]>
Commit | Line | Data |
---|---|---|
bd797fc1 AG |
1 | /* |
2 | * QEMU timed average computation | |
3 | * | |
4 | * Copyright (C) Nodalink, EURL. 2014 | |
5 | * Copyright (C) Igalia, S.L. 2015 | |
6 | * | |
7 | * Authors: | |
8 | * BenoƮt Canet <benoit.canet@nodalink.com> | |
9 | * Alberto Garcia <berto@igalia.com> | |
10 | * | |
cb8d4c8f | 11 | * This program is free software: you can redistribute it and/or modify |
bd797fc1 | 12 | * it under the terms of the GNU General Public License as published by |
cb8d4c8f | 13 | * the Free Software Foundation, either version 2 of the License, or |
bd797fc1 AG |
14 | * (at your option) version 3 or any later version. |
15 | * | |
16 | * This program is distributed in the hope that it will be useful, | |
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | * GNU General Public License for more details. | |
20 | * | |
21 | * You should have received a copy of the GNU General Public License | |
22 | * along with this program. If not, see <http://www.gnu.org/licenses/>. | |
23 | */ | |
24 | ||
aafd7584 | 25 | #include "qemu/osdep.h" |
bd797fc1 AG |
26 | |
27 | #include "qemu/timed-average.h" | |
28 | ||
29 | /* This module computes an average of a set of values within a time | |
30 | * window. | |
31 | * | |
32 | * Algorithm: | |
33 | * | |
34 | * - Create two windows with a certain expiration period, and | |
35 | * offsetted by period / 2. | |
36 | * - Each time you want to account a new value, do it in both windows. | |
37 | * - The minimum / maximum / average values are always returned from | |
38 | * the oldest window. | |
39 | * | |
40 | * Example: | |
41 | * | |
42 | * t=0 |t=0.5 |t=1 |t=1.5 |t=2 | |
43 | * wnd0: [0,0.5)|wnd0: [0.5,1.5) | |wnd0: [1.5,2.5) | | |
44 | * wnd1: [0,1) | |wnd1: [1,2) | | | |
45 | * | |
46 | * Values are returned from: | |
47 | * | |
48 | * wnd0---------|wnd1------------|wnd0---------|wnd1-------------| | |
49 | */ | |
50 | ||
51 | /* Update the expiration of a time window | |
52 | * | |
53 | * @w: the window used | |
54 | * @now: the current time in nanoseconds | |
55 | * @period: the expiration period in nanoseconds | |
56 | */ | |
57 | static void update_expiration(TimedAverageWindow *w, int64_t now, | |
58 | int64_t period) | |
59 | { | |
60 | /* time elapsed since the last theoretical expiration */ | |
61 | int64_t elapsed = (now - w->expiration) % period; | |
62 | /* time remaininging until the next expiration */ | |
63 | int64_t remaining = period - elapsed; | |
64 | /* compute expiration */ | |
65 | w->expiration = now + remaining; | |
66 | } | |
67 | ||
68 | /* Reset a window | |
69 | * | |
70 | * @w: the window to reset | |
71 | */ | |
72 | static void window_reset(TimedAverageWindow *w) | |
73 | { | |
74 | w->min = UINT64_MAX; | |
75 | w->max = 0; | |
76 | w->sum = 0; | |
77 | w->count = 0; | |
78 | } | |
79 | ||
80 | /* Get the current window (that is, the one with the earliest | |
81 | * expiration time). | |
82 | * | |
83 | * @ta: the TimedAverage structure | |
84 | * @ret: a pointer to the current window | |
85 | */ | |
86 | static TimedAverageWindow *current_window(TimedAverage *ta) | |
87 | { | |
88 | return &ta->windows[ta->current]; | |
89 | } | |
90 | ||
91 | /* Initialize a TimedAverage structure | |
92 | * | |
93 | * @ta: the TimedAverage structure | |
94 | * @clock_type: the type of clock to use | |
95 | * @period: the time window period in nanoseconds | |
96 | */ | |
97 | void timed_average_init(TimedAverage *ta, QEMUClockType clock_type, | |
98 | uint64_t period) | |
99 | { | |
100 | int64_t now = qemu_clock_get_ns(clock_type); | |
101 | ||
102 | /* Returned values are from the oldest window, so they belong to | |
103 | * the interval [ta->period/2,ta->period). By adjusting the | |
104 | * requested period by 4/3, we guarantee that they're in the | |
105 | * interval [2/3 period,4/3 period), closer to the requested | |
106 | * period on average */ | |
107 | ta->period = (uint64_t) period * 4 / 3; | |
108 | ta->clock_type = clock_type; | |
109 | ta->current = 0; | |
110 | ||
111 | window_reset(&ta->windows[0]); | |
112 | window_reset(&ta->windows[1]); | |
113 | ||
114 | /* Both windows are offsetted by half a period */ | |
115 | ta->windows[0].expiration = now + ta->period / 2; | |
116 | ta->windows[1].expiration = now + ta->period; | |
117 | } | |
118 | ||
119 | /* Check if the time windows have expired, updating their counters and | |
120 | * expiration time if that's the case. | |
121 | * | |
122 | * @ta: the TimedAverage structure | |
96e4deda AG |
123 | * @elapsed: if non-NULL, the elapsed time (in ns) within the current |
124 | * window will be stored here | |
bd797fc1 | 125 | */ |
96e4deda | 126 | static void check_expirations(TimedAverage *ta, uint64_t *elapsed) |
bd797fc1 AG |
127 | { |
128 | int64_t now = qemu_clock_get_ns(ta->clock_type); | |
129 | int i; | |
130 | ||
131 | assert(ta->period != 0); | |
132 | ||
133 | /* Check if the windows have expired */ | |
134 | for (i = 0; i < 2; i++) { | |
135 | TimedAverageWindow *w = &ta->windows[i]; | |
136 | if (w->expiration <= now) { | |
137 | window_reset(w); | |
138 | update_expiration(w, now, ta->period); | |
139 | } | |
140 | } | |
141 | ||
142 | /* Make ta->current point to the oldest window */ | |
143 | if (ta->windows[0].expiration < ta->windows[1].expiration) { | |
144 | ta->current = 0; | |
145 | } else { | |
146 | ta->current = 1; | |
147 | } | |
96e4deda AG |
148 | |
149 | /* Calculate the elapsed time within the current window */ | |
150 | if (elapsed) { | |
151 | int64_t remaining = ta->windows[ta->current].expiration - now; | |
152 | *elapsed = ta->period - remaining; | |
153 | } | |
bd797fc1 AG |
154 | } |
155 | ||
156 | /* Account a value | |
157 | * | |
158 | * @ta: the TimedAverage structure | |
159 | * @value: the value to account | |
160 | */ | |
161 | void timed_average_account(TimedAverage *ta, uint64_t value) | |
162 | { | |
163 | int i; | |
96e4deda | 164 | check_expirations(ta, NULL); |
bd797fc1 AG |
165 | |
166 | /* Do the accounting in both windows at the same time */ | |
167 | for (i = 0; i < 2; i++) { | |
168 | TimedAverageWindow *w = &ta->windows[i]; | |
169 | ||
170 | w->sum += value; | |
171 | w->count++; | |
172 | ||
173 | if (value < w->min) { | |
174 | w->min = value; | |
175 | } | |
176 | ||
177 | if (value > w->max) { | |
178 | w->max = value; | |
179 | } | |
180 | } | |
181 | } | |
182 | ||
183 | /* Get the minimum value | |
184 | * | |
185 | * @ta: the TimedAverage structure | |
186 | * @ret: the minimum value | |
187 | */ | |
188 | uint64_t timed_average_min(TimedAverage *ta) | |
189 | { | |
190 | TimedAverageWindow *w; | |
96e4deda | 191 | check_expirations(ta, NULL); |
bd797fc1 AG |
192 | w = current_window(ta); |
193 | return w->min < UINT64_MAX ? w->min : 0; | |
194 | } | |
195 | ||
196 | /* Get the average value | |
197 | * | |
198 | * @ta: the TimedAverage structure | |
199 | * @ret: the average value | |
200 | */ | |
201 | uint64_t timed_average_avg(TimedAverage *ta) | |
202 | { | |
203 | TimedAverageWindow *w; | |
96e4deda | 204 | check_expirations(ta, NULL); |
bd797fc1 AG |
205 | w = current_window(ta); |
206 | return w->count > 0 ? w->sum / w->count : 0; | |
207 | } | |
208 | ||
209 | /* Get the maximum value | |
210 | * | |
211 | * @ta: the TimedAverage structure | |
212 | * @ret: the maximum value | |
213 | */ | |
214 | uint64_t timed_average_max(TimedAverage *ta) | |
215 | { | |
96e4deda | 216 | check_expirations(ta, NULL); |
bd797fc1 AG |
217 | return current_window(ta)->max; |
218 | } | |
96e4deda AG |
219 | |
220 | /* Get the sum of all accounted values | |
221 | * @ta: the TimedAverage structure | |
222 | * @elapsed: if non-NULL, the elapsed time (in ns) will be stored here | |
223 | * @ret: the sum of all accounted values | |
224 | */ | |
225 | uint64_t timed_average_sum(TimedAverage *ta, uint64_t *elapsed) | |
226 | { | |
227 | TimedAverageWindow *w; | |
228 | check_expirations(ta, elapsed); | |
229 | w = current_window(ta); | |
230 | return w->sum; | |
231 | } |