBASE;
2000 msrs[n++].index = MSR_FMASK;
2001 msrs[n++].index = MSR_LSTAR;
2002 }
05330448 2003#endif
1a03675d
GC
2004 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
2005 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
2006 if (has_msr_async_pf_en) {
2007 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
2008 }
bc9a839d
MT
2009 if (has_msr_pv_eoi_en) {
2010 msrs[n++].index = MSR_KVM_PV_EOI_EN;
2011 }
917367aa
MT
2012 if (has_msr_kvm_steal_time) {
2013 msrs[n++].index = MSR_KVM_STEAL_TIME;
2014 }
0d894367
PB
2015 if (has_msr_architectural_pmu) {
2016 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
2017 msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
2018 msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
2019 msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
2020 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
2021 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
2022 }
2023 for (i = 0; i < num_architectural_pmu_counters; i++) {
2024 msrs[n++].index = MSR_P6_PERFCTR0 + i;
2025 msrs[n++].index = MSR_P6_EVNTSEL0 + i;
2026 }
2027 }
1a03675d 2028
57780495
MT
2029 if (env->mcg_cap) {
2030 msrs[n++].index = MSR_MCG_STATUS;
2031 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 2032 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 2033 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 2034 }
57780495 2035 }
57780495 2036
1c90ef26
VR
2037 if (has_msr_hv_hypercall) {
2038 msrs[n++].index = HV_X64_MSR_HYPERCALL;
2039 msrs[n++].index = HV_X64_MSR_GUEST_OS_ID;
2040 }
5ef68987
VR
2041 if (has_msr_hv_vapic) {
2042 msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE;
2043 }
48a5f3bc
VR
2044 if (has_msr_hv_tsc) {
2045 msrs[n++].index = HV_X64_MSR_REFERENCE_TSC;
2046 }
f2a53c9e
AS
2047 if (has_msr_hv_crash) {
2048 int j;
2049
2050 for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) {
2051 msrs[n++].index = HV_X64_MSR_CRASH_P0 + j;
2052 }
2053 }
46eb8f98
AS
2054 if (has_msr_hv_runtime) {
2055 msrs[n++].index = HV_X64_MSR_VP_RUNTIME;
2056 }
866eea9a
AS
2057 if (cpu->hyperv_synic) {
2058 uint32_t msr;
2059
2060 msrs[n++].index = HV_X64_MSR_SCONTROL;
2061 msrs[n++].index = HV_X64_MSR_SVERSION;
2062 msrs[n++].index = HV_X64_MSR_SIEFP;
2063 msrs[n++].index = HV_X64_MSR_SIMP;
2064 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
2065 msrs[n++].index = msr;
2066 }
2067 }
ff99aa64
AS
2068 if (has_msr_hv_stimer) {
2069 uint32_t msr;
2070
2071 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2072 msr++) {
2073 msrs[n++].index = msr;
2074 }
2075 }
d1ae67f6
AW
2076 if (has_msr_mtrr) {
2077 msrs[n++].index = MSR_MTRRdefType;
2078 msrs[n++].index = MSR_MTRRfix64K_00000;
2079 msrs[n++].index = MSR_MTRRfix16K_80000;
2080 msrs[n++].index = MSR_MTRRfix16K_A0000;
2081 msrs[n++].index = MSR_MTRRfix4K_C0000;
2082 msrs[n++].index = MSR_MTRRfix4K_C8000;
2083 msrs[n++].index = MSR_MTRRfix4K_D0000;
2084 msrs[n++].index = MSR_MTRRfix4K_D8000;
2085 msrs[n++].index = MSR_MTRRfix4K_E0000;
2086 msrs[n++].index = MSR_MTRRfix4K_E8000;
2087 msrs[n++].index = MSR_MTRRfix4K_F0000;
2088 msrs[n++].index = MSR_MTRRfix4K_F8000;
2089 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2090 msrs[n++].index = MSR_MTRRphysBase(i);
2091 msrs[n++].index = MSR_MTRRphysMask(i);
2092 }
2093 }
5ef68987 2094
d19ae73e
CB
2095 msr_data.info = (struct kvm_msrs) {
2096 .nmsrs = n,
2097 };
2098
1bc22652 2099 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
b9bec74b 2100 if (ret < 0) {
05330448 2101 return ret;
b9bec74b 2102 }
05330448 2103
48e1a45c 2104 assert(ret == n);
05330448 2105 for (i = 0; i < ret; i++) {
0d894367
PB
2106 uint32_t index = msrs[i].index;
2107 switch (index) {
05330448
AL
2108 case MSR_IA32_SYSENTER_CS:
2109 env->sysenter_cs = msrs[i].data;
2110 break;
2111 case MSR_IA32_SYSENTER_ESP:
2112 env->sysenter_esp = msrs[i].data;
2113 break;
2114 case MSR_IA32_SYSENTER_EIP:
2115 env->sysenter_eip = msrs[i].data;
2116 break;
0c03266a
JK
2117 case MSR_PAT:
2118 env->pat = msrs[i].data;
2119 break;
05330448
AL
2120 case MSR_STAR:
2121 env->star = msrs[i].data;
2122 break;
2123#ifdef TARGET_X86_64
2124 case MSR_CSTAR:
2125 env->cstar = msrs[i].data;
2126 break;
2127 case MSR_KERNELGSBASE:
2128 env->kernelgsbase = msrs[i].data;
2129 break;
2130 case MSR_FMASK:
2131 env->fmask = msrs[i].data;
2132 break;
2133 case MSR_LSTAR:
2134 env->lstar = msrs[i].data;
2135 break;
2136#endif
2137 case MSR_IA32_TSC:
2138 env->tsc = msrs[i].data;
2139 break;
c9b8f6b6
AS
2140 case MSR_TSC_AUX:
2141 env->tsc_aux = msrs[i].data;
2142 break;
f28558d3
WA
2143 case MSR_TSC_ADJUST:
2144 env->tsc_adjust = msrs[i].data;
2145 break;
aa82ba54
LJ
2146 case MSR_IA32_TSCDEADLINE:
2147 env->tsc_deadline = msrs[i].data;
2148 break;
aa851e36
MT
2149 case MSR_VM_HSAVE_PA:
2150 env->vm_hsave = msrs[i].data;
2151 break;
1a03675d
GC
2152 case MSR_KVM_SYSTEM_TIME:
2153 env->system_time_msr = msrs[i].data;
2154 break;
2155 case MSR_KVM_WALL_CLOCK:
2156 env->wall_clock_msr = msrs[i].data;
2157 break;
57780495
MT
2158 case MSR_MCG_STATUS:
2159 env->mcg_status = msrs[i].data;
2160 break;
2161 case MSR_MCG_CTL:
2162 env->mcg_ctl = msrs[i].data;
2163 break;
21e87c46
AK
2164 case MSR_IA32_MISC_ENABLE:
2165 env->msr_ia32_misc_enable = msrs[i].data;
2166 break;
fc12d72e
PB
2167 case MSR_IA32_SMBASE:
2168 env->smbase = msrs[i].data;
2169 break;
0779caeb
ACL
2170 case MSR_IA32_FEATURE_CONTROL:
2171 env->msr_ia32_feature_control = msrs[i].data;
df67696e 2172 break;
79e9ebeb
LJ
2173 case MSR_IA32_BNDCFGS:
2174 env->msr_bndcfgs = msrs[i].data;
2175 break;
18cd2c17
WL
2176 case MSR_IA32_XSS:
2177 env->xss = msrs[i].data;
2178 break;
57780495 2179 default:
57780495
MT
2180 if (msrs[i].index >= MSR_MC0_CTL &&
2181 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
2182 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 2183 }
d8da8574 2184 break;
f6584ee2
GN
2185 case MSR_KVM_ASYNC_PF_EN:
2186 env->async_pf_en_msr = msrs[i].data;
2187 break;
bc9a839d
MT
2188 case MSR_KVM_PV_EOI_EN:
2189 env->pv_eoi_en_msr = msrs[i].data;
2190 break;
917367aa
MT
2191 case MSR_KVM_STEAL_TIME:
2192 env->steal_time_msr = msrs[i].data;
2193 break;
0d894367
PB
2194 case MSR_CORE_PERF_FIXED_CTR_CTRL:
2195 env->msr_fixed_ctr_ctrl = msrs[i].data;
2196 break;
2197 case MSR_CORE_PERF_GLOBAL_CTRL:
2198 env->msr_global_ctrl = msrs[i].data;
2199 break;
2200 case MSR_CORE_PERF_GLOBAL_STATUS:
2201 env->msr_global_status = msrs[i].data;
2202 break;
2203 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
2204 env->msr_global_ovf_ctrl = msrs[i].data;
2205 break;
2206 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
2207 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
2208 break;
2209 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
2210 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
2211 break;
2212 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
2213 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
2214 break;
1c90ef26
VR
2215 case HV_X64_MSR_HYPERCALL:
2216 env->msr_hv_hypercall = msrs[i].data;
2217 break;
2218 case HV_X64_MSR_GUEST_OS_ID:
2219 env->msr_hv_guest_os_id = msrs[i].data;
2220 break;
5ef68987
VR
2221 case HV_X64_MSR_APIC_ASSIST_PAGE:
2222 env->msr_hv_vapic = msrs[i].data;
2223 break;
48a5f3bc
VR
2224 case HV_X64_MSR_REFERENCE_TSC:
2225 env->msr_hv_tsc = msrs[i].data;
2226 break;
f2a53c9e
AS
2227 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2228 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
2229 break;
46eb8f98
AS
2230 case HV_X64_MSR_VP_RUNTIME:
2231 env->msr_hv_runtime = msrs[i].data;
2232 break;
866eea9a
AS
2233 case HV_X64_MSR_SCONTROL:
2234 env->msr_hv_synic_control = msrs[i].data;
2235 break;
2236 case HV_X64_MSR_SVERSION:
2237 env->msr_hv_synic_version = msrs[i].data;
2238 break;
2239 case HV_X64_MSR_SIEFP:
2240 env->msr_hv_synic_evt_page = msrs[i].data;
2241 break;
2242 case HV_X64_MSR_SIMP:
2243 env->msr_hv_synic_msg_page = msrs[i].data;
2244 break;
2245 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
2246 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
ff99aa64
AS
2247 break;
2248 case HV_X64_MSR_STIMER0_CONFIG:
2249 case HV_X64_MSR_STIMER1_CONFIG:
2250 case HV_X64_MSR_STIMER2_CONFIG:
2251 case HV_X64_MSR_STIMER3_CONFIG:
2252 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
2253 msrs[i].data;
2254 break;
2255 case HV_X64_MSR_STIMER0_COUNT:
2256 case HV_X64_MSR_STIMER1_COUNT:
2257 case HV_X64_MSR_STIMER2_COUNT:
2258 case HV_X64_MSR_STIMER3_COUNT:
2259 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
2260 msrs[i].data;
866eea9a 2261 break;
d1ae67f6
AW
2262 case MSR_MTRRdefType:
2263 env->mtrr_deftype = msrs[i].data;
2264 break;
2265 case MSR_MTRRfix64K_00000:
2266 env->mtrr_fixed[0] = msrs[i].data;
2267 break;
2268 case MSR_MTRRfix16K_80000:
2269 env->mtrr_fixed[1] = msrs[i].data;
2270 break;
2271 case MSR_MTRRfix16K_A0000:
2272 env->mtrr_fixed[2] = msrs[i].data;
2273 break;
2274 case MSR_MTRRfix4K_C0000:
2275 env->mtrr_fixed[3] = msrs[i].data;
2276 break;
2277 case MSR_MTRRfix4K_C8000:
2278 env->mtrr_fixed[4] = msrs[i].data;
2279 break;
2280 case MSR_MTRRfix4K_D0000:
2281 env->mtrr_fixed[5] = msrs[i].data;
2282 break;
2283 case MSR_MTRRfix4K_D8000:
2284 env->mtrr_fixed[6] = msrs[i].data;
2285 break;
2286 case MSR_MTRRfix4K_E0000:
2287 env->mtrr_fixed[7] = msrs[i].data;
2288 break;
2289 case MSR_MTRRfix4K_E8000:
2290 env->mtrr_fixed[8] = msrs[i].data;
2291 break;
2292 case MSR_MTRRfix4K_F0000:
2293 env->mtrr_fixed[9] = msrs[i].data;
2294 break;
2295 case MSR_MTRRfix4K_F8000:
2296 env->mtrr_fixed[10] = msrs[i].data;
2297 break;
2298 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
2299 if (index & 1) {
2300 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data;
2301 } else {
2302 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
2303 }
2304 break;
05330448
AL
2305 }
2306 }
2307
2308 return 0;
2309}
2310
1bc22652 2311static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 2312{
1bc22652 2313 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 2314
1bc22652 2315 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
2316}
2317
23d02d9b 2318static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 2319{
259186a7 2320 CPUState *cs = CPU(cpu);
23d02d9b 2321 CPUX86State *env = &cpu->env;
9bdbe550
HB
2322 struct kvm_mp_state mp_state;
2323 int ret;
2324
259186a7 2325 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
2326 if (ret < 0) {
2327 return ret;
2328 }
2329 env->mp_state = mp_state.mp_state;
c14750e8 2330 if (kvm_irqchip_in_kernel()) {
259186a7 2331 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 2332 }
9bdbe550
HB
2333 return 0;
2334}
2335
1bc22652 2336static int kvm_get_apic(X86CPU *cpu)
680c1c6f 2337{
02e51483 2338 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
2339 struct kvm_lapic_state kapic;
2340 int ret;
2341
3d4b2649 2342 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 2343 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
2344 if (ret < 0) {
2345 return ret;
2346 }
2347
2348 kvm_get_apic_state(apic, &kapic);
2349 }
2350 return 0;
2351}
2352
1bc22652 2353static int kvm_put_apic(X86CPU *cpu)
680c1c6f 2354{
02e51483 2355 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
2356 struct kvm_lapic_state kapic;
2357
3d4b2649 2358 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
2359 kvm_put_apic_state(apic, &kapic);
2360
1bc22652 2361 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
680c1c6f
JK
2362 }
2363 return 0;
2364}
2365
1bc22652 2366static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 2367{
fc12d72e 2368 CPUState *cs = CPU(cpu);
1bc22652 2369 CPUX86State *env = &cpu->env;
076796f8 2370 struct kvm_vcpu_events events = {};
a0fb002c
JK
2371
2372 if (!kvm_has_vcpu_events()) {
2373 return 0;
2374 }
2375
31827373
JK
2376 events.exception.injected = (env->exception_injected >= 0);
2377 events.exception.nr = env->exception_injected;
a0fb002c
JK
2378 events.exception.has_error_code = env->has_error_code;
2379 events.exception.error_code = env->error_code;
7e680753 2380 events.exception.pad = 0;
a0fb002c
JK
2381
2382 events.interrupt.injected = (env->interrupt_injected >= 0);
2383 events.interrupt.nr = env->interrupt_injected;
2384 events.interrupt.soft = env->soft_interrupt;
2385
2386 events.nmi.injected = env->nmi_injected;
2387 events.nmi.pending = env->nmi_pending;
2388 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
7e680753 2389 events.nmi.pad = 0;
a0fb002c
JK
2390
2391 events.sipi_vector = env->sipi_vector;
2392
fc12d72e
PB
2393 if (has_msr_smbase) {
2394 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
2395 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
2396 if (kvm_irqchip_in_kernel()) {
2397 /* As soon as these are moved to the kernel, remove them
2398 * from cs->interrupt_request.
2399 */
2400 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
2401 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
2402 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
2403 } else {
2404 /* Keep these in cs->interrupt_request. */
2405 events.smi.pending = 0;
2406 events.smi.latched_init = 0;
2407 }
2408 events.flags |= KVM_VCPUEVENT_VALID_SMM;
2409 }
2410
ea643051
JK
2411 events.flags = 0;
2412 if (level >= KVM_PUT_RESET_STATE) {
2413 events.flags |=
2414 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
2415 }
aee028b9 2416
1bc22652 2417 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
2418}
2419
1bc22652 2420static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 2421{
1bc22652 2422 CPUX86State *env = &cpu->env;
a0fb002c
JK
2423 struct kvm_vcpu_events events;
2424 int ret;
2425
2426 if (!kvm_has_vcpu_events()) {
2427 return 0;
2428 }
2429
fc12d72e 2430 memset(&events, 0, sizeof(events));
1bc22652 2431 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
2432 if (ret < 0) {
2433 return ret;
2434 }
31827373 2435 env->exception_injected =
a0fb002c
JK
2436 events.exception.injected ? events.exception.nr : -1;
2437 env->has_error_code = events.exception.has_error_code;
2438 env->error_code = events.exception.error_code;
2439
2440 env->interrupt_injected =
2441 events.interrupt.injected ? events.interrupt.nr : -1;
2442 env->soft_interrupt = events.interrupt.soft;
2443
2444 env->nmi_injected = events.nmi.injected;
2445 env->nmi_pending = events.nmi.pending;
2446 if (events.nmi.masked) {
2447 env->hflags2 |= HF2_NMI_MASK;
2448 } else {
2449 env->hflags2 &= ~HF2_NMI_MASK;
2450 }
2451
fc12d72e
PB
2452 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
2453 if (events.smi.smm) {
2454 env->hflags |= HF_SMM_MASK;
2455 } else {
2456 env->hflags &= ~HF_SMM_MASK;
2457 }
2458 if (events.smi.pending) {
2459 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2460 } else {
2461 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2462 }
2463 if (events.smi.smm_inside_nmi) {
2464 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
2465 } else {
2466 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
2467 }
2468 if (events.smi.latched_init) {
2469 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2470 } else {
2471 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2472 }
2473 }
2474
a0fb002c 2475 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
2476
2477 return 0;
2478}
2479
1bc22652 2480static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 2481{
ed2803da 2482 CPUState *cs = CPU(cpu);
1bc22652 2483 CPUX86State *env = &cpu->env;
b0b1d690 2484 int ret = 0;
b0b1d690
JK
2485 unsigned long reinject_trap = 0;
2486
2487 if (!kvm_has_vcpu_events()) {
2488 if (env->exception_injected == 1) {
2489 reinject_trap = KVM_GUESTDBG_INJECT_DB;
2490 } else if (env->exception_injected == 3) {
2491 reinject_trap = KVM_GUESTDBG_INJECT_BP;
2492 }
2493 env->exception_injected = -1;
2494 }
2495
2496 /*
2497 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2498 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2499 * by updating the debug state once again if single-stepping is on.
2500 * Another reason to call kvm_update_guest_debug here is a pending debug
2501 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2502 * reinject them via SET_GUEST_DEBUG.
2503 */
2504 if (reinject_trap ||
ed2803da 2505 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 2506 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 2507 }
b0b1d690
JK
2508 return ret;
2509}
2510
1bc22652 2511static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 2512{
1bc22652 2513 CPUX86State *env = &cpu->env;
ff44f1a3
JK
2514 struct kvm_debugregs dbgregs;
2515 int i;
2516
2517 if (!kvm_has_debugregs()) {
2518 return 0;
2519 }
2520
2521 for (i = 0; i < 4; i++) {
2522 dbgregs.db[i] = env->dr[i];
2523 }
2524 dbgregs.dr6 = env->dr[6];
2525 dbgregs.dr7 = env->dr[7];
2526 dbgregs.flags = 0;
2527
1bc22652 2528 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
2529}
2530
1bc22652 2531static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 2532{
1bc22652 2533 CPUX86State *env = &cpu->env;
ff44f1a3
JK
2534 struct kvm_debugregs dbgregs;
2535 int i, ret;
2536
2537 if (!kvm_has_debugregs()) {
2538 return 0;
2539 }
2540
1bc22652 2541 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 2542 if (ret < 0) {
b9bec74b 2543 return ret;
ff44f1a3
JK
2544 }
2545 for (i = 0; i < 4; i++) {
2546 env->dr[i] = dbgregs.db[i];
2547 }
2548 env->dr[4] = env->dr[6] = dbgregs.dr6;
2549 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
2550
2551 return 0;
2552}
2553
20d695a9 2554int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 2555{
20d695a9 2556 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
2557 int ret;
2558
2fa45344 2559 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 2560
48e1a45c 2561 if (level >= KVM_PUT_RESET_STATE) {
6bdf863d
JK
2562 ret = kvm_put_msr_feature_control(x86_cpu);
2563 if (ret < 0) {
2564 return ret;
2565 }
2566 }
2567
36f96c4b
HZ
2568 if (level == KVM_PUT_FULL_STATE) {
2569 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2570 * because TSC frequency mismatch shouldn't abort migration,
2571 * unless the user explicitly asked for a more strict TSC
2572 * setting (e.g. using an explicit "tsc-freq" option).
2573 */
2574 kvm_arch_set_tsc_khz(cpu);
2575 }
2576
1bc22652 2577 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 2578 if (ret < 0) {
05330448 2579 return ret;
b9bec74b 2580 }
1bc22652 2581 ret = kvm_put_xsave(x86_cpu);
b9bec74b 2582 if (ret < 0) {
f1665b21 2583 return ret;
b9bec74b 2584 }
1bc22652 2585 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 2586 if (ret < 0) {
05330448 2587 return ret;
b9bec74b 2588 }
1bc22652 2589 ret = kvm_put_sregs(x86_cpu);
b9bec74b 2590 if (ret < 0) {
05330448 2591 return ret;
b9bec74b 2592 }
ab443475 2593 /* must be before kvm_put_msrs */
1bc22652 2594 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
2595 if (ret < 0) {
2596 return ret;
2597 }
1bc22652 2598 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 2599 if (ret < 0) {
05330448 2600 return ret;
b9bec74b 2601 }
ea643051 2602 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 2603 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 2604 if (ret < 0) {
ea643051 2605 return ret;
b9bec74b 2606 }
1bc22652 2607 ret = kvm_put_apic(x86_cpu);
680c1c6f
JK
2608 if (ret < 0) {
2609 return ret;
2610 }
ea643051 2611 }
7477cd38
MT
2612
2613 ret = kvm_put_tscdeadline_msr(x86_cpu);
2614 if (ret < 0) {
2615 return ret;
2616 }
2617
1bc22652 2618 ret = kvm_put_vcpu_events(x86_cpu, level);
b9bec74b 2619 if (ret < 0) {
a0fb002c 2620 return ret;
b9bec74b 2621 }
1bc22652 2622 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 2623 if (ret < 0) {
b0b1d690 2624 return ret;
b9bec74b 2625 }
b0b1d690 2626 /* must be last */
1bc22652 2627 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 2628 if (ret < 0) {
ff44f1a3 2629 return ret;
b9bec74b 2630 }
05330448
AL
2631 return 0;
2632}
2633
20d695a9 2634int kvm_arch_get_registers(CPUState *cs)
05330448 2635{
20d695a9 2636 X86CPU *cpu = X86_CPU(cs);
05330448
AL
2637 int ret;
2638
20d695a9 2639 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 2640
1bc22652 2641 ret = kvm_getput_regs(cpu, 0);
b9bec74b 2642 if (ret < 0) {
f4f1110e 2643 goto out;
b9bec74b 2644 }
1bc22652 2645 ret = kvm_get_xsave(cpu);
b9bec74b 2646 if (ret < 0) {
f4f1110e 2647 goto out;
b9bec74b 2648 }
1bc22652 2649 ret = kvm_get_xcrs(cpu);
b9bec74b 2650 if (ret < 0) {
f4f1110e 2651 goto out;
b9bec74b 2652 }
1bc22652 2653 ret = kvm_get_sregs(cpu);
b9bec74b 2654 if (ret < 0) {
f4f1110e 2655 goto out;
b9bec74b 2656 }
1bc22652 2657 ret = kvm_get_msrs(cpu);
b9bec74b 2658 if (ret < 0) {
f4f1110e 2659 goto out;
b9bec74b 2660 }
23d02d9b 2661 ret = kvm_get_mp_state(cpu);
b9bec74b 2662 if (ret < 0) {
f4f1110e 2663 goto out;
b9bec74b 2664 }
1bc22652 2665 ret = kvm_get_apic(cpu);
680c1c6f 2666 if (ret < 0) {
f4f1110e 2667 goto out;
680c1c6f 2668 }
1bc22652 2669 ret = kvm_get_vcpu_events(cpu);
b9bec74b 2670 if (ret < 0) {
f4f1110e 2671 goto out;
b9bec74b 2672 }
1bc22652 2673 ret = kvm_get_debugregs(cpu);
b9bec74b 2674 if (ret < 0) {
f4f1110e 2675 goto out;
b9bec74b 2676 }
f4f1110e
RH
2677 ret = 0;
2678 out:
2679 cpu_sync_bndcs_hflags(&cpu->env);
2680 return ret;
05330448
AL
2681}
2682
20d695a9 2683void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 2684{
20d695a9
AF
2685 X86CPU *x86_cpu = X86_CPU(cpu);
2686 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
2687 int ret;
2688
276ce815 2689 /* Inject NMI */
fc12d72e
PB
2690 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
2691 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
2692 qemu_mutex_lock_iothread();
2693 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
2694 qemu_mutex_unlock_iothread();
2695 DPRINTF("injected NMI\n");
2696 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
2697 if (ret < 0) {
2698 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
2699 strerror(-ret));
2700 }
2701 }
2702 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
2703 qemu_mutex_lock_iothread();
2704 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
2705 qemu_mutex_unlock_iothread();
2706 DPRINTF("injected SMI\n");
2707 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
2708 if (ret < 0) {
2709 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
2710 strerror(-ret));
2711 }
ce377af3 2712 }
276ce815
LJ
2713 }
2714
15eafc2e 2715 if (!kvm_pic_in_kernel()) {
4b8523ee
JK
2716 qemu_mutex_lock_iothread();
2717 }
2718
e0723c45
PB
2719 /* Force the VCPU out of its inner loop to process any INIT requests
2720 * or (for userspace APIC, but it is cheap to combine the checks here)
2721 * pending TPR access reports.
2722 */
2723 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fc12d72e
PB
2724 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
2725 !(env->hflags & HF_SMM_MASK)) {
2726 cpu->exit_request = 1;
2727 }
2728 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
2729 cpu->exit_request = 1;
2730 }
e0723c45 2731 }
05330448 2732
15eafc2e 2733 if (!kvm_pic_in_kernel()) {
db1669bc
JK
2734 /* Try to inject an interrupt if the guest can accept it */
2735 if (run->ready_for_interrupt_injection &&
259186a7 2736 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
2737 (env->eflags & IF_MASK)) {
2738 int irq;
2739
259186a7 2740 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
2741 irq = cpu_get_pic_interrupt(env);
2742 if (irq >= 0) {
2743 struct kvm_interrupt intr;
2744
2745 intr.irq = irq;
db1669bc 2746 DPRINTF("injected interrupt %d\n", irq);
1bc22652 2747 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
2748 if (ret < 0) {
2749 fprintf(stderr,
2750 "KVM: injection failed, interrupt lost (%s)\n",
2751 strerror(-ret));
2752 }
db1669bc
JK
2753 }
2754 }
05330448 2755
db1669bc
JK
2756 /* If we have an interrupt but the guest is not ready to receive an
2757 * interrupt, request an interrupt window exit. This will
2758 * cause a return to userspace as soon as the guest is ready to
2759 * receive interrupts. */
259186a7 2760 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
2761 run->request_interrupt_window = 1;
2762 } else {
2763 run->request_interrupt_window = 0;
2764 }
2765
2766 DPRINTF("setting tpr\n");
02e51483 2767 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4b8523ee
JK
2768
2769 qemu_mutex_unlock_iothread();
db1669bc 2770 }
05330448
AL
2771}
2772
4c663752 2773MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 2774{
20d695a9
AF
2775 X86CPU *x86_cpu = X86_CPU(cpu);
2776 CPUX86State *env = &x86_cpu->env;
2777
fc12d72e
PB
2778 if (run->flags & KVM_RUN_X86_SMM) {
2779 env->hflags |= HF_SMM_MASK;
2780 } else {
2781 env->hflags &= HF_SMM_MASK;
2782 }
b9bec74b 2783 if (run->if_flag) {
05330448 2784 env->eflags |= IF_MASK;
b9bec74b 2785 } else {
05330448 2786 env->eflags &= ~IF_MASK;
b9bec74b 2787 }
4b8523ee
JK
2788
2789 /* We need to protect the apic state against concurrent accesses from
2790 * different threads in case the userspace irqchip is used. */
2791 if (!kvm_irqchip_in_kernel()) {
2792 qemu_mutex_lock_iothread();
2793 }
02e51483
CF
2794 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
2795 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4b8523ee
JK
2796 if (!kvm_irqchip_in_kernel()) {
2797 qemu_mutex_unlock_iothread();
2798 }
f794aa4a 2799 return cpu_get_mem_attrs(env);
05330448
AL
2800}
2801
20d695a9 2802int kvm_arch_process_async_events(CPUState *cs)
0af691d7 2803{
20d695a9
AF
2804 X86CPU *cpu = X86_CPU(cs);
2805 CPUX86State *env = &cpu->env;
232fc23b 2806
259186a7 2807 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
2808 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2809 assert(env->mcg_cap);
2810
259186a7 2811 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 2812
dd1750d7 2813 kvm_cpu_synchronize_state(cs);
ab443475
JK
2814
2815 if (env->exception_injected == EXCP08_DBLE) {
2816 /* this means triple fault */
2817 qemu_system_reset_request();
fcd7d003 2818 cs->exit_request = 1;
ab443475
JK
2819 return 0;
2820 }
2821 env->exception_injected = EXCP12_MCHK;
2822 env->has_error_code = 0;
2823
259186a7 2824 cs->halted = 0;
ab443475
JK
2825 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2826 env->mp_state = KVM_MP_STATE_RUNNABLE;
2827 }
2828 }
2829
fc12d72e
PB
2830 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
2831 !(env->hflags & HF_SMM_MASK)) {
e0723c45
PB
2832 kvm_cpu_synchronize_state(cs);
2833 do_cpu_init(cpu);
2834 }
2835
db1669bc
JK
2836 if (kvm_irqchip_in_kernel()) {
2837 return 0;
2838 }
2839
259186a7
AF
2840 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2841 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 2842 apic_poll_irq(cpu->apic_state);
5d62c43a 2843 }
259186a7 2844 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 2845 (env->eflags & IF_MASK)) ||
259186a7
AF
2846 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2847 cs->halted = 0;
6792a57b 2848 }
259186a7 2849 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 2850 kvm_cpu_synchronize_state(cs);
232fc23b 2851 do_cpu_sipi(cpu);
0af691d7 2852 }
259186a7
AF
2853 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2854 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 2855 kvm_cpu_synchronize_state(cs);
02e51483 2856 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
2857 env->tpr_access_type);
2858 }
0af691d7 2859
259186a7 2860 return cs->halted;
0af691d7
MT
2861}
2862
839b5630 2863static int kvm_handle_halt(X86CPU *cpu)
05330448 2864{
259186a7 2865 CPUState *cs = CPU(cpu);
839b5630
AF
2866 CPUX86State *env = &cpu->env;
2867
259186a7 2868 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 2869 (env->eflags & IF_MASK)) &&
259186a7
AF
2870 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2871 cs->halted = 1;
bb4ea393 2872 return EXCP_HLT;
05330448
AL
2873 }
2874
bb4ea393 2875 return 0;
05330448
AL
2876}
2877
f7575c96 2878static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 2879{
f7575c96
AF
2880 CPUState *cs = CPU(cpu);
2881 struct kvm_run *run = cs->kvm_run;
d362e757 2882
02e51483 2883 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
2884 run->tpr_access.is_write ? TPR_ACCESS_WRITE
2885 : TPR_ACCESS_READ);
2886 return 1;
2887}
2888
f17ec444 2889int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 2890{
38972938 2891 static const uint8_t int3 = 0xcc;
64bf3f4e 2892
f17ec444
AF
2893 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2894 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 2895 return -EINVAL;
b9bec74b 2896 }
e22a25c9
AL
2897 return 0;
2898}
2899
f17ec444 2900int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
2901{
2902 uint8_t int3;
2903
f17ec444
AF
2904 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2905 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 2906 return -EINVAL;
b9bec74b 2907 }
e22a25c9
AL
2908 return 0;
2909}
2910
2911static struct {
2912 target_ulong addr;
2913 int len;
2914 int type;
2915} hw_breakpoint[4];
2916
2917static int nb_hw_breakpoint;
2918
2919static int find_hw_breakpoint(target_ulong addr, int len, int type)
2920{
2921 int n;
2922
b9bec74b 2923 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 2924 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 2925 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 2926 return n;
b9bec74b
JK
2927 }
2928 }
e22a25c9
AL
2929 return -1;
2930}
2931
2932int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2933 target_ulong len, int type)
2934{
2935 switch (type) {
2936 case GDB_BREAKPOINT_HW:
2937 len = 1;
2938 break;
2939 case GDB_WATCHPOINT_WRITE:
2940 case GDB_WATCHPOINT_ACCESS:
2941 switch (len) {
2942 case 1:
2943 break;
2944 case 2:
2945 case 4:
2946 case 8:
b9bec74b 2947 if (addr & (len - 1)) {
e22a25c9 2948 return -EINVAL;
b9bec74b 2949 }
e22a25c9
AL
2950 break;
2951 default:
2952 return -EINVAL;
2953 }
2954 break;
2955 default:
2956 return -ENOSYS;
2957 }
2958
b9bec74b 2959 if (nb_hw_breakpoint == 4) {
e22a25c9 2960 return -ENOBUFS;
b9bec74b
JK
2961 }
2962 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 2963 return -EEXIST;
b9bec74b 2964 }
e22a25c9
AL
2965 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2966 hw_breakpoint[nb_hw_breakpoint].len = len;
2967 hw_breakpoint[nb_hw_breakpoint].type = type;
2968 nb_hw_breakpoint++;
2969
2970 return 0;
2971}
2972
2973int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2974 target_ulong len, int type)
2975{
2976 int n;
2977
2978 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 2979 if (n < 0) {
e22a25c9 2980 return -ENOENT;
b9bec74b 2981 }
e22a25c9
AL
2982 nb_hw_breakpoint--;
2983 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2984
2985 return 0;
2986}
2987
2988void kvm_arch_remove_all_hw_breakpoints(void)
2989{
2990 nb_hw_breakpoint = 0;
2991}
2992
2993static CPUWatchpoint hw_watchpoint;
2994
a60f24b5 2995static int kvm_handle_debug(X86CPU *cpu,
48405526 2996 struct kvm_debug_exit_arch *arch_info)
e22a25c9 2997{
ed2803da 2998 CPUState *cs = CPU(cpu);
a60f24b5 2999 CPUX86State *env = &cpu->env;
f2574737 3000 int ret = 0;
e22a25c9
AL
3001 int n;
3002
3003 if (arch_info->exception == 1) {
3004 if (arch_info->dr6 & (1 << 14)) {
ed2803da 3005 if (cs->singlestep_enabled) {
f2574737 3006 ret = EXCP_DEBUG;
b9bec74b 3007 }
e22a25c9 3008 } else {
b9bec74b
JK
3009 for (n = 0; n < 4; n++) {
3010 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
3011 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
3012 case 0x0:
f2574737 3013 ret = EXCP_DEBUG;
e22a25c9
AL
3014 break;
3015 case 0x1:
f2574737 3016 ret = EXCP_DEBUG;
ff4700b0 3017 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
3018 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3019 hw_watchpoint.flags = BP_MEM_WRITE;
3020 break;
3021 case 0x3:
f2574737 3022 ret = EXCP_DEBUG;
ff4700b0 3023 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
3024 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3025 hw_watchpoint.flags = BP_MEM_ACCESS;
3026 break;
3027 }
b9bec74b
JK
3028 }
3029 }
e22a25c9 3030 }
ff4700b0 3031 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 3032 ret = EXCP_DEBUG;
b9bec74b 3033 }
f2574737 3034 if (ret == 0) {
ff4700b0 3035 cpu_synchronize_state(cs);
48405526 3036 assert(env->exception_injected == -1);
b0b1d690 3037
f2574737 3038 /* pass to guest */
48405526
BS
3039 env->exception_injected = arch_info->exception;
3040 env->has_error_code = 0;
b0b1d690 3041 }
e22a25c9 3042
f2574737 3043 return ret;
e22a25c9
AL
3044}
3045
20d695a9 3046void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
3047{
3048 const uint8_t type_code[] = {
3049 [GDB_BREAKPOINT_HW] = 0x0,
3050 [GDB_WATCHPOINT_WRITE] = 0x1,
3051 [GDB_WATCHPOINT_ACCESS] = 0x3
3052 };
3053 const uint8_t len_code[] = {
3054 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3055 };
3056 int n;
3057
a60f24b5 3058 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 3059 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 3060 }
e22a25c9
AL
3061 if (nb_hw_breakpoint > 0) {
3062 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
3063 dbg->arch.debugreg[7] = 0x0600;
3064 for (n = 0; n < nb_hw_breakpoint; n++) {
3065 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
3066 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
3067 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 3068 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
3069 }
3070 }
3071}
4513d923 3072
2a4dac83
JK
3073static bool host_supports_vmx(void)
3074{
3075 uint32_t ecx, unused;
3076
3077 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
3078 return ecx & CPUID_EXT_VMX;
3079}
3080
3081#define VMX_INVALID_GUEST_STATE 0x80000021
3082
20d695a9 3083int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 3084{
20d695a9 3085 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
3086 uint64_t code;
3087 int ret;
3088
3089 switch (run->exit_reason) {
3090 case KVM_EXIT_HLT:
3091 DPRINTF("handle_hlt\n");
4b8523ee 3092 qemu_mutex_lock_iothread();
839b5630 3093 ret = kvm_handle_halt(cpu);
4b8523ee 3094 qemu_mutex_unlock_iothread();
2a4dac83
JK
3095 break;
3096 case KVM_EXIT_SET_TPR:
3097 ret = 0;
3098 break;
d362e757 3099 case KVM_EXIT_TPR_ACCESS:
4b8523ee 3100 qemu_mutex_lock_iothread();
f7575c96 3101 ret = kvm_handle_tpr_access(cpu);
4b8523ee 3102 qemu_mutex_unlock_iothread();
d362e757 3103 break;
2a4dac83
JK
3104 case KVM_EXIT_FAIL_ENTRY:
3105 code = run->fail_entry.hardware_entry_failure_reason;
3106 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
3107 code);
3108 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
3109 fprintf(stderr,
12619721 3110 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
3111 "unrestricted mode\n"
3112 "support, the failure can be most likely due to the guest "
3113 "entering an invalid\n"
3114 "state for Intel VT. For example, the guest maybe running "
3115 "in big real mode\n"
3116 "which is not supported on less recent Intel processors."
3117 "\n\n");
3118 }
3119 ret = -1;
3120 break;
3121 case KVM_EXIT_EXCEPTION:
3122 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
3123 run->ex.exception, run->ex.error_code);
3124 ret = -1;
3125 break;
f2574737
JK
3126 case KVM_EXIT_DEBUG:
3127 DPRINTF("kvm_exit_debug\n");
4b8523ee 3128 qemu_mutex_lock_iothread();
a60f24b5 3129 ret = kvm_handle_debug(cpu, &run->debug.arch);
4b8523ee 3130 qemu_mutex_unlock_iothread();
f2574737 3131 break;
50efe82c
AS
3132 case KVM_EXIT_HYPERV:
3133 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
3134 break;
15eafc2e
PB
3135 case KVM_EXIT_IOAPIC_EOI:
3136 ioapic_eoi_broadcast(run->eoi.vector);
3137 ret = 0;
3138 break;
2a4dac83
JK
3139 default:
3140 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
3141 ret = -1;
3142 break;
3143 }
3144
3145 return ret;
3146}
3147
20d695a9 3148bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 3149{
20d695a9
AF
3150 X86CPU *cpu = X86_CPU(cs);
3151 CPUX86State *env = &cpu->env;
3152
dd1750d7 3153 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
3154 return !(env->cr[0] & CR0_PE_MASK) ||
3155 ((env->segs[R_CS].selector & 3) != 3);
4513d923 3156}
84b058d7
JK
3157
3158void kvm_arch_init_irq_routing(KVMState *s)
3159{
3160 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
3161 /* If kernel can't do irq routing, interrupt source
3162 * override 0->2 cannot be set up as required by HPET.
3163 * So we have to disable it.
3164 */
3165 no_hpet = 1;
3166 }
cc7e0ddf 3167 /* We know at this point that we're using the in-kernel
614e41bc 3168 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 3169 * we can use msi via irqfd and GSI routing.
cc7e0ddf 3170 */
614e41bc 3171 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 3172 kvm_gsi_routing_allowed = true;
15eafc2e
PB
3173
3174 if (kvm_irqchip_is_split()) {
3175 int i;
3176
3177 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3178 MSI routes for signaling interrupts to the local apics. */
3179 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
3180 struct MSIMessage msg = { 0x0, 0x0 };
3181 if (kvm_irqchip_add_msi_route(s, msg, NULL) < 0) {
3182 error_report("Could not enable split IRQ mode.");
3183 exit(1);
3184 }
3185 }
3186 }
3187}
3188
3189int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
3190{
3191 int ret;
3192 if (machine_kernel_irqchip_split(ms)) {
3193 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
3194 if (ret) {
3195 error_report("Could not enable split irqchip mode: %s\n",
3196 strerror(-ret));
3197 exit(1);
3198 } else {
3199 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3200 kvm_split_irqchip = true;
3201 return 1;
3202 }
3203 } else {
3204 return 0;
3205 }
84b058d7 3206}
b139bd30
JK
3207
3208/* Classic KVM device assignment interface. Will remain x86 only. */
3209int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
3210 uint32_t flags, uint32_t *dev_id)
3211{
3212 struct kvm_assigned_pci_dev dev_data = {
3213 .segnr = dev_addr->domain,
3214 .busnr = dev_addr->bus,
3215 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
3216 .flags = flags,
3217 };
3218 int ret;
3219
3220 dev_data.assigned_dev_id =
3221 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
3222
3223 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
3224 if (ret < 0) {
3225 return ret;
3226 }
3227
3228 *dev_id = dev_data.assigned_dev_id;
3229
3230 return 0;
3231}
3232
3233int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
3234{
3235 struct kvm_assigned_pci_dev dev_data = {
3236 .assigned_dev_id = dev_id,
3237 };
3238
3239 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
3240}
3241
3242static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
3243 uint32_t irq_type, uint32_t guest_irq)
3244{
3245 struct kvm_assigned_irq assigned_irq = {
3246 .assigned_dev_id = dev_id,
3247 .guest_irq = guest_irq,
3248 .flags = irq_type,
3249 };
3250
3251 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
3252 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
3253 } else {
3254 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
3255 }
3256}
3257
3258int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
3259 uint32_t guest_irq)
3260{
3261 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
3262 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
3263
3264 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
3265}
3266
3267int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
3268{
3269 struct kvm_assigned_pci_dev dev_data = {
3270 .assigned_dev_id = dev_id,
3271 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
3272 };
3273
3274 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
3275}
3276
3277static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
3278 uint32_t type)
3279{
3280 struct kvm_assigned_irq assigned_irq = {
3281 .assigned_dev_id = dev_id,
3282 .flags = type,
3283 };
3284
3285 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
3286}
3287
3288int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
3289{
3290 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
3291 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
3292}
3293
3294int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
3295{
3296 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
3297 KVM_DEV_IRQ_GUEST_MSI, virq);
3298}
3299
3300int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
3301{
3302 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
3303 KVM_DEV_IRQ_HOST_MSI);
3304}
3305
3306bool kvm_device_msix_supported(KVMState *s)
3307{
3308 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3309 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3310 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
3311}
3312
3313int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
3314 uint32_t nr_vectors)
3315{
3316 struct kvm_assigned_msix_nr msix_nr = {
3317 .assigned_dev_id = dev_id,
3318 .entry_nr = nr_vectors,
3319 };
3320
3321 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
3322}
3323
3324int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
3325 int virq)
3326{
3327 struct kvm_assigned_msix_entry msix_entry = {
3328 .assigned_dev_id = dev_id,
3329 .gsi = virq,
3330 .entry = vector,
3331 };
3332
3333 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
3334}
3335
3336int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
3337{
3338 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
3339 KVM_DEV_IRQ_GUEST_MSIX, 0);
3340}
3341
3342int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
3343{
3344 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
3345 KVM_DEV_IRQ_HOST_MSIX);
3346}
9e03a040
FB
3347
3348int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 3349 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040
FB
3350{
3351 return 0;
3352}
1850b6b7
EA
3353
3354int kvm_arch_msi_data_to_gsi(uint32_t data)
3355{
3356 abort();
3357}