]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - virt/kvm/kvm_main.c
KVM: Terminate memslot walks via used_slots
[thirdparty/kernel/stable.git] / virt / kvm / kvm_main.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9611c187 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
6aa8b732
AK
14 */
15
af669ac6 16#include <kvm/iodev.h>
6aa8b732 17
edf88417 18#include <linux/kvm_host.h>
6aa8b732
AK
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
6aa8b732 22#include <linux/percpu.h>
6aa8b732
AK
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
6aa8b732 26#include <linux/reboot.h>
6aa8b732
AK
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
fb3600cc 30#include <linux/syscore_ops.h>
774c47f1 31#include <linux/cpu.h>
174cd4b1 32#include <linux/sched/signal.h>
6e84f315 33#include <linux/sched/mm.h>
03441a34 34#include <linux/sched/stat.h>
d9e368d6
AK
35#include <linux/cpumask.h>
36#include <linux/smp.h>
d6d28168 37#include <linux/anon_inodes.h>
04d2cc77 38#include <linux/profile.h>
7aa81cc0 39#include <linux/kvm_para.h>
6fc138d2 40#include <linux/pagemap.h>
8d4e1288 41#include <linux/mman.h>
35149e21 42#include <linux/swap.h>
e56d532f 43#include <linux/bitops.h>
547de29e 44#include <linux/spinlock.h>
6ff5894c 45#include <linux/compat.h>
bc6678a3 46#include <linux/srcu.h>
8f0b1ab6 47#include <linux/hugetlb.h>
5a0e3ad6 48#include <linux/slab.h>
743eeb0b
SL
49#include <linux/sort.h>
50#include <linux/bsearch.h>
c011d23b 51#include <linux/io.h>
2eb06c30 52#include <linux/lockdep.h>
c57c8046 53#include <linux/kthread.h>
6aa8b732 54
e495606d 55#include <asm/processor.h>
2ea75be3 56#include <asm/ioctl.h>
7c0f6ba6 57#include <linux/uaccess.h>
3e021bf5 58#include <asm/pgtable.h>
6aa8b732 59
5f94c174 60#include "coalesced_mmio.h"
af585b92 61#include "async_pf.h"
3c3c29fd 62#include "vfio.h"
5f94c174 63
229456fc
MT
64#define CREATE_TRACE_POINTS
65#include <trace/events/kvm.h>
66
536a6f88
JF
67/* Worst case buffer size needed for holding an integer. */
68#define ITOA_MAX_LEN 12
69
6aa8b732
AK
70MODULE_AUTHOR("Qumranet");
71MODULE_LICENSE("GPL");
72
920552b2 73/* Architectures should define their poll value according to the halt latency */
ec76d819 74unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
039c5d1b 75module_param(halt_poll_ns, uint, 0644);
ec76d819 76EXPORT_SYMBOL_GPL(halt_poll_ns);
f7819512 77
aca6ff29 78/* Default doubles per-vcpu halt_poll_ns. */
ec76d819 79unsigned int halt_poll_ns_grow = 2;
039c5d1b 80module_param(halt_poll_ns_grow, uint, 0644);
ec76d819 81EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
aca6ff29 82
49113d36
NW
83/* The start value to grow halt_poll_ns from */
84unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85module_param(halt_poll_ns_grow_start, uint, 0644);
86EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
aca6ff29 88/* Default resets per-vcpu halt_poll_ns . */
ec76d819 89unsigned int halt_poll_ns_shrink;
039c5d1b 90module_param(halt_poll_ns_shrink, uint, 0644);
ec76d819 91EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
aca6ff29 92
fa40a821
MT
93/*
94 * Ordering of locks:
95 *
b7d409de 96 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
fa40a821
MT
97 */
98
0d9ce162 99DEFINE_MUTEX(kvm_lock);
4a937f96 100static DEFINE_RAW_SPINLOCK(kvm_count_lock);
e9b11c17 101LIST_HEAD(vm_list);
133de902 102
7f59f492 103static cpumask_var_t cpus_hardware_enabled;
f4fee932 104static int kvm_usage_count;
10474ae8 105static atomic_t hardware_enable_failed;
1b6c0168 106
aaba298c 107static struct kmem_cache *kvm_vcpu_cache;
1165f5fe 108
15ad7146 109static __read_mostly struct preempt_ops kvm_preempt_ops;
7495e22b 110static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
15ad7146 111
76f7c879 112struct dentry *kvm_debugfs_dir;
e23a808b 113EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
6aa8b732 114
536a6f88 115static int kvm_debugfs_num_entries;
09cbcef6 116static const struct file_operations stat_fops_per_vm;
536a6f88 117
bccf2150
AK
118static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
de8e5d74 120#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
121static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg);
7ddfd3e0
MZ
123#define KVM_COMPAT(c) .compat_ioctl = (c)
124#else
9cb09e7c
MZ
125/*
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 * passed to a compat task, let the ioctls fail.
131 */
7ddfd3e0
MZ
132static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 unsigned long arg) { return -EINVAL; }
b9876e6d
MZ
134
135static int kvm_no_compat_open(struct inode *inode, struct file *file)
136{
137 return is_compat_task() ? -ENODEV : 0;
138}
139#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140 .open = kvm_no_compat_open
1dda606c 141#endif
10474ae8
AG
142static int hardware_enable_all(void);
143static void hardware_disable_all(void);
bccf2150 144
e93f8a0f 145static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
7940876e 146
bc009e43 147static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
e93f8a0f 148
52480137 149__visible bool kvm_rebooting;
b7c4145b 150EXPORT_SYMBOL_GPL(kvm_rebooting);
4ecac3fd 151
54dee993
MT
152static bool largepages_enabled = true;
153
286de8f6
CI
154#define KVM_EVENT_CREATE_VM 0
155#define KVM_EVENT_DESTROY_VM 1
156static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157static unsigned long long kvm_createvm_count;
158static unsigned long long kvm_active_vms;
159
93065ac7
MH
160__weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 unsigned long start, unsigned long end, bool blockable)
b1394e74 162{
93065ac7 163 return 0;
b1394e74
RK
164}
165
a78986aa
SC
166bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
167{
168 /*
169 * The metadata used by is_zone_device_page() to determine whether or
170 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171 * the device has been pinned, e.g. by get_user_pages(). WARN if the
172 * page_count() is zero to help detect bad usage of this helper.
173 */
174 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
175 return false;
176
177 return is_zone_device_page(pfn_to_page(pfn));
178}
179
ba049e93 180bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
cbff90a7 181{
a78986aa
SC
182 /*
183 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
184 * perspective they are "normal" pages, albeit with slightly different
185 * usage rules.
186 */
11feeb49 187 if (pfn_valid(pfn))
a78986aa 188 return PageReserved(pfn_to_page(pfn)) &&
7df003c8 189 !is_zero_pfn(pfn) &&
a78986aa 190 !kvm_is_zone_device_pfn(pfn);
cbff90a7
BAY
191
192 return true;
193}
194
005ba37c
SC
195bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
196{
197 struct page *page = pfn_to_page(pfn);
198
199 if (!PageTransCompoundMap(page))
200 return false;
201
202 return is_transparent_hugepage(compound_head(page));
203}
204
bccf2150
AK
205/*
206 * Switches to specified vcpu, until a matching vcpu_put()
207 */
ec7660cc 208void vcpu_load(struct kvm_vcpu *vcpu)
6aa8b732 209{
ec7660cc 210 int cpu = get_cpu();
7495e22b
PB
211
212 __this_cpu_write(kvm_running_vcpu, vcpu);
15ad7146 213 preempt_notifier_register(&vcpu->preempt_notifier);
313a3dc7 214 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146 215 put_cpu();
6aa8b732 216}
2f1fe811 217EXPORT_SYMBOL_GPL(vcpu_load);
6aa8b732 218
313a3dc7 219void vcpu_put(struct kvm_vcpu *vcpu)
6aa8b732 220{
15ad7146 221 preempt_disable();
313a3dc7 222 kvm_arch_vcpu_put(vcpu);
15ad7146 223 preempt_notifier_unregister(&vcpu->preempt_notifier);
7495e22b 224 __this_cpu_write(kvm_running_vcpu, NULL);
15ad7146 225 preempt_enable();
6aa8b732 226}
2f1fe811 227EXPORT_SYMBOL_GPL(vcpu_put);
6aa8b732 228
7a97cec2
PB
229/* TODO: merge with kvm_arch_vcpu_should_kick */
230static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231{
232 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233
234 /*
235 * We need to wait for the VCPU to reenable interrupts and get out of
236 * READING_SHADOW_PAGE_TABLES mode.
237 */
238 if (req & KVM_REQUEST_WAIT)
239 return mode != OUTSIDE_GUEST_MODE;
240
241 /*
242 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 */
244 return mode == IN_GUEST_MODE;
245}
246
d9e368d6
AK
247static void ack_flush(void *_completed)
248{
d9e368d6
AK
249}
250
b49defe8
PB
251static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
252{
253 if (unlikely(!cpus))
254 cpus = cpu_online_mask;
255
256 if (cpumask_empty(cpus))
257 return false;
258
259 smp_call_function_many(cpus, ack_flush, NULL, wait);
260 return true;
261}
262
7053df4e
VK
263bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
264 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
d9e368d6 265{
597a5f55 266 int i, cpu, me;
d9e368d6 267 struct kvm_vcpu *vcpu;
7053df4e 268 bool called;
6ef7a1bc 269
3cba4130 270 me = get_cpu();
7053df4e 271
988a2cae 272 kvm_for_each_vcpu(i, vcpu, kvm) {
a812297c 273 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
7053df4e
VK
274 continue;
275
3cba4130 276 kvm_make_request(req, vcpu);
d9e368d6 277 cpu = vcpu->cpu;
6b7e2d09 278
178f02ff
RK
279 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
280 continue;
6c6e8360 281
7053df4e 282 if (tmp != NULL && cpu != -1 && cpu != me &&
7a97cec2 283 kvm_request_needs_ipi(vcpu, req))
7053df4e 284 __cpumask_set_cpu(cpu, tmp);
49846896 285 }
7053df4e
VK
286
287 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
3cba4130 288 put_cpu();
7053df4e
VK
289
290 return called;
291}
292
293bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
294{
295 cpumask_var_t cpus;
296 bool called;
7053df4e
VK
297
298 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299
a812297c 300 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
7053df4e 301
6ef7a1bc 302 free_cpumask_var(cpus);
49846896 303 return called;
d9e368d6
AK
304}
305
a6d51016 306#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
49846896 307void kvm_flush_remote_tlbs(struct kvm *kvm)
2e53d63a 308{
4ae3cb3a
LT
309 /*
310 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
311 * kvm_make_all_cpus_request.
312 */
313 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
314
315 /*
316 * We want to publish modifications to the page tables before reading
317 * mode. Pairs with a memory barrier in arch-specific code.
318 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
319 * and smp_mb in walk_shadow_page_lockless_begin/end.
320 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
321 *
322 * There is already an smp_mb__after_atomic() before
323 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
324 * barrier here.
325 */
b08660e5
TL
326 if (!kvm_arch_flush_remote_tlb(kvm)
327 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
49846896 328 ++kvm->stat.remote_tlb_flush;
a086f6a1 329 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
2e53d63a 330}
2ba9f0d8 331EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
a6d51016 332#endif
2e53d63a 333
49846896
RR
334void kvm_reload_remote_mmus(struct kvm *kvm)
335{
445b8236 336 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
49846896 337}
2e53d63a 338
8bd826d6 339static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
fb3f0f51 340{
fb3f0f51
RR
341 mutex_init(&vcpu->mutex);
342 vcpu->cpu = -1;
fb3f0f51
RR
343 vcpu->kvm = kvm;
344 vcpu->vcpu_id = id;
34bb10b7 345 vcpu->pid = NULL;
8577370f 346 init_swait_queue_head(&vcpu->wq);
af585b92 347 kvm_async_pf_vcpu_init(vcpu);
fb3f0f51 348
bf9f6ac8
FW
349 vcpu->pre_pcpu = -1;
350 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
351
4c088493
R
352 kvm_vcpu_set_in_spin_loop(vcpu, false);
353 kvm_vcpu_set_dy_eligible(vcpu, false);
3a08a8f9 354 vcpu->preempted = false;
d73eb57b 355 vcpu->ready = false;
d5c48deb 356 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
fb3f0f51 357}
fb3f0f51 358
4543bdc0
SC
359void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
360{
361 kvm_arch_vcpu_destroy(vcpu);
e529ef66 362
9941d224
SC
363 /*
364 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
365 * the vcpu->pid pointer, and at destruction time all file descriptors
366 * are already gone.
367 */
368 put_pid(rcu_dereference_protected(vcpu->pid, 1));
369
8bd826d6 370 free_page((unsigned long)vcpu->run);
e529ef66 371 kmem_cache_free(kvm_vcpu_cache, vcpu);
4543bdc0
SC
372}
373EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
374
e930bffe
AA
375#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
376static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
377{
378 return container_of(mn, struct kvm, mmu_notifier);
379}
380
3da0dd43
IE
381static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
382 struct mm_struct *mm,
383 unsigned long address,
384 pte_t pte)
385{
386 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 387 int idx;
3da0dd43 388
bc6678a3 389 idx = srcu_read_lock(&kvm->srcu);
3da0dd43
IE
390 spin_lock(&kvm->mmu_lock);
391 kvm->mmu_notifier_seq++;
0cf853c5
LT
392
393 if (kvm_set_spte_hva(kvm, address, pte))
394 kvm_flush_remote_tlbs(kvm);
395
3da0dd43 396 spin_unlock(&kvm->mmu_lock);
bc6678a3 397 srcu_read_unlock(&kvm->srcu, idx);
3da0dd43
IE
398}
399
93065ac7 400static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
5d6527a7 401 const struct mmu_notifier_range *range)
e930bffe
AA
402{
403 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 404 int need_tlb_flush = 0, idx;
93065ac7 405 int ret;
e930bffe 406
bc6678a3 407 idx = srcu_read_lock(&kvm->srcu);
e930bffe
AA
408 spin_lock(&kvm->mmu_lock);
409 /*
410 * The count increase must become visible at unlock time as no
411 * spte can be established without taking the mmu_lock and
412 * count is also read inside the mmu_lock critical section.
413 */
414 kvm->mmu_notifier_count++;
5d6527a7 415 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
a4ee1ca4 416 need_tlb_flush |= kvm->tlbs_dirty;
e930bffe
AA
417 /* we've to flush the tlb before the pages can be freed */
418 if (need_tlb_flush)
419 kvm_flush_remote_tlbs(kvm);
565f3be2
TY
420
421 spin_unlock(&kvm->mmu_lock);
b1394e74 422
5d6527a7 423 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
dfcd6660
JG
424 range->end,
425 mmu_notifier_range_blockable(range));
b1394e74 426
565f3be2 427 srcu_read_unlock(&kvm->srcu, idx);
93065ac7
MH
428
429 return ret;
e930bffe
AA
430}
431
432static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
5d6527a7 433 const struct mmu_notifier_range *range)
e930bffe
AA
434{
435 struct kvm *kvm = mmu_notifier_to_kvm(mn);
436
437 spin_lock(&kvm->mmu_lock);
438 /*
439 * This sequence increase will notify the kvm page fault that
440 * the page that is going to be mapped in the spte could have
441 * been freed.
442 */
443 kvm->mmu_notifier_seq++;
a355aa54 444 smp_wmb();
e930bffe
AA
445 /*
446 * The above sequence increase must be visible before the
a355aa54
PM
447 * below count decrease, which is ensured by the smp_wmb above
448 * in conjunction with the smp_rmb in mmu_notifier_retry().
e930bffe
AA
449 */
450 kvm->mmu_notifier_count--;
451 spin_unlock(&kvm->mmu_lock);
452
453 BUG_ON(kvm->mmu_notifier_count < 0);
454}
455
456static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
457 struct mm_struct *mm,
57128468
ALC
458 unsigned long start,
459 unsigned long end)
e930bffe
AA
460{
461 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 462 int young, idx;
e930bffe 463
bc6678a3 464 idx = srcu_read_lock(&kvm->srcu);
e930bffe 465 spin_lock(&kvm->mmu_lock);
e930bffe 466
57128468 467 young = kvm_age_hva(kvm, start, end);
e930bffe
AA
468 if (young)
469 kvm_flush_remote_tlbs(kvm);
470
565f3be2
TY
471 spin_unlock(&kvm->mmu_lock);
472 srcu_read_unlock(&kvm->srcu, idx);
473
e930bffe
AA
474 return young;
475}
476
1d7715c6
VD
477static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
478 struct mm_struct *mm,
479 unsigned long start,
480 unsigned long end)
481{
482 struct kvm *kvm = mmu_notifier_to_kvm(mn);
483 int young, idx;
484
485 idx = srcu_read_lock(&kvm->srcu);
486 spin_lock(&kvm->mmu_lock);
487 /*
488 * Even though we do not flush TLB, this will still adversely
489 * affect performance on pre-Haswell Intel EPT, where there is
490 * no EPT Access Bit to clear so that we have to tear down EPT
491 * tables instead. If we find this unacceptable, we can always
492 * add a parameter to kvm_age_hva so that it effectively doesn't
493 * do anything on clear_young.
494 *
495 * Also note that currently we never issue secondary TLB flushes
496 * from clear_young, leaving this job up to the regular system
497 * cadence. If we find this inaccurate, we might come up with a
498 * more sophisticated heuristic later.
499 */
500 young = kvm_age_hva(kvm, start, end);
501 spin_unlock(&kvm->mmu_lock);
502 srcu_read_unlock(&kvm->srcu, idx);
503
504 return young;
505}
506
8ee53820
AA
507static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
508 struct mm_struct *mm,
509 unsigned long address)
510{
511 struct kvm *kvm = mmu_notifier_to_kvm(mn);
512 int young, idx;
513
514 idx = srcu_read_lock(&kvm->srcu);
515 spin_lock(&kvm->mmu_lock);
516 young = kvm_test_age_hva(kvm, address);
517 spin_unlock(&kvm->mmu_lock);
518 srcu_read_unlock(&kvm->srcu, idx);
519
520 return young;
521}
522
85db06e5
MT
523static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
524 struct mm_struct *mm)
525{
526 struct kvm *kvm = mmu_notifier_to_kvm(mn);
eda2beda
LJ
527 int idx;
528
529 idx = srcu_read_lock(&kvm->srcu);
2df72e9b 530 kvm_arch_flush_shadow_all(kvm);
eda2beda 531 srcu_read_unlock(&kvm->srcu, idx);
85db06e5
MT
532}
533
e930bffe 534static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
e930bffe
AA
535 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
536 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
537 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
1d7715c6 538 .clear_young = kvm_mmu_notifier_clear_young,
8ee53820 539 .test_young = kvm_mmu_notifier_test_young,
3da0dd43 540 .change_pte = kvm_mmu_notifier_change_pte,
85db06e5 541 .release = kvm_mmu_notifier_release,
e930bffe 542};
4c07b0a4
AK
543
544static int kvm_init_mmu_notifier(struct kvm *kvm)
545{
546 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
547 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
548}
549
550#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
551
552static int kvm_init_mmu_notifier(struct kvm *kvm)
553{
554 return 0;
555}
556
e930bffe
AA
557#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
558
a47d2b07 559static struct kvm_memslots *kvm_alloc_memslots(void)
bf3e05bc
XG
560{
561 int i;
a47d2b07 562 struct kvm_memslots *slots;
bf3e05bc 563
b12ce36a 564 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
a47d2b07
PB
565 if (!slots)
566 return NULL;
567
bf3e05bc 568 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
0577d1ab 569 slots->id_to_index[i] = slots->memslots[i].id = -1;
a47d2b07
PB
570
571 return slots;
572}
573
574static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
575{
576 if (!memslot->dirty_bitmap)
577 return;
578
579 kvfree(memslot->dirty_bitmap);
580 memslot->dirty_bitmap = NULL;
581}
582
e96c81ee 583static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
a47d2b07 584{
e96c81ee 585 kvm_destroy_dirty_bitmap(slot);
a47d2b07 586
e96c81ee 587 kvm_arch_free_memslot(kvm, slot);
a47d2b07 588
e96c81ee
SC
589 slot->flags = 0;
590 slot->npages = 0;
a47d2b07
PB
591}
592
593static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
594{
595 struct kvm_memory_slot *memslot;
596
597 if (!slots)
598 return;
599
600 kvm_for_each_memslot(memslot, slots)
e96c81ee 601 kvm_free_memslot(kvm, memslot);
a47d2b07
PB
602
603 kvfree(slots);
bf3e05bc
XG
604}
605
536a6f88
JF
606static void kvm_destroy_vm_debugfs(struct kvm *kvm)
607{
608 int i;
609
610 if (!kvm->debugfs_dentry)
611 return;
612
613 debugfs_remove_recursive(kvm->debugfs_dentry);
614
9d5a1dce
LC
615 if (kvm->debugfs_stat_data) {
616 for (i = 0; i < kvm_debugfs_num_entries; i++)
617 kfree(kvm->debugfs_stat_data[i]);
618 kfree(kvm->debugfs_stat_data);
619 }
536a6f88
JF
620}
621
622static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
623{
624 char dir_name[ITOA_MAX_LEN * 2];
625 struct kvm_stat_data *stat_data;
626 struct kvm_stats_debugfs_item *p;
627
628 if (!debugfs_initialized())
629 return 0;
630
631 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
929f45e3 632 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
536a6f88
JF
633
634 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
635 sizeof(*kvm->debugfs_stat_data),
b12ce36a 636 GFP_KERNEL_ACCOUNT);
536a6f88
JF
637 if (!kvm->debugfs_stat_data)
638 return -ENOMEM;
639
640 for (p = debugfs_entries; p->name; p++) {
b12ce36a 641 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
642 if (!stat_data)
643 return -ENOMEM;
644
645 stat_data->kvm = kvm;
09cbcef6 646 stat_data->dbgfs_item = p;
536a6f88 647 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
09cbcef6
MP
648 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
649 kvm->debugfs_dentry, stat_data,
650 &stat_fops_per_vm);
536a6f88
JF
651 }
652 return 0;
653}
654
1aa9b957
JS
655/*
656 * Called after the VM is otherwise initialized, but just before adding it to
657 * the vm_list.
658 */
659int __weak kvm_arch_post_init_vm(struct kvm *kvm)
660{
661 return 0;
662}
663
664/*
665 * Called just after removing the VM from the vm_list, but before doing any
666 * other destruction.
667 */
668void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
669{
670}
671
e08b9637 672static struct kvm *kvm_create_vm(unsigned long type)
6aa8b732 673{
d89f5eff 674 struct kvm *kvm = kvm_arch_alloc_vm();
9121923c
JM
675 int r = -ENOMEM;
676 int i;
6aa8b732 677
d89f5eff
JK
678 if (!kvm)
679 return ERR_PTR(-ENOMEM);
680
e9ad4ec8 681 spin_lock_init(&kvm->mmu_lock);
f1f10076 682 mmgrab(current->mm);
e9ad4ec8
PB
683 kvm->mm = current->mm;
684 kvm_eventfd_init(kvm);
685 mutex_init(&kvm->lock);
686 mutex_init(&kvm->irq_lock);
687 mutex_init(&kvm->slots_lock);
e9ad4ec8
PB
688 INIT_LIST_HEAD(&kvm->devices);
689
1e702d9a
AW
690 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
691
8a44119a
PB
692 if (init_srcu_struct(&kvm->srcu))
693 goto out_err_no_srcu;
694 if (init_srcu_struct(&kvm->irq_srcu))
695 goto out_err_no_irq_srcu;
696
e2d3fcaf 697 refcount_set(&kvm->users_count, 1);
f481b069 698 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4bd518f1 699 struct kvm_memslots *slots = kvm_alloc_memslots();
9121923c 700
4bd518f1 701 if (!slots)
a97b0e77 702 goto out_err_no_arch_destroy_vm;
0e32958e 703 /* Generations must be different for each address space. */
164bf7e5 704 slots->generation = i;
4bd518f1 705 rcu_assign_pointer(kvm->memslots[i], slots);
f481b069 706 }
00f034a1 707
e93f8a0f 708 for (i = 0; i < KVM_NR_BUSES; i++) {
4a12f951 709 rcu_assign_pointer(kvm->buses[i],
b12ce36a 710 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
57e7fbee 711 if (!kvm->buses[i])
a97b0e77 712 goto out_err_no_arch_destroy_vm;
e93f8a0f 713 }
e930bffe 714
e08b9637 715 r = kvm_arch_init_vm(kvm, type);
d89f5eff 716 if (r)
a97b0e77 717 goto out_err_no_arch_destroy_vm;
10474ae8
AG
718
719 r = hardware_enable_all();
720 if (r)
719d93cd 721 goto out_err_no_disable;
10474ae8 722
c77dcacb 723#ifdef CONFIG_HAVE_KVM_IRQFD
136bdfee 724 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
75858a84 725#endif
6aa8b732 726
74b5c5bf 727 r = kvm_init_mmu_notifier(kvm);
1aa9b957
JS
728 if (r)
729 goto out_err_no_mmu_notifier;
730
731 r = kvm_arch_post_init_vm(kvm);
74b5c5bf
MW
732 if (r)
733 goto out_err;
734
0d9ce162 735 mutex_lock(&kvm_lock);
5e58cfe4 736 list_add(&kvm->vm_list, &vm_list);
0d9ce162 737 mutex_unlock(&kvm_lock);
d89f5eff 738
2ecd9d29
PZ
739 preempt_notifier_inc();
740
f17abe9a 741 return kvm;
10474ae8
AG
742
743out_err:
1aa9b957
JS
744#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
745 if (kvm->mmu_notifier.ops)
746 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
747#endif
748out_err_no_mmu_notifier:
10474ae8 749 hardware_disable_all();
719d93cd 750out_err_no_disable:
a97b0e77 751 kvm_arch_destroy_vm(kvm);
a97b0e77 752out_err_no_arch_destroy_vm:
e2d3fcaf 753 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
e93f8a0f 754 for (i = 0; i < KVM_NR_BUSES; i++)
3898da94 755 kfree(kvm_get_bus(kvm, i));
f481b069 756 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 757 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
8a44119a
PB
758 cleanup_srcu_struct(&kvm->irq_srcu);
759out_err_no_irq_srcu:
760 cleanup_srcu_struct(&kvm->srcu);
761out_err_no_srcu:
d89f5eff 762 kvm_arch_free_vm(kvm);
e9ad4ec8 763 mmdrop(current->mm);
10474ae8 764 return ERR_PTR(r);
f17abe9a
AK
765}
766
07f0a7bd
SW
767static void kvm_destroy_devices(struct kvm *kvm)
768{
e6e3b5a6 769 struct kvm_device *dev, *tmp;
07f0a7bd 770
a28ebea2
CD
771 /*
772 * We do not need to take the kvm->lock here, because nobody else
773 * has a reference to the struct kvm at this point and therefore
774 * cannot access the devices list anyhow.
775 */
e6e3b5a6
GT
776 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
777 list_del(&dev->vm_node);
07f0a7bd
SW
778 dev->ops->destroy(dev);
779 }
780}
781
f17abe9a
AK
782static void kvm_destroy_vm(struct kvm *kvm)
783{
e93f8a0f 784 int i;
6d4e4c4f
AK
785 struct mm_struct *mm = kvm->mm;
786
286de8f6 787 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
536a6f88 788 kvm_destroy_vm_debugfs(kvm);
ad8ba2cd 789 kvm_arch_sync_events(kvm);
0d9ce162 790 mutex_lock(&kvm_lock);
133de902 791 list_del(&kvm->vm_list);
0d9ce162 792 mutex_unlock(&kvm_lock);
1aa9b957
JS
793 kvm_arch_pre_destroy_vm(kvm);
794
399ec807 795 kvm_free_irq_routing(kvm);
df630b8c 796 for (i = 0; i < KVM_NR_BUSES; i++) {
3898da94 797 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
4a12f951 798
4a12f951
CB
799 if (bus)
800 kvm_io_bus_destroy(bus);
df630b8c
PX
801 kvm->buses[i] = NULL;
802 }
980da6ce 803 kvm_coalesced_mmio_free(kvm);
e930bffe
AA
804#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
805 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
f00be0ca 806#else
2df72e9b 807 kvm_arch_flush_shadow_all(kvm);
5f94c174 808#endif
d19a9cd2 809 kvm_arch_destroy_vm(kvm);
07f0a7bd 810 kvm_destroy_devices(kvm);
f481b069 811 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 812 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820b3fcd 813 cleanup_srcu_struct(&kvm->irq_srcu);
d89f5eff
JK
814 cleanup_srcu_struct(&kvm->srcu);
815 kvm_arch_free_vm(kvm);
2ecd9d29 816 preempt_notifier_dec();
10474ae8 817 hardware_disable_all();
6d4e4c4f 818 mmdrop(mm);
f17abe9a
AK
819}
820
d39f13b0
IE
821void kvm_get_kvm(struct kvm *kvm)
822{
e3736c3e 823 refcount_inc(&kvm->users_count);
d39f13b0
IE
824}
825EXPORT_SYMBOL_GPL(kvm_get_kvm);
826
827void kvm_put_kvm(struct kvm *kvm)
828{
e3736c3e 829 if (refcount_dec_and_test(&kvm->users_count))
d39f13b0
IE
830 kvm_destroy_vm(kvm);
831}
832EXPORT_SYMBOL_GPL(kvm_put_kvm);
833
149487bd
SC
834/*
835 * Used to put a reference that was taken on behalf of an object associated
836 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
837 * of the new file descriptor fails and the reference cannot be transferred to
838 * its final owner. In such cases, the caller is still actively using @kvm and
839 * will fail miserably if the refcount unexpectedly hits zero.
840 */
841void kvm_put_kvm_no_destroy(struct kvm *kvm)
842{
843 WARN_ON(refcount_dec_and_test(&kvm->users_count));
844}
845EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
d39f13b0 846
f17abe9a
AK
847static int kvm_vm_release(struct inode *inode, struct file *filp)
848{
849 struct kvm *kvm = filp->private_data;
850
721eecbf
GH
851 kvm_irqfd_release(kvm);
852
d39f13b0 853 kvm_put_kvm(kvm);
6aa8b732
AK
854 return 0;
855}
856
515a0127
TY
857/*
858 * Allocation size is twice as large as the actual dirty bitmap size.
0dff0846 859 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
515a0127 860 */
a36a57b1
TY
861static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
862{
515a0127 863 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
a36a57b1 864
b12ce36a 865 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
a36a57b1
TY
866 if (!memslot->dirty_bitmap)
867 return -ENOMEM;
868
a36a57b1
TY
869 return 0;
870}
871
bf3e05bc 872/*
0577d1ab
SC
873 * Delete a memslot by decrementing the number of used slots and shifting all
874 * other entries in the array forward one spot.
bf3e05bc 875 */
0577d1ab
SC
876static inline void kvm_memslot_delete(struct kvm_memslots *slots,
877 struct kvm_memory_slot *memslot)
bf3e05bc 878{
063584d4 879 struct kvm_memory_slot *mslots = slots->memslots;
0577d1ab 880 int i;
f85e2cb5 881
0577d1ab
SC
882 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
883 return;
0e60b079 884
0577d1ab
SC
885 slots->used_slots--;
886
887 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
7f379cff
IM
888 mslots[i] = mslots[i + 1];
889 slots->id_to_index[mslots[i].id] = i;
7f379cff 890 }
0577d1ab
SC
891 mslots[i] = *memslot;
892 slots->id_to_index[memslot->id] = -1;
893}
894
895/*
896 * "Insert" a new memslot by incrementing the number of used slots. Returns
897 * the new slot's initial index into the memslots array.
898 */
899static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
900{
901 return slots->used_slots++;
902}
903
904/*
905 * Move a changed memslot backwards in the array by shifting existing slots
906 * with a higher GFN toward the front of the array. Note, the changed memslot
907 * itself is not preserved in the array, i.e. not swapped at this time, only
908 * its new index into the array is tracked. Returns the changed memslot's
909 * current index into the memslots array.
910 */
911static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
912 struct kvm_memory_slot *memslot)
913{
914 struct kvm_memory_slot *mslots = slots->memslots;
915 int i;
916
917 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
918 WARN_ON_ONCE(!slots->used_slots))
919 return -1;
efbeec70
PB
920
921 /*
0577d1ab
SC
922 * Move the target memslot backward in the array by shifting existing
923 * memslots with a higher GFN (than the target memslot) towards the
924 * front of the array.
efbeec70 925 */
0577d1ab
SC
926 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
927 if (memslot->base_gfn > mslots[i + 1].base_gfn)
928 break;
929
930 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
f85e2cb5 931
0577d1ab
SC
932 /* Shift the next memslot forward one and update its index. */
933 mslots[i] = mslots[i + 1];
934 slots->id_to_index[mslots[i].id] = i;
935 }
936 return i;
937}
938
939/*
940 * Move a changed memslot forwards in the array by shifting existing slots with
941 * a lower GFN toward the back of the array. Note, the changed memslot itself
942 * is not preserved in the array, i.e. not swapped at this time, only its new
943 * index into the array is tracked. Returns the changed memslot's final index
944 * into the memslots array.
945 */
946static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
947 struct kvm_memory_slot *memslot,
948 int start)
949{
950 struct kvm_memory_slot *mslots = slots->memslots;
951 int i;
952
953 for (i = start; i > 0; i--) {
954 if (memslot->base_gfn < mslots[i - 1].base_gfn)
955 break;
956
957 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
958
959 /* Shift the next memslot back one and update its index. */
960 mslots[i] = mslots[i - 1];
961 slots->id_to_index[mslots[i].id] = i;
962 }
963 return i;
964}
965
966/*
967 * Re-sort memslots based on their GFN to account for an added, deleted, or
968 * moved memslot. Sorting memslots by GFN allows using a binary search during
969 * memslot lookup.
970 *
971 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
972 * at memslots[0] has the highest GFN.
973 *
974 * The sorting algorithm takes advantage of having initially sorted memslots
975 * and knowing the position of the changed memslot. Sorting is also optimized
976 * by not swapping the updated memslot and instead only shifting other memslots
977 * and tracking the new index for the update memslot. Only once its final
978 * index is known is the updated memslot copied into its position in the array.
979 *
980 * - When deleting a memslot, the deleted memslot simply needs to be moved to
981 * the end of the array.
982 *
983 * - When creating a memslot, the algorithm "inserts" the new memslot at the
984 * end of the array and then it forward to its correct location.
985 *
986 * - When moving a memslot, the algorithm first moves the updated memslot
987 * backward to handle the scenario where the memslot's GFN was changed to a
988 * lower value. update_memslots() then falls through and runs the same flow
989 * as creating a memslot to move the memslot forward to handle the scenario
990 * where its GFN was changed to a higher value.
991 *
992 * Note, slots are sorted from highest->lowest instead of lowest->highest for
993 * historical reasons. Originally, invalid memslots where denoted by having
994 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
995 * to the end of the array. The current algorithm uses dedicated logic to
996 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
997 *
998 * The other historical motiviation for highest->lowest was to improve the
999 * performance of memslot lookup. KVM originally used a linear search starting
1000 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1001 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1002 * single memslot above the 4gb boundary. As the largest memslot is also the
1003 * most likely to be referenced, sorting it to the front of the array was
1004 * advantageous. The current binary search starts from the middle of the array
1005 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1006 */
1007static void update_memslots(struct kvm_memslots *slots,
1008 struct kvm_memory_slot *memslot,
1009 enum kvm_mr_change change)
1010{
1011 int i;
1012
1013 if (change == KVM_MR_DELETE) {
1014 kvm_memslot_delete(slots, memslot);
1015 } else {
1016 if (change == KVM_MR_CREATE)
1017 i = kvm_memslot_insert_back(slots);
1018 else
1019 i = kvm_memslot_move_backward(slots, memslot);
1020 i = kvm_memslot_move_forward(slots, memslot, i);
1021
1022 /*
1023 * Copy the memslot to its new position in memslots and update
1024 * its index accordingly.
1025 */
1026 slots->memslots[i] = *memslot;
1027 slots->id_to_index[memslot->id] = i;
1028 }
bf3e05bc
XG
1029}
1030
09170a49 1031static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
a50d64d6 1032{
4d8b81ab
XG
1033 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1034
0f8a4de3 1035#ifdef __KVM_HAVE_READONLY_MEM
4d8b81ab
XG
1036 valid_flags |= KVM_MEM_READONLY;
1037#endif
1038
1039 if (mem->flags & ~valid_flags)
a50d64d6
XG
1040 return -EINVAL;
1041
1042 return 0;
1043}
1044
7ec4fb44 1045static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
f481b069 1046 int as_id, struct kvm_memslots *slots)
7ec4fb44 1047{
f481b069 1048 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
361209e0 1049 u64 gen = old_memslots->generation;
7ec4fb44 1050
361209e0
SC
1051 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1052 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
ee3d1570 1053
f481b069 1054 rcu_assign_pointer(kvm->memslots[as_id], slots);
7ec4fb44 1055 synchronize_srcu_expedited(&kvm->srcu);
e59dbe09 1056
ee3d1570 1057 /*
361209e0 1058 * Increment the new memslot generation a second time, dropping the
00116795 1059 * update in-progress flag and incrementing the generation based on
361209e0
SC
1060 * the number of address spaces. This provides a unique and easily
1061 * identifiable generation number while the memslots are in flux.
1062 */
1063 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1064
1065 /*
4bd518f1
PB
1066 * Generations must be unique even across address spaces. We do not need
1067 * a global counter for that, instead the generation space is evenly split
1068 * across address spaces. For example, with two address spaces, address
164bf7e5
SC
1069 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1070 * use generations 1, 3, 5, ...
ee3d1570 1071 */
164bf7e5 1072 gen += KVM_ADDRESS_SPACE_NUM;
ee3d1570 1073
15248258 1074 kvm_arch_memslots_updated(kvm, gen);
ee3d1570 1075
15248258 1076 slots->generation = gen;
e59dbe09
TY
1077
1078 return old_memslots;
7ec4fb44
GN
1079}
1080
cf47f50b
SC
1081static int kvm_set_memslot(struct kvm *kvm,
1082 const struct kvm_userspace_memory_region *mem,
9d4c197c 1083 struct kvm_memory_slot *old,
cf47f50b
SC
1084 struct kvm_memory_slot *new, int as_id,
1085 enum kvm_mr_change change)
1086{
1087 struct kvm_memory_slot *slot;
1088 struct kvm_memslots *slots;
1089 int r;
1090
1091 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1092 if (!slots)
1093 return -ENOMEM;
1094 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1095
1096 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1097 /*
1098 * Note, the INVALID flag needs to be in the appropriate entry
1099 * in the freshly allocated memslots, not in @old or @new.
1100 */
1101 slot = id_to_memslot(slots, old->id);
1102 slot->flags |= KVM_MEMSLOT_INVALID;
1103
1104 /*
1105 * We can re-use the old memslots, the only difference from the
1106 * newly installed memslots is the invalid flag, which will get
1107 * dropped by update_memslots anyway. We'll also revert to the
1108 * old memslots if preparing the new memory region fails.
1109 */
1110 slots = install_new_memslots(kvm, as_id, slots);
1111
1112 /* From this point no new shadow pages pointing to a deleted,
1113 * or moved, memslot will be created.
1114 *
1115 * validation of sp->gfn happens in:
1116 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1117 * - kvm_is_visible_gfn (mmu_check_root)
1118 */
1119 kvm_arch_flush_shadow_memslot(kvm, slot);
1120 }
1121
1122 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1123 if (r)
1124 goto out_slots;
1125
1126 update_memslots(slots, new, change);
1127 slots = install_new_memslots(kvm, as_id, slots);
1128
1129 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1130
1131 kvfree(slots);
1132 return 0;
1133
1134out_slots:
1135 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1136 slots = install_new_memslots(kvm, as_id, slots);
1137 kvfree(slots);
1138 return r;
1139}
1140
5c0b4f3d
SC
1141static int kvm_delete_memslot(struct kvm *kvm,
1142 const struct kvm_userspace_memory_region *mem,
1143 struct kvm_memory_slot *old, int as_id)
1144{
1145 struct kvm_memory_slot new;
1146 int r;
1147
1148 if (!old->npages)
1149 return -EINVAL;
1150
1151 memset(&new, 0, sizeof(new));
1152 new.id = old->id;
1153
1154 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1155 if (r)
1156 return r;
1157
e96c81ee 1158 kvm_free_memslot(kvm, old);
5c0b4f3d
SC
1159 return 0;
1160}
1161
6aa8b732
AK
1162/*
1163 * Allocate some memory and give it an address in the guest physical address
1164 * space.
1165 *
1166 * Discontiguous memory is allowed, mostly for framebuffers.
f78e0e2e 1167 *
02d5d55b 1168 * Must be called holding kvm->slots_lock for write.
6aa8b732 1169 */
f78e0e2e 1170int __kvm_set_memory_region(struct kvm *kvm,
09170a49 1171 const struct kvm_userspace_memory_region *mem)
6aa8b732 1172{
6aa8b732 1173 struct kvm_memory_slot old, new;
163da372 1174 struct kvm_memory_slot *tmp;
f64c0398 1175 enum kvm_mr_change change;
163da372
SC
1176 int as_id, id;
1177 int r;
6aa8b732 1178
a50d64d6
XG
1179 r = check_memory_region_flags(mem);
1180 if (r)
71a4c30b 1181 return r;
a50d64d6 1182
f481b069
PB
1183 as_id = mem->slot >> 16;
1184 id = (u16)mem->slot;
1185
6aa8b732
AK
1186 /* General sanity checks */
1187 if (mem->memory_size & (PAGE_SIZE - 1))
71a4c30b 1188 return -EINVAL;
6aa8b732 1189 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
71a4c30b 1190 return -EINVAL;
fa3d315a 1191 /* We can read the guest memory with __xxx_user() later on. */
f481b069 1192 if ((id < KVM_USER_MEM_SLOTS) &&
fa3d315a 1193 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
96d4f267 1194 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
9e3bb6b6 1195 mem->memory_size)))
71a4c30b 1196 return -EINVAL;
f481b069 1197 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
71a4c30b 1198 return -EINVAL;
6aa8b732 1199 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
71a4c30b 1200 return -EINVAL;
6aa8b732 1201
5c0b4f3d
SC
1202 /*
1203 * Make a full copy of the old memslot, the pointer will become stale
1204 * when the memslots are re-sorted by update_memslots(), and the old
1205 * memslot needs to be referenced after calling update_memslots(), e.g.
0dff0846 1206 * to free its resources and for arch specific behavior.
5c0b4f3d 1207 */
0577d1ab
SC
1208 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1209 if (tmp) {
1210 old = *tmp;
1211 tmp = NULL;
1212 } else {
1213 memset(&old, 0, sizeof(old));
1214 old.id = id;
1215 }
163da372 1216
5c0b4f3d
SC
1217 if (!mem->memory_size)
1218 return kvm_delete_memslot(kvm, mem, &old, as_id);
1219
f481b069 1220 new.id = id;
163da372
SC
1221 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1222 new.npages = mem->memory_size >> PAGE_SHIFT;
6aa8b732 1223 new.flags = mem->flags;
414de7ab 1224 new.userspace_addr = mem->userspace_addr;
6aa8b732 1225
163da372
SC
1226 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1227 return -EINVAL;
1228
5c0b4f3d
SC
1229 if (!old.npages) {
1230 change = KVM_MR_CREATE;
163da372
SC
1231 new.dirty_bitmap = NULL;
1232 memset(&new.arch, 0, sizeof(new.arch));
5c0b4f3d
SC
1233 } else { /* Modify an existing slot. */
1234 if ((new.userspace_addr != old.userspace_addr) ||
163da372 1235 (new.npages != old.npages) ||
5c0b4f3d 1236 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
71a4c30b 1237 return -EINVAL;
09170a49 1238
163da372 1239 if (new.base_gfn != old.base_gfn)
5c0b4f3d
SC
1240 change = KVM_MR_MOVE;
1241 else if (new.flags != old.flags)
1242 change = KVM_MR_FLAGS_ONLY;
1243 else /* Nothing to change. */
1244 return 0;
163da372
SC
1245
1246 /* Copy dirty_bitmap and arch from the current memslot. */
1247 new.dirty_bitmap = old.dirty_bitmap;
1248 memcpy(&new.arch, &old.arch, sizeof(new.arch));
09170a49 1249 }
6aa8b732 1250
f64c0398 1251 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
0a706bee 1252 /* Check for overlaps */
163da372
SC
1253 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1254 if (tmp->id == id)
0a706bee 1255 continue;
163da372
SC
1256 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1257 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
71a4c30b 1258 return -EEXIST;
0a706bee 1259 }
6aa8b732 1260 }
6aa8b732 1261
414de7ab
SC
1262 /* Allocate/free page dirty bitmap as needed */
1263 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1264 new.dirty_bitmap = NULL;
1265 else if (!new.dirty_bitmap) {
71a4c30b
SC
1266 r = kvm_create_dirty_bitmap(&new);
1267 if (r)
1268 return r;
6aa8b732
AK
1269 }
1270
cf47f50b
SC
1271 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1272 if (r)
1273 goto out_bitmap;
82ce2c96 1274
5c0b4f3d
SC
1275 if (old.dirty_bitmap && !new.dirty_bitmap)
1276 kvm_destroy_dirty_bitmap(&old);
6aa8b732
AK
1277 return 0;
1278
bd0e96fd
SC
1279out_bitmap:
1280 if (new.dirty_bitmap && !old.dirty_bitmap)
1281 kvm_destroy_dirty_bitmap(&new);
6aa8b732 1282 return r;
210c7c4d 1283}
f78e0e2e
SY
1284EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1285
1286int kvm_set_memory_region(struct kvm *kvm,
09170a49 1287 const struct kvm_userspace_memory_region *mem)
f78e0e2e
SY
1288{
1289 int r;
1290
79fac95e 1291 mutex_lock(&kvm->slots_lock);
47ae31e2 1292 r = __kvm_set_memory_region(kvm, mem);
79fac95e 1293 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
1294 return r;
1295}
210c7c4d
IE
1296EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1297
7940876e
SH
1298static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1299 struct kvm_userspace_memory_region *mem)
210c7c4d 1300{
f481b069 1301 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
e0d62c7f 1302 return -EINVAL;
09170a49 1303
47ae31e2 1304 return kvm_set_memory_region(kvm, mem);
6aa8b732
AK
1305}
1306
0dff0846 1307#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2a49f61d
SC
1308/**
1309 * kvm_get_dirty_log - get a snapshot of dirty pages
1310 * @kvm: pointer to kvm instance
1311 * @log: slot id and address to which we copy the log
1312 * @is_dirty: set to '1' if any dirty pages were found
1313 * @memslot: set to the associated memslot, always valid on success
1314 */
1315int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1316 int *is_dirty, struct kvm_memory_slot **memslot)
6aa8b732 1317{
9f6b8029 1318 struct kvm_memslots *slots;
843574a3 1319 int i, as_id, id;
87bf6e7d 1320 unsigned long n;
6aa8b732
AK
1321 unsigned long any = 0;
1322
2a49f61d
SC
1323 *memslot = NULL;
1324 *is_dirty = 0;
1325
f481b069
PB
1326 as_id = log->slot >> 16;
1327 id = (u16)log->slot;
1328 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
843574a3 1329 return -EINVAL;
6aa8b732 1330
f481b069 1331 slots = __kvm_memslots(kvm, as_id);
2a49f61d 1332 *memslot = id_to_memslot(slots, id);
0577d1ab 1333 if (!(*memslot) || !(*memslot)->dirty_bitmap)
843574a3 1334 return -ENOENT;
6aa8b732 1335
2a49f61d
SC
1336 kvm_arch_sync_dirty_log(kvm, *memslot);
1337
1338 n = kvm_dirty_bitmap_bytes(*memslot);
6aa8b732 1339
cd1a4a98 1340 for (i = 0; !any && i < n/sizeof(long); ++i)
2a49f61d 1341 any = (*memslot)->dirty_bitmap[i];
6aa8b732 1342
2a49f61d 1343 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
843574a3 1344 return -EFAULT;
6aa8b732 1345
5bb064dc
ZX
1346 if (any)
1347 *is_dirty = 1;
843574a3 1348 return 0;
6aa8b732 1349}
2ba9f0d8 1350EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
6aa8b732 1351
0dff0846 1352#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 1353/**
b8b00220 1354 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2a31b9db 1355 * and reenable dirty page tracking for the corresponding pages.
ba0513b5
MS
1356 * @kvm: pointer to kvm instance
1357 * @log: slot id and address to which we copy the log
ba0513b5
MS
1358 *
1359 * We need to keep it in mind that VCPU threads can write to the bitmap
1360 * concurrently. So, to avoid losing track of dirty pages we keep the
1361 * following order:
1362 *
1363 * 1. Take a snapshot of the bit and clear it if needed.
1364 * 2. Write protect the corresponding page.
1365 * 3. Copy the snapshot to the userspace.
1366 * 4. Upon return caller flushes TLB's if needed.
1367 *
1368 * Between 2 and 4, the guest may write to the page using the remaining TLB
1369 * entry. This is not a problem because the page is reported dirty using
1370 * the snapshot taken before and step 4 ensures that writes done after
1371 * exiting to userspace will be logged for the next call.
1372 *
1373 */
0dff0846 1374static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
ba0513b5 1375{
9f6b8029 1376 struct kvm_memslots *slots;
ba0513b5 1377 struct kvm_memory_slot *memslot;
58d6db34 1378 int i, as_id, id;
ba0513b5
MS
1379 unsigned long n;
1380 unsigned long *dirty_bitmap;
1381 unsigned long *dirty_bitmap_buffer;
0dff0846 1382 bool flush;
ba0513b5 1383
f481b069
PB
1384 as_id = log->slot >> 16;
1385 id = (u16)log->slot;
1386 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
58d6db34 1387 return -EINVAL;
ba0513b5 1388
f481b069
PB
1389 slots = __kvm_memslots(kvm, as_id);
1390 memslot = id_to_memslot(slots, id);
0577d1ab
SC
1391 if (!memslot || !memslot->dirty_bitmap)
1392 return -ENOENT;
ba0513b5
MS
1393
1394 dirty_bitmap = memslot->dirty_bitmap;
ba0513b5 1395
0dff0846
SC
1396 kvm_arch_sync_dirty_log(kvm, memslot);
1397
ba0513b5 1398 n = kvm_dirty_bitmap_bytes(memslot);
0dff0846 1399 flush = false;
2a31b9db
PB
1400 if (kvm->manual_dirty_log_protect) {
1401 /*
1402 * Unlike kvm_get_dirty_log, we always return false in *flush,
1403 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1404 * is some code duplication between this function and
1405 * kvm_get_dirty_log, but hopefully all architecture
1406 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1407 * can be eliminated.
1408 */
1409 dirty_bitmap_buffer = dirty_bitmap;
1410 } else {
1411 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1412 memset(dirty_bitmap_buffer, 0, n);
ba0513b5 1413
2a31b9db
PB
1414 spin_lock(&kvm->mmu_lock);
1415 for (i = 0; i < n / sizeof(long); i++) {
1416 unsigned long mask;
1417 gfn_t offset;
ba0513b5 1418
2a31b9db
PB
1419 if (!dirty_bitmap[i])
1420 continue;
1421
0dff0846 1422 flush = true;
2a31b9db
PB
1423 mask = xchg(&dirty_bitmap[i], 0);
1424 dirty_bitmap_buffer[i] = mask;
1425
a67794ca
LT
1426 offset = i * BITS_PER_LONG;
1427 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1428 offset, mask);
2a31b9db
PB
1429 }
1430 spin_unlock(&kvm->mmu_lock);
1431 }
1432
0dff0846
SC
1433 if (flush)
1434 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1435
2a31b9db
PB
1436 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1437 return -EFAULT;
1438 return 0;
1439}
0dff0846
SC
1440
1441
1442/**
1443 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1444 * @kvm: kvm instance
1445 * @log: slot id and address to which we copy the log
1446 *
1447 * Steps 1-4 below provide general overview of dirty page logging. See
1448 * kvm_get_dirty_log_protect() function description for additional details.
1449 *
1450 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1451 * always flush the TLB (step 4) even if previous step failed and the dirty
1452 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1453 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1454 * writes will be marked dirty for next log read.
1455 *
1456 * 1. Take a snapshot of the bit and clear it if needed.
1457 * 2. Write protect the corresponding page.
1458 * 3. Copy the snapshot to the userspace.
1459 * 4. Flush TLB's if needed.
1460 */
1461static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1462 struct kvm_dirty_log *log)
1463{
1464 int r;
1465
1466 mutex_lock(&kvm->slots_lock);
1467
1468 r = kvm_get_dirty_log_protect(kvm, log);
1469
1470 mutex_unlock(&kvm->slots_lock);
1471 return r;
1472}
2a31b9db
PB
1473
1474/**
1475 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1476 * and reenable dirty page tracking for the corresponding pages.
1477 * @kvm: pointer to kvm instance
1478 * @log: slot id and address from which to fetch the bitmap of dirty pages
1479 */
0dff0846
SC
1480static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1481 struct kvm_clear_dirty_log *log)
2a31b9db
PB
1482{
1483 struct kvm_memslots *slots;
1484 struct kvm_memory_slot *memslot;
98938aa8 1485 int as_id, id;
2a31b9db 1486 gfn_t offset;
98938aa8 1487 unsigned long i, n;
2a31b9db
PB
1488 unsigned long *dirty_bitmap;
1489 unsigned long *dirty_bitmap_buffer;
0dff0846 1490 bool flush;
2a31b9db
PB
1491
1492 as_id = log->slot >> 16;
1493 id = (u16)log->slot;
1494 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1495 return -EINVAL;
1496
76d58e0f 1497 if (log->first_page & 63)
2a31b9db
PB
1498 return -EINVAL;
1499
1500 slots = __kvm_memslots(kvm, as_id);
1501 memslot = id_to_memslot(slots, id);
0577d1ab
SC
1502 if (!memslot || !memslot->dirty_bitmap)
1503 return -ENOENT;
2a31b9db
PB
1504
1505 dirty_bitmap = memslot->dirty_bitmap;
2a31b9db 1506
4ddc9204 1507 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
98938aa8
TB
1508
1509 if (log->first_page > memslot->npages ||
76d58e0f
PB
1510 log->num_pages > memslot->npages - log->first_page ||
1511 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1512 return -EINVAL;
98938aa8 1513
0dff0846
SC
1514 kvm_arch_sync_dirty_log(kvm, memslot);
1515
1516 flush = false;
2a31b9db
PB
1517 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1518 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1519 return -EFAULT;
ba0513b5 1520
2a31b9db 1521 spin_lock(&kvm->mmu_lock);
53eac7a8
PX
1522 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1523 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2a31b9db
PB
1524 i++, offset += BITS_PER_LONG) {
1525 unsigned long mask = *dirty_bitmap_buffer++;
1526 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1527 if (!mask)
ba0513b5
MS
1528 continue;
1529
2a31b9db 1530 mask &= atomic_long_fetch_andnot(mask, p);
ba0513b5 1531
2a31b9db
PB
1532 /*
1533 * mask contains the bits that really have been cleared. This
1534 * never includes any bits beyond the length of the memslot (if
1535 * the length is not aligned to 64 pages), therefore it is not
1536 * a problem if userspace sets them in log->dirty_bitmap.
1537 */
58d2930f 1538 if (mask) {
0dff0846 1539 flush = true;
58d2930f
TY
1540 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1541 offset, mask);
1542 }
ba0513b5 1543 }
ba0513b5 1544 spin_unlock(&kvm->mmu_lock);
2a31b9db 1545
0dff0846
SC
1546 if (flush)
1547 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1548
58d6db34 1549 return 0;
ba0513b5 1550}
0dff0846
SC
1551
1552static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1553 struct kvm_clear_dirty_log *log)
1554{
1555 int r;
1556
1557 mutex_lock(&kvm->slots_lock);
1558
1559 r = kvm_clear_dirty_log_protect(kvm, log);
1560
1561 mutex_unlock(&kvm->slots_lock);
1562 return r;
1563}
1564#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 1565
db3fe4eb
TY
1566bool kvm_largepages_enabled(void)
1567{
1568 return largepages_enabled;
1569}
1570
54dee993
MT
1571void kvm_disable_largepages(void)
1572{
1573 largepages_enabled = false;
1574}
1575EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1576
49c7754c
GN
1577struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1578{
1579 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1580}
a1f4d395 1581EXPORT_SYMBOL_GPL(gfn_to_memslot);
6aa8b732 1582
8e73485c
PB
1583struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1584{
1585 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1586}
1587
33e94154 1588bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
e0d62c7f 1589{
bf3e05bc 1590 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
e0d62c7f 1591
bbacc0c1 1592 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
bf3e05bc 1593 memslot->flags & KVM_MEMSLOT_INVALID)
33e94154 1594 return false;
e0d62c7f 1595
33e94154 1596 return true;
e0d62c7f
IE
1597}
1598EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1599
f9b84e19 1600unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
8f0b1ab6
JR
1601{
1602 struct vm_area_struct *vma;
1603 unsigned long addr, size;
1604
1605 size = PAGE_SIZE;
1606
42cde48b 1607 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
8f0b1ab6
JR
1608 if (kvm_is_error_hva(addr))
1609 return PAGE_SIZE;
1610
1611 down_read(&current->mm->mmap_sem);
1612 vma = find_vma(current->mm, addr);
1613 if (!vma)
1614 goto out;
1615
1616 size = vma_kernel_pagesize(vma);
1617
1618out:
1619 up_read(&current->mm->mmap_sem);
1620
1621 return size;
1622}
1623
4d8b81ab
XG
1624static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1625{
1626 return slot->flags & KVM_MEM_READONLY;
1627}
1628
4d8b81ab
XG
1629static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1630 gfn_t *nr_pages, bool write)
539cb660 1631{
bc6678a3 1632 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
ca3a490c 1633 return KVM_HVA_ERR_BAD;
48987781 1634
4d8b81ab
XG
1635 if (memslot_is_readonly(slot) && write)
1636 return KVM_HVA_ERR_RO_BAD;
48987781
XG
1637
1638 if (nr_pages)
1639 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1640
4d8b81ab 1641 return __gfn_to_hva_memslot(slot, gfn);
539cb660 1642}
48987781 1643
4d8b81ab
XG
1644static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1645 gfn_t *nr_pages)
1646{
1647 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
539cb660 1648}
48987781 1649
4d8b81ab 1650unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
7940876e 1651 gfn_t gfn)
4d8b81ab
XG
1652{
1653 return gfn_to_hva_many(slot, gfn, NULL);
1654}
1655EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1656
48987781
XG
1657unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1658{
49c7754c 1659 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
48987781 1660}
0d150298 1661EXPORT_SYMBOL_GPL(gfn_to_hva);
539cb660 1662
8e73485c
PB
1663unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1664{
1665 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1666}
1667EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1668
86ab8cff 1669/*
970c0d4b
WY
1670 * Return the hva of a @gfn and the R/W attribute if possible.
1671 *
1672 * @slot: the kvm_memory_slot which contains @gfn
1673 * @gfn: the gfn to be translated
1674 * @writable: used to return the read/write attribute of the @slot if the hva
1675 * is valid and @writable is not NULL
86ab8cff 1676 */
64d83126
CD
1677unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1678 gfn_t gfn, bool *writable)
86ab8cff 1679{
a2ac07fe
GN
1680 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1681
1682 if (!kvm_is_error_hva(hva) && writable)
ba6a3541
PB
1683 *writable = !memslot_is_readonly(slot);
1684
a2ac07fe 1685 return hva;
86ab8cff
XG
1686}
1687
64d83126
CD
1688unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1689{
1690 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1691
1692 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1693}
1694
8e73485c
PB
1695unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1696{
1697 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1698
1699 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1700}
1701
fafc3dba
HY
1702static inline int check_user_page_hwpoison(unsigned long addr)
1703{
0d731759 1704 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
fafc3dba 1705
0d731759 1706 rc = get_user_pages(addr, 1, flags, NULL, NULL);
fafc3dba
HY
1707 return rc == -EHWPOISON;
1708}
1709
2fc84311 1710/*
b9b33da2
PB
1711 * The fast path to get the writable pfn which will be stored in @pfn,
1712 * true indicates success, otherwise false is returned. It's also the
311497e0 1713 * only part that runs if we can in atomic context.
2fc84311 1714 */
b9b33da2
PB
1715static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1716 bool *writable, kvm_pfn_t *pfn)
954bbbc2 1717{
8d4e1288 1718 struct page *page[1];
2fc84311 1719 int npages;
954bbbc2 1720
12ce13fe
XG
1721 /*
1722 * Fast pin a writable pfn only if it is a write fault request
1723 * or the caller allows to map a writable pfn for a read fault
1724 * request.
1725 */
1726 if (!(write_fault || writable))
1727 return false;
612819c3 1728
2fc84311
XG
1729 npages = __get_user_pages_fast(addr, 1, 1, page);
1730 if (npages == 1) {
1731 *pfn = page_to_pfn(page[0]);
612819c3 1732
2fc84311
XG
1733 if (writable)
1734 *writable = true;
1735 return true;
1736 }
af585b92 1737
2fc84311
XG
1738 return false;
1739}
612819c3 1740
2fc84311
XG
1741/*
1742 * The slow path to get the pfn of the specified host virtual address,
1743 * 1 indicates success, -errno is returned if error is detected.
1744 */
1745static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
ba049e93 1746 bool *writable, kvm_pfn_t *pfn)
2fc84311 1747{
ce53053c
AV
1748 unsigned int flags = FOLL_HWPOISON;
1749 struct page *page;
2fc84311 1750 int npages = 0;
612819c3 1751
2fc84311
XG
1752 might_sleep();
1753
1754 if (writable)
1755 *writable = write_fault;
1756
ce53053c
AV
1757 if (write_fault)
1758 flags |= FOLL_WRITE;
1759 if (async)
1760 flags |= FOLL_NOWAIT;
d4944b0e 1761
ce53053c 1762 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2fc84311
XG
1763 if (npages != 1)
1764 return npages;
1765
1766 /* map read fault as writable if possible */
12ce13fe 1767 if (unlikely(!write_fault) && writable) {
ce53053c 1768 struct page *wpage;
2fc84311 1769
ce53053c 1770 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
2fc84311 1771 *writable = true;
ce53053c
AV
1772 put_page(page);
1773 page = wpage;
612819c3 1774 }
887c08ac 1775 }
ce53053c 1776 *pfn = page_to_pfn(page);
2fc84311
XG
1777 return npages;
1778}
539cb660 1779
4d8b81ab
XG
1780static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1781{
1782 if (unlikely(!(vma->vm_flags & VM_READ)))
1783 return false;
2e2e3738 1784
4d8b81ab
XG
1785 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1786 return false;
887c08ac 1787
4d8b81ab
XG
1788 return true;
1789}
bf998156 1790
92176a8e
PB
1791static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1792 unsigned long addr, bool *async,
a340b3e2
KA
1793 bool write_fault, bool *writable,
1794 kvm_pfn_t *p_pfn)
92176a8e 1795{
add6a0cd
PB
1796 unsigned long pfn;
1797 int r;
1798
1799 r = follow_pfn(vma, addr, &pfn);
1800 if (r) {
1801 /*
1802 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1803 * not call the fault handler, so do it here.
1804 */
1805 bool unlocked = false;
1806 r = fixup_user_fault(current, current->mm, addr,
1807 (write_fault ? FAULT_FLAG_WRITE : 0),
1808 &unlocked);
1809 if (unlocked)
1810 return -EAGAIN;
1811 if (r)
1812 return r;
1813
1814 r = follow_pfn(vma, addr, &pfn);
1815 if (r)
1816 return r;
1817
1818 }
1819
a340b3e2
KA
1820 if (writable)
1821 *writable = true;
add6a0cd
PB
1822
1823 /*
1824 * Get a reference here because callers of *hva_to_pfn* and
1825 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1826 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1827 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1828 * simply do nothing for reserved pfns.
1829 *
1830 * Whoever called remap_pfn_range is also going to call e.g.
1831 * unmap_mapping_range before the underlying pages are freed,
1832 * causing a call to our MMU notifier.
1833 */
1834 kvm_get_pfn(pfn);
1835
1836 *p_pfn = pfn;
92176a8e
PB
1837 return 0;
1838}
1839
12ce13fe
XG
1840/*
1841 * Pin guest page in memory and return its pfn.
1842 * @addr: host virtual address which maps memory to the guest
1843 * @atomic: whether this function can sleep
1844 * @async: whether this function need to wait IO complete if the
1845 * host page is not in the memory
1846 * @write_fault: whether we should get a writable host page
1847 * @writable: whether it allows to map a writable host page for !@write_fault
1848 *
1849 * The function will map a writable host page for these two cases:
1850 * 1): @write_fault = true
1851 * 2): @write_fault = false && @writable, @writable will tell the caller
1852 * whether the mapping is writable.
1853 */
ba049e93 1854static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2fc84311
XG
1855 bool write_fault, bool *writable)
1856{
1857 struct vm_area_struct *vma;
ba049e93 1858 kvm_pfn_t pfn = 0;
92176a8e 1859 int npages, r;
2e2e3738 1860
2fc84311
XG
1861 /* we can do it either atomically or asynchronously, not both */
1862 BUG_ON(atomic && async);
8d4e1288 1863
b9b33da2 1864 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2fc84311
XG
1865 return pfn;
1866
1867 if (atomic)
1868 return KVM_PFN_ERR_FAULT;
1869
1870 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1871 if (npages == 1)
1872 return pfn;
8d4e1288 1873
2fc84311
XG
1874 down_read(&current->mm->mmap_sem);
1875 if (npages == -EHWPOISON ||
1876 (!async && check_user_page_hwpoison(addr))) {
1877 pfn = KVM_PFN_ERR_HWPOISON;
1878 goto exit;
1879 }
1880
add6a0cd 1881retry:
2fc84311
XG
1882 vma = find_vma_intersection(current->mm, addr, addr + 1);
1883
1884 if (vma == NULL)
1885 pfn = KVM_PFN_ERR_FAULT;
92176a8e 1886 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
a340b3e2 1887 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
add6a0cd
PB
1888 if (r == -EAGAIN)
1889 goto retry;
92176a8e
PB
1890 if (r < 0)
1891 pfn = KVM_PFN_ERR_FAULT;
2fc84311 1892 } else {
4d8b81ab 1893 if (async && vma_is_valid(vma, write_fault))
2fc84311
XG
1894 *async = true;
1895 pfn = KVM_PFN_ERR_FAULT;
1896 }
1897exit:
1898 up_read(&current->mm->mmap_sem);
2e2e3738 1899 return pfn;
35149e21
AL
1900}
1901
ba049e93
DW
1902kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1903 bool atomic, bool *async, bool write_fault,
1904 bool *writable)
887c08ac 1905{
4d8b81ab
XG
1906 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1907
b2740d35
PB
1908 if (addr == KVM_HVA_ERR_RO_BAD) {
1909 if (writable)
1910 *writable = false;
4d8b81ab 1911 return KVM_PFN_ERR_RO_FAULT;
b2740d35 1912 }
4d8b81ab 1913
b2740d35
PB
1914 if (kvm_is_error_hva(addr)) {
1915 if (writable)
1916 *writable = false;
81c52c56 1917 return KVM_PFN_NOSLOT;
b2740d35 1918 }
4d8b81ab
XG
1919
1920 /* Do not map writable pfn in the readonly memslot. */
1921 if (writable && memslot_is_readonly(slot)) {
1922 *writable = false;
1923 writable = NULL;
1924 }
1925
1926 return hva_to_pfn(addr, atomic, async, write_fault,
1927 writable);
887c08ac 1928}
3520469d 1929EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
887c08ac 1930
ba049e93 1931kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3
MT
1932 bool *writable)
1933{
e37afc6e
PB
1934 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1935 write_fault, writable);
612819c3
MT
1936}
1937EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1938
ba049e93 1939kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 1940{
4d8b81ab 1941 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
506f0d6f 1942}
e37afc6e 1943EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
506f0d6f 1944
ba049e93 1945kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 1946{
4d8b81ab 1947 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
506f0d6f 1948}
037d92dc 1949EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
506f0d6f 1950
ba049e93 1951kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
1952{
1953 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1954}
1955EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1956
ba049e93 1957kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
1958{
1959 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1960}
1961EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1962
ba049e93 1963kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
1964{
1965 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1966}
1967EXPORT_SYMBOL_GPL(gfn_to_pfn);
1968
ba049e93 1969kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
1970{
1971 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1972}
1973EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1974
d9ef13c2
PB
1975int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1976 struct page **pages, int nr_pages)
48987781
XG
1977{
1978 unsigned long addr;
076b925d 1979 gfn_t entry = 0;
48987781 1980
d9ef13c2 1981 addr = gfn_to_hva_many(slot, gfn, &entry);
48987781
XG
1982 if (kvm_is_error_hva(addr))
1983 return -1;
1984
1985 if (entry < nr_pages)
1986 return 0;
1987
1988 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1989}
1990EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1991
ba049e93 1992static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
a2766325 1993{
81c52c56 1994 if (is_error_noslot_pfn(pfn))
cb9aaa30 1995 return KVM_ERR_PTR_BAD_PAGE;
a2766325 1996
bf4bea8e 1997 if (kvm_is_reserved_pfn(pfn)) {
cb9aaa30 1998 WARN_ON(1);
6cede2e6 1999 return KVM_ERR_PTR_BAD_PAGE;
cb9aaa30 2000 }
a2766325
XG
2001
2002 return pfn_to_page(pfn);
2003}
2004
35149e21
AL
2005struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2006{
ba049e93 2007 kvm_pfn_t pfn;
2e2e3738
AL
2008
2009 pfn = gfn_to_pfn(kvm, gfn);
2e2e3738 2010
a2766325 2011 return kvm_pfn_to_page(pfn);
954bbbc2
AK
2012}
2013EXPORT_SYMBOL_GPL(gfn_to_page);
2014
91724814
BO
2015void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2016{
2017 if (pfn == 0)
2018 return;
2019
2020 if (cache)
2021 cache->pfn = cache->gfn = 0;
2022
2023 if (dirty)
2024 kvm_release_pfn_dirty(pfn);
2025 else
2026 kvm_release_pfn_clean(pfn);
2027}
2028
2029static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2030 struct gfn_to_pfn_cache *cache, u64 gen)
2031{
2032 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2033
2034 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2035 cache->gfn = gfn;
2036 cache->dirty = false;
2037 cache->generation = gen;
2038}
2039
1eff70a9 2040static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
91724814
BO
2041 struct kvm_host_map *map,
2042 struct gfn_to_pfn_cache *cache,
2043 bool atomic)
e45adf66
KA
2044{
2045 kvm_pfn_t pfn;
2046 void *hva = NULL;
2047 struct page *page = KVM_UNMAPPED_PAGE;
1eff70a9 2048 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
91724814 2049 u64 gen = slots->generation;
e45adf66
KA
2050
2051 if (!map)
2052 return -EINVAL;
2053
91724814
BO
2054 if (cache) {
2055 if (!cache->pfn || cache->gfn != gfn ||
2056 cache->generation != gen) {
2057 if (atomic)
2058 return -EAGAIN;
2059 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2060 }
2061 pfn = cache->pfn;
2062 } else {
2063 if (atomic)
2064 return -EAGAIN;
2065 pfn = gfn_to_pfn_memslot(slot, gfn);
2066 }
e45adf66
KA
2067 if (is_error_noslot_pfn(pfn))
2068 return -EINVAL;
2069
2070 if (pfn_valid(pfn)) {
2071 page = pfn_to_page(pfn);
91724814
BO
2072 if (atomic)
2073 hva = kmap_atomic(page);
2074 else
2075 hva = kmap(page);
d30b214d 2076#ifdef CONFIG_HAS_IOMEM
91724814 2077 } else if (!atomic) {
e45adf66 2078 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
91724814
BO
2079 } else {
2080 return -EINVAL;
d30b214d 2081#endif
e45adf66
KA
2082 }
2083
2084 if (!hva)
2085 return -EFAULT;
2086
2087 map->page = page;
2088 map->hva = hva;
2089 map->pfn = pfn;
2090 map->gfn = gfn;
2091
2092 return 0;
2093}
2094
91724814
BO
2095int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2096 struct gfn_to_pfn_cache *cache, bool atomic)
1eff70a9 2097{
91724814
BO
2098 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2099 cache, atomic);
1eff70a9
BO
2100}
2101EXPORT_SYMBOL_GPL(kvm_map_gfn);
2102
e45adf66
KA
2103int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2104{
91724814
BO
2105 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2106 NULL, false);
e45adf66
KA
2107}
2108EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2109
1eff70a9 2110static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
91724814
BO
2111 struct kvm_host_map *map,
2112 struct gfn_to_pfn_cache *cache,
2113 bool dirty, bool atomic)
e45adf66
KA
2114{
2115 if (!map)
2116 return;
2117
2118 if (!map->hva)
2119 return;
2120
91724814
BO
2121 if (map->page != KVM_UNMAPPED_PAGE) {
2122 if (atomic)
2123 kunmap_atomic(map->hva);
2124 else
2125 kunmap(map->page);
2126 }
eb1f2f38 2127#ifdef CONFIG_HAS_IOMEM
91724814 2128 else if (!atomic)
e45adf66 2129 memunmap(map->hva);
91724814
BO
2130 else
2131 WARN_ONCE(1, "Unexpected unmapping in atomic context");
eb1f2f38 2132#endif
e45adf66 2133
91724814 2134 if (dirty)
1eff70a9 2135 mark_page_dirty_in_slot(memslot, map->gfn);
91724814
BO
2136
2137 if (cache)
2138 cache->dirty |= dirty;
2139 else
2140 kvm_release_pfn(map->pfn, dirty, NULL);
e45adf66
KA
2141
2142 map->hva = NULL;
2143 map->page = NULL;
2144}
1eff70a9 2145
91724814
BO
2146int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2147 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
1eff70a9 2148{
91724814
BO
2149 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2150 cache, dirty, atomic);
1eff70a9
BO
2151 return 0;
2152}
2153EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2154
2155void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2156{
91724814
BO
2157 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2158 dirty, false);
1eff70a9 2159}
e45adf66
KA
2160EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2161
8e73485c
PB
2162struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2163{
ba049e93 2164 kvm_pfn_t pfn;
8e73485c
PB
2165
2166 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2167
2168 return kvm_pfn_to_page(pfn);
2169}
2170EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2171
b4231d61
IE
2172void kvm_release_page_clean(struct page *page)
2173{
32cad84f
XG
2174 WARN_ON(is_error_page(page));
2175
35149e21 2176 kvm_release_pfn_clean(page_to_pfn(page));
b4231d61
IE
2177}
2178EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2179
ba049e93 2180void kvm_release_pfn_clean(kvm_pfn_t pfn)
35149e21 2181{
bf4bea8e 2182 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2e2e3738 2183 put_page(pfn_to_page(pfn));
35149e21
AL
2184}
2185EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2186
b4231d61 2187void kvm_release_page_dirty(struct page *page)
8a7ae055 2188{
a2766325
XG
2189 WARN_ON(is_error_page(page));
2190
35149e21
AL
2191 kvm_release_pfn_dirty(page_to_pfn(page));
2192}
2193EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2194
f7a6509f 2195void kvm_release_pfn_dirty(kvm_pfn_t pfn)
35149e21
AL
2196{
2197 kvm_set_pfn_dirty(pfn);
2198 kvm_release_pfn_clean(pfn);
2199}
f7a6509f 2200EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
35149e21 2201
ba049e93 2202void kvm_set_pfn_dirty(kvm_pfn_t pfn)
35149e21 2203{
d29c03a5
ML
2204 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2205 SetPageDirty(pfn_to_page(pfn));
8a7ae055 2206}
35149e21
AL
2207EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2208
ba049e93 2209void kvm_set_pfn_accessed(kvm_pfn_t pfn)
35149e21 2210{
a78986aa 2211 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2e2e3738 2212 mark_page_accessed(pfn_to_page(pfn));
35149e21
AL
2213}
2214EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2215
ba049e93 2216void kvm_get_pfn(kvm_pfn_t pfn)
35149e21 2217{
bf4bea8e 2218 if (!kvm_is_reserved_pfn(pfn))
2e2e3738 2219 get_page(pfn_to_page(pfn));
35149e21
AL
2220}
2221EXPORT_SYMBOL_GPL(kvm_get_pfn);
8a7ae055 2222
195aefde
IE
2223static int next_segment(unsigned long len, int offset)
2224{
2225 if (len > PAGE_SIZE - offset)
2226 return PAGE_SIZE - offset;
2227 else
2228 return len;
2229}
2230
8e73485c
PB
2231static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2232 void *data, int offset, int len)
195aefde 2233{
e0506bcb
IE
2234 int r;
2235 unsigned long addr;
195aefde 2236
8e73485c 2237 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
e0506bcb
IE
2238 if (kvm_is_error_hva(addr))
2239 return -EFAULT;
3180a7fc 2240 r = __copy_from_user(data, (void __user *)addr + offset, len);
e0506bcb 2241 if (r)
195aefde 2242 return -EFAULT;
195aefde
IE
2243 return 0;
2244}
8e73485c
PB
2245
2246int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2247 int len)
2248{
2249 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2250
2251 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2252}
195aefde
IE
2253EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2254
8e73485c
PB
2255int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2256 int offset, int len)
2257{
2258 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2259
2260 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2261}
2262EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2263
195aefde
IE
2264int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2265{
2266 gfn_t gfn = gpa >> PAGE_SHIFT;
2267 int seg;
2268 int offset = offset_in_page(gpa);
2269 int ret;
2270
2271 while ((seg = next_segment(len, offset)) != 0) {
2272 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2273 if (ret < 0)
2274 return ret;
2275 offset = 0;
2276 len -= seg;
2277 data += seg;
2278 ++gfn;
2279 }
2280 return 0;
2281}
2282EXPORT_SYMBOL_GPL(kvm_read_guest);
2283
8e73485c 2284int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
7ec54588 2285{
7ec54588 2286 gfn_t gfn = gpa >> PAGE_SHIFT;
8e73485c 2287 int seg;
7ec54588 2288 int offset = offset_in_page(gpa);
8e73485c
PB
2289 int ret;
2290
2291 while ((seg = next_segment(len, offset)) != 0) {
2292 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2293 if (ret < 0)
2294 return ret;
2295 offset = 0;
2296 len -= seg;
2297 data += seg;
2298 ++gfn;
2299 }
2300 return 0;
2301}
2302EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
7ec54588 2303
8e73485c
PB
2304static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2305 void *data, int offset, unsigned long len)
2306{
2307 int r;
2308 unsigned long addr;
2309
2310 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
7ec54588
MT
2311 if (kvm_is_error_hva(addr))
2312 return -EFAULT;
0aac03f0 2313 pagefault_disable();
3180a7fc 2314 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
0aac03f0 2315 pagefault_enable();
7ec54588
MT
2316 if (r)
2317 return -EFAULT;
2318 return 0;
2319}
7ec54588 2320
8e73485c
PB
2321int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2322 void *data, unsigned long len)
2323{
2324 gfn_t gfn = gpa >> PAGE_SHIFT;
2325 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2326 int offset = offset_in_page(gpa);
2327
2328 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2329}
2330EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2331
2332static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2333 const void *data, int offset, int len)
195aefde 2334{
e0506bcb
IE
2335 int r;
2336 unsigned long addr;
195aefde 2337
251eb841 2338 addr = gfn_to_hva_memslot(memslot, gfn);
e0506bcb
IE
2339 if (kvm_is_error_hva(addr))
2340 return -EFAULT;
8b0cedff 2341 r = __copy_to_user((void __user *)addr + offset, data, len);
e0506bcb 2342 if (r)
195aefde 2343 return -EFAULT;
bc009e43 2344 mark_page_dirty_in_slot(memslot, gfn);
195aefde
IE
2345 return 0;
2346}
8e73485c
PB
2347
2348int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2349 const void *data, int offset, int len)
2350{
2351 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2352
2353 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2354}
195aefde
IE
2355EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2356
8e73485c
PB
2357int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2358 const void *data, int offset, int len)
2359{
2360 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2361
2362 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2363}
2364EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2365
195aefde
IE
2366int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2367 unsigned long len)
2368{
2369 gfn_t gfn = gpa >> PAGE_SHIFT;
2370 int seg;
2371 int offset = offset_in_page(gpa);
2372 int ret;
2373
2374 while ((seg = next_segment(len, offset)) != 0) {
2375 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2376 if (ret < 0)
2377 return ret;
2378 offset = 0;
2379 len -= seg;
2380 data += seg;
2381 ++gfn;
2382 }
2383 return 0;
2384}
ff651cb6 2385EXPORT_SYMBOL_GPL(kvm_write_guest);
195aefde 2386
8e73485c
PB
2387int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2388 unsigned long len)
2389{
2390 gfn_t gfn = gpa >> PAGE_SHIFT;
2391 int seg;
2392 int offset = offset_in_page(gpa);
2393 int ret;
2394
2395 while ((seg = next_segment(len, offset)) != 0) {
2396 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2397 if (ret < 0)
2398 return ret;
2399 offset = 0;
2400 len -= seg;
2401 data += seg;
2402 ++gfn;
2403 }
2404 return 0;
2405}
2406EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2407
5a2d4365
PB
2408static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2409 struct gfn_to_hva_cache *ghc,
2410 gpa_t gpa, unsigned long len)
49c7754c 2411{
49c7754c 2412 int offset = offset_in_page(gpa);
8f964525
AH
2413 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2414 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2415 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2416 gfn_t nr_pages_avail;
49c7754c 2417
6ad1e29f 2418 /* Update ghc->generation before performing any error checks. */
49c7754c 2419 ghc->generation = slots->generation;
6ad1e29f
SC
2420
2421 if (start_gfn > end_gfn) {
2422 ghc->hva = KVM_HVA_ERR_BAD;
2423 return -EINVAL;
2424 }
f1b9dd5e
JM
2425
2426 /*
2427 * If the requested region crosses two memslots, we still
2428 * verify that the entire region is valid here.
2429 */
6ad1e29f 2430 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
f1b9dd5e
JM
2431 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2432 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2433 &nr_pages_avail);
2434 if (kvm_is_error_hva(ghc->hva))
6ad1e29f 2435 return -EFAULT;
f1b9dd5e
JM
2436 }
2437
2438 /* Use the slow path for cross page reads and writes. */
6ad1e29f 2439 if (nr_pages_needed == 1)
49c7754c 2440 ghc->hva += offset;
f1b9dd5e 2441 else
8f964525 2442 ghc->memslot = NULL;
f1b9dd5e 2443
6ad1e29f
SC
2444 ghc->gpa = gpa;
2445 ghc->len = len;
2446 return 0;
49c7754c 2447}
5a2d4365 2448
4e335d9e 2449int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
5a2d4365
PB
2450 gpa_t gpa, unsigned long len)
2451{
4e335d9e 2452 struct kvm_memslots *slots = kvm_memslots(kvm);
5a2d4365
PB
2453 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2454}
4e335d9e 2455EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
49c7754c 2456
4e335d9e 2457int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
2458 void *data, unsigned int offset,
2459 unsigned long len)
49c7754c 2460{
4e335d9e 2461 struct kvm_memslots *slots = kvm_memslots(kvm);
49c7754c 2462 int r;
4ec6e863 2463 gpa_t gpa = ghc->gpa + offset;
49c7754c 2464
4ec6e863 2465 BUG_ON(len + offset > ghc->len);
8f964525 2466
dc9ce71e
SC
2467 if (slots->generation != ghc->generation) {
2468 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2469 return -EFAULT;
2470 }
8f964525 2471
49c7754c
GN
2472 if (kvm_is_error_hva(ghc->hva))
2473 return -EFAULT;
2474
fcfbc617
SC
2475 if (unlikely(!ghc->memslot))
2476 return kvm_write_guest(kvm, gpa, data, len);
2477
4ec6e863 2478 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
49c7754c
GN
2479 if (r)
2480 return -EFAULT;
4ec6e863 2481 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
49c7754c
GN
2482
2483 return 0;
2484}
4e335d9e 2485EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
4ec6e863 2486
4e335d9e
PB
2487int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2488 void *data, unsigned long len)
4ec6e863 2489{
4e335d9e 2490 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
4ec6e863 2491}
4e335d9e 2492EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
49c7754c 2493
4e335d9e
PB
2494int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2495 void *data, unsigned long len)
e03b644f 2496{
4e335d9e 2497 struct kvm_memslots *slots = kvm_memslots(kvm);
e03b644f
GN
2498 int r;
2499
8f964525
AH
2500 BUG_ON(len > ghc->len);
2501
dc9ce71e
SC
2502 if (slots->generation != ghc->generation) {
2503 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2504 return -EFAULT;
2505 }
8f964525 2506
e03b644f
GN
2507 if (kvm_is_error_hva(ghc->hva))
2508 return -EFAULT;
2509
fcfbc617
SC
2510 if (unlikely(!ghc->memslot))
2511 return kvm_read_guest(kvm, ghc->gpa, data, len);
2512
e03b644f
GN
2513 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2514 if (r)
2515 return -EFAULT;
2516
2517 return 0;
2518}
4e335d9e 2519EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
e03b644f 2520
195aefde
IE
2521int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2522{
8a3caa6d
HC
2523 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2524
2525 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
195aefde
IE
2526}
2527EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2528
2529int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2530{
2531 gfn_t gfn = gpa >> PAGE_SHIFT;
2532 int seg;
2533 int offset = offset_in_page(gpa);
2534 int ret;
2535
bfda0e84 2536 while ((seg = next_segment(len, offset)) != 0) {
195aefde
IE
2537 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2538 if (ret < 0)
2539 return ret;
2540 offset = 0;
2541 len -= seg;
2542 ++gfn;
2543 }
2544 return 0;
2545}
2546EXPORT_SYMBOL_GPL(kvm_clear_guest);
2547
bc009e43 2548static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
7940876e 2549 gfn_t gfn)
6aa8b732 2550{
7e9d619d
RR
2551 if (memslot && memslot->dirty_bitmap) {
2552 unsigned long rel_gfn = gfn - memslot->base_gfn;
6aa8b732 2553
b74ca3b3 2554 set_bit_le(rel_gfn, memslot->dirty_bitmap);
6aa8b732
AK
2555 }
2556}
2557
49c7754c
GN
2558void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2559{
2560 struct kvm_memory_slot *memslot;
2561
2562 memslot = gfn_to_memslot(kvm, gfn);
bc009e43 2563 mark_page_dirty_in_slot(memslot, gfn);
49c7754c 2564}
2ba9f0d8 2565EXPORT_SYMBOL_GPL(mark_page_dirty);
49c7754c 2566
8e73485c
PB
2567void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2568{
2569 struct kvm_memory_slot *memslot;
2570
2571 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2572 mark_page_dirty_in_slot(memslot, gfn);
2573}
2574EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2575
20b7035c
JS
2576void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2577{
2578 if (!vcpu->sigset_active)
2579 return;
2580
2581 /*
2582 * This does a lockless modification of ->real_blocked, which is fine
2583 * because, only current can change ->real_blocked and all readers of
2584 * ->real_blocked don't care as long ->real_blocked is always a subset
2585 * of ->blocked.
2586 */
2587 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2588}
2589
2590void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2591{
2592 if (!vcpu->sigset_active)
2593 return;
2594
2595 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2596 sigemptyset(&current->real_blocked);
2597}
2598
aca6ff29
WL
2599static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2600{
dee339b5 2601 unsigned int old, val, grow, grow_start;
aca6ff29 2602
2cbd7824 2603 old = val = vcpu->halt_poll_ns;
dee339b5 2604 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 2605 grow = READ_ONCE(halt_poll_ns_grow);
7fa08e71
NW
2606 if (!grow)
2607 goto out;
2608
dee339b5
NW
2609 val *= grow;
2610 if (val < grow_start)
2611 val = grow_start;
aca6ff29 2612
313f636d
DM
2613 if (val > halt_poll_ns)
2614 val = halt_poll_ns;
2615
aca6ff29 2616 vcpu->halt_poll_ns = val;
7fa08e71 2617out:
2cbd7824 2618 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
aca6ff29
WL
2619}
2620
2621static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2622{
6b6de68c 2623 unsigned int old, val, shrink;
aca6ff29 2624
2cbd7824 2625 old = val = vcpu->halt_poll_ns;
6b6de68c
CB
2626 shrink = READ_ONCE(halt_poll_ns_shrink);
2627 if (shrink == 0)
aca6ff29
WL
2628 val = 0;
2629 else
6b6de68c 2630 val /= shrink;
aca6ff29
WL
2631
2632 vcpu->halt_poll_ns = val;
2cbd7824 2633 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
aca6ff29
WL
2634}
2635
f7819512
PB
2636static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2637{
50c28f21
JS
2638 int ret = -EINTR;
2639 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2640
f7819512
PB
2641 if (kvm_arch_vcpu_runnable(vcpu)) {
2642 kvm_make_request(KVM_REQ_UNHALT, vcpu);
50c28f21 2643 goto out;
f7819512
PB
2644 }
2645 if (kvm_cpu_has_pending_timer(vcpu))
50c28f21 2646 goto out;
f7819512 2647 if (signal_pending(current))
50c28f21 2648 goto out;
f7819512 2649
50c28f21
JS
2650 ret = 0;
2651out:
2652 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2653 return ret;
f7819512
PB
2654}
2655
b6958ce4
ED
2656/*
2657 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2658 */
8776e519 2659void kvm_vcpu_block(struct kvm_vcpu *vcpu)
d3bef15f 2660{
f7819512 2661 ktime_t start, cur;
8577370f 2662 DECLARE_SWAITQUEUE(wait);
f7819512 2663 bool waited = false;
aca6ff29 2664 u64 block_ns;
f7819512 2665
07ab0f8d
MZ
2666 kvm_arch_vcpu_blocking(vcpu);
2667
f7819512 2668 start = cur = ktime_get();
cdd6ad3a 2669 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
19020f8a 2670 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
f95ef0cd 2671
62bea5bf 2672 ++vcpu->stat.halt_attempted_poll;
f7819512
PB
2673 do {
2674 /*
2675 * This sets KVM_REQ_UNHALT if an interrupt
2676 * arrives.
2677 */
2678 if (kvm_vcpu_check_block(vcpu) < 0) {
2679 ++vcpu->stat.halt_successful_poll;
3491caf2
CB
2680 if (!vcpu_valid_wakeup(vcpu))
2681 ++vcpu->stat.halt_poll_invalid;
f7819512
PB
2682 goto out;
2683 }
2684 cur = ktime_get();
2685 } while (single_task_running() && ktime_before(cur, stop));
2686 }
e5c239cf
MT
2687
2688 for (;;) {
b3dae109 2689 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
e5c239cf 2690
f7819512 2691 if (kvm_vcpu_check_block(vcpu) < 0)
e5c239cf
MT
2692 break;
2693
f7819512 2694 waited = true;
b6958ce4 2695 schedule();
b6958ce4 2696 }
d3bef15f 2697
8577370f 2698 finish_swait(&vcpu->wq, &wait);
f7819512 2699 cur = ktime_get();
f7819512 2700out:
07ab0f8d 2701 kvm_arch_vcpu_unblocking(vcpu);
aca6ff29
WL
2702 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2703
44551b2f
WL
2704 if (!kvm_arch_no_poll(vcpu)) {
2705 if (!vcpu_valid_wakeup(vcpu)) {
aca6ff29 2706 shrink_halt_poll_ns(vcpu);
44551b2f
WL
2707 } else if (halt_poll_ns) {
2708 if (block_ns <= vcpu->halt_poll_ns)
2709 ;
2710 /* we had a long block, shrink polling */
2711 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2712 shrink_halt_poll_ns(vcpu);
2713 /* we had a short halt and our poll time is too small */
2714 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2715 block_ns < halt_poll_ns)
2716 grow_halt_poll_ns(vcpu);
2717 } else {
2718 vcpu->halt_poll_ns = 0;
2719 }
2720 }
aca6ff29 2721
3491caf2
CB
2722 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2723 kvm_arch_vcpu_block_finish(vcpu);
b6958ce4 2724}
2ba9f0d8 2725EXPORT_SYMBOL_GPL(kvm_vcpu_block);
b6958ce4 2726
178f02ff 2727bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
b6d33834 2728{
8577370f 2729 struct swait_queue_head *wqp;
b6d33834
CD
2730
2731 wqp = kvm_arch_vcpu_wq(vcpu);
5e0018b3 2732 if (swq_has_sleeper(wqp)) {
b3dae109 2733 swake_up_one(wqp);
d73eb57b 2734 WRITE_ONCE(vcpu->ready, true);
b6d33834 2735 ++vcpu->stat.halt_wakeup;
178f02ff 2736 return true;
b6d33834
CD
2737 }
2738
178f02ff 2739 return false;
dd1a4cc1
RK
2740}
2741EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2742
0266c894 2743#ifndef CONFIG_S390
dd1a4cc1
RK
2744/*
2745 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2746 */
2747void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2748{
2749 int me;
2750 int cpu = vcpu->cpu;
2751
178f02ff
RK
2752 if (kvm_vcpu_wake_up(vcpu))
2753 return;
2754
b6d33834
CD
2755 me = get_cpu();
2756 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2757 if (kvm_arch_vcpu_should_kick(vcpu))
2758 smp_send_reschedule(cpu);
2759 put_cpu();
2760}
a20ed54d 2761EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
0266c894 2762#endif /* !CONFIG_S390 */
b6d33834 2763
fa93384f 2764int kvm_vcpu_yield_to(struct kvm_vcpu *target)
41628d33
KW
2765{
2766 struct pid *pid;
2767 struct task_struct *task = NULL;
fa93384f 2768 int ret = 0;
41628d33
KW
2769
2770 rcu_read_lock();
2771 pid = rcu_dereference(target->pid);
2772 if (pid)
27fbe64b 2773 task = get_pid_task(pid, PIDTYPE_PID);
41628d33
KW
2774 rcu_read_unlock();
2775 if (!task)
c45c528e 2776 return ret;
c45c528e 2777 ret = yield_to(task, 1);
41628d33 2778 put_task_struct(task);
c45c528e
R
2779
2780 return ret;
41628d33
KW
2781}
2782EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2783
06e48c51
R
2784/*
2785 * Helper that checks whether a VCPU is eligible for directed yield.
2786 * Most eligible candidate to yield is decided by following heuristics:
2787 *
2788 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2789 * (preempted lock holder), indicated by @in_spin_loop.
2790 * Set at the beiginning and cleared at the end of interception/PLE handler.
2791 *
2792 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2793 * chance last time (mostly it has become eligible now since we have probably
2794 * yielded to lockholder in last iteration. This is done by toggling
2795 * @dy_eligible each time a VCPU checked for eligibility.)
2796 *
2797 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2798 * to preempted lock-holder could result in wrong VCPU selection and CPU
2799 * burning. Giving priority for a potential lock-holder increases lock
2800 * progress.
2801 *
2802 * Since algorithm is based on heuristics, accessing another VCPU data without
2803 * locking does not harm. It may result in trying to yield to same VCPU, fail
2804 * and continue with next VCPU and so on.
2805 */
7940876e 2806static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
06e48c51 2807{
4a55dd72 2808#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
06e48c51
R
2809 bool eligible;
2810
2811 eligible = !vcpu->spin_loop.in_spin_loop ||
34656113 2812 vcpu->spin_loop.dy_eligible;
06e48c51
R
2813
2814 if (vcpu->spin_loop.in_spin_loop)
2815 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2816
2817 return eligible;
4a55dd72
SW
2818#else
2819 return true;
06e48c51 2820#endif
4a55dd72 2821}
c45c528e 2822
17e433b5
WL
2823/*
2824 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2825 * a vcpu_load/vcpu_put pair. However, for most architectures
2826 * kvm_arch_vcpu_runnable does not require vcpu_load.
2827 */
2828bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2829{
2830 return kvm_arch_vcpu_runnable(vcpu);
2831}
2832
2833static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2834{
2835 if (kvm_arch_dy_runnable(vcpu))
2836 return true;
2837
2838#ifdef CONFIG_KVM_ASYNC_PF
2839 if (!list_empty_careful(&vcpu->async_pf.done))
2840 return true;
2841#endif
2842
2843 return false;
2844}
2845
199b5763 2846void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
d255f4f2 2847{
217ece61
RR
2848 struct kvm *kvm = me->kvm;
2849 struct kvm_vcpu *vcpu;
2850 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2851 int yielded = 0;
c45c528e 2852 int try = 3;
217ece61
RR
2853 int pass;
2854 int i;
d255f4f2 2855
4c088493 2856 kvm_vcpu_set_in_spin_loop(me, true);
217ece61
RR
2857 /*
2858 * We boost the priority of a VCPU that is runnable but not
2859 * currently running, because it got preempted by something
2860 * else and called schedule in __vcpu_run. Hopefully that
2861 * VCPU is holding the lock that we need and will release it.
2862 * We approximate round-robin by starting at the last boosted VCPU.
2863 */
c45c528e 2864 for (pass = 0; pass < 2 && !yielded && try; pass++) {
217ece61 2865 kvm_for_each_vcpu(i, vcpu, kvm) {
5cfc2aab 2866 if (!pass && i <= last_boosted_vcpu) {
217ece61
RR
2867 i = last_boosted_vcpu;
2868 continue;
2869 } else if (pass && i > last_boosted_vcpu)
2870 break;
d73eb57b 2871 if (!READ_ONCE(vcpu->ready))
7bc7ae25 2872 continue;
217ece61
RR
2873 if (vcpu == me)
2874 continue;
17e433b5 2875 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
217ece61 2876 continue;
046ddeed
WL
2877 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2878 !kvm_arch_vcpu_in_kernel(vcpu))
199b5763 2879 continue;
06e48c51
R
2880 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2881 continue;
c45c528e
R
2882
2883 yielded = kvm_vcpu_yield_to(vcpu);
2884 if (yielded > 0) {
217ece61 2885 kvm->last_boosted_vcpu = i;
217ece61 2886 break;
c45c528e
R
2887 } else if (yielded < 0) {
2888 try--;
2889 if (!try)
2890 break;
217ece61 2891 }
217ece61
RR
2892 }
2893 }
4c088493 2894 kvm_vcpu_set_in_spin_loop(me, false);
06e48c51
R
2895
2896 /* Ensure vcpu is not eligible during next spinloop */
2897 kvm_vcpu_set_dy_eligible(me, false);
d255f4f2
ZE
2898}
2899EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2900
1499fa80 2901static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
9a2bb7f4 2902{
11bac800 2903 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
9a2bb7f4
AK
2904 struct page *page;
2905
e4a533a4 2906 if (vmf->pgoff == 0)
039576c0 2907 page = virt_to_page(vcpu->run);
09566765 2908#ifdef CONFIG_X86
e4a533a4 2909 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
ad312c7c 2910 page = virt_to_page(vcpu->arch.pio_data);
5f94c174 2911#endif
4b4357e0 2912#ifdef CONFIG_KVM_MMIO
5f94c174
LV
2913 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2914 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
09566765 2915#endif
039576c0 2916 else
5b1c1493 2917 return kvm_arch_vcpu_fault(vcpu, vmf);
9a2bb7f4 2918 get_page(page);
e4a533a4
NP
2919 vmf->page = page;
2920 return 0;
9a2bb7f4
AK
2921}
2922
f0f37e2f 2923static const struct vm_operations_struct kvm_vcpu_vm_ops = {
e4a533a4 2924 .fault = kvm_vcpu_fault,
9a2bb7f4
AK
2925};
2926
2927static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2928{
2929 vma->vm_ops = &kvm_vcpu_vm_ops;
2930 return 0;
2931}
2932
bccf2150
AK
2933static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2934{
2935 struct kvm_vcpu *vcpu = filp->private_data;
2936
45b5939e 2937 debugfs_remove_recursive(vcpu->debugfs_dentry);
66c0b394 2938 kvm_put_kvm(vcpu->kvm);
bccf2150
AK
2939 return 0;
2940}
2941
3d3aab1b 2942static struct file_operations kvm_vcpu_fops = {
bccf2150
AK
2943 .release = kvm_vcpu_release,
2944 .unlocked_ioctl = kvm_vcpu_ioctl,
9a2bb7f4 2945 .mmap = kvm_vcpu_mmap,
6038f373 2946 .llseek = noop_llseek,
7ddfd3e0 2947 KVM_COMPAT(kvm_vcpu_compat_ioctl),
bccf2150
AK
2948};
2949
2950/*
2951 * Allocates an inode for the vcpu.
2952 */
2953static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2954{
e46b4692
MY
2955 char name[8 + 1 + ITOA_MAX_LEN + 1];
2956
2957 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2958 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
bccf2150
AK
2959}
2960
3e7093d0 2961static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
45b5939e 2962{
741cbbae 2963#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
45b5939e 2964 char dir_name[ITOA_MAX_LEN * 2];
45b5939e 2965
45b5939e 2966 if (!debugfs_initialized())
3e7093d0 2967 return;
45b5939e
LC
2968
2969 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2970 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
3e7093d0 2971 vcpu->kvm->debugfs_dentry);
45b5939e 2972
3e7093d0 2973 kvm_arch_create_vcpu_debugfs(vcpu);
741cbbae 2974#endif
45b5939e
LC
2975}
2976
c5ea7660
AK
2977/*
2978 * Creates some virtual cpus. Good luck creating more than one.
2979 */
73880c80 2980static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
c5ea7660
AK
2981{
2982 int r;
e09fefde 2983 struct kvm_vcpu *vcpu;
8bd826d6 2984 struct page *page;
c5ea7660 2985
0b1b1dfd 2986 if (id >= KVM_MAX_VCPU_ID)
338c7dba
AH
2987 return -EINVAL;
2988
6c7caebc
PB
2989 mutex_lock(&kvm->lock);
2990 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2991 mutex_unlock(&kvm->lock);
2992 return -EINVAL;
2993 }
2994
2995 kvm->created_vcpus++;
2996 mutex_unlock(&kvm->lock);
2997
897cc38e
SC
2998 r = kvm_arch_vcpu_precreate(kvm, id);
2999 if (r)
3000 goto vcpu_decrement;
3001
e529ef66
SC
3002 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3003 if (!vcpu) {
3004 r = -ENOMEM;
6c7caebc
PB
3005 goto vcpu_decrement;
3006 }
c5ea7660 3007
fcd97ad5 3008 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
8bd826d6
SC
3009 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3010 if (!page) {
3011 r = -ENOMEM;
e529ef66 3012 goto vcpu_free;
8bd826d6
SC
3013 }
3014 vcpu->run = page_address(page);
3015
3016 kvm_vcpu_init(vcpu, kvm, id);
e529ef66
SC
3017
3018 r = kvm_arch_vcpu_create(vcpu);
3019 if (r)
8bd826d6 3020 goto vcpu_free_run_page;
e529ef66 3021
3e7093d0 3022 kvm_create_vcpu_debugfs(vcpu);
45b5939e 3023
11ec2804 3024 mutex_lock(&kvm->lock);
e09fefde
DH
3025 if (kvm_get_vcpu_by_id(kvm, id)) {
3026 r = -EEXIST;
3027 goto unlock_vcpu_destroy;
3028 }
73880c80 3029
8750e72a
RK
3030 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3031 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
c5ea7660 3032
fb3f0f51 3033 /* Now it's all set up, let userspace reach it */
66c0b394 3034 kvm_get_kvm(kvm);
bccf2150 3035 r = create_vcpu_fd(vcpu);
73880c80 3036 if (r < 0) {
149487bd 3037 kvm_put_kvm_no_destroy(kvm);
d780592b 3038 goto unlock_vcpu_destroy;
73880c80
GN
3039 }
3040
8750e72a 3041 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
dd489240
PB
3042
3043 /*
3044 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3045 * before kvm->online_vcpu's incremented value.
3046 */
73880c80
GN
3047 smp_wmb();
3048 atomic_inc(&kvm->online_vcpus);
3049
73880c80 3050 mutex_unlock(&kvm->lock);
42897d86 3051 kvm_arch_vcpu_postcreate(vcpu);
fb3f0f51 3052 return r;
39c3b86e 3053
d780592b 3054unlock_vcpu_destroy:
7d8fece6 3055 mutex_unlock(&kvm->lock);
45b5939e 3056 debugfs_remove_recursive(vcpu->debugfs_dentry);
d40ccc62 3057 kvm_arch_vcpu_destroy(vcpu);
8bd826d6
SC
3058vcpu_free_run_page:
3059 free_page((unsigned long)vcpu->run);
e529ef66
SC
3060vcpu_free:
3061 kmem_cache_free(kvm_vcpu_cache, vcpu);
6c7caebc
PB
3062vcpu_decrement:
3063 mutex_lock(&kvm->lock);
3064 kvm->created_vcpus--;
3065 mutex_unlock(&kvm->lock);
c5ea7660
AK
3066 return r;
3067}
3068
1961d276
AK
3069static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3070{
3071 if (sigset) {
3072 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3073 vcpu->sigset_active = 1;
3074 vcpu->sigset = *sigset;
3075 } else
3076 vcpu->sigset_active = 0;
3077 return 0;
3078}
3079
bccf2150
AK
3080static long kvm_vcpu_ioctl(struct file *filp,
3081 unsigned int ioctl, unsigned long arg)
6aa8b732 3082{
bccf2150 3083 struct kvm_vcpu *vcpu = filp->private_data;
2f366987 3084 void __user *argp = (void __user *)arg;
313a3dc7 3085 int r;
fa3795a7
DH
3086 struct kvm_fpu *fpu = NULL;
3087 struct kvm_sregs *kvm_sregs = NULL;
6aa8b732 3088
6d4e4c4f
AK
3089 if (vcpu->kvm->mm != current->mm)
3090 return -EIO;
2122ff5e 3091
2ea75be3
DM
3092 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3093 return -EINVAL;
3094
2122ff5e 3095 /*
5cb0944c
PB
3096 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3097 * execution; mutex_lock() would break them.
2122ff5e 3098 */
5cb0944c
PB
3099 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3100 if (r != -ENOIOCTLCMD)
9fc77441 3101 return r;
2122ff5e 3102
ec7660cc
CD
3103 if (mutex_lock_killable(&vcpu->mutex))
3104 return -EINTR;
6aa8b732 3105 switch (ioctl) {
0e4524a5
CB
3106 case KVM_RUN: {
3107 struct pid *oldpid;
f0fe5108
AK
3108 r = -EINVAL;
3109 if (arg)
3110 goto out;
0e4524a5 3111 oldpid = rcu_access_pointer(vcpu->pid);
71dbc8a9 3112 if (unlikely(oldpid != task_pid(current))) {
7a72f7a1 3113 /* The thread running this VCPU changed. */
bd2a6394 3114 struct pid *newpid;
f95ef0cd 3115
bd2a6394
CD
3116 r = kvm_arch_vcpu_run_pid_change(vcpu);
3117 if (r)
3118 break;
3119
3120 newpid = get_task_pid(current, PIDTYPE_PID);
7a72f7a1
CB
3121 rcu_assign_pointer(vcpu->pid, newpid);
3122 if (oldpid)
3123 synchronize_rcu();
3124 put_pid(oldpid);
3125 }
b6c7a5dc 3126 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
64be5007 3127 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
6aa8b732 3128 break;
0e4524a5 3129 }
6aa8b732 3130 case KVM_GET_REGS: {
3e4bb3ac 3131 struct kvm_regs *kvm_regs;
6aa8b732 3132
3e4bb3ac 3133 r = -ENOMEM;
b12ce36a 3134 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3e4bb3ac 3135 if (!kvm_regs)
6aa8b732 3136 goto out;
3e4bb3ac
XZ
3137 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3138 if (r)
3139 goto out_free1;
6aa8b732 3140 r = -EFAULT;
3e4bb3ac
XZ
3141 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3142 goto out_free1;
6aa8b732 3143 r = 0;
3e4bb3ac
XZ
3144out_free1:
3145 kfree(kvm_regs);
6aa8b732
AK
3146 break;
3147 }
3148 case KVM_SET_REGS: {
3e4bb3ac 3149 struct kvm_regs *kvm_regs;
6aa8b732 3150
3e4bb3ac 3151 r = -ENOMEM;
ff5c2c03
SL
3152 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3153 if (IS_ERR(kvm_regs)) {
3154 r = PTR_ERR(kvm_regs);
6aa8b732 3155 goto out;
ff5c2c03 3156 }
3e4bb3ac 3157 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3e4bb3ac 3158 kfree(kvm_regs);
6aa8b732
AK
3159 break;
3160 }
3161 case KVM_GET_SREGS: {
b12ce36a
BG
3162 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3163 GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3164 r = -ENOMEM;
3165 if (!kvm_sregs)
3166 goto out;
3167 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
6aa8b732
AK
3168 if (r)
3169 goto out;
3170 r = -EFAULT;
fa3795a7 3171 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
6aa8b732
AK
3172 goto out;
3173 r = 0;
3174 break;
3175 }
3176 case KVM_SET_SREGS: {
ff5c2c03
SL
3177 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3178 if (IS_ERR(kvm_sregs)) {
3179 r = PTR_ERR(kvm_sregs);
18595411 3180 kvm_sregs = NULL;
6aa8b732 3181 goto out;
ff5c2c03 3182 }
fa3795a7 3183 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
6aa8b732
AK
3184 break;
3185 }
62d9f0db
MT
3186 case KVM_GET_MP_STATE: {
3187 struct kvm_mp_state mp_state;
3188
3189 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3190 if (r)
3191 goto out;
3192 r = -EFAULT;
893bdbf1 3193 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
62d9f0db
MT
3194 goto out;
3195 r = 0;
3196 break;
3197 }
3198 case KVM_SET_MP_STATE: {
3199 struct kvm_mp_state mp_state;
3200
3201 r = -EFAULT;
893bdbf1 3202 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
62d9f0db
MT
3203 goto out;
3204 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
62d9f0db
MT
3205 break;
3206 }
6aa8b732
AK
3207 case KVM_TRANSLATE: {
3208 struct kvm_translation tr;
3209
3210 r = -EFAULT;
893bdbf1 3211 if (copy_from_user(&tr, argp, sizeof(tr)))
6aa8b732 3212 goto out;
8b006791 3213 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
6aa8b732
AK
3214 if (r)
3215 goto out;
3216 r = -EFAULT;
893bdbf1 3217 if (copy_to_user(argp, &tr, sizeof(tr)))
6aa8b732
AK
3218 goto out;
3219 r = 0;
3220 break;
3221 }
d0bfb940
JK
3222 case KVM_SET_GUEST_DEBUG: {
3223 struct kvm_guest_debug dbg;
6aa8b732
AK
3224
3225 r = -EFAULT;
893bdbf1 3226 if (copy_from_user(&dbg, argp, sizeof(dbg)))
6aa8b732 3227 goto out;
d0bfb940 3228 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
6aa8b732
AK
3229 break;
3230 }
1961d276
AK
3231 case KVM_SET_SIGNAL_MASK: {
3232 struct kvm_signal_mask __user *sigmask_arg = argp;
3233 struct kvm_signal_mask kvm_sigmask;
3234 sigset_t sigset, *p;
3235
3236 p = NULL;
3237 if (argp) {
3238 r = -EFAULT;
3239 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3240 sizeof(kvm_sigmask)))
1961d276
AK
3241 goto out;
3242 r = -EINVAL;
893bdbf1 3243 if (kvm_sigmask.len != sizeof(sigset))
1961d276
AK
3244 goto out;
3245 r = -EFAULT;
3246 if (copy_from_user(&sigset, sigmask_arg->sigset,
893bdbf1 3247 sizeof(sigset)))
1961d276
AK
3248 goto out;
3249 p = &sigset;
3250 }
376d41ff 3251 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1961d276
AK
3252 break;
3253 }
b8836737 3254 case KVM_GET_FPU: {
b12ce36a 3255 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3256 r = -ENOMEM;
3257 if (!fpu)
3258 goto out;
3259 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
b8836737
AK
3260 if (r)
3261 goto out;
3262 r = -EFAULT;
fa3795a7 3263 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
b8836737
AK
3264 goto out;
3265 r = 0;
3266 break;
3267 }
3268 case KVM_SET_FPU: {
ff5c2c03
SL
3269 fpu = memdup_user(argp, sizeof(*fpu));
3270 if (IS_ERR(fpu)) {
3271 r = PTR_ERR(fpu);
18595411 3272 fpu = NULL;
b8836737 3273 goto out;
ff5c2c03 3274 }
fa3795a7 3275 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
b8836737
AK
3276 break;
3277 }
bccf2150 3278 default:
313a3dc7 3279 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
bccf2150
AK
3280 }
3281out:
ec7660cc 3282 mutex_unlock(&vcpu->mutex);
fa3795a7
DH
3283 kfree(fpu);
3284 kfree(kvm_sregs);
bccf2150
AK
3285 return r;
3286}
3287
de8e5d74 3288#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
3289static long kvm_vcpu_compat_ioctl(struct file *filp,
3290 unsigned int ioctl, unsigned long arg)
3291{
3292 struct kvm_vcpu *vcpu = filp->private_data;
3293 void __user *argp = compat_ptr(arg);
3294 int r;
3295
3296 if (vcpu->kvm->mm != current->mm)
3297 return -EIO;
3298
3299 switch (ioctl) {
3300 case KVM_SET_SIGNAL_MASK: {
3301 struct kvm_signal_mask __user *sigmask_arg = argp;
3302 struct kvm_signal_mask kvm_sigmask;
1dda606c
AG
3303 sigset_t sigset;
3304
3305 if (argp) {
3306 r = -EFAULT;
3307 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3308 sizeof(kvm_sigmask)))
1dda606c
AG
3309 goto out;
3310 r = -EINVAL;
3968cf62 3311 if (kvm_sigmask.len != sizeof(compat_sigset_t))
1dda606c
AG
3312 goto out;
3313 r = -EFAULT;
3968cf62 3314 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
1dda606c 3315 goto out;
760a9a30
AC
3316 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3317 } else
3318 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1dda606c
AG
3319 break;
3320 }
3321 default:
3322 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3323 }
3324
3325out:
3326 return r;
3327}
3328#endif
3329
a1cd3f08
CLG
3330static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3331{
3332 struct kvm_device *dev = filp->private_data;
3333
3334 if (dev->ops->mmap)
3335 return dev->ops->mmap(dev, vma);
3336
3337 return -ENODEV;
3338}
3339
852b6d57
SW
3340static int kvm_device_ioctl_attr(struct kvm_device *dev,
3341 int (*accessor)(struct kvm_device *dev,
3342 struct kvm_device_attr *attr),
3343 unsigned long arg)
3344{
3345 struct kvm_device_attr attr;
3346
3347 if (!accessor)
3348 return -EPERM;
3349
3350 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3351 return -EFAULT;
3352
3353 return accessor(dev, &attr);
3354}
3355
3356static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3357 unsigned long arg)
3358{
3359 struct kvm_device *dev = filp->private_data;
3360
ddba9180
SC
3361 if (dev->kvm->mm != current->mm)
3362 return -EIO;
3363
852b6d57
SW
3364 switch (ioctl) {
3365 case KVM_SET_DEVICE_ATTR:
3366 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3367 case KVM_GET_DEVICE_ATTR:
3368 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3369 case KVM_HAS_DEVICE_ATTR:
3370 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3371 default:
3372 if (dev->ops->ioctl)
3373 return dev->ops->ioctl(dev, ioctl, arg);
3374
3375 return -ENOTTY;
3376 }
3377}
3378
852b6d57
SW
3379static int kvm_device_release(struct inode *inode, struct file *filp)
3380{
3381 struct kvm_device *dev = filp->private_data;
3382 struct kvm *kvm = dev->kvm;
3383
2bde9b3e
CLG
3384 if (dev->ops->release) {
3385 mutex_lock(&kvm->lock);
3386 list_del(&dev->vm_node);
3387 dev->ops->release(dev);
3388 mutex_unlock(&kvm->lock);
3389 }
3390
852b6d57
SW
3391 kvm_put_kvm(kvm);
3392 return 0;
3393}
3394
3395static const struct file_operations kvm_device_fops = {
3396 .unlocked_ioctl = kvm_device_ioctl,
3397 .release = kvm_device_release,
7ddfd3e0 3398 KVM_COMPAT(kvm_device_ioctl),
a1cd3f08 3399 .mmap = kvm_device_mmap,
852b6d57
SW
3400};
3401
3402struct kvm_device *kvm_device_from_filp(struct file *filp)
3403{
3404 if (filp->f_op != &kvm_device_fops)
3405 return NULL;
3406
3407 return filp->private_data;
3408}
3409
8538cb22 3410static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
5df554ad 3411#ifdef CONFIG_KVM_MPIC
d60eacb0
WD
3412 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3413 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
5975a2e0 3414#endif
d60eacb0
WD
3415};
3416
8538cb22 3417int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
d60eacb0
WD
3418{
3419 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3420 return -ENOSPC;
3421
3422 if (kvm_device_ops_table[type] != NULL)
3423 return -EEXIST;
3424
3425 kvm_device_ops_table[type] = ops;
3426 return 0;
3427}
3428
571ee1b6
WL
3429void kvm_unregister_device_ops(u32 type)
3430{
3431 if (kvm_device_ops_table[type] != NULL)
3432 kvm_device_ops_table[type] = NULL;
3433}
3434
852b6d57
SW
3435static int kvm_ioctl_create_device(struct kvm *kvm,
3436 struct kvm_create_device *cd)
3437{
8538cb22 3438 const struct kvm_device_ops *ops = NULL;
852b6d57
SW
3439 struct kvm_device *dev;
3440 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
1d487e9b 3441 int type;
852b6d57
SW
3442 int ret;
3443
d60eacb0
WD
3444 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3445 return -ENODEV;
3446
1d487e9b
PB
3447 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3448 ops = kvm_device_ops_table[type];
d60eacb0 3449 if (ops == NULL)
852b6d57 3450 return -ENODEV;
852b6d57
SW
3451
3452 if (test)
3453 return 0;
3454
b12ce36a 3455 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
852b6d57
SW
3456 if (!dev)
3457 return -ENOMEM;
3458
3459 dev->ops = ops;
3460 dev->kvm = kvm;
852b6d57 3461
a28ebea2 3462 mutex_lock(&kvm->lock);
1d487e9b 3463 ret = ops->create(dev, type);
852b6d57 3464 if (ret < 0) {
a28ebea2 3465 mutex_unlock(&kvm->lock);
852b6d57
SW
3466 kfree(dev);
3467 return ret;
3468 }
a28ebea2
CD
3469 list_add(&dev->vm_node, &kvm->devices);
3470 mutex_unlock(&kvm->lock);
852b6d57 3471
023e9fdd
CD
3472 if (ops->init)
3473 ops->init(dev);
3474
cfa39381 3475 kvm_get_kvm(kvm);
24009b05 3476 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
852b6d57 3477 if (ret < 0) {
149487bd 3478 kvm_put_kvm_no_destroy(kvm);
a28ebea2
CD
3479 mutex_lock(&kvm->lock);
3480 list_del(&dev->vm_node);
3481 mutex_unlock(&kvm->lock);
a0f1d21c 3482 ops->destroy(dev);
852b6d57
SW
3483 return ret;
3484 }
3485
852b6d57
SW
3486 cd->fd = ret;
3487 return 0;
3488}
3489
92b591a4
AG
3490static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3491{
3492 switch (arg) {
3493 case KVM_CAP_USER_MEMORY:
3494 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3495 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
92b591a4
AG
3496 case KVM_CAP_INTERNAL_ERROR_DATA:
3497#ifdef CONFIG_HAVE_KVM_MSI
3498 case KVM_CAP_SIGNAL_MSI:
3499#endif
297e2105 3500#ifdef CONFIG_HAVE_KVM_IRQFD
dc9be0fa 3501 case KVM_CAP_IRQFD:
92b591a4
AG
3502 case KVM_CAP_IRQFD_RESAMPLE:
3503#endif
e9ea5069 3504 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
92b591a4 3505 case KVM_CAP_CHECK_EXTENSION_VM:
e5d83c74 3506 case KVM_CAP_ENABLE_CAP_VM:
2a31b9db 3507#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
d7547c55 3508 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
2a31b9db 3509#endif
92b591a4 3510 return 1;
4b4357e0 3511#ifdef CONFIG_KVM_MMIO
30422558
PB
3512 case KVM_CAP_COALESCED_MMIO:
3513 return KVM_COALESCED_MMIO_PAGE_OFFSET;
0804c849
PH
3514 case KVM_CAP_COALESCED_PIO:
3515 return 1;
30422558 3516#endif
92b591a4
AG
3517#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3518 case KVM_CAP_IRQ_ROUTING:
3519 return KVM_MAX_IRQ_ROUTES;
f481b069
PB
3520#endif
3521#if KVM_ADDRESS_SPACE_NUM > 1
3522 case KVM_CAP_MULTI_ADDRESS_SPACE:
3523 return KVM_ADDRESS_SPACE_NUM;
92b591a4 3524#endif
c110ae57
PB
3525 case KVM_CAP_NR_MEMSLOTS:
3526 return KVM_USER_MEM_SLOTS;
92b591a4
AG
3527 default:
3528 break;
3529 }
3530 return kvm_vm_ioctl_check_extension(kvm, arg);
3531}
3532
e5d83c74
PB
3533int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3534 struct kvm_enable_cap *cap)
3535{
3536 return -EINVAL;
3537}
3538
3539static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3540 struct kvm_enable_cap *cap)
3541{
3542 switch (cap->cap) {
2a31b9db 3543#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
d7547c55 3544 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
2a31b9db
PB
3545 if (cap->flags || (cap->args[0] & ~1))
3546 return -EINVAL;
3547 kvm->manual_dirty_log_protect = cap->args[0];
3548 return 0;
3549#endif
e5d83c74
PB
3550 default:
3551 return kvm_vm_ioctl_enable_cap(kvm, cap);
3552 }
3553}
3554
bccf2150
AK
3555static long kvm_vm_ioctl(struct file *filp,
3556 unsigned int ioctl, unsigned long arg)
3557{
3558 struct kvm *kvm = filp->private_data;
3559 void __user *argp = (void __user *)arg;
1fe779f8 3560 int r;
bccf2150 3561
6d4e4c4f
AK
3562 if (kvm->mm != current->mm)
3563 return -EIO;
bccf2150
AK
3564 switch (ioctl) {
3565 case KVM_CREATE_VCPU:
3566 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
bccf2150 3567 break;
e5d83c74
PB
3568 case KVM_ENABLE_CAP: {
3569 struct kvm_enable_cap cap;
3570
3571 r = -EFAULT;
3572 if (copy_from_user(&cap, argp, sizeof(cap)))
3573 goto out;
3574 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3575 break;
3576 }
6fc138d2
IE
3577 case KVM_SET_USER_MEMORY_REGION: {
3578 struct kvm_userspace_memory_region kvm_userspace_mem;
3579
3580 r = -EFAULT;
3581 if (copy_from_user(&kvm_userspace_mem, argp,
893bdbf1 3582 sizeof(kvm_userspace_mem)))
6fc138d2
IE
3583 goto out;
3584
47ae31e2 3585 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
6aa8b732
AK
3586 break;
3587 }
3588 case KVM_GET_DIRTY_LOG: {
3589 struct kvm_dirty_log log;
3590
3591 r = -EFAULT;
893bdbf1 3592 if (copy_from_user(&log, argp, sizeof(log)))
6aa8b732 3593 goto out;
2c6f5df9 3594 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6aa8b732
AK
3595 break;
3596 }
2a31b9db
PB
3597#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3598 case KVM_CLEAR_DIRTY_LOG: {
3599 struct kvm_clear_dirty_log log;
3600
3601 r = -EFAULT;
3602 if (copy_from_user(&log, argp, sizeof(log)))
3603 goto out;
3604 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3605 break;
3606 }
3607#endif
4b4357e0 3608#ifdef CONFIG_KVM_MMIO
5f94c174
LV
3609 case KVM_REGISTER_COALESCED_MMIO: {
3610 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 3611
5f94c174 3612 r = -EFAULT;
893bdbf1 3613 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 3614 goto out;
5f94c174 3615 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5f94c174
LV
3616 break;
3617 }
3618 case KVM_UNREGISTER_COALESCED_MMIO: {
3619 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 3620
5f94c174 3621 r = -EFAULT;
893bdbf1 3622 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 3623 goto out;
5f94c174 3624 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5f94c174
LV
3625 break;
3626 }
3627#endif
721eecbf
GH
3628 case KVM_IRQFD: {
3629 struct kvm_irqfd data;
3630
3631 r = -EFAULT;
893bdbf1 3632 if (copy_from_user(&data, argp, sizeof(data)))
721eecbf 3633 goto out;
d4db2935 3634 r = kvm_irqfd(kvm, &data);
721eecbf
GH
3635 break;
3636 }
d34e6b17
GH
3637 case KVM_IOEVENTFD: {
3638 struct kvm_ioeventfd data;
3639
3640 r = -EFAULT;
893bdbf1 3641 if (copy_from_user(&data, argp, sizeof(data)))
d34e6b17
GH
3642 goto out;
3643 r = kvm_ioeventfd(kvm, &data);
3644 break;
3645 }
07975ad3
JK
3646#ifdef CONFIG_HAVE_KVM_MSI
3647 case KVM_SIGNAL_MSI: {
3648 struct kvm_msi msi;
3649
3650 r = -EFAULT;
893bdbf1 3651 if (copy_from_user(&msi, argp, sizeof(msi)))
07975ad3
JK
3652 goto out;
3653 r = kvm_send_userspace_msi(kvm, &msi);
3654 break;
3655 }
23d43cf9
CD
3656#endif
3657#ifdef __KVM_HAVE_IRQ_LINE
3658 case KVM_IRQ_LINE_STATUS:
3659 case KVM_IRQ_LINE: {
3660 struct kvm_irq_level irq_event;
3661
3662 r = -EFAULT;
893bdbf1 3663 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
23d43cf9
CD
3664 goto out;
3665
aa2fbe6d
YZ
3666 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3667 ioctl == KVM_IRQ_LINE_STATUS);
23d43cf9
CD
3668 if (r)
3669 goto out;
3670
3671 r = -EFAULT;
3672 if (ioctl == KVM_IRQ_LINE_STATUS) {
893bdbf1 3673 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
23d43cf9
CD
3674 goto out;
3675 }
3676
3677 r = 0;
3678 break;
3679 }
73880c80 3680#endif
aa8d5944
AG
3681#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3682 case KVM_SET_GSI_ROUTING: {
3683 struct kvm_irq_routing routing;
3684 struct kvm_irq_routing __user *urouting;
f8c1b85b 3685 struct kvm_irq_routing_entry *entries = NULL;
aa8d5944
AG
3686
3687 r = -EFAULT;
3688 if (copy_from_user(&routing, argp, sizeof(routing)))
3689 goto out;
3690 r = -EINVAL;
5c0aea0e
DH
3691 if (!kvm_arch_can_set_irq_routing(kvm))
3692 goto out;
caf1ff26 3693 if (routing.nr > KVM_MAX_IRQ_ROUTES)
aa8d5944
AG
3694 goto out;
3695 if (routing.flags)
3696 goto out;
f8c1b85b
PB
3697 if (routing.nr) {
3698 r = -ENOMEM;
42bc47b3
KC
3699 entries = vmalloc(array_size(sizeof(*entries),
3700 routing.nr));
f8c1b85b
PB
3701 if (!entries)
3702 goto out;
3703 r = -EFAULT;
3704 urouting = argp;
3705 if (copy_from_user(entries, urouting->entries,
3706 routing.nr * sizeof(*entries)))
3707 goto out_free_irq_routing;
3708 }
aa8d5944
AG
3709 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3710 routing.flags);
a642a175 3711out_free_irq_routing:
aa8d5944
AG
3712 vfree(entries);
3713 break;
3714 }
3715#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
852b6d57
SW
3716 case KVM_CREATE_DEVICE: {
3717 struct kvm_create_device cd;
3718
3719 r = -EFAULT;
3720 if (copy_from_user(&cd, argp, sizeof(cd)))
3721 goto out;
3722
3723 r = kvm_ioctl_create_device(kvm, &cd);
3724 if (r)
3725 goto out;
3726
3727 r = -EFAULT;
3728 if (copy_to_user(argp, &cd, sizeof(cd)))
3729 goto out;
3730
3731 r = 0;
3732 break;
3733 }
92b591a4
AG
3734 case KVM_CHECK_EXTENSION:
3735 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3736 break;
f17abe9a 3737 default:
1fe779f8 3738 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
f17abe9a
AK
3739 }
3740out:
3741 return r;
3742}
3743
de8e5d74 3744#ifdef CONFIG_KVM_COMPAT
6ff5894c
AB
3745struct compat_kvm_dirty_log {
3746 __u32 slot;
3747 __u32 padding1;
3748 union {
3749 compat_uptr_t dirty_bitmap; /* one bit per page */
3750 __u64 padding2;
3751 };
3752};
3753
3754static long kvm_vm_compat_ioctl(struct file *filp,
3755 unsigned int ioctl, unsigned long arg)
3756{
3757 struct kvm *kvm = filp->private_data;
3758 int r;
3759
3760 if (kvm->mm != current->mm)
3761 return -EIO;
3762 switch (ioctl) {
3763 case KVM_GET_DIRTY_LOG: {
3764 struct compat_kvm_dirty_log compat_log;
3765 struct kvm_dirty_log log;
3766
6ff5894c
AB
3767 if (copy_from_user(&compat_log, (void __user *)arg,
3768 sizeof(compat_log)))
f6a3b168 3769 return -EFAULT;
6ff5894c
AB
3770 log.slot = compat_log.slot;
3771 log.padding1 = compat_log.padding1;
3772 log.padding2 = compat_log.padding2;
3773 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3774
3775 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6ff5894c
AB
3776 break;
3777 }
3778 default:
3779 r = kvm_vm_ioctl(filp, ioctl, arg);
3780 }
6ff5894c
AB
3781 return r;
3782}
3783#endif
3784
3d3aab1b 3785static struct file_operations kvm_vm_fops = {
f17abe9a
AK
3786 .release = kvm_vm_release,
3787 .unlocked_ioctl = kvm_vm_ioctl,
6038f373 3788 .llseek = noop_llseek,
7ddfd3e0 3789 KVM_COMPAT(kvm_vm_compat_ioctl),
f17abe9a
AK
3790};
3791
e08b9637 3792static int kvm_dev_ioctl_create_vm(unsigned long type)
f17abe9a 3793{
aac87636 3794 int r;
f17abe9a 3795 struct kvm *kvm;
506cfba9 3796 struct file *file;
f17abe9a 3797
e08b9637 3798 kvm = kvm_create_vm(type);
d6d28168
AK
3799 if (IS_ERR(kvm))
3800 return PTR_ERR(kvm);
4b4357e0 3801#ifdef CONFIG_KVM_MMIO
6ce5a090 3802 r = kvm_coalesced_mmio_init(kvm);
78588335
ME
3803 if (r < 0)
3804 goto put_kvm;
6ce5a090 3805#endif
506cfba9 3806 r = get_unused_fd_flags(O_CLOEXEC);
78588335
ME
3807 if (r < 0)
3808 goto put_kvm;
3809
506cfba9
AV
3810 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3811 if (IS_ERR(file)) {
3812 put_unused_fd(r);
78588335
ME
3813 r = PTR_ERR(file);
3814 goto put_kvm;
506cfba9 3815 }
536a6f88 3816
525df861
PB
3817 /*
3818 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3819 * already set, with ->release() being kvm_vm_release(). In error
3820 * cases it will be called by the final fput(file) and will take
3821 * care of doing kvm_put_kvm(kvm).
3822 */
536a6f88 3823 if (kvm_create_vm_debugfs(kvm, r) < 0) {
506cfba9
AV
3824 put_unused_fd(r);
3825 fput(file);
536a6f88
JF
3826 return -ENOMEM;
3827 }
286de8f6 3828 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
f17abe9a 3829
506cfba9 3830 fd_install(r, file);
aac87636 3831 return r;
78588335
ME
3832
3833put_kvm:
3834 kvm_put_kvm(kvm);
3835 return r;
f17abe9a
AK
3836}
3837
3838static long kvm_dev_ioctl(struct file *filp,
3839 unsigned int ioctl, unsigned long arg)
3840{
07c45a36 3841 long r = -EINVAL;
f17abe9a
AK
3842
3843 switch (ioctl) {
3844 case KVM_GET_API_VERSION:
f0fe5108
AK
3845 if (arg)
3846 goto out;
f17abe9a
AK
3847 r = KVM_API_VERSION;
3848 break;
3849 case KVM_CREATE_VM:
e08b9637 3850 r = kvm_dev_ioctl_create_vm(arg);
f17abe9a 3851 break;
018d00d2 3852 case KVM_CHECK_EXTENSION:
784aa3d7 3853 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5d308f45 3854 break;
07c45a36 3855 case KVM_GET_VCPU_MMAP_SIZE:
07c45a36
AK
3856 if (arg)
3857 goto out;
adb1ff46
AK
3858 r = PAGE_SIZE; /* struct kvm_run */
3859#ifdef CONFIG_X86
3860 r += PAGE_SIZE; /* pio data page */
5f94c174 3861#endif
4b4357e0 3862#ifdef CONFIG_KVM_MMIO
5f94c174 3863 r += PAGE_SIZE; /* coalesced mmio ring page */
adb1ff46 3864#endif
07c45a36 3865 break;
d4c9ff2d
FEL
3866 case KVM_TRACE_ENABLE:
3867 case KVM_TRACE_PAUSE:
3868 case KVM_TRACE_DISABLE:
2023a29c 3869 r = -EOPNOTSUPP;
d4c9ff2d 3870 break;
6aa8b732 3871 default:
043405e1 3872 return kvm_arch_dev_ioctl(filp, ioctl, arg);
6aa8b732
AK
3873 }
3874out:
3875 return r;
3876}
3877
6aa8b732 3878static struct file_operations kvm_chardev_ops = {
6aa8b732 3879 .unlocked_ioctl = kvm_dev_ioctl,
6038f373 3880 .llseek = noop_llseek,
7ddfd3e0 3881 KVM_COMPAT(kvm_dev_ioctl),
6aa8b732
AK
3882};
3883
3884static struct miscdevice kvm_dev = {
bbe4432e 3885 KVM_MINOR,
6aa8b732
AK
3886 "kvm",
3887 &kvm_chardev_ops,
3888};
3889
75b7127c 3890static void hardware_enable_nolock(void *junk)
1b6c0168
AK
3891{
3892 int cpu = raw_smp_processor_id();
10474ae8 3893 int r;
1b6c0168 3894
7f59f492 3895 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 3896 return;
10474ae8 3897
7f59f492 3898 cpumask_set_cpu(cpu, cpus_hardware_enabled);
10474ae8 3899
13a34e06 3900 r = kvm_arch_hardware_enable();
10474ae8
AG
3901
3902 if (r) {
3903 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3904 atomic_inc(&hardware_enable_failed);
1170adc6 3905 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
10474ae8 3906 }
1b6c0168
AK
3907}
3908
8c18b2d2 3909static int kvm_starting_cpu(unsigned int cpu)
75b7127c 3910{
4a937f96 3911 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
3912 if (kvm_usage_count)
3913 hardware_enable_nolock(NULL);
4a937f96 3914 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 3915 return 0;
75b7127c
TY
3916}
3917
3918static void hardware_disable_nolock(void *junk)
1b6c0168
AK
3919{
3920 int cpu = raw_smp_processor_id();
3921
7f59f492 3922 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 3923 return;
7f59f492 3924 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
13a34e06 3925 kvm_arch_hardware_disable();
1b6c0168
AK
3926}
3927
8c18b2d2 3928static int kvm_dying_cpu(unsigned int cpu)
75b7127c 3929{
4a937f96 3930 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
3931 if (kvm_usage_count)
3932 hardware_disable_nolock(NULL);
4a937f96 3933 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 3934 return 0;
75b7127c
TY
3935}
3936
10474ae8
AG
3937static void hardware_disable_all_nolock(void)
3938{
3939 BUG_ON(!kvm_usage_count);
3940
3941 kvm_usage_count--;
3942 if (!kvm_usage_count)
75b7127c 3943 on_each_cpu(hardware_disable_nolock, NULL, 1);
10474ae8
AG
3944}
3945
3946static void hardware_disable_all(void)
3947{
4a937f96 3948 raw_spin_lock(&kvm_count_lock);
10474ae8 3949 hardware_disable_all_nolock();
4a937f96 3950 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
3951}
3952
3953static int hardware_enable_all(void)
3954{
3955 int r = 0;
3956
4a937f96 3957 raw_spin_lock(&kvm_count_lock);
10474ae8
AG
3958
3959 kvm_usage_count++;
3960 if (kvm_usage_count == 1) {
3961 atomic_set(&hardware_enable_failed, 0);
75b7127c 3962 on_each_cpu(hardware_enable_nolock, NULL, 1);
10474ae8
AG
3963
3964 if (atomic_read(&hardware_enable_failed)) {
3965 hardware_disable_all_nolock();
3966 r = -EBUSY;
3967 }
3968 }
3969
4a937f96 3970 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
3971
3972 return r;
3973}
3974
9a2b85c6 3975static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
d77c26fc 3976 void *v)
9a2b85c6 3977{
8e1c1815
SY
3978 /*
3979 * Some (well, at least mine) BIOSes hang on reboot if
3980 * in vmx root mode.
3981 *
3982 * And Intel TXT required VMX off for all cpu when system shutdown.
3983 */
1170adc6 3984 pr_info("kvm: exiting hardware virtualization\n");
8e1c1815 3985 kvm_rebooting = true;
75b7127c 3986 on_each_cpu(hardware_disable_nolock, NULL, 1);
9a2b85c6
RR
3987 return NOTIFY_OK;
3988}
3989
3990static struct notifier_block kvm_reboot_notifier = {
3991 .notifier_call = kvm_reboot,
3992 .priority = 0,
3993};
3994
e93f8a0f 3995static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2eeb2e94
GH
3996{
3997 int i;
3998
3999 for (i = 0; i < bus->dev_count; i++) {
743eeb0b 4000 struct kvm_io_device *pos = bus->range[i].dev;
2eeb2e94
GH
4001
4002 kvm_iodevice_destructor(pos);
4003 }
e93f8a0f 4004 kfree(bus);
2eeb2e94
GH
4005}
4006
c21fbff1 4007static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
20e87b72 4008 const struct kvm_io_range *r2)
743eeb0b 4009{
8f4216c7
JW
4010 gpa_t addr1 = r1->addr;
4011 gpa_t addr2 = r2->addr;
4012
4013 if (addr1 < addr2)
743eeb0b 4014 return -1;
8f4216c7
JW
4015
4016 /* If r2->len == 0, match the exact address. If r2->len != 0,
4017 * accept any overlapping write. Any order is acceptable for
4018 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4019 * we process all of them.
4020 */
4021 if (r2->len) {
4022 addr1 += r1->len;
4023 addr2 += r2->len;
4024 }
4025
4026 if (addr1 > addr2)
743eeb0b 4027 return 1;
8f4216c7 4028
743eeb0b
SL
4029 return 0;
4030}
4031
a343c9b7
PB
4032static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4033{
c21fbff1 4034 return kvm_io_bus_cmp(p1, p2);
a343c9b7
PB
4035}
4036
39369f7a 4037static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
743eeb0b
SL
4038 gpa_t addr, int len)
4039{
4040 struct kvm_io_range *range, key;
4041 int off;
4042
4043 key = (struct kvm_io_range) {
4044 .addr = addr,
4045 .len = len,
4046 };
4047
4048 range = bsearch(&key, bus->range, bus->dev_count,
4049 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4050 if (range == NULL)
4051 return -ENOENT;
4052
4053 off = range - bus->range;
4054
c21fbff1 4055 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
743eeb0b
SL
4056 off--;
4057
4058 return off;
4059}
4060
e32edf4f 4061static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
126a5af5
CH
4062 struct kvm_io_range *range, const void *val)
4063{
4064 int idx;
4065
4066 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4067 if (idx < 0)
4068 return -EOPNOTSUPP;
4069
4070 while (idx < bus->dev_count &&
c21fbff1 4071 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 4072 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
4073 range->len, val))
4074 return idx;
4075 idx++;
4076 }
4077
4078 return -EOPNOTSUPP;
4079}
4080
bda9020e 4081/* kvm_io_bus_write - called under kvm->slots_lock */
e32edf4f 4082int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
bda9020e 4083 int len, const void *val)
2eeb2e94 4084{
90d83dc3 4085 struct kvm_io_bus *bus;
743eeb0b 4086 struct kvm_io_range range;
126a5af5 4087 int r;
743eeb0b
SL
4088
4089 range = (struct kvm_io_range) {
4090 .addr = addr,
4091 .len = len,
4092 };
90d83dc3 4093
e32edf4f 4094 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4095 if (!bus)
4096 return -ENOMEM;
e32edf4f 4097 r = __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
4098 return r < 0 ? r : 0;
4099}
a2420107 4100EXPORT_SYMBOL_GPL(kvm_io_bus_write);
126a5af5
CH
4101
4102/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
e32edf4f
NN
4103int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4104 gpa_t addr, int len, const void *val, long cookie)
126a5af5
CH
4105{
4106 struct kvm_io_bus *bus;
4107 struct kvm_io_range range;
4108
4109 range = (struct kvm_io_range) {
4110 .addr = addr,
4111 .len = len,
4112 };
4113
e32edf4f 4114 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4115 if (!bus)
4116 return -ENOMEM;
126a5af5
CH
4117
4118 /* First try the device referenced by cookie. */
4119 if ((cookie >= 0) && (cookie < bus->dev_count) &&
c21fbff1 4120 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
e32edf4f 4121 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
126a5af5
CH
4122 val))
4123 return cookie;
4124
4125 /*
4126 * cookie contained garbage; fall back to search and return the
4127 * correct cookie value.
4128 */
e32edf4f 4129 return __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
4130}
4131
e32edf4f
NN
4132static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4133 struct kvm_io_range *range, void *val)
126a5af5
CH
4134{
4135 int idx;
4136
4137 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
743eeb0b
SL
4138 if (idx < 0)
4139 return -EOPNOTSUPP;
4140
4141 while (idx < bus->dev_count &&
c21fbff1 4142 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 4143 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
4144 range->len, val))
4145 return idx;
743eeb0b
SL
4146 idx++;
4147 }
4148
bda9020e
MT
4149 return -EOPNOTSUPP;
4150}
2eeb2e94 4151
bda9020e 4152/* kvm_io_bus_read - called under kvm->slots_lock */
e32edf4f 4153int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 4154 int len, void *val)
bda9020e 4155{
90d83dc3 4156 struct kvm_io_bus *bus;
743eeb0b 4157 struct kvm_io_range range;
126a5af5 4158 int r;
743eeb0b
SL
4159
4160 range = (struct kvm_io_range) {
4161 .addr = addr,
4162 .len = len,
4163 };
e93f8a0f 4164
e32edf4f 4165 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4166 if (!bus)
4167 return -ENOMEM;
e32edf4f 4168 r = __kvm_io_bus_read(vcpu, bus, &range, val);
126a5af5
CH
4169 return r < 0 ? r : 0;
4170}
743eeb0b 4171
79fac95e 4172/* Caller must hold slots_lock. */
743eeb0b
SL
4173int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4174 int len, struct kvm_io_device *dev)
6c474694 4175{
d4c67a7a 4176 int i;
e93f8a0f 4177 struct kvm_io_bus *new_bus, *bus;
d4c67a7a 4178 struct kvm_io_range range;
090b7aff 4179
4a12f951 4180 bus = kvm_get_bus(kvm, bus_idx);
90db1043
DH
4181 if (!bus)
4182 return -ENOMEM;
4183
6ea34c9b
AK
4184 /* exclude ioeventfd which is limited by maximum fd */
4185 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
090b7aff 4186 return -ENOSPC;
2eeb2e94 4187
90952cd3 4188 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
b12ce36a 4189 GFP_KERNEL_ACCOUNT);
e93f8a0f
MT
4190 if (!new_bus)
4191 return -ENOMEM;
d4c67a7a
GH
4192
4193 range = (struct kvm_io_range) {
4194 .addr = addr,
4195 .len = len,
4196 .dev = dev,
4197 };
4198
4199 for (i = 0; i < bus->dev_count; i++)
4200 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4201 break;
4202
4203 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4204 new_bus->dev_count++;
4205 new_bus->range[i] = range;
4206 memcpy(new_bus->range + i + 1, bus->range + i,
4207 (bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f
MT
4208 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4209 synchronize_srcu_expedited(&kvm->srcu);
4210 kfree(bus);
090b7aff
GH
4211
4212 return 0;
4213}
4214
79fac95e 4215/* Caller must hold slots_lock. */
90db1043
DH
4216void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4217 struct kvm_io_device *dev)
090b7aff 4218{
90db1043 4219 int i;
e93f8a0f 4220 struct kvm_io_bus *new_bus, *bus;
090b7aff 4221
4a12f951 4222 bus = kvm_get_bus(kvm, bus_idx);
df630b8c 4223 if (!bus)
90db1043 4224 return;
df630b8c 4225
a1300716
AK
4226 for (i = 0; i < bus->dev_count; i++)
4227 if (bus->range[i].dev == dev) {
090b7aff
GH
4228 break;
4229 }
e93f8a0f 4230
90db1043
DH
4231 if (i == bus->dev_count)
4232 return;
a1300716 4233
90952cd3 4234 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
b12ce36a 4235 GFP_KERNEL_ACCOUNT);
90db1043
DH
4236 if (!new_bus) {
4237 pr_err("kvm: failed to shrink bus, removing it completely\n");
4238 goto broken;
4239 }
a1300716
AK
4240
4241 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4242 new_bus->dev_count--;
4243 memcpy(new_bus->range + i, bus->range + i + 1,
4244 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f 4245
90db1043 4246broken:
e93f8a0f
MT
4247 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4248 synchronize_srcu_expedited(&kvm->srcu);
4249 kfree(bus);
90db1043 4250 return;
2eeb2e94
GH
4251}
4252
8a39d006
AP
4253struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4254 gpa_t addr)
4255{
4256 struct kvm_io_bus *bus;
4257 int dev_idx, srcu_idx;
4258 struct kvm_io_device *iodev = NULL;
4259
4260 srcu_idx = srcu_read_lock(&kvm->srcu);
4261
4262 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
90db1043
DH
4263 if (!bus)
4264 goto out_unlock;
8a39d006
AP
4265
4266 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4267 if (dev_idx < 0)
4268 goto out_unlock;
4269
4270 iodev = bus->range[dev_idx].dev;
4271
4272out_unlock:
4273 srcu_read_unlock(&kvm->srcu, srcu_idx);
4274
4275 return iodev;
4276}
4277EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4278
536a6f88
JF
4279static int kvm_debugfs_open(struct inode *inode, struct file *file,
4280 int (*get)(void *, u64 *), int (*set)(void *, u64),
4281 const char *fmt)
4282{
4283 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4284 inode->i_private;
4285
4286 /* The debugfs files are a reference to the kvm struct which
4287 * is still valid when kvm_destroy_vm is called.
4288 * To avoid the race between open and the removal of the debugfs
4289 * directory we test against the users count.
4290 */
e3736c3e 4291 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
536a6f88
JF
4292 return -ENOENT;
4293
833b45de 4294 if (simple_attr_open(inode, file, get,
09cbcef6
MP
4295 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4296 ? set : NULL,
4297 fmt)) {
536a6f88
JF
4298 kvm_put_kvm(stat_data->kvm);
4299 return -ENOMEM;
4300 }
4301
4302 return 0;
4303}
4304
4305static int kvm_debugfs_release(struct inode *inode, struct file *file)
4306{
4307 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4308 inode->i_private;
4309
4310 simple_attr_release(inode, file);
4311 kvm_put_kvm(stat_data->kvm);
4312
4313 return 0;
4314}
4315
09cbcef6 4316static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
536a6f88 4317{
09cbcef6 4318 *val = *(ulong *)((void *)kvm + offset);
536a6f88 4319
09cbcef6
MP
4320 return 0;
4321}
4322
4323static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4324{
4325 *(ulong *)((void *)kvm + offset) = 0;
536a6f88
JF
4326
4327 return 0;
4328}
4329
09cbcef6 4330static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
ce35ef27 4331{
09cbcef6
MP
4332 int i;
4333 struct kvm_vcpu *vcpu;
ce35ef27 4334
09cbcef6 4335 *val = 0;
ce35ef27 4336
09cbcef6
MP
4337 kvm_for_each_vcpu(i, vcpu, kvm)
4338 *val += *(u64 *)((void *)vcpu + offset);
ce35ef27
SJS
4339
4340 return 0;
4341}
4342
09cbcef6 4343static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
536a6f88 4344{
09cbcef6
MP
4345 int i;
4346 struct kvm_vcpu *vcpu;
536a6f88 4347
09cbcef6
MP
4348 kvm_for_each_vcpu(i, vcpu, kvm)
4349 *(u64 *)((void *)vcpu + offset) = 0;
4350
4351 return 0;
4352}
536a6f88 4353
09cbcef6 4354static int kvm_stat_data_get(void *data, u64 *val)
536a6f88 4355{
09cbcef6 4356 int r = -EFAULT;
536a6f88 4357 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
536a6f88 4358
09cbcef6
MP
4359 switch (stat_data->dbgfs_item->kind) {
4360 case KVM_STAT_VM:
4361 r = kvm_get_stat_per_vm(stat_data->kvm,
4362 stat_data->dbgfs_item->offset, val);
4363 break;
4364 case KVM_STAT_VCPU:
4365 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4366 stat_data->dbgfs_item->offset, val);
4367 break;
4368 }
536a6f88 4369
09cbcef6 4370 return r;
536a6f88
JF
4371}
4372
09cbcef6 4373static int kvm_stat_data_clear(void *data, u64 val)
ce35ef27 4374{
09cbcef6 4375 int r = -EFAULT;
ce35ef27 4376 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
ce35ef27
SJS
4377
4378 if (val)
4379 return -EINVAL;
4380
09cbcef6
MP
4381 switch (stat_data->dbgfs_item->kind) {
4382 case KVM_STAT_VM:
4383 r = kvm_clear_stat_per_vm(stat_data->kvm,
4384 stat_data->dbgfs_item->offset);
4385 break;
4386 case KVM_STAT_VCPU:
4387 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4388 stat_data->dbgfs_item->offset);
4389 break;
4390 }
ce35ef27 4391
09cbcef6 4392 return r;
ce35ef27
SJS
4393}
4394
09cbcef6 4395static int kvm_stat_data_open(struct inode *inode, struct file *file)
536a6f88
JF
4396{
4397 __simple_attr_check_format("%llu\n", 0ull);
09cbcef6
MP
4398 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4399 kvm_stat_data_clear, "%llu\n");
536a6f88
JF
4400}
4401
09cbcef6
MP
4402static const struct file_operations stat_fops_per_vm = {
4403 .owner = THIS_MODULE,
4404 .open = kvm_stat_data_open,
536a6f88 4405 .release = kvm_debugfs_release,
09cbcef6
MP
4406 .read = simple_attr_read,
4407 .write = simple_attr_write,
4408 .llseek = no_llseek,
536a6f88
JF
4409};
4410
8b88b099 4411static int vm_stat_get(void *_offset, u64 *val)
ba1389b7
AK
4412{
4413 unsigned offset = (long)_offset;
ba1389b7 4414 struct kvm *kvm;
536a6f88 4415 u64 tmp_val;
ba1389b7 4416
8b88b099 4417 *val = 0;
0d9ce162 4418 mutex_lock(&kvm_lock);
536a6f88 4419 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4420 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
536a6f88
JF
4421 *val += tmp_val;
4422 }
0d9ce162 4423 mutex_unlock(&kvm_lock);
8b88b099 4424 return 0;
ba1389b7
AK
4425}
4426
ce35ef27
SJS
4427static int vm_stat_clear(void *_offset, u64 val)
4428{
4429 unsigned offset = (long)_offset;
4430 struct kvm *kvm;
ce35ef27
SJS
4431
4432 if (val)
4433 return -EINVAL;
4434
0d9ce162 4435 mutex_lock(&kvm_lock);
ce35ef27 4436 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4437 kvm_clear_stat_per_vm(kvm, offset);
ce35ef27 4438 }
0d9ce162 4439 mutex_unlock(&kvm_lock);
ce35ef27
SJS
4440
4441 return 0;
4442}
4443
4444DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
ba1389b7 4445
8b88b099 4446static int vcpu_stat_get(void *_offset, u64 *val)
1165f5fe
AK
4447{
4448 unsigned offset = (long)_offset;
1165f5fe 4449 struct kvm *kvm;
536a6f88 4450 u64 tmp_val;
1165f5fe 4451
8b88b099 4452 *val = 0;
0d9ce162 4453 mutex_lock(&kvm_lock);
536a6f88 4454 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4455 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
536a6f88
JF
4456 *val += tmp_val;
4457 }
0d9ce162 4458 mutex_unlock(&kvm_lock);
8b88b099 4459 return 0;
1165f5fe
AK
4460}
4461
ce35ef27
SJS
4462static int vcpu_stat_clear(void *_offset, u64 val)
4463{
4464 unsigned offset = (long)_offset;
4465 struct kvm *kvm;
ce35ef27
SJS
4466
4467 if (val)
4468 return -EINVAL;
4469
0d9ce162 4470 mutex_lock(&kvm_lock);
ce35ef27 4471 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4472 kvm_clear_stat_per_vcpu(kvm, offset);
ce35ef27 4473 }
0d9ce162 4474 mutex_unlock(&kvm_lock);
ce35ef27
SJS
4475
4476 return 0;
4477}
4478
4479DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4480 "%llu\n");
ba1389b7 4481
828c0950 4482static const struct file_operations *stat_fops[] = {
ba1389b7
AK
4483 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4484 [KVM_STAT_VM] = &vm_stat_fops,
4485};
1165f5fe 4486
286de8f6
CI
4487static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4488{
4489 struct kobj_uevent_env *env;
286de8f6
CI
4490 unsigned long long created, active;
4491
4492 if (!kvm_dev.this_device || !kvm)
4493 return;
4494
0d9ce162 4495 mutex_lock(&kvm_lock);
286de8f6
CI
4496 if (type == KVM_EVENT_CREATE_VM) {
4497 kvm_createvm_count++;
4498 kvm_active_vms++;
4499 } else if (type == KVM_EVENT_DESTROY_VM) {
4500 kvm_active_vms--;
4501 }
4502 created = kvm_createvm_count;
4503 active = kvm_active_vms;
0d9ce162 4504 mutex_unlock(&kvm_lock);
286de8f6 4505
b12ce36a 4506 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
286de8f6
CI
4507 if (!env)
4508 return;
4509
4510 add_uevent_var(env, "CREATED=%llu", created);
4511 add_uevent_var(env, "COUNT=%llu", active);
4512
fdeaf7e3 4513 if (type == KVM_EVENT_CREATE_VM) {
286de8f6 4514 add_uevent_var(env, "EVENT=create");
fdeaf7e3
CI
4515 kvm->userspace_pid = task_pid_nr(current);
4516 } else if (type == KVM_EVENT_DESTROY_VM) {
286de8f6 4517 add_uevent_var(env, "EVENT=destroy");
fdeaf7e3
CI
4518 }
4519 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
286de8f6 4520
8ed0579c 4521 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
b12ce36a 4522 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
fdeaf7e3
CI
4523
4524 if (p) {
4525 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4526 if (!IS_ERR(tmp))
4527 add_uevent_var(env, "STATS_PATH=%s", tmp);
4528 kfree(p);
286de8f6
CI
4529 }
4530 }
4531 /* no need for checks, since we are adding at most only 5 keys */
4532 env->envp[env->envp_idx++] = NULL;
4533 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4534 kfree(env);
286de8f6
CI
4535}
4536
929f45e3 4537static void kvm_init_debug(void)
6aa8b732
AK
4538{
4539 struct kvm_stats_debugfs_item *p;
4540
76f7c879 4541 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4f69b680 4542
536a6f88
JF
4543 kvm_debugfs_num_entries = 0;
4544 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
09cbcef6
MP
4545 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4546 kvm_debugfs_dir, (void *)(long)p->offset,
929f45e3 4547 stat_fops[p->kind]);
4f69b680 4548 }
6aa8b732
AK
4549}
4550
fb3600cc 4551static int kvm_suspend(void)
59ae6c6b 4552{
10474ae8 4553 if (kvm_usage_count)
75b7127c 4554 hardware_disable_nolock(NULL);
59ae6c6b
AK
4555 return 0;
4556}
4557
fb3600cc 4558static void kvm_resume(void)
59ae6c6b 4559{
ca84d1a2 4560 if (kvm_usage_count) {
2eb06c30
WL
4561#ifdef CONFIG_LOCKDEP
4562 WARN_ON(lockdep_is_held(&kvm_count_lock));
4563#endif
75b7127c 4564 hardware_enable_nolock(NULL);
ca84d1a2 4565 }
59ae6c6b
AK
4566}
4567
fb3600cc 4568static struct syscore_ops kvm_syscore_ops = {
59ae6c6b
AK
4569 .suspend = kvm_suspend,
4570 .resume = kvm_resume,
4571};
4572
15ad7146
AK
4573static inline
4574struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4575{
4576 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4577}
4578
4579static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4580{
4581 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
f95ef0cd 4582
046ddeed 4583 WRITE_ONCE(vcpu->preempted, false);
d73eb57b 4584 WRITE_ONCE(vcpu->ready, false);
15ad7146 4585
7495e22b 4586 __this_cpu_write(kvm_running_vcpu, vcpu);
e790d9ef 4587 kvm_arch_sched_in(vcpu, cpu);
e9b11c17 4588 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146
AK
4589}
4590
4591static void kvm_sched_out(struct preempt_notifier *pn,
4592 struct task_struct *next)
4593{
4594 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4595
d73eb57b 4596 if (current->state == TASK_RUNNING) {
046ddeed 4597 WRITE_ONCE(vcpu->preempted, true);
d73eb57b
WL
4598 WRITE_ONCE(vcpu->ready, true);
4599 }
e9b11c17 4600 kvm_arch_vcpu_put(vcpu);
7495e22b
PB
4601 __this_cpu_write(kvm_running_vcpu, NULL);
4602}
4603
4604/**
4605 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
1f03b2bc
MZ
4606 *
4607 * We can disable preemption locally around accessing the per-CPU variable,
4608 * and use the resolved vcpu pointer after enabling preemption again,
4609 * because even if the current thread is migrated to another CPU, reading
4610 * the per-CPU value later will give us the same value as we update the
4611 * per-CPU variable in the preempt notifier handlers.
7495e22b
PB
4612 */
4613struct kvm_vcpu *kvm_get_running_vcpu(void)
4614{
1f03b2bc
MZ
4615 struct kvm_vcpu *vcpu;
4616
4617 preempt_disable();
4618 vcpu = __this_cpu_read(kvm_running_vcpu);
4619 preempt_enable();
4620
4621 return vcpu;
7495e22b
PB
4622}
4623
4624/**
4625 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4626 */
4627struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4628{
4629 return &kvm_running_vcpu;
15ad7146
AK
4630}
4631
f257d6dc
SC
4632static void check_processor_compat(void *rtn)
4633{
4634 *(int *)rtn = kvm_arch_check_processor_compat();
4635}
4636
0ee75bea 4637int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
c16f862d 4638 struct module *module)
6aa8b732
AK
4639{
4640 int r;
002c7f7c 4641 int cpu;
6aa8b732 4642
f8c16bba
ZX
4643 r = kvm_arch_init(opaque);
4644 if (r)
d2308784 4645 goto out_fail;
cb498ea2 4646
7dac16c3
AH
4647 /*
4648 * kvm_arch_init makes sure there's at most one caller
4649 * for architectures that support multiple implementations,
4650 * like intel and amd on x86.
36343f6e
PB
4651 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4652 * conflicts in case kvm is already setup for another implementation.
7dac16c3 4653 */
36343f6e
PB
4654 r = kvm_irqfd_init();
4655 if (r)
4656 goto out_irqfd;
7dac16c3 4657
8437a617 4658 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
7f59f492
RR
4659 r = -ENOMEM;
4660 goto out_free_0;
4661 }
4662
e9b11c17 4663 r = kvm_arch_hardware_setup();
6aa8b732 4664 if (r < 0)
faf0be22 4665 goto out_free_1;
6aa8b732 4666
002c7f7c 4667 for_each_online_cpu(cpu) {
f257d6dc 4668 smp_call_function_single(cpu, check_processor_compat, &r, 1);
002c7f7c 4669 if (r < 0)
faf0be22 4670 goto out_free_2;
002c7f7c
YS
4671 }
4672
73c1b41e 4673 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
8c18b2d2 4674 kvm_starting_cpu, kvm_dying_cpu);
774c47f1 4675 if (r)
d2308784 4676 goto out_free_2;
6aa8b732
AK
4677 register_reboot_notifier(&kvm_reboot_notifier);
4678
c16f862d 4679 /* A kmem cache lets us meet the alignment requirements of fx_save. */
0ee75bea
AK
4680 if (!vcpu_align)
4681 vcpu_align = __alignof__(struct kvm_vcpu);
46515736
PB
4682 kvm_vcpu_cache =
4683 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4684 SLAB_ACCOUNT,
4685 offsetof(struct kvm_vcpu, arch),
4686 sizeof_field(struct kvm_vcpu, arch),
4687 NULL);
c16f862d
RR
4688 if (!kvm_vcpu_cache) {
4689 r = -ENOMEM;
fb3600cc 4690 goto out_free_3;
c16f862d
RR
4691 }
4692
af585b92
GN
4693 r = kvm_async_pf_init();
4694 if (r)
4695 goto out_free;
4696
6aa8b732 4697 kvm_chardev_ops.owner = module;
3d3aab1b
CB
4698 kvm_vm_fops.owner = module;
4699 kvm_vcpu_fops.owner = module;
6aa8b732
AK
4700
4701 r = misc_register(&kvm_dev);
4702 if (r) {
1170adc6 4703 pr_err("kvm: misc device register failed\n");
af585b92 4704 goto out_unreg;
6aa8b732
AK
4705 }
4706
fb3600cc
RW
4707 register_syscore_ops(&kvm_syscore_ops);
4708
15ad7146
AK
4709 kvm_preempt_ops.sched_in = kvm_sched_in;
4710 kvm_preempt_ops.sched_out = kvm_sched_out;
4711
929f45e3 4712 kvm_init_debug();
0ea4ed8e 4713
3c3c29fd
PB
4714 r = kvm_vfio_ops_init();
4715 WARN_ON(r);
4716
c7addb90 4717 return 0;
6aa8b732 4718
af585b92
GN
4719out_unreg:
4720 kvm_async_pf_deinit();
6aa8b732 4721out_free:
c16f862d 4722 kmem_cache_destroy(kvm_vcpu_cache);
d2308784 4723out_free_3:
6aa8b732 4724 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 4725 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
d2308784 4726out_free_2:
e9b11c17 4727 kvm_arch_hardware_unsetup();
faf0be22 4728out_free_1:
7f59f492 4729 free_cpumask_var(cpus_hardware_enabled);
d2308784 4730out_free_0:
a0f155e9 4731 kvm_irqfd_exit();
36343f6e 4732out_irqfd:
7dac16c3
AH
4733 kvm_arch_exit();
4734out_fail:
6aa8b732
AK
4735 return r;
4736}
cb498ea2 4737EXPORT_SYMBOL_GPL(kvm_init);
6aa8b732 4738
cb498ea2 4739void kvm_exit(void)
6aa8b732 4740{
4bd33b56 4741 debugfs_remove_recursive(kvm_debugfs_dir);
6aa8b732 4742 misc_deregister(&kvm_dev);
c16f862d 4743 kmem_cache_destroy(kvm_vcpu_cache);
af585b92 4744 kvm_async_pf_deinit();
fb3600cc 4745 unregister_syscore_ops(&kvm_syscore_ops);
6aa8b732 4746 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 4747 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
75b7127c 4748 on_each_cpu(hardware_disable_nolock, NULL, 1);
e9b11c17 4749 kvm_arch_hardware_unsetup();
f8c16bba 4750 kvm_arch_exit();
a0f155e9 4751 kvm_irqfd_exit();
7f59f492 4752 free_cpumask_var(cpus_hardware_enabled);
571ee1b6 4753 kvm_vfio_ops_exit();
6aa8b732 4754}
cb498ea2 4755EXPORT_SYMBOL_GPL(kvm_exit);
c57c8046
JS
4756
4757struct kvm_vm_worker_thread_context {
4758 struct kvm *kvm;
4759 struct task_struct *parent;
4760 struct completion init_done;
4761 kvm_vm_thread_fn_t thread_fn;
4762 uintptr_t data;
4763 int err;
4764};
4765
4766static int kvm_vm_worker_thread(void *context)
4767{
4768 /*
4769 * The init_context is allocated on the stack of the parent thread, so
4770 * we have to locally copy anything that is needed beyond initialization
4771 */
4772 struct kvm_vm_worker_thread_context *init_context = context;
4773 struct kvm *kvm = init_context->kvm;
4774 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4775 uintptr_t data = init_context->data;
4776 int err;
4777
4778 err = kthread_park(current);
4779 /* kthread_park(current) is never supposed to return an error */
4780 WARN_ON(err != 0);
4781 if (err)
4782 goto init_complete;
4783
4784 err = cgroup_attach_task_all(init_context->parent, current);
4785 if (err) {
4786 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4787 __func__, err);
4788 goto init_complete;
4789 }
4790
4791 set_user_nice(current, task_nice(init_context->parent));
4792
4793init_complete:
4794 init_context->err = err;
4795 complete(&init_context->init_done);
4796 init_context = NULL;
4797
4798 if (err)
4799 return err;
4800
4801 /* Wait to be woken up by the spawner before proceeding. */
4802 kthread_parkme();
4803
4804 if (!kthread_should_stop())
4805 err = thread_fn(kvm, data);
4806
4807 return err;
4808}
4809
4810int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4811 uintptr_t data, const char *name,
4812 struct task_struct **thread_ptr)
4813{
4814 struct kvm_vm_worker_thread_context init_context = {};
4815 struct task_struct *thread;
4816
4817 *thread_ptr = NULL;
4818 init_context.kvm = kvm;
4819 init_context.parent = current;
4820 init_context.thread_fn = thread_fn;
4821 init_context.data = data;
4822 init_completion(&init_context.init_done);
4823
4824 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4825 "%s-%d", name, task_pid_nr(current));
4826 if (IS_ERR(thread))
4827 return PTR_ERR(thread);
4828
4829 /* kthread_run is never supposed to return NULL */
4830 WARN_ON(thread == NULL);
4831
4832 wait_for_completion(&init_context.init_done);
4833
4834 if (!init_context.err)
4835 *thread_ptr = thread;
4836
4837 return init_context.err;
4838}