]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - virt/kvm/kvm_main.c
KVM: Make kvm_set_spte_hva() return int
[thirdparty/kernel/stable.git] / virt / kvm / kvm_main.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
af669ac6 19#include <kvm/iodev.h>
6aa8b732 20
edf88417 21#include <linux/kvm_host.h>
6aa8b732
AK
22#include <linux/kvm.h>
23#include <linux/module.h>
24#include <linux/errno.h>
6aa8b732 25#include <linux/percpu.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/miscdevice.h>
28#include <linux/vmalloc.h>
6aa8b732 29#include <linux/reboot.h>
6aa8b732
AK
30#include <linux/debugfs.h>
31#include <linux/highmem.h>
32#include <linux/file.h>
fb3600cc 33#include <linux/syscore_ops.h>
774c47f1 34#include <linux/cpu.h>
174cd4b1 35#include <linux/sched/signal.h>
6e84f315 36#include <linux/sched/mm.h>
03441a34 37#include <linux/sched/stat.h>
d9e368d6
AK
38#include <linux/cpumask.h>
39#include <linux/smp.h>
d6d28168 40#include <linux/anon_inodes.h>
04d2cc77 41#include <linux/profile.h>
7aa81cc0 42#include <linux/kvm_para.h>
6fc138d2 43#include <linux/pagemap.h>
8d4e1288 44#include <linux/mman.h>
35149e21 45#include <linux/swap.h>
e56d532f 46#include <linux/bitops.h>
547de29e 47#include <linux/spinlock.h>
6ff5894c 48#include <linux/compat.h>
bc6678a3 49#include <linux/srcu.h>
8f0b1ab6 50#include <linux/hugetlb.h>
5a0e3ad6 51#include <linux/slab.h>
743eeb0b
SL
52#include <linux/sort.h>
53#include <linux/bsearch.h>
6aa8b732 54
e495606d 55#include <asm/processor.h>
e495606d 56#include <asm/io.h>
2ea75be3 57#include <asm/ioctl.h>
7c0f6ba6 58#include <linux/uaccess.h>
3e021bf5 59#include <asm/pgtable.h>
6aa8b732 60
5f94c174 61#include "coalesced_mmio.h"
af585b92 62#include "async_pf.h"
3c3c29fd 63#include "vfio.h"
5f94c174 64
229456fc
MT
65#define CREATE_TRACE_POINTS
66#include <trace/events/kvm.h>
67
536a6f88
JF
68/* Worst case buffer size needed for holding an integer. */
69#define ITOA_MAX_LEN 12
70
6aa8b732
AK
71MODULE_AUTHOR("Qumranet");
72MODULE_LICENSE("GPL");
73
920552b2 74/* Architectures should define their poll value according to the halt latency */
ec76d819 75unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
039c5d1b 76module_param(halt_poll_ns, uint, 0644);
ec76d819 77EXPORT_SYMBOL_GPL(halt_poll_ns);
f7819512 78
aca6ff29 79/* Default doubles per-vcpu halt_poll_ns. */
ec76d819 80unsigned int halt_poll_ns_grow = 2;
039c5d1b 81module_param(halt_poll_ns_grow, uint, 0644);
ec76d819 82EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
aca6ff29
WL
83
84/* Default resets per-vcpu halt_poll_ns . */
ec76d819 85unsigned int halt_poll_ns_shrink;
039c5d1b 86module_param(halt_poll_ns_shrink, uint, 0644);
ec76d819 87EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
aca6ff29 88
fa40a821
MT
89/*
90 * Ordering of locks:
91 *
b7d409de 92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
fa40a821
MT
93 */
94
2f303b74 95DEFINE_SPINLOCK(kvm_lock);
4a937f96 96static DEFINE_RAW_SPINLOCK(kvm_count_lock);
e9b11c17 97LIST_HEAD(vm_list);
133de902 98
7f59f492 99static cpumask_var_t cpus_hardware_enabled;
f4fee932 100static int kvm_usage_count;
10474ae8 101static atomic_t hardware_enable_failed;
1b6c0168 102
c16f862d
RR
103struct kmem_cache *kvm_vcpu_cache;
104EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
1165f5fe 105
15ad7146
AK
106static __read_mostly struct preempt_ops kvm_preempt_ops;
107
76f7c879 108struct dentry *kvm_debugfs_dir;
e23a808b 109EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
6aa8b732 110
536a6f88
JF
111static int kvm_debugfs_num_entries;
112static const struct file_operations *stat_fops_per_vm[];
113
bccf2150
AK
114static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
de8e5d74 116#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
117static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
7ddfd3e0
MZ
119#define KVM_COMPAT(c) .compat_ioctl = (c)
120#else
121static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg) { return -EINVAL; }
123#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
1dda606c 124#endif
10474ae8
AG
125static int hardware_enable_all(void);
126static void hardware_disable_all(void);
bccf2150 127
e93f8a0f 128static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
7940876e 129
bc009e43 130static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
e93f8a0f 131
52480137 132__visible bool kvm_rebooting;
b7c4145b 133EXPORT_SYMBOL_GPL(kvm_rebooting);
4ecac3fd 134
54dee993
MT
135static bool largepages_enabled = true;
136
286de8f6
CI
137#define KVM_EVENT_CREATE_VM 0
138#define KVM_EVENT_DESTROY_VM 1
139static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140static unsigned long long kvm_createvm_count;
141static unsigned long long kvm_active_vms;
142
93065ac7
MH
143__weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144 unsigned long start, unsigned long end, bool blockable)
b1394e74 145{
93065ac7 146 return 0;
b1394e74
RK
147}
148
ba049e93 149bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
cbff90a7 150{
11feeb49 151 if (pfn_valid(pfn))
bf4bea8e 152 return PageReserved(pfn_to_page(pfn));
cbff90a7
BAY
153
154 return true;
155}
156
bccf2150
AK
157/*
158 * Switches to specified vcpu, until a matching vcpu_put()
159 */
ec7660cc 160void vcpu_load(struct kvm_vcpu *vcpu)
6aa8b732 161{
ec7660cc 162 int cpu = get_cpu();
15ad7146 163 preempt_notifier_register(&vcpu->preempt_notifier);
313a3dc7 164 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146 165 put_cpu();
6aa8b732 166}
2f1fe811 167EXPORT_SYMBOL_GPL(vcpu_load);
6aa8b732 168
313a3dc7 169void vcpu_put(struct kvm_vcpu *vcpu)
6aa8b732 170{
15ad7146 171 preempt_disable();
313a3dc7 172 kvm_arch_vcpu_put(vcpu);
15ad7146
AK
173 preempt_notifier_unregister(&vcpu->preempt_notifier);
174 preempt_enable();
6aa8b732 175}
2f1fe811 176EXPORT_SYMBOL_GPL(vcpu_put);
6aa8b732 177
7a97cec2
PB
178/* TODO: merge with kvm_arch_vcpu_should_kick */
179static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180{
181 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183 /*
184 * We need to wait for the VCPU to reenable interrupts and get out of
185 * READING_SHADOW_PAGE_TABLES mode.
186 */
187 if (req & KVM_REQUEST_WAIT)
188 return mode != OUTSIDE_GUEST_MODE;
189
190 /*
191 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 */
193 return mode == IN_GUEST_MODE;
194}
195
d9e368d6
AK
196static void ack_flush(void *_completed)
197{
d9e368d6
AK
198}
199
b49defe8
PB
200static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201{
202 if (unlikely(!cpus))
203 cpus = cpu_online_mask;
204
205 if (cpumask_empty(cpus))
206 return false;
207
208 smp_call_function_many(cpus, ack_flush, NULL, wait);
209 return true;
210}
211
7053df4e
VK
212bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
d9e368d6 214{
597a5f55 215 int i, cpu, me;
d9e368d6 216 struct kvm_vcpu *vcpu;
7053df4e 217 bool called;
6ef7a1bc 218
3cba4130 219 me = get_cpu();
7053df4e 220
988a2cae 221 kvm_for_each_vcpu(i, vcpu, kvm) {
a812297c 222 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
7053df4e
VK
223 continue;
224
3cba4130 225 kvm_make_request(req, vcpu);
d9e368d6 226 cpu = vcpu->cpu;
6b7e2d09 227
178f02ff
RK
228 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
229 continue;
6c6e8360 230
7053df4e 231 if (tmp != NULL && cpu != -1 && cpu != me &&
7a97cec2 232 kvm_request_needs_ipi(vcpu, req))
7053df4e 233 __cpumask_set_cpu(cpu, tmp);
49846896 234 }
7053df4e
VK
235
236 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
3cba4130 237 put_cpu();
7053df4e
VK
238
239 return called;
240}
241
242bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243{
244 cpumask_var_t cpus;
245 bool called;
7053df4e
VK
246
247 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
248
a812297c 249 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
7053df4e 250
6ef7a1bc 251 free_cpumask_var(cpus);
49846896 252 return called;
d9e368d6
AK
253}
254
a6d51016 255#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
49846896 256void kvm_flush_remote_tlbs(struct kvm *kvm)
2e53d63a 257{
4ae3cb3a
LT
258 /*
259 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
260 * kvm_make_all_cpus_request.
261 */
262 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
263
264 /*
265 * We want to publish modifications to the page tables before reading
266 * mode. Pairs with a memory barrier in arch-specific code.
267 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
268 * and smp_mb in walk_shadow_page_lockless_begin/end.
269 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
270 *
271 * There is already an smp_mb__after_atomic() before
272 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
273 * barrier here.
274 */
b08660e5
TL
275 if (!kvm_arch_flush_remote_tlb(kvm)
276 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
49846896 277 ++kvm->stat.remote_tlb_flush;
a086f6a1 278 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
2e53d63a 279}
2ba9f0d8 280EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
a6d51016 281#endif
2e53d63a 282
49846896
RR
283void kvm_reload_remote_mmus(struct kvm *kvm)
284{
445b8236 285 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
49846896 286}
2e53d63a 287
fb3f0f51
RR
288int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
289{
290 struct page *page;
291 int r;
292
293 mutex_init(&vcpu->mutex);
294 vcpu->cpu = -1;
fb3f0f51
RR
295 vcpu->kvm = kvm;
296 vcpu->vcpu_id = id;
34bb10b7 297 vcpu->pid = NULL;
8577370f 298 init_swait_queue_head(&vcpu->wq);
af585b92 299 kvm_async_pf_vcpu_init(vcpu);
fb3f0f51 300
bf9f6ac8
FW
301 vcpu->pre_pcpu = -1;
302 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
303
fb3f0f51
RR
304 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305 if (!page) {
306 r = -ENOMEM;
307 goto fail;
308 }
309 vcpu->run = page_address(page);
310
4c088493
R
311 kvm_vcpu_set_in_spin_loop(vcpu, false);
312 kvm_vcpu_set_dy_eligible(vcpu, false);
3a08a8f9 313 vcpu->preempted = false;
4c088493 314
e9b11c17 315 r = kvm_arch_vcpu_init(vcpu);
fb3f0f51 316 if (r < 0)
e9b11c17 317 goto fail_free_run;
fb3f0f51
RR
318 return 0;
319
fb3f0f51
RR
320fail_free_run:
321 free_page((unsigned long)vcpu->run);
322fail:
76fafa5e 323 return r;
fb3f0f51
RR
324}
325EXPORT_SYMBOL_GPL(kvm_vcpu_init);
326
327void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
328{
0e4524a5
CB
329 /*
330 * no need for rcu_read_lock as VCPU_RUN is the only place that
331 * will change the vcpu->pid pointer and on uninit all file
332 * descriptors are already gone.
333 */
334 put_pid(rcu_dereference_protected(vcpu->pid, 1));
e9b11c17 335 kvm_arch_vcpu_uninit(vcpu);
fb3f0f51
RR
336 free_page((unsigned long)vcpu->run);
337}
338EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
339
e930bffe
AA
340#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
342{
343 return container_of(mn, struct kvm, mmu_notifier);
344}
345
3da0dd43
IE
346static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long address,
349 pte_t pte)
350{
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 352 int idx;
3da0dd43 353
bc6678a3 354 idx = srcu_read_lock(&kvm->srcu);
3da0dd43
IE
355 spin_lock(&kvm->mmu_lock);
356 kvm->mmu_notifier_seq++;
357 kvm_set_spte_hva(kvm, address, pte);
358 spin_unlock(&kvm->mmu_lock);
bc6678a3 359 srcu_read_unlock(&kvm->srcu, idx);
3da0dd43
IE
360}
361
93065ac7 362static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
e930bffe
AA
363 struct mm_struct *mm,
364 unsigned long start,
93065ac7
MH
365 unsigned long end,
366 bool blockable)
e930bffe
AA
367{
368 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 369 int need_tlb_flush = 0, idx;
93065ac7 370 int ret;
e930bffe 371
bc6678a3 372 idx = srcu_read_lock(&kvm->srcu);
e930bffe
AA
373 spin_lock(&kvm->mmu_lock);
374 /*
375 * The count increase must become visible at unlock time as no
376 * spte can be established without taking the mmu_lock and
377 * count is also read inside the mmu_lock critical section.
378 */
379 kvm->mmu_notifier_count++;
b3ae2096 380 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
a4ee1ca4 381 need_tlb_flush |= kvm->tlbs_dirty;
e930bffe
AA
382 /* we've to flush the tlb before the pages can be freed */
383 if (need_tlb_flush)
384 kvm_flush_remote_tlbs(kvm);
565f3be2
TY
385
386 spin_unlock(&kvm->mmu_lock);
b1394e74 387
93065ac7 388 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, start, end, blockable);
b1394e74 389
565f3be2 390 srcu_read_unlock(&kvm->srcu, idx);
93065ac7
MH
391
392 return ret;
e930bffe
AA
393}
394
395static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
396 struct mm_struct *mm,
397 unsigned long start,
398 unsigned long end)
399{
400 struct kvm *kvm = mmu_notifier_to_kvm(mn);
401
402 spin_lock(&kvm->mmu_lock);
403 /*
404 * This sequence increase will notify the kvm page fault that
405 * the page that is going to be mapped in the spte could have
406 * been freed.
407 */
408 kvm->mmu_notifier_seq++;
a355aa54 409 smp_wmb();
e930bffe
AA
410 /*
411 * The above sequence increase must be visible before the
a355aa54
PM
412 * below count decrease, which is ensured by the smp_wmb above
413 * in conjunction with the smp_rmb in mmu_notifier_retry().
e930bffe
AA
414 */
415 kvm->mmu_notifier_count--;
416 spin_unlock(&kvm->mmu_lock);
417
418 BUG_ON(kvm->mmu_notifier_count < 0);
419}
420
421static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
422 struct mm_struct *mm,
57128468
ALC
423 unsigned long start,
424 unsigned long end)
e930bffe
AA
425{
426 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 427 int young, idx;
e930bffe 428
bc6678a3 429 idx = srcu_read_lock(&kvm->srcu);
e930bffe 430 spin_lock(&kvm->mmu_lock);
e930bffe 431
57128468 432 young = kvm_age_hva(kvm, start, end);
e930bffe
AA
433 if (young)
434 kvm_flush_remote_tlbs(kvm);
435
565f3be2
TY
436 spin_unlock(&kvm->mmu_lock);
437 srcu_read_unlock(&kvm->srcu, idx);
438
e930bffe
AA
439 return young;
440}
441
1d7715c6
VD
442static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
443 struct mm_struct *mm,
444 unsigned long start,
445 unsigned long end)
446{
447 struct kvm *kvm = mmu_notifier_to_kvm(mn);
448 int young, idx;
449
450 idx = srcu_read_lock(&kvm->srcu);
451 spin_lock(&kvm->mmu_lock);
452 /*
453 * Even though we do not flush TLB, this will still adversely
454 * affect performance on pre-Haswell Intel EPT, where there is
455 * no EPT Access Bit to clear so that we have to tear down EPT
456 * tables instead. If we find this unacceptable, we can always
457 * add a parameter to kvm_age_hva so that it effectively doesn't
458 * do anything on clear_young.
459 *
460 * Also note that currently we never issue secondary TLB flushes
461 * from clear_young, leaving this job up to the regular system
462 * cadence. If we find this inaccurate, we might come up with a
463 * more sophisticated heuristic later.
464 */
465 young = kvm_age_hva(kvm, start, end);
466 spin_unlock(&kvm->mmu_lock);
467 srcu_read_unlock(&kvm->srcu, idx);
468
469 return young;
470}
471
8ee53820
AA
472static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
473 struct mm_struct *mm,
474 unsigned long address)
475{
476 struct kvm *kvm = mmu_notifier_to_kvm(mn);
477 int young, idx;
478
479 idx = srcu_read_lock(&kvm->srcu);
480 spin_lock(&kvm->mmu_lock);
481 young = kvm_test_age_hva(kvm, address);
482 spin_unlock(&kvm->mmu_lock);
483 srcu_read_unlock(&kvm->srcu, idx);
484
485 return young;
486}
487
85db06e5
MT
488static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
489 struct mm_struct *mm)
490{
491 struct kvm *kvm = mmu_notifier_to_kvm(mn);
eda2beda
LJ
492 int idx;
493
494 idx = srcu_read_lock(&kvm->srcu);
2df72e9b 495 kvm_arch_flush_shadow_all(kvm);
eda2beda 496 srcu_read_unlock(&kvm->srcu, idx);
85db06e5
MT
497}
498
e930bffe 499static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
e930bffe
AA
500 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
501 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
502 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
1d7715c6 503 .clear_young = kvm_mmu_notifier_clear_young,
8ee53820 504 .test_young = kvm_mmu_notifier_test_young,
3da0dd43 505 .change_pte = kvm_mmu_notifier_change_pte,
85db06e5 506 .release = kvm_mmu_notifier_release,
e930bffe 507};
4c07b0a4
AK
508
509static int kvm_init_mmu_notifier(struct kvm *kvm)
510{
511 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
512 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
513}
514
515#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
516
517static int kvm_init_mmu_notifier(struct kvm *kvm)
518{
519 return 0;
520}
521
e930bffe
AA
522#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
523
a47d2b07 524static struct kvm_memslots *kvm_alloc_memslots(void)
bf3e05bc
XG
525{
526 int i;
a47d2b07 527 struct kvm_memslots *slots;
bf3e05bc 528
a7c3e901 529 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
a47d2b07
PB
530 if (!slots)
531 return NULL;
532
bf3e05bc 533 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
f85e2cb5 534 slots->id_to_index[i] = slots->memslots[i].id = i;
a47d2b07
PB
535
536 return slots;
537}
538
539static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
540{
541 if (!memslot->dirty_bitmap)
542 return;
543
544 kvfree(memslot->dirty_bitmap);
545 memslot->dirty_bitmap = NULL;
546}
547
548/*
549 * Free any memory in @free but not in @dont.
550 */
551static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
552 struct kvm_memory_slot *dont)
553{
554 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
555 kvm_destroy_dirty_bitmap(free);
556
557 kvm_arch_free_memslot(kvm, free, dont);
558
559 free->npages = 0;
560}
561
562static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
563{
564 struct kvm_memory_slot *memslot;
565
566 if (!slots)
567 return;
568
569 kvm_for_each_memslot(memslot, slots)
570 kvm_free_memslot(kvm, memslot, NULL);
571
572 kvfree(slots);
bf3e05bc
XG
573}
574
536a6f88
JF
575static void kvm_destroy_vm_debugfs(struct kvm *kvm)
576{
577 int i;
578
579 if (!kvm->debugfs_dentry)
580 return;
581
582 debugfs_remove_recursive(kvm->debugfs_dentry);
583
9d5a1dce
LC
584 if (kvm->debugfs_stat_data) {
585 for (i = 0; i < kvm_debugfs_num_entries; i++)
586 kfree(kvm->debugfs_stat_data[i]);
587 kfree(kvm->debugfs_stat_data);
588 }
536a6f88
JF
589}
590
591static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
592{
593 char dir_name[ITOA_MAX_LEN * 2];
594 struct kvm_stat_data *stat_data;
595 struct kvm_stats_debugfs_item *p;
596
597 if (!debugfs_initialized())
598 return 0;
599
600 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
929f45e3 601 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
536a6f88
JF
602
603 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
604 sizeof(*kvm->debugfs_stat_data),
605 GFP_KERNEL);
606 if (!kvm->debugfs_stat_data)
607 return -ENOMEM;
608
609 for (p = debugfs_entries; p->name; p++) {
610 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
611 if (!stat_data)
612 return -ENOMEM;
613
614 stat_data->kvm = kvm;
615 stat_data->offset = p->offset;
616 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
929f45e3
GKH
617 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
618 stat_data, stat_fops_per_vm[p->kind]);
536a6f88
JF
619 }
620 return 0;
621}
622
e08b9637 623static struct kvm *kvm_create_vm(unsigned long type)
6aa8b732 624{
d89f5eff
JK
625 int r, i;
626 struct kvm *kvm = kvm_arch_alloc_vm();
6aa8b732 627
d89f5eff
JK
628 if (!kvm)
629 return ERR_PTR(-ENOMEM);
630
e9ad4ec8 631 spin_lock_init(&kvm->mmu_lock);
f1f10076 632 mmgrab(current->mm);
e9ad4ec8
PB
633 kvm->mm = current->mm;
634 kvm_eventfd_init(kvm);
635 mutex_init(&kvm->lock);
636 mutex_init(&kvm->irq_lock);
637 mutex_init(&kvm->slots_lock);
e3736c3e 638 refcount_set(&kvm->users_count, 1);
e9ad4ec8
PB
639 INIT_LIST_HEAD(&kvm->devices);
640
e08b9637 641 r = kvm_arch_init_vm(kvm, type);
d89f5eff 642 if (r)
719d93cd 643 goto out_err_no_disable;
10474ae8
AG
644
645 r = hardware_enable_all();
646 if (r)
719d93cd 647 goto out_err_no_disable;
10474ae8 648
c77dcacb 649#ifdef CONFIG_HAVE_KVM_IRQFD
136bdfee 650 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
75858a84 651#endif
6aa8b732 652
1e702d9a
AW
653 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
654
46a26bf5 655 r = -ENOMEM;
f481b069 656 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4bd518f1
PB
657 struct kvm_memslots *slots = kvm_alloc_memslots();
658 if (!slots)
f481b069 659 goto out_err_no_srcu;
4bd518f1
PB
660 /*
661 * Generations must be different for each address space.
662 * Init kvm generation close to the maximum to easily test the
663 * code of handling generation number wrap-around.
664 */
665 slots->generation = i * 2 - 150;
666 rcu_assign_pointer(kvm->memslots[i], slots);
f481b069 667 }
00f034a1 668
bc6678a3 669 if (init_srcu_struct(&kvm->srcu))
719d93cd
CB
670 goto out_err_no_srcu;
671 if (init_srcu_struct(&kvm->irq_srcu))
672 goto out_err_no_irq_srcu;
e93f8a0f 673 for (i = 0; i < KVM_NR_BUSES; i++) {
4a12f951
CB
674 rcu_assign_pointer(kvm->buses[i],
675 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
57e7fbee 676 if (!kvm->buses[i])
e93f8a0f 677 goto out_err;
e93f8a0f 678 }
e930bffe 679
74b5c5bf
MW
680 r = kvm_init_mmu_notifier(kvm);
681 if (r)
682 goto out_err;
683
2f303b74 684 spin_lock(&kvm_lock);
5e58cfe4 685 list_add(&kvm->vm_list, &vm_list);
2f303b74 686 spin_unlock(&kvm_lock);
d89f5eff 687
2ecd9d29
PZ
688 preempt_notifier_inc();
689
f17abe9a 690 return kvm;
10474ae8
AG
691
692out_err:
719d93cd
CB
693 cleanup_srcu_struct(&kvm->irq_srcu);
694out_err_no_irq_srcu:
57e7fbee 695 cleanup_srcu_struct(&kvm->srcu);
719d93cd 696out_err_no_srcu:
10474ae8 697 hardware_disable_all();
719d93cd 698out_err_no_disable:
021086e3 699 refcount_set(&kvm->users_count, 0);
e93f8a0f 700 for (i = 0; i < KVM_NR_BUSES; i++)
3898da94 701 kfree(kvm_get_bus(kvm, i));
f481b069 702 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 703 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
d89f5eff 704 kvm_arch_free_vm(kvm);
e9ad4ec8 705 mmdrop(current->mm);
10474ae8 706 return ERR_PTR(r);
f17abe9a
AK
707}
708
07f0a7bd
SW
709static void kvm_destroy_devices(struct kvm *kvm)
710{
e6e3b5a6 711 struct kvm_device *dev, *tmp;
07f0a7bd 712
a28ebea2
CD
713 /*
714 * We do not need to take the kvm->lock here, because nobody else
715 * has a reference to the struct kvm at this point and therefore
716 * cannot access the devices list anyhow.
717 */
e6e3b5a6
GT
718 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
719 list_del(&dev->vm_node);
07f0a7bd
SW
720 dev->ops->destroy(dev);
721 }
722}
723
f17abe9a
AK
724static void kvm_destroy_vm(struct kvm *kvm)
725{
e93f8a0f 726 int i;
6d4e4c4f
AK
727 struct mm_struct *mm = kvm->mm;
728
286de8f6 729 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
536a6f88 730 kvm_destroy_vm_debugfs(kvm);
ad8ba2cd 731 kvm_arch_sync_events(kvm);
2f303b74 732 spin_lock(&kvm_lock);
133de902 733 list_del(&kvm->vm_list);
2f303b74 734 spin_unlock(&kvm_lock);
399ec807 735 kvm_free_irq_routing(kvm);
df630b8c 736 for (i = 0; i < KVM_NR_BUSES; i++) {
3898da94 737 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
4a12f951 738
4a12f951
CB
739 if (bus)
740 kvm_io_bus_destroy(bus);
df630b8c
PX
741 kvm->buses[i] = NULL;
742 }
980da6ce 743 kvm_coalesced_mmio_free(kvm);
e930bffe
AA
744#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
745 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
f00be0ca 746#else
2df72e9b 747 kvm_arch_flush_shadow_all(kvm);
5f94c174 748#endif
d19a9cd2 749 kvm_arch_destroy_vm(kvm);
07f0a7bd 750 kvm_destroy_devices(kvm);
f481b069 751 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 752 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820b3fcd 753 cleanup_srcu_struct(&kvm->irq_srcu);
d89f5eff
JK
754 cleanup_srcu_struct(&kvm->srcu);
755 kvm_arch_free_vm(kvm);
2ecd9d29 756 preempt_notifier_dec();
10474ae8 757 hardware_disable_all();
6d4e4c4f 758 mmdrop(mm);
f17abe9a
AK
759}
760
d39f13b0
IE
761void kvm_get_kvm(struct kvm *kvm)
762{
e3736c3e 763 refcount_inc(&kvm->users_count);
d39f13b0
IE
764}
765EXPORT_SYMBOL_GPL(kvm_get_kvm);
766
767void kvm_put_kvm(struct kvm *kvm)
768{
e3736c3e 769 if (refcount_dec_and_test(&kvm->users_count))
d39f13b0
IE
770 kvm_destroy_vm(kvm);
771}
772EXPORT_SYMBOL_GPL(kvm_put_kvm);
773
774
f17abe9a
AK
775static int kvm_vm_release(struct inode *inode, struct file *filp)
776{
777 struct kvm *kvm = filp->private_data;
778
721eecbf
GH
779 kvm_irqfd_release(kvm);
780
d39f13b0 781 kvm_put_kvm(kvm);
6aa8b732
AK
782 return 0;
783}
784
515a0127
TY
785/*
786 * Allocation size is twice as large as the actual dirty bitmap size.
93474b25 787 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
515a0127 788 */
a36a57b1
TY
789static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
790{
515a0127 791 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
a36a57b1 792
a7c3e901 793 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
a36a57b1
TY
794 if (!memslot->dirty_bitmap)
795 return -ENOMEM;
796
a36a57b1
TY
797 return 0;
798}
799
bf3e05bc 800/*
0e60b079
IM
801 * Insert memslot and re-sort memslots based on their GFN,
802 * so binary search could be used to lookup GFN.
803 * Sorting algorithm takes advantage of having initially
804 * sorted array and known changed memslot position.
bf3e05bc 805 */
5cc15027 806static void update_memslots(struct kvm_memslots *slots,
31fc4f95
WY
807 struct kvm_memory_slot *new,
808 enum kvm_mr_change change)
bf3e05bc 809{
8593176c
PB
810 int id = new->id;
811 int i = slots->id_to_index[id];
063584d4 812 struct kvm_memory_slot *mslots = slots->memslots;
f85e2cb5 813
8593176c 814 WARN_ON(mslots[i].id != id);
31fc4f95
WY
815 switch (change) {
816 case KVM_MR_CREATE:
817 slots->used_slots++;
818 WARN_ON(mslots[i].npages || !new->npages);
819 break;
820 case KVM_MR_DELETE:
821 slots->used_slots--;
822 WARN_ON(new->npages || !mslots[i].npages);
823 break;
824 default:
825 break;
9c1a5d38 826 }
0e60b079 827
7f379cff 828 while (i < KVM_MEM_SLOTS_NUM - 1 &&
0e60b079
IM
829 new->base_gfn <= mslots[i + 1].base_gfn) {
830 if (!mslots[i + 1].npages)
831 break;
7f379cff
IM
832 mslots[i] = mslots[i + 1];
833 slots->id_to_index[mslots[i].id] = i;
834 i++;
835 }
efbeec70
PB
836
837 /*
838 * The ">=" is needed when creating a slot with base_gfn == 0,
839 * so that it moves before all those with base_gfn == npages == 0.
840 *
841 * On the other hand, if new->npages is zero, the above loop has
842 * already left i pointing to the beginning of the empty part of
843 * mslots, and the ">=" would move the hole backwards in this
844 * case---which is wrong. So skip the loop when deleting a slot.
845 */
846 if (new->npages) {
847 while (i > 0 &&
848 new->base_gfn >= mslots[i - 1].base_gfn) {
849 mslots[i] = mslots[i - 1];
850 slots->id_to_index[mslots[i].id] = i;
851 i--;
852 }
dbaff309
PB
853 } else
854 WARN_ON_ONCE(i != slots->used_slots);
f85e2cb5 855
8593176c
PB
856 mslots[i] = *new;
857 slots->id_to_index[mslots[i].id] = i;
bf3e05bc
XG
858}
859
09170a49 860static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
a50d64d6 861{
4d8b81ab
XG
862 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
863
0f8a4de3 864#ifdef __KVM_HAVE_READONLY_MEM
4d8b81ab
XG
865 valid_flags |= KVM_MEM_READONLY;
866#endif
867
868 if (mem->flags & ~valid_flags)
a50d64d6
XG
869 return -EINVAL;
870
871 return 0;
872}
873
7ec4fb44 874static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
f481b069 875 int as_id, struct kvm_memslots *slots)
7ec4fb44 876{
f481b069 877 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
7ec4fb44 878
ee3d1570
DM
879 /*
880 * Set the low bit in the generation, which disables SPTE caching
881 * until the end of synchronize_srcu_expedited.
882 */
883 WARN_ON(old_memslots->generation & 1);
884 slots->generation = old_memslots->generation + 1;
885
f481b069 886 rcu_assign_pointer(kvm->memslots[as_id], slots);
7ec4fb44 887 synchronize_srcu_expedited(&kvm->srcu);
e59dbe09 888
ee3d1570
DM
889 /*
890 * Increment the new memslot generation a second time. This prevents
891 * vm exits that race with memslot updates from caching a memslot
892 * generation that will (potentially) be valid forever.
4bd518f1
PB
893 *
894 * Generations must be unique even across address spaces. We do not need
895 * a global counter for that, instead the generation space is evenly split
896 * across address spaces. For example, with two address spaces, address
897 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
898 * use generations 2, 6, 10, 14, ...
ee3d1570 899 */
4bd518f1 900 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
ee3d1570 901
15f46015 902 kvm_arch_memslots_updated(kvm, slots);
e59dbe09
TY
903
904 return old_memslots;
7ec4fb44
GN
905}
906
6aa8b732
AK
907/*
908 * Allocate some memory and give it an address in the guest physical address
909 * space.
910 *
911 * Discontiguous memory is allowed, mostly for framebuffers.
f78e0e2e 912 *
02d5d55b 913 * Must be called holding kvm->slots_lock for write.
6aa8b732 914 */
f78e0e2e 915int __kvm_set_memory_region(struct kvm *kvm,
09170a49 916 const struct kvm_userspace_memory_region *mem)
6aa8b732 917{
8234b22e 918 int r;
6aa8b732 919 gfn_t base_gfn;
28bcb112 920 unsigned long npages;
a843fac2 921 struct kvm_memory_slot *slot;
6aa8b732 922 struct kvm_memory_slot old, new;
b7f69c55 923 struct kvm_memslots *slots = NULL, *old_memslots;
f481b069 924 int as_id, id;
f64c0398 925 enum kvm_mr_change change;
6aa8b732 926
a50d64d6
XG
927 r = check_memory_region_flags(mem);
928 if (r)
929 goto out;
930
6aa8b732 931 r = -EINVAL;
f481b069
PB
932 as_id = mem->slot >> 16;
933 id = (u16)mem->slot;
934
6aa8b732
AK
935 /* General sanity checks */
936 if (mem->memory_size & (PAGE_SIZE - 1))
937 goto out;
938 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
939 goto out;
fa3d315a 940 /* We can read the guest memory with __xxx_user() later on. */
f481b069 941 if ((id < KVM_USER_MEM_SLOTS) &&
fa3d315a 942 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
9e3bb6b6
HC
943 !access_ok(VERIFY_WRITE,
944 (void __user *)(unsigned long)mem->userspace_addr,
945 mem->memory_size)))
78749809 946 goto out;
f481b069 947 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
6aa8b732
AK
948 goto out;
949 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
950 goto out;
951
f481b069 952 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
6aa8b732
AK
953 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
954 npages = mem->memory_size >> PAGE_SHIFT;
955
660c22c4
TY
956 if (npages > KVM_MEM_MAX_NR_PAGES)
957 goto out;
958
a843fac2 959 new = old = *slot;
6aa8b732 960
f481b069 961 new.id = id;
6aa8b732
AK
962 new.base_gfn = base_gfn;
963 new.npages = npages;
964 new.flags = mem->flags;
965
f64c0398
TY
966 if (npages) {
967 if (!old.npages)
968 change = KVM_MR_CREATE;
969 else { /* Modify an existing slot. */
970 if ((mem->userspace_addr != old.userspace_addr) ||
75d61fbc
TY
971 (npages != old.npages) ||
972 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
f64c0398
TY
973 goto out;
974
975 if (base_gfn != old.base_gfn)
976 change = KVM_MR_MOVE;
977 else if (new.flags != old.flags)
978 change = KVM_MR_FLAGS_ONLY;
979 else { /* Nothing to change. */
980 r = 0;
981 goto out;
982 }
983 }
09170a49
PB
984 } else {
985 if (!old.npages)
986 goto out;
987
f64c0398 988 change = KVM_MR_DELETE;
09170a49
PB
989 new.base_gfn = 0;
990 new.flags = 0;
991 }
6aa8b732 992
f64c0398 993 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
0a706bee
TY
994 /* Check for overlaps */
995 r = -EEXIST;
f481b069 996 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
b28676bb 997 if (slot->id == id)
0a706bee
TY
998 continue;
999 if (!((base_gfn + npages <= slot->base_gfn) ||
1000 (base_gfn >= slot->base_gfn + slot->npages)))
1001 goto out;
1002 }
6aa8b732 1003 }
6aa8b732 1004
6aa8b732
AK
1005 /* Free page dirty bitmap if unneeded */
1006 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
8b6d44c7 1007 new.dirty_bitmap = NULL;
6aa8b732
AK
1008
1009 r = -ENOMEM;
f64c0398 1010 if (change == KVM_MR_CREATE) {
189a2f7b 1011 new.userspace_addr = mem->userspace_addr;
d89cc617 1012
5587027c 1013 if (kvm_arch_create_memslot(kvm, &new, npages))
db3fe4eb 1014 goto out_free;
6aa8b732 1015 }
ec04b260 1016
6aa8b732
AK
1017 /* Allocate page dirty bitmap if needed */
1018 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
a36a57b1 1019 if (kvm_create_dirty_bitmap(&new) < 0)
f78e0e2e 1020 goto out_free;
6aa8b732
AK
1021 }
1022
a7c3e901 1023 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
f2a81036
PB
1024 if (!slots)
1025 goto out_free;
f481b069 1026 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
f2a81036 1027
f64c0398 1028 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
f481b069 1029 slot = id_to_memslot(slots, id);
28a37544
XG
1030 slot->flags |= KVM_MEMSLOT_INVALID;
1031
f481b069 1032 old_memslots = install_new_memslots(kvm, as_id, slots);
bc6678a3 1033
12d6e753
MT
1034 /* From this point no new shadow pages pointing to a deleted,
1035 * or moved, memslot will be created.
bc6678a3
MT
1036 *
1037 * validation of sp->gfn happens in:
b7d409de
XL
1038 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1039 * - kvm_is_visible_gfn (mmu_check_roots)
bc6678a3 1040 */
2df72e9b 1041 kvm_arch_flush_shadow_memslot(kvm, slot);
f2a81036
PB
1042
1043 /*
1044 * We can re-use the old_memslots from above, the only difference
1045 * from the currently installed memslots is the invalid flag. This
1046 * will get overwritten by update_memslots anyway.
1047 */
b7f69c55 1048 slots = old_memslots;
bc6678a3 1049 }
34d4cb8f 1050
7b6195a9 1051 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
f7784b8e 1052 if (r)
b7f69c55 1053 goto out_slots;
f7784b8e 1054
a47d2b07 1055 /* actual memory is freed via old in kvm_free_memslot below */
f64c0398 1056 if (change == KVM_MR_DELETE) {
bc6678a3 1057 new.dirty_bitmap = NULL;
db3fe4eb 1058 memset(&new.arch, 0, sizeof(new.arch));
bc6678a3
MT
1059 }
1060
31fc4f95 1061 update_memslots(slots, &new, change);
f481b069 1062 old_memslots = install_new_memslots(kvm, as_id, slots);
3ad82a7e 1063
f36f3f28 1064 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
82ce2c96 1065
a47d2b07 1066 kvm_free_memslot(kvm, &old, &new);
74496134 1067 kvfree(old_memslots);
6aa8b732
AK
1068 return 0;
1069
e40f193f 1070out_slots:
74496134 1071 kvfree(slots);
f78e0e2e 1072out_free:
a47d2b07 1073 kvm_free_memslot(kvm, &new, &old);
6aa8b732
AK
1074out:
1075 return r;
210c7c4d 1076}
f78e0e2e
SY
1077EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1078
1079int kvm_set_memory_region(struct kvm *kvm,
09170a49 1080 const struct kvm_userspace_memory_region *mem)
f78e0e2e
SY
1081{
1082 int r;
1083
79fac95e 1084 mutex_lock(&kvm->slots_lock);
47ae31e2 1085 r = __kvm_set_memory_region(kvm, mem);
79fac95e 1086 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
1087 return r;
1088}
210c7c4d
IE
1089EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1090
7940876e
SH
1091static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1092 struct kvm_userspace_memory_region *mem)
210c7c4d 1093{
f481b069 1094 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
e0d62c7f 1095 return -EINVAL;
09170a49 1096
47ae31e2 1097 return kvm_set_memory_region(kvm, mem);
6aa8b732
AK
1098}
1099
5bb064dc
ZX
1100int kvm_get_dirty_log(struct kvm *kvm,
1101 struct kvm_dirty_log *log, int *is_dirty)
6aa8b732 1102{
9f6b8029 1103 struct kvm_memslots *slots;
6aa8b732 1104 struct kvm_memory_slot *memslot;
843574a3 1105 int i, as_id, id;
87bf6e7d 1106 unsigned long n;
6aa8b732
AK
1107 unsigned long any = 0;
1108
f481b069
PB
1109 as_id = log->slot >> 16;
1110 id = (u16)log->slot;
1111 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
843574a3 1112 return -EINVAL;
6aa8b732 1113
f481b069
PB
1114 slots = __kvm_memslots(kvm, as_id);
1115 memslot = id_to_memslot(slots, id);
6aa8b732 1116 if (!memslot->dirty_bitmap)
843574a3 1117 return -ENOENT;
6aa8b732 1118
87bf6e7d 1119 n = kvm_dirty_bitmap_bytes(memslot);
6aa8b732 1120
cd1a4a98 1121 for (i = 0; !any && i < n/sizeof(long); ++i)
6aa8b732
AK
1122 any = memslot->dirty_bitmap[i];
1123
6aa8b732 1124 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
843574a3 1125 return -EFAULT;
6aa8b732 1126
5bb064dc
ZX
1127 if (any)
1128 *is_dirty = 1;
843574a3 1129 return 0;
6aa8b732 1130}
2ba9f0d8 1131EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
6aa8b732 1132
ba0513b5
MS
1133#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1134/**
1135 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
2a31b9db 1136 * and reenable dirty page tracking for the corresponding pages.
ba0513b5
MS
1137 * @kvm: pointer to kvm instance
1138 * @log: slot id and address to which we copy the log
1139 * @is_dirty: flag set if any page is dirty
1140 *
1141 * We need to keep it in mind that VCPU threads can write to the bitmap
1142 * concurrently. So, to avoid losing track of dirty pages we keep the
1143 * following order:
1144 *
1145 * 1. Take a snapshot of the bit and clear it if needed.
1146 * 2. Write protect the corresponding page.
1147 * 3. Copy the snapshot to the userspace.
1148 * 4. Upon return caller flushes TLB's if needed.
1149 *
1150 * Between 2 and 4, the guest may write to the page using the remaining TLB
1151 * entry. This is not a problem because the page is reported dirty using
1152 * the snapshot taken before and step 4 ensures that writes done after
1153 * exiting to userspace will be logged for the next call.
1154 *
1155 */
1156int kvm_get_dirty_log_protect(struct kvm *kvm,
8fe65a82 1157 struct kvm_dirty_log *log, bool *flush)
ba0513b5 1158{
9f6b8029 1159 struct kvm_memslots *slots;
ba0513b5 1160 struct kvm_memory_slot *memslot;
58d6db34 1161 int i, as_id, id;
ba0513b5
MS
1162 unsigned long n;
1163 unsigned long *dirty_bitmap;
1164 unsigned long *dirty_bitmap_buffer;
1165
f481b069
PB
1166 as_id = log->slot >> 16;
1167 id = (u16)log->slot;
1168 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
58d6db34 1169 return -EINVAL;
ba0513b5 1170
f481b069
PB
1171 slots = __kvm_memslots(kvm, as_id);
1172 memslot = id_to_memslot(slots, id);
ba0513b5
MS
1173
1174 dirty_bitmap = memslot->dirty_bitmap;
ba0513b5 1175 if (!dirty_bitmap)
58d6db34 1176 return -ENOENT;
ba0513b5
MS
1177
1178 n = kvm_dirty_bitmap_bytes(memslot);
2a31b9db
PB
1179 *flush = false;
1180 if (kvm->manual_dirty_log_protect) {
1181 /*
1182 * Unlike kvm_get_dirty_log, we always return false in *flush,
1183 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1184 * is some code duplication between this function and
1185 * kvm_get_dirty_log, but hopefully all architecture
1186 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1187 * can be eliminated.
1188 */
1189 dirty_bitmap_buffer = dirty_bitmap;
1190 } else {
1191 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1192 memset(dirty_bitmap_buffer, 0, n);
ba0513b5 1193
2a31b9db
PB
1194 spin_lock(&kvm->mmu_lock);
1195 for (i = 0; i < n / sizeof(long); i++) {
1196 unsigned long mask;
1197 gfn_t offset;
ba0513b5 1198
2a31b9db
PB
1199 if (!dirty_bitmap[i])
1200 continue;
1201
1202 *flush = true;
1203 mask = xchg(&dirty_bitmap[i], 0);
1204 dirty_bitmap_buffer[i] = mask;
1205
1206 if (mask) {
1207 offset = i * BITS_PER_LONG;
1208 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1209 offset, mask);
1210 }
1211 }
1212 spin_unlock(&kvm->mmu_lock);
1213 }
1214
1215 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1216 return -EFAULT;
1217 return 0;
1218}
1219EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1220
1221/**
1222 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1223 * and reenable dirty page tracking for the corresponding pages.
1224 * @kvm: pointer to kvm instance
1225 * @log: slot id and address from which to fetch the bitmap of dirty pages
1226 */
1227int kvm_clear_dirty_log_protect(struct kvm *kvm,
1228 struct kvm_clear_dirty_log *log, bool *flush)
1229{
1230 struct kvm_memslots *slots;
1231 struct kvm_memory_slot *memslot;
1232 int as_id, id, n;
1233 gfn_t offset;
1234 unsigned long i;
1235 unsigned long *dirty_bitmap;
1236 unsigned long *dirty_bitmap_buffer;
1237
1238 as_id = log->slot >> 16;
1239 id = (u16)log->slot;
1240 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1241 return -EINVAL;
1242
1243 if ((log->first_page & 63) || (log->num_pages & 63))
1244 return -EINVAL;
1245
1246 slots = __kvm_memslots(kvm, as_id);
1247 memslot = id_to_memslot(slots, id);
1248
1249 dirty_bitmap = memslot->dirty_bitmap;
1250 if (!dirty_bitmap)
1251 return -ENOENT;
1252
1253 n = kvm_dirty_bitmap_bytes(memslot);
8fe65a82 1254 *flush = false;
2a31b9db
PB
1255 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1256 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1257 return -EFAULT;
ba0513b5 1258
2a31b9db
PB
1259 spin_lock(&kvm->mmu_lock);
1260 for (offset = log->first_page,
1261 i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--;
1262 i++, offset += BITS_PER_LONG) {
1263 unsigned long mask = *dirty_bitmap_buffer++;
1264 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1265 if (!mask)
ba0513b5
MS
1266 continue;
1267
2a31b9db 1268 mask &= atomic_long_fetch_andnot(mask, p);
ba0513b5 1269
2a31b9db
PB
1270 /*
1271 * mask contains the bits that really have been cleared. This
1272 * never includes any bits beyond the length of the memslot (if
1273 * the length is not aligned to 64 pages), therefore it is not
1274 * a problem if userspace sets them in log->dirty_bitmap.
1275 */
58d2930f 1276 if (mask) {
2a31b9db 1277 *flush = true;
58d2930f
TY
1278 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1279 offset, mask);
1280 }
ba0513b5 1281 }
ba0513b5 1282 spin_unlock(&kvm->mmu_lock);
2a31b9db 1283
58d6db34 1284 return 0;
ba0513b5 1285}
2a31b9db 1286EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
ba0513b5
MS
1287#endif
1288
db3fe4eb
TY
1289bool kvm_largepages_enabled(void)
1290{
1291 return largepages_enabled;
1292}
1293
54dee993
MT
1294void kvm_disable_largepages(void)
1295{
1296 largepages_enabled = false;
1297}
1298EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1299
49c7754c
GN
1300struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1301{
1302 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1303}
a1f4d395 1304EXPORT_SYMBOL_GPL(gfn_to_memslot);
6aa8b732 1305
8e73485c
PB
1306struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1307{
1308 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1309}
1310
33e94154 1311bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
e0d62c7f 1312{
bf3e05bc 1313 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
e0d62c7f 1314
bbacc0c1 1315 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
bf3e05bc 1316 memslot->flags & KVM_MEMSLOT_INVALID)
33e94154 1317 return false;
e0d62c7f 1318
33e94154 1319 return true;
e0d62c7f
IE
1320}
1321EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1322
8f0b1ab6
JR
1323unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1324{
1325 struct vm_area_struct *vma;
1326 unsigned long addr, size;
1327
1328 size = PAGE_SIZE;
1329
1330 addr = gfn_to_hva(kvm, gfn);
1331 if (kvm_is_error_hva(addr))
1332 return PAGE_SIZE;
1333
1334 down_read(&current->mm->mmap_sem);
1335 vma = find_vma(current->mm, addr);
1336 if (!vma)
1337 goto out;
1338
1339 size = vma_kernel_pagesize(vma);
1340
1341out:
1342 up_read(&current->mm->mmap_sem);
1343
1344 return size;
1345}
1346
4d8b81ab
XG
1347static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1348{
1349 return slot->flags & KVM_MEM_READONLY;
1350}
1351
4d8b81ab
XG
1352static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1353 gfn_t *nr_pages, bool write)
539cb660 1354{
bc6678a3 1355 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
ca3a490c 1356 return KVM_HVA_ERR_BAD;
48987781 1357
4d8b81ab
XG
1358 if (memslot_is_readonly(slot) && write)
1359 return KVM_HVA_ERR_RO_BAD;
48987781
XG
1360
1361 if (nr_pages)
1362 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1363
4d8b81ab 1364 return __gfn_to_hva_memslot(slot, gfn);
539cb660 1365}
48987781 1366
4d8b81ab
XG
1367static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1368 gfn_t *nr_pages)
1369{
1370 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
539cb660 1371}
48987781 1372
4d8b81ab 1373unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
7940876e 1374 gfn_t gfn)
4d8b81ab
XG
1375{
1376 return gfn_to_hva_many(slot, gfn, NULL);
1377}
1378EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1379
48987781
XG
1380unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1381{
49c7754c 1382 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
48987781 1383}
0d150298 1384EXPORT_SYMBOL_GPL(gfn_to_hva);
539cb660 1385
8e73485c
PB
1386unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1387{
1388 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1389}
1390EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1391
86ab8cff 1392/*
970c0d4b
WY
1393 * Return the hva of a @gfn and the R/W attribute if possible.
1394 *
1395 * @slot: the kvm_memory_slot which contains @gfn
1396 * @gfn: the gfn to be translated
1397 * @writable: used to return the read/write attribute of the @slot if the hva
1398 * is valid and @writable is not NULL
86ab8cff 1399 */
64d83126
CD
1400unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1401 gfn_t gfn, bool *writable)
86ab8cff 1402{
a2ac07fe
GN
1403 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1404
1405 if (!kvm_is_error_hva(hva) && writable)
ba6a3541
PB
1406 *writable = !memslot_is_readonly(slot);
1407
a2ac07fe 1408 return hva;
86ab8cff
XG
1409}
1410
64d83126
CD
1411unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1412{
1413 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1414
1415 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1416}
1417
8e73485c
PB
1418unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1419{
1420 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1421
1422 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1423}
1424
fafc3dba
HY
1425static inline int check_user_page_hwpoison(unsigned long addr)
1426{
0d731759 1427 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
fafc3dba 1428
0d731759 1429 rc = get_user_pages(addr, 1, flags, NULL, NULL);
fafc3dba
HY
1430 return rc == -EHWPOISON;
1431}
1432
2fc84311 1433/*
b9b33da2
PB
1434 * The fast path to get the writable pfn which will be stored in @pfn,
1435 * true indicates success, otherwise false is returned. It's also the
1436 * only part that runs if we can are in atomic context.
2fc84311 1437 */
b9b33da2
PB
1438static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1439 bool *writable, kvm_pfn_t *pfn)
954bbbc2 1440{
8d4e1288 1441 struct page *page[1];
2fc84311 1442 int npages;
954bbbc2 1443
12ce13fe
XG
1444 /*
1445 * Fast pin a writable pfn only if it is a write fault request
1446 * or the caller allows to map a writable pfn for a read fault
1447 * request.
1448 */
1449 if (!(write_fault || writable))
1450 return false;
612819c3 1451
2fc84311
XG
1452 npages = __get_user_pages_fast(addr, 1, 1, page);
1453 if (npages == 1) {
1454 *pfn = page_to_pfn(page[0]);
612819c3 1455
2fc84311
XG
1456 if (writable)
1457 *writable = true;
1458 return true;
1459 }
af585b92 1460
2fc84311
XG
1461 return false;
1462}
612819c3 1463
2fc84311
XG
1464/*
1465 * The slow path to get the pfn of the specified host virtual address,
1466 * 1 indicates success, -errno is returned if error is detected.
1467 */
1468static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
ba049e93 1469 bool *writable, kvm_pfn_t *pfn)
2fc84311 1470{
ce53053c
AV
1471 unsigned int flags = FOLL_HWPOISON;
1472 struct page *page;
2fc84311 1473 int npages = 0;
612819c3 1474
2fc84311
XG
1475 might_sleep();
1476
1477 if (writable)
1478 *writable = write_fault;
1479
ce53053c
AV
1480 if (write_fault)
1481 flags |= FOLL_WRITE;
1482 if (async)
1483 flags |= FOLL_NOWAIT;
d4944b0e 1484
ce53053c 1485 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2fc84311
XG
1486 if (npages != 1)
1487 return npages;
1488
1489 /* map read fault as writable if possible */
12ce13fe 1490 if (unlikely(!write_fault) && writable) {
ce53053c 1491 struct page *wpage;
2fc84311 1492
ce53053c 1493 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
2fc84311 1494 *writable = true;
ce53053c
AV
1495 put_page(page);
1496 page = wpage;
612819c3 1497 }
887c08ac 1498 }
ce53053c 1499 *pfn = page_to_pfn(page);
2fc84311
XG
1500 return npages;
1501}
539cb660 1502
4d8b81ab
XG
1503static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1504{
1505 if (unlikely(!(vma->vm_flags & VM_READ)))
1506 return false;
2e2e3738 1507
4d8b81ab
XG
1508 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1509 return false;
887c08ac 1510
4d8b81ab
XG
1511 return true;
1512}
bf998156 1513
92176a8e
PB
1514static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1515 unsigned long addr, bool *async,
a340b3e2
KA
1516 bool write_fault, bool *writable,
1517 kvm_pfn_t *p_pfn)
92176a8e 1518{
add6a0cd
PB
1519 unsigned long pfn;
1520 int r;
1521
1522 r = follow_pfn(vma, addr, &pfn);
1523 if (r) {
1524 /*
1525 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1526 * not call the fault handler, so do it here.
1527 */
1528 bool unlocked = false;
1529 r = fixup_user_fault(current, current->mm, addr,
1530 (write_fault ? FAULT_FLAG_WRITE : 0),
1531 &unlocked);
1532 if (unlocked)
1533 return -EAGAIN;
1534 if (r)
1535 return r;
1536
1537 r = follow_pfn(vma, addr, &pfn);
1538 if (r)
1539 return r;
1540
1541 }
1542
a340b3e2
KA
1543 if (writable)
1544 *writable = true;
add6a0cd
PB
1545
1546 /*
1547 * Get a reference here because callers of *hva_to_pfn* and
1548 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1549 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1550 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1551 * simply do nothing for reserved pfns.
1552 *
1553 * Whoever called remap_pfn_range is also going to call e.g.
1554 * unmap_mapping_range before the underlying pages are freed,
1555 * causing a call to our MMU notifier.
1556 */
1557 kvm_get_pfn(pfn);
1558
1559 *p_pfn = pfn;
92176a8e
PB
1560 return 0;
1561}
1562
12ce13fe
XG
1563/*
1564 * Pin guest page in memory and return its pfn.
1565 * @addr: host virtual address which maps memory to the guest
1566 * @atomic: whether this function can sleep
1567 * @async: whether this function need to wait IO complete if the
1568 * host page is not in the memory
1569 * @write_fault: whether we should get a writable host page
1570 * @writable: whether it allows to map a writable host page for !@write_fault
1571 *
1572 * The function will map a writable host page for these two cases:
1573 * 1): @write_fault = true
1574 * 2): @write_fault = false && @writable, @writable will tell the caller
1575 * whether the mapping is writable.
1576 */
ba049e93 1577static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2fc84311
XG
1578 bool write_fault, bool *writable)
1579{
1580 struct vm_area_struct *vma;
ba049e93 1581 kvm_pfn_t pfn = 0;
92176a8e 1582 int npages, r;
2e2e3738 1583
2fc84311
XG
1584 /* we can do it either atomically or asynchronously, not both */
1585 BUG_ON(atomic && async);
8d4e1288 1586
b9b33da2 1587 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2fc84311
XG
1588 return pfn;
1589
1590 if (atomic)
1591 return KVM_PFN_ERR_FAULT;
1592
1593 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1594 if (npages == 1)
1595 return pfn;
8d4e1288 1596
2fc84311
XG
1597 down_read(&current->mm->mmap_sem);
1598 if (npages == -EHWPOISON ||
1599 (!async && check_user_page_hwpoison(addr))) {
1600 pfn = KVM_PFN_ERR_HWPOISON;
1601 goto exit;
1602 }
1603
add6a0cd 1604retry:
2fc84311
XG
1605 vma = find_vma_intersection(current->mm, addr, addr + 1);
1606
1607 if (vma == NULL)
1608 pfn = KVM_PFN_ERR_FAULT;
92176a8e 1609 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
a340b3e2 1610 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
add6a0cd
PB
1611 if (r == -EAGAIN)
1612 goto retry;
92176a8e
PB
1613 if (r < 0)
1614 pfn = KVM_PFN_ERR_FAULT;
2fc84311 1615 } else {
4d8b81ab 1616 if (async && vma_is_valid(vma, write_fault))
2fc84311
XG
1617 *async = true;
1618 pfn = KVM_PFN_ERR_FAULT;
1619 }
1620exit:
1621 up_read(&current->mm->mmap_sem);
2e2e3738 1622 return pfn;
35149e21
AL
1623}
1624
ba049e93
DW
1625kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1626 bool atomic, bool *async, bool write_fault,
1627 bool *writable)
887c08ac 1628{
4d8b81ab
XG
1629 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1630
b2740d35
PB
1631 if (addr == KVM_HVA_ERR_RO_BAD) {
1632 if (writable)
1633 *writable = false;
4d8b81ab 1634 return KVM_PFN_ERR_RO_FAULT;
b2740d35 1635 }
4d8b81ab 1636
b2740d35
PB
1637 if (kvm_is_error_hva(addr)) {
1638 if (writable)
1639 *writable = false;
81c52c56 1640 return KVM_PFN_NOSLOT;
b2740d35 1641 }
4d8b81ab
XG
1642
1643 /* Do not map writable pfn in the readonly memslot. */
1644 if (writable && memslot_is_readonly(slot)) {
1645 *writable = false;
1646 writable = NULL;
1647 }
1648
1649 return hva_to_pfn(addr, atomic, async, write_fault,
1650 writable);
887c08ac 1651}
3520469d 1652EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
887c08ac 1653
ba049e93 1654kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3
MT
1655 bool *writable)
1656{
e37afc6e
PB
1657 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1658 write_fault, writable);
612819c3
MT
1659}
1660EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1661
ba049e93 1662kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 1663{
4d8b81ab 1664 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
506f0d6f 1665}
e37afc6e 1666EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
506f0d6f 1667
ba049e93 1668kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 1669{
4d8b81ab 1670 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
506f0d6f 1671}
037d92dc 1672EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
506f0d6f 1673
ba049e93 1674kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
1675{
1676 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1677}
1678EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1679
ba049e93 1680kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
1681{
1682 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1683}
1684EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1685
ba049e93 1686kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
1687{
1688 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1689}
1690EXPORT_SYMBOL_GPL(gfn_to_pfn);
1691
ba049e93 1692kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
1693{
1694 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1695}
1696EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1697
d9ef13c2
PB
1698int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1699 struct page **pages, int nr_pages)
48987781
XG
1700{
1701 unsigned long addr;
076b925d 1702 gfn_t entry = 0;
48987781 1703
d9ef13c2 1704 addr = gfn_to_hva_many(slot, gfn, &entry);
48987781
XG
1705 if (kvm_is_error_hva(addr))
1706 return -1;
1707
1708 if (entry < nr_pages)
1709 return 0;
1710
1711 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1712}
1713EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1714
ba049e93 1715static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
a2766325 1716{
81c52c56 1717 if (is_error_noslot_pfn(pfn))
cb9aaa30 1718 return KVM_ERR_PTR_BAD_PAGE;
a2766325 1719
bf4bea8e 1720 if (kvm_is_reserved_pfn(pfn)) {
cb9aaa30 1721 WARN_ON(1);
6cede2e6 1722 return KVM_ERR_PTR_BAD_PAGE;
cb9aaa30 1723 }
a2766325
XG
1724
1725 return pfn_to_page(pfn);
1726}
1727
35149e21
AL
1728struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1729{
ba049e93 1730 kvm_pfn_t pfn;
2e2e3738
AL
1731
1732 pfn = gfn_to_pfn(kvm, gfn);
2e2e3738 1733
a2766325 1734 return kvm_pfn_to_page(pfn);
954bbbc2
AK
1735}
1736EXPORT_SYMBOL_GPL(gfn_to_page);
1737
8e73485c
PB
1738struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1739{
ba049e93 1740 kvm_pfn_t pfn;
8e73485c
PB
1741
1742 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1743
1744 return kvm_pfn_to_page(pfn);
1745}
1746EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1747
b4231d61
IE
1748void kvm_release_page_clean(struct page *page)
1749{
32cad84f
XG
1750 WARN_ON(is_error_page(page));
1751
35149e21 1752 kvm_release_pfn_clean(page_to_pfn(page));
b4231d61
IE
1753}
1754EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1755
ba049e93 1756void kvm_release_pfn_clean(kvm_pfn_t pfn)
35149e21 1757{
bf4bea8e 1758 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2e2e3738 1759 put_page(pfn_to_page(pfn));
35149e21
AL
1760}
1761EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1762
b4231d61 1763void kvm_release_page_dirty(struct page *page)
8a7ae055 1764{
a2766325
XG
1765 WARN_ON(is_error_page(page));
1766
35149e21
AL
1767 kvm_release_pfn_dirty(page_to_pfn(page));
1768}
1769EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1770
f7a6509f 1771void kvm_release_pfn_dirty(kvm_pfn_t pfn)
35149e21
AL
1772{
1773 kvm_set_pfn_dirty(pfn);
1774 kvm_release_pfn_clean(pfn);
1775}
f7a6509f 1776EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
35149e21 1777
ba049e93 1778void kvm_set_pfn_dirty(kvm_pfn_t pfn)
35149e21 1779{
bf4bea8e 1780 if (!kvm_is_reserved_pfn(pfn)) {
2e2e3738 1781 struct page *page = pfn_to_page(pfn);
f95ef0cd 1782
2e2e3738
AL
1783 if (!PageReserved(page))
1784 SetPageDirty(page);
1785 }
8a7ae055 1786}
35149e21
AL
1787EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1788
ba049e93 1789void kvm_set_pfn_accessed(kvm_pfn_t pfn)
35149e21 1790{
bf4bea8e 1791 if (!kvm_is_reserved_pfn(pfn))
2e2e3738 1792 mark_page_accessed(pfn_to_page(pfn));
35149e21
AL
1793}
1794EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1795
ba049e93 1796void kvm_get_pfn(kvm_pfn_t pfn)
35149e21 1797{
bf4bea8e 1798 if (!kvm_is_reserved_pfn(pfn))
2e2e3738 1799 get_page(pfn_to_page(pfn));
35149e21
AL
1800}
1801EXPORT_SYMBOL_GPL(kvm_get_pfn);
8a7ae055 1802
195aefde
IE
1803static int next_segment(unsigned long len, int offset)
1804{
1805 if (len > PAGE_SIZE - offset)
1806 return PAGE_SIZE - offset;
1807 else
1808 return len;
1809}
1810
8e73485c
PB
1811static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1812 void *data, int offset, int len)
195aefde 1813{
e0506bcb
IE
1814 int r;
1815 unsigned long addr;
195aefde 1816
8e73485c 1817 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
e0506bcb
IE
1818 if (kvm_is_error_hva(addr))
1819 return -EFAULT;
3180a7fc 1820 r = __copy_from_user(data, (void __user *)addr + offset, len);
e0506bcb 1821 if (r)
195aefde 1822 return -EFAULT;
195aefde
IE
1823 return 0;
1824}
8e73485c
PB
1825
1826int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1827 int len)
1828{
1829 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1830
1831 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1832}
195aefde
IE
1833EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1834
8e73485c
PB
1835int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1836 int offset, int len)
1837{
1838 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1839
1840 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1841}
1842EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1843
195aefde
IE
1844int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1845{
1846 gfn_t gfn = gpa >> PAGE_SHIFT;
1847 int seg;
1848 int offset = offset_in_page(gpa);
1849 int ret;
1850
1851 while ((seg = next_segment(len, offset)) != 0) {
1852 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1853 if (ret < 0)
1854 return ret;
1855 offset = 0;
1856 len -= seg;
1857 data += seg;
1858 ++gfn;
1859 }
1860 return 0;
1861}
1862EXPORT_SYMBOL_GPL(kvm_read_guest);
1863
8e73485c 1864int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
7ec54588 1865{
7ec54588 1866 gfn_t gfn = gpa >> PAGE_SHIFT;
8e73485c 1867 int seg;
7ec54588 1868 int offset = offset_in_page(gpa);
8e73485c
PB
1869 int ret;
1870
1871 while ((seg = next_segment(len, offset)) != 0) {
1872 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1873 if (ret < 0)
1874 return ret;
1875 offset = 0;
1876 len -= seg;
1877 data += seg;
1878 ++gfn;
1879 }
1880 return 0;
1881}
1882EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
7ec54588 1883
8e73485c
PB
1884static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1885 void *data, int offset, unsigned long len)
1886{
1887 int r;
1888 unsigned long addr;
1889
1890 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
7ec54588
MT
1891 if (kvm_is_error_hva(addr))
1892 return -EFAULT;
0aac03f0 1893 pagefault_disable();
3180a7fc 1894 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
0aac03f0 1895 pagefault_enable();
7ec54588
MT
1896 if (r)
1897 return -EFAULT;
1898 return 0;
1899}
7ec54588 1900
8e73485c
PB
1901int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1902 unsigned long len)
1903{
1904 gfn_t gfn = gpa >> PAGE_SHIFT;
1905 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1906 int offset = offset_in_page(gpa);
1907
1908 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1909}
1910EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1911
1912int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1913 void *data, unsigned long len)
1914{
1915 gfn_t gfn = gpa >> PAGE_SHIFT;
1916 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1917 int offset = offset_in_page(gpa);
1918
1919 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1920}
1921EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1922
1923static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1924 const void *data, int offset, int len)
195aefde 1925{
e0506bcb
IE
1926 int r;
1927 unsigned long addr;
195aefde 1928
251eb841 1929 addr = gfn_to_hva_memslot(memslot, gfn);
e0506bcb
IE
1930 if (kvm_is_error_hva(addr))
1931 return -EFAULT;
8b0cedff 1932 r = __copy_to_user((void __user *)addr + offset, data, len);
e0506bcb 1933 if (r)
195aefde 1934 return -EFAULT;
bc009e43 1935 mark_page_dirty_in_slot(memslot, gfn);
195aefde
IE
1936 return 0;
1937}
8e73485c
PB
1938
1939int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1940 const void *data, int offset, int len)
1941{
1942 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1943
1944 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1945}
195aefde
IE
1946EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1947
8e73485c
PB
1948int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1949 const void *data, int offset, int len)
1950{
1951 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1952
1953 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1954}
1955EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1956
195aefde
IE
1957int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1958 unsigned long len)
1959{
1960 gfn_t gfn = gpa >> PAGE_SHIFT;
1961 int seg;
1962 int offset = offset_in_page(gpa);
1963 int ret;
1964
1965 while ((seg = next_segment(len, offset)) != 0) {
1966 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1967 if (ret < 0)
1968 return ret;
1969 offset = 0;
1970 len -= seg;
1971 data += seg;
1972 ++gfn;
1973 }
1974 return 0;
1975}
ff651cb6 1976EXPORT_SYMBOL_GPL(kvm_write_guest);
195aefde 1977
8e73485c
PB
1978int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1979 unsigned long len)
1980{
1981 gfn_t gfn = gpa >> PAGE_SHIFT;
1982 int seg;
1983 int offset = offset_in_page(gpa);
1984 int ret;
1985
1986 while ((seg = next_segment(len, offset)) != 0) {
1987 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1988 if (ret < 0)
1989 return ret;
1990 offset = 0;
1991 len -= seg;
1992 data += seg;
1993 ++gfn;
1994 }
1995 return 0;
1996}
1997EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1998
5a2d4365
PB
1999static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2000 struct gfn_to_hva_cache *ghc,
2001 gpa_t gpa, unsigned long len)
49c7754c 2002{
49c7754c 2003 int offset = offset_in_page(gpa);
8f964525
AH
2004 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2005 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2006 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2007 gfn_t nr_pages_avail;
f1b9dd5e 2008 int r = start_gfn <= end_gfn ? 0 : -EINVAL;
49c7754c
GN
2009
2010 ghc->gpa = gpa;
2011 ghc->generation = slots->generation;
8f964525 2012 ghc->len = len;
f1b9dd5e
JM
2013 ghc->hva = KVM_HVA_ERR_BAD;
2014
2015 /*
2016 * If the requested region crosses two memslots, we still
2017 * verify that the entire region is valid here.
2018 */
2019 while (!r && start_gfn <= end_gfn) {
2020 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2021 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2022 &nr_pages_avail);
2023 if (kvm_is_error_hva(ghc->hva))
2024 r = -EFAULT;
2025 start_gfn += nr_pages_avail;
2026 }
2027
2028 /* Use the slow path for cross page reads and writes. */
2029 if (!r && nr_pages_needed == 1)
49c7754c 2030 ghc->hva += offset;
f1b9dd5e 2031 else
8f964525 2032 ghc->memslot = NULL;
f1b9dd5e
JM
2033
2034 return r;
49c7754c 2035}
5a2d4365 2036
4e335d9e 2037int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
5a2d4365
PB
2038 gpa_t gpa, unsigned long len)
2039{
4e335d9e 2040 struct kvm_memslots *slots = kvm_memslots(kvm);
5a2d4365
PB
2041 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2042}
4e335d9e 2043EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
49c7754c 2044
4e335d9e 2045int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
2046 void *data, unsigned int offset,
2047 unsigned long len)
49c7754c 2048{
4e335d9e 2049 struct kvm_memslots *slots = kvm_memslots(kvm);
49c7754c 2050 int r;
4ec6e863 2051 gpa_t gpa = ghc->gpa + offset;
49c7754c 2052
4ec6e863 2053 BUG_ON(len + offset > ghc->len);
8f964525 2054
49c7754c 2055 if (slots->generation != ghc->generation)
5a2d4365 2056 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
8f964525
AH
2057
2058 if (unlikely(!ghc->memslot))
4e335d9e 2059 return kvm_write_guest(kvm, gpa, data, len);
49c7754c
GN
2060
2061 if (kvm_is_error_hva(ghc->hva))
2062 return -EFAULT;
2063
4ec6e863 2064 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
49c7754c
GN
2065 if (r)
2066 return -EFAULT;
4ec6e863 2067 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
49c7754c
GN
2068
2069 return 0;
2070}
4e335d9e 2071EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
4ec6e863 2072
4e335d9e
PB
2073int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2074 void *data, unsigned long len)
4ec6e863 2075{
4e335d9e 2076 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
4ec6e863 2077}
4e335d9e 2078EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
49c7754c 2079
4e335d9e
PB
2080int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2081 void *data, unsigned long len)
e03b644f 2082{
4e335d9e 2083 struct kvm_memslots *slots = kvm_memslots(kvm);
e03b644f
GN
2084 int r;
2085
8f964525
AH
2086 BUG_ON(len > ghc->len);
2087
e03b644f 2088 if (slots->generation != ghc->generation)
5a2d4365 2089 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
8f964525
AH
2090
2091 if (unlikely(!ghc->memslot))
4e335d9e 2092 return kvm_read_guest(kvm, ghc->gpa, data, len);
e03b644f
GN
2093
2094 if (kvm_is_error_hva(ghc->hva))
2095 return -EFAULT;
2096
2097 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2098 if (r)
2099 return -EFAULT;
2100
2101 return 0;
2102}
4e335d9e 2103EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
e03b644f 2104
195aefde
IE
2105int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2106{
8a3caa6d
HC
2107 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2108
2109 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
195aefde
IE
2110}
2111EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2112
2113int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2114{
2115 gfn_t gfn = gpa >> PAGE_SHIFT;
2116 int seg;
2117 int offset = offset_in_page(gpa);
2118 int ret;
2119
bfda0e84 2120 while ((seg = next_segment(len, offset)) != 0) {
195aefde
IE
2121 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2122 if (ret < 0)
2123 return ret;
2124 offset = 0;
2125 len -= seg;
2126 ++gfn;
2127 }
2128 return 0;
2129}
2130EXPORT_SYMBOL_GPL(kvm_clear_guest);
2131
bc009e43 2132static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
7940876e 2133 gfn_t gfn)
6aa8b732 2134{
7e9d619d
RR
2135 if (memslot && memslot->dirty_bitmap) {
2136 unsigned long rel_gfn = gfn - memslot->base_gfn;
6aa8b732 2137
b74ca3b3 2138 set_bit_le(rel_gfn, memslot->dirty_bitmap);
6aa8b732
AK
2139 }
2140}
2141
49c7754c
GN
2142void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2143{
2144 struct kvm_memory_slot *memslot;
2145
2146 memslot = gfn_to_memslot(kvm, gfn);
bc009e43 2147 mark_page_dirty_in_slot(memslot, gfn);
49c7754c 2148}
2ba9f0d8 2149EXPORT_SYMBOL_GPL(mark_page_dirty);
49c7754c 2150
8e73485c
PB
2151void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2152{
2153 struct kvm_memory_slot *memslot;
2154
2155 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2156 mark_page_dirty_in_slot(memslot, gfn);
2157}
2158EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2159
20b7035c
JS
2160void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2161{
2162 if (!vcpu->sigset_active)
2163 return;
2164
2165 /*
2166 * This does a lockless modification of ->real_blocked, which is fine
2167 * because, only current can change ->real_blocked and all readers of
2168 * ->real_blocked don't care as long ->real_blocked is always a subset
2169 * of ->blocked.
2170 */
2171 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2172}
2173
2174void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2175{
2176 if (!vcpu->sigset_active)
2177 return;
2178
2179 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2180 sigemptyset(&current->real_blocked);
2181}
2182
aca6ff29
WL
2183static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2184{
6b6de68c 2185 unsigned int old, val, grow;
aca6ff29 2186
2cbd7824 2187 old = val = vcpu->halt_poll_ns;
6b6de68c 2188 grow = READ_ONCE(halt_poll_ns_grow);
aca6ff29 2189 /* 10us base */
6b6de68c 2190 if (val == 0 && grow)
aca6ff29
WL
2191 val = 10000;
2192 else
6b6de68c 2193 val *= grow;
aca6ff29 2194
313f636d
DM
2195 if (val > halt_poll_ns)
2196 val = halt_poll_ns;
2197
aca6ff29 2198 vcpu->halt_poll_ns = val;
2cbd7824 2199 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
aca6ff29
WL
2200}
2201
2202static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2203{
6b6de68c 2204 unsigned int old, val, shrink;
aca6ff29 2205
2cbd7824 2206 old = val = vcpu->halt_poll_ns;
6b6de68c
CB
2207 shrink = READ_ONCE(halt_poll_ns_shrink);
2208 if (shrink == 0)
aca6ff29
WL
2209 val = 0;
2210 else
6b6de68c 2211 val /= shrink;
aca6ff29
WL
2212
2213 vcpu->halt_poll_ns = val;
2cbd7824 2214 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
aca6ff29
WL
2215}
2216
f7819512
PB
2217static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2218{
50c28f21
JS
2219 int ret = -EINTR;
2220 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2221
f7819512
PB
2222 if (kvm_arch_vcpu_runnable(vcpu)) {
2223 kvm_make_request(KVM_REQ_UNHALT, vcpu);
50c28f21 2224 goto out;
f7819512
PB
2225 }
2226 if (kvm_cpu_has_pending_timer(vcpu))
50c28f21 2227 goto out;
f7819512 2228 if (signal_pending(current))
50c28f21 2229 goto out;
f7819512 2230
50c28f21
JS
2231 ret = 0;
2232out:
2233 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2234 return ret;
f7819512
PB
2235}
2236
b6958ce4
ED
2237/*
2238 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2239 */
8776e519 2240void kvm_vcpu_block(struct kvm_vcpu *vcpu)
d3bef15f 2241{
f7819512 2242 ktime_t start, cur;
8577370f 2243 DECLARE_SWAITQUEUE(wait);
f7819512 2244 bool waited = false;
aca6ff29 2245 u64 block_ns;
f7819512
PB
2246
2247 start = cur = ktime_get();
19020f8a
WL
2248 if (vcpu->halt_poll_ns) {
2249 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
f95ef0cd 2250
62bea5bf 2251 ++vcpu->stat.halt_attempted_poll;
f7819512
PB
2252 do {
2253 /*
2254 * This sets KVM_REQ_UNHALT if an interrupt
2255 * arrives.
2256 */
2257 if (kvm_vcpu_check_block(vcpu) < 0) {
2258 ++vcpu->stat.halt_successful_poll;
3491caf2
CB
2259 if (!vcpu_valid_wakeup(vcpu))
2260 ++vcpu->stat.halt_poll_invalid;
f7819512
PB
2261 goto out;
2262 }
2263 cur = ktime_get();
2264 } while (single_task_running() && ktime_before(cur, stop));
2265 }
e5c239cf 2266
3217f7c2
CD
2267 kvm_arch_vcpu_blocking(vcpu);
2268
e5c239cf 2269 for (;;) {
b3dae109 2270 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
e5c239cf 2271
f7819512 2272 if (kvm_vcpu_check_block(vcpu) < 0)
e5c239cf
MT
2273 break;
2274
f7819512 2275 waited = true;
b6958ce4 2276 schedule();
b6958ce4 2277 }
d3bef15f 2278
8577370f 2279 finish_swait(&vcpu->wq, &wait);
f7819512
PB
2280 cur = ktime_get();
2281
3217f7c2 2282 kvm_arch_vcpu_unblocking(vcpu);
f7819512 2283out:
aca6ff29
WL
2284 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2285
2086d320
CB
2286 if (!vcpu_valid_wakeup(vcpu))
2287 shrink_halt_poll_ns(vcpu);
2288 else if (halt_poll_ns) {
aca6ff29
WL
2289 if (block_ns <= vcpu->halt_poll_ns)
2290 ;
2291 /* we had a long block, shrink polling */
2086d320 2292 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
aca6ff29
WL
2293 shrink_halt_poll_ns(vcpu);
2294 /* we had a short halt and our poll time is too small */
2295 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2296 block_ns < halt_poll_ns)
2297 grow_halt_poll_ns(vcpu);
edb9272f
WL
2298 } else
2299 vcpu->halt_poll_ns = 0;
aca6ff29 2300
3491caf2
CB
2301 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2302 kvm_arch_vcpu_block_finish(vcpu);
b6958ce4 2303}
2ba9f0d8 2304EXPORT_SYMBOL_GPL(kvm_vcpu_block);
b6958ce4 2305
178f02ff 2306bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
b6d33834 2307{
8577370f 2308 struct swait_queue_head *wqp;
b6d33834
CD
2309
2310 wqp = kvm_arch_vcpu_wq(vcpu);
5e0018b3 2311 if (swq_has_sleeper(wqp)) {
b3dae109 2312 swake_up_one(wqp);
b6d33834 2313 ++vcpu->stat.halt_wakeup;
178f02ff 2314 return true;
b6d33834
CD
2315 }
2316
178f02ff 2317 return false;
dd1a4cc1
RK
2318}
2319EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2320
0266c894 2321#ifndef CONFIG_S390
dd1a4cc1
RK
2322/*
2323 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2324 */
2325void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2326{
2327 int me;
2328 int cpu = vcpu->cpu;
2329
178f02ff
RK
2330 if (kvm_vcpu_wake_up(vcpu))
2331 return;
2332
b6d33834
CD
2333 me = get_cpu();
2334 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2335 if (kvm_arch_vcpu_should_kick(vcpu))
2336 smp_send_reschedule(cpu);
2337 put_cpu();
2338}
a20ed54d 2339EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
0266c894 2340#endif /* !CONFIG_S390 */
b6d33834 2341
fa93384f 2342int kvm_vcpu_yield_to(struct kvm_vcpu *target)
41628d33
KW
2343{
2344 struct pid *pid;
2345 struct task_struct *task = NULL;
fa93384f 2346 int ret = 0;
41628d33
KW
2347
2348 rcu_read_lock();
2349 pid = rcu_dereference(target->pid);
2350 if (pid)
27fbe64b 2351 task = get_pid_task(pid, PIDTYPE_PID);
41628d33
KW
2352 rcu_read_unlock();
2353 if (!task)
c45c528e 2354 return ret;
c45c528e 2355 ret = yield_to(task, 1);
41628d33 2356 put_task_struct(task);
c45c528e
R
2357
2358 return ret;
41628d33
KW
2359}
2360EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2361
06e48c51
R
2362/*
2363 * Helper that checks whether a VCPU is eligible for directed yield.
2364 * Most eligible candidate to yield is decided by following heuristics:
2365 *
2366 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2367 * (preempted lock holder), indicated by @in_spin_loop.
2368 * Set at the beiginning and cleared at the end of interception/PLE handler.
2369 *
2370 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2371 * chance last time (mostly it has become eligible now since we have probably
2372 * yielded to lockholder in last iteration. This is done by toggling
2373 * @dy_eligible each time a VCPU checked for eligibility.)
2374 *
2375 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2376 * to preempted lock-holder could result in wrong VCPU selection and CPU
2377 * burning. Giving priority for a potential lock-holder increases lock
2378 * progress.
2379 *
2380 * Since algorithm is based on heuristics, accessing another VCPU data without
2381 * locking does not harm. It may result in trying to yield to same VCPU, fail
2382 * and continue with next VCPU and so on.
2383 */
7940876e 2384static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
06e48c51 2385{
4a55dd72 2386#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
06e48c51
R
2387 bool eligible;
2388
2389 eligible = !vcpu->spin_loop.in_spin_loop ||
34656113 2390 vcpu->spin_loop.dy_eligible;
06e48c51
R
2391
2392 if (vcpu->spin_loop.in_spin_loop)
2393 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2394
2395 return eligible;
4a55dd72
SW
2396#else
2397 return true;
06e48c51 2398#endif
4a55dd72 2399}
c45c528e 2400
199b5763 2401void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
d255f4f2 2402{
217ece61
RR
2403 struct kvm *kvm = me->kvm;
2404 struct kvm_vcpu *vcpu;
2405 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2406 int yielded = 0;
c45c528e 2407 int try = 3;
217ece61
RR
2408 int pass;
2409 int i;
d255f4f2 2410
4c088493 2411 kvm_vcpu_set_in_spin_loop(me, true);
217ece61
RR
2412 /*
2413 * We boost the priority of a VCPU that is runnable but not
2414 * currently running, because it got preempted by something
2415 * else and called schedule in __vcpu_run. Hopefully that
2416 * VCPU is holding the lock that we need and will release it.
2417 * We approximate round-robin by starting at the last boosted VCPU.
2418 */
c45c528e 2419 for (pass = 0; pass < 2 && !yielded && try; pass++) {
217ece61 2420 kvm_for_each_vcpu(i, vcpu, kvm) {
5cfc2aab 2421 if (!pass && i <= last_boosted_vcpu) {
217ece61
RR
2422 i = last_boosted_vcpu;
2423 continue;
2424 } else if (pass && i > last_boosted_vcpu)
2425 break;
6aa7de05 2426 if (!READ_ONCE(vcpu->preempted))
7bc7ae25 2427 continue;
217ece61
RR
2428 if (vcpu == me)
2429 continue;
8577370f 2430 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
217ece61 2431 continue;
199b5763
LM
2432 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2433 continue;
06e48c51
R
2434 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2435 continue;
c45c528e
R
2436
2437 yielded = kvm_vcpu_yield_to(vcpu);
2438 if (yielded > 0) {
217ece61 2439 kvm->last_boosted_vcpu = i;
217ece61 2440 break;
c45c528e
R
2441 } else if (yielded < 0) {
2442 try--;
2443 if (!try)
2444 break;
217ece61 2445 }
217ece61
RR
2446 }
2447 }
4c088493 2448 kvm_vcpu_set_in_spin_loop(me, false);
06e48c51
R
2449
2450 /* Ensure vcpu is not eligible during next spinloop */
2451 kvm_vcpu_set_dy_eligible(me, false);
d255f4f2
ZE
2452}
2453EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2454
1499fa80 2455static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
9a2bb7f4 2456{
11bac800 2457 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
9a2bb7f4
AK
2458 struct page *page;
2459
e4a533a4 2460 if (vmf->pgoff == 0)
039576c0 2461 page = virt_to_page(vcpu->run);
09566765 2462#ifdef CONFIG_X86
e4a533a4 2463 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
ad312c7c 2464 page = virt_to_page(vcpu->arch.pio_data);
5f94c174 2465#endif
4b4357e0 2466#ifdef CONFIG_KVM_MMIO
5f94c174
LV
2467 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2468 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
09566765 2469#endif
039576c0 2470 else
5b1c1493 2471 return kvm_arch_vcpu_fault(vcpu, vmf);
9a2bb7f4 2472 get_page(page);
e4a533a4
NP
2473 vmf->page = page;
2474 return 0;
9a2bb7f4
AK
2475}
2476
f0f37e2f 2477static const struct vm_operations_struct kvm_vcpu_vm_ops = {
e4a533a4 2478 .fault = kvm_vcpu_fault,
9a2bb7f4
AK
2479};
2480
2481static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2482{
2483 vma->vm_ops = &kvm_vcpu_vm_ops;
2484 return 0;
2485}
2486
bccf2150
AK
2487static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2488{
2489 struct kvm_vcpu *vcpu = filp->private_data;
2490
45b5939e 2491 debugfs_remove_recursive(vcpu->debugfs_dentry);
66c0b394 2492 kvm_put_kvm(vcpu->kvm);
bccf2150
AK
2493 return 0;
2494}
2495
3d3aab1b 2496static struct file_operations kvm_vcpu_fops = {
bccf2150
AK
2497 .release = kvm_vcpu_release,
2498 .unlocked_ioctl = kvm_vcpu_ioctl,
9a2bb7f4 2499 .mmap = kvm_vcpu_mmap,
6038f373 2500 .llseek = noop_llseek,
7ddfd3e0 2501 KVM_COMPAT(kvm_vcpu_compat_ioctl),
bccf2150
AK
2502};
2503
2504/*
2505 * Allocates an inode for the vcpu.
2506 */
2507static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2508{
e46b4692
MY
2509 char name[8 + 1 + ITOA_MAX_LEN + 1];
2510
2511 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2512 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
bccf2150
AK
2513}
2514
45b5939e
LC
2515static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2516{
2517 char dir_name[ITOA_MAX_LEN * 2];
2518 int ret;
2519
2520 if (!kvm_arch_has_vcpu_debugfs())
2521 return 0;
2522
2523 if (!debugfs_initialized())
2524 return 0;
2525
2526 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2527 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2528 vcpu->kvm->debugfs_dentry);
2529 if (!vcpu->debugfs_dentry)
2530 return -ENOMEM;
2531
2532 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2533 if (ret < 0) {
2534 debugfs_remove_recursive(vcpu->debugfs_dentry);
2535 return ret;
2536 }
2537
2538 return 0;
2539}
2540
c5ea7660
AK
2541/*
2542 * Creates some virtual cpus. Good luck creating more than one.
2543 */
73880c80 2544static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
c5ea7660
AK
2545{
2546 int r;
e09fefde 2547 struct kvm_vcpu *vcpu;
c5ea7660 2548
0b1b1dfd 2549 if (id >= KVM_MAX_VCPU_ID)
338c7dba
AH
2550 return -EINVAL;
2551
6c7caebc
PB
2552 mutex_lock(&kvm->lock);
2553 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2554 mutex_unlock(&kvm->lock);
2555 return -EINVAL;
2556 }
2557
2558 kvm->created_vcpus++;
2559 mutex_unlock(&kvm->lock);
2560
73880c80 2561 vcpu = kvm_arch_vcpu_create(kvm, id);
6c7caebc
PB
2562 if (IS_ERR(vcpu)) {
2563 r = PTR_ERR(vcpu);
2564 goto vcpu_decrement;
2565 }
c5ea7660 2566
15ad7146
AK
2567 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2568
26e5215f
AK
2569 r = kvm_arch_vcpu_setup(vcpu);
2570 if (r)
d780592b 2571 goto vcpu_destroy;
26e5215f 2572
45b5939e
LC
2573 r = kvm_create_vcpu_debugfs(vcpu);
2574 if (r)
2575 goto vcpu_destroy;
2576
11ec2804 2577 mutex_lock(&kvm->lock);
e09fefde
DH
2578 if (kvm_get_vcpu_by_id(kvm, id)) {
2579 r = -EEXIST;
2580 goto unlock_vcpu_destroy;
2581 }
73880c80
GN
2582
2583 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
c5ea7660 2584
fb3f0f51 2585 /* Now it's all set up, let userspace reach it */
66c0b394 2586 kvm_get_kvm(kvm);
bccf2150 2587 r = create_vcpu_fd(vcpu);
73880c80
GN
2588 if (r < 0) {
2589 kvm_put_kvm(kvm);
d780592b 2590 goto unlock_vcpu_destroy;
73880c80
GN
2591 }
2592
2593 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
dd489240
PB
2594
2595 /*
2596 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2597 * before kvm->online_vcpu's incremented value.
2598 */
73880c80
GN
2599 smp_wmb();
2600 atomic_inc(&kvm->online_vcpus);
2601
73880c80 2602 mutex_unlock(&kvm->lock);
42897d86 2603 kvm_arch_vcpu_postcreate(vcpu);
fb3f0f51 2604 return r;
39c3b86e 2605
d780592b 2606unlock_vcpu_destroy:
7d8fece6 2607 mutex_unlock(&kvm->lock);
45b5939e 2608 debugfs_remove_recursive(vcpu->debugfs_dentry);
d780592b 2609vcpu_destroy:
d40ccc62 2610 kvm_arch_vcpu_destroy(vcpu);
6c7caebc
PB
2611vcpu_decrement:
2612 mutex_lock(&kvm->lock);
2613 kvm->created_vcpus--;
2614 mutex_unlock(&kvm->lock);
c5ea7660
AK
2615 return r;
2616}
2617
1961d276
AK
2618static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2619{
2620 if (sigset) {
2621 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2622 vcpu->sigset_active = 1;
2623 vcpu->sigset = *sigset;
2624 } else
2625 vcpu->sigset_active = 0;
2626 return 0;
2627}
2628
bccf2150
AK
2629static long kvm_vcpu_ioctl(struct file *filp,
2630 unsigned int ioctl, unsigned long arg)
6aa8b732 2631{
bccf2150 2632 struct kvm_vcpu *vcpu = filp->private_data;
2f366987 2633 void __user *argp = (void __user *)arg;
313a3dc7 2634 int r;
fa3795a7
DH
2635 struct kvm_fpu *fpu = NULL;
2636 struct kvm_sregs *kvm_sregs = NULL;
6aa8b732 2637
6d4e4c4f
AK
2638 if (vcpu->kvm->mm != current->mm)
2639 return -EIO;
2122ff5e 2640
2ea75be3
DM
2641 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2642 return -EINVAL;
2643
2122ff5e 2644 /*
5cb0944c
PB
2645 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2646 * execution; mutex_lock() would break them.
2122ff5e 2647 */
5cb0944c
PB
2648 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2649 if (r != -ENOIOCTLCMD)
9fc77441 2650 return r;
2122ff5e 2651
ec7660cc
CD
2652 if (mutex_lock_killable(&vcpu->mutex))
2653 return -EINTR;
6aa8b732 2654 switch (ioctl) {
0e4524a5
CB
2655 case KVM_RUN: {
2656 struct pid *oldpid;
f0fe5108
AK
2657 r = -EINVAL;
2658 if (arg)
2659 goto out;
0e4524a5 2660 oldpid = rcu_access_pointer(vcpu->pid);
71dbc8a9 2661 if (unlikely(oldpid != task_pid(current))) {
7a72f7a1 2662 /* The thread running this VCPU changed. */
bd2a6394 2663 struct pid *newpid;
f95ef0cd 2664
bd2a6394
CD
2665 r = kvm_arch_vcpu_run_pid_change(vcpu);
2666 if (r)
2667 break;
2668
2669 newpid = get_task_pid(current, PIDTYPE_PID);
7a72f7a1
CB
2670 rcu_assign_pointer(vcpu->pid, newpid);
2671 if (oldpid)
2672 synchronize_rcu();
2673 put_pid(oldpid);
2674 }
b6c7a5dc 2675 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
64be5007 2676 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
6aa8b732 2677 break;
0e4524a5 2678 }
6aa8b732 2679 case KVM_GET_REGS: {
3e4bb3ac 2680 struct kvm_regs *kvm_regs;
6aa8b732 2681
3e4bb3ac
XZ
2682 r = -ENOMEM;
2683 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2684 if (!kvm_regs)
6aa8b732 2685 goto out;
3e4bb3ac
XZ
2686 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2687 if (r)
2688 goto out_free1;
6aa8b732 2689 r = -EFAULT;
3e4bb3ac
XZ
2690 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2691 goto out_free1;
6aa8b732 2692 r = 0;
3e4bb3ac
XZ
2693out_free1:
2694 kfree(kvm_regs);
6aa8b732
AK
2695 break;
2696 }
2697 case KVM_SET_REGS: {
3e4bb3ac 2698 struct kvm_regs *kvm_regs;
6aa8b732 2699
3e4bb3ac 2700 r = -ENOMEM;
ff5c2c03
SL
2701 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2702 if (IS_ERR(kvm_regs)) {
2703 r = PTR_ERR(kvm_regs);
6aa8b732 2704 goto out;
ff5c2c03 2705 }
3e4bb3ac 2706 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3e4bb3ac 2707 kfree(kvm_regs);
6aa8b732
AK
2708 break;
2709 }
2710 case KVM_GET_SREGS: {
fa3795a7
DH
2711 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2712 r = -ENOMEM;
2713 if (!kvm_sregs)
2714 goto out;
2715 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
6aa8b732
AK
2716 if (r)
2717 goto out;
2718 r = -EFAULT;
fa3795a7 2719 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
6aa8b732
AK
2720 goto out;
2721 r = 0;
2722 break;
2723 }
2724 case KVM_SET_SREGS: {
ff5c2c03
SL
2725 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2726 if (IS_ERR(kvm_sregs)) {
2727 r = PTR_ERR(kvm_sregs);
18595411 2728 kvm_sregs = NULL;
6aa8b732 2729 goto out;
ff5c2c03 2730 }
fa3795a7 2731 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
6aa8b732
AK
2732 break;
2733 }
62d9f0db
MT
2734 case KVM_GET_MP_STATE: {
2735 struct kvm_mp_state mp_state;
2736
2737 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2738 if (r)
2739 goto out;
2740 r = -EFAULT;
893bdbf1 2741 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
62d9f0db
MT
2742 goto out;
2743 r = 0;
2744 break;
2745 }
2746 case KVM_SET_MP_STATE: {
2747 struct kvm_mp_state mp_state;
2748
2749 r = -EFAULT;
893bdbf1 2750 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
62d9f0db
MT
2751 goto out;
2752 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
62d9f0db
MT
2753 break;
2754 }
6aa8b732
AK
2755 case KVM_TRANSLATE: {
2756 struct kvm_translation tr;
2757
2758 r = -EFAULT;
893bdbf1 2759 if (copy_from_user(&tr, argp, sizeof(tr)))
6aa8b732 2760 goto out;
8b006791 2761 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
6aa8b732
AK
2762 if (r)
2763 goto out;
2764 r = -EFAULT;
893bdbf1 2765 if (copy_to_user(argp, &tr, sizeof(tr)))
6aa8b732
AK
2766 goto out;
2767 r = 0;
2768 break;
2769 }
d0bfb940
JK
2770 case KVM_SET_GUEST_DEBUG: {
2771 struct kvm_guest_debug dbg;
6aa8b732
AK
2772
2773 r = -EFAULT;
893bdbf1 2774 if (copy_from_user(&dbg, argp, sizeof(dbg)))
6aa8b732 2775 goto out;
d0bfb940 2776 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
6aa8b732
AK
2777 break;
2778 }
1961d276
AK
2779 case KVM_SET_SIGNAL_MASK: {
2780 struct kvm_signal_mask __user *sigmask_arg = argp;
2781 struct kvm_signal_mask kvm_sigmask;
2782 sigset_t sigset, *p;
2783
2784 p = NULL;
2785 if (argp) {
2786 r = -EFAULT;
2787 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 2788 sizeof(kvm_sigmask)))
1961d276
AK
2789 goto out;
2790 r = -EINVAL;
893bdbf1 2791 if (kvm_sigmask.len != sizeof(sigset))
1961d276
AK
2792 goto out;
2793 r = -EFAULT;
2794 if (copy_from_user(&sigset, sigmask_arg->sigset,
893bdbf1 2795 sizeof(sigset)))
1961d276
AK
2796 goto out;
2797 p = &sigset;
2798 }
376d41ff 2799 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1961d276
AK
2800 break;
2801 }
b8836737 2802 case KVM_GET_FPU: {
fa3795a7
DH
2803 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2804 r = -ENOMEM;
2805 if (!fpu)
2806 goto out;
2807 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
b8836737
AK
2808 if (r)
2809 goto out;
2810 r = -EFAULT;
fa3795a7 2811 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
b8836737
AK
2812 goto out;
2813 r = 0;
2814 break;
2815 }
2816 case KVM_SET_FPU: {
ff5c2c03
SL
2817 fpu = memdup_user(argp, sizeof(*fpu));
2818 if (IS_ERR(fpu)) {
2819 r = PTR_ERR(fpu);
18595411 2820 fpu = NULL;
b8836737 2821 goto out;
ff5c2c03 2822 }
fa3795a7 2823 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
b8836737
AK
2824 break;
2825 }
bccf2150 2826 default:
313a3dc7 2827 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
bccf2150
AK
2828 }
2829out:
ec7660cc 2830 mutex_unlock(&vcpu->mutex);
fa3795a7
DH
2831 kfree(fpu);
2832 kfree(kvm_sregs);
bccf2150
AK
2833 return r;
2834}
2835
de8e5d74 2836#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
2837static long kvm_vcpu_compat_ioctl(struct file *filp,
2838 unsigned int ioctl, unsigned long arg)
2839{
2840 struct kvm_vcpu *vcpu = filp->private_data;
2841 void __user *argp = compat_ptr(arg);
2842 int r;
2843
2844 if (vcpu->kvm->mm != current->mm)
2845 return -EIO;
2846
2847 switch (ioctl) {
2848 case KVM_SET_SIGNAL_MASK: {
2849 struct kvm_signal_mask __user *sigmask_arg = argp;
2850 struct kvm_signal_mask kvm_sigmask;
1dda606c
AG
2851 sigset_t sigset;
2852
2853 if (argp) {
2854 r = -EFAULT;
2855 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 2856 sizeof(kvm_sigmask)))
1dda606c
AG
2857 goto out;
2858 r = -EINVAL;
3968cf62 2859 if (kvm_sigmask.len != sizeof(compat_sigset_t))
1dda606c
AG
2860 goto out;
2861 r = -EFAULT;
3968cf62 2862 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
1dda606c 2863 goto out;
760a9a30
AC
2864 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2865 } else
2866 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1dda606c
AG
2867 break;
2868 }
2869 default:
2870 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2871 }
2872
2873out:
2874 return r;
2875}
2876#endif
2877
852b6d57
SW
2878static int kvm_device_ioctl_attr(struct kvm_device *dev,
2879 int (*accessor)(struct kvm_device *dev,
2880 struct kvm_device_attr *attr),
2881 unsigned long arg)
2882{
2883 struct kvm_device_attr attr;
2884
2885 if (!accessor)
2886 return -EPERM;
2887
2888 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2889 return -EFAULT;
2890
2891 return accessor(dev, &attr);
2892}
2893
2894static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2895 unsigned long arg)
2896{
2897 struct kvm_device *dev = filp->private_data;
2898
2899 switch (ioctl) {
2900 case KVM_SET_DEVICE_ATTR:
2901 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2902 case KVM_GET_DEVICE_ATTR:
2903 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2904 case KVM_HAS_DEVICE_ATTR:
2905 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2906 default:
2907 if (dev->ops->ioctl)
2908 return dev->ops->ioctl(dev, ioctl, arg);
2909
2910 return -ENOTTY;
2911 }
2912}
2913
852b6d57
SW
2914static int kvm_device_release(struct inode *inode, struct file *filp)
2915{
2916 struct kvm_device *dev = filp->private_data;
2917 struct kvm *kvm = dev->kvm;
2918
852b6d57
SW
2919 kvm_put_kvm(kvm);
2920 return 0;
2921}
2922
2923static const struct file_operations kvm_device_fops = {
2924 .unlocked_ioctl = kvm_device_ioctl,
2925 .release = kvm_device_release,
7ddfd3e0 2926 KVM_COMPAT(kvm_device_ioctl),
852b6d57
SW
2927};
2928
2929struct kvm_device *kvm_device_from_filp(struct file *filp)
2930{
2931 if (filp->f_op != &kvm_device_fops)
2932 return NULL;
2933
2934 return filp->private_data;
2935}
2936
d60eacb0 2937static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
5df554ad 2938#ifdef CONFIG_KVM_MPIC
d60eacb0
WD
2939 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2940 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
5975a2e0 2941#endif
d60eacb0
WD
2942};
2943
2944int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2945{
2946 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2947 return -ENOSPC;
2948
2949 if (kvm_device_ops_table[type] != NULL)
2950 return -EEXIST;
2951
2952 kvm_device_ops_table[type] = ops;
2953 return 0;
2954}
2955
571ee1b6
WL
2956void kvm_unregister_device_ops(u32 type)
2957{
2958 if (kvm_device_ops_table[type] != NULL)
2959 kvm_device_ops_table[type] = NULL;
2960}
2961
852b6d57
SW
2962static int kvm_ioctl_create_device(struct kvm *kvm,
2963 struct kvm_create_device *cd)
2964{
2965 struct kvm_device_ops *ops = NULL;
2966 struct kvm_device *dev;
2967 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2968 int ret;
2969
d60eacb0
WD
2970 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2971 return -ENODEV;
2972
2973 ops = kvm_device_ops_table[cd->type];
2974 if (ops == NULL)
852b6d57 2975 return -ENODEV;
852b6d57
SW
2976
2977 if (test)
2978 return 0;
2979
2980 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2981 if (!dev)
2982 return -ENOMEM;
2983
2984 dev->ops = ops;
2985 dev->kvm = kvm;
852b6d57 2986
a28ebea2 2987 mutex_lock(&kvm->lock);
852b6d57
SW
2988 ret = ops->create(dev, cd->type);
2989 if (ret < 0) {
a28ebea2 2990 mutex_unlock(&kvm->lock);
852b6d57
SW
2991 kfree(dev);
2992 return ret;
2993 }
a28ebea2
CD
2994 list_add(&dev->vm_node, &kvm->devices);
2995 mutex_unlock(&kvm->lock);
852b6d57 2996
023e9fdd
CD
2997 if (ops->init)
2998 ops->init(dev);
2999
24009b05 3000 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
852b6d57 3001 if (ret < 0) {
a28ebea2
CD
3002 mutex_lock(&kvm->lock);
3003 list_del(&dev->vm_node);
3004 mutex_unlock(&kvm->lock);
a0f1d21c 3005 ops->destroy(dev);
852b6d57
SW
3006 return ret;
3007 }
3008
3009 kvm_get_kvm(kvm);
3010 cd->fd = ret;
3011 return 0;
3012}
3013
92b591a4
AG
3014static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3015{
3016 switch (arg) {
3017 case KVM_CAP_USER_MEMORY:
3018 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3019 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
92b591a4
AG
3020 case KVM_CAP_INTERNAL_ERROR_DATA:
3021#ifdef CONFIG_HAVE_KVM_MSI
3022 case KVM_CAP_SIGNAL_MSI:
3023#endif
297e2105 3024#ifdef CONFIG_HAVE_KVM_IRQFD
dc9be0fa 3025 case KVM_CAP_IRQFD:
92b591a4
AG
3026 case KVM_CAP_IRQFD_RESAMPLE:
3027#endif
e9ea5069 3028 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
92b591a4 3029 case KVM_CAP_CHECK_EXTENSION_VM:
e5d83c74 3030 case KVM_CAP_ENABLE_CAP_VM:
2a31b9db
PB
3031#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3032 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3033#endif
92b591a4 3034 return 1;
4b4357e0 3035#ifdef CONFIG_KVM_MMIO
30422558
PB
3036 case KVM_CAP_COALESCED_MMIO:
3037 return KVM_COALESCED_MMIO_PAGE_OFFSET;
0804c849
PH
3038 case KVM_CAP_COALESCED_PIO:
3039 return 1;
30422558 3040#endif
92b591a4
AG
3041#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3042 case KVM_CAP_IRQ_ROUTING:
3043 return KVM_MAX_IRQ_ROUTES;
f481b069
PB
3044#endif
3045#if KVM_ADDRESS_SPACE_NUM > 1
3046 case KVM_CAP_MULTI_ADDRESS_SPACE:
3047 return KVM_ADDRESS_SPACE_NUM;
92b591a4 3048#endif
0b1b1dfd
GK
3049 case KVM_CAP_MAX_VCPU_ID:
3050 return KVM_MAX_VCPU_ID;
92b591a4
AG
3051 default:
3052 break;
3053 }
3054 return kvm_vm_ioctl_check_extension(kvm, arg);
3055}
3056
e5d83c74
PB
3057int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3058 struct kvm_enable_cap *cap)
3059{
3060 return -EINVAL;
3061}
3062
3063static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3064 struct kvm_enable_cap *cap)
3065{
3066 switch (cap->cap) {
2a31b9db
PB
3067#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3068 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3069 if (cap->flags || (cap->args[0] & ~1))
3070 return -EINVAL;
3071 kvm->manual_dirty_log_protect = cap->args[0];
3072 return 0;
3073#endif
e5d83c74
PB
3074 default:
3075 return kvm_vm_ioctl_enable_cap(kvm, cap);
3076 }
3077}
3078
bccf2150
AK
3079static long kvm_vm_ioctl(struct file *filp,
3080 unsigned int ioctl, unsigned long arg)
3081{
3082 struct kvm *kvm = filp->private_data;
3083 void __user *argp = (void __user *)arg;
1fe779f8 3084 int r;
bccf2150 3085
6d4e4c4f
AK
3086 if (kvm->mm != current->mm)
3087 return -EIO;
bccf2150
AK
3088 switch (ioctl) {
3089 case KVM_CREATE_VCPU:
3090 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
bccf2150 3091 break;
e5d83c74
PB
3092 case KVM_ENABLE_CAP: {
3093 struct kvm_enable_cap cap;
3094
3095 r = -EFAULT;
3096 if (copy_from_user(&cap, argp, sizeof(cap)))
3097 goto out;
3098 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3099 break;
3100 }
6fc138d2
IE
3101 case KVM_SET_USER_MEMORY_REGION: {
3102 struct kvm_userspace_memory_region kvm_userspace_mem;
3103
3104 r = -EFAULT;
3105 if (copy_from_user(&kvm_userspace_mem, argp,
893bdbf1 3106 sizeof(kvm_userspace_mem)))
6fc138d2
IE
3107 goto out;
3108
47ae31e2 3109 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
6aa8b732
AK
3110 break;
3111 }
3112 case KVM_GET_DIRTY_LOG: {
3113 struct kvm_dirty_log log;
3114
3115 r = -EFAULT;
893bdbf1 3116 if (copy_from_user(&log, argp, sizeof(log)))
6aa8b732 3117 goto out;
2c6f5df9 3118 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6aa8b732
AK
3119 break;
3120 }
2a31b9db
PB
3121#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3122 case KVM_CLEAR_DIRTY_LOG: {
3123 struct kvm_clear_dirty_log log;
3124
3125 r = -EFAULT;
3126 if (copy_from_user(&log, argp, sizeof(log)))
3127 goto out;
3128 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3129 break;
3130 }
3131#endif
4b4357e0 3132#ifdef CONFIG_KVM_MMIO
5f94c174
LV
3133 case KVM_REGISTER_COALESCED_MMIO: {
3134 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 3135
5f94c174 3136 r = -EFAULT;
893bdbf1 3137 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 3138 goto out;
5f94c174 3139 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5f94c174
LV
3140 break;
3141 }
3142 case KVM_UNREGISTER_COALESCED_MMIO: {
3143 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 3144
5f94c174 3145 r = -EFAULT;
893bdbf1 3146 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 3147 goto out;
5f94c174 3148 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5f94c174
LV
3149 break;
3150 }
3151#endif
721eecbf
GH
3152 case KVM_IRQFD: {
3153 struct kvm_irqfd data;
3154
3155 r = -EFAULT;
893bdbf1 3156 if (copy_from_user(&data, argp, sizeof(data)))
721eecbf 3157 goto out;
d4db2935 3158 r = kvm_irqfd(kvm, &data);
721eecbf
GH
3159 break;
3160 }
d34e6b17
GH
3161 case KVM_IOEVENTFD: {
3162 struct kvm_ioeventfd data;
3163
3164 r = -EFAULT;
893bdbf1 3165 if (copy_from_user(&data, argp, sizeof(data)))
d34e6b17
GH
3166 goto out;
3167 r = kvm_ioeventfd(kvm, &data);
3168 break;
3169 }
07975ad3
JK
3170#ifdef CONFIG_HAVE_KVM_MSI
3171 case KVM_SIGNAL_MSI: {
3172 struct kvm_msi msi;
3173
3174 r = -EFAULT;
893bdbf1 3175 if (copy_from_user(&msi, argp, sizeof(msi)))
07975ad3
JK
3176 goto out;
3177 r = kvm_send_userspace_msi(kvm, &msi);
3178 break;
3179 }
23d43cf9
CD
3180#endif
3181#ifdef __KVM_HAVE_IRQ_LINE
3182 case KVM_IRQ_LINE_STATUS:
3183 case KVM_IRQ_LINE: {
3184 struct kvm_irq_level irq_event;
3185
3186 r = -EFAULT;
893bdbf1 3187 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
23d43cf9
CD
3188 goto out;
3189
aa2fbe6d
YZ
3190 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3191 ioctl == KVM_IRQ_LINE_STATUS);
23d43cf9
CD
3192 if (r)
3193 goto out;
3194
3195 r = -EFAULT;
3196 if (ioctl == KVM_IRQ_LINE_STATUS) {
893bdbf1 3197 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
23d43cf9
CD
3198 goto out;
3199 }
3200
3201 r = 0;
3202 break;
3203 }
73880c80 3204#endif
aa8d5944
AG
3205#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3206 case KVM_SET_GSI_ROUTING: {
3207 struct kvm_irq_routing routing;
3208 struct kvm_irq_routing __user *urouting;
f8c1b85b 3209 struct kvm_irq_routing_entry *entries = NULL;
aa8d5944
AG
3210
3211 r = -EFAULT;
3212 if (copy_from_user(&routing, argp, sizeof(routing)))
3213 goto out;
3214 r = -EINVAL;
5c0aea0e
DH
3215 if (!kvm_arch_can_set_irq_routing(kvm))
3216 goto out;
caf1ff26 3217 if (routing.nr > KVM_MAX_IRQ_ROUTES)
aa8d5944
AG
3218 goto out;
3219 if (routing.flags)
3220 goto out;
f8c1b85b
PB
3221 if (routing.nr) {
3222 r = -ENOMEM;
42bc47b3
KC
3223 entries = vmalloc(array_size(sizeof(*entries),
3224 routing.nr));
f8c1b85b
PB
3225 if (!entries)
3226 goto out;
3227 r = -EFAULT;
3228 urouting = argp;
3229 if (copy_from_user(entries, urouting->entries,
3230 routing.nr * sizeof(*entries)))
3231 goto out_free_irq_routing;
3232 }
aa8d5944
AG
3233 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3234 routing.flags);
a642a175 3235out_free_irq_routing:
aa8d5944
AG
3236 vfree(entries);
3237 break;
3238 }
3239#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
852b6d57
SW
3240 case KVM_CREATE_DEVICE: {
3241 struct kvm_create_device cd;
3242
3243 r = -EFAULT;
3244 if (copy_from_user(&cd, argp, sizeof(cd)))
3245 goto out;
3246
3247 r = kvm_ioctl_create_device(kvm, &cd);
3248 if (r)
3249 goto out;
3250
3251 r = -EFAULT;
3252 if (copy_to_user(argp, &cd, sizeof(cd)))
3253 goto out;
3254
3255 r = 0;
3256 break;
3257 }
92b591a4
AG
3258 case KVM_CHECK_EXTENSION:
3259 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3260 break;
f17abe9a 3261 default:
1fe779f8 3262 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
f17abe9a
AK
3263 }
3264out:
3265 return r;
3266}
3267
de8e5d74 3268#ifdef CONFIG_KVM_COMPAT
6ff5894c
AB
3269struct compat_kvm_dirty_log {
3270 __u32 slot;
3271 __u32 padding1;
3272 union {
3273 compat_uptr_t dirty_bitmap; /* one bit per page */
3274 __u64 padding2;
3275 };
3276};
3277
3278static long kvm_vm_compat_ioctl(struct file *filp,
3279 unsigned int ioctl, unsigned long arg)
3280{
3281 struct kvm *kvm = filp->private_data;
3282 int r;
3283
3284 if (kvm->mm != current->mm)
3285 return -EIO;
3286 switch (ioctl) {
3287 case KVM_GET_DIRTY_LOG: {
3288 struct compat_kvm_dirty_log compat_log;
3289 struct kvm_dirty_log log;
3290
6ff5894c
AB
3291 if (copy_from_user(&compat_log, (void __user *)arg,
3292 sizeof(compat_log)))
f6a3b168 3293 return -EFAULT;
6ff5894c
AB
3294 log.slot = compat_log.slot;
3295 log.padding1 = compat_log.padding1;
3296 log.padding2 = compat_log.padding2;
3297 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3298
3299 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6ff5894c
AB
3300 break;
3301 }
3302 default:
3303 r = kvm_vm_ioctl(filp, ioctl, arg);
3304 }
6ff5894c
AB
3305 return r;
3306}
3307#endif
3308
3d3aab1b 3309static struct file_operations kvm_vm_fops = {
f17abe9a
AK
3310 .release = kvm_vm_release,
3311 .unlocked_ioctl = kvm_vm_ioctl,
6038f373 3312 .llseek = noop_llseek,
7ddfd3e0 3313 KVM_COMPAT(kvm_vm_compat_ioctl),
f17abe9a
AK
3314};
3315
e08b9637 3316static int kvm_dev_ioctl_create_vm(unsigned long type)
f17abe9a 3317{
aac87636 3318 int r;
f17abe9a 3319 struct kvm *kvm;
506cfba9 3320 struct file *file;
f17abe9a 3321
e08b9637 3322 kvm = kvm_create_vm(type);
d6d28168
AK
3323 if (IS_ERR(kvm))
3324 return PTR_ERR(kvm);
4b4357e0 3325#ifdef CONFIG_KVM_MMIO
6ce5a090 3326 r = kvm_coalesced_mmio_init(kvm);
78588335
ME
3327 if (r < 0)
3328 goto put_kvm;
6ce5a090 3329#endif
506cfba9 3330 r = get_unused_fd_flags(O_CLOEXEC);
78588335
ME
3331 if (r < 0)
3332 goto put_kvm;
3333
506cfba9
AV
3334 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3335 if (IS_ERR(file)) {
3336 put_unused_fd(r);
78588335
ME
3337 r = PTR_ERR(file);
3338 goto put_kvm;
506cfba9 3339 }
536a6f88 3340
525df861
PB
3341 /*
3342 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3343 * already set, with ->release() being kvm_vm_release(). In error
3344 * cases it will be called by the final fput(file) and will take
3345 * care of doing kvm_put_kvm(kvm).
3346 */
536a6f88 3347 if (kvm_create_vm_debugfs(kvm, r) < 0) {
506cfba9
AV
3348 put_unused_fd(r);
3349 fput(file);
536a6f88
JF
3350 return -ENOMEM;
3351 }
286de8f6 3352 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
f17abe9a 3353
506cfba9 3354 fd_install(r, file);
aac87636 3355 return r;
78588335
ME
3356
3357put_kvm:
3358 kvm_put_kvm(kvm);
3359 return r;
f17abe9a
AK
3360}
3361
3362static long kvm_dev_ioctl(struct file *filp,
3363 unsigned int ioctl, unsigned long arg)
3364{
07c45a36 3365 long r = -EINVAL;
f17abe9a
AK
3366
3367 switch (ioctl) {
3368 case KVM_GET_API_VERSION:
f0fe5108
AK
3369 if (arg)
3370 goto out;
f17abe9a
AK
3371 r = KVM_API_VERSION;
3372 break;
3373 case KVM_CREATE_VM:
e08b9637 3374 r = kvm_dev_ioctl_create_vm(arg);
f17abe9a 3375 break;
018d00d2 3376 case KVM_CHECK_EXTENSION:
784aa3d7 3377 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5d308f45 3378 break;
07c45a36 3379 case KVM_GET_VCPU_MMAP_SIZE:
07c45a36
AK
3380 if (arg)
3381 goto out;
adb1ff46
AK
3382 r = PAGE_SIZE; /* struct kvm_run */
3383#ifdef CONFIG_X86
3384 r += PAGE_SIZE; /* pio data page */
5f94c174 3385#endif
4b4357e0 3386#ifdef CONFIG_KVM_MMIO
5f94c174 3387 r += PAGE_SIZE; /* coalesced mmio ring page */
adb1ff46 3388#endif
07c45a36 3389 break;
d4c9ff2d
FEL
3390 case KVM_TRACE_ENABLE:
3391 case KVM_TRACE_PAUSE:
3392 case KVM_TRACE_DISABLE:
2023a29c 3393 r = -EOPNOTSUPP;
d4c9ff2d 3394 break;
6aa8b732 3395 default:
043405e1 3396 return kvm_arch_dev_ioctl(filp, ioctl, arg);
6aa8b732
AK
3397 }
3398out:
3399 return r;
3400}
3401
6aa8b732 3402static struct file_operations kvm_chardev_ops = {
6aa8b732 3403 .unlocked_ioctl = kvm_dev_ioctl,
6038f373 3404 .llseek = noop_llseek,
7ddfd3e0 3405 KVM_COMPAT(kvm_dev_ioctl),
6aa8b732
AK
3406};
3407
3408static struct miscdevice kvm_dev = {
bbe4432e 3409 KVM_MINOR,
6aa8b732
AK
3410 "kvm",
3411 &kvm_chardev_ops,
3412};
3413
75b7127c 3414static void hardware_enable_nolock(void *junk)
1b6c0168
AK
3415{
3416 int cpu = raw_smp_processor_id();
10474ae8 3417 int r;
1b6c0168 3418
7f59f492 3419 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 3420 return;
10474ae8 3421
7f59f492 3422 cpumask_set_cpu(cpu, cpus_hardware_enabled);
10474ae8 3423
13a34e06 3424 r = kvm_arch_hardware_enable();
10474ae8
AG
3425
3426 if (r) {
3427 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3428 atomic_inc(&hardware_enable_failed);
1170adc6 3429 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
10474ae8 3430 }
1b6c0168
AK
3431}
3432
8c18b2d2 3433static int kvm_starting_cpu(unsigned int cpu)
75b7127c 3434{
4a937f96 3435 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
3436 if (kvm_usage_count)
3437 hardware_enable_nolock(NULL);
4a937f96 3438 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 3439 return 0;
75b7127c
TY
3440}
3441
3442static void hardware_disable_nolock(void *junk)
1b6c0168
AK
3443{
3444 int cpu = raw_smp_processor_id();
3445
7f59f492 3446 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 3447 return;
7f59f492 3448 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
13a34e06 3449 kvm_arch_hardware_disable();
1b6c0168
AK
3450}
3451
8c18b2d2 3452static int kvm_dying_cpu(unsigned int cpu)
75b7127c 3453{
4a937f96 3454 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
3455 if (kvm_usage_count)
3456 hardware_disable_nolock(NULL);
4a937f96 3457 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 3458 return 0;
75b7127c
TY
3459}
3460
10474ae8
AG
3461static void hardware_disable_all_nolock(void)
3462{
3463 BUG_ON(!kvm_usage_count);
3464
3465 kvm_usage_count--;
3466 if (!kvm_usage_count)
75b7127c 3467 on_each_cpu(hardware_disable_nolock, NULL, 1);
10474ae8
AG
3468}
3469
3470static void hardware_disable_all(void)
3471{
4a937f96 3472 raw_spin_lock(&kvm_count_lock);
10474ae8 3473 hardware_disable_all_nolock();
4a937f96 3474 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
3475}
3476
3477static int hardware_enable_all(void)
3478{
3479 int r = 0;
3480
4a937f96 3481 raw_spin_lock(&kvm_count_lock);
10474ae8
AG
3482
3483 kvm_usage_count++;
3484 if (kvm_usage_count == 1) {
3485 atomic_set(&hardware_enable_failed, 0);
75b7127c 3486 on_each_cpu(hardware_enable_nolock, NULL, 1);
10474ae8
AG
3487
3488 if (atomic_read(&hardware_enable_failed)) {
3489 hardware_disable_all_nolock();
3490 r = -EBUSY;
3491 }
3492 }
3493
4a937f96 3494 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
3495
3496 return r;
3497}
3498
9a2b85c6 3499static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
d77c26fc 3500 void *v)
9a2b85c6 3501{
8e1c1815
SY
3502 /*
3503 * Some (well, at least mine) BIOSes hang on reboot if
3504 * in vmx root mode.
3505 *
3506 * And Intel TXT required VMX off for all cpu when system shutdown.
3507 */
1170adc6 3508 pr_info("kvm: exiting hardware virtualization\n");
8e1c1815 3509 kvm_rebooting = true;
75b7127c 3510 on_each_cpu(hardware_disable_nolock, NULL, 1);
9a2b85c6
RR
3511 return NOTIFY_OK;
3512}
3513
3514static struct notifier_block kvm_reboot_notifier = {
3515 .notifier_call = kvm_reboot,
3516 .priority = 0,
3517};
3518
e93f8a0f 3519static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2eeb2e94
GH
3520{
3521 int i;
3522
3523 for (i = 0; i < bus->dev_count; i++) {
743eeb0b 3524 struct kvm_io_device *pos = bus->range[i].dev;
2eeb2e94
GH
3525
3526 kvm_iodevice_destructor(pos);
3527 }
e93f8a0f 3528 kfree(bus);
2eeb2e94
GH
3529}
3530
c21fbff1 3531static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
20e87b72 3532 const struct kvm_io_range *r2)
743eeb0b 3533{
8f4216c7
JW
3534 gpa_t addr1 = r1->addr;
3535 gpa_t addr2 = r2->addr;
3536
3537 if (addr1 < addr2)
743eeb0b 3538 return -1;
8f4216c7
JW
3539
3540 /* If r2->len == 0, match the exact address. If r2->len != 0,
3541 * accept any overlapping write. Any order is acceptable for
3542 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3543 * we process all of them.
3544 */
3545 if (r2->len) {
3546 addr1 += r1->len;
3547 addr2 += r2->len;
3548 }
3549
3550 if (addr1 > addr2)
743eeb0b 3551 return 1;
8f4216c7 3552
743eeb0b
SL
3553 return 0;
3554}
3555
a343c9b7
PB
3556static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3557{
c21fbff1 3558 return kvm_io_bus_cmp(p1, p2);
a343c9b7
PB
3559}
3560
39369f7a 3561static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
743eeb0b
SL
3562 gpa_t addr, int len)
3563{
3564 struct kvm_io_range *range, key;
3565 int off;
3566
3567 key = (struct kvm_io_range) {
3568 .addr = addr,
3569 .len = len,
3570 };
3571
3572 range = bsearch(&key, bus->range, bus->dev_count,
3573 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3574 if (range == NULL)
3575 return -ENOENT;
3576
3577 off = range - bus->range;
3578
c21fbff1 3579 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
743eeb0b
SL
3580 off--;
3581
3582 return off;
3583}
3584
e32edf4f 3585static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
126a5af5
CH
3586 struct kvm_io_range *range, const void *val)
3587{
3588 int idx;
3589
3590 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3591 if (idx < 0)
3592 return -EOPNOTSUPP;
3593
3594 while (idx < bus->dev_count &&
c21fbff1 3595 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 3596 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
3597 range->len, val))
3598 return idx;
3599 idx++;
3600 }
3601
3602 return -EOPNOTSUPP;
3603}
3604
bda9020e 3605/* kvm_io_bus_write - called under kvm->slots_lock */
e32edf4f 3606int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
bda9020e 3607 int len, const void *val)
2eeb2e94 3608{
90d83dc3 3609 struct kvm_io_bus *bus;
743eeb0b 3610 struct kvm_io_range range;
126a5af5 3611 int r;
743eeb0b
SL
3612
3613 range = (struct kvm_io_range) {
3614 .addr = addr,
3615 .len = len,
3616 };
90d83dc3 3617
e32edf4f 3618 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
3619 if (!bus)
3620 return -ENOMEM;
e32edf4f 3621 r = __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
3622 return r < 0 ? r : 0;
3623}
3624
3625/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
e32edf4f
NN
3626int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3627 gpa_t addr, int len, const void *val, long cookie)
126a5af5
CH
3628{
3629 struct kvm_io_bus *bus;
3630 struct kvm_io_range range;
3631
3632 range = (struct kvm_io_range) {
3633 .addr = addr,
3634 .len = len,
3635 };
3636
e32edf4f 3637 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
3638 if (!bus)
3639 return -ENOMEM;
126a5af5
CH
3640
3641 /* First try the device referenced by cookie. */
3642 if ((cookie >= 0) && (cookie < bus->dev_count) &&
c21fbff1 3643 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
e32edf4f 3644 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
126a5af5
CH
3645 val))
3646 return cookie;
3647
3648 /*
3649 * cookie contained garbage; fall back to search and return the
3650 * correct cookie value.
3651 */
e32edf4f 3652 return __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
3653}
3654
e32edf4f
NN
3655static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3656 struct kvm_io_range *range, void *val)
126a5af5
CH
3657{
3658 int idx;
3659
3660 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
743eeb0b
SL
3661 if (idx < 0)
3662 return -EOPNOTSUPP;
3663
3664 while (idx < bus->dev_count &&
c21fbff1 3665 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 3666 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
3667 range->len, val))
3668 return idx;
743eeb0b
SL
3669 idx++;
3670 }
3671
bda9020e
MT
3672 return -EOPNOTSUPP;
3673}
68c3b4d1 3674EXPORT_SYMBOL_GPL(kvm_io_bus_write);
2eeb2e94 3675
bda9020e 3676/* kvm_io_bus_read - called under kvm->slots_lock */
e32edf4f 3677int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 3678 int len, void *val)
bda9020e 3679{
90d83dc3 3680 struct kvm_io_bus *bus;
743eeb0b 3681 struct kvm_io_range range;
126a5af5 3682 int r;
743eeb0b
SL
3683
3684 range = (struct kvm_io_range) {
3685 .addr = addr,
3686 .len = len,
3687 };
e93f8a0f 3688
e32edf4f 3689 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
3690 if (!bus)
3691 return -ENOMEM;
e32edf4f 3692 r = __kvm_io_bus_read(vcpu, bus, &range, val);
126a5af5
CH
3693 return r < 0 ? r : 0;
3694}
743eeb0b 3695
2eeb2e94 3696
79fac95e 3697/* Caller must hold slots_lock. */
743eeb0b
SL
3698int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3699 int len, struct kvm_io_device *dev)
6c474694 3700{
d4c67a7a 3701 int i;
e93f8a0f 3702 struct kvm_io_bus *new_bus, *bus;
d4c67a7a 3703 struct kvm_io_range range;
090b7aff 3704
4a12f951 3705 bus = kvm_get_bus(kvm, bus_idx);
90db1043
DH
3706 if (!bus)
3707 return -ENOMEM;
3708
6ea34c9b
AK
3709 /* exclude ioeventfd which is limited by maximum fd */
3710 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
090b7aff 3711 return -ENOSPC;
2eeb2e94 3712
d3febddd 3713 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
a1300716 3714 sizeof(struct kvm_io_range)), GFP_KERNEL);
e93f8a0f
MT
3715 if (!new_bus)
3716 return -ENOMEM;
d4c67a7a
GH
3717
3718 range = (struct kvm_io_range) {
3719 .addr = addr,
3720 .len = len,
3721 .dev = dev,
3722 };
3723
3724 for (i = 0; i < bus->dev_count; i++)
3725 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3726 break;
3727
3728 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3729 new_bus->dev_count++;
3730 new_bus->range[i] = range;
3731 memcpy(new_bus->range + i + 1, bus->range + i,
3732 (bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f
MT
3733 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3734 synchronize_srcu_expedited(&kvm->srcu);
3735 kfree(bus);
090b7aff
GH
3736
3737 return 0;
3738}
3739
79fac95e 3740/* Caller must hold slots_lock. */
90db1043
DH
3741void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3742 struct kvm_io_device *dev)
090b7aff 3743{
90db1043 3744 int i;
e93f8a0f 3745 struct kvm_io_bus *new_bus, *bus;
090b7aff 3746
4a12f951 3747 bus = kvm_get_bus(kvm, bus_idx);
df630b8c 3748 if (!bus)
90db1043 3749 return;
df630b8c 3750
a1300716
AK
3751 for (i = 0; i < bus->dev_count; i++)
3752 if (bus->range[i].dev == dev) {
090b7aff
GH
3753 break;
3754 }
e93f8a0f 3755
90db1043
DH
3756 if (i == bus->dev_count)
3757 return;
a1300716 3758
d3febddd 3759 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
a1300716 3760 sizeof(struct kvm_io_range)), GFP_KERNEL);
90db1043
DH
3761 if (!new_bus) {
3762 pr_err("kvm: failed to shrink bus, removing it completely\n");
3763 goto broken;
3764 }
a1300716
AK
3765
3766 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3767 new_bus->dev_count--;
3768 memcpy(new_bus->range + i, bus->range + i + 1,
3769 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f 3770
90db1043 3771broken:
e93f8a0f
MT
3772 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3773 synchronize_srcu_expedited(&kvm->srcu);
3774 kfree(bus);
90db1043 3775 return;
2eeb2e94
GH
3776}
3777
8a39d006
AP
3778struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3779 gpa_t addr)
3780{
3781 struct kvm_io_bus *bus;
3782 int dev_idx, srcu_idx;
3783 struct kvm_io_device *iodev = NULL;
3784
3785 srcu_idx = srcu_read_lock(&kvm->srcu);
3786
3787 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
90db1043
DH
3788 if (!bus)
3789 goto out_unlock;
8a39d006
AP
3790
3791 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3792 if (dev_idx < 0)
3793 goto out_unlock;
3794
3795 iodev = bus->range[dev_idx].dev;
3796
3797out_unlock:
3798 srcu_read_unlock(&kvm->srcu, srcu_idx);
3799
3800 return iodev;
3801}
3802EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3803
536a6f88
JF
3804static int kvm_debugfs_open(struct inode *inode, struct file *file,
3805 int (*get)(void *, u64 *), int (*set)(void *, u64),
3806 const char *fmt)
3807{
3808 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3809 inode->i_private;
3810
3811 /* The debugfs files are a reference to the kvm struct which
3812 * is still valid when kvm_destroy_vm is called.
3813 * To avoid the race between open and the removal of the debugfs
3814 * directory we test against the users count.
3815 */
e3736c3e 3816 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
536a6f88
JF
3817 return -ENOENT;
3818
3819 if (simple_attr_open(inode, file, get, set, fmt)) {
3820 kvm_put_kvm(stat_data->kvm);
3821 return -ENOMEM;
3822 }
3823
3824 return 0;
3825}
3826
3827static int kvm_debugfs_release(struct inode *inode, struct file *file)
3828{
3829 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3830 inode->i_private;
3831
3832 simple_attr_release(inode, file);
3833 kvm_put_kvm(stat_data->kvm);
3834
3835 return 0;
3836}
3837
3838static int vm_stat_get_per_vm(void *data, u64 *val)
3839{
3840 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3841
8a7e75d4 3842 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
536a6f88
JF
3843
3844 return 0;
3845}
3846
ce35ef27
SJS
3847static int vm_stat_clear_per_vm(void *data, u64 val)
3848{
3849 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3850
3851 if (val)
3852 return -EINVAL;
3853
3854 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3855
3856 return 0;
3857}
3858
536a6f88
JF
3859static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3860{
3861 __simple_attr_check_format("%llu\n", 0ull);
3862 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
ce35ef27 3863 vm_stat_clear_per_vm, "%llu\n");
536a6f88
JF
3864}
3865
3866static const struct file_operations vm_stat_get_per_vm_fops = {
3867 .owner = THIS_MODULE,
3868 .open = vm_stat_get_per_vm_open,
3869 .release = kvm_debugfs_release,
3870 .read = simple_attr_read,
3871 .write = simple_attr_write,
3bed8888 3872 .llseek = no_llseek,
536a6f88
JF
3873};
3874
3875static int vcpu_stat_get_per_vm(void *data, u64 *val)
3876{
3877 int i;
3878 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3879 struct kvm_vcpu *vcpu;
3880
3881 *val = 0;
3882
3883 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
8a7e75d4 3884 *val += *(u64 *)((void *)vcpu + stat_data->offset);
536a6f88
JF
3885
3886 return 0;
3887}
3888
ce35ef27
SJS
3889static int vcpu_stat_clear_per_vm(void *data, u64 val)
3890{
3891 int i;
3892 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3893 struct kvm_vcpu *vcpu;
3894
3895 if (val)
3896 return -EINVAL;
3897
3898 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3899 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3900
3901 return 0;
3902}
3903
536a6f88
JF
3904static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3905{
3906 __simple_attr_check_format("%llu\n", 0ull);
3907 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
ce35ef27 3908 vcpu_stat_clear_per_vm, "%llu\n");
536a6f88
JF
3909}
3910
3911static const struct file_operations vcpu_stat_get_per_vm_fops = {
3912 .owner = THIS_MODULE,
3913 .open = vcpu_stat_get_per_vm_open,
3914 .release = kvm_debugfs_release,
3915 .read = simple_attr_read,
3916 .write = simple_attr_write,
3bed8888 3917 .llseek = no_llseek,
536a6f88
JF
3918};
3919
3920static const struct file_operations *stat_fops_per_vm[] = {
3921 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3922 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3923};
3924
8b88b099 3925static int vm_stat_get(void *_offset, u64 *val)
ba1389b7
AK
3926{
3927 unsigned offset = (long)_offset;
ba1389b7 3928 struct kvm *kvm;
536a6f88
JF
3929 struct kvm_stat_data stat_tmp = {.offset = offset};
3930 u64 tmp_val;
ba1389b7 3931
8b88b099 3932 *val = 0;
2f303b74 3933 spin_lock(&kvm_lock);
536a6f88
JF
3934 list_for_each_entry(kvm, &vm_list, vm_list) {
3935 stat_tmp.kvm = kvm;
3936 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3937 *val += tmp_val;
3938 }
2f303b74 3939 spin_unlock(&kvm_lock);
8b88b099 3940 return 0;
ba1389b7
AK
3941}
3942
ce35ef27
SJS
3943static int vm_stat_clear(void *_offset, u64 val)
3944{
3945 unsigned offset = (long)_offset;
3946 struct kvm *kvm;
3947 struct kvm_stat_data stat_tmp = {.offset = offset};
3948
3949 if (val)
3950 return -EINVAL;
3951
3952 spin_lock(&kvm_lock);
3953 list_for_each_entry(kvm, &vm_list, vm_list) {
3954 stat_tmp.kvm = kvm;
3955 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3956 }
3957 spin_unlock(&kvm_lock);
3958
3959 return 0;
3960}
3961
3962DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
ba1389b7 3963
8b88b099 3964static int vcpu_stat_get(void *_offset, u64 *val)
1165f5fe
AK
3965{
3966 unsigned offset = (long)_offset;
1165f5fe 3967 struct kvm *kvm;
536a6f88
JF
3968 struct kvm_stat_data stat_tmp = {.offset = offset};
3969 u64 tmp_val;
1165f5fe 3970
8b88b099 3971 *val = 0;
2f303b74 3972 spin_lock(&kvm_lock);
536a6f88
JF
3973 list_for_each_entry(kvm, &vm_list, vm_list) {
3974 stat_tmp.kvm = kvm;
3975 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3976 *val += tmp_val;
3977 }
2f303b74 3978 spin_unlock(&kvm_lock);
8b88b099 3979 return 0;
1165f5fe
AK
3980}
3981
ce35ef27
SJS
3982static int vcpu_stat_clear(void *_offset, u64 val)
3983{
3984 unsigned offset = (long)_offset;
3985 struct kvm *kvm;
3986 struct kvm_stat_data stat_tmp = {.offset = offset};
3987
3988 if (val)
3989 return -EINVAL;
3990
3991 spin_lock(&kvm_lock);
3992 list_for_each_entry(kvm, &vm_list, vm_list) {
3993 stat_tmp.kvm = kvm;
3994 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3995 }
3996 spin_unlock(&kvm_lock);
3997
3998 return 0;
3999}
4000
4001DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4002 "%llu\n");
ba1389b7 4003
828c0950 4004static const struct file_operations *stat_fops[] = {
ba1389b7
AK
4005 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4006 [KVM_STAT_VM] = &vm_stat_fops,
4007};
1165f5fe 4008
286de8f6
CI
4009static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4010{
4011 struct kobj_uevent_env *env;
286de8f6
CI
4012 unsigned long long created, active;
4013
4014 if (!kvm_dev.this_device || !kvm)
4015 return;
4016
4017 spin_lock(&kvm_lock);
4018 if (type == KVM_EVENT_CREATE_VM) {
4019 kvm_createvm_count++;
4020 kvm_active_vms++;
4021 } else if (type == KVM_EVENT_DESTROY_VM) {
4022 kvm_active_vms--;
4023 }
4024 created = kvm_createvm_count;
4025 active = kvm_active_vms;
4026 spin_unlock(&kvm_lock);
4027
4028 env = kzalloc(sizeof(*env), GFP_KERNEL);
4029 if (!env)
4030 return;
4031
4032 add_uevent_var(env, "CREATED=%llu", created);
4033 add_uevent_var(env, "COUNT=%llu", active);
4034
fdeaf7e3 4035 if (type == KVM_EVENT_CREATE_VM) {
286de8f6 4036 add_uevent_var(env, "EVENT=create");
fdeaf7e3
CI
4037 kvm->userspace_pid = task_pid_nr(current);
4038 } else if (type == KVM_EVENT_DESTROY_VM) {
286de8f6 4039 add_uevent_var(env, "EVENT=destroy");
fdeaf7e3
CI
4040 }
4041 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
286de8f6
CI
4042
4043 if (kvm->debugfs_dentry) {
fdeaf7e3
CI
4044 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
4045
4046 if (p) {
4047 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4048 if (!IS_ERR(tmp))
4049 add_uevent_var(env, "STATS_PATH=%s", tmp);
4050 kfree(p);
286de8f6
CI
4051 }
4052 }
4053 /* no need for checks, since we are adding at most only 5 keys */
4054 env->envp[env->envp_idx++] = NULL;
4055 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4056 kfree(env);
286de8f6
CI
4057}
4058
929f45e3 4059static void kvm_init_debug(void)
6aa8b732
AK
4060{
4061 struct kvm_stats_debugfs_item *p;
4062
76f7c879 4063 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4f69b680 4064
536a6f88
JF
4065 kvm_debugfs_num_entries = 0;
4066 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
929f45e3
GKH
4067 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4068 (void *)(long)p->offset,
4069 stat_fops[p->kind]);
4f69b680 4070 }
6aa8b732
AK
4071}
4072
fb3600cc 4073static int kvm_suspend(void)
59ae6c6b 4074{
10474ae8 4075 if (kvm_usage_count)
75b7127c 4076 hardware_disable_nolock(NULL);
59ae6c6b
AK
4077 return 0;
4078}
4079
fb3600cc 4080static void kvm_resume(void)
59ae6c6b 4081{
ca84d1a2 4082 if (kvm_usage_count) {
4a937f96 4083 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
75b7127c 4084 hardware_enable_nolock(NULL);
ca84d1a2 4085 }
59ae6c6b
AK
4086}
4087
fb3600cc 4088static struct syscore_ops kvm_syscore_ops = {
59ae6c6b
AK
4089 .suspend = kvm_suspend,
4090 .resume = kvm_resume,
4091};
4092
15ad7146
AK
4093static inline
4094struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4095{
4096 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4097}
4098
4099static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4100{
4101 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
f95ef0cd 4102
3a08a8f9
R
4103 if (vcpu->preempted)
4104 vcpu->preempted = false;
15ad7146 4105
e790d9ef
RK
4106 kvm_arch_sched_in(vcpu, cpu);
4107
e9b11c17 4108 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146
AK
4109}
4110
4111static void kvm_sched_out(struct preempt_notifier *pn,
4112 struct task_struct *next)
4113{
4114 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4115
3a08a8f9
R
4116 if (current->state == TASK_RUNNING)
4117 vcpu->preempted = true;
e9b11c17 4118 kvm_arch_vcpu_put(vcpu);
15ad7146
AK
4119}
4120
0ee75bea 4121int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
c16f862d 4122 struct module *module)
6aa8b732
AK
4123{
4124 int r;
002c7f7c 4125 int cpu;
6aa8b732 4126
f8c16bba
ZX
4127 r = kvm_arch_init(opaque);
4128 if (r)
d2308784 4129 goto out_fail;
cb498ea2 4130
7dac16c3
AH
4131 /*
4132 * kvm_arch_init makes sure there's at most one caller
4133 * for architectures that support multiple implementations,
4134 * like intel and amd on x86.
36343f6e
PB
4135 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4136 * conflicts in case kvm is already setup for another implementation.
7dac16c3 4137 */
36343f6e
PB
4138 r = kvm_irqfd_init();
4139 if (r)
4140 goto out_irqfd;
7dac16c3 4141
8437a617 4142 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
7f59f492
RR
4143 r = -ENOMEM;
4144 goto out_free_0;
4145 }
4146
e9b11c17 4147 r = kvm_arch_hardware_setup();
6aa8b732 4148 if (r < 0)
7f59f492 4149 goto out_free_0a;
6aa8b732 4150
002c7f7c
YS
4151 for_each_online_cpu(cpu) {
4152 smp_call_function_single(cpu,
e9b11c17 4153 kvm_arch_check_processor_compat,
8691e5a8 4154 &r, 1);
002c7f7c 4155 if (r < 0)
d2308784 4156 goto out_free_1;
002c7f7c
YS
4157 }
4158
73c1b41e 4159 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
8c18b2d2 4160 kvm_starting_cpu, kvm_dying_cpu);
774c47f1 4161 if (r)
d2308784 4162 goto out_free_2;
6aa8b732
AK
4163 register_reboot_notifier(&kvm_reboot_notifier);
4164
c16f862d 4165 /* A kmem cache lets us meet the alignment requirements of fx_save. */
0ee75bea
AK
4166 if (!vcpu_align)
4167 vcpu_align = __alignof__(struct kvm_vcpu);
46515736
PB
4168 kvm_vcpu_cache =
4169 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4170 SLAB_ACCOUNT,
4171 offsetof(struct kvm_vcpu, arch),
4172 sizeof_field(struct kvm_vcpu, arch),
4173 NULL);
c16f862d
RR
4174 if (!kvm_vcpu_cache) {
4175 r = -ENOMEM;
fb3600cc 4176 goto out_free_3;
c16f862d
RR
4177 }
4178
af585b92
GN
4179 r = kvm_async_pf_init();
4180 if (r)
4181 goto out_free;
4182
6aa8b732 4183 kvm_chardev_ops.owner = module;
3d3aab1b
CB
4184 kvm_vm_fops.owner = module;
4185 kvm_vcpu_fops.owner = module;
6aa8b732
AK
4186
4187 r = misc_register(&kvm_dev);
4188 if (r) {
1170adc6 4189 pr_err("kvm: misc device register failed\n");
af585b92 4190 goto out_unreg;
6aa8b732
AK
4191 }
4192
fb3600cc
RW
4193 register_syscore_ops(&kvm_syscore_ops);
4194
15ad7146
AK
4195 kvm_preempt_ops.sched_in = kvm_sched_in;
4196 kvm_preempt_ops.sched_out = kvm_sched_out;
4197
929f45e3 4198 kvm_init_debug();
0ea4ed8e 4199
3c3c29fd
PB
4200 r = kvm_vfio_ops_init();
4201 WARN_ON(r);
4202
c7addb90 4203 return 0;
6aa8b732 4204
af585b92
GN
4205out_unreg:
4206 kvm_async_pf_deinit();
6aa8b732 4207out_free:
c16f862d 4208 kmem_cache_destroy(kvm_vcpu_cache);
d2308784 4209out_free_3:
6aa8b732 4210 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 4211 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
d2308784 4212out_free_2:
d2308784 4213out_free_1:
e9b11c17 4214 kvm_arch_hardware_unsetup();
7f59f492
RR
4215out_free_0a:
4216 free_cpumask_var(cpus_hardware_enabled);
d2308784 4217out_free_0:
a0f155e9 4218 kvm_irqfd_exit();
36343f6e 4219out_irqfd:
7dac16c3
AH
4220 kvm_arch_exit();
4221out_fail:
6aa8b732
AK
4222 return r;
4223}
cb498ea2 4224EXPORT_SYMBOL_GPL(kvm_init);
6aa8b732 4225
cb498ea2 4226void kvm_exit(void)
6aa8b732 4227{
4bd33b56 4228 debugfs_remove_recursive(kvm_debugfs_dir);
6aa8b732 4229 misc_deregister(&kvm_dev);
c16f862d 4230 kmem_cache_destroy(kvm_vcpu_cache);
af585b92 4231 kvm_async_pf_deinit();
fb3600cc 4232 unregister_syscore_ops(&kvm_syscore_ops);
6aa8b732 4233 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 4234 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
75b7127c 4235 on_each_cpu(hardware_disable_nolock, NULL, 1);
e9b11c17 4236 kvm_arch_hardware_unsetup();
f8c16bba 4237 kvm_arch_exit();
a0f155e9 4238 kvm_irqfd_exit();
7f59f492 4239 free_cpumask_var(cpus_hardware_enabled);
571ee1b6 4240 kvm_vfio_ops_exit();
6aa8b732 4241}
cb498ea2 4242EXPORT_SYMBOL_GPL(kvm_exit);