]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - virt/kvm/kvm_main.c
KVM: Explicitly free allocated-but-unused dirty bitmap
[thirdparty/kernel/stable.git] / virt / kvm / kvm_main.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9611c187 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
6aa8b732
AK
14 */
15
af669ac6 16#include <kvm/iodev.h>
6aa8b732 17
edf88417 18#include <linux/kvm_host.h>
6aa8b732
AK
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
6aa8b732 22#include <linux/percpu.h>
6aa8b732
AK
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
6aa8b732 26#include <linux/reboot.h>
6aa8b732
AK
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
fb3600cc 30#include <linux/syscore_ops.h>
774c47f1 31#include <linux/cpu.h>
174cd4b1 32#include <linux/sched/signal.h>
6e84f315 33#include <linux/sched/mm.h>
03441a34 34#include <linux/sched/stat.h>
d9e368d6
AK
35#include <linux/cpumask.h>
36#include <linux/smp.h>
d6d28168 37#include <linux/anon_inodes.h>
04d2cc77 38#include <linux/profile.h>
7aa81cc0 39#include <linux/kvm_para.h>
6fc138d2 40#include <linux/pagemap.h>
8d4e1288 41#include <linux/mman.h>
35149e21 42#include <linux/swap.h>
e56d532f 43#include <linux/bitops.h>
547de29e 44#include <linux/spinlock.h>
6ff5894c 45#include <linux/compat.h>
bc6678a3 46#include <linux/srcu.h>
8f0b1ab6 47#include <linux/hugetlb.h>
5a0e3ad6 48#include <linux/slab.h>
743eeb0b
SL
49#include <linux/sort.h>
50#include <linux/bsearch.h>
c011d23b 51#include <linux/io.h>
2eb06c30 52#include <linux/lockdep.h>
c57c8046 53#include <linux/kthread.h>
6aa8b732 54
e495606d 55#include <asm/processor.h>
2ea75be3 56#include <asm/ioctl.h>
7c0f6ba6 57#include <linux/uaccess.h>
3e021bf5 58#include <asm/pgtable.h>
6aa8b732 59
5f94c174 60#include "coalesced_mmio.h"
af585b92 61#include "async_pf.h"
3c3c29fd 62#include "vfio.h"
5f94c174 63
229456fc
MT
64#define CREATE_TRACE_POINTS
65#include <trace/events/kvm.h>
66
536a6f88
JF
67/* Worst case buffer size needed for holding an integer. */
68#define ITOA_MAX_LEN 12
69
6aa8b732
AK
70MODULE_AUTHOR("Qumranet");
71MODULE_LICENSE("GPL");
72
920552b2 73/* Architectures should define their poll value according to the halt latency */
ec76d819 74unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
039c5d1b 75module_param(halt_poll_ns, uint, 0644);
ec76d819 76EXPORT_SYMBOL_GPL(halt_poll_ns);
f7819512 77
aca6ff29 78/* Default doubles per-vcpu halt_poll_ns. */
ec76d819 79unsigned int halt_poll_ns_grow = 2;
039c5d1b 80module_param(halt_poll_ns_grow, uint, 0644);
ec76d819 81EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
aca6ff29 82
49113d36
NW
83/* The start value to grow halt_poll_ns from */
84unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85module_param(halt_poll_ns_grow_start, uint, 0644);
86EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
aca6ff29 88/* Default resets per-vcpu halt_poll_ns . */
ec76d819 89unsigned int halt_poll_ns_shrink;
039c5d1b 90module_param(halt_poll_ns_shrink, uint, 0644);
ec76d819 91EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
aca6ff29 92
fa40a821
MT
93/*
94 * Ordering of locks:
95 *
b7d409de 96 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
fa40a821
MT
97 */
98
0d9ce162 99DEFINE_MUTEX(kvm_lock);
4a937f96 100static DEFINE_RAW_SPINLOCK(kvm_count_lock);
e9b11c17 101LIST_HEAD(vm_list);
133de902 102
7f59f492 103static cpumask_var_t cpus_hardware_enabled;
f4fee932 104static int kvm_usage_count;
10474ae8 105static atomic_t hardware_enable_failed;
1b6c0168 106
aaba298c 107static struct kmem_cache *kvm_vcpu_cache;
1165f5fe 108
15ad7146 109static __read_mostly struct preempt_ops kvm_preempt_ops;
7495e22b 110static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
15ad7146 111
76f7c879 112struct dentry *kvm_debugfs_dir;
e23a808b 113EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
6aa8b732 114
536a6f88 115static int kvm_debugfs_num_entries;
09cbcef6 116static const struct file_operations stat_fops_per_vm;
536a6f88 117
bccf2150
AK
118static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
de8e5d74 120#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
121static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg);
7ddfd3e0
MZ
123#define KVM_COMPAT(c) .compat_ioctl = (c)
124#else
9cb09e7c
MZ
125/*
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 * passed to a compat task, let the ioctls fail.
131 */
7ddfd3e0
MZ
132static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 unsigned long arg) { return -EINVAL; }
b9876e6d
MZ
134
135static int kvm_no_compat_open(struct inode *inode, struct file *file)
136{
137 return is_compat_task() ? -ENODEV : 0;
138}
139#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140 .open = kvm_no_compat_open
1dda606c 141#endif
10474ae8
AG
142static int hardware_enable_all(void);
143static void hardware_disable_all(void);
bccf2150 144
e93f8a0f 145static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
7940876e 146
bc009e43 147static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
e93f8a0f 148
52480137 149__visible bool kvm_rebooting;
b7c4145b 150EXPORT_SYMBOL_GPL(kvm_rebooting);
4ecac3fd 151
54dee993
MT
152static bool largepages_enabled = true;
153
286de8f6
CI
154#define KVM_EVENT_CREATE_VM 0
155#define KVM_EVENT_DESTROY_VM 1
156static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157static unsigned long long kvm_createvm_count;
158static unsigned long long kvm_active_vms;
159
93065ac7
MH
160__weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 unsigned long start, unsigned long end, bool blockable)
b1394e74 162{
93065ac7 163 return 0;
b1394e74
RK
164}
165
a78986aa
SC
166bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
167{
168 /*
169 * The metadata used by is_zone_device_page() to determine whether or
170 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171 * the device has been pinned, e.g. by get_user_pages(). WARN if the
172 * page_count() is zero to help detect bad usage of this helper.
173 */
174 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
175 return false;
176
177 return is_zone_device_page(pfn_to_page(pfn));
178}
179
ba049e93 180bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
cbff90a7 181{
a78986aa
SC
182 /*
183 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
184 * perspective they are "normal" pages, albeit with slightly different
185 * usage rules.
186 */
11feeb49 187 if (pfn_valid(pfn))
a78986aa 188 return PageReserved(pfn_to_page(pfn)) &&
7df003c8 189 !is_zero_pfn(pfn) &&
a78986aa 190 !kvm_is_zone_device_pfn(pfn);
cbff90a7
BAY
191
192 return true;
193}
194
005ba37c
SC
195bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
196{
197 struct page *page = pfn_to_page(pfn);
198
199 if (!PageTransCompoundMap(page))
200 return false;
201
202 return is_transparent_hugepage(compound_head(page));
203}
204
bccf2150
AK
205/*
206 * Switches to specified vcpu, until a matching vcpu_put()
207 */
ec7660cc 208void vcpu_load(struct kvm_vcpu *vcpu)
6aa8b732 209{
ec7660cc 210 int cpu = get_cpu();
7495e22b
PB
211
212 __this_cpu_write(kvm_running_vcpu, vcpu);
15ad7146 213 preempt_notifier_register(&vcpu->preempt_notifier);
313a3dc7 214 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146 215 put_cpu();
6aa8b732 216}
2f1fe811 217EXPORT_SYMBOL_GPL(vcpu_load);
6aa8b732 218
313a3dc7 219void vcpu_put(struct kvm_vcpu *vcpu)
6aa8b732 220{
15ad7146 221 preempt_disable();
313a3dc7 222 kvm_arch_vcpu_put(vcpu);
15ad7146 223 preempt_notifier_unregister(&vcpu->preempt_notifier);
7495e22b 224 __this_cpu_write(kvm_running_vcpu, NULL);
15ad7146 225 preempt_enable();
6aa8b732 226}
2f1fe811 227EXPORT_SYMBOL_GPL(vcpu_put);
6aa8b732 228
7a97cec2
PB
229/* TODO: merge with kvm_arch_vcpu_should_kick */
230static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231{
232 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233
234 /*
235 * We need to wait for the VCPU to reenable interrupts and get out of
236 * READING_SHADOW_PAGE_TABLES mode.
237 */
238 if (req & KVM_REQUEST_WAIT)
239 return mode != OUTSIDE_GUEST_MODE;
240
241 /*
242 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 */
244 return mode == IN_GUEST_MODE;
245}
246
d9e368d6
AK
247static void ack_flush(void *_completed)
248{
d9e368d6
AK
249}
250
b49defe8
PB
251static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
252{
253 if (unlikely(!cpus))
254 cpus = cpu_online_mask;
255
256 if (cpumask_empty(cpus))
257 return false;
258
259 smp_call_function_many(cpus, ack_flush, NULL, wait);
260 return true;
261}
262
7053df4e
VK
263bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
264 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
d9e368d6 265{
597a5f55 266 int i, cpu, me;
d9e368d6 267 struct kvm_vcpu *vcpu;
7053df4e 268 bool called;
6ef7a1bc 269
3cba4130 270 me = get_cpu();
7053df4e 271
988a2cae 272 kvm_for_each_vcpu(i, vcpu, kvm) {
a812297c 273 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
7053df4e
VK
274 continue;
275
3cba4130 276 kvm_make_request(req, vcpu);
d9e368d6 277 cpu = vcpu->cpu;
6b7e2d09 278
178f02ff
RK
279 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
280 continue;
6c6e8360 281
7053df4e 282 if (tmp != NULL && cpu != -1 && cpu != me &&
7a97cec2 283 kvm_request_needs_ipi(vcpu, req))
7053df4e 284 __cpumask_set_cpu(cpu, tmp);
49846896 285 }
7053df4e
VK
286
287 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
3cba4130 288 put_cpu();
7053df4e
VK
289
290 return called;
291}
292
293bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
294{
295 cpumask_var_t cpus;
296 bool called;
7053df4e
VK
297
298 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299
a812297c 300 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
7053df4e 301
6ef7a1bc 302 free_cpumask_var(cpus);
49846896 303 return called;
d9e368d6
AK
304}
305
a6d51016 306#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
49846896 307void kvm_flush_remote_tlbs(struct kvm *kvm)
2e53d63a 308{
4ae3cb3a
LT
309 /*
310 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
311 * kvm_make_all_cpus_request.
312 */
313 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
314
315 /*
316 * We want to publish modifications to the page tables before reading
317 * mode. Pairs with a memory barrier in arch-specific code.
318 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
319 * and smp_mb in walk_shadow_page_lockless_begin/end.
320 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
321 *
322 * There is already an smp_mb__after_atomic() before
323 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
324 * barrier here.
325 */
b08660e5
TL
326 if (!kvm_arch_flush_remote_tlb(kvm)
327 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
49846896 328 ++kvm->stat.remote_tlb_flush;
a086f6a1 329 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
2e53d63a 330}
2ba9f0d8 331EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
a6d51016 332#endif
2e53d63a 333
49846896
RR
334void kvm_reload_remote_mmus(struct kvm *kvm)
335{
445b8236 336 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
49846896 337}
2e53d63a 338
8bd826d6 339static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
fb3f0f51 340{
fb3f0f51
RR
341 mutex_init(&vcpu->mutex);
342 vcpu->cpu = -1;
fb3f0f51
RR
343 vcpu->kvm = kvm;
344 vcpu->vcpu_id = id;
34bb10b7 345 vcpu->pid = NULL;
8577370f 346 init_swait_queue_head(&vcpu->wq);
af585b92 347 kvm_async_pf_vcpu_init(vcpu);
fb3f0f51 348
bf9f6ac8
FW
349 vcpu->pre_pcpu = -1;
350 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
351
4c088493
R
352 kvm_vcpu_set_in_spin_loop(vcpu, false);
353 kvm_vcpu_set_dy_eligible(vcpu, false);
3a08a8f9 354 vcpu->preempted = false;
d73eb57b 355 vcpu->ready = false;
d5c48deb 356 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
fb3f0f51 357}
fb3f0f51 358
4543bdc0
SC
359void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
360{
361 kvm_arch_vcpu_destroy(vcpu);
e529ef66 362
9941d224
SC
363 /*
364 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
365 * the vcpu->pid pointer, and at destruction time all file descriptors
366 * are already gone.
367 */
368 put_pid(rcu_dereference_protected(vcpu->pid, 1));
369
8bd826d6 370 free_page((unsigned long)vcpu->run);
e529ef66 371 kmem_cache_free(kvm_vcpu_cache, vcpu);
4543bdc0
SC
372}
373EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
374
e930bffe
AA
375#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
376static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
377{
378 return container_of(mn, struct kvm, mmu_notifier);
379}
380
3da0dd43
IE
381static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
382 struct mm_struct *mm,
383 unsigned long address,
384 pte_t pte)
385{
386 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 387 int idx;
3da0dd43 388
bc6678a3 389 idx = srcu_read_lock(&kvm->srcu);
3da0dd43
IE
390 spin_lock(&kvm->mmu_lock);
391 kvm->mmu_notifier_seq++;
0cf853c5
LT
392
393 if (kvm_set_spte_hva(kvm, address, pte))
394 kvm_flush_remote_tlbs(kvm);
395
3da0dd43 396 spin_unlock(&kvm->mmu_lock);
bc6678a3 397 srcu_read_unlock(&kvm->srcu, idx);
3da0dd43
IE
398}
399
93065ac7 400static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
5d6527a7 401 const struct mmu_notifier_range *range)
e930bffe
AA
402{
403 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 404 int need_tlb_flush = 0, idx;
93065ac7 405 int ret;
e930bffe 406
bc6678a3 407 idx = srcu_read_lock(&kvm->srcu);
e930bffe
AA
408 spin_lock(&kvm->mmu_lock);
409 /*
410 * The count increase must become visible at unlock time as no
411 * spte can be established without taking the mmu_lock and
412 * count is also read inside the mmu_lock critical section.
413 */
414 kvm->mmu_notifier_count++;
5d6527a7 415 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
a4ee1ca4 416 need_tlb_flush |= kvm->tlbs_dirty;
e930bffe
AA
417 /* we've to flush the tlb before the pages can be freed */
418 if (need_tlb_flush)
419 kvm_flush_remote_tlbs(kvm);
565f3be2
TY
420
421 spin_unlock(&kvm->mmu_lock);
b1394e74 422
5d6527a7 423 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
dfcd6660
JG
424 range->end,
425 mmu_notifier_range_blockable(range));
b1394e74 426
565f3be2 427 srcu_read_unlock(&kvm->srcu, idx);
93065ac7
MH
428
429 return ret;
e930bffe
AA
430}
431
432static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
5d6527a7 433 const struct mmu_notifier_range *range)
e930bffe
AA
434{
435 struct kvm *kvm = mmu_notifier_to_kvm(mn);
436
437 spin_lock(&kvm->mmu_lock);
438 /*
439 * This sequence increase will notify the kvm page fault that
440 * the page that is going to be mapped in the spte could have
441 * been freed.
442 */
443 kvm->mmu_notifier_seq++;
a355aa54 444 smp_wmb();
e930bffe
AA
445 /*
446 * The above sequence increase must be visible before the
a355aa54
PM
447 * below count decrease, which is ensured by the smp_wmb above
448 * in conjunction with the smp_rmb in mmu_notifier_retry().
e930bffe
AA
449 */
450 kvm->mmu_notifier_count--;
451 spin_unlock(&kvm->mmu_lock);
452
453 BUG_ON(kvm->mmu_notifier_count < 0);
454}
455
456static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
457 struct mm_struct *mm,
57128468
ALC
458 unsigned long start,
459 unsigned long end)
e930bffe
AA
460{
461 struct kvm *kvm = mmu_notifier_to_kvm(mn);
bc6678a3 462 int young, idx;
e930bffe 463
bc6678a3 464 idx = srcu_read_lock(&kvm->srcu);
e930bffe 465 spin_lock(&kvm->mmu_lock);
e930bffe 466
57128468 467 young = kvm_age_hva(kvm, start, end);
e930bffe
AA
468 if (young)
469 kvm_flush_remote_tlbs(kvm);
470
565f3be2
TY
471 spin_unlock(&kvm->mmu_lock);
472 srcu_read_unlock(&kvm->srcu, idx);
473
e930bffe
AA
474 return young;
475}
476
1d7715c6
VD
477static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
478 struct mm_struct *mm,
479 unsigned long start,
480 unsigned long end)
481{
482 struct kvm *kvm = mmu_notifier_to_kvm(mn);
483 int young, idx;
484
485 idx = srcu_read_lock(&kvm->srcu);
486 spin_lock(&kvm->mmu_lock);
487 /*
488 * Even though we do not flush TLB, this will still adversely
489 * affect performance on pre-Haswell Intel EPT, where there is
490 * no EPT Access Bit to clear so that we have to tear down EPT
491 * tables instead. If we find this unacceptable, we can always
492 * add a parameter to kvm_age_hva so that it effectively doesn't
493 * do anything on clear_young.
494 *
495 * Also note that currently we never issue secondary TLB flushes
496 * from clear_young, leaving this job up to the regular system
497 * cadence. If we find this inaccurate, we might come up with a
498 * more sophisticated heuristic later.
499 */
500 young = kvm_age_hva(kvm, start, end);
501 spin_unlock(&kvm->mmu_lock);
502 srcu_read_unlock(&kvm->srcu, idx);
503
504 return young;
505}
506
8ee53820
AA
507static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
508 struct mm_struct *mm,
509 unsigned long address)
510{
511 struct kvm *kvm = mmu_notifier_to_kvm(mn);
512 int young, idx;
513
514 idx = srcu_read_lock(&kvm->srcu);
515 spin_lock(&kvm->mmu_lock);
516 young = kvm_test_age_hva(kvm, address);
517 spin_unlock(&kvm->mmu_lock);
518 srcu_read_unlock(&kvm->srcu, idx);
519
520 return young;
521}
522
85db06e5
MT
523static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
524 struct mm_struct *mm)
525{
526 struct kvm *kvm = mmu_notifier_to_kvm(mn);
eda2beda
LJ
527 int idx;
528
529 idx = srcu_read_lock(&kvm->srcu);
2df72e9b 530 kvm_arch_flush_shadow_all(kvm);
eda2beda 531 srcu_read_unlock(&kvm->srcu, idx);
85db06e5
MT
532}
533
e930bffe 534static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
e930bffe
AA
535 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
536 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
537 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
1d7715c6 538 .clear_young = kvm_mmu_notifier_clear_young,
8ee53820 539 .test_young = kvm_mmu_notifier_test_young,
3da0dd43 540 .change_pte = kvm_mmu_notifier_change_pte,
85db06e5 541 .release = kvm_mmu_notifier_release,
e930bffe 542};
4c07b0a4
AK
543
544static int kvm_init_mmu_notifier(struct kvm *kvm)
545{
546 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
547 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
548}
549
550#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
551
552static int kvm_init_mmu_notifier(struct kvm *kvm)
553{
554 return 0;
555}
556
e930bffe
AA
557#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
558
a47d2b07 559static struct kvm_memslots *kvm_alloc_memslots(void)
bf3e05bc
XG
560{
561 int i;
a47d2b07 562 struct kvm_memslots *slots;
bf3e05bc 563
b12ce36a 564 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
a47d2b07
PB
565 if (!slots)
566 return NULL;
567
bf3e05bc 568 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
f85e2cb5 569 slots->id_to_index[i] = slots->memslots[i].id = i;
a47d2b07
PB
570
571 return slots;
572}
573
574static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
575{
576 if (!memslot->dirty_bitmap)
577 return;
578
579 kvfree(memslot->dirty_bitmap);
580 memslot->dirty_bitmap = NULL;
581}
582
583/*
584 * Free any memory in @free but not in @dont.
585 */
586static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
587 struct kvm_memory_slot *dont)
588{
589 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
590 kvm_destroy_dirty_bitmap(free);
591
592 kvm_arch_free_memslot(kvm, free, dont);
593
594 free->npages = 0;
595}
596
597static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
598{
599 struct kvm_memory_slot *memslot;
600
601 if (!slots)
602 return;
603
604 kvm_for_each_memslot(memslot, slots)
605 kvm_free_memslot(kvm, memslot, NULL);
606
607 kvfree(slots);
bf3e05bc
XG
608}
609
536a6f88
JF
610static void kvm_destroy_vm_debugfs(struct kvm *kvm)
611{
612 int i;
613
614 if (!kvm->debugfs_dentry)
615 return;
616
617 debugfs_remove_recursive(kvm->debugfs_dentry);
618
9d5a1dce
LC
619 if (kvm->debugfs_stat_data) {
620 for (i = 0; i < kvm_debugfs_num_entries; i++)
621 kfree(kvm->debugfs_stat_data[i]);
622 kfree(kvm->debugfs_stat_data);
623 }
536a6f88
JF
624}
625
626static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
627{
628 char dir_name[ITOA_MAX_LEN * 2];
629 struct kvm_stat_data *stat_data;
630 struct kvm_stats_debugfs_item *p;
631
632 if (!debugfs_initialized())
633 return 0;
634
635 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
929f45e3 636 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
536a6f88
JF
637
638 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
639 sizeof(*kvm->debugfs_stat_data),
b12ce36a 640 GFP_KERNEL_ACCOUNT);
536a6f88
JF
641 if (!kvm->debugfs_stat_data)
642 return -ENOMEM;
643
644 for (p = debugfs_entries; p->name; p++) {
b12ce36a 645 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
646 if (!stat_data)
647 return -ENOMEM;
648
649 stat_data->kvm = kvm;
09cbcef6 650 stat_data->dbgfs_item = p;
536a6f88 651 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
09cbcef6
MP
652 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
653 kvm->debugfs_dentry, stat_data,
654 &stat_fops_per_vm);
536a6f88
JF
655 }
656 return 0;
657}
658
1aa9b957
JS
659/*
660 * Called after the VM is otherwise initialized, but just before adding it to
661 * the vm_list.
662 */
663int __weak kvm_arch_post_init_vm(struct kvm *kvm)
664{
665 return 0;
666}
667
668/*
669 * Called just after removing the VM from the vm_list, but before doing any
670 * other destruction.
671 */
672void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
673{
674}
675
e08b9637 676static struct kvm *kvm_create_vm(unsigned long type)
6aa8b732 677{
d89f5eff 678 struct kvm *kvm = kvm_arch_alloc_vm();
9121923c
JM
679 int r = -ENOMEM;
680 int i;
6aa8b732 681
d89f5eff
JK
682 if (!kvm)
683 return ERR_PTR(-ENOMEM);
684
e9ad4ec8 685 spin_lock_init(&kvm->mmu_lock);
f1f10076 686 mmgrab(current->mm);
e9ad4ec8
PB
687 kvm->mm = current->mm;
688 kvm_eventfd_init(kvm);
689 mutex_init(&kvm->lock);
690 mutex_init(&kvm->irq_lock);
691 mutex_init(&kvm->slots_lock);
e9ad4ec8
PB
692 INIT_LIST_HEAD(&kvm->devices);
693
1e702d9a
AW
694 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
695
8a44119a
PB
696 if (init_srcu_struct(&kvm->srcu))
697 goto out_err_no_srcu;
698 if (init_srcu_struct(&kvm->irq_srcu))
699 goto out_err_no_irq_srcu;
700
e2d3fcaf 701 refcount_set(&kvm->users_count, 1);
f481b069 702 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4bd518f1 703 struct kvm_memslots *slots = kvm_alloc_memslots();
9121923c 704
4bd518f1 705 if (!slots)
a97b0e77 706 goto out_err_no_arch_destroy_vm;
0e32958e 707 /* Generations must be different for each address space. */
164bf7e5 708 slots->generation = i;
4bd518f1 709 rcu_assign_pointer(kvm->memslots[i], slots);
f481b069 710 }
00f034a1 711
e93f8a0f 712 for (i = 0; i < KVM_NR_BUSES; i++) {
4a12f951 713 rcu_assign_pointer(kvm->buses[i],
b12ce36a 714 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
57e7fbee 715 if (!kvm->buses[i])
a97b0e77 716 goto out_err_no_arch_destroy_vm;
e93f8a0f 717 }
e930bffe 718
e08b9637 719 r = kvm_arch_init_vm(kvm, type);
d89f5eff 720 if (r)
a97b0e77 721 goto out_err_no_arch_destroy_vm;
10474ae8
AG
722
723 r = hardware_enable_all();
724 if (r)
719d93cd 725 goto out_err_no_disable;
10474ae8 726
c77dcacb 727#ifdef CONFIG_HAVE_KVM_IRQFD
136bdfee 728 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
75858a84 729#endif
6aa8b732 730
74b5c5bf 731 r = kvm_init_mmu_notifier(kvm);
1aa9b957
JS
732 if (r)
733 goto out_err_no_mmu_notifier;
734
735 r = kvm_arch_post_init_vm(kvm);
74b5c5bf
MW
736 if (r)
737 goto out_err;
738
0d9ce162 739 mutex_lock(&kvm_lock);
5e58cfe4 740 list_add(&kvm->vm_list, &vm_list);
0d9ce162 741 mutex_unlock(&kvm_lock);
d89f5eff 742
2ecd9d29
PZ
743 preempt_notifier_inc();
744
f17abe9a 745 return kvm;
10474ae8
AG
746
747out_err:
1aa9b957
JS
748#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
749 if (kvm->mmu_notifier.ops)
750 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
751#endif
752out_err_no_mmu_notifier:
10474ae8 753 hardware_disable_all();
719d93cd 754out_err_no_disable:
a97b0e77 755 kvm_arch_destroy_vm(kvm);
a97b0e77 756out_err_no_arch_destroy_vm:
e2d3fcaf 757 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
e93f8a0f 758 for (i = 0; i < KVM_NR_BUSES; i++)
3898da94 759 kfree(kvm_get_bus(kvm, i));
f481b069 760 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 761 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
8a44119a
PB
762 cleanup_srcu_struct(&kvm->irq_srcu);
763out_err_no_irq_srcu:
764 cleanup_srcu_struct(&kvm->srcu);
765out_err_no_srcu:
d89f5eff 766 kvm_arch_free_vm(kvm);
e9ad4ec8 767 mmdrop(current->mm);
10474ae8 768 return ERR_PTR(r);
f17abe9a
AK
769}
770
07f0a7bd
SW
771static void kvm_destroy_devices(struct kvm *kvm)
772{
e6e3b5a6 773 struct kvm_device *dev, *tmp;
07f0a7bd 774
a28ebea2
CD
775 /*
776 * We do not need to take the kvm->lock here, because nobody else
777 * has a reference to the struct kvm at this point and therefore
778 * cannot access the devices list anyhow.
779 */
e6e3b5a6
GT
780 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
781 list_del(&dev->vm_node);
07f0a7bd
SW
782 dev->ops->destroy(dev);
783 }
784}
785
f17abe9a
AK
786static void kvm_destroy_vm(struct kvm *kvm)
787{
e93f8a0f 788 int i;
6d4e4c4f
AK
789 struct mm_struct *mm = kvm->mm;
790
286de8f6 791 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
536a6f88 792 kvm_destroy_vm_debugfs(kvm);
ad8ba2cd 793 kvm_arch_sync_events(kvm);
0d9ce162 794 mutex_lock(&kvm_lock);
133de902 795 list_del(&kvm->vm_list);
0d9ce162 796 mutex_unlock(&kvm_lock);
1aa9b957
JS
797 kvm_arch_pre_destroy_vm(kvm);
798
399ec807 799 kvm_free_irq_routing(kvm);
df630b8c 800 for (i = 0; i < KVM_NR_BUSES; i++) {
3898da94 801 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
4a12f951 802
4a12f951
CB
803 if (bus)
804 kvm_io_bus_destroy(bus);
df630b8c
PX
805 kvm->buses[i] = NULL;
806 }
980da6ce 807 kvm_coalesced_mmio_free(kvm);
e930bffe
AA
808#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
809 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
f00be0ca 810#else
2df72e9b 811 kvm_arch_flush_shadow_all(kvm);
5f94c174 812#endif
d19a9cd2 813 kvm_arch_destroy_vm(kvm);
07f0a7bd 814 kvm_destroy_devices(kvm);
f481b069 815 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 816 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820b3fcd 817 cleanup_srcu_struct(&kvm->irq_srcu);
d89f5eff
JK
818 cleanup_srcu_struct(&kvm->srcu);
819 kvm_arch_free_vm(kvm);
2ecd9d29 820 preempt_notifier_dec();
10474ae8 821 hardware_disable_all();
6d4e4c4f 822 mmdrop(mm);
f17abe9a
AK
823}
824
d39f13b0
IE
825void kvm_get_kvm(struct kvm *kvm)
826{
e3736c3e 827 refcount_inc(&kvm->users_count);
d39f13b0
IE
828}
829EXPORT_SYMBOL_GPL(kvm_get_kvm);
830
831void kvm_put_kvm(struct kvm *kvm)
832{
e3736c3e 833 if (refcount_dec_and_test(&kvm->users_count))
d39f13b0
IE
834 kvm_destroy_vm(kvm);
835}
836EXPORT_SYMBOL_GPL(kvm_put_kvm);
837
149487bd
SC
838/*
839 * Used to put a reference that was taken on behalf of an object associated
840 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
841 * of the new file descriptor fails and the reference cannot be transferred to
842 * its final owner. In such cases, the caller is still actively using @kvm and
843 * will fail miserably if the refcount unexpectedly hits zero.
844 */
845void kvm_put_kvm_no_destroy(struct kvm *kvm)
846{
847 WARN_ON(refcount_dec_and_test(&kvm->users_count));
848}
849EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
d39f13b0 850
f17abe9a
AK
851static int kvm_vm_release(struct inode *inode, struct file *filp)
852{
853 struct kvm *kvm = filp->private_data;
854
721eecbf
GH
855 kvm_irqfd_release(kvm);
856
d39f13b0 857 kvm_put_kvm(kvm);
6aa8b732
AK
858 return 0;
859}
860
515a0127
TY
861/*
862 * Allocation size is twice as large as the actual dirty bitmap size.
93474b25 863 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
515a0127 864 */
a36a57b1
TY
865static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
866{
515a0127 867 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
a36a57b1 868
b12ce36a 869 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
a36a57b1
TY
870 if (!memslot->dirty_bitmap)
871 return -ENOMEM;
872
a36a57b1
TY
873 return 0;
874}
875
bf3e05bc 876/*
0e60b079
IM
877 * Insert memslot and re-sort memslots based on their GFN,
878 * so binary search could be used to lookup GFN.
879 * Sorting algorithm takes advantage of having initially
880 * sorted array and known changed memslot position.
bf3e05bc 881 */
5cc15027 882static void update_memslots(struct kvm_memslots *slots,
31fc4f95
WY
883 struct kvm_memory_slot *new,
884 enum kvm_mr_change change)
bf3e05bc 885{
8593176c
PB
886 int id = new->id;
887 int i = slots->id_to_index[id];
063584d4 888 struct kvm_memory_slot *mslots = slots->memslots;
f85e2cb5 889
8593176c 890 WARN_ON(mslots[i].id != id);
31fc4f95
WY
891 switch (change) {
892 case KVM_MR_CREATE:
893 slots->used_slots++;
894 WARN_ON(mslots[i].npages || !new->npages);
895 break;
896 case KVM_MR_DELETE:
897 slots->used_slots--;
898 WARN_ON(new->npages || !mslots[i].npages);
899 break;
900 default:
901 break;
9c1a5d38 902 }
0e60b079 903
7f379cff 904 while (i < KVM_MEM_SLOTS_NUM - 1 &&
0e60b079
IM
905 new->base_gfn <= mslots[i + 1].base_gfn) {
906 if (!mslots[i + 1].npages)
907 break;
7f379cff
IM
908 mslots[i] = mslots[i + 1];
909 slots->id_to_index[mslots[i].id] = i;
910 i++;
911 }
efbeec70
PB
912
913 /*
914 * The ">=" is needed when creating a slot with base_gfn == 0,
915 * so that it moves before all those with base_gfn == npages == 0.
916 *
917 * On the other hand, if new->npages is zero, the above loop has
918 * already left i pointing to the beginning of the empty part of
919 * mslots, and the ">=" would move the hole backwards in this
920 * case---which is wrong. So skip the loop when deleting a slot.
921 */
922 if (new->npages) {
923 while (i > 0 &&
924 new->base_gfn >= mslots[i - 1].base_gfn) {
925 mslots[i] = mslots[i - 1];
926 slots->id_to_index[mslots[i].id] = i;
927 i--;
928 }
dbaff309
PB
929 } else
930 WARN_ON_ONCE(i != slots->used_slots);
f85e2cb5 931
8593176c
PB
932 mslots[i] = *new;
933 slots->id_to_index[mslots[i].id] = i;
bf3e05bc
XG
934}
935
09170a49 936static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
a50d64d6 937{
4d8b81ab
XG
938 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
939
0f8a4de3 940#ifdef __KVM_HAVE_READONLY_MEM
4d8b81ab
XG
941 valid_flags |= KVM_MEM_READONLY;
942#endif
943
944 if (mem->flags & ~valid_flags)
a50d64d6
XG
945 return -EINVAL;
946
947 return 0;
948}
949
7ec4fb44 950static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
f481b069 951 int as_id, struct kvm_memslots *slots)
7ec4fb44 952{
f481b069 953 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
361209e0 954 u64 gen = old_memslots->generation;
7ec4fb44 955
361209e0
SC
956 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
957 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
ee3d1570 958
f481b069 959 rcu_assign_pointer(kvm->memslots[as_id], slots);
7ec4fb44 960 synchronize_srcu_expedited(&kvm->srcu);
e59dbe09 961
ee3d1570 962 /*
361209e0 963 * Increment the new memslot generation a second time, dropping the
00116795 964 * update in-progress flag and incrementing the generation based on
361209e0
SC
965 * the number of address spaces. This provides a unique and easily
966 * identifiable generation number while the memslots are in flux.
967 */
968 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
969
970 /*
4bd518f1
PB
971 * Generations must be unique even across address spaces. We do not need
972 * a global counter for that, instead the generation space is evenly split
973 * across address spaces. For example, with two address spaces, address
164bf7e5
SC
974 * space 0 will use generations 0, 2, 4, ... while address space 1 will
975 * use generations 1, 3, 5, ...
ee3d1570 976 */
164bf7e5 977 gen += KVM_ADDRESS_SPACE_NUM;
ee3d1570 978
15248258 979 kvm_arch_memslots_updated(kvm, gen);
ee3d1570 980
15248258 981 slots->generation = gen;
e59dbe09
TY
982
983 return old_memslots;
7ec4fb44
GN
984}
985
6aa8b732
AK
986/*
987 * Allocate some memory and give it an address in the guest physical address
988 * space.
989 *
990 * Discontiguous memory is allowed, mostly for framebuffers.
f78e0e2e 991 *
02d5d55b 992 * Must be called holding kvm->slots_lock for write.
6aa8b732 993 */
f78e0e2e 994int __kvm_set_memory_region(struct kvm *kvm,
09170a49 995 const struct kvm_userspace_memory_region *mem)
6aa8b732 996{
8234b22e 997 int r;
6aa8b732 998 gfn_t base_gfn;
28bcb112 999 unsigned long npages;
a843fac2 1000 struct kvm_memory_slot *slot;
6aa8b732 1001 struct kvm_memory_slot old, new;
13ea5255 1002 struct kvm_memslots *slots;
f481b069 1003 int as_id, id;
f64c0398 1004 enum kvm_mr_change change;
6aa8b732 1005
a50d64d6
XG
1006 r = check_memory_region_flags(mem);
1007 if (r)
1008 goto out;
1009
6aa8b732 1010 r = -EINVAL;
f481b069
PB
1011 as_id = mem->slot >> 16;
1012 id = (u16)mem->slot;
1013
6aa8b732
AK
1014 /* General sanity checks */
1015 if (mem->memory_size & (PAGE_SIZE - 1))
1016 goto out;
1017 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1018 goto out;
fa3d315a 1019 /* We can read the guest memory with __xxx_user() later on. */
f481b069 1020 if ((id < KVM_USER_MEM_SLOTS) &&
fa3d315a 1021 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
96d4f267 1022 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
9e3bb6b6 1023 mem->memory_size)))
78749809 1024 goto out;
f481b069 1025 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
6aa8b732
AK
1026 goto out;
1027 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1028 goto out;
1029
f481b069 1030 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
6aa8b732
AK
1031 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1032 npages = mem->memory_size >> PAGE_SHIFT;
1033
660c22c4
TY
1034 if (npages > KVM_MEM_MAX_NR_PAGES)
1035 goto out;
1036
a843fac2 1037 new = old = *slot;
6aa8b732 1038
f481b069 1039 new.id = id;
6aa8b732
AK
1040 new.base_gfn = base_gfn;
1041 new.npages = npages;
1042 new.flags = mem->flags;
414de7ab 1043 new.userspace_addr = mem->userspace_addr;
6aa8b732 1044
f64c0398
TY
1045 if (npages) {
1046 if (!old.npages)
1047 change = KVM_MR_CREATE;
1048 else { /* Modify an existing slot. */
414de7ab 1049 if ((new.userspace_addr != old.userspace_addr) ||
75d61fbc
TY
1050 (npages != old.npages) ||
1051 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
f64c0398
TY
1052 goto out;
1053
1054 if (base_gfn != old.base_gfn)
1055 change = KVM_MR_MOVE;
1056 else if (new.flags != old.flags)
1057 change = KVM_MR_FLAGS_ONLY;
1058 else { /* Nothing to change. */
1059 r = 0;
1060 goto out;
1061 }
1062 }
09170a49
PB
1063 } else {
1064 if (!old.npages)
1065 goto out;
1066
f64c0398 1067 change = KVM_MR_DELETE;
09170a49
PB
1068 new.base_gfn = 0;
1069 new.flags = 0;
1070 }
6aa8b732 1071
f64c0398 1072 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
0a706bee
TY
1073 /* Check for overlaps */
1074 r = -EEXIST;
f481b069 1075 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
b28676bb 1076 if (slot->id == id)
0a706bee
TY
1077 continue;
1078 if (!((base_gfn + npages <= slot->base_gfn) ||
1079 (base_gfn >= slot->base_gfn + slot->npages)))
1080 goto out;
1081 }
6aa8b732 1082 }
6aa8b732 1083
6aa8b732 1084 r = -ENOMEM;
d89cc617 1085
414de7ab
SC
1086 /* Allocate/free page dirty bitmap as needed */
1087 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1088 new.dirty_bitmap = NULL;
1089 else if (!new.dirty_bitmap) {
a36a57b1 1090 if (kvm_create_dirty_bitmap(&new) < 0)
414de7ab 1091 goto out;
6aa8b732
AK
1092 }
1093
b12ce36a 1094 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
f2a81036 1095 if (!slots)
bd0e96fd 1096 goto out_bitmap;
f481b069 1097 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
f2a81036 1098
f64c0398 1099 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
f481b069 1100 slot = id_to_memslot(slots, id);
28a37544
XG
1101 slot->flags |= KVM_MEMSLOT_INVALID;
1102
13ea5255
SC
1103 /*
1104 * We can re-use the old memslots, the only difference from the
1105 * newly installed memslots is the invalid flag, which will get
1106 * dropped by update_memslots anyway. We'll also revert to the
1107 * old memslots if preparing the new memory region fails.
1108 */
1109 slots = install_new_memslots(kvm, as_id, slots);
bc6678a3 1110
12d6e753
MT
1111 /* From this point no new shadow pages pointing to a deleted,
1112 * or moved, memslot will be created.
bc6678a3
MT
1113 *
1114 * validation of sp->gfn happens in:
b7d409de 1115 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
668effb6 1116 * - kvm_is_visible_gfn (mmu_check_root)
bc6678a3 1117 */
2df72e9b 1118 kvm_arch_flush_shadow_memslot(kvm, slot);
bc6678a3 1119 }
34d4cb8f 1120
7b6195a9 1121 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
f7784b8e 1122 if (r)
b7f69c55 1123 goto out_slots;
f7784b8e 1124
a47d2b07 1125 /* actual memory is freed via old in kvm_free_memslot below */
f64c0398 1126 if (change == KVM_MR_DELETE) {
bc6678a3 1127 new.dirty_bitmap = NULL;
db3fe4eb 1128 memset(&new.arch, 0, sizeof(new.arch));
bc6678a3
MT
1129 }
1130
31fc4f95 1131 update_memslots(slots, &new, change);
13ea5255 1132 slots = install_new_memslots(kvm, as_id, slots);
3ad82a7e 1133
f36f3f28 1134 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
82ce2c96 1135
a47d2b07 1136 kvm_free_memslot(kvm, &old, &new);
13ea5255 1137 kvfree(slots);
6aa8b732
AK
1138 return 0;
1139
e40f193f 1140out_slots:
13ea5255
SC
1141 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1142 slots = install_new_memslots(kvm, as_id, slots);
74496134 1143 kvfree(slots);
bd0e96fd
SC
1144out_bitmap:
1145 if (new.dirty_bitmap && !old.dirty_bitmap)
1146 kvm_destroy_dirty_bitmap(&new);
6aa8b732
AK
1147out:
1148 return r;
210c7c4d 1149}
f78e0e2e
SY
1150EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1151
1152int kvm_set_memory_region(struct kvm *kvm,
09170a49 1153 const struct kvm_userspace_memory_region *mem)
f78e0e2e
SY
1154{
1155 int r;
1156
79fac95e 1157 mutex_lock(&kvm->slots_lock);
47ae31e2 1158 r = __kvm_set_memory_region(kvm, mem);
79fac95e 1159 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
1160 return r;
1161}
210c7c4d
IE
1162EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1163
7940876e
SH
1164static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1165 struct kvm_userspace_memory_region *mem)
210c7c4d 1166{
f481b069 1167 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
e0d62c7f 1168 return -EINVAL;
09170a49 1169
47ae31e2 1170 return kvm_set_memory_region(kvm, mem);
6aa8b732
AK
1171}
1172
5bb064dc
ZX
1173int kvm_get_dirty_log(struct kvm *kvm,
1174 struct kvm_dirty_log *log, int *is_dirty)
6aa8b732 1175{
9f6b8029 1176 struct kvm_memslots *slots;
6aa8b732 1177 struct kvm_memory_slot *memslot;
843574a3 1178 int i, as_id, id;
87bf6e7d 1179 unsigned long n;
6aa8b732
AK
1180 unsigned long any = 0;
1181
f481b069
PB
1182 as_id = log->slot >> 16;
1183 id = (u16)log->slot;
1184 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
843574a3 1185 return -EINVAL;
6aa8b732 1186
f481b069
PB
1187 slots = __kvm_memslots(kvm, as_id);
1188 memslot = id_to_memslot(slots, id);
6aa8b732 1189 if (!memslot->dirty_bitmap)
843574a3 1190 return -ENOENT;
6aa8b732 1191
87bf6e7d 1192 n = kvm_dirty_bitmap_bytes(memslot);
6aa8b732 1193
cd1a4a98 1194 for (i = 0; !any && i < n/sizeof(long); ++i)
6aa8b732
AK
1195 any = memslot->dirty_bitmap[i];
1196
6aa8b732 1197 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
843574a3 1198 return -EFAULT;
6aa8b732 1199
5bb064dc
ZX
1200 if (any)
1201 *is_dirty = 1;
843574a3 1202 return 0;
6aa8b732 1203}
2ba9f0d8 1204EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
6aa8b732 1205
ba0513b5
MS
1206#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1207/**
b8b00220 1208 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2a31b9db 1209 * and reenable dirty page tracking for the corresponding pages.
ba0513b5
MS
1210 * @kvm: pointer to kvm instance
1211 * @log: slot id and address to which we copy the log
b8b00220 1212 * @flush: true if TLB flush is needed by caller
ba0513b5
MS
1213 *
1214 * We need to keep it in mind that VCPU threads can write to the bitmap
1215 * concurrently. So, to avoid losing track of dirty pages we keep the
1216 * following order:
1217 *
1218 * 1. Take a snapshot of the bit and clear it if needed.
1219 * 2. Write protect the corresponding page.
1220 * 3. Copy the snapshot to the userspace.
1221 * 4. Upon return caller flushes TLB's if needed.
1222 *
1223 * Between 2 and 4, the guest may write to the page using the remaining TLB
1224 * entry. This is not a problem because the page is reported dirty using
1225 * the snapshot taken before and step 4 ensures that writes done after
1226 * exiting to userspace will be logged for the next call.
1227 *
1228 */
1229int kvm_get_dirty_log_protect(struct kvm *kvm,
8fe65a82 1230 struct kvm_dirty_log *log, bool *flush)
ba0513b5 1231{
9f6b8029 1232 struct kvm_memslots *slots;
ba0513b5 1233 struct kvm_memory_slot *memslot;
58d6db34 1234 int i, as_id, id;
ba0513b5
MS
1235 unsigned long n;
1236 unsigned long *dirty_bitmap;
1237 unsigned long *dirty_bitmap_buffer;
1238
f481b069
PB
1239 as_id = log->slot >> 16;
1240 id = (u16)log->slot;
1241 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
58d6db34 1242 return -EINVAL;
ba0513b5 1243
f481b069
PB
1244 slots = __kvm_memslots(kvm, as_id);
1245 memslot = id_to_memslot(slots, id);
ba0513b5
MS
1246
1247 dirty_bitmap = memslot->dirty_bitmap;
ba0513b5 1248 if (!dirty_bitmap)
58d6db34 1249 return -ENOENT;
ba0513b5
MS
1250
1251 n = kvm_dirty_bitmap_bytes(memslot);
2a31b9db
PB
1252 *flush = false;
1253 if (kvm->manual_dirty_log_protect) {
1254 /*
1255 * Unlike kvm_get_dirty_log, we always return false in *flush,
1256 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1257 * is some code duplication between this function and
1258 * kvm_get_dirty_log, but hopefully all architecture
1259 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1260 * can be eliminated.
1261 */
1262 dirty_bitmap_buffer = dirty_bitmap;
1263 } else {
1264 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1265 memset(dirty_bitmap_buffer, 0, n);
ba0513b5 1266
2a31b9db
PB
1267 spin_lock(&kvm->mmu_lock);
1268 for (i = 0; i < n / sizeof(long); i++) {
1269 unsigned long mask;
1270 gfn_t offset;
ba0513b5 1271
2a31b9db
PB
1272 if (!dirty_bitmap[i])
1273 continue;
1274
1275 *flush = true;
1276 mask = xchg(&dirty_bitmap[i], 0);
1277 dirty_bitmap_buffer[i] = mask;
1278
a67794ca
LT
1279 offset = i * BITS_PER_LONG;
1280 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1281 offset, mask);
2a31b9db
PB
1282 }
1283 spin_unlock(&kvm->mmu_lock);
1284 }
1285
1286 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1287 return -EFAULT;
1288 return 0;
1289}
1290EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1291
1292/**
1293 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1294 * and reenable dirty page tracking for the corresponding pages.
1295 * @kvm: pointer to kvm instance
1296 * @log: slot id and address from which to fetch the bitmap of dirty pages
b8b00220 1297 * @flush: true if TLB flush is needed by caller
2a31b9db
PB
1298 */
1299int kvm_clear_dirty_log_protect(struct kvm *kvm,
1300 struct kvm_clear_dirty_log *log, bool *flush)
1301{
1302 struct kvm_memslots *slots;
1303 struct kvm_memory_slot *memslot;
98938aa8 1304 int as_id, id;
2a31b9db 1305 gfn_t offset;
98938aa8 1306 unsigned long i, n;
2a31b9db
PB
1307 unsigned long *dirty_bitmap;
1308 unsigned long *dirty_bitmap_buffer;
1309
1310 as_id = log->slot >> 16;
1311 id = (u16)log->slot;
1312 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1313 return -EINVAL;
1314
76d58e0f 1315 if (log->first_page & 63)
2a31b9db
PB
1316 return -EINVAL;
1317
1318 slots = __kvm_memslots(kvm, as_id);
1319 memslot = id_to_memslot(slots, id);
1320
1321 dirty_bitmap = memslot->dirty_bitmap;
1322 if (!dirty_bitmap)
1323 return -ENOENT;
1324
4ddc9204 1325 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
98938aa8
TB
1326
1327 if (log->first_page > memslot->npages ||
76d58e0f
PB
1328 log->num_pages > memslot->npages - log->first_page ||
1329 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1330 return -EINVAL;
98938aa8 1331
8fe65a82 1332 *flush = false;
2a31b9db
PB
1333 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1334 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1335 return -EFAULT;
ba0513b5 1336
2a31b9db 1337 spin_lock(&kvm->mmu_lock);
53eac7a8
PX
1338 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1339 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2a31b9db
PB
1340 i++, offset += BITS_PER_LONG) {
1341 unsigned long mask = *dirty_bitmap_buffer++;
1342 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1343 if (!mask)
ba0513b5
MS
1344 continue;
1345
2a31b9db 1346 mask &= atomic_long_fetch_andnot(mask, p);
ba0513b5 1347
2a31b9db
PB
1348 /*
1349 * mask contains the bits that really have been cleared. This
1350 * never includes any bits beyond the length of the memslot (if
1351 * the length is not aligned to 64 pages), therefore it is not
1352 * a problem if userspace sets them in log->dirty_bitmap.
1353 */
58d2930f 1354 if (mask) {
2a31b9db 1355 *flush = true;
58d2930f
TY
1356 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1357 offset, mask);
1358 }
ba0513b5 1359 }
ba0513b5 1360 spin_unlock(&kvm->mmu_lock);
2a31b9db 1361
58d6db34 1362 return 0;
ba0513b5 1363}
2a31b9db 1364EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
ba0513b5
MS
1365#endif
1366
db3fe4eb
TY
1367bool kvm_largepages_enabled(void)
1368{
1369 return largepages_enabled;
1370}
1371
54dee993
MT
1372void kvm_disable_largepages(void)
1373{
1374 largepages_enabled = false;
1375}
1376EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1377
49c7754c
GN
1378struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1379{
1380 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1381}
a1f4d395 1382EXPORT_SYMBOL_GPL(gfn_to_memslot);
6aa8b732 1383
8e73485c
PB
1384struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1385{
1386 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1387}
1388
33e94154 1389bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
e0d62c7f 1390{
bf3e05bc 1391 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
e0d62c7f 1392
bbacc0c1 1393 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
bf3e05bc 1394 memslot->flags & KVM_MEMSLOT_INVALID)
33e94154 1395 return false;
e0d62c7f 1396
33e94154 1397 return true;
e0d62c7f
IE
1398}
1399EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1400
f9b84e19 1401unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
8f0b1ab6
JR
1402{
1403 struct vm_area_struct *vma;
1404 unsigned long addr, size;
1405
1406 size = PAGE_SIZE;
1407
42cde48b 1408 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
8f0b1ab6
JR
1409 if (kvm_is_error_hva(addr))
1410 return PAGE_SIZE;
1411
1412 down_read(&current->mm->mmap_sem);
1413 vma = find_vma(current->mm, addr);
1414 if (!vma)
1415 goto out;
1416
1417 size = vma_kernel_pagesize(vma);
1418
1419out:
1420 up_read(&current->mm->mmap_sem);
1421
1422 return size;
1423}
1424
4d8b81ab
XG
1425static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1426{
1427 return slot->flags & KVM_MEM_READONLY;
1428}
1429
4d8b81ab
XG
1430static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1431 gfn_t *nr_pages, bool write)
539cb660 1432{
bc6678a3 1433 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
ca3a490c 1434 return KVM_HVA_ERR_BAD;
48987781 1435
4d8b81ab
XG
1436 if (memslot_is_readonly(slot) && write)
1437 return KVM_HVA_ERR_RO_BAD;
48987781
XG
1438
1439 if (nr_pages)
1440 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1441
4d8b81ab 1442 return __gfn_to_hva_memslot(slot, gfn);
539cb660 1443}
48987781 1444
4d8b81ab
XG
1445static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1446 gfn_t *nr_pages)
1447{
1448 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
539cb660 1449}
48987781 1450
4d8b81ab 1451unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
7940876e 1452 gfn_t gfn)
4d8b81ab
XG
1453{
1454 return gfn_to_hva_many(slot, gfn, NULL);
1455}
1456EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1457
48987781
XG
1458unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1459{
49c7754c 1460 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
48987781 1461}
0d150298 1462EXPORT_SYMBOL_GPL(gfn_to_hva);
539cb660 1463
8e73485c
PB
1464unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1465{
1466 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1467}
1468EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1469
86ab8cff 1470/*
970c0d4b
WY
1471 * Return the hva of a @gfn and the R/W attribute if possible.
1472 *
1473 * @slot: the kvm_memory_slot which contains @gfn
1474 * @gfn: the gfn to be translated
1475 * @writable: used to return the read/write attribute of the @slot if the hva
1476 * is valid and @writable is not NULL
86ab8cff 1477 */
64d83126
CD
1478unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1479 gfn_t gfn, bool *writable)
86ab8cff 1480{
a2ac07fe
GN
1481 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1482
1483 if (!kvm_is_error_hva(hva) && writable)
ba6a3541
PB
1484 *writable = !memslot_is_readonly(slot);
1485
a2ac07fe 1486 return hva;
86ab8cff
XG
1487}
1488
64d83126
CD
1489unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1490{
1491 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1492
1493 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1494}
1495
8e73485c
PB
1496unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1497{
1498 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1499
1500 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1501}
1502
fafc3dba
HY
1503static inline int check_user_page_hwpoison(unsigned long addr)
1504{
0d731759 1505 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
fafc3dba 1506
0d731759 1507 rc = get_user_pages(addr, 1, flags, NULL, NULL);
fafc3dba
HY
1508 return rc == -EHWPOISON;
1509}
1510
2fc84311 1511/*
b9b33da2
PB
1512 * The fast path to get the writable pfn which will be stored in @pfn,
1513 * true indicates success, otherwise false is returned. It's also the
311497e0 1514 * only part that runs if we can in atomic context.
2fc84311 1515 */
b9b33da2
PB
1516static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1517 bool *writable, kvm_pfn_t *pfn)
954bbbc2 1518{
8d4e1288 1519 struct page *page[1];
2fc84311 1520 int npages;
954bbbc2 1521
12ce13fe
XG
1522 /*
1523 * Fast pin a writable pfn only if it is a write fault request
1524 * or the caller allows to map a writable pfn for a read fault
1525 * request.
1526 */
1527 if (!(write_fault || writable))
1528 return false;
612819c3 1529
2fc84311
XG
1530 npages = __get_user_pages_fast(addr, 1, 1, page);
1531 if (npages == 1) {
1532 *pfn = page_to_pfn(page[0]);
612819c3 1533
2fc84311
XG
1534 if (writable)
1535 *writable = true;
1536 return true;
1537 }
af585b92 1538
2fc84311
XG
1539 return false;
1540}
612819c3 1541
2fc84311
XG
1542/*
1543 * The slow path to get the pfn of the specified host virtual address,
1544 * 1 indicates success, -errno is returned if error is detected.
1545 */
1546static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
ba049e93 1547 bool *writable, kvm_pfn_t *pfn)
2fc84311 1548{
ce53053c
AV
1549 unsigned int flags = FOLL_HWPOISON;
1550 struct page *page;
2fc84311 1551 int npages = 0;
612819c3 1552
2fc84311
XG
1553 might_sleep();
1554
1555 if (writable)
1556 *writable = write_fault;
1557
ce53053c
AV
1558 if (write_fault)
1559 flags |= FOLL_WRITE;
1560 if (async)
1561 flags |= FOLL_NOWAIT;
d4944b0e 1562
ce53053c 1563 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2fc84311
XG
1564 if (npages != 1)
1565 return npages;
1566
1567 /* map read fault as writable if possible */
12ce13fe 1568 if (unlikely(!write_fault) && writable) {
ce53053c 1569 struct page *wpage;
2fc84311 1570
ce53053c 1571 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
2fc84311 1572 *writable = true;
ce53053c
AV
1573 put_page(page);
1574 page = wpage;
612819c3 1575 }
887c08ac 1576 }
ce53053c 1577 *pfn = page_to_pfn(page);
2fc84311
XG
1578 return npages;
1579}
539cb660 1580
4d8b81ab
XG
1581static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1582{
1583 if (unlikely(!(vma->vm_flags & VM_READ)))
1584 return false;
2e2e3738 1585
4d8b81ab
XG
1586 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1587 return false;
887c08ac 1588
4d8b81ab
XG
1589 return true;
1590}
bf998156 1591
92176a8e
PB
1592static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1593 unsigned long addr, bool *async,
a340b3e2
KA
1594 bool write_fault, bool *writable,
1595 kvm_pfn_t *p_pfn)
92176a8e 1596{
add6a0cd
PB
1597 unsigned long pfn;
1598 int r;
1599
1600 r = follow_pfn(vma, addr, &pfn);
1601 if (r) {
1602 /*
1603 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1604 * not call the fault handler, so do it here.
1605 */
1606 bool unlocked = false;
1607 r = fixup_user_fault(current, current->mm, addr,
1608 (write_fault ? FAULT_FLAG_WRITE : 0),
1609 &unlocked);
1610 if (unlocked)
1611 return -EAGAIN;
1612 if (r)
1613 return r;
1614
1615 r = follow_pfn(vma, addr, &pfn);
1616 if (r)
1617 return r;
1618
1619 }
1620
a340b3e2
KA
1621 if (writable)
1622 *writable = true;
add6a0cd
PB
1623
1624 /*
1625 * Get a reference here because callers of *hva_to_pfn* and
1626 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1627 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1628 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1629 * simply do nothing for reserved pfns.
1630 *
1631 * Whoever called remap_pfn_range is also going to call e.g.
1632 * unmap_mapping_range before the underlying pages are freed,
1633 * causing a call to our MMU notifier.
1634 */
1635 kvm_get_pfn(pfn);
1636
1637 *p_pfn = pfn;
92176a8e
PB
1638 return 0;
1639}
1640
12ce13fe
XG
1641/*
1642 * Pin guest page in memory and return its pfn.
1643 * @addr: host virtual address which maps memory to the guest
1644 * @atomic: whether this function can sleep
1645 * @async: whether this function need to wait IO complete if the
1646 * host page is not in the memory
1647 * @write_fault: whether we should get a writable host page
1648 * @writable: whether it allows to map a writable host page for !@write_fault
1649 *
1650 * The function will map a writable host page for these two cases:
1651 * 1): @write_fault = true
1652 * 2): @write_fault = false && @writable, @writable will tell the caller
1653 * whether the mapping is writable.
1654 */
ba049e93 1655static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2fc84311
XG
1656 bool write_fault, bool *writable)
1657{
1658 struct vm_area_struct *vma;
ba049e93 1659 kvm_pfn_t pfn = 0;
92176a8e 1660 int npages, r;
2e2e3738 1661
2fc84311
XG
1662 /* we can do it either atomically or asynchronously, not both */
1663 BUG_ON(atomic && async);
8d4e1288 1664
b9b33da2 1665 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2fc84311
XG
1666 return pfn;
1667
1668 if (atomic)
1669 return KVM_PFN_ERR_FAULT;
1670
1671 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1672 if (npages == 1)
1673 return pfn;
8d4e1288 1674
2fc84311
XG
1675 down_read(&current->mm->mmap_sem);
1676 if (npages == -EHWPOISON ||
1677 (!async && check_user_page_hwpoison(addr))) {
1678 pfn = KVM_PFN_ERR_HWPOISON;
1679 goto exit;
1680 }
1681
add6a0cd 1682retry:
2fc84311
XG
1683 vma = find_vma_intersection(current->mm, addr, addr + 1);
1684
1685 if (vma == NULL)
1686 pfn = KVM_PFN_ERR_FAULT;
92176a8e 1687 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
a340b3e2 1688 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
add6a0cd
PB
1689 if (r == -EAGAIN)
1690 goto retry;
92176a8e
PB
1691 if (r < 0)
1692 pfn = KVM_PFN_ERR_FAULT;
2fc84311 1693 } else {
4d8b81ab 1694 if (async && vma_is_valid(vma, write_fault))
2fc84311
XG
1695 *async = true;
1696 pfn = KVM_PFN_ERR_FAULT;
1697 }
1698exit:
1699 up_read(&current->mm->mmap_sem);
2e2e3738 1700 return pfn;
35149e21
AL
1701}
1702
ba049e93
DW
1703kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1704 bool atomic, bool *async, bool write_fault,
1705 bool *writable)
887c08ac 1706{
4d8b81ab
XG
1707 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1708
b2740d35
PB
1709 if (addr == KVM_HVA_ERR_RO_BAD) {
1710 if (writable)
1711 *writable = false;
4d8b81ab 1712 return KVM_PFN_ERR_RO_FAULT;
b2740d35 1713 }
4d8b81ab 1714
b2740d35
PB
1715 if (kvm_is_error_hva(addr)) {
1716 if (writable)
1717 *writable = false;
81c52c56 1718 return KVM_PFN_NOSLOT;
b2740d35 1719 }
4d8b81ab
XG
1720
1721 /* Do not map writable pfn in the readonly memslot. */
1722 if (writable && memslot_is_readonly(slot)) {
1723 *writable = false;
1724 writable = NULL;
1725 }
1726
1727 return hva_to_pfn(addr, atomic, async, write_fault,
1728 writable);
887c08ac 1729}
3520469d 1730EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
887c08ac 1731
ba049e93 1732kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3
MT
1733 bool *writable)
1734{
e37afc6e
PB
1735 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1736 write_fault, writable);
612819c3
MT
1737}
1738EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1739
ba049e93 1740kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 1741{
4d8b81ab 1742 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
506f0d6f 1743}
e37afc6e 1744EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
506f0d6f 1745
ba049e93 1746kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 1747{
4d8b81ab 1748 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
506f0d6f 1749}
037d92dc 1750EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
506f0d6f 1751
ba049e93 1752kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
1753{
1754 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1755}
1756EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1757
ba049e93 1758kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
1759{
1760 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1761}
1762EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1763
ba049e93 1764kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
1765{
1766 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1767}
1768EXPORT_SYMBOL_GPL(gfn_to_pfn);
1769
ba049e93 1770kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
1771{
1772 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1773}
1774EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1775
d9ef13c2
PB
1776int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1777 struct page **pages, int nr_pages)
48987781
XG
1778{
1779 unsigned long addr;
076b925d 1780 gfn_t entry = 0;
48987781 1781
d9ef13c2 1782 addr = gfn_to_hva_many(slot, gfn, &entry);
48987781
XG
1783 if (kvm_is_error_hva(addr))
1784 return -1;
1785
1786 if (entry < nr_pages)
1787 return 0;
1788
1789 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1790}
1791EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1792
ba049e93 1793static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
a2766325 1794{
81c52c56 1795 if (is_error_noslot_pfn(pfn))
cb9aaa30 1796 return KVM_ERR_PTR_BAD_PAGE;
a2766325 1797
bf4bea8e 1798 if (kvm_is_reserved_pfn(pfn)) {
cb9aaa30 1799 WARN_ON(1);
6cede2e6 1800 return KVM_ERR_PTR_BAD_PAGE;
cb9aaa30 1801 }
a2766325
XG
1802
1803 return pfn_to_page(pfn);
1804}
1805
35149e21
AL
1806struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1807{
ba049e93 1808 kvm_pfn_t pfn;
2e2e3738
AL
1809
1810 pfn = gfn_to_pfn(kvm, gfn);
2e2e3738 1811
a2766325 1812 return kvm_pfn_to_page(pfn);
954bbbc2
AK
1813}
1814EXPORT_SYMBOL_GPL(gfn_to_page);
1815
91724814
BO
1816void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
1817{
1818 if (pfn == 0)
1819 return;
1820
1821 if (cache)
1822 cache->pfn = cache->gfn = 0;
1823
1824 if (dirty)
1825 kvm_release_pfn_dirty(pfn);
1826 else
1827 kvm_release_pfn_clean(pfn);
1828}
1829
1830static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
1831 struct gfn_to_pfn_cache *cache, u64 gen)
1832{
1833 kvm_release_pfn(cache->pfn, cache->dirty, cache);
1834
1835 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
1836 cache->gfn = gfn;
1837 cache->dirty = false;
1838 cache->generation = gen;
1839}
1840
1eff70a9 1841static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
91724814
BO
1842 struct kvm_host_map *map,
1843 struct gfn_to_pfn_cache *cache,
1844 bool atomic)
e45adf66
KA
1845{
1846 kvm_pfn_t pfn;
1847 void *hva = NULL;
1848 struct page *page = KVM_UNMAPPED_PAGE;
1eff70a9 1849 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
91724814 1850 u64 gen = slots->generation;
e45adf66
KA
1851
1852 if (!map)
1853 return -EINVAL;
1854
91724814
BO
1855 if (cache) {
1856 if (!cache->pfn || cache->gfn != gfn ||
1857 cache->generation != gen) {
1858 if (atomic)
1859 return -EAGAIN;
1860 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
1861 }
1862 pfn = cache->pfn;
1863 } else {
1864 if (atomic)
1865 return -EAGAIN;
1866 pfn = gfn_to_pfn_memslot(slot, gfn);
1867 }
e45adf66
KA
1868 if (is_error_noslot_pfn(pfn))
1869 return -EINVAL;
1870
1871 if (pfn_valid(pfn)) {
1872 page = pfn_to_page(pfn);
91724814
BO
1873 if (atomic)
1874 hva = kmap_atomic(page);
1875 else
1876 hva = kmap(page);
d30b214d 1877#ifdef CONFIG_HAS_IOMEM
91724814 1878 } else if (!atomic) {
e45adf66 1879 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
91724814
BO
1880 } else {
1881 return -EINVAL;
d30b214d 1882#endif
e45adf66
KA
1883 }
1884
1885 if (!hva)
1886 return -EFAULT;
1887
1888 map->page = page;
1889 map->hva = hva;
1890 map->pfn = pfn;
1891 map->gfn = gfn;
1892
1893 return 0;
1894}
1895
91724814
BO
1896int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
1897 struct gfn_to_pfn_cache *cache, bool atomic)
1eff70a9 1898{
91724814
BO
1899 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
1900 cache, atomic);
1eff70a9
BO
1901}
1902EXPORT_SYMBOL_GPL(kvm_map_gfn);
1903
e45adf66
KA
1904int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1905{
91724814
BO
1906 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
1907 NULL, false);
e45adf66
KA
1908}
1909EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1910
1eff70a9 1911static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
91724814
BO
1912 struct kvm_host_map *map,
1913 struct gfn_to_pfn_cache *cache,
1914 bool dirty, bool atomic)
e45adf66
KA
1915{
1916 if (!map)
1917 return;
1918
1919 if (!map->hva)
1920 return;
1921
91724814
BO
1922 if (map->page != KVM_UNMAPPED_PAGE) {
1923 if (atomic)
1924 kunmap_atomic(map->hva);
1925 else
1926 kunmap(map->page);
1927 }
eb1f2f38 1928#ifdef CONFIG_HAS_IOMEM
91724814 1929 else if (!atomic)
e45adf66 1930 memunmap(map->hva);
91724814
BO
1931 else
1932 WARN_ONCE(1, "Unexpected unmapping in atomic context");
eb1f2f38 1933#endif
e45adf66 1934
91724814 1935 if (dirty)
1eff70a9 1936 mark_page_dirty_in_slot(memslot, map->gfn);
91724814
BO
1937
1938 if (cache)
1939 cache->dirty |= dirty;
1940 else
1941 kvm_release_pfn(map->pfn, dirty, NULL);
e45adf66
KA
1942
1943 map->hva = NULL;
1944 map->page = NULL;
1945}
1eff70a9 1946
91724814
BO
1947int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1948 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
1eff70a9 1949{
91724814
BO
1950 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
1951 cache, dirty, atomic);
1eff70a9
BO
1952 return 0;
1953}
1954EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
1955
1956void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
1957{
91724814
BO
1958 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
1959 dirty, false);
1eff70a9 1960}
e45adf66
KA
1961EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1962
8e73485c
PB
1963struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1964{
ba049e93 1965 kvm_pfn_t pfn;
8e73485c
PB
1966
1967 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1968
1969 return kvm_pfn_to_page(pfn);
1970}
1971EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1972
b4231d61
IE
1973void kvm_release_page_clean(struct page *page)
1974{
32cad84f
XG
1975 WARN_ON(is_error_page(page));
1976
35149e21 1977 kvm_release_pfn_clean(page_to_pfn(page));
b4231d61
IE
1978}
1979EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1980
ba049e93 1981void kvm_release_pfn_clean(kvm_pfn_t pfn)
35149e21 1982{
bf4bea8e 1983 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2e2e3738 1984 put_page(pfn_to_page(pfn));
35149e21
AL
1985}
1986EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1987
b4231d61 1988void kvm_release_page_dirty(struct page *page)
8a7ae055 1989{
a2766325
XG
1990 WARN_ON(is_error_page(page));
1991
35149e21
AL
1992 kvm_release_pfn_dirty(page_to_pfn(page));
1993}
1994EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1995
f7a6509f 1996void kvm_release_pfn_dirty(kvm_pfn_t pfn)
35149e21
AL
1997{
1998 kvm_set_pfn_dirty(pfn);
1999 kvm_release_pfn_clean(pfn);
2000}
f7a6509f 2001EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
35149e21 2002
ba049e93 2003void kvm_set_pfn_dirty(kvm_pfn_t pfn)
35149e21 2004{
d29c03a5
ML
2005 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2006 SetPageDirty(pfn_to_page(pfn));
8a7ae055 2007}
35149e21
AL
2008EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2009
ba049e93 2010void kvm_set_pfn_accessed(kvm_pfn_t pfn)
35149e21 2011{
a78986aa 2012 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2e2e3738 2013 mark_page_accessed(pfn_to_page(pfn));
35149e21
AL
2014}
2015EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2016
ba049e93 2017void kvm_get_pfn(kvm_pfn_t pfn)
35149e21 2018{
bf4bea8e 2019 if (!kvm_is_reserved_pfn(pfn))
2e2e3738 2020 get_page(pfn_to_page(pfn));
35149e21
AL
2021}
2022EXPORT_SYMBOL_GPL(kvm_get_pfn);
8a7ae055 2023
195aefde
IE
2024static int next_segment(unsigned long len, int offset)
2025{
2026 if (len > PAGE_SIZE - offset)
2027 return PAGE_SIZE - offset;
2028 else
2029 return len;
2030}
2031
8e73485c
PB
2032static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2033 void *data, int offset, int len)
195aefde 2034{
e0506bcb
IE
2035 int r;
2036 unsigned long addr;
195aefde 2037
8e73485c 2038 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
e0506bcb
IE
2039 if (kvm_is_error_hva(addr))
2040 return -EFAULT;
3180a7fc 2041 r = __copy_from_user(data, (void __user *)addr + offset, len);
e0506bcb 2042 if (r)
195aefde 2043 return -EFAULT;
195aefde
IE
2044 return 0;
2045}
8e73485c
PB
2046
2047int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2048 int len)
2049{
2050 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2051
2052 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2053}
195aefde
IE
2054EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2055
8e73485c
PB
2056int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2057 int offset, int len)
2058{
2059 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2060
2061 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2062}
2063EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2064
195aefde
IE
2065int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2066{
2067 gfn_t gfn = gpa >> PAGE_SHIFT;
2068 int seg;
2069 int offset = offset_in_page(gpa);
2070 int ret;
2071
2072 while ((seg = next_segment(len, offset)) != 0) {
2073 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2074 if (ret < 0)
2075 return ret;
2076 offset = 0;
2077 len -= seg;
2078 data += seg;
2079 ++gfn;
2080 }
2081 return 0;
2082}
2083EXPORT_SYMBOL_GPL(kvm_read_guest);
2084
8e73485c 2085int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
7ec54588 2086{
7ec54588 2087 gfn_t gfn = gpa >> PAGE_SHIFT;
8e73485c 2088 int seg;
7ec54588 2089 int offset = offset_in_page(gpa);
8e73485c
PB
2090 int ret;
2091
2092 while ((seg = next_segment(len, offset)) != 0) {
2093 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2094 if (ret < 0)
2095 return ret;
2096 offset = 0;
2097 len -= seg;
2098 data += seg;
2099 ++gfn;
2100 }
2101 return 0;
2102}
2103EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
7ec54588 2104
8e73485c
PB
2105static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2106 void *data, int offset, unsigned long len)
2107{
2108 int r;
2109 unsigned long addr;
2110
2111 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
7ec54588
MT
2112 if (kvm_is_error_hva(addr))
2113 return -EFAULT;
0aac03f0 2114 pagefault_disable();
3180a7fc 2115 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
0aac03f0 2116 pagefault_enable();
7ec54588
MT
2117 if (r)
2118 return -EFAULT;
2119 return 0;
2120}
7ec54588 2121
8e73485c
PB
2122int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2123 void *data, unsigned long len)
2124{
2125 gfn_t gfn = gpa >> PAGE_SHIFT;
2126 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2127 int offset = offset_in_page(gpa);
2128
2129 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2130}
2131EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2132
2133static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2134 const void *data, int offset, int len)
195aefde 2135{
e0506bcb
IE
2136 int r;
2137 unsigned long addr;
195aefde 2138
251eb841 2139 addr = gfn_to_hva_memslot(memslot, gfn);
e0506bcb
IE
2140 if (kvm_is_error_hva(addr))
2141 return -EFAULT;
8b0cedff 2142 r = __copy_to_user((void __user *)addr + offset, data, len);
e0506bcb 2143 if (r)
195aefde 2144 return -EFAULT;
bc009e43 2145 mark_page_dirty_in_slot(memslot, gfn);
195aefde
IE
2146 return 0;
2147}
8e73485c
PB
2148
2149int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2150 const void *data, int offset, int len)
2151{
2152 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2153
2154 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2155}
195aefde
IE
2156EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2157
8e73485c
PB
2158int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2159 const void *data, int offset, int len)
2160{
2161 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2162
2163 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2164}
2165EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2166
195aefde
IE
2167int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2168 unsigned long len)
2169{
2170 gfn_t gfn = gpa >> PAGE_SHIFT;
2171 int seg;
2172 int offset = offset_in_page(gpa);
2173 int ret;
2174
2175 while ((seg = next_segment(len, offset)) != 0) {
2176 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2177 if (ret < 0)
2178 return ret;
2179 offset = 0;
2180 len -= seg;
2181 data += seg;
2182 ++gfn;
2183 }
2184 return 0;
2185}
ff651cb6 2186EXPORT_SYMBOL_GPL(kvm_write_guest);
195aefde 2187
8e73485c
PB
2188int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2189 unsigned long len)
2190{
2191 gfn_t gfn = gpa >> PAGE_SHIFT;
2192 int seg;
2193 int offset = offset_in_page(gpa);
2194 int ret;
2195
2196 while ((seg = next_segment(len, offset)) != 0) {
2197 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2198 if (ret < 0)
2199 return ret;
2200 offset = 0;
2201 len -= seg;
2202 data += seg;
2203 ++gfn;
2204 }
2205 return 0;
2206}
2207EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2208
5a2d4365
PB
2209static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2210 struct gfn_to_hva_cache *ghc,
2211 gpa_t gpa, unsigned long len)
49c7754c 2212{
49c7754c 2213 int offset = offset_in_page(gpa);
8f964525
AH
2214 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2215 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2216 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2217 gfn_t nr_pages_avail;
49c7754c 2218
6ad1e29f 2219 /* Update ghc->generation before performing any error checks. */
49c7754c 2220 ghc->generation = slots->generation;
6ad1e29f
SC
2221
2222 if (start_gfn > end_gfn) {
2223 ghc->hva = KVM_HVA_ERR_BAD;
2224 return -EINVAL;
2225 }
f1b9dd5e
JM
2226
2227 /*
2228 * If the requested region crosses two memslots, we still
2229 * verify that the entire region is valid here.
2230 */
6ad1e29f 2231 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
f1b9dd5e
JM
2232 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2233 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2234 &nr_pages_avail);
2235 if (kvm_is_error_hva(ghc->hva))
6ad1e29f 2236 return -EFAULT;
f1b9dd5e
JM
2237 }
2238
2239 /* Use the slow path for cross page reads and writes. */
6ad1e29f 2240 if (nr_pages_needed == 1)
49c7754c 2241 ghc->hva += offset;
f1b9dd5e 2242 else
8f964525 2243 ghc->memslot = NULL;
f1b9dd5e 2244
6ad1e29f
SC
2245 ghc->gpa = gpa;
2246 ghc->len = len;
2247 return 0;
49c7754c 2248}
5a2d4365 2249
4e335d9e 2250int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
5a2d4365
PB
2251 gpa_t gpa, unsigned long len)
2252{
4e335d9e 2253 struct kvm_memslots *slots = kvm_memslots(kvm);
5a2d4365
PB
2254 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2255}
4e335d9e 2256EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
49c7754c 2257
4e335d9e 2258int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
2259 void *data, unsigned int offset,
2260 unsigned long len)
49c7754c 2261{
4e335d9e 2262 struct kvm_memslots *slots = kvm_memslots(kvm);
49c7754c 2263 int r;
4ec6e863 2264 gpa_t gpa = ghc->gpa + offset;
49c7754c 2265
4ec6e863 2266 BUG_ON(len + offset > ghc->len);
8f964525 2267
dc9ce71e
SC
2268 if (slots->generation != ghc->generation) {
2269 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2270 return -EFAULT;
2271 }
8f964525 2272
49c7754c
GN
2273 if (kvm_is_error_hva(ghc->hva))
2274 return -EFAULT;
2275
fcfbc617
SC
2276 if (unlikely(!ghc->memslot))
2277 return kvm_write_guest(kvm, gpa, data, len);
2278
4ec6e863 2279 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
49c7754c
GN
2280 if (r)
2281 return -EFAULT;
4ec6e863 2282 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
49c7754c
GN
2283
2284 return 0;
2285}
4e335d9e 2286EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
4ec6e863 2287
4e335d9e
PB
2288int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2289 void *data, unsigned long len)
4ec6e863 2290{
4e335d9e 2291 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
4ec6e863 2292}
4e335d9e 2293EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
49c7754c 2294
4e335d9e
PB
2295int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2296 void *data, unsigned long len)
e03b644f 2297{
4e335d9e 2298 struct kvm_memslots *slots = kvm_memslots(kvm);
e03b644f
GN
2299 int r;
2300
8f964525
AH
2301 BUG_ON(len > ghc->len);
2302
dc9ce71e
SC
2303 if (slots->generation != ghc->generation) {
2304 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2305 return -EFAULT;
2306 }
8f964525 2307
e03b644f
GN
2308 if (kvm_is_error_hva(ghc->hva))
2309 return -EFAULT;
2310
fcfbc617
SC
2311 if (unlikely(!ghc->memslot))
2312 return kvm_read_guest(kvm, ghc->gpa, data, len);
2313
e03b644f
GN
2314 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2315 if (r)
2316 return -EFAULT;
2317
2318 return 0;
2319}
4e335d9e 2320EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
e03b644f 2321
195aefde
IE
2322int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2323{
8a3caa6d
HC
2324 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2325
2326 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
195aefde
IE
2327}
2328EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2329
2330int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2331{
2332 gfn_t gfn = gpa >> PAGE_SHIFT;
2333 int seg;
2334 int offset = offset_in_page(gpa);
2335 int ret;
2336
bfda0e84 2337 while ((seg = next_segment(len, offset)) != 0) {
195aefde
IE
2338 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2339 if (ret < 0)
2340 return ret;
2341 offset = 0;
2342 len -= seg;
2343 ++gfn;
2344 }
2345 return 0;
2346}
2347EXPORT_SYMBOL_GPL(kvm_clear_guest);
2348
bc009e43 2349static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
7940876e 2350 gfn_t gfn)
6aa8b732 2351{
7e9d619d
RR
2352 if (memslot && memslot->dirty_bitmap) {
2353 unsigned long rel_gfn = gfn - memslot->base_gfn;
6aa8b732 2354
b74ca3b3 2355 set_bit_le(rel_gfn, memslot->dirty_bitmap);
6aa8b732
AK
2356 }
2357}
2358
49c7754c
GN
2359void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2360{
2361 struct kvm_memory_slot *memslot;
2362
2363 memslot = gfn_to_memslot(kvm, gfn);
bc009e43 2364 mark_page_dirty_in_slot(memslot, gfn);
49c7754c 2365}
2ba9f0d8 2366EXPORT_SYMBOL_GPL(mark_page_dirty);
49c7754c 2367
8e73485c
PB
2368void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2369{
2370 struct kvm_memory_slot *memslot;
2371
2372 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2373 mark_page_dirty_in_slot(memslot, gfn);
2374}
2375EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2376
20b7035c
JS
2377void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2378{
2379 if (!vcpu->sigset_active)
2380 return;
2381
2382 /*
2383 * This does a lockless modification of ->real_blocked, which is fine
2384 * because, only current can change ->real_blocked and all readers of
2385 * ->real_blocked don't care as long ->real_blocked is always a subset
2386 * of ->blocked.
2387 */
2388 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2389}
2390
2391void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2392{
2393 if (!vcpu->sigset_active)
2394 return;
2395
2396 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2397 sigemptyset(&current->real_blocked);
2398}
2399
aca6ff29
WL
2400static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2401{
dee339b5 2402 unsigned int old, val, grow, grow_start;
aca6ff29 2403
2cbd7824 2404 old = val = vcpu->halt_poll_ns;
dee339b5 2405 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 2406 grow = READ_ONCE(halt_poll_ns_grow);
7fa08e71
NW
2407 if (!grow)
2408 goto out;
2409
dee339b5
NW
2410 val *= grow;
2411 if (val < grow_start)
2412 val = grow_start;
aca6ff29 2413
313f636d
DM
2414 if (val > halt_poll_ns)
2415 val = halt_poll_ns;
2416
aca6ff29 2417 vcpu->halt_poll_ns = val;
7fa08e71 2418out:
2cbd7824 2419 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
aca6ff29
WL
2420}
2421
2422static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2423{
6b6de68c 2424 unsigned int old, val, shrink;
aca6ff29 2425
2cbd7824 2426 old = val = vcpu->halt_poll_ns;
6b6de68c
CB
2427 shrink = READ_ONCE(halt_poll_ns_shrink);
2428 if (shrink == 0)
aca6ff29
WL
2429 val = 0;
2430 else
6b6de68c 2431 val /= shrink;
aca6ff29
WL
2432
2433 vcpu->halt_poll_ns = val;
2cbd7824 2434 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
aca6ff29
WL
2435}
2436
f7819512
PB
2437static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2438{
50c28f21
JS
2439 int ret = -EINTR;
2440 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2441
f7819512
PB
2442 if (kvm_arch_vcpu_runnable(vcpu)) {
2443 kvm_make_request(KVM_REQ_UNHALT, vcpu);
50c28f21 2444 goto out;
f7819512
PB
2445 }
2446 if (kvm_cpu_has_pending_timer(vcpu))
50c28f21 2447 goto out;
f7819512 2448 if (signal_pending(current))
50c28f21 2449 goto out;
f7819512 2450
50c28f21
JS
2451 ret = 0;
2452out:
2453 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2454 return ret;
f7819512
PB
2455}
2456
b6958ce4
ED
2457/*
2458 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2459 */
8776e519 2460void kvm_vcpu_block(struct kvm_vcpu *vcpu)
d3bef15f 2461{
f7819512 2462 ktime_t start, cur;
8577370f 2463 DECLARE_SWAITQUEUE(wait);
f7819512 2464 bool waited = false;
aca6ff29 2465 u64 block_ns;
f7819512 2466
07ab0f8d
MZ
2467 kvm_arch_vcpu_blocking(vcpu);
2468
f7819512 2469 start = cur = ktime_get();
cdd6ad3a 2470 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
19020f8a 2471 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
f95ef0cd 2472
62bea5bf 2473 ++vcpu->stat.halt_attempted_poll;
f7819512
PB
2474 do {
2475 /*
2476 * This sets KVM_REQ_UNHALT if an interrupt
2477 * arrives.
2478 */
2479 if (kvm_vcpu_check_block(vcpu) < 0) {
2480 ++vcpu->stat.halt_successful_poll;
3491caf2
CB
2481 if (!vcpu_valid_wakeup(vcpu))
2482 ++vcpu->stat.halt_poll_invalid;
f7819512
PB
2483 goto out;
2484 }
2485 cur = ktime_get();
2486 } while (single_task_running() && ktime_before(cur, stop));
2487 }
e5c239cf
MT
2488
2489 for (;;) {
b3dae109 2490 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
e5c239cf 2491
f7819512 2492 if (kvm_vcpu_check_block(vcpu) < 0)
e5c239cf
MT
2493 break;
2494
f7819512 2495 waited = true;
b6958ce4 2496 schedule();
b6958ce4 2497 }
d3bef15f 2498
8577370f 2499 finish_swait(&vcpu->wq, &wait);
f7819512 2500 cur = ktime_get();
f7819512 2501out:
07ab0f8d 2502 kvm_arch_vcpu_unblocking(vcpu);
aca6ff29
WL
2503 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2504
44551b2f
WL
2505 if (!kvm_arch_no_poll(vcpu)) {
2506 if (!vcpu_valid_wakeup(vcpu)) {
aca6ff29 2507 shrink_halt_poll_ns(vcpu);
44551b2f
WL
2508 } else if (halt_poll_ns) {
2509 if (block_ns <= vcpu->halt_poll_ns)
2510 ;
2511 /* we had a long block, shrink polling */
2512 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2513 shrink_halt_poll_ns(vcpu);
2514 /* we had a short halt and our poll time is too small */
2515 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2516 block_ns < halt_poll_ns)
2517 grow_halt_poll_ns(vcpu);
2518 } else {
2519 vcpu->halt_poll_ns = 0;
2520 }
2521 }
aca6ff29 2522
3491caf2
CB
2523 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2524 kvm_arch_vcpu_block_finish(vcpu);
b6958ce4 2525}
2ba9f0d8 2526EXPORT_SYMBOL_GPL(kvm_vcpu_block);
b6958ce4 2527
178f02ff 2528bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
b6d33834 2529{
8577370f 2530 struct swait_queue_head *wqp;
b6d33834
CD
2531
2532 wqp = kvm_arch_vcpu_wq(vcpu);
5e0018b3 2533 if (swq_has_sleeper(wqp)) {
b3dae109 2534 swake_up_one(wqp);
d73eb57b 2535 WRITE_ONCE(vcpu->ready, true);
b6d33834 2536 ++vcpu->stat.halt_wakeup;
178f02ff 2537 return true;
b6d33834
CD
2538 }
2539
178f02ff 2540 return false;
dd1a4cc1
RK
2541}
2542EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2543
0266c894 2544#ifndef CONFIG_S390
dd1a4cc1
RK
2545/*
2546 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2547 */
2548void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2549{
2550 int me;
2551 int cpu = vcpu->cpu;
2552
178f02ff
RK
2553 if (kvm_vcpu_wake_up(vcpu))
2554 return;
2555
b6d33834
CD
2556 me = get_cpu();
2557 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2558 if (kvm_arch_vcpu_should_kick(vcpu))
2559 smp_send_reschedule(cpu);
2560 put_cpu();
2561}
a20ed54d 2562EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
0266c894 2563#endif /* !CONFIG_S390 */
b6d33834 2564
fa93384f 2565int kvm_vcpu_yield_to(struct kvm_vcpu *target)
41628d33
KW
2566{
2567 struct pid *pid;
2568 struct task_struct *task = NULL;
fa93384f 2569 int ret = 0;
41628d33
KW
2570
2571 rcu_read_lock();
2572 pid = rcu_dereference(target->pid);
2573 if (pid)
27fbe64b 2574 task = get_pid_task(pid, PIDTYPE_PID);
41628d33
KW
2575 rcu_read_unlock();
2576 if (!task)
c45c528e 2577 return ret;
c45c528e 2578 ret = yield_to(task, 1);
41628d33 2579 put_task_struct(task);
c45c528e
R
2580
2581 return ret;
41628d33
KW
2582}
2583EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2584
06e48c51
R
2585/*
2586 * Helper that checks whether a VCPU is eligible for directed yield.
2587 * Most eligible candidate to yield is decided by following heuristics:
2588 *
2589 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2590 * (preempted lock holder), indicated by @in_spin_loop.
2591 * Set at the beiginning and cleared at the end of interception/PLE handler.
2592 *
2593 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2594 * chance last time (mostly it has become eligible now since we have probably
2595 * yielded to lockholder in last iteration. This is done by toggling
2596 * @dy_eligible each time a VCPU checked for eligibility.)
2597 *
2598 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2599 * to preempted lock-holder could result in wrong VCPU selection and CPU
2600 * burning. Giving priority for a potential lock-holder increases lock
2601 * progress.
2602 *
2603 * Since algorithm is based on heuristics, accessing another VCPU data without
2604 * locking does not harm. It may result in trying to yield to same VCPU, fail
2605 * and continue with next VCPU and so on.
2606 */
7940876e 2607static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
06e48c51 2608{
4a55dd72 2609#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
06e48c51
R
2610 bool eligible;
2611
2612 eligible = !vcpu->spin_loop.in_spin_loop ||
34656113 2613 vcpu->spin_loop.dy_eligible;
06e48c51
R
2614
2615 if (vcpu->spin_loop.in_spin_loop)
2616 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2617
2618 return eligible;
4a55dd72
SW
2619#else
2620 return true;
06e48c51 2621#endif
4a55dd72 2622}
c45c528e 2623
17e433b5
WL
2624/*
2625 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2626 * a vcpu_load/vcpu_put pair. However, for most architectures
2627 * kvm_arch_vcpu_runnable does not require vcpu_load.
2628 */
2629bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2630{
2631 return kvm_arch_vcpu_runnable(vcpu);
2632}
2633
2634static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2635{
2636 if (kvm_arch_dy_runnable(vcpu))
2637 return true;
2638
2639#ifdef CONFIG_KVM_ASYNC_PF
2640 if (!list_empty_careful(&vcpu->async_pf.done))
2641 return true;
2642#endif
2643
2644 return false;
2645}
2646
199b5763 2647void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
d255f4f2 2648{
217ece61
RR
2649 struct kvm *kvm = me->kvm;
2650 struct kvm_vcpu *vcpu;
2651 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2652 int yielded = 0;
c45c528e 2653 int try = 3;
217ece61
RR
2654 int pass;
2655 int i;
d255f4f2 2656
4c088493 2657 kvm_vcpu_set_in_spin_loop(me, true);
217ece61
RR
2658 /*
2659 * We boost the priority of a VCPU that is runnable but not
2660 * currently running, because it got preempted by something
2661 * else and called schedule in __vcpu_run. Hopefully that
2662 * VCPU is holding the lock that we need and will release it.
2663 * We approximate round-robin by starting at the last boosted VCPU.
2664 */
c45c528e 2665 for (pass = 0; pass < 2 && !yielded && try; pass++) {
217ece61 2666 kvm_for_each_vcpu(i, vcpu, kvm) {
5cfc2aab 2667 if (!pass && i <= last_boosted_vcpu) {
217ece61
RR
2668 i = last_boosted_vcpu;
2669 continue;
2670 } else if (pass && i > last_boosted_vcpu)
2671 break;
d73eb57b 2672 if (!READ_ONCE(vcpu->ready))
7bc7ae25 2673 continue;
217ece61
RR
2674 if (vcpu == me)
2675 continue;
17e433b5 2676 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
217ece61 2677 continue;
046ddeed
WL
2678 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2679 !kvm_arch_vcpu_in_kernel(vcpu))
199b5763 2680 continue;
06e48c51
R
2681 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2682 continue;
c45c528e
R
2683
2684 yielded = kvm_vcpu_yield_to(vcpu);
2685 if (yielded > 0) {
217ece61 2686 kvm->last_boosted_vcpu = i;
217ece61 2687 break;
c45c528e
R
2688 } else if (yielded < 0) {
2689 try--;
2690 if (!try)
2691 break;
217ece61 2692 }
217ece61
RR
2693 }
2694 }
4c088493 2695 kvm_vcpu_set_in_spin_loop(me, false);
06e48c51
R
2696
2697 /* Ensure vcpu is not eligible during next spinloop */
2698 kvm_vcpu_set_dy_eligible(me, false);
d255f4f2
ZE
2699}
2700EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2701
1499fa80 2702static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
9a2bb7f4 2703{
11bac800 2704 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
9a2bb7f4
AK
2705 struct page *page;
2706
e4a533a4 2707 if (vmf->pgoff == 0)
039576c0 2708 page = virt_to_page(vcpu->run);
09566765 2709#ifdef CONFIG_X86
e4a533a4 2710 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
ad312c7c 2711 page = virt_to_page(vcpu->arch.pio_data);
5f94c174 2712#endif
4b4357e0 2713#ifdef CONFIG_KVM_MMIO
5f94c174
LV
2714 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2715 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
09566765 2716#endif
039576c0 2717 else
5b1c1493 2718 return kvm_arch_vcpu_fault(vcpu, vmf);
9a2bb7f4 2719 get_page(page);
e4a533a4
NP
2720 vmf->page = page;
2721 return 0;
9a2bb7f4
AK
2722}
2723
f0f37e2f 2724static const struct vm_operations_struct kvm_vcpu_vm_ops = {
e4a533a4 2725 .fault = kvm_vcpu_fault,
9a2bb7f4
AK
2726};
2727
2728static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2729{
2730 vma->vm_ops = &kvm_vcpu_vm_ops;
2731 return 0;
2732}
2733
bccf2150
AK
2734static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2735{
2736 struct kvm_vcpu *vcpu = filp->private_data;
2737
45b5939e 2738 debugfs_remove_recursive(vcpu->debugfs_dentry);
66c0b394 2739 kvm_put_kvm(vcpu->kvm);
bccf2150
AK
2740 return 0;
2741}
2742
3d3aab1b 2743static struct file_operations kvm_vcpu_fops = {
bccf2150
AK
2744 .release = kvm_vcpu_release,
2745 .unlocked_ioctl = kvm_vcpu_ioctl,
9a2bb7f4 2746 .mmap = kvm_vcpu_mmap,
6038f373 2747 .llseek = noop_llseek,
7ddfd3e0 2748 KVM_COMPAT(kvm_vcpu_compat_ioctl),
bccf2150
AK
2749};
2750
2751/*
2752 * Allocates an inode for the vcpu.
2753 */
2754static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2755{
e46b4692
MY
2756 char name[8 + 1 + ITOA_MAX_LEN + 1];
2757
2758 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2759 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
bccf2150
AK
2760}
2761
3e7093d0 2762static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
45b5939e 2763{
741cbbae 2764#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
45b5939e 2765 char dir_name[ITOA_MAX_LEN * 2];
45b5939e 2766
45b5939e 2767 if (!debugfs_initialized())
3e7093d0 2768 return;
45b5939e
LC
2769
2770 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2771 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
3e7093d0 2772 vcpu->kvm->debugfs_dentry);
45b5939e 2773
3e7093d0 2774 kvm_arch_create_vcpu_debugfs(vcpu);
741cbbae 2775#endif
45b5939e
LC
2776}
2777
c5ea7660
AK
2778/*
2779 * Creates some virtual cpus. Good luck creating more than one.
2780 */
73880c80 2781static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
c5ea7660
AK
2782{
2783 int r;
e09fefde 2784 struct kvm_vcpu *vcpu;
8bd826d6 2785 struct page *page;
c5ea7660 2786
0b1b1dfd 2787 if (id >= KVM_MAX_VCPU_ID)
338c7dba
AH
2788 return -EINVAL;
2789
6c7caebc
PB
2790 mutex_lock(&kvm->lock);
2791 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2792 mutex_unlock(&kvm->lock);
2793 return -EINVAL;
2794 }
2795
2796 kvm->created_vcpus++;
2797 mutex_unlock(&kvm->lock);
2798
897cc38e
SC
2799 r = kvm_arch_vcpu_precreate(kvm, id);
2800 if (r)
2801 goto vcpu_decrement;
2802
e529ef66
SC
2803 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2804 if (!vcpu) {
2805 r = -ENOMEM;
6c7caebc
PB
2806 goto vcpu_decrement;
2807 }
c5ea7660 2808
fcd97ad5 2809 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
8bd826d6
SC
2810 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2811 if (!page) {
2812 r = -ENOMEM;
e529ef66 2813 goto vcpu_free;
8bd826d6
SC
2814 }
2815 vcpu->run = page_address(page);
2816
2817 kvm_vcpu_init(vcpu, kvm, id);
e529ef66
SC
2818
2819 r = kvm_arch_vcpu_create(vcpu);
2820 if (r)
8bd826d6 2821 goto vcpu_free_run_page;
e529ef66 2822
3e7093d0 2823 kvm_create_vcpu_debugfs(vcpu);
45b5939e 2824
11ec2804 2825 mutex_lock(&kvm->lock);
e09fefde
DH
2826 if (kvm_get_vcpu_by_id(kvm, id)) {
2827 r = -EEXIST;
2828 goto unlock_vcpu_destroy;
2829 }
73880c80 2830
8750e72a
RK
2831 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
2832 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
c5ea7660 2833
fb3f0f51 2834 /* Now it's all set up, let userspace reach it */
66c0b394 2835 kvm_get_kvm(kvm);
bccf2150 2836 r = create_vcpu_fd(vcpu);
73880c80 2837 if (r < 0) {
149487bd 2838 kvm_put_kvm_no_destroy(kvm);
d780592b 2839 goto unlock_vcpu_destroy;
73880c80
GN
2840 }
2841
8750e72a 2842 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
dd489240
PB
2843
2844 /*
2845 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2846 * before kvm->online_vcpu's incremented value.
2847 */
73880c80
GN
2848 smp_wmb();
2849 atomic_inc(&kvm->online_vcpus);
2850
73880c80 2851 mutex_unlock(&kvm->lock);
42897d86 2852 kvm_arch_vcpu_postcreate(vcpu);
fb3f0f51 2853 return r;
39c3b86e 2854
d780592b 2855unlock_vcpu_destroy:
7d8fece6 2856 mutex_unlock(&kvm->lock);
45b5939e 2857 debugfs_remove_recursive(vcpu->debugfs_dentry);
d40ccc62 2858 kvm_arch_vcpu_destroy(vcpu);
8bd826d6
SC
2859vcpu_free_run_page:
2860 free_page((unsigned long)vcpu->run);
e529ef66
SC
2861vcpu_free:
2862 kmem_cache_free(kvm_vcpu_cache, vcpu);
6c7caebc
PB
2863vcpu_decrement:
2864 mutex_lock(&kvm->lock);
2865 kvm->created_vcpus--;
2866 mutex_unlock(&kvm->lock);
c5ea7660
AK
2867 return r;
2868}
2869
1961d276
AK
2870static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2871{
2872 if (sigset) {
2873 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2874 vcpu->sigset_active = 1;
2875 vcpu->sigset = *sigset;
2876 } else
2877 vcpu->sigset_active = 0;
2878 return 0;
2879}
2880
bccf2150
AK
2881static long kvm_vcpu_ioctl(struct file *filp,
2882 unsigned int ioctl, unsigned long arg)
6aa8b732 2883{
bccf2150 2884 struct kvm_vcpu *vcpu = filp->private_data;
2f366987 2885 void __user *argp = (void __user *)arg;
313a3dc7 2886 int r;
fa3795a7
DH
2887 struct kvm_fpu *fpu = NULL;
2888 struct kvm_sregs *kvm_sregs = NULL;
6aa8b732 2889
6d4e4c4f
AK
2890 if (vcpu->kvm->mm != current->mm)
2891 return -EIO;
2122ff5e 2892
2ea75be3
DM
2893 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2894 return -EINVAL;
2895
2122ff5e 2896 /*
5cb0944c
PB
2897 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2898 * execution; mutex_lock() would break them.
2122ff5e 2899 */
5cb0944c
PB
2900 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2901 if (r != -ENOIOCTLCMD)
9fc77441 2902 return r;
2122ff5e 2903
ec7660cc
CD
2904 if (mutex_lock_killable(&vcpu->mutex))
2905 return -EINTR;
6aa8b732 2906 switch (ioctl) {
0e4524a5
CB
2907 case KVM_RUN: {
2908 struct pid *oldpid;
f0fe5108
AK
2909 r = -EINVAL;
2910 if (arg)
2911 goto out;
0e4524a5 2912 oldpid = rcu_access_pointer(vcpu->pid);
71dbc8a9 2913 if (unlikely(oldpid != task_pid(current))) {
7a72f7a1 2914 /* The thread running this VCPU changed. */
bd2a6394 2915 struct pid *newpid;
f95ef0cd 2916
bd2a6394
CD
2917 r = kvm_arch_vcpu_run_pid_change(vcpu);
2918 if (r)
2919 break;
2920
2921 newpid = get_task_pid(current, PIDTYPE_PID);
7a72f7a1
CB
2922 rcu_assign_pointer(vcpu->pid, newpid);
2923 if (oldpid)
2924 synchronize_rcu();
2925 put_pid(oldpid);
2926 }
b6c7a5dc 2927 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
64be5007 2928 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
6aa8b732 2929 break;
0e4524a5 2930 }
6aa8b732 2931 case KVM_GET_REGS: {
3e4bb3ac 2932 struct kvm_regs *kvm_regs;
6aa8b732 2933
3e4bb3ac 2934 r = -ENOMEM;
b12ce36a 2935 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3e4bb3ac 2936 if (!kvm_regs)
6aa8b732 2937 goto out;
3e4bb3ac
XZ
2938 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2939 if (r)
2940 goto out_free1;
6aa8b732 2941 r = -EFAULT;
3e4bb3ac
XZ
2942 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2943 goto out_free1;
6aa8b732 2944 r = 0;
3e4bb3ac
XZ
2945out_free1:
2946 kfree(kvm_regs);
6aa8b732
AK
2947 break;
2948 }
2949 case KVM_SET_REGS: {
3e4bb3ac 2950 struct kvm_regs *kvm_regs;
6aa8b732 2951
3e4bb3ac 2952 r = -ENOMEM;
ff5c2c03
SL
2953 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2954 if (IS_ERR(kvm_regs)) {
2955 r = PTR_ERR(kvm_regs);
6aa8b732 2956 goto out;
ff5c2c03 2957 }
3e4bb3ac 2958 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3e4bb3ac 2959 kfree(kvm_regs);
6aa8b732
AK
2960 break;
2961 }
2962 case KVM_GET_SREGS: {
b12ce36a
BG
2963 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2964 GFP_KERNEL_ACCOUNT);
fa3795a7
DH
2965 r = -ENOMEM;
2966 if (!kvm_sregs)
2967 goto out;
2968 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
6aa8b732
AK
2969 if (r)
2970 goto out;
2971 r = -EFAULT;
fa3795a7 2972 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
6aa8b732
AK
2973 goto out;
2974 r = 0;
2975 break;
2976 }
2977 case KVM_SET_SREGS: {
ff5c2c03
SL
2978 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2979 if (IS_ERR(kvm_sregs)) {
2980 r = PTR_ERR(kvm_sregs);
18595411 2981 kvm_sregs = NULL;
6aa8b732 2982 goto out;
ff5c2c03 2983 }
fa3795a7 2984 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
6aa8b732
AK
2985 break;
2986 }
62d9f0db
MT
2987 case KVM_GET_MP_STATE: {
2988 struct kvm_mp_state mp_state;
2989
2990 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2991 if (r)
2992 goto out;
2993 r = -EFAULT;
893bdbf1 2994 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
62d9f0db
MT
2995 goto out;
2996 r = 0;
2997 break;
2998 }
2999 case KVM_SET_MP_STATE: {
3000 struct kvm_mp_state mp_state;
3001
3002 r = -EFAULT;
893bdbf1 3003 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
62d9f0db
MT
3004 goto out;
3005 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
62d9f0db
MT
3006 break;
3007 }
6aa8b732
AK
3008 case KVM_TRANSLATE: {
3009 struct kvm_translation tr;
3010
3011 r = -EFAULT;
893bdbf1 3012 if (copy_from_user(&tr, argp, sizeof(tr)))
6aa8b732 3013 goto out;
8b006791 3014 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
6aa8b732
AK
3015 if (r)
3016 goto out;
3017 r = -EFAULT;
893bdbf1 3018 if (copy_to_user(argp, &tr, sizeof(tr)))
6aa8b732
AK
3019 goto out;
3020 r = 0;
3021 break;
3022 }
d0bfb940
JK
3023 case KVM_SET_GUEST_DEBUG: {
3024 struct kvm_guest_debug dbg;
6aa8b732
AK
3025
3026 r = -EFAULT;
893bdbf1 3027 if (copy_from_user(&dbg, argp, sizeof(dbg)))
6aa8b732 3028 goto out;
d0bfb940 3029 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
6aa8b732
AK
3030 break;
3031 }
1961d276
AK
3032 case KVM_SET_SIGNAL_MASK: {
3033 struct kvm_signal_mask __user *sigmask_arg = argp;
3034 struct kvm_signal_mask kvm_sigmask;
3035 sigset_t sigset, *p;
3036
3037 p = NULL;
3038 if (argp) {
3039 r = -EFAULT;
3040 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3041 sizeof(kvm_sigmask)))
1961d276
AK
3042 goto out;
3043 r = -EINVAL;
893bdbf1 3044 if (kvm_sigmask.len != sizeof(sigset))
1961d276
AK
3045 goto out;
3046 r = -EFAULT;
3047 if (copy_from_user(&sigset, sigmask_arg->sigset,
893bdbf1 3048 sizeof(sigset)))
1961d276
AK
3049 goto out;
3050 p = &sigset;
3051 }
376d41ff 3052 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1961d276
AK
3053 break;
3054 }
b8836737 3055 case KVM_GET_FPU: {
b12ce36a 3056 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3057 r = -ENOMEM;
3058 if (!fpu)
3059 goto out;
3060 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
b8836737
AK
3061 if (r)
3062 goto out;
3063 r = -EFAULT;
fa3795a7 3064 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
b8836737
AK
3065 goto out;
3066 r = 0;
3067 break;
3068 }
3069 case KVM_SET_FPU: {
ff5c2c03
SL
3070 fpu = memdup_user(argp, sizeof(*fpu));
3071 if (IS_ERR(fpu)) {
3072 r = PTR_ERR(fpu);
18595411 3073 fpu = NULL;
b8836737 3074 goto out;
ff5c2c03 3075 }
fa3795a7 3076 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
b8836737
AK
3077 break;
3078 }
bccf2150 3079 default:
313a3dc7 3080 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
bccf2150
AK
3081 }
3082out:
ec7660cc 3083 mutex_unlock(&vcpu->mutex);
fa3795a7
DH
3084 kfree(fpu);
3085 kfree(kvm_sregs);
bccf2150
AK
3086 return r;
3087}
3088
de8e5d74 3089#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
3090static long kvm_vcpu_compat_ioctl(struct file *filp,
3091 unsigned int ioctl, unsigned long arg)
3092{
3093 struct kvm_vcpu *vcpu = filp->private_data;
3094 void __user *argp = compat_ptr(arg);
3095 int r;
3096
3097 if (vcpu->kvm->mm != current->mm)
3098 return -EIO;
3099
3100 switch (ioctl) {
3101 case KVM_SET_SIGNAL_MASK: {
3102 struct kvm_signal_mask __user *sigmask_arg = argp;
3103 struct kvm_signal_mask kvm_sigmask;
1dda606c
AG
3104 sigset_t sigset;
3105
3106 if (argp) {
3107 r = -EFAULT;
3108 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3109 sizeof(kvm_sigmask)))
1dda606c
AG
3110 goto out;
3111 r = -EINVAL;
3968cf62 3112 if (kvm_sigmask.len != sizeof(compat_sigset_t))
1dda606c
AG
3113 goto out;
3114 r = -EFAULT;
3968cf62 3115 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
1dda606c 3116 goto out;
760a9a30
AC
3117 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3118 } else
3119 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1dda606c
AG
3120 break;
3121 }
3122 default:
3123 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3124 }
3125
3126out:
3127 return r;
3128}
3129#endif
3130
a1cd3f08
CLG
3131static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3132{
3133 struct kvm_device *dev = filp->private_data;
3134
3135 if (dev->ops->mmap)
3136 return dev->ops->mmap(dev, vma);
3137
3138 return -ENODEV;
3139}
3140
852b6d57
SW
3141static int kvm_device_ioctl_attr(struct kvm_device *dev,
3142 int (*accessor)(struct kvm_device *dev,
3143 struct kvm_device_attr *attr),
3144 unsigned long arg)
3145{
3146 struct kvm_device_attr attr;
3147
3148 if (!accessor)
3149 return -EPERM;
3150
3151 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3152 return -EFAULT;
3153
3154 return accessor(dev, &attr);
3155}
3156
3157static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3158 unsigned long arg)
3159{
3160 struct kvm_device *dev = filp->private_data;
3161
ddba9180
SC
3162 if (dev->kvm->mm != current->mm)
3163 return -EIO;
3164
852b6d57
SW
3165 switch (ioctl) {
3166 case KVM_SET_DEVICE_ATTR:
3167 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3168 case KVM_GET_DEVICE_ATTR:
3169 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3170 case KVM_HAS_DEVICE_ATTR:
3171 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3172 default:
3173 if (dev->ops->ioctl)
3174 return dev->ops->ioctl(dev, ioctl, arg);
3175
3176 return -ENOTTY;
3177 }
3178}
3179
852b6d57
SW
3180static int kvm_device_release(struct inode *inode, struct file *filp)
3181{
3182 struct kvm_device *dev = filp->private_data;
3183 struct kvm *kvm = dev->kvm;
3184
2bde9b3e
CLG
3185 if (dev->ops->release) {
3186 mutex_lock(&kvm->lock);
3187 list_del(&dev->vm_node);
3188 dev->ops->release(dev);
3189 mutex_unlock(&kvm->lock);
3190 }
3191
852b6d57
SW
3192 kvm_put_kvm(kvm);
3193 return 0;
3194}
3195
3196static const struct file_operations kvm_device_fops = {
3197 .unlocked_ioctl = kvm_device_ioctl,
3198 .release = kvm_device_release,
7ddfd3e0 3199 KVM_COMPAT(kvm_device_ioctl),
a1cd3f08 3200 .mmap = kvm_device_mmap,
852b6d57
SW
3201};
3202
3203struct kvm_device *kvm_device_from_filp(struct file *filp)
3204{
3205 if (filp->f_op != &kvm_device_fops)
3206 return NULL;
3207
3208 return filp->private_data;
3209}
3210
8538cb22 3211static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
5df554ad 3212#ifdef CONFIG_KVM_MPIC
d60eacb0
WD
3213 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3214 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
5975a2e0 3215#endif
d60eacb0
WD
3216};
3217
8538cb22 3218int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
d60eacb0
WD
3219{
3220 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3221 return -ENOSPC;
3222
3223 if (kvm_device_ops_table[type] != NULL)
3224 return -EEXIST;
3225
3226 kvm_device_ops_table[type] = ops;
3227 return 0;
3228}
3229
571ee1b6
WL
3230void kvm_unregister_device_ops(u32 type)
3231{
3232 if (kvm_device_ops_table[type] != NULL)
3233 kvm_device_ops_table[type] = NULL;
3234}
3235
852b6d57
SW
3236static int kvm_ioctl_create_device(struct kvm *kvm,
3237 struct kvm_create_device *cd)
3238{
8538cb22 3239 const struct kvm_device_ops *ops = NULL;
852b6d57
SW
3240 struct kvm_device *dev;
3241 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
1d487e9b 3242 int type;
852b6d57
SW
3243 int ret;
3244
d60eacb0
WD
3245 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3246 return -ENODEV;
3247
1d487e9b
PB
3248 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3249 ops = kvm_device_ops_table[type];
d60eacb0 3250 if (ops == NULL)
852b6d57 3251 return -ENODEV;
852b6d57
SW
3252
3253 if (test)
3254 return 0;
3255
b12ce36a 3256 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
852b6d57
SW
3257 if (!dev)
3258 return -ENOMEM;
3259
3260 dev->ops = ops;
3261 dev->kvm = kvm;
852b6d57 3262
a28ebea2 3263 mutex_lock(&kvm->lock);
1d487e9b 3264 ret = ops->create(dev, type);
852b6d57 3265 if (ret < 0) {
a28ebea2 3266 mutex_unlock(&kvm->lock);
852b6d57
SW
3267 kfree(dev);
3268 return ret;
3269 }
a28ebea2
CD
3270 list_add(&dev->vm_node, &kvm->devices);
3271 mutex_unlock(&kvm->lock);
852b6d57 3272
023e9fdd
CD
3273 if (ops->init)
3274 ops->init(dev);
3275
cfa39381 3276 kvm_get_kvm(kvm);
24009b05 3277 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
852b6d57 3278 if (ret < 0) {
149487bd 3279 kvm_put_kvm_no_destroy(kvm);
a28ebea2
CD
3280 mutex_lock(&kvm->lock);
3281 list_del(&dev->vm_node);
3282 mutex_unlock(&kvm->lock);
a0f1d21c 3283 ops->destroy(dev);
852b6d57
SW
3284 return ret;
3285 }
3286
852b6d57
SW
3287 cd->fd = ret;
3288 return 0;
3289}
3290
92b591a4
AG
3291static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3292{
3293 switch (arg) {
3294 case KVM_CAP_USER_MEMORY:
3295 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3296 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
92b591a4
AG
3297 case KVM_CAP_INTERNAL_ERROR_DATA:
3298#ifdef CONFIG_HAVE_KVM_MSI
3299 case KVM_CAP_SIGNAL_MSI:
3300#endif
297e2105 3301#ifdef CONFIG_HAVE_KVM_IRQFD
dc9be0fa 3302 case KVM_CAP_IRQFD:
92b591a4
AG
3303 case KVM_CAP_IRQFD_RESAMPLE:
3304#endif
e9ea5069 3305 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
92b591a4 3306 case KVM_CAP_CHECK_EXTENSION_VM:
e5d83c74 3307 case KVM_CAP_ENABLE_CAP_VM:
2a31b9db 3308#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
d7547c55 3309 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
2a31b9db 3310#endif
92b591a4 3311 return 1;
4b4357e0 3312#ifdef CONFIG_KVM_MMIO
30422558
PB
3313 case KVM_CAP_COALESCED_MMIO:
3314 return KVM_COALESCED_MMIO_PAGE_OFFSET;
0804c849
PH
3315 case KVM_CAP_COALESCED_PIO:
3316 return 1;
30422558 3317#endif
92b591a4
AG
3318#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3319 case KVM_CAP_IRQ_ROUTING:
3320 return KVM_MAX_IRQ_ROUTES;
f481b069
PB
3321#endif
3322#if KVM_ADDRESS_SPACE_NUM > 1
3323 case KVM_CAP_MULTI_ADDRESS_SPACE:
3324 return KVM_ADDRESS_SPACE_NUM;
92b591a4 3325#endif
c110ae57
PB
3326 case KVM_CAP_NR_MEMSLOTS:
3327 return KVM_USER_MEM_SLOTS;
92b591a4
AG
3328 default:
3329 break;
3330 }
3331 return kvm_vm_ioctl_check_extension(kvm, arg);
3332}
3333
e5d83c74
PB
3334int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3335 struct kvm_enable_cap *cap)
3336{
3337 return -EINVAL;
3338}
3339
3340static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3341 struct kvm_enable_cap *cap)
3342{
3343 switch (cap->cap) {
2a31b9db 3344#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
d7547c55 3345 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
2a31b9db
PB
3346 if (cap->flags || (cap->args[0] & ~1))
3347 return -EINVAL;
3348 kvm->manual_dirty_log_protect = cap->args[0];
3349 return 0;
3350#endif
e5d83c74
PB
3351 default:
3352 return kvm_vm_ioctl_enable_cap(kvm, cap);
3353 }
3354}
3355
bccf2150
AK
3356static long kvm_vm_ioctl(struct file *filp,
3357 unsigned int ioctl, unsigned long arg)
3358{
3359 struct kvm *kvm = filp->private_data;
3360 void __user *argp = (void __user *)arg;
1fe779f8 3361 int r;
bccf2150 3362
6d4e4c4f
AK
3363 if (kvm->mm != current->mm)
3364 return -EIO;
bccf2150
AK
3365 switch (ioctl) {
3366 case KVM_CREATE_VCPU:
3367 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
bccf2150 3368 break;
e5d83c74
PB
3369 case KVM_ENABLE_CAP: {
3370 struct kvm_enable_cap cap;
3371
3372 r = -EFAULT;
3373 if (copy_from_user(&cap, argp, sizeof(cap)))
3374 goto out;
3375 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3376 break;
3377 }
6fc138d2
IE
3378 case KVM_SET_USER_MEMORY_REGION: {
3379 struct kvm_userspace_memory_region kvm_userspace_mem;
3380
3381 r = -EFAULT;
3382 if (copy_from_user(&kvm_userspace_mem, argp,
893bdbf1 3383 sizeof(kvm_userspace_mem)))
6fc138d2
IE
3384 goto out;
3385
47ae31e2 3386 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
6aa8b732
AK
3387 break;
3388 }
3389 case KVM_GET_DIRTY_LOG: {
3390 struct kvm_dirty_log log;
3391
3392 r = -EFAULT;
893bdbf1 3393 if (copy_from_user(&log, argp, sizeof(log)))
6aa8b732 3394 goto out;
2c6f5df9 3395 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6aa8b732
AK
3396 break;
3397 }
2a31b9db
PB
3398#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3399 case KVM_CLEAR_DIRTY_LOG: {
3400 struct kvm_clear_dirty_log log;
3401
3402 r = -EFAULT;
3403 if (copy_from_user(&log, argp, sizeof(log)))
3404 goto out;
3405 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3406 break;
3407 }
3408#endif
4b4357e0 3409#ifdef CONFIG_KVM_MMIO
5f94c174
LV
3410 case KVM_REGISTER_COALESCED_MMIO: {
3411 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 3412
5f94c174 3413 r = -EFAULT;
893bdbf1 3414 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 3415 goto out;
5f94c174 3416 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5f94c174
LV
3417 break;
3418 }
3419 case KVM_UNREGISTER_COALESCED_MMIO: {
3420 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 3421
5f94c174 3422 r = -EFAULT;
893bdbf1 3423 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 3424 goto out;
5f94c174 3425 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5f94c174
LV
3426 break;
3427 }
3428#endif
721eecbf
GH
3429 case KVM_IRQFD: {
3430 struct kvm_irqfd data;
3431
3432 r = -EFAULT;
893bdbf1 3433 if (copy_from_user(&data, argp, sizeof(data)))
721eecbf 3434 goto out;
d4db2935 3435 r = kvm_irqfd(kvm, &data);
721eecbf
GH
3436 break;
3437 }
d34e6b17
GH
3438 case KVM_IOEVENTFD: {
3439 struct kvm_ioeventfd data;
3440
3441 r = -EFAULT;
893bdbf1 3442 if (copy_from_user(&data, argp, sizeof(data)))
d34e6b17
GH
3443 goto out;
3444 r = kvm_ioeventfd(kvm, &data);
3445 break;
3446 }
07975ad3
JK
3447#ifdef CONFIG_HAVE_KVM_MSI
3448 case KVM_SIGNAL_MSI: {
3449 struct kvm_msi msi;
3450
3451 r = -EFAULT;
893bdbf1 3452 if (copy_from_user(&msi, argp, sizeof(msi)))
07975ad3
JK
3453 goto out;
3454 r = kvm_send_userspace_msi(kvm, &msi);
3455 break;
3456 }
23d43cf9
CD
3457#endif
3458#ifdef __KVM_HAVE_IRQ_LINE
3459 case KVM_IRQ_LINE_STATUS:
3460 case KVM_IRQ_LINE: {
3461 struct kvm_irq_level irq_event;
3462
3463 r = -EFAULT;
893bdbf1 3464 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
23d43cf9
CD
3465 goto out;
3466
aa2fbe6d
YZ
3467 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3468 ioctl == KVM_IRQ_LINE_STATUS);
23d43cf9
CD
3469 if (r)
3470 goto out;
3471
3472 r = -EFAULT;
3473 if (ioctl == KVM_IRQ_LINE_STATUS) {
893bdbf1 3474 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
23d43cf9
CD
3475 goto out;
3476 }
3477
3478 r = 0;
3479 break;
3480 }
73880c80 3481#endif
aa8d5944
AG
3482#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3483 case KVM_SET_GSI_ROUTING: {
3484 struct kvm_irq_routing routing;
3485 struct kvm_irq_routing __user *urouting;
f8c1b85b 3486 struct kvm_irq_routing_entry *entries = NULL;
aa8d5944
AG
3487
3488 r = -EFAULT;
3489 if (copy_from_user(&routing, argp, sizeof(routing)))
3490 goto out;
3491 r = -EINVAL;
5c0aea0e
DH
3492 if (!kvm_arch_can_set_irq_routing(kvm))
3493 goto out;
caf1ff26 3494 if (routing.nr > KVM_MAX_IRQ_ROUTES)
aa8d5944
AG
3495 goto out;
3496 if (routing.flags)
3497 goto out;
f8c1b85b
PB
3498 if (routing.nr) {
3499 r = -ENOMEM;
42bc47b3
KC
3500 entries = vmalloc(array_size(sizeof(*entries),
3501 routing.nr));
f8c1b85b
PB
3502 if (!entries)
3503 goto out;
3504 r = -EFAULT;
3505 urouting = argp;
3506 if (copy_from_user(entries, urouting->entries,
3507 routing.nr * sizeof(*entries)))
3508 goto out_free_irq_routing;
3509 }
aa8d5944
AG
3510 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3511 routing.flags);
a642a175 3512out_free_irq_routing:
aa8d5944
AG
3513 vfree(entries);
3514 break;
3515 }
3516#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
852b6d57
SW
3517 case KVM_CREATE_DEVICE: {
3518 struct kvm_create_device cd;
3519
3520 r = -EFAULT;
3521 if (copy_from_user(&cd, argp, sizeof(cd)))
3522 goto out;
3523
3524 r = kvm_ioctl_create_device(kvm, &cd);
3525 if (r)
3526 goto out;
3527
3528 r = -EFAULT;
3529 if (copy_to_user(argp, &cd, sizeof(cd)))
3530 goto out;
3531
3532 r = 0;
3533 break;
3534 }
92b591a4
AG
3535 case KVM_CHECK_EXTENSION:
3536 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3537 break;
f17abe9a 3538 default:
1fe779f8 3539 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
f17abe9a
AK
3540 }
3541out:
3542 return r;
3543}
3544
de8e5d74 3545#ifdef CONFIG_KVM_COMPAT
6ff5894c
AB
3546struct compat_kvm_dirty_log {
3547 __u32 slot;
3548 __u32 padding1;
3549 union {
3550 compat_uptr_t dirty_bitmap; /* one bit per page */
3551 __u64 padding2;
3552 };
3553};
3554
3555static long kvm_vm_compat_ioctl(struct file *filp,
3556 unsigned int ioctl, unsigned long arg)
3557{
3558 struct kvm *kvm = filp->private_data;
3559 int r;
3560
3561 if (kvm->mm != current->mm)
3562 return -EIO;
3563 switch (ioctl) {
3564 case KVM_GET_DIRTY_LOG: {
3565 struct compat_kvm_dirty_log compat_log;
3566 struct kvm_dirty_log log;
3567
6ff5894c
AB
3568 if (copy_from_user(&compat_log, (void __user *)arg,
3569 sizeof(compat_log)))
f6a3b168 3570 return -EFAULT;
6ff5894c
AB
3571 log.slot = compat_log.slot;
3572 log.padding1 = compat_log.padding1;
3573 log.padding2 = compat_log.padding2;
3574 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3575
3576 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6ff5894c
AB
3577 break;
3578 }
3579 default:
3580 r = kvm_vm_ioctl(filp, ioctl, arg);
3581 }
6ff5894c
AB
3582 return r;
3583}
3584#endif
3585
3d3aab1b 3586static struct file_operations kvm_vm_fops = {
f17abe9a
AK
3587 .release = kvm_vm_release,
3588 .unlocked_ioctl = kvm_vm_ioctl,
6038f373 3589 .llseek = noop_llseek,
7ddfd3e0 3590 KVM_COMPAT(kvm_vm_compat_ioctl),
f17abe9a
AK
3591};
3592
e08b9637 3593static int kvm_dev_ioctl_create_vm(unsigned long type)
f17abe9a 3594{
aac87636 3595 int r;
f17abe9a 3596 struct kvm *kvm;
506cfba9 3597 struct file *file;
f17abe9a 3598
e08b9637 3599 kvm = kvm_create_vm(type);
d6d28168
AK
3600 if (IS_ERR(kvm))
3601 return PTR_ERR(kvm);
4b4357e0 3602#ifdef CONFIG_KVM_MMIO
6ce5a090 3603 r = kvm_coalesced_mmio_init(kvm);
78588335
ME
3604 if (r < 0)
3605 goto put_kvm;
6ce5a090 3606#endif
506cfba9 3607 r = get_unused_fd_flags(O_CLOEXEC);
78588335
ME
3608 if (r < 0)
3609 goto put_kvm;
3610
506cfba9
AV
3611 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3612 if (IS_ERR(file)) {
3613 put_unused_fd(r);
78588335
ME
3614 r = PTR_ERR(file);
3615 goto put_kvm;
506cfba9 3616 }
536a6f88 3617
525df861
PB
3618 /*
3619 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3620 * already set, with ->release() being kvm_vm_release(). In error
3621 * cases it will be called by the final fput(file) and will take
3622 * care of doing kvm_put_kvm(kvm).
3623 */
536a6f88 3624 if (kvm_create_vm_debugfs(kvm, r) < 0) {
506cfba9
AV
3625 put_unused_fd(r);
3626 fput(file);
536a6f88
JF
3627 return -ENOMEM;
3628 }
286de8f6 3629 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
f17abe9a 3630
506cfba9 3631 fd_install(r, file);
aac87636 3632 return r;
78588335
ME
3633
3634put_kvm:
3635 kvm_put_kvm(kvm);
3636 return r;
f17abe9a
AK
3637}
3638
3639static long kvm_dev_ioctl(struct file *filp,
3640 unsigned int ioctl, unsigned long arg)
3641{
07c45a36 3642 long r = -EINVAL;
f17abe9a
AK
3643
3644 switch (ioctl) {
3645 case KVM_GET_API_VERSION:
f0fe5108
AK
3646 if (arg)
3647 goto out;
f17abe9a
AK
3648 r = KVM_API_VERSION;
3649 break;
3650 case KVM_CREATE_VM:
e08b9637 3651 r = kvm_dev_ioctl_create_vm(arg);
f17abe9a 3652 break;
018d00d2 3653 case KVM_CHECK_EXTENSION:
784aa3d7 3654 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5d308f45 3655 break;
07c45a36 3656 case KVM_GET_VCPU_MMAP_SIZE:
07c45a36
AK
3657 if (arg)
3658 goto out;
adb1ff46
AK
3659 r = PAGE_SIZE; /* struct kvm_run */
3660#ifdef CONFIG_X86
3661 r += PAGE_SIZE; /* pio data page */
5f94c174 3662#endif
4b4357e0 3663#ifdef CONFIG_KVM_MMIO
5f94c174 3664 r += PAGE_SIZE; /* coalesced mmio ring page */
adb1ff46 3665#endif
07c45a36 3666 break;
d4c9ff2d
FEL
3667 case KVM_TRACE_ENABLE:
3668 case KVM_TRACE_PAUSE:
3669 case KVM_TRACE_DISABLE:
2023a29c 3670 r = -EOPNOTSUPP;
d4c9ff2d 3671 break;
6aa8b732 3672 default:
043405e1 3673 return kvm_arch_dev_ioctl(filp, ioctl, arg);
6aa8b732
AK
3674 }
3675out:
3676 return r;
3677}
3678
6aa8b732 3679static struct file_operations kvm_chardev_ops = {
6aa8b732 3680 .unlocked_ioctl = kvm_dev_ioctl,
6038f373 3681 .llseek = noop_llseek,
7ddfd3e0 3682 KVM_COMPAT(kvm_dev_ioctl),
6aa8b732
AK
3683};
3684
3685static struct miscdevice kvm_dev = {
bbe4432e 3686 KVM_MINOR,
6aa8b732
AK
3687 "kvm",
3688 &kvm_chardev_ops,
3689};
3690
75b7127c 3691static void hardware_enable_nolock(void *junk)
1b6c0168
AK
3692{
3693 int cpu = raw_smp_processor_id();
10474ae8 3694 int r;
1b6c0168 3695
7f59f492 3696 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 3697 return;
10474ae8 3698
7f59f492 3699 cpumask_set_cpu(cpu, cpus_hardware_enabled);
10474ae8 3700
13a34e06 3701 r = kvm_arch_hardware_enable();
10474ae8
AG
3702
3703 if (r) {
3704 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3705 atomic_inc(&hardware_enable_failed);
1170adc6 3706 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
10474ae8 3707 }
1b6c0168
AK
3708}
3709
8c18b2d2 3710static int kvm_starting_cpu(unsigned int cpu)
75b7127c 3711{
4a937f96 3712 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
3713 if (kvm_usage_count)
3714 hardware_enable_nolock(NULL);
4a937f96 3715 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 3716 return 0;
75b7127c
TY
3717}
3718
3719static void hardware_disable_nolock(void *junk)
1b6c0168
AK
3720{
3721 int cpu = raw_smp_processor_id();
3722
7f59f492 3723 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 3724 return;
7f59f492 3725 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
13a34e06 3726 kvm_arch_hardware_disable();
1b6c0168
AK
3727}
3728
8c18b2d2 3729static int kvm_dying_cpu(unsigned int cpu)
75b7127c 3730{
4a937f96 3731 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
3732 if (kvm_usage_count)
3733 hardware_disable_nolock(NULL);
4a937f96 3734 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 3735 return 0;
75b7127c
TY
3736}
3737
10474ae8
AG
3738static void hardware_disable_all_nolock(void)
3739{
3740 BUG_ON(!kvm_usage_count);
3741
3742 kvm_usage_count--;
3743 if (!kvm_usage_count)
75b7127c 3744 on_each_cpu(hardware_disable_nolock, NULL, 1);
10474ae8
AG
3745}
3746
3747static void hardware_disable_all(void)
3748{
4a937f96 3749 raw_spin_lock(&kvm_count_lock);
10474ae8 3750 hardware_disable_all_nolock();
4a937f96 3751 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
3752}
3753
3754static int hardware_enable_all(void)
3755{
3756 int r = 0;
3757
4a937f96 3758 raw_spin_lock(&kvm_count_lock);
10474ae8
AG
3759
3760 kvm_usage_count++;
3761 if (kvm_usage_count == 1) {
3762 atomic_set(&hardware_enable_failed, 0);
75b7127c 3763 on_each_cpu(hardware_enable_nolock, NULL, 1);
10474ae8
AG
3764
3765 if (atomic_read(&hardware_enable_failed)) {
3766 hardware_disable_all_nolock();
3767 r = -EBUSY;
3768 }
3769 }
3770
4a937f96 3771 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
3772
3773 return r;
3774}
3775
9a2b85c6 3776static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
d77c26fc 3777 void *v)
9a2b85c6 3778{
8e1c1815
SY
3779 /*
3780 * Some (well, at least mine) BIOSes hang on reboot if
3781 * in vmx root mode.
3782 *
3783 * And Intel TXT required VMX off for all cpu when system shutdown.
3784 */
1170adc6 3785 pr_info("kvm: exiting hardware virtualization\n");
8e1c1815 3786 kvm_rebooting = true;
75b7127c 3787 on_each_cpu(hardware_disable_nolock, NULL, 1);
9a2b85c6
RR
3788 return NOTIFY_OK;
3789}
3790
3791static struct notifier_block kvm_reboot_notifier = {
3792 .notifier_call = kvm_reboot,
3793 .priority = 0,
3794};
3795
e93f8a0f 3796static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2eeb2e94
GH
3797{
3798 int i;
3799
3800 for (i = 0; i < bus->dev_count; i++) {
743eeb0b 3801 struct kvm_io_device *pos = bus->range[i].dev;
2eeb2e94
GH
3802
3803 kvm_iodevice_destructor(pos);
3804 }
e93f8a0f 3805 kfree(bus);
2eeb2e94
GH
3806}
3807
c21fbff1 3808static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
20e87b72 3809 const struct kvm_io_range *r2)
743eeb0b 3810{
8f4216c7
JW
3811 gpa_t addr1 = r1->addr;
3812 gpa_t addr2 = r2->addr;
3813
3814 if (addr1 < addr2)
743eeb0b 3815 return -1;
8f4216c7
JW
3816
3817 /* If r2->len == 0, match the exact address. If r2->len != 0,
3818 * accept any overlapping write. Any order is acceptable for
3819 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3820 * we process all of them.
3821 */
3822 if (r2->len) {
3823 addr1 += r1->len;
3824 addr2 += r2->len;
3825 }
3826
3827 if (addr1 > addr2)
743eeb0b 3828 return 1;
8f4216c7 3829
743eeb0b
SL
3830 return 0;
3831}
3832
a343c9b7
PB
3833static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3834{
c21fbff1 3835 return kvm_io_bus_cmp(p1, p2);
a343c9b7
PB
3836}
3837
39369f7a 3838static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
743eeb0b
SL
3839 gpa_t addr, int len)
3840{
3841 struct kvm_io_range *range, key;
3842 int off;
3843
3844 key = (struct kvm_io_range) {
3845 .addr = addr,
3846 .len = len,
3847 };
3848
3849 range = bsearch(&key, bus->range, bus->dev_count,
3850 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3851 if (range == NULL)
3852 return -ENOENT;
3853
3854 off = range - bus->range;
3855
c21fbff1 3856 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
743eeb0b
SL
3857 off--;
3858
3859 return off;
3860}
3861
e32edf4f 3862static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
126a5af5
CH
3863 struct kvm_io_range *range, const void *val)
3864{
3865 int idx;
3866
3867 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3868 if (idx < 0)
3869 return -EOPNOTSUPP;
3870
3871 while (idx < bus->dev_count &&
c21fbff1 3872 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 3873 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
3874 range->len, val))
3875 return idx;
3876 idx++;
3877 }
3878
3879 return -EOPNOTSUPP;
3880}
3881
bda9020e 3882/* kvm_io_bus_write - called under kvm->slots_lock */
e32edf4f 3883int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
bda9020e 3884 int len, const void *val)
2eeb2e94 3885{
90d83dc3 3886 struct kvm_io_bus *bus;
743eeb0b 3887 struct kvm_io_range range;
126a5af5 3888 int r;
743eeb0b
SL
3889
3890 range = (struct kvm_io_range) {
3891 .addr = addr,
3892 .len = len,
3893 };
90d83dc3 3894
e32edf4f 3895 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
3896 if (!bus)
3897 return -ENOMEM;
e32edf4f 3898 r = __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
3899 return r < 0 ? r : 0;
3900}
a2420107 3901EXPORT_SYMBOL_GPL(kvm_io_bus_write);
126a5af5
CH
3902
3903/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
e32edf4f
NN
3904int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3905 gpa_t addr, int len, const void *val, long cookie)
126a5af5
CH
3906{
3907 struct kvm_io_bus *bus;
3908 struct kvm_io_range range;
3909
3910 range = (struct kvm_io_range) {
3911 .addr = addr,
3912 .len = len,
3913 };
3914
e32edf4f 3915 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
3916 if (!bus)
3917 return -ENOMEM;
126a5af5
CH
3918
3919 /* First try the device referenced by cookie. */
3920 if ((cookie >= 0) && (cookie < bus->dev_count) &&
c21fbff1 3921 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
e32edf4f 3922 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
126a5af5
CH
3923 val))
3924 return cookie;
3925
3926 /*
3927 * cookie contained garbage; fall back to search and return the
3928 * correct cookie value.
3929 */
e32edf4f 3930 return __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
3931}
3932
e32edf4f
NN
3933static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3934 struct kvm_io_range *range, void *val)
126a5af5
CH
3935{
3936 int idx;
3937
3938 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
743eeb0b
SL
3939 if (idx < 0)
3940 return -EOPNOTSUPP;
3941
3942 while (idx < bus->dev_count &&
c21fbff1 3943 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 3944 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
3945 range->len, val))
3946 return idx;
743eeb0b
SL
3947 idx++;
3948 }
3949
bda9020e
MT
3950 return -EOPNOTSUPP;
3951}
2eeb2e94 3952
bda9020e 3953/* kvm_io_bus_read - called under kvm->slots_lock */
e32edf4f 3954int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 3955 int len, void *val)
bda9020e 3956{
90d83dc3 3957 struct kvm_io_bus *bus;
743eeb0b 3958 struct kvm_io_range range;
126a5af5 3959 int r;
743eeb0b
SL
3960
3961 range = (struct kvm_io_range) {
3962 .addr = addr,
3963 .len = len,
3964 };
e93f8a0f 3965
e32edf4f 3966 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
3967 if (!bus)
3968 return -ENOMEM;
e32edf4f 3969 r = __kvm_io_bus_read(vcpu, bus, &range, val);
126a5af5
CH
3970 return r < 0 ? r : 0;
3971}
743eeb0b 3972
79fac95e 3973/* Caller must hold slots_lock. */
743eeb0b
SL
3974int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3975 int len, struct kvm_io_device *dev)
6c474694 3976{
d4c67a7a 3977 int i;
e93f8a0f 3978 struct kvm_io_bus *new_bus, *bus;
d4c67a7a 3979 struct kvm_io_range range;
090b7aff 3980
4a12f951 3981 bus = kvm_get_bus(kvm, bus_idx);
90db1043
DH
3982 if (!bus)
3983 return -ENOMEM;
3984
6ea34c9b
AK
3985 /* exclude ioeventfd which is limited by maximum fd */
3986 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
090b7aff 3987 return -ENOSPC;
2eeb2e94 3988
90952cd3 3989 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
b12ce36a 3990 GFP_KERNEL_ACCOUNT);
e93f8a0f
MT
3991 if (!new_bus)
3992 return -ENOMEM;
d4c67a7a
GH
3993
3994 range = (struct kvm_io_range) {
3995 .addr = addr,
3996 .len = len,
3997 .dev = dev,
3998 };
3999
4000 for (i = 0; i < bus->dev_count; i++)
4001 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4002 break;
4003
4004 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4005 new_bus->dev_count++;
4006 new_bus->range[i] = range;
4007 memcpy(new_bus->range + i + 1, bus->range + i,
4008 (bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f
MT
4009 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4010 synchronize_srcu_expedited(&kvm->srcu);
4011 kfree(bus);
090b7aff
GH
4012
4013 return 0;
4014}
4015
79fac95e 4016/* Caller must hold slots_lock. */
90db1043
DH
4017void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4018 struct kvm_io_device *dev)
090b7aff 4019{
90db1043 4020 int i;
e93f8a0f 4021 struct kvm_io_bus *new_bus, *bus;
090b7aff 4022
4a12f951 4023 bus = kvm_get_bus(kvm, bus_idx);
df630b8c 4024 if (!bus)
90db1043 4025 return;
df630b8c 4026
a1300716
AK
4027 for (i = 0; i < bus->dev_count; i++)
4028 if (bus->range[i].dev == dev) {
090b7aff
GH
4029 break;
4030 }
e93f8a0f 4031
90db1043
DH
4032 if (i == bus->dev_count)
4033 return;
a1300716 4034
90952cd3 4035 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
b12ce36a 4036 GFP_KERNEL_ACCOUNT);
90db1043
DH
4037 if (!new_bus) {
4038 pr_err("kvm: failed to shrink bus, removing it completely\n");
4039 goto broken;
4040 }
a1300716
AK
4041
4042 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4043 new_bus->dev_count--;
4044 memcpy(new_bus->range + i, bus->range + i + 1,
4045 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f 4046
90db1043 4047broken:
e93f8a0f
MT
4048 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4049 synchronize_srcu_expedited(&kvm->srcu);
4050 kfree(bus);
90db1043 4051 return;
2eeb2e94
GH
4052}
4053
8a39d006
AP
4054struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4055 gpa_t addr)
4056{
4057 struct kvm_io_bus *bus;
4058 int dev_idx, srcu_idx;
4059 struct kvm_io_device *iodev = NULL;
4060
4061 srcu_idx = srcu_read_lock(&kvm->srcu);
4062
4063 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
90db1043
DH
4064 if (!bus)
4065 goto out_unlock;
8a39d006
AP
4066
4067 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4068 if (dev_idx < 0)
4069 goto out_unlock;
4070
4071 iodev = bus->range[dev_idx].dev;
4072
4073out_unlock:
4074 srcu_read_unlock(&kvm->srcu, srcu_idx);
4075
4076 return iodev;
4077}
4078EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4079
536a6f88
JF
4080static int kvm_debugfs_open(struct inode *inode, struct file *file,
4081 int (*get)(void *, u64 *), int (*set)(void *, u64),
4082 const char *fmt)
4083{
4084 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4085 inode->i_private;
4086
4087 /* The debugfs files are a reference to the kvm struct which
4088 * is still valid when kvm_destroy_vm is called.
4089 * To avoid the race between open and the removal of the debugfs
4090 * directory we test against the users count.
4091 */
e3736c3e 4092 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
536a6f88
JF
4093 return -ENOENT;
4094
833b45de 4095 if (simple_attr_open(inode, file, get,
09cbcef6
MP
4096 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4097 ? set : NULL,
4098 fmt)) {
536a6f88
JF
4099 kvm_put_kvm(stat_data->kvm);
4100 return -ENOMEM;
4101 }
4102
4103 return 0;
4104}
4105
4106static int kvm_debugfs_release(struct inode *inode, struct file *file)
4107{
4108 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4109 inode->i_private;
4110
4111 simple_attr_release(inode, file);
4112 kvm_put_kvm(stat_data->kvm);
4113
4114 return 0;
4115}
4116
09cbcef6 4117static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
536a6f88 4118{
09cbcef6 4119 *val = *(ulong *)((void *)kvm + offset);
536a6f88 4120
09cbcef6
MP
4121 return 0;
4122}
4123
4124static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4125{
4126 *(ulong *)((void *)kvm + offset) = 0;
536a6f88
JF
4127
4128 return 0;
4129}
4130
09cbcef6 4131static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
ce35ef27 4132{
09cbcef6
MP
4133 int i;
4134 struct kvm_vcpu *vcpu;
ce35ef27 4135
09cbcef6 4136 *val = 0;
ce35ef27 4137
09cbcef6
MP
4138 kvm_for_each_vcpu(i, vcpu, kvm)
4139 *val += *(u64 *)((void *)vcpu + offset);
ce35ef27
SJS
4140
4141 return 0;
4142}
4143
09cbcef6 4144static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
536a6f88 4145{
09cbcef6
MP
4146 int i;
4147 struct kvm_vcpu *vcpu;
536a6f88 4148
09cbcef6
MP
4149 kvm_for_each_vcpu(i, vcpu, kvm)
4150 *(u64 *)((void *)vcpu + offset) = 0;
4151
4152 return 0;
4153}
536a6f88 4154
09cbcef6 4155static int kvm_stat_data_get(void *data, u64 *val)
536a6f88 4156{
09cbcef6 4157 int r = -EFAULT;
536a6f88 4158 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
536a6f88 4159
09cbcef6
MP
4160 switch (stat_data->dbgfs_item->kind) {
4161 case KVM_STAT_VM:
4162 r = kvm_get_stat_per_vm(stat_data->kvm,
4163 stat_data->dbgfs_item->offset, val);
4164 break;
4165 case KVM_STAT_VCPU:
4166 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4167 stat_data->dbgfs_item->offset, val);
4168 break;
4169 }
536a6f88 4170
09cbcef6 4171 return r;
536a6f88
JF
4172}
4173
09cbcef6 4174static int kvm_stat_data_clear(void *data, u64 val)
ce35ef27 4175{
09cbcef6 4176 int r = -EFAULT;
ce35ef27 4177 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
ce35ef27
SJS
4178
4179 if (val)
4180 return -EINVAL;
4181
09cbcef6
MP
4182 switch (stat_data->dbgfs_item->kind) {
4183 case KVM_STAT_VM:
4184 r = kvm_clear_stat_per_vm(stat_data->kvm,
4185 stat_data->dbgfs_item->offset);
4186 break;
4187 case KVM_STAT_VCPU:
4188 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4189 stat_data->dbgfs_item->offset);
4190 break;
4191 }
ce35ef27 4192
09cbcef6 4193 return r;
ce35ef27
SJS
4194}
4195
09cbcef6 4196static int kvm_stat_data_open(struct inode *inode, struct file *file)
536a6f88
JF
4197{
4198 __simple_attr_check_format("%llu\n", 0ull);
09cbcef6
MP
4199 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4200 kvm_stat_data_clear, "%llu\n");
536a6f88
JF
4201}
4202
09cbcef6
MP
4203static const struct file_operations stat_fops_per_vm = {
4204 .owner = THIS_MODULE,
4205 .open = kvm_stat_data_open,
536a6f88 4206 .release = kvm_debugfs_release,
09cbcef6
MP
4207 .read = simple_attr_read,
4208 .write = simple_attr_write,
4209 .llseek = no_llseek,
536a6f88
JF
4210};
4211
8b88b099 4212static int vm_stat_get(void *_offset, u64 *val)
ba1389b7
AK
4213{
4214 unsigned offset = (long)_offset;
ba1389b7 4215 struct kvm *kvm;
536a6f88 4216 u64 tmp_val;
ba1389b7 4217
8b88b099 4218 *val = 0;
0d9ce162 4219 mutex_lock(&kvm_lock);
536a6f88 4220 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4221 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
536a6f88
JF
4222 *val += tmp_val;
4223 }
0d9ce162 4224 mutex_unlock(&kvm_lock);
8b88b099 4225 return 0;
ba1389b7
AK
4226}
4227
ce35ef27
SJS
4228static int vm_stat_clear(void *_offset, u64 val)
4229{
4230 unsigned offset = (long)_offset;
4231 struct kvm *kvm;
ce35ef27
SJS
4232
4233 if (val)
4234 return -EINVAL;
4235
0d9ce162 4236 mutex_lock(&kvm_lock);
ce35ef27 4237 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4238 kvm_clear_stat_per_vm(kvm, offset);
ce35ef27 4239 }
0d9ce162 4240 mutex_unlock(&kvm_lock);
ce35ef27
SJS
4241
4242 return 0;
4243}
4244
4245DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
ba1389b7 4246
8b88b099 4247static int vcpu_stat_get(void *_offset, u64 *val)
1165f5fe
AK
4248{
4249 unsigned offset = (long)_offset;
1165f5fe 4250 struct kvm *kvm;
536a6f88 4251 u64 tmp_val;
1165f5fe 4252
8b88b099 4253 *val = 0;
0d9ce162 4254 mutex_lock(&kvm_lock);
536a6f88 4255 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4256 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
536a6f88
JF
4257 *val += tmp_val;
4258 }
0d9ce162 4259 mutex_unlock(&kvm_lock);
8b88b099 4260 return 0;
1165f5fe
AK
4261}
4262
ce35ef27
SJS
4263static int vcpu_stat_clear(void *_offset, u64 val)
4264{
4265 unsigned offset = (long)_offset;
4266 struct kvm *kvm;
ce35ef27
SJS
4267
4268 if (val)
4269 return -EINVAL;
4270
0d9ce162 4271 mutex_lock(&kvm_lock);
ce35ef27 4272 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 4273 kvm_clear_stat_per_vcpu(kvm, offset);
ce35ef27 4274 }
0d9ce162 4275 mutex_unlock(&kvm_lock);
ce35ef27
SJS
4276
4277 return 0;
4278}
4279
4280DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4281 "%llu\n");
ba1389b7 4282
828c0950 4283static const struct file_operations *stat_fops[] = {
ba1389b7
AK
4284 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4285 [KVM_STAT_VM] = &vm_stat_fops,
4286};
1165f5fe 4287
286de8f6
CI
4288static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4289{
4290 struct kobj_uevent_env *env;
286de8f6
CI
4291 unsigned long long created, active;
4292
4293 if (!kvm_dev.this_device || !kvm)
4294 return;
4295
0d9ce162 4296 mutex_lock(&kvm_lock);
286de8f6
CI
4297 if (type == KVM_EVENT_CREATE_VM) {
4298 kvm_createvm_count++;
4299 kvm_active_vms++;
4300 } else if (type == KVM_EVENT_DESTROY_VM) {
4301 kvm_active_vms--;
4302 }
4303 created = kvm_createvm_count;
4304 active = kvm_active_vms;
0d9ce162 4305 mutex_unlock(&kvm_lock);
286de8f6 4306
b12ce36a 4307 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
286de8f6
CI
4308 if (!env)
4309 return;
4310
4311 add_uevent_var(env, "CREATED=%llu", created);
4312 add_uevent_var(env, "COUNT=%llu", active);
4313
fdeaf7e3 4314 if (type == KVM_EVENT_CREATE_VM) {
286de8f6 4315 add_uevent_var(env, "EVENT=create");
fdeaf7e3
CI
4316 kvm->userspace_pid = task_pid_nr(current);
4317 } else if (type == KVM_EVENT_DESTROY_VM) {
286de8f6 4318 add_uevent_var(env, "EVENT=destroy");
fdeaf7e3
CI
4319 }
4320 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
286de8f6 4321
8ed0579c 4322 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
b12ce36a 4323 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
fdeaf7e3
CI
4324
4325 if (p) {
4326 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4327 if (!IS_ERR(tmp))
4328 add_uevent_var(env, "STATS_PATH=%s", tmp);
4329 kfree(p);
286de8f6
CI
4330 }
4331 }
4332 /* no need for checks, since we are adding at most only 5 keys */
4333 env->envp[env->envp_idx++] = NULL;
4334 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4335 kfree(env);
286de8f6
CI
4336}
4337
929f45e3 4338static void kvm_init_debug(void)
6aa8b732
AK
4339{
4340 struct kvm_stats_debugfs_item *p;
4341
76f7c879 4342 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4f69b680 4343
536a6f88
JF
4344 kvm_debugfs_num_entries = 0;
4345 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
09cbcef6
MP
4346 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4347 kvm_debugfs_dir, (void *)(long)p->offset,
929f45e3 4348 stat_fops[p->kind]);
4f69b680 4349 }
6aa8b732
AK
4350}
4351
fb3600cc 4352static int kvm_suspend(void)
59ae6c6b 4353{
10474ae8 4354 if (kvm_usage_count)
75b7127c 4355 hardware_disable_nolock(NULL);
59ae6c6b
AK
4356 return 0;
4357}
4358
fb3600cc 4359static void kvm_resume(void)
59ae6c6b 4360{
ca84d1a2 4361 if (kvm_usage_count) {
2eb06c30
WL
4362#ifdef CONFIG_LOCKDEP
4363 WARN_ON(lockdep_is_held(&kvm_count_lock));
4364#endif
75b7127c 4365 hardware_enable_nolock(NULL);
ca84d1a2 4366 }
59ae6c6b
AK
4367}
4368
fb3600cc 4369static struct syscore_ops kvm_syscore_ops = {
59ae6c6b
AK
4370 .suspend = kvm_suspend,
4371 .resume = kvm_resume,
4372};
4373
15ad7146
AK
4374static inline
4375struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4376{
4377 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4378}
4379
4380static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4381{
4382 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
f95ef0cd 4383
046ddeed 4384 WRITE_ONCE(vcpu->preempted, false);
d73eb57b 4385 WRITE_ONCE(vcpu->ready, false);
15ad7146 4386
7495e22b 4387 __this_cpu_write(kvm_running_vcpu, vcpu);
e790d9ef 4388 kvm_arch_sched_in(vcpu, cpu);
e9b11c17 4389 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146
AK
4390}
4391
4392static void kvm_sched_out(struct preempt_notifier *pn,
4393 struct task_struct *next)
4394{
4395 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4396
d73eb57b 4397 if (current->state == TASK_RUNNING) {
046ddeed 4398 WRITE_ONCE(vcpu->preempted, true);
d73eb57b
WL
4399 WRITE_ONCE(vcpu->ready, true);
4400 }
e9b11c17 4401 kvm_arch_vcpu_put(vcpu);
7495e22b
PB
4402 __this_cpu_write(kvm_running_vcpu, NULL);
4403}
4404
4405/**
4406 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
1f03b2bc
MZ
4407 *
4408 * We can disable preemption locally around accessing the per-CPU variable,
4409 * and use the resolved vcpu pointer after enabling preemption again,
4410 * because even if the current thread is migrated to another CPU, reading
4411 * the per-CPU value later will give us the same value as we update the
4412 * per-CPU variable in the preempt notifier handlers.
7495e22b
PB
4413 */
4414struct kvm_vcpu *kvm_get_running_vcpu(void)
4415{
1f03b2bc
MZ
4416 struct kvm_vcpu *vcpu;
4417
4418 preempt_disable();
4419 vcpu = __this_cpu_read(kvm_running_vcpu);
4420 preempt_enable();
4421
4422 return vcpu;
7495e22b
PB
4423}
4424
4425/**
4426 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4427 */
4428struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4429{
4430 return &kvm_running_vcpu;
15ad7146
AK
4431}
4432
f257d6dc
SC
4433static void check_processor_compat(void *rtn)
4434{
4435 *(int *)rtn = kvm_arch_check_processor_compat();
4436}
4437
0ee75bea 4438int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
c16f862d 4439 struct module *module)
6aa8b732
AK
4440{
4441 int r;
002c7f7c 4442 int cpu;
6aa8b732 4443
f8c16bba
ZX
4444 r = kvm_arch_init(opaque);
4445 if (r)
d2308784 4446 goto out_fail;
cb498ea2 4447
7dac16c3
AH
4448 /*
4449 * kvm_arch_init makes sure there's at most one caller
4450 * for architectures that support multiple implementations,
4451 * like intel and amd on x86.
36343f6e
PB
4452 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4453 * conflicts in case kvm is already setup for another implementation.
7dac16c3 4454 */
36343f6e
PB
4455 r = kvm_irqfd_init();
4456 if (r)
4457 goto out_irqfd;
7dac16c3 4458
8437a617 4459 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
7f59f492
RR
4460 r = -ENOMEM;
4461 goto out_free_0;
4462 }
4463
e9b11c17 4464 r = kvm_arch_hardware_setup();
6aa8b732 4465 if (r < 0)
faf0be22 4466 goto out_free_1;
6aa8b732 4467
002c7f7c 4468 for_each_online_cpu(cpu) {
f257d6dc 4469 smp_call_function_single(cpu, check_processor_compat, &r, 1);
002c7f7c 4470 if (r < 0)
faf0be22 4471 goto out_free_2;
002c7f7c
YS
4472 }
4473
73c1b41e 4474 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
8c18b2d2 4475 kvm_starting_cpu, kvm_dying_cpu);
774c47f1 4476 if (r)
d2308784 4477 goto out_free_2;
6aa8b732
AK
4478 register_reboot_notifier(&kvm_reboot_notifier);
4479
c16f862d 4480 /* A kmem cache lets us meet the alignment requirements of fx_save. */
0ee75bea
AK
4481 if (!vcpu_align)
4482 vcpu_align = __alignof__(struct kvm_vcpu);
46515736
PB
4483 kvm_vcpu_cache =
4484 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4485 SLAB_ACCOUNT,
4486 offsetof(struct kvm_vcpu, arch),
4487 sizeof_field(struct kvm_vcpu, arch),
4488 NULL);
c16f862d
RR
4489 if (!kvm_vcpu_cache) {
4490 r = -ENOMEM;
fb3600cc 4491 goto out_free_3;
c16f862d
RR
4492 }
4493
af585b92
GN
4494 r = kvm_async_pf_init();
4495 if (r)
4496 goto out_free;
4497
6aa8b732 4498 kvm_chardev_ops.owner = module;
3d3aab1b
CB
4499 kvm_vm_fops.owner = module;
4500 kvm_vcpu_fops.owner = module;
6aa8b732
AK
4501
4502 r = misc_register(&kvm_dev);
4503 if (r) {
1170adc6 4504 pr_err("kvm: misc device register failed\n");
af585b92 4505 goto out_unreg;
6aa8b732
AK
4506 }
4507
fb3600cc
RW
4508 register_syscore_ops(&kvm_syscore_ops);
4509
15ad7146
AK
4510 kvm_preempt_ops.sched_in = kvm_sched_in;
4511 kvm_preempt_ops.sched_out = kvm_sched_out;
4512
929f45e3 4513 kvm_init_debug();
0ea4ed8e 4514
3c3c29fd
PB
4515 r = kvm_vfio_ops_init();
4516 WARN_ON(r);
4517
c7addb90 4518 return 0;
6aa8b732 4519
af585b92
GN
4520out_unreg:
4521 kvm_async_pf_deinit();
6aa8b732 4522out_free:
c16f862d 4523 kmem_cache_destroy(kvm_vcpu_cache);
d2308784 4524out_free_3:
6aa8b732 4525 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 4526 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
d2308784 4527out_free_2:
e9b11c17 4528 kvm_arch_hardware_unsetup();
faf0be22 4529out_free_1:
7f59f492 4530 free_cpumask_var(cpus_hardware_enabled);
d2308784 4531out_free_0:
a0f155e9 4532 kvm_irqfd_exit();
36343f6e 4533out_irqfd:
7dac16c3
AH
4534 kvm_arch_exit();
4535out_fail:
6aa8b732
AK
4536 return r;
4537}
cb498ea2 4538EXPORT_SYMBOL_GPL(kvm_init);
6aa8b732 4539
cb498ea2 4540void kvm_exit(void)
6aa8b732 4541{
4bd33b56 4542 debugfs_remove_recursive(kvm_debugfs_dir);
6aa8b732 4543 misc_deregister(&kvm_dev);
c16f862d 4544 kmem_cache_destroy(kvm_vcpu_cache);
af585b92 4545 kvm_async_pf_deinit();
fb3600cc 4546 unregister_syscore_ops(&kvm_syscore_ops);
6aa8b732 4547 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 4548 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
75b7127c 4549 on_each_cpu(hardware_disable_nolock, NULL, 1);
e9b11c17 4550 kvm_arch_hardware_unsetup();
f8c16bba 4551 kvm_arch_exit();
a0f155e9 4552 kvm_irqfd_exit();
7f59f492 4553 free_cpumask_var(cpus_hardware_enabled);
571ee1b6 4554 kvm_vfio_ops_exit();
6aa8b732 4555}
cb498ea2 4556EXPORT_SYMBOL_GPL(kvm_exit);
c57c8046
JS
4557
4558struct kvm_vm_worker_thread_context {
4559 struct kvm *kvm;
4560 struct task_struct *parent;
4561 struct completion init_done;
4562 kvm_vm_thread_fn_t thread_fn;
4563 uintptr_t data;
4564 int err;
4565};
4566
4567static int kvm_vm_worker_thread(void *context)
4568{
4569 /*
4570 * The init_context is allocated on the stack of the parent thread, so
4571 * we have to locally copy anything that is needed beyond initialization
4572 */
4573 struct kvm_vm_worker_thread_context *init_context = context;
4574 struct kvm *kvm = init_context->kvm;
4575 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4576 uintptr_t data = init_context->data;
4577 int err;
4578
4579 err = kthread_park(current);
4580 /* kthread_park(current) is never supposed to return an error */
4581 WARN_ON(err != 0);
4582 if (err)
4583 goto init_complete;
4584
4585 err = cgroup_attach_task_all(init_context->parent, current);
4586 if (err) {
4587 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4588 __func__, err);
4589 goto init_complete;
4590 }
4591
4592 set_user_nice(current, task_nice(init_context->parent));
4593
4594init_complete:
4595 init_context->err = err;
4596 complete(&init_context->init_done);
4597 init_context = NULL;
4598
4599 if (err)
4600 return err;
4601
4602 /* Wait to be woken up by the spawner before proceeding. */
4603 kthread_parkme();
4604
4605 if (!kthread_should_stop())
4606 err = thread_fn(kvm, data);
4607
4608 return err;
4609}
4610
4611int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4612 uintptr_t data, const char *name,
4613 struct task_struct **thread_ptr)
4614{
4615 struct kvm_vm_worker_thread_context init_context = {};
4616 struct task_struct *thread;
4617
4618 *thread_ptr = NULL;
4619 init_context.kvm = kvm;
4620 init_context.parent = current;
4621 init_context.thread_fn = thread_fn;
4622 init_context.data = data;
4623 init_completion(&init_context.init_done);
4624
4625 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4626 "%s-%d", name, task_pid_nr(current));
4627 if (IS_ERR(thread))
4628 return PTR_ERR(thread);
4629
4630 /* kthread_run is never supposed to return NULL */
4631 WARN_ON(thread == NULL);
4632
4633 wait_for_completion(&init_context.init_done);
4634
4635 if (!init_context.err)
4636 *thread_ptr = thread;
4637
4638 return init_context.err;
4639}