]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - virt/kvm/kvm_main.c
KVM: Pre-allocate cpumasks for kvm_make_all_cpus_request_except()
[thirdparty/kernel/stable.git] / virt / kvm / kvm_main.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9611c187 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
6aa8b732
AK
14 */
15
af669ac6 16#include <kvm/iodev.h>
6aa8b732 17
edf88417 18#include <linux/kvm_host.h>
6aa8b732
AK
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
6aa8b732 22#include <linux/percpu.h>
6aa8b732
AK
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
6aa8b732 26#include <linux/reboot.h>
6aa8b732
AK
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
fb3600cc 30#include <linux/syscore_ops.h>
774c47f1 31#include <linux/cpu.h>
174cd4b1 32#include <linux/sched/signal.h>
6e84f315 33#include <linux/sched/mm.h>
03441a34 34#include <linux/sched/stat.h>
d9e368d6
AK
35#include <linux/cpumask.h>
36#include <linux/smp.h>
d6d28168 37#include <linux/anon_inodes.h>
04d2cc77 38#include <linux/profile.h>
7aa81cc0 39#include <linux/kvm_para.h>
6fc138d2 40#include <linux/pagemap.h>
8d4e1288 41#include <linux/mman.h>
35149e21 42#include <linux/swap.h>
e56d532f 43#include <linux/bitops.h>
547de29e 44#include <linux/spinlock.h>
6ff5894c 45#include <linux/compat.h>
bc6678a3 46#include <linux/srcu.h>
8f0b1ab6 47#include <linux/hugetlb.h>
5a0e3ad6 48#include <linux/slab.h>
743eeb0b
SL
49#include <linux/sort.h>
50#include <linux/bsearch.h>
c011d23b 51#include <linux/io.h>
2eb06c30 52#include <linux/lockdep.h>
c57c8046 53#include <linux/kthread.h>
2fdef3a2 54#include <linux/suspend.h>
6aa8b732 55
e495606d 56#include <asm/processor.h>
2ea75be3 57#include <asm/ioctl.h>
7c0f6ba6 58#include <linux/uaccess.h>
6aa8b732 59
5f94c174 60#include "coalesced_mmio.h"
af585b92 61#include "async_pf.h"
531810ca 62#include "mmu_lock.h"
3c3c29fd 63#include "vfio.h"
5f94c174 64
229456fc
MT
65#define CREATE_TRACE_POINTS
66#include <trace/events/kvm.h>
67
fb04a1ed
PX
68#include <linux/kvm_dirty_ring.h>
69
536a6f88
JF
70/* Worst case buffer size needed for holding an integer. */
71#define ITOA_MAX_LEN 12
72
6aa8b732
AK
73MODULE_AUTHOR("Qumranet");
74MODULE_LICENSE("GPL");
75
920552b2 76/* Architectures should define their poll value according to the halt latency */
ec76d819 77unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
039c5d1b 78module_param(halt_poll_ns, uint, 0644);
ec76d819 79EXPORT_SYMBOL_GPL(halt_poll_ns);
f7819512 80
aca6ff29 81/* Default doubles per-vcpu halt_poll_ns. */
ec76d819 82unsigned int halt_poll_ns_grow = 2;
039c5d1b 83module_param(halt_poll_ns_grow, uint, 0644);
ec76d819 84EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
aca6ff29 85
49113d36
NW
86/* The start value to grow halt_poll_ns from */
87unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88module_param(halt_poll_ns_grow_start, uint, 0644);
89EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
aca6ff29 91/* Default resets per-vcpu halt_poll_ns . */
ec76d819 92unsigned int halt_poll_ns_shrink;
039c5d1b 93module_param(halt_poll_ns_shrink, uint, 0644);
ec76d819 94EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
aca6ff29 95
fa40a821
MT
96/*
97 * Ordering of locks:
98 *
b7d409de 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
fa40a821
MT
100 */
101
0d9ce162 102DEFINE_MUTEX(kvm_lock);
4a937f96 103static DEFINE_RAW_SPINLOCK(kvm_count_lock);
e9b11c17 104LIST_HEAD(vm_list);
133de902 105
7f59f492 106static cpumask_var_t cpus_hardware_enabled;
f4fee932 107static int kvm_usage_count;
10474ae8 108static atomic_t hardware_enable_failed;
1b6c0168 109
aaba298c 110static struct kmem_cache *kvm_vcpu_cache;
1165f5fe 111
15ad7146 112static __read_mostly struct preempt_ops kvm_preempt_ops;
7495e22b 113static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
15ad7146 114
76f7c879 115struct dentry *kvm_debugfs_dir;
e23a808b 116EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
6aa8b732 117
09cbcef6 118static const struct file_operations stat_fops_per_vm;
536a6f88 119
bccf2150
AK
120static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
de8e5d74 122#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
123static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 unsigned long arg);
7ddfd3e0
MZ
125#define KVM_COMPAT(c) .compat_ioctl = (c)
126#else
9cb09e7c
MZ
127/*
128 * For architectures that don't implement a compat infrastructure,
129 * adopt a double line of defense:
130 * - Prevent a compat task from opening /dev/kvm
131 * - If the open has been done by a 64bit task, and the KVM fd
132 * passed to a compat task, let the ioctls fail.
133 */
7ddfd3e0
MZ
134static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 unsigned long arg) { return -EINVAL; }
b9876e6d
MZ
136
137static int kvm_no_compat_open(struct inode *inode, struct file *file)
138{
139 return is_compat_task() ? -ENODEV : 0;
140}
141#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
142 .open = kvm_no_compat_open
1dda606c 143#endif
10474ae8
AG
144static int hardware_enable_all(void);
145static void hardware_disable_all(void);
bccf2150 146
e93f8a0f 147static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
7940876e 148
52480137 149__visible bool kvm_rebooting;
b7c4145b 150EXPORT_SYMBOL_GPL(kvm_rebooting);
4ecac3fd 151
286de8f6
CI
152#define KVM_EVENT_CREATE_VM 0
153#define KVM_EVENT_DESTROY_VM 1
154static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155static unsigned long long kvm_createvm_count;
156static unsigned long long kvm_active_vms;
157
baff59cc
VK
158static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
159
e649b3f0
ET
160__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 unsigned long start, unsigned long end)
b1394e74
RK
162{
163}
164
a78986aa
SC
165bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
166{
167 /*
168 * The metadata used by is_zone_device_page() to determine whether or
169 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
170 * the device has been pinned, e.g. by get_user_pages(). WARN if the
171 * page_count() is zero to help detect bad usage of this helper.
172 */
173 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
174 return false;
175
176 return is_zone_device_page(pfn_to_page(pfn));
177}
178
ba049e93 179bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
cbff90a7 180{
a78986aa
SC
181 /*
182 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
183 * perspective they are "normal" pages, albeit with slightly different
184 * usage rules.
185 */
11feeb49 186 if (pfn_valid(pfn))
a78986aa 187 return PageReserved(pfn_to_page(pfn)) &&
7df003c8 188 !is_zero_pfn(pfn) &&
a78986aa 189 !kvm_is_zone_device_pfn(pfn);
cbff90a7
BAY
190
191 return true;
192}
193
bccf2150
AK
194/*
195 * Switches to specified vcpu, until a matching vcpu_put()
196 */
ec7660cc 197void vcpu_load(struct kvm_vcpu *vcpu)
6aa8b732 198{
ec7660cc 199 int cpu = get_cpu();
7495e22b
PB
200
201 __this_cpu_write(kvm_running_vcpu, vcpu);
15ad7146 202 preempt_notifier_register(&vcpu->preempt_notifier);
313a3dc7 203 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146 204 put_cpu();
6aa8b732 205}
2f1fe811 206EXPORT_SYMBOL_GPL(vcpu_load);
6aa8b732 207
313a3dc7 208void vcpu_put(struct kvm_vcpu *vcpu)
6aa8b732 209{
15ad7146 210 preempt_disable();
313a3dc7 211 kvm_arch_vcpu_put(vcpu);
15ad7146 212 preempt_notifier_unregister(&vcpu->preempt_notifier);
7495e22b 213 __this_cpu_write(kvm_running_vcpu, NULL);
15ad7146 214 preempt_enable();
6aa8b732 215}
2f1fe811 216EXPORT_SYMBOL_GPL(vcpu_put);
6aa8b732 217
7a97cec2
PB
218/* TODO: merge with kvm_arch_vcpu_should_kick */
219static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
220{
221 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
222
223 /*
224 * We need to wait for the VCPU to reenable interrupts and get out of
225 * READING_SHADOW_PAGE_TABLES mode.
226 */
227 if (req & KVM_REQUEST_WAIT)
228 return mode != OUTSIDE_GUEST_MODE;
229
230 /*
231 * Need to kick a running VCPU, but otherwise there is nothing to do.
232 */
233 return mode == IN_GUEST_MODE;
234}
235
d9e368d6
AK
236static void ack_flush(void *_completed)
237{
d9e368d6
AK
238}
239
0bbc2ca8 240static inline bool kvm_kick_many_cpus(cpumask_var_t tmp, bool wait)
b49defe8 241{
0bbc2ca8
SC
242 const struct cpumask *cpus;
243
244 if (likely(cpumask_available(tmp)))
245 cpus = tmp;
246 else
b49defe8
PB
247 cpus = cpu_online_mask;
248
249 if (cpumask_empty(cpus))
250 return false;
251
252 smp_call_function_many(cpus, ack_flush, NULL, wait);
253 return true;
254}
255
ae0946cd
VK
256static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
257 unsigned int req, cpumask_var_t tmp,
258 int current_cpu)
259{
260 int cpu;
261
262 kvm_make_request(req, vcpu);
263
264 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
265 return;
266
267 /*
268 * tmp can be "unavailable" if cpumasks are allocated off stack as
269 * allocation of the mask is deliberately not fatal and is handled by
270 * falling back to kicking all online CPUs.
271 */
272 if (!cpumask_available(tmp))
273 return;
274
275 /*
276 * Note, the vCPU could get migrated to a different pCPU at any point
277 * after kvm_request_needs_ipi(), which could result in sending an IPI
278 * to the previous pCPU. But, that's OK because the purpose of the IPI
279 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
280 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
281 * after this point is also OK, as the requirement is only that KVM wait
282 * for vCPUs that were reading SPTEs _before_ any changes were
283 * finalized. See kvm_vcpu_kick() for more details on handling requests.
284 */
285 if (kvm_request_needs_ipi(vcpu, req)) {
286 cpu = READ_ONCE(vcpu->cpu);
287 if (cpu != -1 && cpu != current_cpu)
288 __cpumask_set_cpu(cpu, tmp);
289 }
290}
291
7053df4e
VK
292bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
293 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
d9e368d6 294{
d9e368d6 295 struct kvm_vcpu *vcpu;
ae0946cd 296 int i, me;
7053df4e 297 bool called;
6ef7a1bc 298
3cba4130 299 me = get_cpu();
7053df4e 300
ae0946cd
VK
301 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302 vcpu = kvm_get_vcpu(kvm, i);
381cecc5 303 if (!vcpu)
7053df4e 304 continue;
ae0946cd 305 kvm_make_vcpu_request(kvm, vcpu, req, tmp, me);
49846896 306 }
7053df4e
VK
307
308 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
3cba4130 309 put_cpu();
7053df4e
VK
310
311 return called;
312}
313
54163a34
SS
314bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315 struct kvm_vcpu *except)
7053df4e 316{
ae0946cd 317 struct kvm_vcpu *vcpu;
baff59cc 318 struct cpumask *cpus;
7053df4e 319 bool called;
ae0946cd 320 int i, me;
7053df4e 321
ae0946cd
VK
322 me = get_cpu();
323
baff59cc
VK
324 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
325 cpumask_clear(cpus);
326
ae0946cd
VK
327 kvm_for_each_vcpu(i, vcpu, kvm) {
328 if (vcpu == except)
329 continue;
330 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
331 }
332
333 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
334 put_cpu();
7053df4e 335
49846896 336 return called;
d9e368d6
AK
337}
338
54163a34
SS
339bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
340{
341 return kvm_make_all_cpus_request_except(kvm, req, NULL);
342}
a2486020 343EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
54163a34 344
a6d51016 345#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
49846896 346void kvm_flush_remote_tlbs(struct kvm *kvm)
2e53d63a 347{
3cc4e148 348 ++kvm->stat.generic.remote_tlb_flush_requests;
6bc6db00 349
4ae3cb3a
LT
350 /*
351 * We want to publish modifications to the page tables before reading
352 * mode. Pairs with a memory barrier in arch-specific code.
353 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354 * and smp_mb in walk_shadow_page_lockless_begin/end.
355 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356 *
357 * There is already an smp_mb__after_atomic() before
358 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359 * barrier here.
360 */
b08660e5
TL
361 if (!kvm_arch_flush_remote_tlb(kvm)
362 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
0193cc90 363 ++kvm->stat.generic.remote_tlb_flush;
2e53d63a 364}
2ba9f0d8 365EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
a6d51016 366#endif
2e53d63a 367
49846896
RR
368void kvm_reload_remote_mmus(struct kvm *kvm)
369{
445b8236 370 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
49846896 371}
2e53d63a 372
6926f95a
SC
373#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
374static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
375 gfp_t gfp_flags)
376{
377 gfp_flags |= mc->gfp_zero;
378
379 if (mc->kmem_cache)
380 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
381 else
382 return (void *)__get_free_page(gfp_flags);
383}
384
385int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
386{
387 void *obj;
388
389 if (mc->nobjs >= min)
390 return 0;
391 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
392 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
393 if (!obj)
394 return mc->nobjs >= min ? 0 : -ENOMEM;
395 mc->objects[mc->nobjs++] = obj;
396 }
397 return 0;
398}
399
400int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
401{
402 return mc->nobjs;
403}
404
405void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
406{
407 while (mc->nobjs) {
408 if (mc->kmem_cache)
409 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
410 else
411 free_page((unsigned long)mc->objects[--mc->nobjs]);
412 }
413}
414
415void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
416{
417 void *p;
418
419 if (WARN_ON(!mc->nobjs))
420 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
421 else
422 p = mc->objects[--mc->nobjs];
423 BUG_ON(!p);
424 return p;
425}
426#endif
427
8bd826d6 428static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
fb3f0f51 429{
fb3f0f51
RR
430 mutex_init(&vcpu->mutex);
431 vcpu->cpu = -1;
fb3f0f51
RR
432 vcpu->kvm = kvm;
433 vcpu->vcpu_id = id;
34bb10b7 434 vcpu->pid = NULL;
da4ad88c 435 rcuwait_init(&vcpu->wait);
af585b92 436 kvm_async_pf_vcpu_init(vcpu);
fb3f0f51 437
bf9f6ac8
FW
438 vcpu->pre_pcpu = -1;
439 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
440
4c088493
R
441 kvm_vcpu_set_in_spin_loop(vcpu, false);
442 kvm_vcpu_set_dy_eligible(vcpu, false);
3a08a8f9 443 vcpu->preempted = false;
d73eb57b 444 vcpu->ready = false;
d5c48deb 445 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
fe22ed82 446 vcpu->last_used_slot = 0;
fb3f0f51 447}
fb3f0f51 448
4543bdc0
SC
449void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
450{
fb04a1ed 451 kvm_dirty_ring_free(&vcpu->dirty_ring);
4543bdc0 452 kvm_arch_vcpu_destroy(vcpu);
e529ef66 453
9941d224
SC
454 /*
455 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
456 * the vcpu->pid pointer, and at destruction time all file descriptors
457 * are already gone.
458 */
459 put_pid(rcu_dereference_protected(vcpu->pid, 1));
460
8bd826d6 461 free_page((unsigned long)vcpu->run);
e529ef66 462 kmem_cache_free(kvm_vcpu_cache, vcpu);
4543bdc0
SC
463}
464EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
465
e930bffe
AA
466#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
467static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
468{
469 return container_of(mn, struct kvm, mmu_notifier);
470}
471
e649b3f0
ET
472static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
473 struct mm_struct *mm,
474 unsigned long start, unsigned long end)
475{
476 struct kvm *kvm = mmu_notifier_to_kvm(mn);
477 int idx;
478
479 idx = srcu_read_lock(&kvm->srcu);
480 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
481 srcu_read_unlock(&kvm->srcu, idx);
482}
483
3039bcc7
SC
484typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
485
f922bd9b
SC
486typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
487 unsigned long end);
488
3039bcc7
SC
489struct kvm_hva_range {
490 unsigned long start;
491 unsigned long end;
492 pte_t pte;
493 hva_handler_t handler;
f922bd9b 494 on_lock_fn_t on_lock;
3039bcc7
SC
495 bool flush_on_ret;
496 bool may_block;
497};
498
f922bd9b
SC
499/*
500 * Use a dedicated stub instead of NULL to indicate that there is no callback
501 * function/handler. The compiler technically can't guarantee that a real
502 * function will have a non-zero address, and so it will generate code to
503 * check for !NULL, whereas comparing against a stub will be elided at compile
504 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
505 */
506static void kvm_null_fn(void)
507{
508
509}
510#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
511
3039bcc7
SC
512static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
513 const struct kvm_hva_range *range)
514{
8931a454 515 bool ret = false, locked = false;
f922bd9b 516 struct kvm_gfn_range gfn_range;
3039bcc7
SC
517 struct kvm_memory_slot *slot;
518 struct kvm_memslots *slots;
3039bcc7
SC
519 int i, idx;
520
f922bd9b
SC
521 /* A null handler is allowed if and only if on_lock() is provided. */
522 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
523 IS_KVM_NULL_FN(range->handler)))
524 return 0;
525
3039bcc7
SC
526 idx = srcu_read_lock(&kvm->srcu);
527
528 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
529 slots = __kvm_memslots(kvm, i);
530 kvm_for_each_memslot(slot, slots) {
531 unsigned long hva_start, hva_end;
532
533 hva_start = max(range->start, slot->userspace_addr);
534 hva_end = min(range->end, slot->userspace_addr +
535 (slot->npages << PAGE_SHIFT));
536 if (hva_start >= hva_end)
537 continue;
538
539 /*
540 * To optimize for the likely case where the address
541 * range is covered by zero or one memslots, don't
542 * bother making these conditional (to avoid writes on
543 * the second or later invocation of the handler).
544 */
545 gfn_range.pte = range->pte;
546 gfn_range.may_block = range->may_block;
547
548 /*
549 * {gfn(page) | page intersects with [hva_start, hva_end)} =
550 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
551 */
552 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
553 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
554 gfn_range.slot = slot;
555
8931a454
SC
556 if (!locked) {
557 locked = true;
558 KVM_MMU_LOCK(kvm);
071064f1
PB
559 if (!IS_KVM_NULL_FN(range->on_lock))
560 range->on_lock(kvm, range->start, range->end);
561 if (IS_KVM_NULL_FN(range->handler))
562 break;
8931a454 563 }
3039bcc7
SC
564 ret |= range->handler(kvm, &gfn_range);
565 }
566 }
567
6bc6db00 568 if (range->flush_on_ret && ret)
3039bcc7
SC
569 kvm_flush_remote_tlbs(kvm);
570
8931a454
SC
571 if (locked)
572 KVM_MMU_UNLOCK(kvm);
f922bd9b 573
3039bcc7
SC
574 srcu_read_unlock(&kvm->srcu, idx);
575
576 /* The notifiers are averse to booleans. :-( */
577 return (int)ret;
578}
579
580static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
581 unsigned long start,
582 unsigned long end,
583 pte_t pte,
584 hva_handler_t handler)
585{
586 struct kvm *kvm = mmu_notifier_to_kvm(mn);
587 const struct kvm_hva_range range = {
588 .start = start,
589 .end = end,
590 .pte = pte,
591 .handler = handler,
f922bd9b 592 .on_lock = (void *)kvm_null_fn,
3039bcc7
SC
593 .flush_on_ret = true,
594 .may_block = false,
595 };
3039bcc7 596
f922bd9b 597 return __kvm_handle_hva_range(kvm, &range);
3039bcc7
SC
598}
599
600static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
601 unsigned long start,
602 unsigned long end,
603 hva_handler_t handler)
604{
605 struct kvm *kvm = mmu_notifier_to_kvm(mn);
606 const struct kvm_hva_range range = {
607 .start = start,
608 .end = end,
609 .pte = __pte(0),
610 .handler = handler,
f922bd9b 611 .on_lock = (void *)kvm_null_fn,
3039bcc7
SC
612 .flush_on_ret = false,
613 .may_block = false,
614 };
3039bcc7 615
f922bd9b 616 return __kvm_handle_hva_range(kvm, &range);
3039bcc7 617}
3da0dd43
IE
618static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
619 struct mm_struct *mm,
620 unsigned long address,
621 pte_t pte)
622{
623 struct kvm *kvm = mmu_notifier_to_kvm(mn);
624
501b9185
SC
625 trace_kvm_set_spte_hva(address);
626
c13fda23 627 /*
52ac8b35 628 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
071064f1
PB
629 * If mmu_notifier_count is zero, then no in-progress invalidations,
630 * including this one, found a relevant memslot at start(); rechecking
631 * memslots here is unnecessary. Note, a false positive (count elevated
632 * by a different invalidation) is sub-optimal but functionally ok.
c13fda23 633 */
52ac8b35 634 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
071064f1
PB
635 if (!READ_ONCE(kvm->mmu_notifier_count))
636 return;
c13fda23 637
3039bcc7 638 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
3da0dd43
IE
639}
640
edb298c6 641void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
f922bd9b 642 unsigned long end)
e930bffe 643{
e930bffe
AA
644 /*
645 * The count increase must become visible at unlock time as no
646 * spte can be established without taking the mmu_lock and
647 * count is also read inside the mmu_lock critical section.
648 */
649 kvm->mmu_notifier_count++;
4a42d848 650 if (likely(kvm->mmu_notifier_count == 1)) {
f922bd9b
SC
651 kvm->mmu_notifier_range_start = start;
652 kvm->mmu_notifier_range_end = end;
4a42d848
DS
653 } else {
654 /*
655 * Fully tracking multiple concurrent ranges has dimishing
656 * returns. Keep things simple and just find the minimal range
657 * which includes the current and new ranges. As there won't be
658 * enough information to subtract a range after its invalidate
659 * completes, any ranges invalidated concurrently will
660 * accumulate and persist until all outstanding invalidates
661 * complete.
662 */
663 kvm->mmu_notifier_range_start =
f922bd9b 664 min(kvm->mmu_notifier_range_start, start);
4a42d848 665 kvm->mmu_notifier_range_end =
f922bd9b 666 max(kvm->mmu_notifier_range_end, end);
4a42d848 667 }
f922bd9b 668}
3039bcc7 669
f922bd9b
SC
670static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
671 const struct mmu_notifier_range *range)
672{
673 struct kvm *kvm = mmu_notifier_to_kvm(mn);
674 const struct kvm_hva_range hva_range = {
675 .start = range->start,
676 .end = range->end,
677 .pte = __pte(0),
678 .handler = kvm_unmap_gfn_range,
679 .on_lock = kvm_inc_notifier_count,
680 .flush_on_ret = true,
681 .may_block = mmu_notifier_range_blockable(range),
682 };
565f3be2 683
f922bd9b
SC
684 trace_kvm_unmap_hva_range(range->start, range->end);
685
52ac8b35
PB
686 /*
687 * Prevent memslot modification between range_start() and range_end()
688 * so that conditionally locking provides the same result in both
689 * functions. Without that guarantee, the mmu_notifier_count
690 * adjustments will be imbalanced.
691 *
692 * Pairs with the decrement in range_end().
693 */
694 spin_lock(&kvm->mn_invalidate_lock);
695 kvm->mn_active_invalidate_count++;
696 spin_unlock(&kvm->mn_invalidate_lock);
697
f922bd9b 698 __kvm_handle_hva_range(kvm, &hva_range);
93065ac7 699
e649b3f0 700 return 0;
e930bffe
AA
701}
702
edb298c6 703void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
f922bd9b 704 unsigned long end)
e930bffe 705{
e930bffe
AA
706 /*
707 * This sequence increase will notify the kvm page fault that
708 * the page that is going to be mapped in the spte could have
709 * been freed.
710 */
711 kvm->mmu_notifier_seq++;
a355aa54 712 smp_wmb();
e930bffe
AA
713 /*
714 * The above sequence increase must be visible before the
a355aa54
PM
715 * below count decrease, which is ensured by the smp_wmb above
716 * in conjunction with the smp_rmb in mmu_notifier_retry().
e930bffe
AA
717 */
718 kvm->mmu_notifier_count--;
f922bd9b
SC
719}
720
721static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
722 const struct mmu_notifier_range *range)
723{
724 struct kvm *kvm = mmu_notifier_to_kvm(mn);
725 const struct kvm_hva_range hva_range = {
726 .start = range->start,
727 .end = range->end,
728 .pte = __pte(0),
729 .handler = (void *)kvm_null_fn,
730 .on_lock = kvm_dec_notifier_count,
731 .flush_on_ret = false,
732 .may_block = mmu_notifier_range_blockable(range),
733 };
52ac8b35 734 bool wake;
f922bd9b
SC
735
736 __kvm_handle_hva_range(kvm, &hva_range);
e930bffe 737
52ac8b35
PB
738 /* Pairs with the increment in range_start(). */
739 spin_lock(&kvm->mn_invalidate_lock);
740 wake = (--kvm->mn_active_invalidate_count == 0);
741 spin_unlock(&kvm->mn_invalidate_lock);
742
743 /*
744 * There can only be one waiter, since the wait happens under
745 * slots_lock.
746 */
747 if (wake)
748 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
749
e930bffe
AA
750 BUG_ON(kvm->mmu_notifier_count < 0);
751}
752
753static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
754 struct mm_struct *mm,
57128468
ALC
755 unsigned long start,
756 unsigned long end)
e930bffe 757{
501b9185
SC
758 trace_kvm_age_hva(start, end);
759
3039bcc7 760 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
e930bffe
AA
761}
762
1d7715c6
VD
763static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
764 struct mm_struct *mm,
765 unsigned long start,
766 unsigned long end)
767{
501b9185
SC
768 trace_kvm_age_hva(start, end);
769
1d7715c6
VD
770 /*
771 * Even though we do not flush TLB, this will still adversely
772 * affect performance on pre-Haswell Intel EPT, where there is
773 * no EPT Access Bit to clear so that we have to tear down EPT
774 * tables instead. If we find this unacceptable, we can always
775 * add a parameter to kvm_age_hva so that it effectively doesn't
776 * do anything on clear_young.
777 *
778 * Also note that currently we never issue secondary TLB flushes
779 * from clear_young, leaving this job up to the regular system
780 * cadence. If we find this inaccurate, we might come up with a
781 * more sophisticated heuristic later.
782 */
3039bcc7 783 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
1d7715c6
VD
784}
785
8ee53820
AA
786static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
787 struct mm_struct *mm,
788 unsigned long address)
789{
501b9185
SC
790 trace_kvm_test_age_hva(address);
791
3039bcc7
SC
792 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
793 kvm_test_age_gfn);
8ee53820
AA
794}
795
85db06e5
MT
796static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
797 struct mm_struct *mm)
798{
799 struct kvm *kvm = mmu_notifier_to_kvm(mn);
eda2beda
LJ
800 int idx;
801
802 idx = srcu_read_lock(&kvm->srcu);
2df72e9b 803 kvm_arch_flush_shadow_all(kvm);
eda2beda 804 srcu_read_unlock(&kvm->srcu, idx);
85db06e5
MT
805}
806
e930bffe 807static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
e649b3f0 808 .invalidate_range = kvm_mmu_notifier_invalidate_range,
e930bffe
AA
809 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
810 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
811 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
1d7715c6 812 .clear_young = kvm_mmu_notifier_clear_young,
8ee53820 813 .test_young = kvm_mmu_notifier_test_young,
3da0dd43 814 .change_pte = kvm_mmu_notifier_change_pte,
85db06e5 815 .release = kvm_mmu_notifier_release,
e930bffe 816};
4c07b0a4
AK
817
818static int kvm_init_mmu_notifier(struct kvm *kvm)
819{
820 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
821 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
822}
823
824#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
825
826static int kvm_init_mmu_notifier(struct kvm *kvm)
827{
828 return 0;
829}
830
e930bffe
AA
831#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
832
2fdef3a2
SS
833#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
834static int kvm_pm_notifier_call(struct notifier_block *bl,
835 unsigned long state,
836 void *unused)
837{
838 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
839
840 return kvm_arch_pm_notifier(kvm, state);
841}
842
843static void kvm_init_pm_notifier(struct kvm *kvm)
844{
845 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
846 /* Suspend KVM before we suspend ftrace, RCU, etc. */
847 kvm->pm_notifier.priority = INT_MAX;
848 register_pm_notifier(&kvm->pm_notifier);
849}
850
851static void kvm_destroy_pm_notifier(struct kvm *kvm)
852{
853 unregister_pm_notifier(&kvm->pm_notifier);
854}
855#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
856static void kvm_init_pm_notifier(struct kvm *kvm)
857{
858}
859
860static void kvm_destroy_pm_notifier(struct kvm *kvm)
861{
862}
863#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
864
a47d2b07 865static struct kvm_memslots *kvm_alloc_memslots(void)
bf3e05bc
XG
866{
867 int i;
a47d2b07 868 struct kvm_memslots *slots;
bf3e05bc 869
b12ce36a 870 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
a47d2b07
PB
871 if (!slots)
872 return NULL;
873
bf3e05bc 874 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
36947254 875 slots->id_to_index[i] = -1;
a47d2b07
PB
876
877 return slots;
878}
879
880static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
881{
882 if (!memslot->dirty_bitmap)
883 return;
884
885 kvfree(memslot->dirty_bitmap);
886 memslot->dirty_bitmap = NULL;
887}
888
e96c81ee 889static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
a47d2b07 890{
e96c81ee 891 kvm_destroy_dirty_bitmap(slot);
a47d2b07 892
e96c81ee 893 kvm_arch_free_memslot(kvm, slot);
a47d2b07 894
e96c81ee
SC
895 slot->flags = 0;
896 slot->npages = 0;
a47d2b07
PB
897}
898
899static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
900{
901 struct kvm_memory_slot *memslot;
902
903 if (!slots)
904 return;
905
906 kvm_for_each_memslot(memslot, slots)
e96c81ee 907 kvm_free_memslot(kvm, memslot);
a47d2b07
PB
908
909 kvfree(slots);
bf3e05bc
XG
910}
911
bc9e9e67
JZ
912static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
913{
914 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
915 case KVM_STATS_TYPE_INSTANT:
916 return 0444;
917 case KVM_STATS_TYPE_CUMULATIVE:
918 case KVM_STATS_TYPE_PEAK:
919 default:
920 return 0644;
921 }
922}
923
924
536a6f88
JF
925static void kvm_destroy_vm_debugfs(struct kvm *kvm)
926{
927 int i;
bc9e9e67
JZ
928 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
929 kvm_vcpu_stats_header.num_desc;
536a6f88
JF
930
931 if (!kvm->debugfs_dentry)
932 return;
933
934 debugfs_remove_recursive(kvm->debugfs_dentry);
935
9d5a1dce
LC
936 if (kvm->debugfs_stat_data) {
937 for (i = 0; i < kvm_debugfs_num_entries; i++)
938 kfree(kvm->debugfs_stat_data[i]);
939 kfree(kvm->debugfs_stat_data);
940 }
536a6f88
JF
941}
942
943static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
944{
85cd39af
PB
945 static DEFINE_MUTEX(kvm_debugfs_lock);
946 struct dentry *dent;
536a6f88
JF
947 char dir_name[ITOA_MAX_LEN * 2];
948 struct kvm_stat_data *stat_data;
bc9e9e67 949 const struct _kvm_stats_desc *pdesc;
3165af73 950 int i, ret;
bc9e9e67
JZ
951 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
952 kvm_vcpu_stats_header.num_desc;
536a6f88
JF
953
954 if (!debugfs_initialized())
955 return 0;
956
957 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
85cd39af
PB
958 mutex_lock(&kvm_debugfs_lock);
959 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
960 if (dent) {
961 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
962 dput(dent);
963 mutex_unlock(&kvm_debugfs_lock);
964 return 0;
965 }
966 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
967 mutex_unlock(&kvm_debugfs_lock);
968 if (IS_ERR(dent))
969 return 0;
536a6f88 970
85cd39af 971 kvm->debugfs_dentry = dent;
536a6f88
JF
972 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
973 sizeof(*kvm->debugfs_stat_data),
b12ce36a 974 GFP_KERNEL_ACCOUNT);
536a6f88
JF
975 if (!kvm->debugfs_stat_data)
976 return -ENOMEM;
977
bc9e9e67
JZ
978 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
979 pdesc = &kvm_vm_stats_desc[i];
b12ce36a 980 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
981 if (!stat_data)
982 return -ENOMEM;
983
984 stat_data->kvm = kvm;
bc9e9e67
JZ
985 stat_data->desc = pdesc;
986 stat_data->kind = KVM_STAT_VM;
987 kvm->debugfs_stat_data[i] = stat_data;
988 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
989 kvm->debugfs_dentry, stat_data,
990 &stat_fops_per_vm);
991 }
992
993 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
994 pdesc = &kvm_vcpu_stats_desc[i];
b12ce36a 995 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
996 if (!stat_data)
997 return -ENOMEM;
998
999 stat_data->kvm = kvm;
bc9e9e67
JZ
1000 stat_data->desc = pdesc;
1001 stat_data->kind = KVM_STAT_VCPU;
004d62eb 1002 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
bc9e9e67 1003 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
09cbcef6
MP
1004 kvm->debugfs_dentry, stat_data,
1005 &stat_fops_per_vm);
536a6f88 1006 }
3165af73
PX
1007
1008 ret = kvm_arch_create_vm_debugfs(kvm);
1009 if (ret) {
1010 kvm_destroy_vm_debugfs(kvm);
1011 return i;
1012 }
1013
536a6f88
JF
1014 return 0;
1015}
1016
1aa9b957
JS
1017/*
1018 * Called after the VM is otherwise initialized, but just before adding it to
1019 * the vm_list.
1020 */
1021int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1022{
1023 return 0;
1024}
1025
1026/*
1027 * Called just after removing the VM from the vm_list, but before doing any
1028 * other destruction.
1029 */
1030void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1031{
1032}
1033
3165af73
PX
1034/*
1035 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1036 * be setup already, so we can create arch-specific debugfs entries under it.
1037 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1038 * a per-arch destroy interface is not needed.
1039 */
1040int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1041{
1042 return 0;
1043}
1044
e08b9637 1045static struct kvm *kvm_create_vm(unsigned long type)
6aa8b732 1046{
d89f5eff 1047 struct kvm *kvm = kvm_arch_alloc_vm();
9121923c
JM
1048 int r = -ENOMEM;
1049 int i;
6aa8b732 1050
d89f5eff
JK
1051 if (!kvm)
1052 return ERR_PTR(-ENOMEM);
1053
531810ca 1054 KVM_MMU_LOCK_INIT(kvm);
f1f10076 1055 mmgrab(current->mm);
e9ad4ec8
PB
1056 kvm->mm = current->mm;
1057 kvm_eventfd_init(kvm);
1058 mutex_init(&kvm->lock);
1059 mutex_init(&kvm->irq_lock);
1060 mutex_init(&kvm->slots_lock);
b10a038e 1061 mutex_init(&kvm->slots_arch_lock);
52ac8b35
PB
1062 spin_lock_init(&kvm->mn_invalidate_lock);
1063 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1064
e9ad4ec8
PB
1065 INIT_LIST_HEAD(&kvm->devices);
1066
1e702d9a
AW
1067 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1068
8a44119a
PB
1069 if (init_srcu_struct(&kvm->srcu))
1070 goto out_err_no_srcu;
1071 if (init_srcu_struct(&kvm->irq_srcu))
1072 goto out_err_no_irq_srcu;
1073
e2d3fcaf 1074 refcount_set(&kvm->users_count, 1);
f481b069 1075 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4bd518f1 1076 struct kvm_memslots *slots = kvm_alloc_memslots();
9121923c 1077
4bd518f1 1078 if (!slots)
a97b0e77 1079 goto out_err_no_arch_destroy_vm;
0e32958e 1080 /* Generations must be different for each address space. */
164bf7e5 1081 slots->generation = i;
4bd518f1 1082 rcu_assign_pointer(kvm->memslots[i], slots);
f481b069 1083 }
00f034a1 1084
e93f8a0f 1085 for (i = 0; i < KVM_NR_BUSES; i++) {
4a12f951 1086 rcu_assign_pointer(kvm->buses[i],
b12ce36a 1087 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
57e7fbee 1088 if (!kvm->buses[i])
a97b0e77 1089 goto out_err_no_arch_destroy_vm;
e93f8a0f 1090 }
e930bffe 1091
acd05785
DM
1092 kvm->max_halt_poll_ns = halt_poll_ns;
1093
e08b9637 1094 r = kvm_arch_init_vm(kvm, type);
d89f5eff 1095 if (r)
a97b0e77 1096 goto out_err_no_arch_destroy_vm;
10474ae8
AG
1097
1098 r = hardware_enable_all();
1099 if (r)
719d93cd 1100 goto out_err_no_disable;
10474ae8 1101
c77dcacb 1102#ifdef CONFIG_HAVE_KVM_IRQFD
136bdfee 1103 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
75858a84 1104#endif
6aa8b732 1105
74b5c5bf 1106 r = kvm_init_mmu_notifier(kvm);
1aa9b957
JS
1107 if (r)
1108 goto out_err_no_mmu_notifier;
1109
1110 r = kvm_arch_post_init_vm(kvm);
74b5c5bf
MW
1111 if (r)
1112 goto out_err;
1113
0d9ce162 1114 mutex_lock(&kvm_lock);
5e58cfe4 1115 list_add(&kvm->vm_list, &vm_list);
0d9ce162 1116 mutex_unlock(&kvm_lock);
d89f5eff 1117
2ecd9d29 1118 preempt_notifier_inc();
2fdef3a2 1119 kvm_init_pm_notifier(kvm);
2ecd9d29 1120
f17abe9a 1121 return kvm;
10474ae8
AG
1122
1123out_err:
1aa9b957
JS
1124#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1125 if (kvm->mmu_notifier.ops)
1126 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1127#endif
1128out_err_no_mmu_notifier:
10474ae8 1129 hardware_disable_all();
719d93cd 1130out_err_no_disable:
a97b0e77 1131 kvm_arch_destroy_vm(kvm);
a97b0e77 1132out_err_no_arch_destroy_vm:
e2d3fcaf 1133 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
e93f8a0f 1134 for (i = 0; i < KVM_NR_BUSES; i++)
3898da94 1135 kfree(kvm_get_bus(kvm, i));
f481b069 1136 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 1137 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
8a44119a
PB
1138 cleanup_srcu_struct(&kvm->irq_srcu);
1139out_err_no_irq_srcu:
1140 cleanup_srcu_struct(&kvm->srcu);
1141out_err_no_srcu:
d89f5eff 1142 kvm_arch_free_vm(kvm);
e9ad4ec8 1143 mmdrop(current->mm);
10474ae8 1144 return ERR_PTR(r);
f17abe9a
AK
1145}
1146
07f0a7bd
SW
1147static void kvm_destroy_devices(struct kvm *kvm)
1148{
e6e3b5a6 1149 struct kvm_device *dev, *tmp;
07f0a7bd 1150
a28ebea2
CD
1151 /*
1152 * We do not need to take the kvm->lock here, because nobody else
1153 * has a reference to the struct kvm at this point and therefore
1154 * cannot access the devices list anyhow.
1155 */
e6e3b5a6
GT
1156 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1157 list_del(&dev->vm_node);
07f0a7bd
SW
1158 dev->ops->destroy(dev);
1159 }
1160}
1161
f17abe9a
AK
1162static void kvm_destroy_vm(struct kvm *kvm)
1163{
e93f8a0f 1164 int i;
6d4e4c4f
AK
1165 struct mm_struct *mm = kvm->mm;
1166
2fdef3a2 1167 kvm_destroy_pm_notifier(kvm);
286de8f6 1168 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
536a6f88 1169 kvm_destroy_vm_debugfs(kvm);
ad8ba2cd 1170 kvm_arch_sync_events(kvm);
0d9ce162 1171 mutex_lock(&kvm_lock);
133de902 1172 list_del(&kvm->vm_list);
0d9ce162 1173 mutex_unlock(&kvm_lock);
1aa9b957
JS
1174 kvm_arch_pre_destroy_vm(kvm);
1175
399ec807 1176 kvm_free_irq_routing(kvm);
df630b8c 1177 for (i = 0; i < KVM_NR_BUSES; i++) {
3898da94 1178 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
4a12f951 1179
4a12f951
CB
1180 if (bus)
1181 kvm_io_bus_destroy(bus);
df630b8c
PX
1182 kvm->buses[i] = NULL;
1183 }
980da6ce 1184 kvm_coalesced_mmio_free(kvm);
e930bffe
AA
1185#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1186 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
52ac8b35
PB
1187 /*
1188 * At this point, pending calls to invalidate_range_start()
1189 * have completed but no more MMU notifiers will run, so
1190 * mn_active_invalidate_count may remain unbalanced.
1191 * No threads can be waiting in install_new_memslots as the
1192 * last reference on KVM has been dropped, but freeing
1193 * memslots would deadlock without this manual intervention.
1194 */
1195 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1196 kvm->mn_active_invalidate_count = 0;
f00be0ca 1197#else
2df72e9b 1198 kvm_arch_flush_shadow_all(kvm);
5f94c174 1199#endif
d19a9cd2 1200 kvm_arch_destroy_vm(kvm);
07f0a7bd 1201 kvm_destroy_devices(kvm);
f481b069 1202 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 1203 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820b3fcd 1204 cleanup_srcu_struct(&kvm->irq_srcu);
d89f5eff
JK
1205 cleanup_srcu_struct(&kvm->srcu);
1206 kvm_arch_free_vm(kvm);
2ecd9d29 1207 preempt_notifier_dec();
10474ae8 1208 hardware_disable_all();
6d4e4c4f 1209 mmdrop(mm);
f17abe9a
AK
1210}
1211
d39f13b0
IE
1212void kvm_get_kvm(struct kvm *kvm)
1213{
e3736c3e 1214 refcount_inc(&kvm->users_count);
d39f13b0
IE
1215}
1216EXPORT_SYMBOL_GPL(kvm_get_kvm);
1217
605c7130
PX
1218/*
1219 * Make sure the vm is not during destruction, which is a safe version of
1220 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1221 */
1222bool kvm_get_kvm_safe(struct kvm *kvm)
1223{
1224 return refcount_inc_not_zero(&kvm->users_count);
1225}
1226EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1227
d39f13b0
IE
1228void kvm_put_kvm(struct kvm *kvm)
1229{
e3736c3e 1230 if (refcount_dec_and_test(&kvm->users_count))
d39f13b0
IE
1231 kvm_destroy_vm(kvm);
1232}
1233EXPORT_SYMBOL_GPL(kvm_put_kvm);
1234
149487bd
SC
1235/*
1236 * Used to put a reference that was taken on behalf of an object associated
1237 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1238 * of the new file descriptor fails and the reference cannot be transferred to
1239 * its final owner. In such cases, the caller is still actively using @kvm and
1240 * will fail miserably if the refcount unexpectedly hits zero.
1241 */
1242void kvm_put_kvm_no_destroy(struct kvm *kvm)
1243{
1244 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1245}
1246EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
d39f13b0 1247
f17abe9a
AK
1248static int kvm_vm_release(struct inode *inode, struct file *filp)
1249{
1250 struct kvm *kvm = filp->private_data;
1251
721eecbf
GH
1252 kvm_irqfd_release(kvm);
1253
d39f13b0 1254 kvm_put_kvm(kvm);
6aa8b732
AK
1255 return 0;
1256}
1257
515a0127
TY
1258/*
1259 * Allocation size is twice as large as the actual dirty bitmap size.
0dff0846 1260 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
515a0127 1261 */
3c9bd400 1262static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
a36a57b1 1263{
515a0127 1264 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
a36a57b1 1265
b12ce36a 1266 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
a36a57b1
TY
1267 if (!memslot->dirty_bitmap)
1268 return -ENOMEM;
1269
a36a57b1
TY
1270 return 0;
1271}
1272
bf3e05bc 1273/*
0577d1ab
SC
1274 * Delete a memslot by decrementing the number of used slots and shifting all
1275 * other entries in the array forward one spot.
bf3e05bc 1276 */
0577d1ab
SC
1277static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1278 struct kvm_memory_slot *memslot)
bf3e05bc 1279{
063584d4 1280 struct kvm_memory_slot *mslots = slots->memslots;
0577d1ab 1281 int i;
f85e2cb5 1282
0577d1ab
SC
1283 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1284 return;
0e60b079 1285
0577d1ab
SC
1286 slots->used_slots--;
1287
87689270
DM
1288 if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
1289 atomic_set(&slots->last_used_slot, 0);
0774a964 1290
0577d1ab 1291 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
7f379cff
IM
1292 mslots[i] = mslots[i + 1];
1293 slots->id_to_index[mslots[i].id] = i;
7f379cff 1294 }
0577d1ab
SC
1295 mslots[i] = *memslot;
1296 slots->id_to_index[memslot->id] = -1;
1297}
1298
1299/*
1300 * "Insert" a new memslot by incrementing the number of used slots. Returns
1301 * the new slot's initial index into the memslots array.
1302 */
1303static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1304{
1305 return slots->used_slots++;
1306}
1307
1308/*
1309 * Move a changed memslot backwards in the array by shifting existing slots
1310 * with a higher GFN toward the front of the array. Note, the changed memslot
1311 * itself is not preserved in the array, i.e. not swapped at this time, only
1312 * its new index into the array is tracked. Returns the changed memslot's
1313 * current index into the memslots array.
1314 */
1315static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1316 struct kvm_memory_slot *memslot)
1317{
1318 struct kvm_memory_slot *mslots = slots->memslots;
1319 int i;
1320
1321 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1322 WARN_ON_ONCE(!slots->used_slots))
1323 return -1;
efbeec70
PB
1324
1325 /*
0577d1ab
SC
1326 * Move the target memslot backward in the array by shifting existing
1327 * memslots with a higher GFN (than the target memslot) towards the
1328 * front of the array.
efbeec70 1329 */
0577d1ab
SC
1330 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1331 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1332 break;
1333
1334 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
f85e2cb5 1335
0577d1ab
SC
1336 /* Shift the next memslot forward one and update its index. */
1337 mslots[i] = mslots[i + 1];
1338 slots->id_to_index[mslots[i].id] = i;
1339 }
1340 return i;
1341}
1342
1343/*
1344 * Move a changed memslot forwards in the array by shifting existing slots with
1345 * a lower GFN toward the back of the array. Note, the changed memslot itself
1346 * is not preserved in the array, i.e. not swapped at this time, only its new
1347 * index into the array is tracked. Returns the changed memslot's final index
1348 * into the memslots array.
1349 */
1350static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1351 struct kvm_memory_slot *memslot,
1352 int start)
1353{
1354 struct kvm_memory_slot *mslots = slots->memslots;
1355 int i;
1356
1357 for (i = start; i > 0; i--) {
1358 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1359 break;
1360
1361 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1362
1363 /* Shift the next memslot back one and update its index. */
1364 mslots[i] = mslots[i - 1];
1365 slots->id_to_index[mslots[i].id] = i;
1366 }
1367 return i;
1368}
1369
1370/*
1371 * Re-sort memslots based on their GFN to account for an added, deleted, or
1372 * moved memslot. Sorting memslots by GFN allows using a binary search during
1373 * memslot lookup.
1374 *
1375 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
1376 * at memslots[0] has the highest GFN.
1377 *
1378 * The sorting algorithm takes advantage of having initially sorted memslots
1379 * and knowing the position of the changed memslot. Sorting is also optimized
1380 * by not swapping the updated memslot and instead only shifting other memslots
1381 * and tracking the new index for the update memslot. Only once its final
1382 * index is known is the updated memslot copied into its position in the array.
1383 *
1384 * - When deleting a memslot, the deleted memslot simply needs to be moved to
1385 * the end of the array.
1386 *
1387 * - When creating a memslot, the algorithm "inserts" the new memslot at the
1388 * end of the array and then it forward to its correct location.
1389 *
1390 * - When moving a memslot, the algorithm first moves the updated memslot
1391 * backward to handle the scenario where the memslot's GFN was changed to a
1392 * lower value. update_memslots() then falls through and runs the same flow
1393 * as creating a memslot to move the memslot forward to handle the scenario
1394 * where its GFN was changed to a higher value.
1395 *
1396 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1397 * historical reasons. Originally, invalid memslots where denoted by having
1398 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1399 * to the end of the array. The current algorithm uses dedicated logic to
1400 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1401 *
1402 * The other historical motiviation for highest->lowest was to improve the
1403 * performance of memslot lookup. KVM originally used a linear search starting
1404 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1405 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1406 * single memslot above the 4gb boundary. As the largest memslot is also the
1407 * most likely to be referenced, sorting it to the front of the array was
1408 * advantageous. The current binary search starts from the middle of the array
1409 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1410 */
1411static void update_memslots(struct kvm_memslots *slots,
1412 struct kvm_memory_slot *memslot,
1413 enum kvm_mr_change change)
1414{
1415 int i;
1416
1417 if (change == KVM_MR_DELETE) {
1418 kvm_memslot_delete(slots, memslot);
1419 } else {
1420 if (change == KVM_MR_CREATE)
1421 i = kvm_memslot_insert_back(slots);
1422 else
1423 i = kvm_memslot_move_backward(slots, memslot);
1424 i = kvm_memslot_move_forward(slots, memslot, i);
1425
1426 /*
1427 * Copy the memslot to its new position in memslots and update
1428 * its index accordingly.
1429 */
1430 slots->memslots[i] = *memslot;
1431 slots->id_to_index[memslot->id] = i;
1432 }
bf3e05bc
XG
1433}
1434
09170a49 1435static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
a50d64d6 1436{
4d8b81ab
XG
1437 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1438
0f8a4de3 1439#ifdef __KVM_HAVE_READONLY_MEM
4d8b81ab
XG
1440 valid_flags |= KVM_MEM_READONLY;
1441#endif
1442
1443 if (mem->flags & ~valid_flags)
a50d64d6
XG
1444 return -EINVAL;
1445
1446 return 0;
1447}
1448
7ec4fb44 1449static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
f481b069 1450 int as_id, struct kvm_memslots *slots)
7ec4fb44 1451{
f481b069 1452 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
361209e0 1453 u64 gen = old_memslots->generation;
7ec4fb44 1454
361209e0
SC
1455 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1456 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
ee3d1570 1457
52ac8b35
PB
1458 /*
1459 * Do not store the new memslots while there are invalidations in
071064f1
PB
1460 * progress, otherwise the locking in invalidate_range_start and
1461 * invalidate_range_end will be unbalanced.
52ac8b35
PB
1462 */
1463 spin_lock(&kvm->mn_invalidate_lock);
1464 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1465 while (kvm->mn_active_invalidate_count) {
1466 set_current_state(TASK_UNINTERRUPTIBLE);
1467 spin_unlock(&kvm->mn_invalidate_lock);
1468 schedule();
1469 spin_lock(&kvm->mn_invalidate_lock);
1470 }
1471 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
f481b069 1472 rcu_assign_pointer(kvm->memslots[as_id], slots);
52ac8b35 1473 spin_unlock(&kvm->mn_invalidate_lock);
b10a038e
BG
1474
1475 /*
1476 * Acquired in kvm_set_memslot. Must be released before synchronize
1477 * SRCU below in order to avoid deadlock with another thread
1478 * acquiring the slots_arch_lock in an srcu critical section.
1479 */
1480 mutex_unlock(&kvm->slots_arch_lock);
1481
7ec4fb44 1482 synchronize_srcu_expedited(&kvm->srcu);
e59dbe09 1483
ee3d1570 1484 /*
361209e0 1485 * Increment the new memslot generation a second time, dropping the
00116795 1486 * update in-progress flag and incrementing the generation based on
361209e0
SC
1487 * the number of address spaces. This provides a unique and easily
1488 * identifiable generation number while the memslots are in flux.
1489 */
1490 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1491
1492 /*
4bd518f1
PB
1493 * Generations must be unique even across address spaces. We do not need
1494 * a global counter for that, instead the generation space is evenly split
1495 * across address spaces. For example, with two address spaces, address
164bf7e5
SC
1496 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1497 * use generations 1, 3, 5, ...
ee3d1570 1498 */
164bf7e5 1499 gen += KVM_ADDRESS_SPACE_NUM;
ee3d1570 1500
15248258 1501 kvm_arch_memslots_updated(kvm, gen);
ee3d1570 1502
15248258 1503 slots->generation = gen;
e59dbe09
TY
1504
1505 return old_memslots;
7ec4fb44
GN
1506}
1507
ddc12f2a
BG
1508static size_t kvm_memslots_size(int slots)
1509{
1510 return sizeof(struct kvm_memslots) +
1511 (sizeof(struct kvm_memory_slot) * slots);
1512}
1513
1514static void kvm_copy_memslots(struct kvm_memslots *to,
1515 struct kvm_memslots *from)
1516{
1517 memcpy(to, from, kvm_memslots_size(from->used_slots));
1518}
1519
36947254
SC
1520/*
1521 * Note, at a minimum, the current number of used slots must be allocated, even
1522 * when deleting a memslot, as we need a complete duplicate of the memslots for
1523 * use when invalidating a memslot prior to deleting/moving the memslot.
1524 */
1525static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1526 enum kvm_mr_change change)
1527{
1528 struct kvm_memslots *slots;
ddc12f2a 1529 size_t new_size;
36947254
SC
1530
1531 if (change == KVM_MR_CREATE)
ddc12f2a 1532 new_size = kvm_memslots_size(old->used_slots + 1);
36947254 1533 else
ddc12f2a 1534 new_size = kvm_memslots_size(old->used_slots);
36947254
SC
1535
1536 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1537 if (likely(slots))
ddc12f2a 1538 kvm_copy_memslots(slots, old);
36947254
SC
1539
1540 return slots;
1541}
1542
cf47f50b
SC
1543static int kvm_set_memslot(struct kvm *kvm,
1544 const struct kvm_userspace_memory_region *mem,
9d4c197c 1545 struct kvm_memory_slot *old,
cf47f50b
SC
1546 struct kvm_memory_slot *new, int as_id,
1547 enum kvm_mr_change change)
1548{
1549 struct kvm_memory_slot *slot;
1550 struct kvm_memslots *slots;
1551 int r;
1552
b10a038e
BG
1553 /*
1554 * Released in install_new_memslots.
1555 *
1556 * Must be held from before the current memslots are copied until
1557 * after the new memslots are installed with rcu_assign_pointer,
1558 * then released before the synchronize srcu in install_new_memslots.
1559 *
1560 * When modifying memslots outside of the slots_lock, must be held
1561 * before reading the pointer to the current memslots until after all
1562 * changes to those memslots are complete.
1563 *
1564 * These rules ensure that installing new memslots does not lose
1565 * changes made to the previous memslots.
1566 */
1567 mutex_lock(&kvm->slots_arch_lock);
1568
36947254 1569 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
b10a038e
BG
1570 if (!slots) {
1571 mutex_unlock(&kvm->slots_arch_lock);
cf47f50b 1572 return -ENOMEM;
b10a038e 1573 }
cf47f50b
SC
1574
1575 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1576 /*
1577 * Note, the INVALID flag needs to be in the appropriate entry
1578 * in the freshly allocated memslots, not in @old or @new.
1579 */
1580 slot = id_to_memslot(slots, old->id);
1581 slot->flags |= KVM_MEMSLOT_INVALID;
1582
1583 /*
b10a038e
BG
1584 * We can re-use the memory from the old memslots.
1585 * It will be overwritten with a copy of the new memslots
1586 * after reacquiring the slots_arch_lock below.
cf47f50b
SC
1587 */
1588 slots = install_new_memslots(kvm, as_id, slots);
1589
1590 /* From this point no new shadow pages pointing to a deleted,
1591 * or moved, memslot will be created.
1592 *
1593 * validation of sp->gfn happens in:
1594 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1595 * - kvm_is_visible_gfn (mmu_check_root)
1596 */
1597 kvm_arch_flush_shadow_memslot(kvm, slot);
b10a038e
BG
1598
1599 /* Released in install_new_memslots. */
1600 mutex_lock(&kvm->slots_arch_lock);
1601
1602 /*
1603 * The arch-specific fields of the memslots could have changed
1604 * between releasing the slots_arch_lock in
1605 * install_new_memslots and here, so get a fresh copy of the
1606 * slots.
1607 */
1608 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
cf47f50b
SC
1609 }
1610
1611 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1612 if (r)
1613 goto out_slots;
1614
1615 update_memslots(slots, new, change);
1616 slots = install_new_memslots(kvm, as_id, slots);
1617
1618 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1619
1620 kvfree(slots);
1621 return 0;
1622
1623out_slots:
b10a038e
BG
1624 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1625 slot = id_to_memslot(slots, old->id);
1626 slot->flags &= ~KVM_MEMSLOT_INVALID;
cf47f50b 1627 slots = install_new_memslots(kvm, as_id, slots);
b10a038e
BG
1628 } else {
1629 mutex_unlock(&kvm->slots_arch_lock);
1630 }
cf47f50b
SC
1631 kvfree(slots);
1632 return r;
1633}
1634
5c0b4f3d
SC
1635static int kvm_delete_memslot(struct kvm *kvm,
1636 const struct kvm_userspace_memory_region *mem,
1637 struct kvm_memory_slot *old, int as_id)
1638{
1639 struct kvm_memory_slot new;
1640 int r;
1641
1642 if (!old->npages)
1643 return -EINVAL;
1644
1645 memset(&new, 0, sizeof(new));
1646 new.id = old->id;
9e9eb226
PX
1647 /*
1648 * This is only for debugging purpose; it should never be referenced
1649 * for a removed memslot.
1650 */
1651 new.as_id = as_id;
5c0b4f3d
SC
1652
1653 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1654 if (r)
1655 return r;
1656
e96c81ee 1657 kvm_free_memslot(kvm, old);
5c0b4f3d
SC
1658 return 0;
1659}
1660
6aa8b732
AK
1661/*
1662 * Allocate some memory and give it an address in the guest physical address
1663 * space.
1664 *
1665 * Discontiguous memory is allowed, mostly for framebuffers.
f78e0e2e 1666 *
02d5d55b 1667 * Must be called holding kvm->slots_lock for write.
6aa8b732 1668 */
f78e0e2e 1669int __kvm_set_memory_region(struct kvm *kvm,
09170a49 1670 const struct kvm_userspace_memory_region *mem)
6aa8b732 1671{
6aa8b732 1672 struct kvm_memory_slot old, new;
163da372 1673 struct kvm_memory_slot *tmp;
f64c0398 1674 enum kvm_mr_change change;
163da372
SC
1675 int as_id, id;
1676 int r;
6aa8b732 1677
a50d64d6
XG
1678 r = check_memory_region_flags(mem);
1679 if (r)
71a4c30b 1680 return r;
a50d64d6 1681
f481b069
PB
1682 as_id = mem->slot >> 16;
1683 id = (u16)mem->slot;
1684
6aa8b732
AK
1685 /* General sanity checks */
1686 if (mem->memory_size & (PAGE_SIZE - 1))
71a4c30b 1687 return -EINVAL;
6aa8b732 1688 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
71a4c30b 1689 return -EINVAL;
fa3d315a 1690 /* We can read the guest memory with __xxx_user() later on. */
09d952c9 1691 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
139bc8a6 1692 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
96d4f267 1693 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
09d952c9 1694 mem->memory_size))
71a4c30b 1695 return -EINVAL;
f481b069 1696 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
71a4c30b 1697 return -EINVAL;
6aa8b732 1698 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
71a4c30b 1699 return -EINVAL;
6aa8b732 1700
5c0b4f3d
SC
1701 /*
1702 * Make a full copy of the old memslot, the pointer will become stale
1703 * when the memslots are re-sorted by update_memslots(), and the old
1704 * memslot needs to be referenced after calling update_memslots(), e.g.
0dff0846 1705 * to free its resources and for arch specific behavior.
5c0b4f3d 1706 */
0577d1ab
SC
1707 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1708 if (tmp) {
1709 old = *tmp;
1710 tmp = NULL;
1711 } else {
1712 memset(&old, 0, sizeof(old));
1713 old.id = id;
1714 }
163da372 1715
5c0b4f3d
SC
1716 if (!mem->memory_size)
1717 return kvm_delete_memslot(kvm, mem, &old, as_id);
1718
9e9eb226 1719 new.as_id = as_id;
f481b069 1720 new.id = id;
163da372
SC
1721 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1722 new.npages = mem->memory_size >> PAGE_SHIFT;
6aa8b732 1723 new.flags = mem->flags;
414de7ab 1724 new.userspace_addr = mem->userspace_addr;
6aa8b732 1725
163da372
SC
1726 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1727 return -EINVAL;
1728
5c0b4f3d
SC
1729 if (!old.npages) {
1730 change = KVM_MR_CREATE;
163da372
SC
1731 new.dirty_bitmap = NULL;
1732 memset(&new.arch, 0, sizeof(new.arch));
5c0b4f3d
SC
1733 } else { /* Modify an existing slot. */
1734 if ((new.userspace_addr != old.userspace_addr) ||
163da372 1735 (new.npages != old.npages) ||
5c0b4f3d 1736 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
71a4c30b 1737 return -EINVAL;
09170a49 1738
163da372 1739 if (new.base_gfn != old.base_gfn)
5c0b4f3d
SC
1740 change = KVM_MR_MOVE;
1741 else if (new.flags != old.flags)
1742 change = KVM_MR_FLAGS_ONLY;
1743 else /* Nothing to change. */
1744 return 0;
163da372
SC
1745
1746 /* Copy dirty_bitmap and arch from the current memslot. */
1747 new.dirty_bitmap = old.dirty_bitmap;
1748 memcpy(&new.arch, &old.arch, sizeof(new.arch));
09170a49 1749 }
6aa8b732 1750
f64c0398 1751 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
0a706bee 1752 /* Check for overlaps */
163da372
SC
1753 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1754 if (tmp->id == id)
0a706bee 1755 continue;
163da372
SC
1756 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1757 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
71a4c30b 1758 return -EEXIST;
0a706bee 1759 }
6aa8b732 1760 }
6aa8b732 1761
414de7ab
SC
1762 /* Allocate/free page dirty bitmap as needed */
1763 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1764 new.dirty_bitmap = NULL;
044c59c4 1765 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
3c9bd400 1766 r = kvm_alloc_dirty_bitmap(&new);
71a4c30b
SC
1767 if (r)
1768 return r;
3c9bd400
JZ
1769
1770 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1771 bitmap_set(new.dirty_bitmap, 0, new.npages);
6aa8b732
AK
1772 }
1773
cf47f50b
SC
1774 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1775 if (r)
1776 goto out_bitmap;
82ce2c96 1777
5c0b4f3d
SC
1778 if (old.dirty_bitmap && !new.dirty_bitmap)
1779 kvm_destroy_dirty_bitmap(&old);
6aa8b732
AK
1780 return 0;
1781
bd0e96fd
SC
1782out_bitmap:
1783 if (new.dirty_bitmap && !old.dirty_bitmap)
1784 kvm_destroy_dirty_bitmap(&new);
6aa8b732 1785 return r;
210c7c4d 1786}
f78e0e2e
SY
1787EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1788
1789int kvm_set_memory_region(struct kvm *kvm,
09170a49 1790 const struct kvm_userspace_memory_region *mem)
f78e0e2e
SY
1791{
1792 int r;
1793
79fac95e 1794 mutex_lock(&kvm->slots_lock);
47ae31e2 1795 r = __kvm_set_memory_region(kvm, mem);
79fac95e 1796 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
1797 return r;
1798}
210c7c4d
IE
1799EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1800
7940876e
SH
1801static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1802 struct kvm_userspace_memory_region *mem)
210c7c4d 1803{
f481b069 1804 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
e0d62c7f 1805 return -EINVAL;
09170a49 1806
47ae31e2 1807 return kvm_set_memory_region(kvm, mem);
6aa8b732
AK
1808}
1809
0dff0846 1810#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2a49f61d
SC
1811/**
1812 * kvm_get_dirty_log - get a snapshot of dirty pages
1813 * @kvm: pointer to kvm instance
1814 * @log: slot id and address to which we copy the log
1815 * @is_dirty: set to '1' if any dirty pages were found
1816 * @memslot: set to the associated memslot, always valid on success
1817 */
1818int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1819 int *is_dirty, struct kvm_memory_slot **memslot)
6aa8b732 1820{
9f6b8029 1821 struct kvm_memslots *slots;
843574a3 1822 int i, as_id, id;
87bf6e7d 1823 unsigned long n;
6aa8b732
AK
1824 unsigned long any = 0;
1825
b2cc64c4
PX
1826 /* Dirty ring tracking is exclusive to dirty log tracking */
1827 if (kvm->dirty_ring_size)
1828 return -ENXIO;
1829
2a49f61d
SC
1830 *memslot = NULL;
1831 *is_dirty = 0;
1832
f481b069
PB
1833 as_id = log->slot >> 16;
1834 id = (u16)log->slot;
1835 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
843574a3 1836 return -EINVAL;
6aa8b732 1837
f481b069 1838 slots = __kvm_memslots(kvm, as_id);
2a49f61d 1839 *memslot = id_to_memslot(slots, id);
0577d1ab 1840 if (!(*memslot) || !(*memslot)->dirty_bitmap)
843574a3 1841 return -ENOENT;
6aa8b732 1842
2a49f61d
SC
1843 kvm_arch_sync_dirty_log(kvm, *memslot);
1844
1845 n = kvm_dirty_bitmap_bytes(*memslot);
6aa8b732 1846
cd1a4a98 1847 for (i = 0; !any && i < n/sizeof(long); ++i)
2a49f61d 1848 any = (*memslot)->dirty_bitmap[i];
6aa8b732 1849
2a49f61d 1850 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
843574a3 1851 return -EFAULT;
6aa8b732 1852
5bb064dc
ZX
1853 if (any)
1854 *is_dirty = 1;
843574a3 1855 return 0;
6aa8b732 1856}
2ba9f0d8 1857EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
6aa8b732 1858
0dff0846 1859#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 1860/**
b8b00220 1861 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2a31b9db 1862 * and reenable dirty page tracking for the corresponding pages.
ba0513b5
MS
1863 * @kvm: pointer to kvm instance
1864 * @log: slot id and address to which we copy the log
ba0513b5
MS
1865 *
1866 * We need to keep it in mind that VCPU threads can write to the bitmap
1867 * concurrently. So, to avoid losing track of dirty pages we keep the
1868 * following order:
1869 *
1870 * 1. Take a snapshot of the bit and clear it if needed.
1871 * 2. Write protect the corresponding page.
1872 * 3. Copy the snapshot to the userspace.
1873 * 4. Upon return caller flushes TLB's if needed.
1874 *
1875 * Between 2 and 4, the guest may write to the page using the remaining TLB
1876 * entry. This is not a problem because the page is reported dirty using
1877 * the snapshot taken before and step 4 ensures that writes done after
1878 * exiting to userspace will be logged for the next call.
1879 *
1880 */
0dff0846 1881static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
ba0513b5 1882{
9f6b8029 1883 struct kvm_memslots *slots;
ba0513b5 1884 struct kvm_memory_slot *memslot;
58d6db34 1885 int i, as_id, id;
ba0513b5
MS
1886 unsigned long n;
1887 unsigned long *dirty_bitmap;
1888 unsigned long *dirty_bitmap_buffer;
0dff0846 1889 bool flush;
ba0513b5 1890
b2cc64c4
PX
1891 /* Dirty ring tracking is exclusive to dirty log tracking */
1892 if (kvm->dirty_ring_size)
1893 return -ENXIO;
1894
f481b069
PB
1895 as_id = log->slot >> 16;
1896 id = (u16)log->slot;
1897 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
58d6db34 1898 return -EINVAL;
ba0513b5 1899
f481b069
PB
1900 slots = __kvm_memslots(kvm, as_id);
1901 memslot = id_to_memslot(slots, id);
0577d1ab
SC
1902 if (!memslot || !memslot->dirty_bitmap)
1903 return -ENOENT;
ba0513b5
MS
1904
1905 dirty_bitmap = memslot->dirty_bitmap;
ba0513b5 1906
0dff0846
SC
1907 kvm_arch_sync_dirty_log(kvm, memslot);
1908
ba0513b5 1909 n = kvm_dirty_bitmap_bytes(memslot);
0dff0846 1910 flush = false;
2a31b9db
PB
1911 if (kvm->manual_dirty_log_protect) {
1912 /*
1913 * Unlike kvm_get_dirty_log, we always return false in *flush,
1914 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1915 * is some code duplication between this function and
1916 * kvm_get_dirty_log, but hopefully all architecture
1917 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1918 * can be eliminated.
1919 */
1920 dirty_bitmap_buffer = dirty_bitmap;
1921 } else {
1922 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1923 memset(dirty_bitmap_buffer, 0, n);
ba0513b5 1924
531810ca 1925 KVM_MMU_LOCK(kvm);
2a31b9db
PB
1926 for (i = 0; i < n / sizeof(long); i++) {
1927 unsigned long mask;
1928 gfn_t offset;
ba0513b5 1929
2a31b9db
PB
1930 if (!dirty_bitmap[i])
1931 continue;
1932
0dff0846 1933 flush = true;
2a31b9db
PB
1934 mask = xchg(&dirty_bitmap[i], 0);
1935 dirty_bitmap_buffer[i] = mask;
1936
a67794ca
LT
1937 offset = i * BITS_PER_LONG;
1938 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1939 offset, mask);
2a31b9db 1940 }
531810ca 1941 KVM_MMU_UNLOCK(kvm);
2a31b9db
PB
1942 }
1943
0dff0846
SC
1944 if (flush)
1945 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1946
2a31b9db
PB
1947 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1948 return -EFAULT;
1949 return 0;
1950}
0dff0846
SC
1951
1952
1953/**
1954 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1955 * @kvm: kvm instance
1956 * @log: slot id and address to which we copy the log
1957 *
1958 * Steps 1-4 below provide general overview of dirty page logging. See
1959 * kvm_get_dirty_log_protect() function description for additional details.
1960 *
1961 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1962 * always flush the TLB (step 4) even if previous step failed and the dirty
1963 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1964 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1965 * writes will be marked dirty for next log read.
1966 *
1967 * 1. Take a snapshot of the bit and clear it if needed.
1968 * 2. Write protect the corresponding page.
1969 * 3. Copy the snapshot to the userspace.
1970 * 4. Flush TLB's if needed.
1971 */
1972static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1973 struct kvm_dirty_log *log)
1974{
1975 int r;
1976
1977 mutex_lock(&kvm->slots_lock);
1978
1979 r = kvm_get_dirty_log_protect(kvm, log);
1980
1981 mutex_unlock(&kvm->slots_lock);
1982 return r;
1983}
2a31b9db
PB
1984
1985/**
1986 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1987 * and reenable dirty page tracking for the corresponding pages.
1988 * @kvm: pointer to kvm instance
1989 * @log: slot id and address from which to fetch the bitmap of dirty pages
1990 */
0dff0846
SC
1991static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1992 struct kvm_clear_dirty_log *log)
2a31b9db
PB
1993{
1994 struct kvm_memslots *slots;
1995 struct kvm_memory_slot *memslot;
98938aa8 1996 int as_id, id;
2a31b9db 1997 gfn_t offset;
98938aa8 1998 unsigned long i, n;
2a31b9db
PB
1999 unsigned long *dirty_bitmap;
2000 unsigned long *dirty_bitmap_buffer;
0dff0846 2001 bool flush;
2a31b9db 2002
b2cc64c4
PX
2003 /* Dirty ring tracking is exclusive to dirty log tracking */
2004 if (kvm->dirty_ring_size)
2005 return -ENXIO;
2006
2a31b9db
PB
2007 as_id = log->slot >> 16;
2008 id = (u16)log->slot;
2009 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2010 return -EINVAL;
2011
76d58e0f 2012 if (log->first_page & 63)
2a31b9db
PB
2013 return -EINVAL;
2014
2015 slots = __kvm_memslots(kvm, as_id);
2016 memslot = id_to_memslot(slots, id);
0577d1ab
SC
2017 if (!memslot || !memslot->dirty_bitmap)
2018 return -ENOENT;
2a31b9db
PB
2019
2020 dirty_bitmap = memslot->dirty_bitmap;
2a31b9db 2021
4ddc9204 2022 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
98938aa8
TB
2023
2024 if (log->first_page > memslot->npages ||
76d58e0f
PB
2025 log->num_pages > memslot->npages - log->first_page ||
2026 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2027 return -EINVAL;
98938aa8 2028
0dff0846
SC
2029 kvm_arch_sync_dirty_log(kvm, memslot);
2030
2031 flush = false;
2a31b9db
PB
2032 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2033 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2034 return -EFAULT;
ba0513b5 2035
531810ca 2036 KVM_MMU_LOCK(kvm);
53eac7a8
PX
2037 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2038 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2a31b9db
PB
2039 i++, offset += BITS_PER_LONG) {
2040 unsigned long mask = *dirty_bitmap_buffer++;
2041 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2042 if (!mask)
ba0513b5
MS
2043 continue;
2044
2a31b9db 2045 mask &= atomic_long_fetch_andnot(mask, p);
ba0513b5 2046
2a31b9db
PB
2047 /*
2048 * mask contains the bits that really have been cleared. This
2049 * never includes any bits beyond the length of the memslot (if
2050 * the length is not aligned to 64 pages), therefore it is not
2051 * a problem if userspace sets them in log->dirty_bitmap.
2052 */
58d2930f 2053 if (mask) {
0dff0846 2054 flush = true;
58d2930f
TY
2055 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2056 offset, mask);
2057 }
ba0513b5 2058 }
531810ca 2059 KVM_MMU_UNLOCK(kvm);
2a31b9db 2060
0dff0846
SC
2061 if (flush)
2062 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2063
58d6db34 2064 return 0;
ba0513b5 2065}
0dff0846
SC
2066
2067static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2068 struct kvm_clear_dirty_log *log)
2069{
2070 int r;
2071
2072 mutex_lock(&kvm->slots_lock);
2073
2074 r = kvm_clear_dirty_log_protect(kvm, log);
2075
2076 mutex_unlock(&kvm->slots_lock);
2077 return r;
2078}
2079#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 2080
49c7754c
GN
2081struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2082{
2083 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2084}
a1f4d395 2085EXPORT_SYMBOL_GPL(gfn_to_memslot);
6aa8b732 2086
8e73485c
PB
2087struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2088{
fe22ed82
DM
2089 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2090 struct kvm_memory_slot *slot;
2091 int slot_index;
2092
2093 slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
2094 if (slot)
2095 return slot;
2096
2097 /*
2098 * Fall back to searching all memslots. We purposely use
2099 * search_memslots() instead of __gfn_to_memslot() to avoid
2100 * thrashing the VM-wide last_used_index in kvm_memslots.
2101 */
2102 slot = search_memslots(slots, gfn, &slot_index);
2103 if (slot) {
2104 vcpu->last_used_slot = slot_index;
2105 return slot;
2106 }
2107
2108 return NULL;
8e73485c 2109}
e72436bc 2110EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
8e73485c 2111
33e94154 2112bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
e0d62c7f 2113{
bf3e05bc 2114 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
e0d62c7f 2115
c36b7150 2116 return kvm_is_visible_memslot(memslot);
e0d62c7f
IE
2117}
2118EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2119
995decb6
VK
2120bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2121{
2122 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2123
2124 return kvm_is_visible_memslot(memslot);
2125}
2126EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2127
f9b84e19 2128unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
8f0b1ab6
JR
2129{
2130 struct vm_area_struct *vma;
2131 unsigned long addr, size;
2132
2133 size = PAGE_SIZE;
2134
42cde48b 2135 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
8f0b1ab6
JR
2136 if (kvm_is_error_hva(addr))
2137 return PAGE_SIZE;
2138
d8ed45c5 2139 mmap_read_lock(current->mm);
8f0b1ab6
JR
2140 vma = find_vma(current->mm, addr);
2141 if (!vma)
2142 goto out;
2143
2144 size = vma_kernel_pagesize(vma);
2145
2146out:
d8ed45c5 2147 mmap_read_unlock(current->mm);
8f0b1ab6
JR
2148
2149 return size;
2150}
2151
4d8b81ab
XG
2152static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2153{
2154 return slot->flags & KVM_MEM_READONLY;
2155}
2156
4d8b81ab
XG
2157static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2158 gfn_t *nr_pages, bool write)
539cb660 2159{
bc6678a3 2160 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
ca3a490c 2161 return KVM_HVA_ERR_BAD;
48987781 2162
4d8b81ab
XG
2163 if (memslot_is_readonly(slot) && write)
2164 return KVM_HVA_ERR_RO_BAD;
48987781
XG
2165
2166 if (nr_pages)
2167 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2168
4d8b81ab 2169 return __gfn_to_hva_memslot(slot, gfn);
539cb660 2170}
48987781 2171
4d8b81ab
XG
2172static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2173 gfn_t *nr_pages)
2174{
2175 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
539cb660 2176}
48987781 2177
4d8b81ab 2178unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
7940876e 2179 gfn_t gfn)
4d8b81ab
XG
2180{
2181 return gfn_to_hva_many(slot, gfn, NULL);
2182}
2183EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2184
48987781
XG
2185unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2186{
49c7754c 2187 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
48987781 2188}
0d150298 2189EXPORT_SYMBOL_GPL(gfn_to_hva);
539cb660 2190
8e73485c
PB
2191unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2192{
2193 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2194}
2195EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2196
86ab8cff 2197/*
970c0d4b
WY
2198 * Return the hva of a @gfn and the R/W attribute if possible.
2199 *
2200 * @slot: the kvm_memory_slot which contains @gfn
2201 * @gfn: the gfn to be translated
2202 * @writable: used to return the read/write attribute of the @slot if the hva
2203 * is valid and @writable is not NULL
86ab8cff 2204 */
64d83126
CD
2205unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2206 gfn_t gfn, bool *writable)
86ab8cff 2207{
a2ac07fe
GN
2208 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2209
2210 if (!kvm_is_error_hva(hva) && writable)
ba6a3541
PB
2211 *writable = !memslot_is_readonly(slot);
2212
a2ac07fe 2213 return hva;
86ab8cff
XG
2214}
2215
64d83126
CD
2216unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2217{
2218 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2219
2220 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2221}
2222
8e73485c
PB
2223unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2224{
2225 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2226
2227 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2228}
2229
fafc3dba
HY
2230static inline int check_user_page_hwpoison(unsigned long addr)
2231{
0d731759 2232 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
fafc3dba 2233
0d731759 2234 rc = get_user_pages(addr, 1, flags, NULL, NULL);
fafc3dba
HY
2235 return rc == -EHWPOISON;
2236}
2237
2fc84311 2238/*
b9b33da2
PB
2239 * The fast path to get the writable pfn which will be stored in @pfn,
2240 * true indicates success, otherwise false is returned. It's also the
311497e0 2241 * only part that runs if we can in atomic context.
2fc84311 2242 */
b9b33da2
PB
2243static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2244 bool *writable, kvm_pfn_t *pfn)
954bbbc2 2245{
8d4e1288 2246 struct page *page[1];
954bbbc2 2247
12ce13fe
XG
2248 /*
2249 * Fast pin a writable pfn only if it is a write fault request
2250 * or the caller allows to map a writable pfn for a read fault
2251 * request.
2252 */
2253 if (!(write_fault || writable))
2254 return false;
612819c3 2255
dadbb612 2256 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2fc84311 2257 *pfn = page_to_pfn(page[0]);
612819c3 2258
2fc84311
XG
2259 if (writable)
2260 *writable = true;
2261 return true;
2262 }
af585b92 2263
2fc84311
XG
2264 return false;
2265}
612819c3 2266
2fc84311
XG
2267/*
2268 * The slow path to get the pfn of the specified host virtual address,
2269 * 1 indicates success, -errno is returned if error is detected.
2270 */
2271static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
ba049e93 2272 bool *writable, kvm_pfn_t *pfn)
2fc84311 2273{
ce53053c
AV
2274 unsigned int flags = FOLL_HWPOISON;
2275 struct page *page;
2fc84311 2276 int npages = 0;
612819c3 2277
2fc84311
XG
2278 might_sleep();
2279
2280 if (writable)
2281 *writable = write_fault;
2282
ce53053c
AV
2283 if (write_fault)
2284 flags |= FOLL_WRITE;
2285 if (async)
2286 flags |= FOLL_NOWAIT;
d4944b0e 2287
ce53053c 2288 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2fc84311
XG
2289 if (npages != 1)
2290 return npages;
2291
2292 /* map read fault as writable if possible */
12ce13fe 2293 if (unlikely(!write_fault) && writable) {
ce53053c 2294 struct page *wpage;
2fc84311 2295
dadbb612 2296 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2fc84311 2297 *writable = true;
ce53053c
AV
2298 put_page(page);
2299 page = wpage;
612819c3 2300 }
887c08ac 2301 }
ce53053c 2302 *pfn = page_to_pfn(page);
2fc84311
XG
2303 return npages;
2304}
539cb660 2305
4d8b81ab
XG
2306static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2307{
2308 if (unlikely(!(vma->vm_flags & VM_READ)))
2309 return false;
2e2e3738 2310
4d8b81ab
XG
2311 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2312 return false;
887c08ac 2313
4d8b81ab
XG
2314 return true;
2315}
bf998156 2316
f8be156b
NP
2317static int kvm_try_get_pfn(kvm_pfn_t pfn)
2318{
2319 if (kvm_is_reserved_pfn(pfn))
2320 return 1;
2321 return get_page_unless_zero(pfn_to_page(pfn));
2322}
2323
92176a8e
PB
2324static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2325 unsigned long addr, bool *async,
a340b3e2
KA
2326 bool write_fault, bool *writable,
2327 kvm_pfn_t *p_pfn)
92176a8e 2328{
a9545779 2329 kvm_pfn_t pfn;
bd2fae8d
PB
2330 pte_t *ptep;
2331 spinlock_t *ptl;
add6a0cd
PB
2332 int r;
2333
9fd6dad1 2334 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2335 if (r) {
2336 /*
2337 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2338 * not call the fault handler, so do it here.
2339 */
2340 bool unlocked = false;
64019a2e 2341 r = fixup_user_fault(current->mm, addr,
add6a0cd
PB
2342 (write_fault ? FAULT_FLAG_WRITE : 0),
2343 &unlocked);
a8387d0b
PB
2344 if (unlocked)
2345 return -EAGAIN;
add6a0cd
PB
2346 if (r)
2347 return r;
2348
9fd6dad1 2349 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2350 if (r)
2351 return r;
bd2fae8d 2352 }
add6a0cd 2353
bd2fae8d
PB
2354 if (write_fault && !pte_write(*ptep)) {
2355 pfn = KVM_PFN_ERR_RO_FAULT;
2356 goto out;
add6a0cd
PB
2357 }
2358
a340b3e2 2359 if (writable)
bd2fae8d
PB
2360 *writable = pte_write(*ptep);
2361 pfn = pte_pfn(*ptep);
add6a0cd
PB
2362
2363 /*
2364 * Get a reference here because callers of *hva_to_pfn* and
2365 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2366 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
36c3ce6c 2367 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
add6a0cd
PB
2368 * simply do nothing for reserved pfns.
2369 *
2370 * Whoever called remap_pfn_range is also going to call e.g.
2371 * unmap_mapping_range before the underlying pages are freed,
2372 * causing a call to our MMU notifier.
f8be156b
NP
2373 *
2374 * Certain IO or PFNMAP mappings can be backed with valid
2375 * struct pages, but be allocated without refcounting e.g.,
2376 * tail pages of non-compound higher order allocations, which
2377 * would then underflow the refcount when the caller does the
2378 * required put_page. Don't allow those pages here.
add6a0cd 2379 */
f8be156b
NP
2380 if (!kvm_try_get_pfn(pfn))
2381 r = -EFAULT;
add6a0cd 2382
bd2fae8d
PB
2383out:
2384 pte_unmap_unlock(ptep, ptl);
add6a0cd 2385 *p_pfn = pfn;
f8be156b
NP
2386
2387 return r;
92176a8e
PB
2388}
2389
12ce13fe
XG
2390/*
2391 * Pin guest page in memory and return its pfn.
2392 * @addr: host virtual address which maps memory to the guest
2393 * @atomic: whether this function can sleep
2394 * @async: whether this function need to wait IO complete if the
2395 * host page is not in the memory
2396 * @write_fault: whether we should get a writable host page
2397 * @writable: whether it allows to map a writable host page for !@write_fault
2398 *
2399 * The function will map a writable host page for these two cases:
2400 * 1): @write_fault = true
2401 * 2): @write_fault = false && @writable, @writable will tell the caller
2402 * whether the mapping is writable.
2403 */
ba049e93 2404static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2fc84311
XG
2405 bool write_fault, bool *writable)
2406{
2407 struct vm_area_struct *vma;
ba049e93 2408 kvm_pfn_t pfn = 0;
92176a8e 2409 int npages, r;
2e2e3738 2410
2fc84311
XG
2411 /* we can do it either atomically or asynchronously, not both */
2412 BUG_ON(atomic && async);
8d4e1288 2413
b9b33da2 2414 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2fc84311
XG
2415 return pfn;
2416
2417 if (atomic)
2418 return KVM_PFN_ERR_FAULT;
2419
2420 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2421 if (npages == 1)
2422 return pfn;
8d4e1288 2423
d8ed45c5 2424 mmap_read_lock(current->mm);
2fc84311
XG
2425 if (npages == -EHWPOISON ||
2426 (!async && check_user_page_hwpoison(addr))) {
2427 pfn = KVM_PFN_ERR_HWPOISON;
2428 goto exit;
2429 }
2430
a8387d0b 2431retry:
fc98c03b 2432 vma = vma_lookup(current->mm, addr);
2fc84311
XG
2433
2434 if (vma == NULL)
2435 pfn = KVM_PFN_ERR_FAULT;
92176a8e 2436 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
a340b3e2 2437 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
a8387d0b
PB
2438 if (r == -EAGAIN)
2439 goto retry;
92176a8e
PB
2440 if (r < 0)
2441 pfn = KVM_PFN_ERR_FAULT;
2fc84311 2442 } else {
4d8b81ab 2443 if (async && vma_is_valid(vma, write_fault))
2fc84311
XG
2444 *async = true;
2445 pfn = KVM_PFN_ERR_FAULT;
2446 }
2447exit:
d8ed45c5 2448 mmap_read_unlock(current->mm);
2e2e3738 2449 return pfn;
35149e21
AL
2450}
2451
ba049e93
DW
2452kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2453 bool atomic, bool *async, bool write_fault,
4a42d848 2454 bool *writable, hva_t *hva)
887c08ac 2455{
4d8b81ab
XG
2456 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2457
4a42d848
DS
2458 if (hva)
2459 *hva = addr;
2460
b2740d35
PB
2461 if (addr == KVM_HVA_ERR_RO_BAD) {
2462 if (writable)
2463 *writable = false;
4d8b81ab 2464 return KVM_PFN_ERR_RO_FAULT;
b2740d35 2465 }
4d8b81ab 2466
b2740d35
PB
2467 if (kvm_is_error_hva(addr)) {
2468 if (writable)
2469 *writable = false;
81c52c56 2470 return KVM_PFN_NOSLOT;
b2740d35 2471 }
4d8b81ab
XG
2472
2473 /* Do not map writable pfn in the readonly memslot. */
2474 if (writable && memslot_is_readonly(slot)) {
2475 *writable = false;
2476 writable = NULL;
2477 }
2478
2479 return hva_to_pfn(addr, atomic, async, write_fault,
2480 writable);
887c08ac 2481}
3520469d 2482EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
887c08ac 2483
ba049e93 2484kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3
MT
2485 bool *writable)
2486{
e37afc6e 2487 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
4a42d848 2488 write_fault, writable, NULL);
612819c3
MT
2489}
2490EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2491
ba049e93 2492kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 2493{
4a42d848 2494 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
506f0d6f 2495}
e37afc6e 2496EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
506f0d6f 2497
ba049e93 2498kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 2499{
4a42d848 2500 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
506f0d6f 2501}
037d92dc 2502EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
506f0d6f 2503
ba049e93 2504kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
2505{
2506 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2507}
2508EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2509
ba049e93 2510kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
2511{
2512 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2513}
2514EXPORT_SYMBOL_GPL(gfn_to_pfn);
2515
ba049e93 2516kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
2517{
2518 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2519}
2520EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2521
d9ef13c2
PB
2522int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2523 struct page **pages, int nr_pages)
48987781
XG
2524{
2525 unsigned long addr;
076b925d 2526 gfn_t entry = 0;
48987781 2527
d9ef13c2 2528 addr = gfn_to_hva_many(slot, gfn, &entry);
48987781
XG
2529 if (kvm_is_error_hva(addr))
2530 return -1;
2531
2532 if (entry < nr_pages)
2533 return 0;
2534
dadbb612 2535 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
48987781
XG
2536}
2537EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2538
ba049e93 2539static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
a2766325 2540{
81c52c56 2541 if (is_error_noslot_pfn(pfn))
cb9aaa30 2542 return KVM_ERR_PTR_BAD_PAGE;
a2766325 2543
bf4bea8e 2544 if (kvm_is_reserved_pfn(pfn)) {
cb9aaa30 2545 WARN_ON(1);
6cede2e6 2546 return KVM_ERR_PTR_BAD_PAGE;
cb9aaa30 2547 }
a2766325
XG
2548
2549 return pfn_to_page(pfn);
2550}
2551
35149e21
AL
2552struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2553{
ba049e93 2554 kvm_pfn_t pfn;
2e2e3738
AL
2555
2556 pfn = gfn_to_pfn(kvm, gfn);
2e2e3738 2557
a2766325 2558 return kvm_pfn_to_page(pfn);
954bbbc2
AK
2559}
2560EXPORT_SYMBOL_GPL(gfn_to_page);
2561
91724814
BO
2562void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2563{
2564 if (pfn == 0)
2565 return;
2566
2567 if (cache)
2568 cache->pfn = cache->gfn = 0;
2569
2570 if (dirty)
2571 kvm_release_pfn_dirty(pfn);
2572 else
2573 kvm_release_pfn_clean(pfn);
2574}
2575
2576static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2577 struct gfn_to_pfn_cache *cache, u64 gen)
2578{
2579 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2580
2581 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2582 cache->gfn = gfn;
2583 cache->dirty = false;
2584 cache->generation = gen;
2585}
2586
1eff70a9 2587static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
91724814
BO
2588 struct kvm_host_map *map,
2589 struct gfn_to_pfn_cache *cache,
2590 bool atomic)
e45adf66
KA
2591{
2592 kvm_pfn_t pfn;
2593 void *hva = NULL;
2594 struct page *page = KVM_UNMAPPED_PAGE;
1eff70a9 2595 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
91724814 2596 u64 gen = slots->generation;
e45adf66
KA
2597
2598 if (!map)
2599 return -EINVAL;
2600
91724814
BO
2601 if (cache) {
2602 if (!cache->pfn || cache->gfn != gfn ||
2603 cache->generation != gen) {
2604 if (atomic)
2605 return -EAGAIN;
2606 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2607 }
2608 pfn = cache->pfn;
2609 } else {
2610 if (atomic)
2611 return -EAGAIN;
2612 pfn = gfn_to_pfn_memslot(slot, gfn);
2613 }
e45adf66
KA
2614 if (is_error_noslot_pfn(pfn))
2615 return -EINVAL;
2616
2617 if (pfn_valid(pfn)) {
2618 page = pfn_to_page(pfn);
91724814
BO
2619 if (atomic)
2620 hva = kmap_atomic(page);
2621 else
2622 hva = kmap(page);
d30b214d 2623#ifdef CONFIG_HAS_IOMEM
91724814 2624 } else if (!atomic) {
e45adf66 2625 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
91724814
BO
2626 } else {
2627 return -EINVAL;
d30b214d 2628#endif
e45adf66
KA
2629 }
2630
2631 if (!hva)
2632 return -EFAULT;
2633
2634 map->page = page;
2635 map->hva = hva;
2636 map->pfn = pfn;
2637 map->gfn = gfn;
2638
2639 return 0;
2640}
2641
91724814
BO
2642int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2643 struct gfn_to_pfn_cache *cache, bool atomic)
1eff70a9 2644{
91724814
BO
2645 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2646 cache, atomic);
1eff70a9
BO
2647}
2648EXPORT_SYMBOL_GPL(kvm_map_gfn);
2649
e45adf66
KA
2650int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2651{
91724814
BO
2652 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2653 NULL, false);
e45adf66
KA
2654}
2655EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2656
28bd726a
PX
2657static void __kvm_unmap_gfn(struct kvm *kvm,
2658 struct kvm_memory_slot *memslot,
91724814
BO
2659 struct kvm_host_map *map,
2660 struct gfn_to_pfn_cache *cache,
2661 bool dirty, bool atomic)
e45adf66
KA
2662{
2663 if (!map)
2664 return;
2665
2666 if (!map->hva)
2667 return;
2668
91724814
BO
2669 if (map->page != KVM_UNMAPPED_PAGE) {
2670 if (atomic)
2671 kunmap_atomic(map->hva);
2672 else
2673 kunmap(map->page);
2674 }
eb1f2f38 2675#ifdef CONFIG_HAS_IOMEM
91724814 2676 else if (!atomic)
e45adf66 2677 memunmap(map->hva);
91724814
BO
2678 else
2679 WARN_ONCE(1, "Unexpected unmapping in atomic context");
eb1f2f38 2680#endif
e45adf66 2681
91724814 2682 if (dirty)
28bd726a 2683 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
91724814
BO
2684
2685 if (cache)
2686 cache->dirty |= dirty;
2687 else
2688 kvm_release_pfn(map->pfn, dirty, NULL);
e45adf66
KA
2689
2690 map->hva = NULL;
2691 map->page = NULL;
2692}
1eff70a9 2693
91724814
BO
2694int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2695 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
1eff70a9 2696{
28bd726a 2697 __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
91724814 2698 cache, dirty, atomic);
1eff70a9
BO
2699 return 0;
2700}
2701EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2702
2703void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2704{
28bd726a
PX
2705 __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2706 map, NULL, dirty, false);
1eff70a9 2707}
e45adf66
KA
2708EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2709
8e73485c
PB
2710struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2711{
ba049e93 2712 kvm_pfn_t pfn;
8e73485c
PB
2713
2714 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2715
2716 return kvm_pfn_to_page(pfn);
2717}
2718EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2719
b4231d61
IE
2720void kvm_release_page_clean(struct page *page)
2721{
32cad84f
XG
2722 WARN_ON(is_error_page(page));
2723
35149e21 2724 kvm_release_pfn_clean(page_to_pfn(page));
b4231d61
IE
2725}
2726EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2727
ba049e93 2728void kvm_release_pfn_clean(kvm_pfn_t pfn)
35149e21 2729{
bf4bea8e 2730 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2e2e3738 2731 put_page(pfn_to_page(pfn));
35149e21
AL
2732}
2733EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2734
b4231d61 2735void kvm_release_page_dirty(struct page *page)
8a7ae055 2736{
a2766325
XG
2737 WARN_ON(is_error_page(page));
2738
35149e21
AL
2739 kvm_release_pfn_dirty(page_to_pfn(page));
2740}
2741EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2742
f7a6509f 2743void kvm_release_pfn_dirty(kvm_pfn_t pfn)
35149e21
AL
2744{
2745 kvm_set_pfn_dirty(pfn);
2746 kvm_release_pfn_clean(pfn);
2747}
f7a6509f 2748EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
35149e21 2749
ba049e93 2750void kvm_set_pfn_dirty(kvm_pfn_t pfn)
35149e21 2751{
d29c03a5
ML
2752 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2753 SetPageDirty(pfn_to_page(pfn));
8a7ae055 2754}
35149e21
AL
2755EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2756
ba049e93 2757void kvm_set_pfn_accessed(kvm_pfn_t pfn)
35149e21 2758{
a78986aa 2759 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2e2e3738 2760 mark_page_accessed(pfn_to_page(pfn));
35149e21
AL
2761}
2762EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2763
195aefde
IE
2764static int next_segment(unsigned long len, int offset)
2765{
2766 if (len > PAGE_SIZE - offset)
2767 return PAGE_SIZE - offset;
2768 else
2769 return len;
2770}
2771
8e73485c
PB
2772static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2773 void *data, int offset, int len)
195aefde 2774{
e0506bcb
IE
2775 int r;
2776 unsigned long addr;
195aefde 2777
8e73485c 2778 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
e0506bcb
IE
2779 if (kvm_is_error_hva(addr))
2780 return -EFAULT;
3180a7fc 2781 r = __copy_from_user(data, (void __user *)addr + offset, len);
e0506bcb 2782 if (r)
195aefde 2783 return -EFAULT;
195aefde
IE
2784 return 0;
2785}
8e73485c
PB
2786
2787int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2788 int len)
2789{
2790 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2791
2792 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2793}
195aefde
IE
2794EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2795
8e73485c
PB
2796int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2797 int offset, int len)
2798{
2799 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2800
2801 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2802}
2803EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2804
195aefde
IE
2805int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2806{
2807 gfn_t gfn = gpa >> PAGE_SHIFT;
2808 int seg;
2809 int offset = offset_in_page(gpa);
2810 int ret;
2811
2812 while ((seg = next_segment(len, offset)) != 0) {
2813 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2814 if (ret < 0)
2815 return ret;
2816 offset = 0;
2817 len -= seg;
2818 data += seg;
2819 ++gfn;
2820 }
2821 return 0;
2822}
2823EXPORT_SYMBOL_GPL(kvm_read_guest);
2824
8e73485c 2825int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
7ec54588 2826{
7ec54588 2827 gfn_t gfn = gpa >> PAGE_SHIFT;
8e73485c 2828 int seg;
7ec54588 2829 int offset = offset_in_page(gpa);
8e73485c
PB
2830 int ret;
2831
2832 while ((seg = next_segment(len, offset)) != 0) {
2833 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2834 if (ret < 0)
2835 return ret;
2836 offset = 0;
2837 len -= seg;
2838 data += seg;
2839 ++gfn;
2840 }
2841 return 0;
2842}
2843EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
7ec54588 2844
8e73485c
PB
2845static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2846 void *data, int offset, unsigned long len)
2847{
2848 int r;
2849 unsigned long addr;
2850
2851 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
7ec54588
MT
2852 if (kvm_is_error_hva(addr))
2853 return -EFAULT;
0aac03f0 2854 pagefault_disable();
3180a7fc 2855 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
0aac03f0 2856 pagefault_enable();
7ec54588
MT
2857 if (r)
2858 return -EFAULT;
2859 return 0;
2860}
7ec54588 2861
8e73485c
PB
2862int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2863 void *data, unsigned long len)
2864{
2865 gfn_t gfn = gpa >> PAGE_SHIFT;
2866 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2867 int offset = offset_in_page(gpa);
2868
2869 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2870}
2871EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2872
28bd726a
PX
2873static int __kvm_write_guest_page(struct kvm *kvm,
2874 struct kvm_memory_slot *memslot, gfn_t gfn,
8e73485c 2875 const void *data, int offset, int len)
195aefde 2876{
e0506bcb
IE
2877 int r;
2878 unsigned long addr;
195aefde 2879
251eb841 2880 addr = gfn_to_hva_memslot(memslot, gfn);
e0506bcb
IE
2881 if (kvm_is_error_hva(addr))
2882 return -EFAULT;
8b0cedff 2883 r = __copy_to_user((void __user *)addr + offset, data, len);
e0506bcb 2884 if (r)
195aefde 2885 return -EFAULT;
28bd726a 2886 mark_page_dirty_in_slot(kvm, memslot, gfn);
195aefde
IE
2887 return 0;
2888}
8e73485c
PB
2889
2890int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2891 const void *data, int offset, int len)
2892{
2893 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2894
28bd726a 2895 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
8e73485c 2896}
195aefde
IE
2897EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2898
8e73485c
PB
2899int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2900 const void *data, int offset, int len)
2901{
2902 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2903
28bd726a 2904 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
8e73485c
PB
2905}
2906EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2907
195aefde
IE
2908int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2909 unsigned long len)
2910{
2911 gfn_t gfn = gpa >> PAGE_SHIFT;
2912 int seg;
2913 int offset = offset_in_page(gpa);
2914 int ret;
2915
2916 while ((seg = next_segment(len, offset)) != 0) {
2917 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2918 if (ret < 0)
2919 return ret;
2920 offset = 0;
2921 len -= seg;
2922 data += seg;
2923 ++gfn;
2924 }
2925 return 0;
2926}
ff651cb6 2927EXPORT_SYMBOL_GPL(kvm_write_guest);
195aefde 2928
8e73485c
PB
2929int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2930 unsigned long len)
2931{
2932 gfn_t gfn = gpa >> PAGE_SHIFT;
2933 int seg;
2934 int offset = offset_in_page(gpa);
2935 int ret;
2936
2937 while ((seg = next_segment(len, offset)) != 0) {
2938 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2939 if (ret < 0)
2940 return ret;
2941 offset = 0;
2942 len -= seg;
2943 data += seg;
2944 ++gfn;
2945 }
2946 return 0;
2947}
2948EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2949
5a2d4365
PB
2950static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2951 struct gfn_to_hva_cache *ghc,
2952 gpa_t gpa, unsigned long len)
49c7754c 2953{
49c7754c 2954 int offset = offset_in_page(gpa);
8f964525
AH
2955 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2956 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2957 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2958 gfn_t nr_pages_avail;
49c7754c 2959
6ad1e29f 2960 /* Update ghc->generation before performing any error checks. */
49c7754c 2961 ghc->generation = slots->generation;
6ad1e29f
SC
2962
2963 if (start_gfn > end_gfn) {
2964 ghc->hva = KVM_HVA_ERR_BAD;
2965 return -EINVAL;
2966 }
f1b9dd5e
JM
2967
2968 /*
2969 * If the requested region crosses two memslots, we still
2970 * verify that the entire region is valid here.
2971 */
6ad1e29f 2972 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
f1b9dd5e
JM
2973 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2974 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2975 &nr_pages_avail);
2976 if (kvm_is_error_hva(ghc->hva))
6ad1e29f 2977 return -EFAULT;
f1b9dd5e
JM
2978 }
2979
2980 /* Use the slow path for cross page reads and writes. */
6ad1e29f 2981 if (nr_pages_needed == 1)
49c7754c 2982 ghc->hva += offset;
f1b9dd5e 2983 else
8f964525 2984 ghc->memslot = NULL;
f1b9dd5e 2985
6ad1e29f
SC
2986 ghc->gpa = gpa;
2987 ghc->len = len;
2988 return 0;
49c7754c 2989}
5a2d4365 2990
4e335d9e 2991int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
5a2d4365
PB
2992 gpa_t gpa, unsigned long len)
2993{
4e335d9e 2994 struct kvm_memslots *slots = kvm_memslots(kvm);
5a2d4365
PB
2995 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2996}
4e335d9e 2997EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
49c7754c 2998
4e335d9e 2999int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
3000 void *data, unsigned int offset,
3001 unsigned long len)
49c7754c 3002{
4e335d9e 3003 struct kvm_memslots *slots = kvm_memslots(kvm);
49c7754c 3004 int r;
4ec6e863 3005 gpa_t gpa = ghc->gpa + offset;
49c7754c 3006
4ec6e863 3007 BUG_ON(len + offset > ghc->len);
8f964525 3008
dc9ce71e
SC
3009 if (slots->generation != ghc->generation) {
3010 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3011 return -EFAULT;
3012 }
8f964525 3013
49c7754c
GN
3014 if (kvm_is_error_hva(ghc->hva))
3015 return -EFAULT;
3016
fcfbc617
SC
3017 if (unlikely(!ghc->memslot))
3018 return kvm_write_guest(kvm, gpa, data, len);
3019
4ec6e863 3020 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
49c7754c
GN
3021 if (r)
3022 return -EFAULT;
28bd726a 3023 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
49c7754c
GN
3024
3025 return 0;
3026}
4e335d9e 3027EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
4ec6e863 3028
4e335d9e
PB
3029int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3030 void *data, unsigned long len)
4ec6e863 3031{
4e335d9e 3032 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
4ec6e863 3033}
4e335d9e 3034EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
49c7754c 3035
0958f0ce
VK
3036int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3037 void *data, unsigned int offset,
3038 unsigned long len)
e03b644f 3039{
4e335d9e 3040 struct kvm_memslots *slots = kvm_memslots(kvm);
e03b644f 3041 int r;
0958f0ce 3042 gpa_t gpa = ghc->gpa + offset;
e03b644f 3043
0958f0ce 3044 BUG_ON(len + offset > ghc->len);
8f964525 3045
dc9ce71e
SC
3046 if (slots->generation != ghc->generation) {
3047 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3048 return -EFAULT;
3049 }
8f964525 3050
e03b644f
GN
3051 if (kvm_is_error_hva(ghc->hva))
3052 return -EFAULT;
3053
fcfbc617 3054 if (unlikely(!ghc->memslot))
0958f0ce 3055 return kvm_read_guest(kvm, gpa, data, len);
fcfbc617 3056
0958f0ce 3057 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
e03b644f
GN
3058 if (r)
3059 return -EFAULT;
3060
3061 return 0;
3062}
0958f0ce
VK
3063EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3064
3065int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3066 void *data, unsigned long len)
3067{
3068 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3069}
4e335d9e 3070EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
e03b644f 3071
195aefde
IE
3072int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3073{
2f541442 3074 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
195aefde
IE
3075 gfn_t gfn = gpa >> PAGE_SHIFT;
3076 int seg;
3077 int offset = offset_in_page(gpa);
3078 int ret;
3079
bfda0e84 3080 while ((seg = next_segment(len, offset)) != 0) {
2f541442 3081 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
195aefde
IE
3082 if (ret < 0)
3083 return ret;
3084 offset = 0;
3085 len -= seg;
3086 ++gfn;
3087 }
3088 return 0;
3089}
3090EXPORT_SYMBOL_GPL(kvm_clear_guest);
3091
28bd726a
PX
3092void mark_page_dirty_in_slot(struct kvm *kvm,
3093 struct kvm_memory_slot *memslot,
3094 gfn_t gfn)
6aa8b732 3095{
044c59c4 3096 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
7e9d619d 3097 unsigned long rel_gfn = gfn - memslot->base_gfn;
fb04a1ed 3098 u32 slot = (memslot->as_id << 16) | memslot->id;
6aa8b732 3099
fb04a1ed
PX
3100 if (kvm->dirty_ring_size)
3101 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3102 slot, rel_gfn);
3103 else
3104 set_bit_le(rel_gfn, memslot->dirty_bitmap);
6aa8b732
AK
3105 }
3106}
a6a0b05d 3107EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
6aa8b732 3108
49c7754c
GN
3109void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3110{
3111 struct kvm_memory_slot *memslot;
3112
3113 memslot = gfn_to_memslot(kvm, gfn);
28bd726a 3114 mark_page_dirty_in_slot(kvm, memslot, gfn);
49c7754c 3115}
2ba9f0d8 3116EXPORT_SYMBOL_GPL(mark_page_dirty);
49c7754c 3117
8e73485c
PB
3118void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3119{
3120 struct kvm_memory_slot *memslot;
3121
3122 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
28bd726a 3123 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
8e73485c
PB
3124}
3125EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3126
20b7035c
JS
3127void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3128{
3129 if (!vcpu->sigset_active)
3130 return;
3131
3132 /*
3133 * This does a lockless modification of ->real_blocked, which is fine
3134 * because, only current can change ->real_blocked and all readers of
3135 * ->real_blocked don't care as long ->real_blocked is always a subset
3136 * of ->blocked.
3137 */
3138 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3139}
3140
3141void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3142{
3143 if (!vcpu->sigset_active)
3144 return;
3145
3146 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3147 sigemptyset(&current->real_blocked);
3148}
3149
aca6ff29
WL
3150static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3151{
dee339b5 3152 unsigned int old, val, grow, grow_start;
aca6ff29 3153
2cbd7824 3154 old = val = vcpu->halt_poll_ns;
dee339b5 3155 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 3156 grow = READ_ONCE(halt_poll_ns_grow);
7fa08e71
NW
3157 if (!grow)
3158 goto out;
3159
dee339b5
NW
3160 val *= grow;
3161 if (val < grow_start)
3162 val = grow_start;
aca6ff29 3163
258785ef
DM
3164 if (val > vcpu->kvm->max_halt_poll_ns)
3165 val = vcpu->kvm->max_halt_poll_ns;
313f636d 3166
aca6ff29 3167 vcpu->halt_poll_ns = val;
7fa08e71 3168out:
2cbd7824 3169 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
aca6ff29
WL
3170}
3171
3172static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3173{
ae232ea4 3174 unsigned int old, val, shrink, grow_start;
aca6ff29 3175
2cbd7824 3176 old = val = vcpu->halt_poll_ns;
6b6de68c 3177 shrink = READ_ONCE(halt_poll_ns_shrink);
ae232ea4 3178 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 3179 if (shrink == 0)
aca6ff29
WL
3180 val = 0;
3181 else
6b6de68c 3182 val /= shrink;
aca6ff29 3183
ae232ea4
SS
3184 if (val < grow_start)
3185 val = 0;
3186
aca6ff29 3187 vcpu->halt_poll_ns = val;
2cbd7824 3188 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
aca6ff29
WL
3189}
3190
f7819512
PB
3191static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3192{
50c28f21
JS
3193 int ret = -EINTR;
3194 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3195
f7819512
PB
3196 if (kvm_arch_vcpu_runnable(vcpu)) {
3197 kvm_make_request(KVM_REQ_UNHALT, vcpu);
50c28f21 3198 goto out;
f7819512
PB
3199 }
3200 if (kvm_cpu_has_pending_timer(vcpu))
50c28f21 3201 goto out;
f7819512 3202 if (signal_pending(current))
50c28f21 3203 goto out;
084071d5
MT
3204 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3205 goto out;
f7819512 3206
50c28f21
JS
3207 ret = 0;
3208out:
3209 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3210 return ret;
f7819512
PB
3211}
3212
cb953129
DM
3213static inline void
3214update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3215{
3216 if (waited)
0193cc90 3217 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
cb953129 3218 else
0193cc90 3219 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
cb953129
DM
3220}
3221
b6958ce4
ED
3222/*
3223 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3224 */
8776e519 3225void kvm_vcpu_block(struct kvm_vcpu *vcpu)
d3bef15f 3226{
cb953129 3227 ktime_t start, cur, poll_end;
f7819512 3228 bool waited = false;
aca6ff29 3229 u64 block_ns;
f7819512 3230
07ab0f8d
MZ
3231 kvm_arch_vcpu_blocking(vcpu);
3232
cb953129 3233 start = cur = poll_end = ktime_get();
cdd6ad3a 3234 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
19020f8a 3235 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
f95ef0cd 3236
0193cc90 3237 ++vcpu->stat.generic.halt_attempted_poll;
f7819512
PB
3238 do {
3239 /*
3240 * This sets KVM_REQ_UNHALT if an interrupt
3241 * arrives.
3242 */
3243 if (kvm_vcpu_check_block(vcpu) < 0) {
0193cc90 3244 ++vcpu->stat.generic.halt_successful_poll;
3491caf2 3245 if (!vcpu_valid_wakeup(vcpu))
0193cc90 3246 ++vcpu->stat.generic.halt_poll_invalid;
8ccba534
JZ
3247
3248 KVM_STATS_LOG_HIST_UPDATE(
3249 vcpu->stat.generic.halt_poll_success_hist,
3250 ktime_to_ns(ktime_get()) -
3251 ktime_to_ns(start));
f7819512
PB
3252 goto out;
3253 }
74775654 3254 cpu_relax();
cb953129 3255 poll_end = cur = ktime_get();
6bd5b743 3256 } while (kvm_vcpu_can_poll(cur, stop));
8ccba534
JZ
3257
3258 KVM_STATS_LOG_HIST_UPDATE(
3259 vcpu->stat.generic.halt_poll_fail_hist,
3260 ktime_to_ns(ktime_get()) - ktime_to_ns(start));
f7819512 3261 }
e5c239cf 3262
8ccba534 3263
da4ad88c 3264 prepare_to_rcuwait(&vcpu->wait);
e5c239cf 3265 for (;;) {
da4ad88c 3266 set_current_state(TASK_INTERRUPTIBLE);
e5c239cf 3267
f7819512 3268 if (kvm_vcpu_check_block(vcpu) < 0)
e5c239cf
MT
3269 break;
3270
f7819512 3271 waited = true;
b6958ce4 3272 schedule();
b6958ce4 3273 }
da4ad88c 3274 finish_rcuwait(&vcpu->wait);
f7819512 3275 cur = ktime_get();
87bcc5fa
JZ
3276 if (waited) {
3277 vcpu->stat.generic.halt_wait_ns +=
3278 ktime_to_ns(cur) - ktime_to_ns(poll_end);
8ccba534
JZ
3279 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3280 ktime_to_ns(cur) - ktime_to_ns(poll_end));
87bcc5fa 3281 }
f7819512 3282out:
07ab0f8d 3283 kvm_arch_vcpu_unblocking(vcpu);
aca6ff29
WL
3284 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3285
cb953129
DM
3286 update_halt_poll_stats(
3287 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3288
44551b2f
WL
3289 if (!kvm_arch_no_poll(vcpu)) {
3290 if (!vcpu_valid_wakeup(vcpu)) {
aca6ff29 3291 shrink_halt_poll_ns(vcpu);
acd05785 3292 } else if (vcpu->kvm->max_halt_poll_ns) {
44551b2f
WL
3293 if (block_ns <= vcpu->halt_poll_ns)
3294 ;
3295 /* we had a long block, shrink polling */
acd05785
DM
3296 else if (vcpu->halt_poll_ns &&
3297 block_ns > vcpu->kvm->max_halt_poll_ns)
44551b2f
WL
3298 shrink_halt_poll_ns(vcpu);
3299 /* we had a short halt and our poll time is too small */
acd05785
DM
3300 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3301 block_ns < vcpu->kvm->max_halt_poll_ns)
44551b2f
WL
3302 grow_halt_poll_ns(vcpu);
3303 } else {
3304 vcpu->halt_poll_ns = 0;
3305 }
3306 }
aca6ff29 3307
3491caf2
CB
3308 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3309 kvm_arch_vcpu_block_finish(vcpu);
b6958ce4 3310}
2ba9f0d8 3311EXPORT_SYMBOL_GPL(kvm_vcpu_block);
b6958ce4 3312
178f02ff 3313bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
b6d33834 3314{
da4ad88c 3315 struct rcuwait *waitp;
b6d33834 3316
da4ad88c
DB
3317 waitp = kvm_arch_vcpu_get_wait(vcpu);
3318 if (rcuwait_wake_up(waitp)) {
d73eb57b 3319 WRITE_ONCE(vcpu->ready, true);
0193cc90 3320 ++vcpu->stat.generic.halt_wakeup;
178f02ff 3321 return true;
b6d33834
CD
3322 }
3323
178f02ff 3324 return false;
dd1a4cc1
RK
3325}
3326EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3327
0266c894 3328#ifndef CONFIG_S390
dd1a4cc1
RK
3329/*
3330 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3331 */
3332void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3333{
85b64045 3334 int me, cpu;
dd1a4cc1 3335
178f02ff
RK
3336 if (kvm_vcpu_wake_up(vcpu))
3337 return;
3338
85b64045
SC
3339 /*
3340 * Note, the vCPU could get migrated to a different pCPU at any point
3341 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3342 * IPI to the previous pCPU. But, that's ok because the purpose of the
3343 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3344 * vCPU also requires it to leave IN_GUEST_MODE.
3345 */
b6d33834 3346 me = get_cpu();
85b64045
SC
3347 if (kvm_arch_vcpu_should_kick(vcpu)) {
3348 cpu = READ_ONCE(vcpu->cpu);
3349 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
b6d33834 3350 smp_send_reschedule(cpu);
85b64045 3351 }
b6d33834
CD
3352 put_cpu();
3353}
a20ed54d 3354EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
0266c894 3355#endif /* !CONFIG_S390 */
b6d33834 3356
fa93384f 3357int kvm_vcpu_yield_to(struct kvm_vcpu *target)
41628d33
KW
3358{
3359 struct pid *pid;
3360 struct task_struct *task = NULL;
fa93384f 3361 int ret = 0;
41628d33
KW
3362
3363 rcu_read_lock();
3364 pid = rcu_dereference(target->pid);
3365 if (pid)
27fbe64b 3366 task = get_pid_task(pid, PIDTYPE_PID);
41628d33
KW
3367 rcu_read_unlock();
3368 if (!task)
c45c528e 3369 return ret;
c45c528e 3370 ret = yield_to(task, 1);
41628d33 3371 put_task_struct(task);
c45c528e
R
3372
3373 return ret;
41628d33
KW
3374}
3375EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3376
06e48c51
R
3377/*
3378 * Helper that checks whether a VCPU is eligible for directed yield.
3379 * Most eligible candidate to yield is decided by following heuristics:
3380 *
3381 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3382 * (preempted lock holder), indicated by @in_spin_loop.
656012c7 3383 * Set at the beginning and cleared at the end of interception/PLE handler.
06e48c51
R
3384 *
3385 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3386 * chance last time (mostly it has become eligible now since we have probably
3387 * yielded to lockholder in last iteration. This is done by toggling
3388 * @dy_eligible each time a VCPU checked for eligibility.)
3389 *
3390 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3391 * to preempted lock-holder could result in wrong VCPU selection and CPU
3392 * burning. Giving priority for a potential lock-holder increases lock
3393 * progress.
3394 *
3395 * Since algorithm is based on heuristics, accessing another VCPU data without
3396 * locking does not harm. It may result in trying to yield to same VCPU, fail
3397 * and continue with next VCPU and so on.
3398 */
7940876e 3399static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
06e48c51 3400{
4a55dd72 3401#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
06e48c51
R
3402 bool eligible;
3403
3404 eligible = !vcpu->spin_loop.in_spin_loop ||
34656113 3405 vcpu->spin_loop.dy_eligible;
06e48c51
R
3406
3407 if (vcpu->spin_loop.in_spin_loop)
3408 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3409
3410 return eligible;
4a55dd72
SW
3411#else
3412 return true;
06e48c51 3413#endif
4a55dd72 3414}
c45c528e 3415
17e433b5
WL
3416/*
3417 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3418 * a vcpu_load/vcpu_put pair. However, for most architectures
3419 * kvm_arch_vcpu_runnable does not require vcpu_load.
3420 */
3421bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3422{
3423 return kvm_arch_vcpu_runnable(vcpu);
3424}
3425
3426static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3427{
3428 if (kvm_arch_dy_runnable(vcpu))
3429 return true;
3430
3431#ifdef CONFIG_KVM_ASYNC_PF
3432 if (!list_empty_careful(&vcpu->async_pf.done))
3433 return true;
3434#endif
3435
3436 return false;
3437}
3438
52acd22f
WL
3439bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3440{
3441 return false;
3442}
3443
199b5763 3444void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
d255f4f2 3445{
217ece61
RR
3446 struct kvm *kvm = me->kvm;
3447 struct kvm_vcpu *vcpu;
3448 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3449 int yielded = 0;
c45c528e 3450 int try = 3;
217ece61
RR
3451 int pass;
3452 int i;
d255f4f2 3453
4c088493 3454 kvm_vcpu_set_in_spin_loop(me, true);
217ece61
RR
3455 /*
3456 * We boost the priority of a VCPU that is runnable but not
3457 * currently running, because it got preempted by something
3458 * else and called schedule in __vcpu_run. Hopefully that
3459 * VCPU is holding the lock that we need and will release it.
3460 * We approximate round-robin by starting at the last boosted VCPU.
3461 */
c45c528e 3462 for (pass = 0; pass < 2 && !yielded && try; pass++) {
217ece61 3463 kvm_for_each_vcpu(i, vcpu, kvm) {
5cfc2aab 3464 if (!pass && i <= last_boosted_vcpu) {
217ece61
RR
3465 i = last_boosted_vcpu;
3466 continue;
3467 } else if (pass && i > last_boosted_vcpu)
3468 break;
d73eb57b 3469 if (!READ_ONCE(vcpu->ready))
7bc7ae25 3470 continue;
217ece61
RR
3471 if (vcpu == me)
3472 continue;
da4ad88c
DB
3473 if (rcuwait_active(&vcpu->wait) &&
3474 !vcpu_dy_runnable(vcpu))
217ece61 3475 continue;
046ddeed 3476 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
52acd22f
WL
3477 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3478 !kvm_arch_vcpu_in_kernel(vcpu))
199b5763 3479 continue;
06e48c51
R
3480 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3481 continue;
c45c528e
R
3482
3483 yielded = kvm_vcpu_yield_to(vcpu);
3484 if (yielded > 0) {
217ece61 3485 kvm->last_boosted_vcpu = i;
217ece61 3486 break;
c45c528e
R
3487 } else if (yielded < 0) {
3488 try--;
3489 if (!try)
3490 break;
217ece61 3491 }
217ece61
RR
3492 }
3493 }
4c088493 3494 kvm_vcpu_set_in_spin_loop(me, false);
06e48c51
R
3495
3496 /* Ensure vcpu is not eligible during next spinloop */
3497 kvm_vcpu_set_dy_eligible(me, false);
d255f4f2
ZE
3498}
3499EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3500
fb04a1ed
PX
3501static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3502{
3503#if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3504 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3505 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3506 kvm->dirty_ring_size / PAGE_SIZE);
3507#else
3508 return false;
3509#endif
3510}
3511
1499fa80 3512static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
9a2bb7f4 3513{
11bac800 3514 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
9a2bb7f4
AK
3515 struct page *page;
3516
e4a533a4 3517 if (vmf->pgoff == 0)
039576c0 3518 page = virt_to_page(vcpu->run);
09566765 3519#ifdef CONFIG_X86
e4a533a4 3520 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
ad312c7c 3521 page = virt_to_page(vcpu->arch.pio_data);
5f94c174 3522#endif
4b4357e0 3523#ifdef CONFIG_KVM_MMIO
5f94c174
LV
3524 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3525 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
09566765 3526#endif
fb04a1ed
PX
3527 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3528 page = kvm_dirty_ring_get_page(
3529 &vcpu->dirty_ring,
3530 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
039576c0 3531 else
5b1c1493 3532 return kvm_arch_vcpu_fault(vcpu, vmf);
9a2bb7f4 3533 get_page(page);
e4a533a4
NP
3534 vmf->page = page;
3535 return 0;
9a2bb7f4
AK
3536}
3537
f0f37e2f 3538static const struct vm_operations_struct kvm_vcpu_vm_ops = {
e4a533a4 3539 .fault = kvm_vcpu_fault,
9a2bb7f4
AK
3540};
3541
3542static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3543{
fb04a1ed 3544 struct kvm_vcpu *vcpu = file->private_data;
11476d27 3545 unsigned long pages = vma_pages(vma);
fb04a1ed
PX
3546
3547 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3548 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3549 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3550 return -EINVAL;
3551
9a2bb7f4
AK
3552 vma->vm_ops = &kvm_vcpu_vm_ops;
3553 return 0;
3554}
3555
bccf2150
AK
3556static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3557{
3558 struct kvm_vcpu *vcpu = filp->private_data;
3559
66c0b394 3560 kvm_put_kvm(vcpu->kvm);
bccf2150
AK
3561 return 0;
3562}
3563
3d3aab1b 3564static struct file_operations kvm_vcpu_fops = {
bccf2150
AK
3565 .release = kvm_vcpu_release,
3566 .unlocked_ioctl = kvm_vcpu_ioctl,
9a2bb7f4 3567 .mmap = kvm_vcpu_mmap,
6038f373 3568 .llseek = noop_llseek,
7ddfd3e0 3569 KVM_COMPAT(kvm_vcpu_compat_ioctl),
bccf2150
AK
3570};
3571
3572/*
3573 * Allocates an inode for the vcpu.
3574 */
3575static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3576{
e46b4692
MY
3577 char name[8 + 1 + ITOA_MAX_LEN + 1];
3578
3579 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3580 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
bccf2150
AK
3581}
3582
3e7093d0 3583static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
45b5939e 3584{
741cbbae 3585#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
d56f5136 3586 struct dentry *debugfs_dentry;
45b5939e 3587 char dir_name[ITOA_MAX_LEN * 2];
45b5939e 3588
45b5939e 3589 if (!debugfs_initialized())
3e7093d0 3590 return;
45b5939e
LC
3591
3592 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
d56f5136
PB
3593 debugfs_dentry = debugfs_create_dir(dir_name,
3594 vcpu->kvm->debugfs_dentry);
45b5939e 3595
d56f5136 3596 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
741cbbae 3597#endif
45b5939e
LC
3598}
3599
c5ea7660
AK
3600/*
3601 * Creates some virtual cpus. Good luck creating more than one.
3602 */
73880c80 3603static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
c5ea7660
AK
3604{
3605 int r;
e09fefde 3606 struct kvm_vcpu *vcpu;
8bd826d6 3607 struct page *page;
c5ea7660 3608
0b1b1dfd 3609 if (id >= KVM_MAX_VCPU_ID)
338c7dba
AH
3610 return -EINVAL;
3611
6c7caebc
PB
3612 mutex_lock(&kvm->lock);
3613 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3614 mutex_unlock(&kvm->lock);
3615 return -EINVAL;
3616 }
3617
3618 kvm->created_vcpus++;
3619 mutex_unlock(&kvm->lock);
3620
897cc38e
SC
3621 r = kvm_arch_vcpu_precreate(kvm, id);
3622 if (r)
3623 goto vcpu_decrement;
3624
85f47930 3625 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
e529ef66
SC
3626 if (!vcpu) {
3627 r = -ENOMEM;
6c7caebc
PB
3628 goto vcpu_decrement;
3629 }
c5ea7660 3630
fcd97ad5 3631 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
93bb59ca 3632 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
8bd826d6
SC
3633 if (!page) {
3634 r = -ENOMEM;
e529ef66 3635 goto vcpu_free;
8bd826d6
SC
3636 }
3637 vcpu->run = page_address(page);
3638
3639 kvm_vcpu_init(vcpu, kvm, id);
e529ef66
SC
3640
3641 r = kvm_arch_vcpu_create(vcpu);
3642 if (r)
8bd826d6 3643 goto vcpu_free_run_page;
e529ef66 3644
fb04a1ed
PX
3645 if (kvm->dirty_ring_size) {
3646 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3647 id, kvm->dirty_ring_size);
3648 if (r)
3649 goto arch_vcpu_destroy;
3650 }
3651
11ec2804 3652 mutex_lock(&kvm->lock);
e09fefde
DH
3653 if (kvm_get_vcpu_by_id(kvm, id)) {
3654 r = -EEXIST;
3655 goto unlock_vcpu_destroy;
3656 }
73880c80 3657
8750e72a
RK
3658 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3659 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
c5ea7660 3660
ce55c049
JZ
3661 /* Fill the stats id string for the vcpu */
3662 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3663 task_pid_nr(current), id);
3664
fb3f0f51 3665 /* Now it's all set up, let userspace reach it */
66c0b394 3666 kvm_get_kvm(kvm);
bccf2150 3667 r = create_vcpu_fd(vcpu);
73880c80 3668 if (r < 0) {
149487bd 3669 kvm_put_kvm_no_destroy(kvm);
d780592b 3670 goto unlock_vcpu_destroy;
73880c80
GN
3671 }
3672
8750e72a 3673 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
dd489240
PB
3674
3675 /*
3676 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3677 * before kvm->online_vcpu's incremented value.
3678 */
73880c80
GN
3679 smp_wmb();
3680 atomic_inc(&kvm->online_vcpus);
3681
73880c80 3682 mutex_unlock(&kvm->lock);
42897d86 3683 kvm_arch_vcpu_postcreate(vcpu);
63d04348 3684 kvm_create_vcpu_debugfs(vcpu);
fb3f0f51 3685 return r;
39c3b86e 3686
d780592b 3687unlock_vcpu_destroy:
7d8fece6 3688 mutex_unlock(&kvm->lock);
fb04a1ed
PX
3689 kvm_dirty_ring_free(&vcpu->dirty_ring);
3690arch_vcpu_destroy:
d40ccc62 3691 kvm_arch_vcpu_destroy(vcpu);
8bd826d6
SC
3692vcpu_free_run_page:
3693 free_page((unsigned long)vcpu->run);
e529ef66
SC
3694vcpu_free:
3695 kmem_cache_free(kvm_vcpu_cache, vcpu);
6c7caebc
PB
3696vcpu_decrement:
3697 mutex_lock(&kvm->lock);
3698 kvm->created_vcpus--;
3699 mutex_unlock(&kvm->lock);
c5ea7660
AK
3700 return r;
3701}
3702
1961d276
AK
3703static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3704{
3705 if (sigset) {
3706 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3707 vcpu->sigset_active = 1;
3708 vcpu->sigset = *sigset;
3709 } else
3710 vcpu->sigset_active = 0;
3711 return 0;
3712}
3713
ce55c049
JZ
3714static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3715 size_t size, loff_t *offset)
3716{
3717 struct kvm_vcpu *vcpu = file->private_data;
3718
3719 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3720 &kvm_vcpu_stats_desc[0], &vcpu->stat,
3721 sizeof(vcpu->stat), user_buffer, size, offset);
3722}
3723
3724static const struct file_operations kvm_vcpu_stats_fops = {
3725 .read = kvm_vcpu_stats_read,
3726 .llseek = noop_llseek,
3727};
3728
3729static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3730{
3731 int fd;
3732 struct file *file;
3733 char name[15 + ITOA_MAX_LEN + 1];
3734
3735 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3736
3737 fd = get_unused_fd_flags(O_CLOEXEC);
3738 if (fd < 0)
3739 return fd;
3740
3741 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3742 if (IS_ERR(file)) {
3743 put_unused_fd(fd);
3744 return PTR_ERR(file);
3745 }
3746 file->f_mode |= FMODE_PREAD;
3747 fd_install(fd, file);
3748
3749 return fd;
3750}
3751
bccf2150
AK
3752static long kvm_vcpu_ioctl(struct file *filp,
3753 unsigned int ioctl, unsigned long arg)
6aa8b732 3754{
bccf2150 3755 struct kvm_vcpu *vcpu = filp->private_data;
2f366987 3756 void __user *argp = (void __user *)arg;
313a3dc7 3757 int r;
fa3795a7
DH
3758 struct kvm_fpu *fpu = NULL;
3759 struct kvm_sregs *kvm_sregs = NULL;
6aa8b732 3760
0b8f1173 3761 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
6d4e4c4f 3762 return -EIO;
2122ff5e 3763
2ea75be3
DM
3764 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3765 return -EINVAL;
3766
2122ff5e 3767 /*
5cb0944c
PB
3768 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3769 * execution; mutex_lock() would break them.
2122ff5e 3770 */
5cb0944c
PB
3771 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3772 if (r != -ENOIOCTLCMD)
9fc77441 3773 return r;
2122ff5e 3774
ec7660cc
CD
3775 if (mutex_lock_killable(&vcpu->mutex))
3776 return -EINTR;
6aa8b732 3777 switch (ioctl) {
0e4524a5
CB
3778 case KVM_RUN: {
3779 struct pid *oldpid;
f0fe5108
AK
3780 r = -EINVAL;
3781 if (arg)
3782 goto out;
0e4524a5 3783 oldpid = rcu_access_pointer(vcpu->pid);
71dbc8a9 3784 if (unlikely(oldpid != task_pid(current))) {
7a72f7a1 3785 /* The thread running this VCPU changed. */
bd2a6394 3786 struct pid *newpid;
f95ef0cd 3787
bd2a6394
CD
3788 r = kvm_arch_vcpu_run_pid_change(vcpu);
3789 if (r)
3790 break;
3791
3792 newpid = get_task_pid(current, PIDTYPE_PID);
7a72f7a1
CB
3793 rcu_assign_pointer(vcpu->pid, newpid);
3794 if (oldpid)
3795 synchronize_rcu();
3796 put_pid(oldpid);
3797 }
1b94f6f8 3798 r = kvm_arch_vcpu_ioctl_run(vcpu);
64be5007 3799 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
6aa8b732 3800 break;
0e4524a5 3801 }
6aa8b732 3802 case KVM_GET_REGS: {
3e4bb3ac 3803 struct kvm_regs *kvm_regs;
6aa8b732 3804
3e4bb3ac 3805 r = -ENOMEM;
b12ce36a 3806 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3e4bb3ac 3807 if (!kvm_regs)
6aa8b732 3808 goto out;
3e4bb3ac
XZ
3809 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3810 if (r)
3811 goto out_free1;
6aa8b732 3812 r = -EFAULT;
3e4bb3ac
XZ
3813 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3814 goto out_free1;
6aa8b732 3815 r = 0;
3e4bb3ac
XZ
3816out_free1:
3817 kfree(kvm_regs);
6aa8b732
AK
3818 break;
3819 }
3820 case KVM_SET_REGS: {
3e4bb3ac 3821 struct kvm_regs *kvm_regs;
6aa8b732 3822
ff5c2c03
SL
3823 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3824 if (IS_ERR(kvm_regs)) {
3825 r = PTR_ERR(kvm_regs);
6aa8b732 3826 goto out;
ff5c2c03 3827 }
3e4bb3ac 3828 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3e4bb3ac 3829 kfree(kvm_regs);
6aa8b732
AK
3830 break;
3831 }
3832 case KVM_GET_SREGS: {
b12ce36a
BG
3833 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3834 GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3835 r = -ENOMEM;
3836 if (!kvm_sregs)
3837 goto out;
3838 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
6aa8b732
AK
3839 if (r)
3840 goto out;
3841 r = -EFAULT;
fa3795a7 3842 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
6aa8b732
AK
3843 goto out;
3844 r = 0;
3845 break;
3846 }
3847 case KVM_SET_SREGS: {
ff5c2c03
SL
3848 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3849 if (IS_ERR(kvm_sregs)) {
3850 r = PTR_ERR(kvm_sregs);
18595411 3851 kvm_sregs = NULL;
6aa8b732 3852 goto out;
ff5c2c03 3853 }
fa3795a7 3854 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
6aa8b732
AK
3855 break;
3856 }
62d9f0db
MT
3857 case KVM_GET_MP_STATE: {
3858 struct kvm_mp_state mp_state;
3859
3860 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3861 if (r)
3862 goto out;
3863 r = -EFAULT;
893bdbf1 3864 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
62d9f0db
MT
3865 goto out;
3866 r = 0;
3867 break;
3868 }
3869 case KVM_SET_MP_STATE: {
3870 struct kvm_mp_state mp_state;
3871
3872 r = -EFAULT;
893bdbf1 3873 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
62d9f0db
MT
3874 goto out;
3875 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
62d9f0db
MT
3876 break;
3877 }
6aa8b732
AK
3878 case KVM_TRANSLATE: {
3879 struct kvm_translation tr;
3880
3881 r = -EFAULT;
893bdbf1 3882 if (copy_from_user(&tr, argp, sizeof(tr)))
6aa8b732 3883 goto out;
8b006791 3884 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
6aa8b732
AK
3885 if (r)
3886 goto out;
3887 r = -EFAULT;
893bdbf1 3888 if (copy_to_user(argp, &tr, sizeof(tr)))
6aa8b732
AK
3889 goto out;
3890 r = 0;
3891 break;
3892 }
d0bfb940
JK
3893 case KVM_SET_GUEST_DEBUG: {
3894 struct kvm_guest_debug dbg;
6aa8b732
AK
3895
3896 r = -EFAULT;
893bdbf1 3897 if (copy_from_user(&dbg, argp, sizeof(dbg)))
6aa8b732 3898 goto out;
d0bfb940 3899 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
6aa8b732
AK
3900 break;
3901 }
1961d276
AK
3902 case KVM_SET_SIGNAL_MASK: {
3903 struct kvm_signal_mask __user *sigmask_arg = argp;
3904 struct kvm_signal_mask kvm_sigmask;
3905 sigset_t sigset, *p;
3906
3907 p = NULL;
3908 if (argp) {
3909 r = -EFAULT;
3910 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3911 sizeof(kvm_sigmask)))
1961d276
AK
3912 goto out;
3913 r = -EINVAL;
893bdbf1 3914 if (kvm_sigmask.len != sizeof(sigset))
1961d276
AK
3915 goto out;
3916 r = -EFAULT;
3917 if (copy_from_user(&sigset, sigmask_arg->sigset,
893bdbf1 3918 sizeof(sigset)))
1961d276
AK
3919 goto out;
3920 p = &sigset;
3921 }
376d41ff 3922 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1961d276
AK
3923 break;
3924 }
b8836737 3925 case KVM_GET_FPU: {
b12ce36a 3926 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3927 r = -ENOMEM;
3928 if (!fpu)
3929 goto out;
3930 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
b8836737
AK
3931 if (r)
3932 goto out;
3933 r = -EFAULT;
fa3795a7 3934 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
b8836737
AK
3935 goto out;
3936 r = 0;
3937 break;
3938 }
3939 case KVM_SET_FPU: {
ff5c2c03
SL
3940 fpu = memdup_user(argp, sizeof(*fpu));
3941 if (IS_ERR(fpu)) {
3942 r = PTR_ERR(fpu);
18595411 3943 fpu = NULL;
b8836737 3944 goto out;
ff5c2c03 3945 }
fa3795a7 3946 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
b8836737
AK
3947 break;
3948 }
ce55c049
JZ
3949 case KVM_GET_STATS_FD: {
3950 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3951 break;
3952 }
bccf2150 3953 default:
313a3dc7 3954 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
bccf2150
AK
3955 }
3956out:
ec7660cc 3957 mutex_unlock(&vcpu->mutex);
fa3795a7
DH
3958 kfree(fpu);
3959 kfree(kvm_sregs);
bccf2150
AK
3960 return r;
3961}
3962
de8e5d74 3963#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
3964static long kvm_vcpu_compat_ioctl(struct file *filp,
3965 unsigned int ioctl, unsigned long arg)
3966{
3967 struct kvm_vcpu *vcpu = filp->private_data;
3968 void __user *argp = compat_ptr(arg);
3969 int r;
3970
0b8f1173 3971 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
1dda606c
AG
3972 return -EIO;
3973
3974 switch (ioctl) {
3975 case KVM_SET_SIGNAL_MASK: {
3976 struct kvm_signal_mask __user *sigmask_arg = argp;
3977 struct kvm_signal_mask kvm_sigmask;
1dda606c
AG
3978 sigset_t sigset;
3979
3980 if (argp) {
3981 r = -EFAULT;
3982 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3983 sizeof(kvm_sigmask)))
1dda606c
AG
3984 goto out;
3985 r = -EINVAL;
3968cf62 3986 if (kvm_sigmask.len != sizeof(compat_sigset_t))
1dda606c
AG
3987 goto out;
3988 r = -EFAULT;
1393b4aa
PB
3989 if (get_compat_sigset(&sigset,
3990 (compat_sigset_t __user *)sigmask_arg->sigset))
1dda606c 3991 goto out;
760a9a30
AC
3992 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3993 } else
3994 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1dda606c
AG
3995 break;
3996 }
3997 default:
3998 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3999 }
4000
4001out:
4002 return r;
4003}
4004#endif
4005
a1cd3f08
CLG
4006static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4007{
4008 struct kvm_device *dev = filp->private_data;
4009
4010 if (dev->ops->mmap)
4011 return dev->ops->mmap(dev, vma);
4012
4013 return -ENODEV;
4014}
4015
852b6d57
SW
4016static int kvm_device_ioctl_attr(struct kvm_device *dev,
4017 int (*accessor)(struct kvm_device *dev,
4018 struct kvm_device_attr *attr),
4019 unsigned long arg)
4020{
4021 struct kvm_device_attr attr;
4022
4023 if (!accessor)
4024 return -EPERM;
4025
4026 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4027 return -EFAULT;
4028
4029 return accessor(dev, &attr);
4030}
4031
4032static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4033 unsigned long arg)
4034{
4035 struct kvm_device *dev = filp->private_data;
4036
0b8f1173 4037 if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged)
ddba9180
SC
4038 return -EIO;
4039
852b6d57
SW
4040 switch (ioctl) {
4041 case KVM_SET_DEVICE_ATTR:
4042 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4043 case KVM_GET_DEVICE_ATTR:
4044 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4045 case KVM_HAS_DEVICE_ATTR:
4046 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4047 default:
4048 if (dev->ops->ioctl)
4049 return dev->ops->ioctl(dev, ioctl, arg);
4050
4051 return -ENOTTY;
4052 }
4053}
4054
852b6d57
SW
4055static int kvm_device_release(struct inode *inode, struct file *filp)
4056{
4057 struct kvm_device *dev = filp->private_data;
4058 struct kvm *kvm = dev->kvm;
4059
2bde9b3e
CLG
4060 if (dev->ops->release) {
4061 mutex_lock(&kvm->lock);
4062 list_del(&dev->vm_node);
4063 dev->ops->release(dev);
4064 mutex_unlock(&kvm->lock);
4065 }
4066
852b6d57
SW
4067 kvm_put_kvm(kvm);
4068 return 0;
4069}
4070
4071static const struct file_operations kvm_device_fops = {
4072 .unlocked_ioctl = kvm_device_ioctl,
4073 .release = kvm_device_release,
7ddfd3e0 4074 KVM_COMPAT(kvm_device_ioctl),
a1cd3f08 4075 .mmap = kvm_device_mmap,
852b6d57
SW
4076};
4077
4078struct kvm_device *kvm_device_from_filp(struct file *filp)
4079{
4080 if (filp->f_op != &kvm_device_fops)
4081 return NULL;
4082
4083 return filp->private_data;
4084}
4085
8538cb22 4086static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
5df554ad 4087#ifdef CONFIG_KVM_MPIC
d60eacb0
WD
4088 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4089 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
5975a2e0 4090#endif
d60eacb0
WD
4091};
4092
8538cb22 4093int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
d60eacb0
WD
4094{
4095 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4096 return -ENOSPC;
4097
4098 if (kvm_device_ops_table[type] != NULL)
4099 return -EEXIST;
4100
4101 kvm_device_ops_table[type] = ops;
4102 return 0;
4103}
4104
571ee1b6
WL
4105void kvm_unregister_device_ops(u32 type)
4106{
4107 if (kvm_device_ops_table[type] != NULL)
4108 kvm_device_ops_table[type] = NULL;
4109}
4110
852b6d57
SW
4111static int kvm_ioctl_create_device(struct kvm *kvm,
4112 struct kvm_create_device *cd)
4113{
8538cb22 4114 const struct kvm_device_ops *ops = NULL;
852b6d57
SW
4115 struct kvm_device *dev;
4116 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
1d487e9b 4117 int type;
852b6d57
SW
4118 int ret;
4119
d60eacb0
WD
4120 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4121 return -ENODEV;
4122
1d487e9b
PB
4123 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4124 ops = kvm_device_ops_table[type];
d60eacb0 4125 if (ops == NULL)
852b6d57 4126 return -ENODEV;
852b6d57
SW
4127
4128 if (test)
4129 return 0;
4130
b12ce36a 4131 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
852b6d57
SW
4132 if (!dev)
4133 return -ENOMEM;
4134
4135 dev->ops = ops;
4136 dev->kvm = kvm;
852b6d57 4137
a28ebea2 4138 mutex_lock(&kvm->lock);
1d487e9b 4139 ret = ops->create(dev, type);
852b6d57 4140 if (ret < 0) {
a28ebea2 4141 mutex_unlock(&kvm->lock);
852b6d57
SW
4142 kfree(dev);
4143 return ret;
4144 }
a28ebea2
CD
4145 list_add(&dev->vm_node, &kvm->devices);
4146 mutex_unlock(&kvm->lock);
852b6d57 4147
023e9fdd
CD
4148 if (ops->init)
4149 ops->init(dev);
4150
cfa39381 4151 kvm_get_kvm(kvm);
24009b05 4152 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
852b6d57 4153 if (ret < 0) {
149487bd 4154 kvm_put_kvm_no_destroy(kvm);
a28ebea2
CD
4155 mutex_lock(&kvm->lock);
4156 list_del(&dev->vm_node);
4157 mutex_unlock(&kvm->lock);
a0f1d21c 4158 ops->destroy(dev);
852b6d57
SW
4159 return ret;
4160 }
4161
852b6d57
SW
4162 cd->fd = ret;
4163 return 0;
4164}
4165
92b591a4
AG
4166static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4167{
4168 switch (arg) {
4169 case KVM_CAP_USER_MEMORY:
4170 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4171 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
92b591a4
AG
4172 case KVM_CAP_INTERNAL_ERROR_DATA:
4173#ifdef CONFIG_HAVE_KVM_MSI
4174 case KVM_CAP_SIGNAL_MSI:
4175#endif
297e2105 4176#ifdef CONFIG_HAVE_KVM_IRQFD
dc9be0fa 4177 case KVM_CAP_IRQFD:
92b591a4
AG
4178 case KVM_CAP_IRQFD_RESAMPLE:
4179#endif
e9ea5069 4180 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
92b591a4 4181 case KVM_CAP_CHECK_EXTENSION_VM:
e5d83c74 4182 case KVM_CAP_ENABLE_CAP_VM:
acd05785 4183 case KVM_CAP_HALT_POLL:
92b591a4 4184 return 1;
4b4357e0 4185#ifdef CONFIG_KVM_MMIO
30422558
PB
4186 case KVM_CAP_COALESCED_MMIO:
4187 return KVM_COALESCED_MMIO_PAGE_OFFSET;
0804c849
PH
4188 case KVM_CAP_COALESCED_PIO:
4189 return 1;
30422558 4190#endif
3c9bd400
JZ
4191#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4192 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4193 return KVM_DIRTY_LOG_MANUAL_CAPS;
4194#endif
92b591a4
AG
4195#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4196 case KVM_CAP_IRQ_ROUTING:
4197 return KVM_MAX_IRQ_ROUTES;
f481b069
PB
4198#endif
4199#if KVM_ADDRESS_SPACE_NUM > 1
4200 case KVM_CAP_MULTI_ADDRESS_SPACE:
4201 return KVM_ADDRESS_SPACE_NUM;
92b591a4 4202#endif
c110ae57
PB
4203 case KVM_CAP_NR_MEMSLOTS:
4204 return KVM_USER_MEM_SLOTS;
fb04a1ed
PX
4205 case KVM_CAP_DIRTY_LOG_RING:
4206#if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4207 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4208#else
4209 return 0;
4210#endif
ce55c049
JZ
4211 case KVM_CAP_BINARY_STATS_FD:
4212 return 1;
92b591a4
AG
4213 default:
4214 break;
4215 }
4216 return kvm_vm_ioctl_check_extension(kvm, arg);
4217}
4218
fb04a1ed
PX
4219static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4220{
4221 int r;
4222
4223 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4224 return -EINVAL;
4225
4226 /* the size should be power of 2 */
4227 if (!size || (size & (size - 1)))
4228 return -EINVAL;
4229
4230 /* Should be bigger to keep the reserved entries, or a page */
4231 if (size < kvm_dirty_ring_get_rsvd_entries() *
4232 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4233 return -EINVAL;
4234
4235 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4236 sizeof(struct kvm_dirty_gfn))
4237 return -E2BIG;
4238
4239 /* We only allow it to set once */
4240 if (kvm->dirty_ring_size)
4241 return -EINVAL;
4242
4243 mutex_lock(&kvm->lock);
4244
4245 if (kvm->created_vcpus) {
4246 /* We don't allow to change this value after vcpu created */
4247 r = -EINVAL;
4248 } else {
4249 kvm->dirty_ring_size = size;
4250 r = 0;
4251 }
4252
4253 mutex_unlock(&kvm->lock);
4254 return r;
4255}
4256
4257static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4258{
4259 int i;
4260 struct kvm_vcpu *vcpu;
4261 int cleared = 0;
4262
4263 if (!kvm->dirty_ring_size)
4264 return -EINVAL;
4265
4266 mutex_lock(&kvm->slots_lock);
4267
4268 kvm_for_each_vcpu(i, vcpu, kvm)
4269 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4270
4271 mutex_unlock(&kvm->slots_lock);
4272
4273 if (cleared)
4274 kvm_flush_remote_tlbs(kvm);
4275
4276 return cleared;
4277}
4278
e5d83c74
PB
4279int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4280 struct kvm_enable_cap *cap)
4281{
4282 return -EINVAL;
4283}
4284
4285static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4286 struct kvm_enable_cap *cap)
4287{
4288 switch (cap->cap) {
2a31b9db 4289#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3c9bd400
JZ
4290 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4291 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4292
4293 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4294 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4295
4296 if (cap->flags || (cap->args[0] & ~allowed_options))
2a31b9db
PB
4297 return -EINVAL;
4298 kvm->manual_dirty_log_protect = cap->args[0];
4299 return 0;
3c9bd400 4300 }
2a31b9db 4301#endif
acd05785
DM
4302 case KVM_CAP_HALT_POLL: {
4303 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4304 return -EINVAL;
4305
4306 kvm->max_halt_poll_ns = cap->args[0];
4307 return 0;
4308 }
fb04a1ed
PX
4309 case KVM_CAP_DIRTY_LOG_RING:
4310 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
e5d83c74
PB
4311 default:
4312 return kvm_vm_ioctl_enable_cap(kvm, cap);
4313 }
4314}
4315
fcfe1bae
JZ
4316static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4317 size_t size, loff_t *offset)
4318{
4319 struct kvm *kvm = file->private_data;
4320
4321 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4322 &kvm_vm_stats_desc[0], &kvm->stat,
4323 sizeof(kvm->stat), user_buffer, size, offset);
4324}
4325
4326static const struct file_operations kvm_vm_stats_fops = {
4327 .read = kvm_vm_stats_read,
4328 .llseek = noop_llseek,
4329};
4330
4331static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4332{
4333 int fd;
4334 struct file *file;
4335
4336 fd = get_unused_fd_flags(O_CLOEXEC);
4337 if (fd < 0)
4338 return fd;
4339
4340 file = anon_inode_getfile("kvm-vm-stats",
4341 &kvm_vm_stats_fops, kvm, O_RDONLY);
4342 if (IS_ERR(file)) {
4343 put_unused_fd(fd);
4344 return PTR_ERR(file);
4345 }
4346 file->f_mode |= FMODE_PREAD;
4347 fd_install(fd, file);
4348
4349 return fd;
4350}
4351
bccf2150
AK
4352static long kvm_vm_ioctl(struct file *filp,
4353 unsigned int ioctl, unsigned long arg)
4354{
4355 struct kvm *kvm = filp->private_data;
4356 void __user *argp = (void __user *)arg;
1fe779f8 4357 int r;
bccf2150 4358
0b8f1173 4359 if (kvm->mm != current->mm || kvm->vm_bugged)
6d4e4c4f 4360 return -EIO;
bccf2150
AK
4361 switch (ioctl) {
4362 case KVM_CREATE_VCPU:
4363 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
bccf2150 4364 break;
e5d83c74
PB
4365 case KVM_ENABLE_CAP: {
4366 struct kvm_enable_cap cap;
4367
4368 r = -EFAULT;
4369 if (copy_from_user(&cap, argp, sizeof(cap)))
4370 goto out;
4371 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4372 break;
4373 }
6fc138d2
IE
4374 case KVM_SET_USER_MEMORY_REGION: {
4375 struct kvm_userspace_memory_region kvm_userspace_mem;
4376
4377 r = -EFAULT;
4378 if (copy_from_user(&kvm_userspace_mem, argp,
893bdbf1 4379 sizeof(kvm_userspace_mem)))
6fc138d2
IE
4380 goto out;
4381
47ae31e2 4382 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
6aa8b732
AK
4383 break;
4384 }
4385 case KVM_GET_DIRTY_LOG: {
4386 struct kvm_dirty_log log;
4387
4388 r = -EFAULT;
893bdbf1 4389 if (copy_from_user(&log, argp, sizeof(log)))
6aa8b732 4390 goto out;
2c6f5df9 4391 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6aa8b732
AK
4392 break;
4393 }
2a31b9db
PB
4394#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4395 case KVM_CLEAR_DIRTY_LOG: {
4396 struct kvm_clear_dirty_log log;
4397
4398 r = -EFAULT;
4399 if (copy_from_user(&log, argp, sizeof(log)))
4400 goto out;
4401 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4402 break;
4403 }
4404#endif
4b4357e0 4405#ifdef CONFIG_KVM_MMIO
5f94c174
LV
4406 case KVM_REGISTER_COALESCED_MMIO: {
4407 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 4408
5f94c174 4409 r = -EFAULT;
893bdbf1 4410 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 4411 goto out;
5f94c174 4412 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5f94c174
LV
4413 break;
4414 }
4415 case KVM_UNREGISTER_COALESCED_MMIO: {
4416 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 4417
5f94c174 4418 r = -EFAULT;
893bdbf1 4419 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 4420 goto out;
5f94c174 4421 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5f94c174
LV
4422 break;
4423 }
4424#endif
721eecbf
GH
4425 case KVM_IRQFD: {
4426 struct kvm_irqfd data;
4427
4428 r = -EFAULT;
893bdbf1 4429 if (copy_from_user(&data, argp, sizeof(data)))
721eecbf 4430 goto out;
d4db2935 4431 r = kvm_irqfd(kvm, &data);
721eecbf
GH
4432 break;
4433 }
d34e6b17
GH
4434 case KVM_IOEVENTFD: {
4435 struct kvm_ioeventfd data;
4436
4437 r = -EFAULT;
893bdbf1 4438 if (copy_from_user(&data, argp, sizeof(data)))
d34e6b17
GH
4439 goto out;
4440 r = kvm_ioeventfd(kvm, &data);
4441 break;
4442 }
07975ad3
JK
4443#ifdef CONFIG_HAVE_KVM_MSI
4444 case KVM_SIGNAL_MSI: {
4445 struct kvm_msi msi;
4446
4447 r = -EFAULT;
893bdbf1 4448 if (copy_from_user(&msi, argp, sizeof(msi)))
07975ad3
JK
4449 goto out;
4450 r = kvm_send_userspace_msi(kvm, &msi);
4451 break;
4452 }
23d43cf9
CD
4453#endif
4454#ifdef __KVM_HAVE_IRQ_LINE
4455 case KVM_IRQ_LINE_STATUS:
4456 case KVM_IRQ_LINE: {
4457 struct kvm_irq_level irq_event;
4458
4459 r = -EFAULT;
893bdbf1 4460 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
23d43cf9
CD
4461 goto out;
4462
aa2fbe6d
YZ
4463 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4464 ioctl == KVM_IRQ_LINE_STATUS);
23d43cf9
CD
4465 if (r)
4466 goto out;
4467
4468 r = -EFAULT;
4469 if (ioctl == KVM_IRQ_LINE_STATUS) {
893bdbf1 4470 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
23d43cf9
CD
4471 goto out;
4472 }
4473
4474 r = 0;
4475 break;
4476 }
73880c80 4477#endif
aa8d5944
AG
4478#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4479 case KVM_SET_GSI_ROUTING: {
4480 struct kvm_irq_routing routing;
4481 struct kvm_irq_routing __user *urouting;
f8c1b85b 4482 struct kvm_irq_routing_entry *entries = NULL;
aa8d5944
AG
4483
4484 r = -EFAULT;
4485 if (copy_from_user(&routing, argp, sizeof(routing)))
4486 goto out;
4487 r = -EINVAL;
5c0aea0e
DH
4488 if (!kvm_arch_can_set_irq_routing(kvm))
4489 goto out;
caf1ff26 4490 if (routing.nr > KVM_MAX_IRQ_ROUTES)
aa8d5944
AG
4491 goto out;
4492 if (routing.flags)
4493 goto out;
f8c1b85b 4494 if (routing.nr) {
f8c1b85b 4495 urouting = argp;
7ec28e26
DE
4496 entries = vmemdup_user(urouting->entries,
4497 array_size(sizeof(*entries),
4498 routing.nr));
4499 if (IS_ERR(entries)) {
4500 r = PTR_ERR(entries);
4501 goto out;
4502 }
f8c1b85b 4503 }
aa8d5944
AG
4504 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4505 routing.flags);
7ec28e26 4506 kvfree(entries);
aa8d5944
AG
4507 break;
4508 }
4509#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
852b6d57
SW
4510 case KVM_CREATE_DEVICE: {
4511 struct kvm_create_device cd;
4512
4513 r = -EFAULT;
4514 if (copy_from_user(&cd, argp, sizeof(cd)))
4515 goto out;
4516
4517 r = kvm_ioctl_create_device(kvm, &cd);
4518 if (r)
4519 goto out;
4520
4521 r = -EFAULT;
4522 if (copy_to_user(argp, &cd, sizeof(cd)))
4523 goto out;
4524
4525 r = 0;
4526 break;
4527 }
92b591a4
AG
4528 case KVM_CHECK_EXTENSION:
4529 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4530 break;
fb04a1ed
PX
4531 case KVM_RESET_DIRTY_RINGS:
4532 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4533 break;
fcfe1bae
JZ
4534 case KVM_GET_STATS_FD:
4535 r = kvm_vm_ioctl_get_stats_fd(kvm);
4536 break;
f17abe9a 4537 default:
1fe779f8 4538 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
f17abe9a
AK
4539 }
4540out:
4541 return r;
4542}
4543
de8e5d74 4544#ifdef CONFIG_KVM_COMPAT
6ff5894c
AB
4545struct compat_kvm_dirty_log {
4546 __u32 slot;
4547 __u32 padding1;
4548 union {
4549 compat_uptr_t dirty_bitmap; /* one bit per page */
4550 __u64 padding2;
4551 };
4552};
4553
8750f9bb
PB
4554struct compat_kvm_clear_dirty_log {
4555 __u32 slot;
4556 __u32 num_pages;
4557 __u64 first_page;
4558 union {
4559 compat_uptr_t dirty_bitmap; /* one bit per page */
4560 __u64 padding2;
4561 };
4562};
4563
6ff5894c
AB
4564static long kvm_vm_compat_ioctl(struct file *filp,
4565 unsigned int ioctl, unsigned long arg)
4566{
4567 struct kvm *kvm = filp->private_data;
4568 int r;
4569
0b8f1173 4570 if (kvm->mm != current->mm || kvm->vm_bugged)
6ff5894c
AB
4571 return -EIO;
4572 switch (ioctl) {
8750f9bb
PB
4573#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4574 case KVM_CLEAR_DIRTY_LOG: {
4575 struct compat_kvm_clear_dirty_log compat_log;
4576 struct kvm_clear_dirty_log log;
4577
4578 if (copy_from_user(&compat_log, (void __user *)arg,
4579 sizeof(compat_log)))
4580 return -EFAULT;
4581 log.slot = compat_log.slot;
4582 log.num_pages = compat_log.num_pages;
4583 log.first_page = compat_log.first_page;
4584 log.padding2 = compat_log.padding2;
4585 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4586
4587 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4588 break;
4589 }
4590#endif
6ff5894c
AB
4591 case KVM_GET_DIRTY_LOG: {
4592 struct compat_kvm_dirty_log compat_log;
4593 struct kvm_dirty_log log;
4594
6ff5894c
AB
4595 if (copy_from_user(&compat_log, (void __user *)arg,
4596 sizeof(compat_log)))
f6a3b168 4597 return -EFAULT;
6ff5894c
AB
4598 log.slot = compat_log.slot;
4599 log.padding1 = compat_log.padding1;
4600 log.padding2 = compat_log.padding2;
4601 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4602
4603 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6ff5894c
AB
4604 break;
4605 }
4606 default:
4607 r = kvm_vm_ioctl(filp, ioctl, arg);
4608 }
6ff5894c
AB
4609 return r;
4610}
4611#endif
4612
3d3aab1b 4613static struct file_operations kvm_vm_fops = {
f17abe9a
AK
4614 .release = kvm_vm_release,
4615 .unlocked_ioctl = kvm_vm_ioctl,
6038f373 4616 .llseek = noop_llseek,
7ddfd3e0 4617 KVM_COMPAT(kvm_vm_compat_ioctl),
f17abe9a
AK
4618};
4619
54526d1f
NT
4620bool file_is_kvm(struct file *file)
4621{
4622 return file && file->f_op == &kvm_vm_fops;
4623}
4624EXPORT_SYMBOL_GPL(file_is_kvm);
4625
e08b9637 4626static int kvm_dev_ioctl_create_vm(unsigned long type)
f17abe9a 4627{
aac87636 4628 int r;
f17abe9a 4629 struct kvm *kvm;
506cfba9 4630 struct file *file;
f17abe9a 4631
e08b9637 4632 kvm = kvm_create_vm(type);
d6d28168
AK
4633 if (IS_ERR(kvm))
4634 return PTR_ERR(kvm);
4b4357e0 4635#ifdef CONFIG_KVM_MMIO
6ce5a090 4636 r = kvm_coalesced_mmio_init(kvm);
78588335
ME
4637 if (r < 0)
4638 goto put_kvm;
6ce5a090 4639#endif
506cfba9 4640 r = get_unused_fd_flags(O_CLOEXEC);
78588335
ME
4641 if (r < 0)
4642 goto put_kvm;
4643
fcfe1bae
JZ
4644 snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4645 "kvm-%d", task_pid_nr(current));
4646
506cfba9
AV
4647 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4648 if (IS_ERR(file)) {
4649 put_unused_fd(r);
78588335
ME
4650 r = PTR_ERR(file);
4651 goto put_kvm;
506cfba9 4652 }
536a6f88 4653
525df861
PB
4654 /*
4655 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4656 * already set, with ->release() being kvm_vm_release(). In error
4657 * cases it will be called by the final fput(file) and will take
4658 * care of doing kvm_put_kvm(kvm).
4659 */
536a6f88 4660 if (kvm_create_vm_debugfs(kvm, r) < 0) {
506cfba9
AV
4661 put_unused_fd(r);
4662 fput(file);
536a6f88
JF
4663 return -ENOMEM;
4664 }
286de8f6 4665 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
f17abe9a 4666
506cfba9 4667 fd_install(r, file);
aac87636 4668 return r;
78588335
ME
4669
4670put_kvm:
4671 kvm_put_kvm(kvm);
4672 return r;
f17abe9a
AK
4673}
4674
4675static long kvm_dev_ioctl(struct file *filp,
4676 unsigned int ioctl, unsigned long arg)
4677{
07c45a36 4678 long r = -EINVAL;
f17abe9a
AK
4679
4680 switch (ioctl) {
4681 case KVM_GET_API_VERSION:
f0fe5108
AK
4682 if (arg)
4683 goto out;
f17abe9a
AK
4684 r = KVM_API_VERSION;
4685 break;
4686 case KVM_CREATE_VM:
e08b9637 4687 r = kvm_dev_ioctl_create_vm(arg);
f17abe9a 4688 break;
018d00d2 4689 case KVM_CHECK_EXTENSION:
784aa3d7 4690 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5d308f45 4691 break;
07c45a36 4692 case KVM_GET_VCPU_MMAP_SIZE:
07c45a36
AK
4693 if (arg)
4694 goto out;
adb1ff46
AK
4695 r = PAGE_SIZE; /* struct kvm_run */
4696#ifdef CONFIG_X86
4697 r += PAGE_SIZE; /* pio data page */
5f94c174 4698#endif
4b4357e0 4699#ifdef CONFIG_KVM_MMIO
5f94c174 4700 r += PAGE_SIZE; /* coalesced mmio ring page */
adb1ff46 4701#endif
07c45a36 4702 break;
d4c9ff2d
FEL
4703 case KVM_TRACE_ENABLE:
4704 case KVM_TRACE_PAUSE:
4705 case KVM_TRACE_DISABLE:
2023a29c 4706 r = -EOPNOTSUPP;
d4c9ff2d 4707 break;
6aa8b732 4708 default:
043405e1 4709 return kvm_arch_dev_ioctl(filp, ioctl, arg);
6aa8b732
AK
4710 }
4711out:
4712 return r;
4713}
4714
6aa8b732 4715static struct file_operations kvm_chardev_ops = {
6aa8b732 4716 .unlocked_ioctl = kvm_dev_ioctl,
6038f373 4717 .llseek = noop_llseek,
7ddfd3e0 4718 KVM_COMPAT(kvm_dev_ioctl),
6aa8b732
AK
4719};
4720
4721static struct miscdevice kvm_dev = {
bbe4432e 4722 KVM_MINOR,
6aa8b732
AK
4723 "kvm",
4724 &kvm_chardev_ops,
4725};
4726
75b7127c 4727static void hardware_enable_nolock(void *junk)
1b6c0168
AK
4728{
4729 int cpu = raw_smp_processor_id();
10474ae8 4730 int r;
1b6c0168 4731
7f59f492 4732 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 4733 return;
10474ae8 4734
7f59f492 4735 cpumask_set_cpu(cpu, cpus_hardware_enabled);
10474ae8 4736
13a34e06 4737 r = kvm_arch_hardware_enable();
10474ae8
AG
4738
4739 if (r) {
4740 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4741 atomic_inc(&hardware_enable_failed);
1170adc6 4742 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
10474ae8 4743 }
1b6c0168
AK
4744}
4745
8c18b2d2 4746static int kvm_starting_cpu(unsigned int cpu)
75b7127c 4747{
4a937f96 4748 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
4749 if (kvm_usage_count)
4750 hardware_enable_nolock(NULL);
4a937f96 4751 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 4752 return 0;
75b7127c
TY
4753}
4754
4755static void hardware_disable_nolock(void *junk)
1b6c0168
AK
4756{
4757 int cpu = raw_smp_processor_id();
4758
7f59f492 4759 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 4760 return;
7f59f492 4761 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
13a34e06 4762 kvm_arch_hardware_disable();
1b6c0168
AK
4763}
4764
8c18b2d2 4765static int kvm_dying_cpu(unsigned int cpu)
75b7127c 4766{
4a937f96 4767 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
4768 if (kvm_usage_count)
4769 hardware_disable_nolock(NULL);
4a937f96 4770 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 4771 return 0;
75b7127c
TY
4772}
4773
10474ae8
AG
4774static void hardware_disable_all_nolock(void)
4775{
4776 BUG_ON(!kvm_usage_count);
4777
4778 kvm_usage_count--;
4779 if (!kvm_usage_count)
75b7127c 4780 on_each_cpu(hardware_disable_nolock, NULL, 1);
10474ae8
AG
4781}
4782
4783static void hardware_disable_all(void)
4784{
4a937f96 4785 raw_spin_lock(&kvm_count_lock);
10474ae8 4786 hardware_disable_all_nolock();
4a937f96 4787 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
4788}
4789
4790static int hardware_enable_all(void)
4791{
4792 int r = 0;
4793
4a937f96 4794 raw_spin_lock(&kvm_count_lock);
10474ae8
AG
4795
4796 kvm_usage_count++;
4797 if (kvm_usage_count == 1) {
4798 atomic_set(&hardware_enable_failed, 0);
75b7127c 4799 on_each_cpu(hardware_enable_nolock, NULL, 1);
10474ae8
AG
4800
4801 if (atomic_read(&hardware_enable_failed)) {
4802 hardware_disable_all_nolock();
4803 r = -EBUSY;
4804 }
4805 }
4806
4a937f96 4807 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
4808
4809 return r;
4810}
4811
9a2b85c6 4812static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
d77c26fc 4813 void *v)
9a2b85c6 4814{
8e1c1815
SY
4815 /*
4816 * Some (well, at least mine) BIOSes hang on reboot if
4817 * in vmx root mode.
4818 *
4819 * And Intel TXT required VMX off for all cpu when system shutdown.
4820 */
1170adc6 4821 pr_info("kvm: exiting hardware virtualization\n");
8e1c1815 4822 kvm_rebooting = true;
75b7127c 4823 on_each_cpu(hardware_disable_nolock, NULL, 1);
9a2b85c6
RR
4824 return NOTIFY_OK;
4825}
4826
4827static struct notifier_block kvm_reboot_notifier = {
4828 .notifier_call = kvm_reboot,
4829 .priority = 0,
4830};
4831
e93f8a0f 4832static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2eeb2e94
GH
4833{
4834 int i;
4835
4836 for (i = 0; i < bus->dev_count; i++) {
743eeb0b 4837 struct kvm_io_device *pos = bus->range[i].dev;
2eeb2e94
GH
4838
4839 kvm_iodevice_destructor(pos);
4840 }
e93f8a0f 4841 kfree(bus);
2eeb2e94
GH
4842}
4843
c21fbff1 4844static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
20e87b72 4845 const struct kvm_io_range *r2)
743eeb0b 4846{
8f4216c7
JW
4847 gpa_t addr1 = r1->addr;
4848 gpa_t addr2 = r2->addr;
4849
4850 if (addr1 < addr2)
743eeb0b 4851 return -1;
8f4216c7
JW
4852
4853 /* If r2->len == 0, match the exact address. If r2->len != 0,
4854 * accept any overlapping write. Any order is acceptable for
4855 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4856 * we process all of them.
4857 */
4858 if (r2->len) {
4859 addr1 += r1->len;
4860 addr2 += r2->len;
4861 }
4862
4863 if (addr1 > addr2)
743eeb0b 4864 return 1;
8f4216c7 4865
743eeb0b
SL
4866 return 0;
4867}
4868
a343c9b7
PB
4869static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4870{
c21fbff1 4871 return kvm_io_bus_cmp(p1, p2);
a343c9b7
PB
4872}
4873
39369f7a 4874static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
743eeb0b
SL
4875 gpa_t addr, int len)
4876{
4877 struct kvm_io_range *range, key;
4878 int off;
4879
4880 key = (struct kvm_io_range) {
4881 .addr = addr,
4882 .len = len,
4883 };
4884
4885 range = bsearch(&key, bus->range, bus->dev_count,
4886 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4887 if (range == NULL)
4888 return -ENOENT;
4889
4890 off = range - bus->range;
4891
c21fbff1 4892 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
743eeb0b
SL
4893 off--;
4894
4895 return off;
4896}
4897
e32edf4f 4898static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
126a5af5
CH
4899 struct kvm_io_range *range, const void *val)
4900{
4901 int idx;
4902
4903 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4904 if (idx < 0)
4905 return -EOPNOTSUPP;
4906
4907 while (idx < bus->dev_count &&
c21fbff1 4908 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 4909 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
4910 range->len, val))
4911 return idx;
4912 idx++;
4913 }
4914
4915 return -EOPNOTSUPP;
4916}
4917
bda9020e 4918/* kvm_io_bus_write - called under kvm->slots_lock */
e32edf4f 4919int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
bda9020e 4920 int len, const void *val)
2eeb2e94 4921{
90d83dc3 4922 struct kvm_io_bus *bus;
743eeb0b 4923 struct kvm_io_range range;
126a5af5 4924 int r;
743eeb0b
SL
4925
4926 range = (struct kvm_io_range) {
4927 .addr = addr,
4928 .len = len,
4929 };
90d83dc3 4930
e32edf4f 4931 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4932 if (!bus)
4933 return -ENOMEM;
e32edf4f 4934 r = __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
4935 return r < 0 ? r : 0;
4936}
a2420107 4937EXPORT_SYMBOL_GPL(kvm_io_bus_write);
126a5af5
CH
4938
4939/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
e32edf4f
NN
4940int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4941 gpa_t addr, int len, const void *val, long cookie)
126a5af5
CH
4942{
4943 struct kvm_io_bus *bus;
4944 struct kvm_io_range range;
4945
4946 range = (struct kvm_io_range) {
4947 .addr = addr,
4948 .len = len,
4949 };
4950
e32edf4f 4951 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4952 if (!bus)
4953 return -ENOMEM;
126a5af5
CH
4954
4955 /* First try the device referenced by cookie. */
4956 if ((cookie >= 0) && (cookie < bus->dev_count) &&
c21fbff1 4957 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
e32edf4f 4958 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
126a5af5
CH
4959 val))
4960 return cookie;
4961
4962 /*
4963 * cookie contained garbage; fall back to search and return the
4964 * correct cookie value.
4965 */
e32edf4f 4966 return __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
4967}
4968
e32edf4f
NN
4969static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4970 struct kvm_io_range *range, void *val)
126a5af5
CH
4971{
4972 int idx;
4973
4974 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
743eeb0b
SL
4975 if (idx < 0)
4976 return -EOPNOTSUPP;
4977
4978 while (idx < bus->dev_count &&
c21fbff1 4979 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 4980 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
4981 range->len, val))
4982 return idx;
743eeb0b
SL
4983 idx++;
4984 }
4985
bda9020e
MT
4986 return -EOPNOTSUPP;
4987}
2eeb2e94 4988
bda9020e 4989/* kvm_io_bus_read - called under kvm->slots_lock */
e32edf4f 4990int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 4991 int len, void *val)
bda9020e 4992{
90d83dc3 4993 struct kvm_io_bus *bus;
743eeb0b 4994 struct kvm_io_range range;
126a5af5 4995 int r;
743eeb0b
SL
4996
4997 range = (struct kvm_io_range) {
4998 .addr = addr,
4999 .len = len,
5000 };
e93f8a0f 5001
e32edf4f 5002 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
5003 if (!bus)
5004 return -ENOMEM;
e32edf4f 5005 r = __kvm_io_bus_read(vcpu, bus, &range, val);
126a5af5
CH
5006 return r < 0 ? r : 0;
5007}
743eeb0b 5008
79fac95e 5009/* Caller must hold slots_lock. */
743eeb0b
SL
5010int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5011 int len, struct kvm_io_device *dev)
6c474694 5012{
d4c67a7a 5013 int i;
e93f8a0f 5014 struct kvm_io_bus *new_bus, *bus;
d4c67a7a 5015 struct kvm_io_range range;
090b7aff 5016
4a12f951 5017 bus = kvm_get_bus(kvm, bus_idx);
90db1043
DH
5018 if (!bus)
5019 return -ENOMEM;
5020
6ea34c9b
AK
5021 /* exclude ioeventfd which is limited by maximum fd */
5022 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
090b7aff 5023 return -ENOSPC;
2eeb2e94 5024
90952cd3 5025 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
b12ce36a 5026 GFP_KERNEL_ACCOUNT);
e93f8a0f
MT
5027 if (!new_bus)
5028 return -ENOMEM;
d4c67a7a
GH
5029
5030 range = (struct kvm_io_range) {
5031 .addr = addr,
5032 .len = len,
5033 .dev = dev,
5034 };
5035
5036 for (i = 0; i < bus->dev_count; i++)
5037 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5038 break;
5039
5040 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5041 new_bus->dev_count++;
5042 new_bus->range[i] = range;
5043 memcpy(new_bus->range + i + 1, bus->range + i,
5044 (bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f
MT
5045 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5046 synchronize_srcu_expedited(&kvm->srcu);
5047 kfree(bus);
090b7aff
GH
5048
5049 return 0;
5050}
5051
5d3c4c79
SC
5052int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5053 struct kvm_io_device *dev)
090b7aff 5054{
f6588660 5055 int i, j;
e93f8a0f 5056 struct kvm_io_bus *new_bus, *bus;
090b7aff 5057
7c896d37
SC
5058 lockdep_assert_held(&kvm->slots_lock);
5059
4a12f951 5060 bus = kvm_get_bus(kvm, bus_idx);
df630b8c 5061 if (!bus)
5d3c4c79 5062 return 0;
df630b8c 5063
7c896d37 5064 for (i = 0; i < bus->dev_count; i++) {
a1300716 5065 if (bus->range[i].dev == dev) {
090b7aff
GH
5066 break;
5067 }
7c896d37 5068 }
e93f8a0f 5069
90db1043 5070 if (i == bus->dev_count)
5d3c4c79 5071 return 0;
a1300716 5072
90952cd3 5073 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
b12ce36a 5074 GFP_KERNEL_ACCOUNT);
f6588660 5075 if (new_bus) {
871c433b 5076 memcpy(new_bus, bus, struct_size(bus, range, i));
f6588660
RK
5077 new_bus->dev_count--;
5078 memcpy(new_bus->range + i, bus->range + i + 1,
871c433b 5079 flex_array_size(new_bus, range, new_bus->dev_count - i));
2ee37574
SC
5080 }
5081
5082 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5083 synchronize_srcu_expedited(&kvm->srcu);
5084
5085 /* Destroy the old bus _after_ installing the (null) bus. */
5086 if (!new_bus) {
90db1043 5087 pr_err("kvm: failed to shrink bus, removing it completely\n");
f6588660
RK
5088 for (j = 0; j < bus->dev_count; j++) {
5089 if (j == i)
5090 continue;
5091 kvm_iodevice_destructor(bus->range[j].dev);
5092 }
90db1043 5093 }
a1300716 5094
e93f8a0f 5095 kfree(bus);
5d3c4c79 5096 return new_bus ? 0 : -ENOMEM;
2eeb2e94
GH
5097}
5098
8a39d006
AP
5099struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5100 gpa_t addr)
5101{
5102 struct kvm_io_bus *bus;
5103 int dev_idx, srcu_idx;
5104 struct kvm_io_device *iodev = NULL;
5105
5106 srcu_idx = srcu_read_lock(&kvm->srcu);
5107
5108 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
90db1043
DH
5109 if (!bus)
5110 goto out_unlock;
8a39d006
AP
5111
5112 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5113 if (dev_idx < 0)
5114 goto out_unlock;
5115
5116 iodev = bus->range[dev_idx].dev;
5117
5118out_unlock:
5119 srcu_read_unlock(&kvm->srcu, srcu_idx);
5120
5121 return iodev;
5122}
5123EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5124
536a6f88
JF
5125static int kvm_debugfs_open(struct inode *inode, struct file *file,
5126 int (*get)(void *, u64 *), int (*set)(void *, u64),
5127 const char *fmt)
5128{
5129 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5130 inode->i_private;
5131
605c7130
PX
5132 /*
5133 * The debugfs files are a reference to the kvm struct which
5134 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5135 * avoids the race between open and the removal of the debugfs directory.
536a6f88 5136 */
605c7130 5137 if (!kvm_get_kvm_safe(stat_data->kvm))
536a6f88
JF
5138 return -ENOENT;
5139
833b45de 5140 if (simple_attr_open(inode, file, get,
bc9e9e67 5141 kvm_stats_debugfs_mode(stat_data->desc) & 0222
09cbcef6
MP
5142 ? set : NULL,
5143 fmt)) {
536a6f88
JF
5144 kvm_put_kvm(stat_data->kvm);
5145 return -ENOMEM;
5146 }
5147
5148 return 0;
5149}
5150
5151static int kvm_debugfs_release(struct inode *inode, struct file *file)
5152{
5153 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5154 inode->i_private;
5155
5156 simple_attr_release(inode, file);
5157 kvm_put_kvm(stat_data->kvm);
5158
5159 return 0;
5160}
5161
09cbcef6 5162static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
536a6f88 5163{
bc9e9e67 5164 *val = *(u64 *)((void *)(&kvm->stat) + offset);
536a6f88 5165
09cbcef6
MP
5166 return 0;
5167}
5168
5169static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5170{
bc9e9e67 5171 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
536a6f88
JF
5172
5173 return 0;
5174}
5175
09cbcef6 5176static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
ce35ef27 5177{
09cbcef6
MP
5178 int i;
5179 struct kvm_vcpu *vcpu;
ce35ef27 5180
09cbcef6 5181 *val = 0;
ce35ef27 5182
09cbcef6 5183 kvm_for_each_vcpu(i, vcpu, kvm)
bc9e9e67 5184 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
ce35ef27
SJS
5185
5186 return 0;
5187}
5188
09cbcef6 5189static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
536a6f88 5190{
09cbcef6
MP
5191 int i;
5192 struct kvm_vcpu *vcpu;
536a6f88 5193
09cbcef6 5194 kvm_for_each_vcpu(i, vcpu, kvm)
bc9e9e67 5195 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
09cbcef6
MP
5196
5197 return 0;
5198}
536a6f88 5199
09cbcef6 5200static int kvm_stat_data_get(void *data, u64 *val)
536a6f88 5201{
09cbcef6 5202 int r = -EFAULT;
536a6f88 5203 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
536a6f88 5204
bc9e9e67 5205 switch (stat_data->kind) {
09cbcef6
MP
5206 case KVM_STAT_VM:
5207 r = kvm_get_stat_per_vm(stat_data->kvm,
bc9e9e67 5208 stat_data->desc->desc.offset, val);
09cbcef6
MP
5209 break;
5210 case KVM_STAT_VCPU:
5211 r = kvm_get_stat_per_vcpu(stat_data->kvm,
bc9e9e67 5212 stat_data->desc->desc.offset, val);
09cbcef6
MP
5213 break;
5214 }
536a6f88 5215
09cbcef6 5216 return r;
536a6f88
JF
5217}
5218
09cbcef6 5219static int kvm_stat_data_clear(void *data, u64 val)
ce35ef27 5220{
09cbcef6 5221 int r = -EFAULT;
ce35ef27 5222 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
ce35ef27
SJS
5223
5224 if (val)
5225 return -EINVAL;
5226
bc9e9e67 5227 switch (stat_data->kind) {
09cbcef6
MP
5228 case KVM_STAT_VM:
5229 r = kvm_clear_stat_per_vm(stat_data->kvm,
bc9e9e67 5230 stat_data->desc->desc.offset);
09cbcef6
MP
5231 break;
5232 case KVM_STAT_VCPU:
5233 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
bc9e9e67 5234 stat_data->desc->desc.offset);
09cbcef6
MP
5235 break;
5236 }
ce35ef27 5237
09cbcef6 5238 return r;
ce35ef27
SJS
5239}
5240
09cbcef6 5241static int kvm_stat_data_open(struct inode *inode, struct file *file)
536a6f88
JF
5242{
5243 __simple_attr_check_format("%llu\n", 0ull);
09cbcef6
MP
5244 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5245 kvm_stat_data_clear, "%llu\n");
536a6f88
JF
5246}
5247
09cbcef6
MP
5248static const struct file_operations stat_fops_per_vm = {
5249 .owner = THIS_MODULE,
5250 .open = kvm_stat_data_open,
536a6f88 5251 .release = kvm_debugfs_release,
09cbcef6
MP
5252 .read = simple_attr_read,
5253 .write = simple_attr_write,
5254 .llseek = no_llseek,
536a6f88
JF
5255};
5256
8b88b099 5257static int vm_stat_get(void *_offset, u64 *val)
ba1389b7
AK
5258{
5259 unsigned offset = (long)_offset;
ba1389b7 5260 struct kvm *kvm;
536a6f88 5261 u64 tmp_val;
ba1389b7 5262
8b88b099 5263 *val = 0;
0d9ce162 5264 mutex_lock(&kvm_lock);
536a6f88 5265 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5266 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
536a6f88
JF
5267 *val += tmp_val;
5268 }
0d9ce162 5269 mutex_unlock(&kvm_lock);
8b88b099 5270 return 0;
ba1389b7
AK
5271}
5272
ce35ef27
SJS
5273static int vm_stat_clear(void *_offset, u64 val)
5274{
5275 unsigned offset = (long)_offset;
5276 struct kvm *kvm;
ce35ef27
SJS
5277
5278 if (val)
5279 return -EINVAL;
5280
0d9ce162 5281 mutex_lock(&kvm_lock);
ce35ef27 5282 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5283 kvm_clear_stat_per_vm(kvm, offset);
ce35ef27 5284 }
0d9ce162 5285 mutex_unlock(&kvm_lock);
ce35ef27
SJS
5286
5287 return 0;
5288}
5289
5290DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
bc9e9e67 5291DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
ba1389b7 5292
8b88b099 5293static int vcpu_stat_get(void *_offset, u64 *val)
1165f5fe
AK
5294{
5295 unsigned offset = (long)_offset;
1165f5fe 5296 struct kvm *kvm;
536a6f88 5297 u64 tmp_val;
1165f5fe 5298
8b88b099 5299 *val = 0;
0d9ce162 5300 mutex_lock(&kvm_lock);
536a6f88 5301 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5302 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
536a6f88
JF
5303 *val += tmp_val;
5304 }
0d9ce162 5305 mutex_unlock(&kvm_lock);
8b88b099 5306 return 0;
1165f5fe
AK
5307}
5308
ce35ef27
SJS
5309static int vcpu_stat_clear(void *_offset, u64 val)
5310{
5311 unsigned offset = (long)_offset;
5312 struct kvm *kvm;
ce35ef27
SJS
5313
5314 if (val)
5315 return -EINVAL;
5316
0d9ce162 5317 mutex_lock(&kvm_lock);
ce35ef27 5318 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5319 kvm_clear_stat_per_vcpu(kvm, offset);
ce35ef27 5320 }
0d9ce162 5321 mutex_unlock(&kvm_lock);
ce35ef27
SJS
5322
5323 return 0;
5324}
5325
5326DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5327 "%llu\n");
bc9e9e67 5328DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
1165f5fe 5329
286de8f6
CI
5330static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5331{
5332 struct kobj_uevent_env *env;
286de8f6
CI
5333 unsigned long long created, active;
5334
5335 if (!kvm_dev.this_device || !kvm)
5336 return;
5337
0d9ce162 5338 mutex_lock(&kvm_lock);
286de8f6
CI
5339 if (type == KVM_EVENT_CREATE_VM) {
5340 kvm_createvm_count++;
5341 kvm_active_vms++;
5342 } else if (type == KVM_EVENT_DESTROY_VM) {
5343 kvm_active_vms--;
5344 }
5345 created = kvm_createvm_count;
5346 active = kvm_active_vms;
0d9ce162 5347 mutex_unlock(&kvm_lock);
286de8f6 5348
b12ce36a 5349 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
286de8f6
CI
5350 if (!env)
5351 return;
5352
5353 add_uevent_var(env, "CREATED=%llu", created);
5354 add_uevent_var(env, "COUNT=%llu", active);
5355
fdeaf7e3 5356 if (type == KVM_EVENT_CREATE_VM) {
286de8f6 5357 add_uevent_var(env, "EVENT=create");
fdeaf7e3
CI
5358 kvm->userspace_pid = task_pid_nr(current);
5359 } else if (type == KVM_EVENT_DESTROY_VM) {
286de8f6 5360 add_uevent_var(env, "EVENT=destroy");
fdeaf7e3
CI
5361 }
5362 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
286de8f6 5363
85cd39af 5364 if (kvm->debugfs_dentry) {
b12ce36a 5365 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
fdeaf7e3
CI
5366
5367 if (p) {
5368 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5369 if (!IS_ERR(tmp))
5370 add_uevent_var(env, "STATS_PATH=%s", tmp);
5371 kfree(p);
286de8f6
CI
5372 }
5373 }
5374 /* no need for checks, since we are adding at most only 5 keys */
5375 env->envp[env->envp_idx++] = NULL;
5376 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5377 kfree(env);
286de8f6
CI
5378}
5379
929f45e3 5380static void kvm_init_debug(void)
6aa8b732 5381{
bc9e9e67
JZ
5382 const struct file_operations *fops;
5383 const struct _kvm_stats_desc *pdesc;
5384 int i;
6aa8b732 5385
76f7c879 5386 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4f69b680 5387
bc9e9e67
JZ
5388 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5389 pdesc = &kvm_vm_stats_desc[i];
5390 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5391 fops = &vm_stat_fops;
5392 else
5393 fops = &vm_stat_readonly_fops;
5394 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5395 kvm_debugfs_dir,
5396 (void *)(long)pdesc->desc.offset, fops);
5397 }
5398
5399 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5400 pdesc = &kvm_vcpu_stats_desc[i];
5401 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5402 fops = &vcpu_stat_fops;
5403 else
5404 fops = &vcpu_stat_readonly_fops;
5405 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5406 kvm_debugfs_dir,
5407 (void *)(long)pdesc->desc.offset, fops);
4f69b680 5408 }
6aa8b732
AK
5409}
5410
fb3600cc 5411static int kvm_suspend(void)
59ae6c6b 5412{
10474ae8 5413 if (kvm_usage_count)
75b7127c 5414 hardware_disable_nolock(NULL);
59ae6c6b
AK
5415 return 0;
5416}
5417
fb3600cc 5418static void kvm_resume(void)
59ae6c6b 5419{
ca84d1a2 5420 if (kvm_usage_count) {
2eb06c30
WL
5421#ifdef CONFIG_LOCKDEP
5422 WARN_ON(lockdep_is_held(&kvm_count_lock));
5423#endif
75b7127c 5424 hardware_enable_nolock(NULL);
ca84d1a2 5425 }
59ae6c6b
AK
5426}
5427
fb3600cc 5428static struct syscore_ops kvm_syscore_ops = {
59ae6c6b
AK
5429 .suspend = kvm_suspend,
5430 .resume = kvm_resume,
5431};
5432
15ad7146
AK
5433static inline
5434struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5435{
5436 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5437}
5438
5439static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5440{
5441 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
f95ef0cd 5442
046ddeed 5443 WRITE_ONCE(vcpu->preempted, false);
d73eb57b 5444 WRITE_ONCE(vcpu->ready, false);
15ad7146 5445
7495e22b 5446 __this_cpu_write(kvm_running_vcpu, vcpu);
e790d9ef 5447 kvm_arch_sched_in(vcpu, cpu);
e9b11c17 5448 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146
AK
5449}
5450
5451static void kvm_sched_out(struct preempt_notifier *pn,
5452 struct task_struct *next)
5453{
5454 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5455
3ba9f93b 5456 if (current->on_rq) {
046ddeed 5457 WRITE_ONCE(vcpu->preempted, true);
d73eb57b
WL
5458 WRITE_ONCE(vcpu->ready, true);
5459 }
e9b11c17 5460 kvm_arch_vcpu_put(vcpu);
7495e22b
PB
5461 __this_cpu_write(kvm_running_vcpu, NULL);
5462}
5463
5464/**
5465 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
1f03b2bc
MZ
5466 *
5467 * We can disable preemption locally around accessing the per-CPU variable,
5468 * and use the resolved vcpu pointer after enabling preemption again,
5469 * because even if the current thread is migrated to another CPU, reading
5470 * the per-CPU value later will give us the same value as we update the
5471 * per-CPU variable in the preempt notifier handlers.
7495e22b
PB
5472 */
5473struct kvm_vcpu *kvm_get_running_vcpu(void)
5474{
1f03b2bc
MZ
5475 struct kvm_vcpu *vcpu;
5476
5477 preempt_disable();
5478 vcpu = __this_cpu_read(kvm_running_vcpu);
5479 preempt_enable();
5480
5481 return vcpu;
7495e22b 5482}
379a3c8e 5483EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
7495e22b
PB
5484
5485/**
5486 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5487 */
5488struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5489{
5490 return &kvm_running_vcpu;
15ad7146
AK
5491}
5492
b9904085
SC
5493struct kvm_cpu_compat_check {
5494 void *opaque;
5495 int *ret;
5496};
5497
5498static void check_processor_compat(void *data)
f257d6dc 5499{
b9904085
SC
5500 struct kvm_cpu_compat_check *c = data;
5501
5502 *c->ret = kvm_arch_check_processor_compat(c->opaque);
f257d6dc
SC
5503}
5504
0ee75bea 5505int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
c16f862d 5506 struct module *module)
6aa8b732 5507{
b9904085 5508 struct kvm_cpu_compat_check c;
6aa8b732 5509 int r;
002c7f7c 5510 int cpu;
6aa8b732 5511
f8c16bba
ZX
5512 r = kvm_arch_init(opaque);
5513 if (r)
d2308784 5514 goto out_fail;
cb498ea2 5515
7dac16c3
AH
5516 /*
5517 * kvm_arch_init makes sure there's at most one caller
5518 * for architectures that support multiple implementations,
5519 * like intel and amd on x86.
36343f6e
PB
5520 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5521 * conflicts in case kvm is already setup for another implementation.
7dac16c3 5522 */
36343f6e
PB
5523 r = kvm_irqfd_init();
5524 if (r)
5525 goto out_irqfd;
7dac16c3 5526
8437a617 5527 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
7f59f492
RR
5528 r = -ENOMEM;
5529 goto out_free_0;
5530 }
5531
b9904085 5532 r = kvm_arch_hardware_setup(opaque);
6aa8b732 5533 if (r < 0)
faf0be22 5534 goto out_free_1;
6aa8b732 5535
b9904085
SC
5536 c.ret = &r;
5537 c.opaque = opaque;
002c7f7c 5538 for_each_online_cpu(cpu) {
b9904085 5539 smp_call_function_single(cpu, check_processor_compat, &c, 1);
002c7f7c 5540 if (r < 0)
faf0be22 5541 goto out_free_2;
002c7f7c
YS
5542 }
5543
73c1b41e 5544 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
8c18b2d2 5545 kvm_starting_cpu, kvm_dying_cpu);
774c47f1 5546 if (r)
d2308784 5547 goto out_free_2;
6aa8b732
AK
5548 register_reboot_notifier(&kvm_reboot_notifier);
5549
c16f862d 5550 /* A kmem cache lets us meet the alignment requirements of fx_save. */
0ee75bea
AK
5551 if (!vcpu_align)
5552 vcpu_align = __alignof__(struct kvm_vcpu);
46515736
PB
5553 kvm_vcpu_cache =
5554 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5555 SLAB_ACCOUNT,
5556 offsetof(struct kvm_vcpu, arch),
ce55c049
JZ
5557 offsetofend(struct kvm_vcpu, stats_id)
5558 - offsetof(struct kvm_vcpu, arch),
46515736 5559 NULL);
c16f862d
RR
5560 if (!kvm_vcpu_cache) {
5561 r = -ENOMEM;
fb3600cc 5562 goto out_free_3;
c16f862d
RR
5563 }
5564
baff59cc
VK
5565 for_each_possible_cpu(cpu) {
5566 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5567 GFP_KERNEL, cpu_to_node(cpu))) {
5568 r = -ENOMEM;
5569 goto out_free_4;
5570 }
5571 }
5572
af585b92
GN
5573 r = kvm_async_pf_init();
5574 if (r)
baff59cc 5575 goto out_free_5;
af585b92 5576
6aa8b732 5577 kvm_chardev_ops.owner = module;
3d3aab1b
CB
5578 kvm_vm_fops.owner = module;
5579 kvm_vcpu_fops.owner = module;
6aa8b732
AK
5580
5581 r = misc_register(&kvm_dev);
5582 if (r) {
1170adc6 5583 pr_err("kvm: misc device register failed\n");
af585b92 5584 goto out_unreg;
6aa8b732
AK
5585 }
5586
fb3600cc
RW
5587 register_syscore_ops(&kvm_syscore_ops);
5588
15ad7146
AK
5589 kvm_preempt_ops.sched_in = kvm_sched_in;
5590 kvm_preempt_ops.sched_out = kvm_sched_out;
5591
929f45e3 5592 kvm_init_debug();
0ea4ed8e 5593
3c3c29fd
PB
5594 r = kvm_vfio_ops_init();
5595 WARN_ON(r);
5596
c7addb90 5597 return 0;
6aa8b732 5598
af585b92
GN
5599out_unreg:
5600 kvm_async_pf_deinit();
baff59cc
VK
5601out_free_5:
5602 for_each_possible_cpu(cpu)
5603 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5604out_free_4:
c16f862d 5605 kmem_cache_destroy(kvm_vcpu_cache);
d2308784 5606out_free_3:
6aa8b732 5607 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 5608 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
d2308784 5609out_free_2:
e9b11c17 5610 kvm_arch_hardware_unsetup();
faf0be22 5611out_free_1:
7f59f492 5612 free_cpumask_var(cpus_hardware_enabled);
d2308784 5613out_free_0:
a0f155e9 5614 kvm_irqfd_exit();
36343f6e 5615out_irqfd:
7dac16c3
AH
5616 kvm_arch_exit();
5617out_fail:
6aa8b732
AK
5618 return r;
5619}
cb498ea2 5620EXPORT_SYMBOL_GPL(kvm_init);
6aa8b732 5621
cb498ea2 5622void kvm_exit(void)
6aa8b732 5623{
baff59cc
VK
5624 int cpu;
5625
4bd33b56 5626 debugfs_remove_recursive(kvm_debugfs_dir);
6aa8b732 5627 misc_deregister(&kvm_dev);
baff59cc
VK
5628 for_each_possible_cpu(cpu)
5629 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
c16f862d 5630 kmem_cache_destroy(kvm_vcpu_cache);
af585b92 5631 kvm_async_pf_deinit();
fb3600cc 5632 unregister_syscore_ops(&kvm_syscore_ops);
6aa8b732 5633 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 5634 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
75b7127c 5635 on_each_cpu(hardware_disable_nolock, NULL, 1);
e9b11c17 5636 kvm_arch_hardware_unsetup();
f8c16bba 5637 kvm_arch_exit();
a0f155e9 5638 kvm_irqfd_exit();
7f59f492 5639 free_cpumask_var(cpus_hardware_enabled);
571ee1b6 5640 kvm_vfio_ops_exit();
6aa8b732 5641}
cb498ea2 5642EXPORT_SYMBOL_GPL(kvm_exit);
c57c8046
JS
5643
5644struct kvm_vm_worker_thread_context {
5645 struct kvm *kvm;
5646 struct task_struct *parent;
5647 struct completion init_done;
5648 kvm_vm_thread_fn_t thread_fn;
5649 uintptr_t data;
5650 int err;
5651};
5652
5653static int kvm_vm_worker_thread(void *context)
5654{
5655 /*
5656 * The init_context is allocated on the stack of the parent thread, so
5657 * we have to locally copy anything that is needed beyond initialization
5658 */
5659 struct kvm_vm_worker_thread_context *init_context = context;
5660 struct kvm *kvm = init_context->kvm;
5661 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5662 uintptr_t data = init_context->data;
5663 int err;
5664
5665 err = kthread_park(current);
5666 /* kthread_park(current) is never supposed to return an error */
5667 WARN_ON(err != 0);
5668 if (err)
5669 goto init_complete;
5670
5671 err = cgroup_attach_task_all(init_context->parent, current);
5672 if (err) {
5673 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5674 __func__, err);
5675 goto init_complete;
5676 }
5677
5678 set_user_nice(current, task_nice(init_context->parent));
5679
5680init_complete:
5681 init_context->err = err;
5682 complete(&init_context->init_done);
5683 init_context = NULL;
5684
5685 if (err)
5686 return err;
5687
5688 /* Wait to be woken up by the spawner before proceeding. */
5689 kthread_parkme();
5690
5691 if (!kthread_should_stop())
5692 err = thread_fn(kvm, data);
5693
5694 return err;
5695}
5696
5697int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5698 uintptr_t data, const char *name,
5699 struct task_struct **thread_ptr)
5700{
5701 struct kvm_vm_worker_thread_context init_context = {};
5702 struct task_struct *thread;
5703
5704 *thread_ptr = NULL;
5705 init_context.kvm = kvm;
5706 init_context.parent = current;
5707 init_context.thread_fn = thread_fn;
5708 init_context.data = data;
5709 init_completion(&init_context.init_done);
5710
5711 thread = kthread_run(kvm_vm_worker_thread, &init_context,
5712 "%s-%d", name, task_pid_nr(current));
5713 if (IS_ERR(thread))
5714 return PTR_ERR(thread);
5715
5716 /* kthread_run is never supposed to return NULL */
5717 WARN_ON(thread == NULL);
5718
5719 wait_for_completion(&init_context.init_done);
5720
5721 if (!init_context.err)
5722 *thread_ptr = thread;
5723
5724 return init_context.err;
5725}