]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - virt/kvm/kvm_main.c
KVM: Convert the kvm->vcpus array to a xarray
[thirdparty/kernel/stable.git] / virt / kvm / kvm_main.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9611c187 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
6aa8b732
AK
14 */
15
af669ac6 16#include <kvm/iodev.h>
6aa8b732 17
edf88417 18#include <linux/kvm_host.h>
6aa8b732
AK
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
6aa8b732 22#include <linux/percpu.h>
6aa8b732
AK
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
6aa8b732 26#include <linux/reboot.h>
6aa8b732
AK
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
fb3600cc 30#include <linux/syscore_ops.h>
774c47f1 31#include <linux/cpu.h>
174cd4b1 32#include <linux/sched/signal.h>
6e84f315 33#include <linux/sched/mm.h>
03441a34 34#include <linux/sched/stat.h>
d9e368d6
AK
35#include <linux/cpumask.h>
36#include <linux/smp.h>
d6d28168 37#include <linux/anon_inodes.h>
04d2cc77 38#include <linux/profile.h>
7aa81cc0 39#include <linux/kvm_para.h>
6fc138d2 40#include <linux/pagemap.h>
8d4e1288 41#include <linux/mman.h>
35149e21 42#include <linux/swap.h>
e56d532f 43#include <linux/bitops.h>
547de29e 44#include <linux/spinlock.h>
6ff5894c 45#include <linux/compat.h>
bc6678a3 46#include <linux/srcu.h>
8f0b1ab6 47#include <linux/hugetlb.h>
5a0e3ad6 48#include <linux/slab.h>
743eeb0b
SL
49#include <linux/sort.h>
50#include <linux/bsearch.h>
c011d23b 51#include <linux/io.h>
2eb06c30 52#include <linux/lockdep.h>
c57c8046 53#include <linux/kthread.h>
2fdef3a2 54#include <linux/suspend.h>
6aa8b732 55
e495606d 56#include <asm/processor.h>
2ea75be3 57#include <asm/ioctl.h>
7c0f6ba6 58#include <linux/uaccess.h>
6aa8b732 59
5f94c174 60#include "coalesced_mmio.h"
af585b92 61#include "async_pf.h"
531810ca 62#include "mmu_lock.h"
3c3c29fd 63#include "vfio.h"
5f94c174 64
229456fc
MT
65#define CREATE_TRACE_POINTS
66#include <trace/events/kvm.h>
67
fb04a1ed
PX
68#include <linux/kvm_dirty_ring.h>
69
536a6f88
JF
70/* Worst case buffer size needed for holding an integer. */
71#define ITOA_MAX_LEN 12
72
6aa8b732
AK
73MODULE_AUTHOR("Qumranet");
74MODULE_LICENSE("GPL");
75
920552b2 76/* Architectures should define their poll value according to the halt latency */
ec76d819 77unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
039c5d1b 78module_param(halt_poll_ns, uint, 0644);
ec76d819 79EXPORT_SYMBOL_GPL(halt_poll_ns);
f7819512 80
aca6ff29 81/* Default doubles per-vcpu halt_poll_ns. */
ec76d819 82unsigned int halt_poll_ns_grow = 2;
039c5d1b 83module_param(halt_poll_ns_grow, uint, 0644);
ec76d819 84EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
aca6ff29 85
49113d36
NW
86/* The start value to grow halt_poll_ns from */
87unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88module_param(halt_poll_ns_grow_start, uint, 0644);
89EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
aca6ff29 91/* Default resets per-vcpu halt_poll_ns . */
ec76d819 92unsigned int halt_poll_ns_shrink;
039c5d1b 93module_param(halt_poll_ns_shrink, uint, 0644);
ec76d819 94EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
aca6ff29 95
fa40a821
MT
96/*
97 * Ordering of locks:
98 *
b7d409de 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
fa40a821
MT
100 */
101
0d9ce162 102DEFINE_MUTEX(kvm_lock);
4a937f96 103static DEFINE_RAW_SPINLOCK(kvm_count_lock);
e9b11c17 104LIST_HEAD(vm_list);
133de902 105
7f59f492 106static cpumask_var_t cpus_hardware_enabled;
f4fee932 107static int kvm_usage_count;
10474ae8 108static atomic_t hardware_enable_failed;
1b6c0168 109
aaba298c 110static struct kmem_cache *kvm_vcpu_cache;
1165f5fe 111
15ad7146 112static __read_mostly struct preempt_ops kvm_preempt_ops;
7495e22b 113static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
15ad7146 114
76f7c879 115struct dentry *kvm_debugfs_dir;
e23a808b 116EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
6aa8b732 117
09cbcef6 118static const struct file_operations stat_fops_per_vm;
536a6f88 119
bccf2150
AK
120static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
de8e5d74 122#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
123static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 unsigned long arg);
7ddfd3e0
MZ
125#define KVM_COMPAT(c) .compat_ioctl = (c)
126#else
9cb09e7c
MZ
127/*
128 * For architectures that don't implement a compat infrastructure,
129 * adopt a double line of defense:
130 * - Prevent a compat task from opening /dev/kvm
131 * - If the open has been done by a 64bit task, and the KVM fd
132 * passed to a compat task, let the ioctls fail.
133 */
7ddfd3e0
MZ
134static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 unsigned long arg) { return -EINVAL; }
b9876e6d
MZ
136
137static int kvm_no_compat_open(struct inode *inode, struct file *file)
138{
139 return is_compat_task() ? -ENODEV : 0;
140}
141#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
142 .open = kvm_no_compat_open
1dda606c 143#endif
10474ae8
AG
144static int hardware_enable_all(void);
145static void hardware_disable_all(void);
bccf2150 146
e93f8a0f 147static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
7940876e 148
52480137 149__visible bool kvm_rebooting;
b7c4145b 150EXPORT_SYMBOL_GPL(kvm_rebooting);
4ecac3fd 151
286de8f6
CI
152#define KVM_EVENT_CREATE_VM 0
153#define KVM_EVENT_DESTROY_VM 1
154static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155static unsigned long long kvm_createvm_count;
156static unsigned long long kvm_active_vms;
157
baff59cc
VK
158static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
159
e649b3f0
ET
160__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 unsigned long start, unsigned long end)
b1394e74
RK
162{
163}
164
a78986aa
SC
165bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
166{
167 /*
168 * The metadata used by is_zone_device_page() to determine whether or
169 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
170 * the device has been pinned, e.g. by get_user_pages(). WARN if the
171 * page_count() is zero to help detect bad usage of this helper.
172 */
173 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
174 return false;
175
176 return is_zone_device_page(pfn_to_page(pfn));
177}
178
ba049e93 179bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
cbff90a7 180{
a78986aa
SC
181 /*
182 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
183 * perspective they are "normal" pages, albeit with slightly different
184 * usage rules.
185 */
11feeb49 186 if (pfn_valid(pfn))
a78986aa 187 return PageReserved(pfn_to_page(pfn)) &&
7df003c8 188 !is_zero_pfn(pfn) &&
a78986aa 189 !kvm_is_zone_device_pfn(pfn);
cbff90a7
BAY
190
191 return true;
192}
193
bccf2150
AK
194/*
195 * Switches to specified vcpu, until a matching vcpu_put()
196 */
ec7660cc 197void vcpu_load(struct kvm_vcpu *vcpu)
6aa8b732 198{
ec7660cc 199 int cpu = get_cpu();
7495e22b
PB
200
201 __this_cpu_write(kvm_running_vcpu, vcpu);
15ad7146 202 preempt_notifier_register(&vcpu->preempt_notifier);
313a3dc7 203 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146 204 put_cpu();
6aa8b732 205}
2f1fe811 206EXPORT_SYMBOL_GPL(vcpu_load);
6aa8b732 207
313a3dc7 208void vcpu_put(struct kvm_vcpu *vcpu)
6aa8b732 209{
15ad7146 210 preempt_disable();
313a3dc7 211 kvm_arch_vcpu_put(vcpu);
15ad7146 212 preempt_notifier_unregister(&vcpu->preempt_notifier);
7495e22b 213 __this_cpu_write(kvm_running_vcpu, NULL);
15ad7146 214 preempt_enable();
6aa8b732 215}
2f1fe811 216EXPORT_SYMBOL_GPL(vcpu_put);
6aa8b732 217
7a97cec2
PB
218/* TODO: merge with kvm_arch_vcpu_should_kick */
219static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
220{
221 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
222
223 /*
224 * We need to wait for the VCPU to reenable interrupts and get out of
225 * READING_SHADOW_PAGE_TABLES mode.
226 */
227 if (req & KVM_REQUEST_WAIT)
228 return mode != OUTSIDE_GUEST_MODE;
229
230 /*
231 * Need to kick a running VCPU, but otherwise there is nothing to do.
232 */
233 return mode == IN_GUEST_MODE;
234}
235
d9e368d6
AK
236static void ack_flush(void *_completed)
237{
d9e368d6
AK
238}
239
620b2438 240static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
b49defe8 241{
b49defe8
PB
242 if (cpumask_empty(cpus))
243 return false;
244
245 smp_call_function_many(cpus, ack_flush, NULL, wait);
246 return true;
247}
248
ae0946cd 249static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
620b2438 250 unsigned int req, struct cpumask *tmp,
ae0946cd
VK
251 int current_cpu)
252{
253 int cpu;
254
255 kvm_make_request(req, vcpu);
256
257 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
258 return;
259
ae0946cd
VK
260 /*
261 * Note, the vCPU could get migrated to a different pCPU at any point
262 * after kvm_request_needs_ipi(), which could result in sending an IPI
263 * to the previous pCPU. But, that's OK because the purpose of the IPI
264 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
265 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
266 * after this point is also OK, as the requirement is only that KVM wait
267 * for vCPUs that were reading SPTEs _before_ any changes were
268 * finalized. See kvm_vcpu_kick() for more details on handling requests.
269 */
270 if (kvm_request_needs_ipi(vcpu, req)) {
271 cpu = READ_ONCE(vcpu->cpu);
272 if (cpu != -1 && cpu != current_cpu)
273 __cpumask_set_cpu(cpu, tmp);
274 }
275}
276
7053df4e 277bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
620b2438 278 unsigned long *vcpu_bitmap)
d9e368d6 279{
d9e368d6 280 struct kvm_vcpu *vcpu;
620b2438 281 struct cpumask *cpus;
ae0946cd 282 int i, me;
7053df4e 283 bool called;
6ef7a1bc 284
3cba4130 285 me = get_cpu();
7053df4e 286
620b2438
VK
287 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
288 cpumask_clear(cpus);
289
ae0946cd
VK
290 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
291 vcpu = kvm_get_vcpu(kvm, i);
381cecc5 292 if (!vcpu)
7053df4e 293 continue;
620b2438 294 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
49846896 295 }
7053df4e 296
620b2438 297 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
3cba4130 298 put_cpu();
7053df4e
VK
299
300 return called;
301}
302
54163a34
SS
303bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
304 struct kvm_vcpu *except)
7053df4e 305{
ae0946cd 306 struct kvm_vcpu *vcpu;
baff59cc 307 struct cpumask *cpus;
7053df4e 308 bool called;
ae0946cd 309 int i, me;
7053df4e 310
ae0946cd
VK
311 me = get_cpu();
312
baff59cc
VK
313 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
314 cpumask_clear(cpus);
315
ae0946cd
VK
316 kvm_for_each_vcpu(i, vcpu, kvm) {
317 if (vcpu == except)
318 continue;
319 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
320 }
321
322 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
323 put_cpu();
7053df4e 324
49846896 325 return called;
d9e368d6
AK
326}
327
54163a34
SS
328bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
329{
330 return kvm_make_all_cpus_request_except(kvm, req, NULL);
331}
a2486020 332EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
54163a34 333
a6d51016 334#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
49846896 335void kvm_flush_remote_tlbs(struct kvm *kvm)
2e53d63a 336{
3cc4e148 337 ++kvm->stat.generic.remote_tlb_flush_requests;
6bc6db00 338
4ae3cb3a
LT
339 /*
340 * We want to publish modifications to the page tables before reading
341 * mode. Pairs with a memory barrier in arch-specific code.
342 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
343 * and smp_mb in walk_shadow_page_lockless_begin/end.
344 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
345 *
346 * There is already an smp_mb__after_atomic() before
347 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
348 * barrier here.
349 */
b08660e5
TL
350 if (!kvm_arch_flush_remote_tlb(kvm)
351 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
0193cc90 352 ++kvm->stat.generic.remote_tlb_flush;
2e53d63a 353}
2ba9f0d8 354EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
a6d51016 355#endif
2e53d63a 356
49846896
RR
357void kvm_reload_remote_mmus(struct kvm *kvm)
358{
445b8236 359 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
49846896 360}
2e53d63a 361
6926f95a
SC
362#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
363static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
364 gfp_t gfp_flags)
365{
366 gfp_flags |= mc->gfp_zero;
367
368 if (mc->kmem_cache)
369 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
370 else
371 return (void *)__get_free_page(gfp_flags);
372}
373
374int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
375{
376 void *obj;
377
378 if (mc->nobjs >= min)
379 return 0;
380 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
381 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
382 if (!obj)
383 return mc->nobjs >= min ? 0 : -ENOMEM;
384 mc->objects[mc->nobjs++] = obj;
385 }
386 return 0;
387}
388
389int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
390{
391 return mc->nobjs;
392}
393
394void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
395{
396 while (mc->nobjs) {
397 if (mc->kmem_cache)
398 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
399 else
400 free_page((unsigned long)mc->objects[--mc->nobjs]);
401 }
402}
403
404void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
405{
406 void *p;
407
408 if (WARN_ON(!mc->nobjs))
409 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
410 else
411 p = mc->objects[--mc->nobjs];
412 BUG_ON(!p);
413 return p;
414}
415#endif
416
8bd826d6 417static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
fb3f0f51 418{
fb3f0f51
RR
419 mutex_init(&vcpu->mutex);
420 vcpu->cpu = -1;
fb3f0f51
RR
421 vcpu->kvm = kvm;
422 vcpu->vcpu_id = id;
34bb10b7 423 vcpu->pid = NULL;
da4ad88c 424 rcuwait_init(&vcpu->wait);
af585b92 425 kvm_async_pf_vcpu_init(vcpu);
fb3f0f51 426
bf9f6ac8
FW
427 vcpu->pre_pcpu = -1;
428 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
429
4c088493
R
430 kvm_vcpu_set_in_spin_loop(vcpu, false);
431 kvm_vcpu_set_dy_eligible(vcpu, false);
3a08a8f9 432 vcpu->preempted = false;
d73eb57b 433 vcpu->ready = false;
d5c48deb 434 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
fe22ed82 435 vcpu->last_used_slot = 0;
fb3f0f51 436}
fb3f0f51 437
27592ae8 438static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
4543bdc0 439{
fb04a1ed 440 kvm_dirty_ring_free(&vcpu->dirty_ring);
4543bdc0 441 kvm_arch_vcpu_destroy(vcpu);
e529ef66 442
9941d224
SC
443 /*
444 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
445 * the vcpu->pid pointer, and at destruction time all file descriptors
446 * are already gone.
447 */
448 put_pid(rcu_dereference_protected(vcpu->pid, 1));
449
8bd826d6 450 free_page((unsigned long)vcpu->run);
e529ef66 451 kmem_cache_free(kvm_vcpu_cache, vcpu);
4543bdc0 452}
27592ae8
MZ
453
454void kvm_destroy_vcpus(struct kvm *kvm)
455{
456 unsigned int i;
457 struct kvm_vcpu *vcpu;
458
459 kvm_for_each_vcpu(i, vcpu, kvm) {
460 kvm_vcpu_destroy(vcpu);
c5b07754 461 xa_erase(&kvm->vcpu_array, i);
27592ae8
MZ
462 }
463
464 atomic_set(&kvm->online_vcpus, 0);
465}
466EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
4543bdc0 467
e930bffe
AA
468#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
469static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
470{
471 return container_of(mn, struct kvm, mmu_notifier);
472}
473
e649b3f0
ET
474static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
475 struct mm_struct *mm,
476 unsigned long start, unsigned long end)
477{
478 struct kvm *kvm = mmu_notifier_to_kvm(mn);
479 int idx;
480
481 idx = srcu_read_lock(&kvm->srcu);
482 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
483 srcu_read_unlock(&kvm->srcu, idx);
484}
485
3039bcc7
SC
486typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
487
f922bd9b
SC
488typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
489 unsigned long end);
490
3039bcc7
SC
491struct kvm_hva_range {
492 unsigned long start;
493 unsigned long end;
494 pte_t pte;
495 hva_handler_t handler;
f922bd9b 496 on_lock_fn_t on_lock;
3039bcc7
SC
497 bool flush_on_ret;
498 bool may_block;
499};
500
f922bd9b
SC
501/*
502 * Use a dedicated stub instead of NULL to indicate that there is no callback
503 * function/handler. The compiler technically can't guarantee that a real
504 * function will have a non-zero address, and so it will generate code to
505 * check for !NULL, whereas comparing against a stub will be elided at compile
506 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
507 */
508static void kvm_null_fn(void)
509{
510
511}
512#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
513
3039bcc7
SC
514static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
515 const struct kvm_hva_range *range)
516{
8931a454 517 bool ret = false, locked = false;
f922bd9b 518 struct kvm_gfn_range gfn_range;
3039bcc7
SC
519 struct kvm_memory_slot *slot;
520 struct kvm_memslots *slots;
3039bcc7
SC
521 int i, idx;
522
f922bd9b
SC
523 /* A null handler is allowed if and only if on_lock() is provided. */
524 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
525 IS_KVM_NULL_FN(range->handler)))
526 return 0;
527
3039bcc7
SC
528 idx = srcu_read_lock(&kvm->srcu);
529
530 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
531 slots = __kvm_memslots(kvm, i);
532 kvm_for_each_memslot(slot, slots) {
533 unsigned long hva_start, hva_end;
534
535 hva_start = max(range->start, slot->userspace_addr);
536 hva_end = min(range->end, slot->userspace_addr +
537 (slot->npages << PAGE_SHIFT));
538 if (hva_start >= hva_end)
539 continue;
540
541 /*
542 * To optimize for the likely case where the address
543 * range is covered by zero or one memslots, don't
544 * bother making these conditional (to avoid writes on
545 * the second or later invocation of the handler).
546 */
547 gfn_range.pte = range->pte;
548 gfn_range.may_block = range->may_block;
549
550 /*
551 * {gfn(page) | page intersects with [hva_start, hva_end)} =
552 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
553 */
554 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
555 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
556 gfn_range.slot = slot;
557
8931a454
SC
558 if (!locked) {
559 locked = true;
560 KVM_MMU_LOCK(kvm);
071064f1
PB
561 if (!IS_KVM_NULL_FN(range->on_lock))
562 range->on_lock(kvm, range->start, range->end);
563 if (IS_KVM_NULL_FN(range->handler))
564 break;
8931a454 565 }
3039bcc7
SC
566 ret |= range->handler(kvm, &gfn_range);
567 }
568 }
569
6bc6db00 570 if (range->flush_on_ret && ret)
3039bcc7
SC
571 kvm_flush_remote_tlbs(kvm);
572
8931a454
SC
573 if (locked)
574 KVM_MMU_UNLOCK(kvm);
f922bd9b 575
3039bcc7
SC
576 srcu_read_unlock(&kvm->srcu, idx);
577
578 /* The notifiers are averse to booleans. :-( */
579 return (int)ret;
580}
581
582static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
583 unsigned long start,
584 unsigned long end,
585 pte_t pte,
586 hva_handler_t handler)
587{
588 struct kvm *kvm = mmu_notifier_to_kvm(mn);
589 const struct kvm_hva_range range = {
590 .start = start,
591 .end = end,
592 .pte = pte,
593 .handler = handler,
f922bd9b 594 .on_lock = (void *)kvm_null_fn,
3039bcc7
SC
595 .flush_on_ret = true,
596 .may_block = false,
597 };
3039bcc7 598
f922bd9b 599 return __kvm_handle_hva_range(kvm, &range);
3039bcc7
SC
600}
601
602static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
603 unsigned long start,
604 unsigned long end,
605 hva_handler_t handler)
606{
607 struct kvm *kvm = mmu_notifier_to_kvm(mn);
608 const struct kvm_hva_range range = {
609 .start = start,
610 .end = end,
611 .pte = __pte(0),
612 .handler = handler,
f922bd9b 613 .on_lock = (void *)kvm_null_fn,
3039bcc7
SC
614 .flush_on_ret = false,
615 .may_block = false,
616 };
3039bcc7 617
f922bd9b 618 return __kvm_handle_hva_range(kvm, &range);
3039bcc7 619}
3da0dd43
IE
620static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
621 struct mm_struct *mm,
622 unsigned long address,
623 pte_t pte)
624{
625 struct kvm *kvm = mmu_notifier_to_kvm(mn);
626
501b9185
SC
627 trace_kvm_set_spte_hva(address);
628
c13fda23 629 /*
52ac8b35 630 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
071064f1
PB
631 * If mmu_notifier_count is zero, then no in-progress invalidations,
632 * including this one, found a relevant memslot at start(); rechecking
633 * memslots here is unnecessary. Note, a false positive (count elevated
634 * by a different invalidation) is sub-optimal but functionally ok.
c13fda23 635 */
52ac8b35 636 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
071064f1
PB
637 if (!READ_ONCE(kvm->mmu_notifier_count))
638 return;
c13fda23 639
3039bcc7 640 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
3da0dd43
IE
641}
642
edb298c6 643void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
f922bd9b 644 unsigned long end)
e930bffe 645{
e930bffe
AA
646 /*
647 * The count increase must become visible at unlock time as no
648 * spte can be established without taking the mmu_lock and
649 * count is also read inside the mmu_lock critical section.
650 */
651 kvm->mmu_notifier_count++;
4a42d848 652 if (likely(kvm->mmu_notifier_count == 1)) {
f922bd9b
SC
653 kvm->mmu_notifier_range_start = start;
654 kvm->mmu_notifier_range_end = end;
4a42d848
DS
655 } else {
656 /*
657 * Fully tracking multiple concurrent ranges has dimishing
658 * returns. Keep things simple and just find the minimal range
659 * which includes the current and new ranges. As there won't be
660 * enough information to subtract a range after its invalidate
661 * completes, any ranges invalidated concurrently will
662 * accumulate and persist until all outstanding invalidates
663 * complete.
664 */
665 kvm->mmu_notifier_range_start =
f922bd9b 666 min(kvm->mmu_notifier_range_start, start);
4a42d848 667 kvm->mmu_notifier_range_end =
f922bd9b 668 max(kvm->mmu_notifier_range_end, end);
4a42d848 669 }
f922bd9b 670}
3039bcc7 671
f922bd9b
SC
672static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
673 const struct mmu_notifier_range *range)
674{
675 struct kvm *kvm = mmu_notifier_to_kvm(mn);
676 const struct kvm_hva_range hva_range = {
677 .start = range->start,
678 .end = range->end,
679 .pte = __pte(0),
680 .handler = kvm_unmap_gfn_range,
681 .on_lock = kvm_inc_notifier_count,
682 .flush_on_ret = true,
683 .may_block = mmu_notifier_range_blockable(range),
684 };
565f3be2 685
f922bd9b
SC
686 trace_kvm_unmap_hva_range(range->start, range->end);
687
52ac8b35
PB
688 /*
689 * Prevent memslot modification between range_start() and range_end()
690 * so that conditionally locking provides the same result in both
691 * functions. Without that guarantee, the mmu_notifier_count
692 * adjustments will be imbalanced.
693 *
694 * Pairs with the decrement in range_end().
695 */
696 spin_lock(&kvm->mn_invalidate_lock);
697 kvm->mn_active_invalidate_count++;
698 spin_unlock(&kvm->mn_invalidate_lock);
699
f922bd9b 700 __kvm_handle_hva_range(kvm, &hva_range);
93065ac7 701
e649b3f0 702 return 0;
e930bffe
AA
703}
704
edb298c6 705void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
f922bd9b 706 unsigned long end)
e930bffe 707{
e930bffe
AA
708 /*
709 * This sequence increase will notify the kvm page fault that
710 * the page that is going to be mapped in the spte could have
711 * been freed.
712 */
713 kvm->mmu_notifier_seq++;
a355aa54 714 smp_wmb();
e930bffe
AA
715 /*
716 * The above sequence increase must be visible before the
a355aa54
PM
717 * below count decrease, which is ensured by the smp_wmb above
718 * in conjunction with the smp_rmb in mmu_notifier_retry().
e930bffe
AA
719 */
720 kvm->mmu_notifier_count--;
f922bd9b
SC
721}
722
723static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
724 const struct mmu_notifier_range *range)
725{
726 struct kvm *kvm = mmu_notifier_to_kvm(mn);
727 const struct kvm_hva_range hva_range = {
728 .start = range->start,
729 .end = range->end,
730 .pte = __pte(0),
731 .handler = (void *)kvm_null_fn,
732 .on_lock = kvm_dec_notifier_count,
733 .flush_on_ret = false,
734 .may_block = mmu_notifier_range_blockable(range),
735 };
52ac8b35 736 bool wake;
f922bd9b
SC
737
738 __kvm_handle_hva_range(kvm, &hva_range);
e930bffe 739
52ac8b35
PB
740 /* Pairs with the increment in range_start(). */
741 spin_lock(&kvm->mn_invalidate_lock);
742 wake = (--kvm->mn_active_invalidate_count == 0);
743 spin_unlock(&kvm->mn_invalidate_lock);
744
745 /*
746 * There can only be one waiter, since the wait happens under
747 * slots_lock.
748 */
749 if (wake)
750 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
751
e930bffe
AA
752 BUG_ON(kvm->mmu_notifier_count < 0);
753}
754
755static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
756 struct mm_struct *mm,
57128468
ALC
757 unsigned long start,
758 unsigned long end)
e930bffe 759{
501b9185
SC
760 trace_kvm_age_hva(start, end);
761
3039bcc7 762 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
e930bffe
AA
763}
764
1d7715c6
VD
765static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
766 struct mm_struct *mm,
767 unsigned long start,
768 unsigned long end)
769{
501b9185
SC
770 trace_kvm_age_hva(start, end);
771
1d7715c6
VD
772 /*
773 * Even though we do not flush TLB, this will still adversely
774 * affect performance on pre-Haswell Intel EPT, where there is
775 * no EPT Access Bit to clear so that we have to tear down EPT
776 * tables instead. If we find this unacceptable, we can always
777 * add a parameter to kvm_age_hva so that it effectively doesn't
778 * do anything on clear_young.
779 *
780 * Also note that currently we never issue secondary TLB flushes
781 * from clear_young, leaving this job up to the regular system
782 * cadence. If we find this inaccurate, we might come up with a
783 * more sophisticated heuristic later.
784 */
3039bcc7 785 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
1d7715c6
VD
786}
787
8ee53820
AA
788static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
789 struct mm_struct *mm,
790 unsigned long address)
791{
501b9185
SC
792 trace_kvm_test_age_hva(address);
793
3039bcc7
SC
794 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
795 kvm_test_age_gfn);
8ee53820
AA
796}
797
85db06e5
MT
798static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
799 struct mm_struct *mm)
800{
801 struct kvm *kvm = mmu_notifier_to_kvm(mn);
eda2beda
LJ
802 int idx;
803
804 idx = srcu_read_lock(&kvm->srcu);
2df72e9b 805 kvm_arch_flush_shadow_all(kvm);
eda2beda 806 srcu_read_unlock(&kvm->srcu, idx);
85db06e5
MT
807}
808
e930bffe 809static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
e649b3f0 810 .invalidate_range = kvm_mmu_notifier_invalidate_range,
e930bffe
AA
811 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
812 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
813 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
1d7715c6 814 .clear_young = kvm_mmu_notifier_clear_young,
8ee53820 815 .test_young = kvm_mmu_notifier_test_young,
3da0dd43 816 .change_pte = kvm_mmu_notifier_change_pte,
85db06e5 817 .release = kvm_mmu_notifier_release,
e930bffe 818};
4c07b0a4
AK
819
820static int kvm_init_mmu_notifier(struct kvm *kvm)
821{
822 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
823 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
824}
825
826#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
827
828static int kvm_init_mmu_notifier(struct kvm *kvm)
829{
830 return 0;
831}
832
e930bffe
AA
833#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
834
2fdef3a2
SS
835#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
836static int kvm_pm_notifier_call(struct notifier_block *bl,
837 unsigned long state,
838 void *unused)
839{
840 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
841
842 return kvm_arch_pm_notifier(kvm, state);
843}
844
845static void kvm_init_pm_notifier(struct kvm *kvm)
846{
847 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
848 /* Suspend KVM before we suspend ftrace, RCU, etc. */
849 kvm->pm_notifier.priority = INT_MAX;
850 register_pm_notifier(&kvm->pm_notifier);
851}
852
853static void kvm_destroy_pm_notifier(struct kvm *kvm)
854{
855 unregister_pm_notifier(&kvm->pm_notifier);
856}
857#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
858static void kvm_init_pm_notifier(struct kvm *kvm)
859{
860}
861
862static void kvm_destroy_pm_notifier(struct kvm *kvm)
863{
864}
865#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
866
a47d2b07 867static struct kvm_memslots *kvm_alloc_memslots(void)
bf3e05bc
XG
868{
869 int i;
a47d2b07 870 struct kvm_memslots *slots;
bf3e05bc 871
b12ce36a 872 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
a47d2b07
PB
873 if (!slots)
874 return NULL;
875
bf3e05bc 876 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
36947254 877 slots->id_to_index[i] = -1;
a47d2b07
PB
878
879 return slots;
880}
881
882static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
883{
884 if (!memslot->dirty_bitmap)
885 return;
886
887 kvfree(memslot->dirty_bitmap);
888 memslot->dirty_bitmap = NULL;
889}
890
e96c81ee 891static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
a47d2b07 892{
e96c81ee 893 kvm_destroy_dirty_bitmap(slot);
a47d2b07 894
e96c81ee 895 kvm_arch_free_memslot(kvm, slot);
a47d2b07 896
e96c81ee
SC
897 slot->flags = 0;
898 slot->npages = 0;
a47d2b07
PB
899}
900
901static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
902{
903 struct kvm_memory_slot *memslot;
904
905 if (!slots)
906 return;
907
908 kvm_for_each_memslot(memslot, slots)
e96c81ee 909 kvm_free_memslot(kvm, memslot);
a47d2b07
PB
910
911 kvfree(slots);
bf3e05bc
XG
912}
913
bc9e9e67
JZ
914static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
915{
916 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
917 case KVM_STATS_TYPE_INSTANT:
918 return 0444;
919 case KVM_STATS_TYPE_CUMULATIVE:
920 case KVM_STATS_TYPE_PEAK:
921 default:
922 return 0644;
923 }
924}
925
926
536a6f88
JF
927static void kvm_destroy_vm_debugfs(struct kvm *kvm)
928{
929 int i;
bc9e9e67
JZ
930 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
931 kvm_vcpu_stats_header.num_desc;
536a6f88
JF
932
933 if (!kvm->debugfs_dentry)
934 return;
935
936 debugfs_remove_recursive(kvm->debugfs_dentry);
937
9d5a1dce
LC
938 if (kvm->debugfs_stat_data) {
939 for (i = 0; i < kvm_debugfs_num_entries; i++)
940 kfree(kvm->debugfs_stat_data[i]);
941 kfree(kvm->debugfs_stat_data);
942 }
536a6f88
JF
943}
944
945static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
946{
85cd39af
PB
947 static DEFINE_MUTEX(kvm_debugfs_lock);
948 struct dentry *dent;
536a6f88
JF
949 char dir_name[ITOA_MAX_LEN * 2];
950 struct kvm_stat_data *stat_data;
bc9e9e67 951 const struct _kvm_stats_desc *pdesc;
3165af73 952 int i, ret;
bc9e9e67
JZ
953 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
954 kvm_vcpu_stats_header.num_desc;
536a6f88
JF
955
956 if (!debugfs_initialized())
957 return 0;
958
959 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
85cd39af
PB
960 mutex_lock(&kvm_debugfs_lock);
961 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
962 if (dent) {
963 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
964 dput(dent);
965 mutex_unlock(&kvm_debugfs_lock);
966 return 0;
967 }
968 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
969 mutex_unlock(&kvm_debugfs_lock);
970 if (IS_ERR(dent))
971 return 0;
536a6f88 972
85cd39af 973 kvm->debugfs_dentry = dent;
536a6f88
JF
974 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
975 sizeof(*kvm->debugfs_stat_data),
b12ce36a 976 GFP_KERNEL_ACCOUNT);
536a6f88
JF
977 if (!kvm->debugfs_stat_data)
978 return -ENOMEM;
979
bc9e9e67
JZ
980 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
981 pdesc = &kvm_vm_stats_desc[i];
b12ce36a 982 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
983 if (!stat_data)
984 return -ENOMEM;
985
986 stat_data->kvm = kvm;
bc9e9e67
JZ
987 stat_data->desc = pdesc;
988 stat_data->kind = KVM_STAT_VM;
989 kvm->debugfs_stat_data[i] = stat_data;
990 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
991 kvm->debugfs_dentry, stat_data,
992 &stat_fops_per_vm);
993 }
994
995 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
996 pdesc = &kvm_vcpu_stats_desc[i];
b12ce36a 997 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
536a6f88
JF
998 if (!stat_data)
999 return -ENOMEM;
1000
1001 stat_data->kvm = kvm;
bc9e9e67
JZ
1002 stat_data->desc = pdesc;
1003 stat_data->kind = KVM_STAT_VCPU;
004d62eb 1004 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
bc9e9e67 1005 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
09cbcef6
MP
1006 kvm->debugfs_dentry, stat_data,
1007 &stat_fops_per_vm);
536a6f88 1008 }
3165af73
PX
1009
1010 ret = kvm_arch_create_vm_debugfs(kvm);
1011 if (ret) {
1012 kvm_destroy_vm_debugfs(kvm);
1013 return i;
1014 }
1015
536a6f88
JF
1016 return 0;
1017}
1018
1aa9b957
JS
1019/*
1020 * Called after the VM is otherwise initialized, but just before adding it to
1021 * the vm_list.
1022 */
1023int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1024{
1025 return 0;
1026}
1027
1028/*
1029 * Called just after removing the VM from the vm_list, but before doing any
1030 * other destruction.
1031 */
1032void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1033{
1034}
1035
3165af73
PX
1036/*
1037 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1038 * be setup already, so we can create arch-specific debugfs entries under it.
1039 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1040 * a per-arch destroy interface is not needed.
1041 */
1042int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1043{
1044 return 0;
1045}
1046
e08b9637 1047static struct kvm *kvm_create_vm(unsigned long type)
6aa8b732 1048{
d89f5eff 1049 struct kvm *kvm = kvm_arch_alloc_vm();
9121923c
JM
1050 int r = -ENOMEM;
1051 int i;
6aa8b732 1052
d89f5eff
JK
1053 if (!kvm)
1054 return ERR_PTR(-ENOMEM);
1055
531810ca 1056 KVM_MMU_LOCK_INIT(kvm);
f1f10076 1057 mmgrab(current->mm);
e9ad4ec8
PB
1058 kvm->mm = current->mm;
1059 kvm_eventfd_init(kvm);
1060 mutex_init(&kvm->lock);
1061 mutex_init(&kvm->irq_lock);
1062 mutex_init(&kvm->slots_lock);
b10a038e 1063 mutex_init(&kvm->slots_arch_lock);
52ac8b35
PB
1064 spin_lock_init(&kvm->mn_invalidate_lock);
1065 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
c5b07754 1066 xa_init(&kvm->vcpu_array);
52ac8b35 1067
e9ad4ec8
PB
1068 INIT_LIST_HEAD(&kvm->devices);
1069
1e702d9a
AW
1070 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1071
8a44119a
PB
1072 if (init_srcu_struct(&kvm->srcu))
1073 goto out_err_no_srcu;
1074 if (init_srcu_struct(&kvm->irq_srcu))
1075 goto out_err_no_irq_srcu;
1076
e2d3fcaf 1077 refcount_set(&kvm->users_count, 1);
f481b069 1078 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4bd518f1 1079 struct kvm_memslots *slots = kvm_alloc_memslots();
9121923c 1080
4bd518f1 1081 if (!slots)
a97b0e77 1082 goto out_err_no_arch_destroy_vm;
0e32958e 1083 /* Generations must be different for each address space. */
164bf7e5 1084 slots->generation = i;
4bd518f1 1085 rcu_assign_pointer(kvm->memslots[i], slots);
f481b069 1086 }
00f034a1 1087
e93f8a0f 1088 for (i = 0; i < KVM_NR_BUSES; i++) {
4a12f951 1089 rcu_assign_pointer(kvm->buses[i],
b12ce36a 1090 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
57e7fbee 1091 if (!kvm->buses[i])
a97b0e77 1092 goto out_err_no_arch_destroy_vm;
e93f8a0f 1093 }
e930bffe 1094
acd05785
DM
1095 kvm->max_halt_poll_ns = halt_poll_ns;
1096
e08b9637 1097 r = kvm_arch_init_vm(kvm, type);
d89f5eff 1098 if (r)
a97b0e77 1099 goto out_err_no_arch_destroy_vm;
10474ae8
AG
1100
1101 r = hardware_enable_all();
1102 if (r)
719d93cd 1103 goto out_err_no_disable;
10474ae8 1104
c77dcacb 1105#ifdef CONFIG_HAVE_KVM_IRQFD
136bdfee 1106 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
75858a84 1107#endif
6aa8b732 1108
74b5c5bf 1109 r = kvm_init_mmu_notifier(kvm);
1aa9b957
JS
1110 if (r)
1111 goto out_err_no_mmu_notifier;
1112
1113 r = kvm_arch_post_init_vm(kvm);
74b5c5bf
MW
1114 if (r)
1115 goto out_err;
1116
0d9ce162 1117 mutex_lock(&kvm_lock);
5e58cfe4 1118 list_add(&kvm->vm_list, &vm_list);
0d9ce162 1119 mutex_unlock(&kvm_lock);
d89f5eff 1120
2ecd9d29 1121 preempt_notifier_inc();
2fdef3a2 1122 kvm_init_pm_notifier(kvm);
2ecd9d29 1123
f17abe9a 1124 return kvm;
10474ae8
AG
1125
1126out_err:
1aa9b957
JS
1127#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1128 if (kvm->mmu_notifier.ops)
1129 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1130#endif
1131out_err_no_mmu_notifier:
10474ae8 1132 hardware_disable_all();
719d93cd 1133out_err_no_disable:
a97b0e77 1134 kvm_arch_destroy_vm(kvm);
a97b0e77 1135out_err_no_arch_destroy_vm:
e2d3fcaf 1136 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
e93f8a0f 1137 for (i = 0; i < KVM_NR_BUSES; i++)
3898da94 1138 kfree(kvm_get_bus(kvm, i));
f481b069 1139 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 1140 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
8a44119a
PB
1141 cleanup_srcu_struct(&kvm->irq_srcu);
1142out_err_no_irq_srcu:
1143 cleanup_srcu_struct(&kvm->srcu);
1144out_err_no_srcu:
d89f5eff 1145 kvm_arch_free_vm(kvm);
e9ad4ec8 1146 mmdrop(current->mm);
10474ae8 1147 return ERR_PTR(r);
f17abe9a
AK
1148}
1149
07f0a7bd
SW
1150static void kvm_destroy_devices(struct kvm *kvm)
1151{
e6e3b5a6 1152 struct kvm_device *dev, *tmp;
07f0a7bd 1153
a28ebea2
CD
1154 /*
1155 * We do not need to take the kvm->lock here, because nobody else
1156 * has a reference to the struct kvm at this point and therefore
1157 * cannot access the devices list anyhow.
1158 */
e6e3b5a6
GT
1159 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1160 list_del(&dev->vm_node);
07f0a7bd
SW
1161 dev->ops->destroy(dev);
1162 }
1163}
1164
f17abe9a
AK
1165static void kvm_destroy_vm(struct kvm *kvm)
1166{
e93f8a0f 1167 int i;
6d4e4c4f
AK
1168 struct mm_struct *mm = kvm->mm;
1169
2fdef3a2 1170 kvm_destroy_pm_notifier(kvm);
286de8f6 1171 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
536a6f88 1172 kvm_destroy_vm_debugfs(kvm);
ad8ba2cd 1173 kvm_arch_sync_events(kvm);
0d9ce162 1174 mutex_lock(&kvm_lock);
133de902 1175 list_del(&kvm->vm_list);
0d9ce162 1176 mutex_unlock(&kvm_lock);
1aa9b957
JS
1177 kvm_arch_pre_destroy_vm(kvm);
1178
399ec807 1179 kvm_free_irq_routing(kvm);
df630b8c 1180 for (i = 0; i < KVM_NR_BUSES; i++) {
3898da94 1181 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
4a12f951 1182
4a12f951
CB
1183 if (bus)
1184 kvm_io_bus_destroy(bus);
df630b8c
PX
1185 kvm->buses[i] = NULL;
1186 }
980da6ce 1187 kvm_coalesced_mmio_free(kvm);
e930bffe
AA
1188#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1189 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
52ac8b35
PB
1190 /*
1191 * At this point, pending calls to invalidate_range_start()
1192 * have completed but no more MMU notifiers will run, so
1193 * mn_active_invalidate_count may remain unbalanced.
1194 * No threads can be waiting in install_new_memslots as the
1195 * last reference on KVM has been dropped, but freeing
1196 * memslots would deadlock without this manual intervention.
1197 */
1198 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1199 kvm->mn_active_invalidate_count = 0;
f00be0ca 1200#else
2df72e9b 1201 kvm_arch_flush_shadow_all(kvm);
5f94c174 1202#endif
d19a9cd2 1203 kvm_arch_destroy_vm(kvm);
07f0a7bd 1204 kvm_destroy_devices(kvm);
f481b069 1205 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
3898da94 1206 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820b3fcd 1207 cleanup_srcu_struct(&kvm->irq_srcu);
d89f5eff
JK
1208 cleanup_srcu_struct(&kvm->srcu);
1209 kvm_arch_free_vm(kvm);
2ecd9d29 1210 preempt_notifier_dec();
10474ae8 1211 hardware_disable_all();
6d4e4c4f 1212 mmdrop(mm);
f17abe9a
AK
1213}
1214
d39f13b0
IE
1215void kvm_get_kvm(struct kvm *kvm)
1216{
e3736c3e 1217 refcount_inc(&kvm->users_count);
d39f13b0
IE
1218}
1219EXPORT_SYMBOL_GPL(kvm_get_kvm);
1220
605c7130
PX
1221/*
1222 * Make sure the vm is not during destruction, which is a safe version of
1223 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1224 */
1225bool kvm_get_kvm_safe(struct kvm *kvm)
1226{
1227 return refcount_inc_not_zero(&kvm->users_count);
1228}
1229EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1230
d39f13b0
IE
1231void kvm_put_kvm(struct kvm *kvm)
1232{
e3736c3e 1233 if (refcount_dec_and_test(&kvm->users_count))
d39f13b0
IE
1234 kvm_destroy_vm(kvm);
1235}
1236EXPORT_SYMBOL_GPL(kvm_put_kvm);
1237
149487bd
SC
1238/*
1239 * Used to put a reference that was taken on behalf of an object associated
1240 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1241 * of the new file descriptor fails and the reference cannot be transferred to
1242 * its final owner. In such cases, the caller is still actively using @kvm and
1243 * will fail miserably if the refcount unexpectedly hits zero.
1244 */
1245void kvm_put_kvm_no_destroy(struct kvm *kvm)
1246{
1247 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1248}
1249EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
d39f13b0 1250
f17abe9a
AK
1251static int kvm_vm_release(struct inode *inode, struct file *filp)
1252{
1253 struct kvm *kvm = filp->private_data;
1254
721eecbf
GH
1255 kvm_irqfd_release(kvm);
1256
d39f13b0 1257 kvm_put_kvm(kvm);
6aa8b732
AK
1258 return 0;
1259}
1260
515a0127
TY
1261/*
1262 * Allocation size is twice as large as the actual dirty bitmap size.
0dff0846 1263 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
515a0127 1264 */
3c9bd400 1265static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
a36a57b1 1266{
515a0127 1267 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
a36a57b1 1268
b12ce36a 1269 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
a36a57b1
TY
1270 if (!memslot->dirty_bitmap)
1271 return -ENOMEM;
1272
a36a57b1
TY
1273 return 0;
1274}
1275
bf3e05bc 1276/*
0577d1ab
SC
1277 * Delete a memslot by decrementing the number of used slots and shifting all
1278 * other entries in the array forward one spot.
bf3e05bc 1279 */
0577d1ab
SC
1280static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1281 struct kvm_memory_slot *memslot)
bf3e05bc 1282{
063584d4 1283 struct kvm_memory_slot *mslots = slots->memslots;
0577d1ab 1284 int i;
f85e2cb5 1285
0577d1ab
SC
1286 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1287 return;
0e60b079 1288
0577d1ab
SC
1289 slots->used_slots--;
1290
87689270
DM
1291 if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
1292 atomic_set(&slots->last_used_slot, 0);
0774a964 1293
0577d1ab 1294 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
7f379cff
IM
1295 mslots[i] = mslots[i + 1];
1296 slots->id_to_index[mslots[i].id] = i;
7f379cff 1297 }
0577d1ab
SC
1298 mslots[i] = *memslot;
1299 slots->id_to_index[memslot->id] = -1;
1300}
1301
1302/*
1303 * "Insert" a new memslot by incrementing the number of used slots. Returns
1304 * the new slot's initial index into the memslots array.
1305 */
1306static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1307{
1308 return slots->used_slots++;
1309}
1310
1311/*
1312 * Move a changed memslot backwards in the array by shifting existing slots
1313 * with a higher GFN toward the front of the array. Note, the changed memslot
1314 * itself is not preserved in the array, i.e. not swapped at this time, only
1315 * its new index into the array is tracked. Returns the changed memslot's
1316 * current index into the memslots array.
1317 */
1318static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1319 struct kvm_memory_slot *memslot)
1320{
1321 struct kvm_memory_slot *mslots = slots->memslots;
1322 int i;
1323
1324 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1325 WARN_ON_ONCE(!slots->used_slots))
1326 return -1;
efbeec70
PB
1327
1328 /*
0577d1ab
SC
1329 * Move the target memslot backward in the array by shifting existing
1330 * memslots with a higher GFN (than the target memslot) towards the
1331 * front of the array.
efbeec70 1332 */
0577d1ab
SC
1333 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1334 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1335 break;
1336
1337 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
f85e2cb5 1338
0577d1ab
SC
1339 /* Shift the next memslot forward one and update its index. */
1340 mslots[i] = mslots[i + 1];
1341 slots->id_to_index[mslots[i].id] = i;
1342 }
1343 return i;
1344}
1345
1346/*
1347 * Move a changed memslot forwards in the array by shifting existing slots with
1348 * a lower GFN toward the back of the array. Note, the changed memslot itself
1349 * is not preserved in the array, i.e. not swapped at this time, only its new
1350 * index into the array is tracked. Returns the changed memslot's final index
1351 * into the memslots array.
1352 */
1353static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1354 struct kvm_memory_slot *memslot,
1355 int start)
1356{
1357 struct kvm_memory_slot *mslots = slots->memslots;
1358 int i;
1359
1360 for (i = start; i > 0; i--) {
1361 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1362 break;
1363
1364 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1365
1366 /* Shift the next memslot back one and update its index. */
1367 mslots[i] = mslots[i - 1];
1368 slots->id_to_index[mslots[i].id] = i;
1369 }
1370 return i;
1371}
1372
1373/*
1374 * Re-sort memslots based on their GFN to account for an added, deleted, or
1375 * moved memslot. Sorting memslots by GFN allows using a binary search during
1376 * memslot lookup.
1377 *
1378 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
1379 * at memslots[0] has the highest GFN.
1380 *
1381 * The sorting algorithm takes advantage of having initially sorted memslots
1382 * and knowing the position of the changed memslot. Sorting is also optimized
1383 * by not swapping the updated memslot and instead only shifting other memslots
1384 * and tracking the new index for the update memslot. Only once its final
1385 * index is known is the updated memslot copied into its position in the array.
1386 *
1387 * - When deleting a memslot, the deleted memslot simply needs to be moved to
1388 * the end of the array.
1389 *
1390 * - When creating a memslot, the algorithm "inserts" the new memslot at the
1391 * end of the array and then it forward to its correct location.
1392 *
1393 * - When moving a memslot, the algorithm first moves the updated memslot
1394 * backward to handle the scenario where the memslot's GFN was changed to a
1395 * lower value. update_memslots() then falls through and runs the same flow
1396 * as creating a memslot to move the memslot forward to handle the scenario
1397 * where its GFN was changed to a higher value.
1398 *
1399 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1400 * historical reasons. Originally, invalid memslots where denoted by having
1401 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1402 * to the end of the array. The current algorithm uses dedicated logic to
1403 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1404 *
1405 * The other historical motiviation for highest->lowest was to improve the
1406 * performance of memslot lookup. KVM originally used a linear search starting
1407 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1408 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1409 * single memslot above the 4gb boundary. As the largest memslot is also the
1410 * most likely to be referenced, sorting it to the front of the array was
1411 * advantageous. The current binary search starts from the middle of the array
1412 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1413 */
1414static void update_memslots(struct kvm_memslots *slots,
1415 struct kvm_memory_slot *memslot,
1416 enum kvm_mr_change change)
1417{
1418 int i;
1419
1420 if (change == KVM_MR_DELETE) {
1421 kvm_memslot_delete(slots, memslot);
1422 } else {
1423 if (change == KVM_MR_CREATE)
1424 i = kvm_memslot_insert_back(slots);
1425 else
1426 i = kvm_memslot_move_backward(slots, memslot);
1427 i = kvm_memslot_move_forward(slots, memslot, i);
1428
1429 /*
1430 * Copy the memslot to its new position in memslots and update
1431 * its index accordingly.
1432 */
1433 slots->memslots[i] = *memslot;
1434 slots->id_to_index[memslot->id] = i;
1435 }
bf3e05bc
XG
1436}
1437
09170a49 1438static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
a50d64d6 1439{
4d8b81ab
XG
1440 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1441
0f8a4de3 1442#ifdef __KVM_HAVE_READONLY_MEM
4d8b81ab
XG
1443 valid_flags |= KVM_MEM_READONLY;
1444#endif
1445
1446 if (mem->flags & ~valid_flags)
a50d64d6
XG
1447 return -EINVAL;
1448
1449 return 0;
1450}
1451
7ec4fb44 1452static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
f481b069 1453 int as_id, struct kvm_memslots *slots)
7ec4fb44 1454{
f481b069 1455 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
361209e0 1456 u64 gen = old_memslots->generation;
7ec4fb44 1457
361209e0
SC
1458 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1459 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
ee3d1570 1460
52ac8b35
PB
1461 /*
1462 * Do not store the new memslots while there are invalidations in
071064f1
PB
1463 * progress, otherwise the locking in invalidate_range_start and
1464 * invalidate_range_end will be unbalanced.
52ac8b35
PB
1465 */
1466 spin_lock(&kvm->mn_invalidate_lock);
1467 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1468 while (kvm->mn_active_invalidate_count) {
1469 set_current_state(TASK_UNINTERRUPTIBLE);
1470 spin_unlock(&kvm->mn_invalidate_lock);
1471 schedule();
1472 spin_lock(&kvm->mn_invalidate_lock);
1473 }
1474 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
f481b069 1475 rcu_assign_pointer(kvm->memslots[as_id], slots);
52ac8b35 1476 spin_unlock(&kvm->mn_invalidate_lock);
b10a038e
BG
1477
1478 /*
1479 * Acquired in kvm_set_memslot. Must be released before synchronize
1480 * SRCU below in order to avoid deadlock with another thread
1481 * acquiring the slots_arch_lock in an srcu critical section.
1482 */
1483 mutex_unlock(&kvm->slots_arch_lock);
1484
7ec4fb44 1485 synchronize_srcu_expedited(&kvm->srcu);
e59dbe09 1486
ee3d1570 1487 /*
361209e0 1488 * Increment the new memslot generation a second time, dropping the
00116795 1489 * update in-progress flag and incrementing the generation based on
361209e0
SC
1490 * the number of address spaces. This provides a unique and easily
1491 * identifiable generation number while the memslots are in flux.
1492 */
1493 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1494
1495 /*
4bd518f1
PB
1496 * Generations must be unique even across address spaces. We do not need
1497 * a global counter for that, instead the generation space is evenly split
1498 * across address spaces. For example, with two address spaces, address
164bf7e5
SC
1499 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1500 * use generations 1, 3, 5, ...
ee3d1570 1501 */
164bf7e5 1502 gen += KVM_ADDRESS_SPACE_NUM;
ee3d1570 1503
15248258 1504 kvm_arch_memslots_updated(kvm, gen);
ee3d1570 1505
15248258 1506 slots->generation = gen;
e59dbe09
TY
1507
1508 return old_memslots;
7ec4fb44
GN
1509}
1510
ddc12f2a
BG
1511static size_t kvm_memslots_size(int slots)
1512{
1513 return sizeof(struct kvm_memslots) +
1514 (sizeof(struct kvm_memory_slot) * slots);
1515}
1516
1517static void kvm_copy_memslots(struct kvm_memslots *to,
1518 struct kvm_memslots *from)
1519{
1520 memcpy(to, from, kvm_memslots_size(from->used_slots));
1521}
1522
36947254
SC
1523/*
1524 * Note, at a minimum, the current number of used slots must be allocated, even
1525 * when deleting a memslot, as we need a complete duplicate of the memslots for
1526 * use when invalidating a memslot prior to deleting/moving the memslot.
1527 */
1528static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1529 enum kvm_mr_change change)
1530{
1531 struct kvm_memslots *slots;
ddc12f2a 1532 size_t new_size;
36947254
SC
1533
1534 if (change == KVM_MR_CREATE)
ddc12f2a 1535 new_size = kvm_memslots_size(old->used_slots + 1);
36947254 1536 else
ddc12f2a 1537 new_size = kvm_memslots_size(old->used_slots);
36947254
SC
1538
1539 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1540 if (likely(slots))
ddc12f2a 1541 kvm_copy_memslots(slots, old);
36947254
SC
1542
1543 return slots;
1544}
1545
cf47f50b
SC
1546static int kvm_set_memslot(struct kvm *kvm,
1547 const struct kvm_userspace_memory_region *mem,
cf47f50b
SC
1548 struct kvm_memory_slot *new, int as_id,
1549 enum kvm_mr_change change)
1550{
bda44d84 1551 struct kvm_memory_slot *slot, old;
cf47f50b
SC
1552 struct kvm_memslots *slots;
1553 int r;
1554
b10a038e
BG
1555 /*
1556 * Released in install_new_memslots.
1557 *
1558 * Must be held from before the current memslots are copied until
1559 * after the new memslots are installed with rcu_assign_pointer,
1560 * then released before the synchronize srcu in install_new_memslots.
1561 *
1562 * When modifying memslots outside of the slots_lock, must be held
1563 * before reading the pointer to the current memslots until after all
1564 * changes to those memslots are complete.
1565 *
1566 * These rules ensure that installing new memslots does not lose
1567 * changes made to the previous memslots.
1568 */
1569 mutex_lock(&kvm->slots_arch_lock);
1570
36947254 1571 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
b10a038e
BG
1572 if (!slots) {
1573 mutex_unlock(&kvm->slots_arch_lock);
cf47f50b 1574 return -ENOMEM;
b10a038e 1575 }
cf47f50b
SC
1576
1577 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1578 /*
1579 * Note, the INVALID flag needs to be in the appropriate entry
1580 * in the freshly allocated memslots, not in @old or @new.
1581 */
bda44d84 1582 slot = id_to_memslot(slots, new->id);
cf47f50b
SC
1583 slot->flags |= KVM_MEMSLOT_INVALID;
1584
1585 /*
b10a038e
BG
1586 * We can re-use the memory from the old memslots.
1587 * It will be overwritten with a copy of the new memslots
1588 * after reacquiring the slots_arch_lock below.
cf47f50b
SC
1589 */
1590 slots = install_new_memslots(kvm, as_id, slots);
1591
1592 /* From this point no new shadow pages pointing to a deleted,
1593 * or moved, memslot will be created.
1594 *
1595 * validation of sp->gfn happens in:
1596 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1597 * - kvm_is_visible_gfn (mmu_check_root)
1598 */
1599 kvm_arch_flush_shadow_memslot(kvm, slot);
b10a038e
BG
1600
1601 /* Released in install_new_memslots. */
1602 mutex_lock(&kvm->slots_arch_lock);
1603
1604 /*
1605 * The arch-specific fields of the memslots could have changed
1606 * between releasing the slots_arch_lock in
1607 * install_new_memslots and here, so get a fresh copy of the
1608 * slots.
1609 */
1610 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
cf47f50b
SC
1611 }
1612
bda44d84
SC
1613 /*
1614 * Make a full copy of the old memslot, the pointer will become stale
1615 * when the memslots are re-sorted by update_memslots(), and the old
1616 * memslot needs to be referenced after calling update_memslots(), e.g.
1617 * to free its resources and for arch specific behavior. This needs to
1618 * happen *after* (re)acquiring slots_arch_lock.
1619 */
1620 slot = id_to_memslot(slots, new->id);
1621 if (slot) {
1622 old = *slot;
1623 } else {
1624 WARN_ON_ONCE(change != KVM_MR_CREATE);
1625 memset(&old, 0, sizeof(old));
1626 old.id = new->id;
1627 old.as_id = as_id;
1628 }
1629
1630 /* Copy the arch-specific data, again after (re)acquiring slots_arch_lock. */
1631 memcpy(&new->arch, &old.arch, sizeof(old.arch));
1632
cf47f50b
SC
1633 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1634 if (r)
1635 goto out_slots;
1636
1637 update_memslots(slots, new, change);
1638 slots = install_new_memslots(kvm, as_id, slots);
1639
bda44d84
SC
1640 kvm_arch_commit_memory_region(kvm, mem, &old, new, change);
1641
1642 /* Free the old memslot's metadata. Note, this is the full copy!!! */
1643 if (change == KVM_MR_DELETE)
1644 kvm_free_memslot(kvm, &old);
cf47f50b
SC
1645
1646 kvfree(slots);
1647 return 0;
1648
1649out_slots:
b10a038e 1650 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
bda44d84 1651 slot = id_to_memslot(slots, new->id);
b10a038e 1652 slot->flags &= ~KVM_MEMSLOT_INVALID;
cf47f50b 1653 slots = install_new_memslots(kvm, as_id, slots);
b10a038e
BG
1654 } else {
1655 mutex_unlock(&kvm->slots_arch_lock);
1656 }
cf47f50b
SC
1657 kvfree(slots);
1658 return r;
1659}
1660
5c0b4f3d
SC
1661static int kvm_delete_memslot(struct kvm *kvm,
1662 const struct kvm_userspace_memory_region *mem,
1663 struct kvm_memory_slot *old, int as_id)
1664{
1665 struct kvm_memory_slot new;
5c0b4f3d
SC
1666
1667 if (!old->npages)
1668 return -EINVAL;
1669
1670 memset(&new, 0, sizeof(new));
1671 new.id = old->id;
9e9eb226
PX
1672 /*
1673 * This is only for debugging purpose; it should never be referenced
1674 * for a removed memslot.
1675 */
1676 new.as_id = as_id;
5c0b4f3d 1677
bda44d84 1678 return kvm_set_memslot(kvm, mem, &new, as_id, KVM_MR_DELETE);
5c0b4f3d
SC
1679}
1680
6aa8b732
AK
1681/*
1682 * Allocate some memory and give it an address in the guest physical address
1683 * space.
1684 *
1685 * Discontiguous memory is allowed, mostly for framebuffers.
f78e0e2e 1686 *
02d5d55b 1687 * Must be called holding kvm->slots_lock for write.
6aa8b732 1688 */
f78e0e2e 1689int __kvm_set_memory_region(struct kvm *kvm,
09170a49 1690 const struct kvm_userspace_memory_region *mem)
6aa8b732 1691{
6aa8b732 1692 struct kvm_memory_slot old, new;
163da372 1693 struct kvm_memory_slot *tmp;
f64c0398 1694 enum kvm_mr_change change;
163da372
SC
1695 int as_id, id;
1696 int r;
6aa8b732 1697
a50d64d6
XG
1698 r = check_memory_region_flags(mem);
1699 if (r)
71a4c30b 1700 return r;
a50d64d6 1701
f481b069
PB
1702 as_id = mem->slot >> 16;
1703 id = (u16)mem->slot;
1704
6aa8b732 1705 /* General sanity checks */
6b285a55
SC
1706 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1707 (mem->memory_size != (unsigned long)mem->memory_size))
71a4c30b 1708 return -EINVAL;
6aa8b732 1709 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
71a4c30b 1710 return -EINVAL;
fa3d315a 1711 /* We can read the guest memory with __xxx_user() later on. */
09d952c9 1712 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
139bc8a6 1713 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
96d4f267 1714 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
09d952c9 1715 mem->memory_size))
71a4c30b 1716 return -EINVAL;
f481b069 1717 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
71a4c30b 1718 return -EINVAL;
6aa8b732 1719 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
71a4c30b 1720 return -EINVAL;
6aa8b732 1721
5c0b4f3d
SC
1722 /*
1723 * Make a full copy of the old memslot, the pointer will become stale
1724 * when the memslots are re-sorted by update_memslots(), and the old
1725 * memslot needs to be referenced after calling update_memslots(), e.g.
0dff0846 1726 * to free its resources and for arch specific behavior.
5c0b4f3d 1727 */
0577d1ab
SC
1728 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1729 if (tmp) {
1730 old = *tmp;
1731 tmp = NULL;
1732 } else {
1733 memset(&old, 0, sizeof(old));
1734 old.id = id;
1735 }
163da372 1736
5c0b4f3d
SC
1737 if (!mem->memory_size)
1738 return kvm_delete_memslot(kvm, mem, &old, as_id);
1739
9e9eb226 1740 new.as_id = as_id;
f481b069 1741 new.id = id;
163da372
SC
1742 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1743 new.npages = mem->memory_size >> PAGE_SHIFT;
6aa8b732 1744 new.flags = mem->flags;
414de7ab 1745 new.userspace_addr = mem->userspace_addr;
6aa8b732 1746
163da372
SC
1747 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1748 return -EINVAL;
1749
5c0b4f3d
SC
1750 if (!old.npages) {
1751 change = KVM_MR_CREATE;
163da372 1752 new.dirty_bitmap = NULL;
5c0b4f3d
SC
1753 } else { /* Modify an existing slot. */
1754 if ((new.userspace_addr != old.userspace_addr) ||
163da372 1755 (new.npages != old.npages) ||
5c0b4f3d 1756 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
71a4c30b 1757 return -EINVAL;
09170a49 1758
163da372 1759 if (new.base_gfn != old.base_gfn)
5c0b4f3d
SC
1760 change = KVM_MR_MOVE;
1761 else if (new.flags != old.flags)
1762 change = KVM_MR_FLAGS_ONLY;
1763 else /* Nothing to change. */
1764 return 0;
163da372 1765
bda44d84 1766 /* Copy dirty_bitmap from the current memslot. */
163da372 1767 new.dirty_bitmap = old.dirty_bitmap;
09170a49 1768 }
6aa8b732 1769
f64c0398 1770 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
0a706bee 1771 /* Check for overlaps */
163da372
SC
1772 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1773 if (tmp->id == id)
0a706bee 1774 continue;
163da372
SC
1775 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1776 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
71a4c30b 1777 return -EEXIST;
0a706bee 1778 }
6aa8b732 1779 }
6aa8b732 1780
414de7ab
SC
1781 /* Allocate/free page dirty bitmap as needed */
1782 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1783 new.dirty_bitmap = NULL;
044c59c4 1784 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
3c9bd400 1785 r = kvm_alloc_dirty_bitmap(&new);
71a4c30b
SC
1786 if (r)
1787 return r;
3c9bd400
JZ
1788
1789 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1790 bitmap_set(new.dirty_bitmap, 0, new.npages);
6aa8b732
AK
1791 }
1792
bda44d84 1793 r = kvm_set_memslot(kvm, mem, &new, as_id, change);
cf47f50b
SC
1794 if (r)
1795 goto out_bitmap;
82ce2c96 1796
5c0b4f3d
SC
1797 if (old.dirty_bitmap && !new.dirty_bitmap)
1798 kvm_destroy_dirty_bitmap(&old);
6aa8b732
AK
1799 return 0;
1800
bd0e96fd
SC
1801out_bitmap:
1802 if (new.dirty_bitmap && !old.dirty_bitmap)
1803 kvm_destroy_dirty_bitmap(&new);
6aa8b732 1804 return r;
210c7c4d 1805}
f78e0e2e
SY
1806EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1807
1808int kvm_set_memory_region(struct kvm *kvm,
09170a49 1809 const struct kvm_userspace_memory_region *mem)
f78e0e2e
SY
1810{
1811 int r;
1812
79fac95e 1813 mutex_lock(&kvm->slots_lock);
47ae31e2 1814 r = __kvm_set_memory_region(kvm, mem);
79fac95e 1815 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
1816 return r;
1817}
210c7c4d
IE
1818EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1819
7940876e
SH
1820static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1821 struct kvm_userspace_memory_region *mem)
210c7c4d 1822{
f481b069 1823 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
e0d62c7f 1824 return -EINVAL;
09170a49 1825
47ae31e2 1826 return kvm_set_memory_region(kvm, mem);
6aa8b732
AK
1827}
1828
0dff0846 1829#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2a49f61d
SC
1830/**
1831 * kvm_get_dirty_log - get a snapshot of dirty pages
1832 * @kvm: pointer to kvm instance
1833 * @log: slot id and address to which we copy the log
1834 * @is_dirty: set to '1' if any dirty pages were found
1835 * @memslot: set to the associated memslot, always valid on success
1836 */
1837int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1838 int *is_dirty, struct kvm_memory_slot **memslot)
6aa8b732 1839{
9f6b8029 1840 struct kvm_memslots *slots;
843574a3 1841 int i, as_id, id;
87bf6e7d 1842 unsigned long n;
6aa8b732
AK
1843 unsigned long any = 0;
1844
b2cc64c4
PX
1845 /* Dirty ring tracking is exclusive to dirty log tracking */
1846 if (kvm->dirty_ring_size)
1847 return -ENXIO;
1848
2a49f61d
SC
1849 *memslot = NULL;
1850 *is_dirty = 0;
1851
f481b069
PB
1852 as_id = log->slot >> 16;
1853 id = (u16)log->slot;
1854 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
843574a3 1855 return -EINVAL;
6aa8b732 1856
f481b069 1857 slots = __kvm_memslots(kvm, as_id);
2a49f61d 1858 *memslot = id_to_memslot(slots, id);
0577d1ab 1859 if (!(*memslot) || !(*memslot)->dirty_bitmap)
843574a3 1860 return -ENOENT;
6aa8b732 1861
2a49f61d
SC
1862 kvm_arch_sync_dirty_log(kvm, *memslot);
1863
1864 n = kvm_dirty_bitmap_bytes(*memslot);
6aa8b732 1865
cd1a4a98 1866 for (i = 0; !any && i < n/sizeof(long); ++i)
2a49f61d 1867 any = (*memslot)->dirty_bitmap[i];
6aa8b732 1868
2a49f61d 1869 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
843574a3 1870 return -EFAULT;
6aa8b732 1871
5bb064dc
ZX
1872 if (any)
1873 *is_dirty = 1;
843574a3 1874 return 0;
6aa8b732 1875}
2ba9f0d8 1876EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
6aa8b732 1877
0dff0846 1878#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 1879/**
b8b00220 1880 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2a31b9db 1881 * and reenable dirty page tracking for the corresponding pages.
ba0513b5
MS
1882 * @kvm: pointer to kvm instance
1883 * @log: slot id and address to which we copy the log
ba0513b5
MS
1884 *
1885 * We need to keep it in mind that VCPU threads can write to the bitmap
1886 * concurrently. So, to avoid losing track of dirty pages we keep the
1887 * following order:
1888 *
1889 * 1. Take a snapshot of the bit and clear it if needed.
1890 * 2. Write protect the corresponding page.
1891 * 3. Copy the snapshot to the userspace.
1892 * 4. Upon return caller flushes TLB's if needed.
1893 *
1894 * Between 2 and 4, the guest may write to the page using the remaining TLB
1895 * entry. This is not a problem because the page is reported dirty using
1896 * the snapshot taken before and step 4 ensures that writes done after
1897 * exiting to userspace will be logged for the next call.
1898 *
1899 */
0dff0846 1900static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
ba0513b5 1901{
9f6b8029 1902 struct kvm_memslots *slots;
ba0513b5 1903 struct kvm_memory_slot *memslot;
58d6db34 1904 int i, as_id, id;
ba0513b5
MS
1905 unsigned long n;
1906 unsigned long *dirty_bitmap;
1907 unsigned long *dirty_bitmap_buffer;
0dff0846 1908 bool flush;
ba0513b5 1909
b2cc64c4
PX
1910 /* Dirty ring tracking is exclusive to dirty log tracking */
1911 if (kvm->dirty_ring_size)
1912 return -ENXIO;
1913
f481b069
PB
1914 as_id = log->slot >> 16;
1915 id = (u16)log->slot;
1916 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
58d6db34 1917 return -EINVAL;
ba0513b5 1918
f481b069
PB
1919 slots = __kvm_memslots(kvm, as_id);
1920 memslot = id_to_memslot(slots, id);
0577d1ab
SC
1921 if (!memslot || !memslot->dirty_bitmap)
1922 return -ENOENT;
ba0513b5
MS
1923
1924 dirty_bitmap = memslot->dirty_bitmap;
ba0513b5 1925
0dff0846
SC
1926 kvm_arch_sync_dirty_log(kvm, memslot);
1927
ba0513b5 1928 n = kvm_dirty_bitmap_bytes(memslot);
0dff0846 1929 flush = false;
2a31b9db
PB
1930 if (kvm->manual_dirty_log_protect) {
1931 /*
1932 * Unlike kvm_get_dirty_log, we always return false in *flush,
1933 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1934 * is some code duplication between this function and
1935 * kvm_get_dirty_log, but hopefully all architecture
1936 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1937 * can be eliminated.
1938 */
1939 dirty_bitmap_buffer = dirty_bitmap;
1940 } else {
1941 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1942 memset(dirty_bitmap_buffer, 0, n);
ba0513b5 1943
531810ca 1944 KVM_MMU_LOCK(kvm);
2a31b9db
PB
1945 for (i = 0; i < n / sizeof(long); i++) {
1946 unsigned long mask;
1947 gfn_t offset;
ba0513b5 1948
2a31b9db
PB
1949 if (!dirty_bitmap[i])
1950 continue;
1951
0dff0846 1952 flush = true;
2a31b9db
PB
1953 mask = xchg(&dirty_bitmap[i], 0);
1954 dirty_bitmap_buffer[i] = mask;
1955
a67794ca
LT
1956 offset = i * BITS_PER_LONG;
1957 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1958 offset, mask);
2a31b9db 1959 }
531810ca 1960 KVM_MMU_UNLOCK(kvm);
2a31b9db
PB
1961 }
1962
0dff0846
SC
1963 if (flush)
1964 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1965
2a31b9db
PB
1966 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1967 return -EFAULT;
1968 return 0;
1969}
0dff0846
SC
1970
1971
1972/**
1973 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1974 * @kvm: kvm instance
1975 * @log: slot id and address to which we copy the log
1976 *
1977 * Steps 1-4 below provide general overview of dirty page logging. See
1978 * kvm_get_dirty_log_protect() function description for additional details.
1979 *
1980 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1981 * always flush the TLB (step 4) even if previous step failed and the dirty
1982 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1983 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1984 * writes will be marked dirty for next log read.
1985 *
1986 * 1. Take a snapshot of the bit and clear it if needed.
1987 * 2. Write protect the corresponding page.
1988 * 3. Copy the snapshot to the userspace.
1989 * 4. Flush TLB's if needed.
1990 */
1991static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1992 struct kvm_dirty_log *log)
1993{
1994 int r;
1995
1996 mutex_lock(&kvm->slots_lock);
1997
1998 r = kvm_get_dirty_log_protect(kvm, log);
1999
2000 mutex_unlock(&kvm->slots_lock);
2001 return r;
2002}
2a31b9db
PB
2003
2004/**
2005 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2006 * and reenable dirty page tracking for the corresponding pages.
2007 * @kvm: pointer to kvm instance
2008 * @log: slot id and address from which to fetch the bitmap of dirty pages
2009 */
0dff0846
SC
2010static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2011 struct kvm_clear_dirty_log *log)
2a31b9db
PB
2012{
2013 struct kvm_memslots *slots;
2014 struct kvm_memory_slot *memslot;
98938aa8 2015 int as_id, id;
2a31b9db 2016 gfn_t offset;
98938aa8 2017 unsigned long i, n;
2a31b9db
PB
2018 unsigned long *dirty_bitmap;
2019 unsigned long *dirty_bitmap_buffer;
0dff0846 2020 bool flush;
2a31b9db 2021
b2cc64c4
PX
2022 /* Dirty ring tracking is exclusive to dirty log tracking */
2023 if (kvm->dirty_ring_size)
2024 return -ENXIO;
2025
2a31b9db
PB
2026 as_id = log->slot >> 16;
2027 id = (u16)log->slot;
2028 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2029 return -EINVAL;
2030
76d58e0f 2031 if (log->first_page & 63)
2a31b9db
PB
2032 return -EINVAL;
2033
2034 slots = __kvm_memslots(kvm, as_id);
2035 memslot = id_to_memslot(slots, id);
0577d1ab
SC
2036 if (!memslot || !memslot->dirty_bitmap)
2037 return -ENOENT;
2a31b9db
PB
2038
2039 dirty_bitmap = memslot->dirty_bitmap;
2a31b9db 2040
4ddc9204 2041 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
98938aa8
TB
2042
2043 if (log->first_page > memslot->npages ||
76d58e0f
PB
2044 log->num_pages > memslot->npages - log->first_page ||
2045 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2046 return -EINVAL;
98938aa8 2047
0dff0846
SC
2048 kvm_arch_sync_dirty_log(kvm, memslot);
2049
2050 flush = false;
2a31b9db
PB
2051 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2052 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2053 return -EFAULT;
ba0513b5 2054
531810ca 2055 KVM_MMU_LOCK(kvm);
53eac7a8
PX
2056 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2057 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2a31b9db
PB
2058 i++, offset += BITS_PER_LONG) {
2059 unsigned long mask = *dirty_bitmap_buffer++;
2060 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2061 if (!mask)
ba0513b5
MS
2062 continue;
2063
2a31b9db 2064 mask &= atomic_long_fetch_andnot(mask, p);
ba0513b5 2065
2a31b9db
PB
2066 /*
2067 * mask contains the bits that really have been cleared. This
2068 * never includes any bits beyond the length of the memslot (if
2069 * the length is not aligned to 64 pages), therefore it is not
2070 * a problem if userspace sets them in log->dirty_bitmap.
2071 */
58d2930f 2072 if (mask) {
0dff0846 2073 flush = true;
58d2930f
TY
2074 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2075 offset, mask);
2076 }
ba0513b5 2077 }
531810ca 2078 KVM_MMU_UNLOCK(kvm);
2a31b9db 2079
0dff0846
SC
2080 if (flush)
2081 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2082
58d6db34 2083 return 0;
ba0513b5 2084}
0dff0846
SC
2085
2086static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2087 struct kvm_clear_dirty_log *log)
2088{
2089 int r;
2090
2091 mutex_lock(&kvm->slots_lock);
2092
2093 r = kvm_clear_dirty_log_protect(kvm, log);
2094
2095 mutex_unlock(&kvm->slots_lock);
2096 return r;
2097}
2098#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
ba0513b5 2099
49c7754c
GN
2100struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2101{
2102 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2103}
a1f4d395 2104EXPORT_SYMBOL_GPL(gfn_to_memslot);
6aa8b732 2105
8e73485c
PB
2106struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2107{
fe22ed82
DM
2108 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2109 struct kvm_memory_slot *slot;
2110 int slot_index;
2111
2112 slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
2113 if (slot)
2114 return slot;
2115
2116 /*
2117 * Fall back to searching all memslots. We purposely use
2118 * search_memslots() instead of __gfn_to_memslot() to avoid
2119 * thrashing the VM-wide last_used_index in kvm_memslots.
2120 */
2121 slot = search_memslots(slots, gfn, &slot_index);
2122 if (slot) {
2123 vcpu->last_used_slot = slot_index;
2124 return slot;
2125 }
2126
2127 return NULL;
8e73485c 2128}
e72436bc 2129EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
8e73485c 2130
33e94154 2131bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
e0d62c7f 2132{
bf3e05bc 2133 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
e0d62c7f 2134
c36b7150 2135 return kvm_is_visible_memslot(memslot);
e0d62c7f
IE
2136}
2137EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2138
995decb6
VK
2139bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2140{
2141 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2142
2143 return kvm_is_visible_memslot(memslot);
2144}
2145EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2146
f9b84e19 2147unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
8f0b1ab6
JR
2148{
2149 struct vm_area_struct *vma;
2150 unsigned long addr, size;
2151
2152 size = PAGE_SIZE;
2153
42cde48b 2154 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
8f0b1ab6
JR
2155 if (kvm_is_error_hva(addr))
2156 return PAGE_SIZE;
2157
d8ed45c5 2158 mmap_read_lock(current->mm);
8f0b1ab6
JR
2159 vma = find_vma(current->mm, addr);
2160 if (!vma)
2161 goto out;
2162
2163 size = vma_kernel_pagesize(vma);
2164
2165out:
d8ed45c5 2166 mmap_read_unlock(current->mm);
8f0b1ab6
JR
2167
2168 return size;
2169}
2170
4d8b81ab
XG
2171static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2172{
2173 return slot->flags & KVM_MEM_READONLY;
2174}
2175
4d8b81ab
XG
2176static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2177 gfn_t *nr_pages, bool write)
539cb660 2178{
bc6678a3 2179 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
ca3a490c 2180 return KVM_HVA_ERR_BAD;
48987781 2181
4d8b81ab
XG
2182 if (memslot_is_readonly(slot) && write)
2183 return KVM_HVA_ERR_RO_BAD;
48987781
XG
2184
2185 if (nr_pages)
2186 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2187
4d8b81ab 2188 return __gfn_to_hva_memslot(slot, gfn);
539cb660 2189}
48987781 2190
4d8b81ab
XG
2191static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2192 gfn_t *nr_pages)
2193{
2194 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
539cb660 2195}
48987781 2196
4d8b81ab 2197unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
7940876e 2198 gfn_t gfn)
4d8b81ab
XG
2199{
2200 return gfn_to_hva_many(slot, gfn, NULL);
2201}
2202EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2203
48987781
XG
2204unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2205{
49c7754c 2206 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
48987781 2207}
0d150298 2208EXPORT_SYMBOL_GPL(gfn_to_hva);
539cb660 2209
8e73485c
PB
2210unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2211{
2212 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2213}
2214EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2215
86ab8cff 2216/*
970c0d4b
WY
2217 * Return the hva of a @gfn and the R/W attribute if possible.
2218 *
2219 * @slot: the kvm_memory_slot which contains @gfn
2220 * @gfn: the gfn to be translated
2221 * @writable: used to return the read/write attribute of the @slot if the hva
2222 * is valid and @writable is not NULL
86ab8cff 2223 */
64d83126
CD
2224unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2225 gfn_t gfn, bool *writable)
86ab8cff 2226{
a2ac07fe
GN
2227 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2228
2229 if (!kvm_is_error_hva(hva) && writable)
ba6a3541
PB
2230 *writable = !memslot_is_readonly(slot);
2231
a2ac07fe 2232 return hva;
86ab8cff
XG
2233}
2234
64d83126
CD
2235unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2236{
2237 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2238
2239 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2240}
2241
8e73485c
PB
2242unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2243{
2244 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2245
2246 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2247}
2248
fafc3dba
HY
2249static inline int check_user_page_hwpoison(unsigned long addr)
2250{
0d731759 2251 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
fafc3dba 2252
0d731759 2253 rc = get_user_pages(addr, 1, flags, NULL, NULL);
fafc3dba
HY
2254 return rc == -EHWPOISON;
2255}
2256
2fc84311 2257/*
b9b33da2
PB
2258 * The fast path to get the writable pfn which will be stored in @pfn,
2259 * true indicates success, otherwise false is returned. It's also the
311497e0 2260 * only part that runs if we can in atomic context.
2fc84311 2261 */
b9b33da2
PB
2262static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2263 bool *writable, kvm_pfn_t *pfn)
954bbbc2 2264{
8d4e1288 2265 struct page *page[1];
954bbbc2 2266
12ce13fe
XG
2267 /*
2268 * Fast pin a writable pfn only if it is a write fault request
2269 * or the caller allows to map a writable pfn for a read fault
2270 * request.
2271 */
2272 if (!(write_fault || writable))
2273 return false;
612819c3 2274
dadbb612 2275 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2fc84311 2276 *pfn = page_to_pfn(page[0]);
612819c3 2277
2fc84311
XG
2278 if (writable)
2279 *writable = true;
2280 return true;
2281 }
af585b92 2282
2fc84311
XG
2283 return false;
2284}
612819c3 2285
2fc84311
XG
2286/*
2287 * The slow path to get the pfn of the specified host virtual address,
2288 * 1 indicates success, -errno is returned if error is detected.
2289 */
2290static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
ba049e93 2291 bool *writable, kvm_pfn_t *pfn)
2fc84311 2292{
ce53053c
AV
2293 unsigned int flags = FOLL_HWPOISON;
2294 struct page *page;
2fc84311 2295 int npages = 0;
612819c3 2296
2fc84311
XG
2297 might_sleep();
2298
2299 if (writable)
2300 *writable = write_fault;
2301
ce53053c
AV
2302 if (write_fault)
2303 flags |= FOLL_WRITE;
2304 if (async)
2305 flags |= FOLL_NOWAIT;
d4944b0e 2306
ce53053c 2307 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2fc84311
XG
2308 if (npages != 1)
2309 return npages;
2310
2311 /* map read fault as writable if possible */
12ce13fe 2312 if (unlikely(!write_fault) && writable) {
ce53053c 2313 struct page *wpage;
2fc84311 2314
dadbb612 2315 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2fc84311 2316 *writable = true;
ce53053c
AV
2317 put_page(page);
2318 page = wpage;
612819c3 2319 }
887c08ac 2320 }
ce53053c 2321 *pfn = page_to_pfn(page);
2fc84311
XG
2322 return npages;
2323}
539cb660 2324
4d8b81ab
XG
2325static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2326{
2327 if (unlikely(!(vma->vm_flags & VM_READ)))
2328 return false;
2e2e3738 2329
4d8b81ab
XG
2330 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2331 return false;
887c08ac 2332
4d8b81ab
XG
2333 return true;
2334}
bf998156 2335
f8be156b
NP
2336static int kvm_try_get_pfn(kvm_pfn_t pfn)
2337{
2338 if (kvm_is_reserved_pfn(pfn))
2339 return 1;
2340 return get_page_unless_zero(pfn_to_page(pfn));
2341}
2342
92176a8e
PB
2343static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2344 unsigned long addr, bool *async,
a340b3e2
KA
2345 bool write_fault, bool *writable,
2346 kvm_pfn_t *p_pfn)
92176a8e 2347{
a9545779 2348 kvm_pfn_t pfn;
bd2fae8d
PB
2349 pte_t *ptep;
2350 spinlock_t *ptl;
add6a0cd
PB
2351 int r;
2352
9fd6dad1 2353 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2354 if (r) {
2355 /*
2356 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2357 * not call the fault handler, so do it here.
2358 */
2359 bool unlocked = false;
64019a2e 2360 r = fixup_user_fault(current->mm, addr,
add6a0cd
PB
2361 (write_fault ? FAULT_FLAG_WRITE : 0),
2362 &unlocked);
a8387d0b
PB
2363 if (unlocked)
2364 return -EAGAIN;
add6a0cd
PB
2365 if (r)
2366 return r;
2367
9fd6dad1 2368 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
add6a0cd
PB
2369 if (r)
2370 return r;
bd2fae8d 2371 }
add6a0cd 2372
bd2fae8d
PB
2373 if (write_fault && !pte_write(*ptep)) {
2374 pfn = KVM_PFN_ERR_RO_FAULT;
2375 goto out;
add6a0cd
PB
2376 }
2377
a340b3e2 2378 if (writable)
bd2fae8d
PB
2379 *writable = pte_write(*ptep);
2380 pfn = pte_pfn(*ptep);
add6a0cd
PB
2381
2382 /*
2383 * Get a reference here because callers of *hva_to_pfn* and
2384 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2385 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
36c3ce6c 2386 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
add6a0cd
PB
2387 * simply do nothing for reserved pfns.
2388 *
2389 * Whoever called remap_pfn_range is also going to call e.g.
2390 * unmap_mapping_range before the underlying pages are freed,
2391 * causing a call to our MMU notifier.
f8be156b
NP
2392 *
2393 * Certain IO or PFNMAP mappings can be backed with valid
2394 * struct pages, but be allocated without refcounting e.g.,
2395 * tail pages of non-compound higher order allocations, which
2396 * would then underflow the refcount when the caller does the
2397 * required put_page. Don't allow those pages here.
add6a0cd 2398 */
f8be156b
NP
2399 if (!kvm_try_get_pfn(pfn))
2400 r = -EFAULT;
add6a0cd 2401
bd2fae8d
PB
2402out:
2403 pte_unmap_unlock(ptep, ptl);
add6a0cd 2404 *p_pfn = pfn;
f8be156b
NP
2405
2406 return r;
92176a8e
PB
2407}
2408
12ce13fe
XG
2409/*
2410 * Pin guest page in memory and return its pfn.
2411 * @addr: host virtual address which maps memory to the guest
2412 * @atomic: whether this function can sleep
2413 * @async: whether this function need to wait IO complete if the
2414 * host page is not in the memory
2415 * @write_fault: whether we should get a writable host page
2416 * @writable: whether it allows to map a writable host page for !@write_fault
2417 *
2418 * The function will map a writable host page for these two cases:
2419 * 1): @write_fault = true
2420 * 2): @write_fault = false && @writable, @writable will tell the caller
2421 * whether the mapping is writable.
2422 */
ba049e93 2423static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2fc84311
XG
2424 bool write_fault, bool *writable)
2425{
2426 struct vm_area_struct *vma;
ba049e93 2427 kvm_pfn_t pfn = 0;
92176a8e 2428 int npages, r;
2e2e3738 2429
2fc84311
XG
2430 /* we can do it either atomically or asynchronously, not both */
2431 BUG_ON(atomic && async);
8d4e1288 2432
b9b33da2 2433 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2fc84311
XG
2434 return pfn;
2435
2436 if (atomic)
2437 return KVM_PFN_ERR_FAULT;
2438
2439 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2440 if (npages == 1)
2441 return pfn;
8d4e1288 2442
d8ed45c5 2443 mmap_read_lock(current->mm);
2fc84311
XG
2444 if (npages == -EHWPOISON ||
2445 (!async && check_user_page_hwpoison(addr))) {
2446 pfn = KVM_PFN_ERR_HWPOISON;
2447 goto exit;
2448 }
2449
a8387d0b 2450retry:
fc98c03b 2451 vma = vma_lookup(current->mm, addr);
2fc84311
XG
2452
2453 if (vma == NULL)
2454 pfn = KVM_PFN_ERR_FAULT;
92176a8e 2455 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
a340b3e2 2456 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
a8387d0b
PB
2457 if (r == -EAGAIN)
2458 goto retry;
92176a8e
PB
2459 if (r < 0)
2460 pfn = KVM_PFN_ERR_FAULT;
2fc84311 2461 } else {
4d8b81ab 2462 if (async && vma_is_valid(vma, write_fault))
2fc84311
XG
2463 *async = true;
2464 pfn = KVM_PFN_ERR_FAULT;
2465 }
2466exit:
d8ed45c5 2467 mmap_read_unlock(current->mm);
2e2e3738 2468 return pfn;
35149e21
AL
2469}
2470
ba049e93
DW
2471kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2472 bool atomic, bool *async, bool write_fault,
4a42d848 2473 bool *writable, hva_t *hva)
887c08ac 2474{
4d8b81ab
XG
2475 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2476
4a42d848
DS
2477 if (hva)
2478 *hva = addr;
2479
b2740d35
PB
2480 if (addr == KVM_HVA_ERR_RO_BAD) {
2481 if (writable)
2482 *writable = false;
4d8b81ab 2483 return KVM_PFN_ERR_RO_FAULT;
b2740d35 2484 }
4d8b81ab 2485
b2740d35
PB
2486 if (kvm_is_error_hva(addr)) {
2487 if (writable)
2488 *writable = false;
81c52c56 2489 return KVM_PFN_NOSLOT;
b2740d35 2490 }
4d8b81ab
XG
2491
2492 /* Do not map writable pfn in the readonly memslot. */
2493 if (writable && memslot_is_readonly(slot)) {
2494 *writable = false;
2495 writable = NULL;
2496 }
2497
2498 return hva_to_pfn(addr, atomic, async, write_fault,
2499 writable);
887c08ac 2500}
3520469d 2501EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
887c08ac 2502
ba049e93 2503kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3
MT
2504 bool *writable)
2505{
e37afc6e 2506 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
4a42d848 2507 write_fault, writable, NULL);
612819c3
MT
2508}
2509EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2510
ba049e93 2511kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 2512{
4a42d848 2513 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
506f0d6f 2514}
e37afc6e 2515EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
506f0d6f 2516
ba049e93 2517kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
506f0d6f 2518{
4a42d848 2519 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
506f0d6f 2520}
037d92dc 2521EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
506f0d6f 2522
ba049e93 2523kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
2524{
2525 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2526}
2527EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2528
ba049e93 2529kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
e37afc6e
PB
2530{
2531 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2532}
2533EXPORT_SYMBOL_GPL(gfn_to_pfn);
2534
ba049e93 2535kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8e73485c
PB
2536{
2537 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2538}
2539EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2540
d9ef13c2
PB
2541int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2542 struct page **pages, int nr_pages)
48987781
XG
2543{
2544 unsigned long addr;
076b925d 2545 gfn_t entry = 0;
48987781 2546
d9ef13c2 2547 addr = gfn_to_hva_many(slot, gfn, &entry);
48987781
XG
2548 if (kvm_is_error_hva(addr))
2549 return -1;
2550
2551 if (entry < nr_pages)
2552 return 0;
2553
dadbb612 2554 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
48987781
XG
2555}
2556EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2557
ba049e93 2558static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
a2766325 2559{
81c52c56 2560 if (is_error_noslot_pfn(pfn))
cb9aaa30 2561 return KVM_ERR_PTR_BAD_PAGE;
a2766325 2562
bf4bea8e 2563 if (kvm_is_reserved_pfn(pfn)) {
cb9aaa30 2564 WARN_ON(1);
6cede2e6 2565 return KVM_ERR_PTR_BAD_PAGE;
cb9aaa30 2566 }
a2766325
XG
2567
2568 return pfn_to_page(pfn);
2569}
2570
35149e21
AL
2571struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2572{
ba049e93 2573 kvm_pfn_t pfn;
2e2e3738
AL
2574
2575 pfn = gfn_to_pfn(kvm, gfn);
2e2e3738 2576
a2766325 2577 return kvm_pfn_to_page(pfn);
954bbbc2
AK
2578}
2579EXPORT_SYMBOL_GPL(gfn_to_page);
2580
357a18ad 2581void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
91724814
BO
2582{
2583 if (pfn == 0)
2584 return;
2585
91724814
BO
2586 if (dirty)
2587 kvm_release_pfn_dirty(pfn);
2588 else
2589 kvm_release_pfn_clean(pfn);
2590}
2591
357a18ad 2592int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
e45adf66
KA
2593{
2594 kvm_pfn_t pfn;
2595 void *hva = NULL;
2596 struct page *page = KVM_UNMAPPED_PAGE;
2597
2598 if (!map)
2599 return -EINVAL;
2600
357a18ad 2601 pfn = gfn_to_pfn(vcpu->kvm, gfn);
e45adf66
KA
2602 if (is_error_noslot_pfn(pfn))
2603 return -EINVAL;
2604
2605 if (pfn_valid(pfn)) {
2606 page = pfn_to_page(pfn);
357a18ad 2607 hva = kmap(page);
d30b214d 2608#ifdef CONFIG_HAS_IOMEM
91724814 2609 } else {
357a18ad 2610 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
d30b214d 2611#endif
e45adf66
KA
2612 }
2613
2614 if (!hva)
2615 return -EFAULT;
2616
2617 map->page = page;
2618 map->hva = hva;
2619 map->pfn = pfn;
2620 map->gfn = gfn;
2621
2622 return 0;
2623}
e45adf66
KA
2624EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2625
357a18ad 2626void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
e45adf66
KA
2627{
2628 if (!map)
2629 return;
2630
2631 if (!map->hva)
2632 return;
2633
357a18ad
DW
2634 if (map->page != KVM_UNMAPPED_PAGE)
2635 kunmap(map->page);
eb1f2f38 2636#ifdef CONFIG_HAS_IOMEM
91724814 2637 else
357a18ad 2638 memunmap(map->hva);
eb1f2f38 2639#endif
e45adf66 2640
91724814 2641 if (dirty)
357a18ad 2642 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
91724814 2643
357a18ad 2644 kvm_release_pfn(map->pfn, dirty);
e45adf66
KA
2645
2646 map->hva = NULL;
2647 map->page = NULL;
2648}
2649EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2650
8e73485c
PB
2651struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2652{
ba049e93 2653 kvm_pfn_t pfn;
8e73485c
PB
2654
2655 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2656
2657 return kvm_pfn_to_page(pfn);
2658}
2659EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2660
b4231d61
IE
2661void kvm_release_page_clean(struct page *page)
2662{
32cad84f
XG
2663 WARN_ON(is_error_page(page));
2664
35149e21 2665 kvm_release_pfn_clean(page_to_pfn(page));
b4231d61
IE
2666}
2667EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2668
ba049e93 2669void kvm_release_pfn_clean(kvm_pfn_t pfn)
35149e21 2670{
bf4bea8e 2671 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2e2e3738 2672 put_page(pfn_to_page(pfn));
35149e21
AL
2673}
2674EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2675
b4231d61 2676void kvm_release_page_dirty(struct page *page)
8a7ae055 2677{
a2766325
XG
2678 WARN_ON(is_error_page(page));
2679
35149e21
AL
2680 kvm_release_pfn_dirty(page_to_pfn(page));
2681}
2682EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2683
f7a6509f 2684void kvm_release_pfn_dirty(kvm_pfn_t pfn)
35149e21
AL
2685{
2686 kvm_set_pfn_dirty(pfn);
2687 kvm_release_pfn_clean(pfn);
2688}
f7a6509f 2689EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
35149e21 2690
ba049e93 2691void kvm_set_pfn_dirty(kvm_pfn_t pfn)
35149e21 2692{
d29c03a5
ML
2693 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2694 SetPageDirty(pfn_to_page(pfn));
8a7ae055 2695}
35149e21
AL
2696EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2697
ba049e93 2698void kvm_set_pfn_accessed(kvm_pfn_t pfn)
35149e21 2699{
a78986aa 2700 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2e2e3738 2701 mark_page_accessed(pfn_to_page(pfn));
35149e21
AL
2702}
2703EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2704
195aefde
IE
2705static int next_segment(unsigned long len, int offset)
2706{
2707 if (len > PAGE_SIZE - offset)
2708 return PAGE_SIZE - offset;
2709 else
2710 return len;
2711}
2712
8e73485c
PB
2713static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2714 void *data, int offset, int len)
195aefde 2715{
e0506bcb
IE
2716 int r;
2717 unsigned long addr;
195aefde 2718
8e73485c 2719 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
e0506bcb
IE
2720 if (kvm_is_error_hva(addr))
2721 return -EFAULT;
3180a7fc 2722 r = __copy_from_user(data, (void __user *)addr + offset, len);
e0506bcb 2723 if (r)
195aefde 2724 return -EFAULT;
195aefde
IE
2725 return 0;
2726}
8e73485c
PB
2727
2728int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2729 int len)
2730{
2731 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2732
2733 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2734}
195aefde
IE
2735EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2736
8e73485c
PB
2737int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2738 int offset, int len)
2739{
2740 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2741
2742 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2743}
2744EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2745
195aefde
IE
2746int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2747{
2748 gfn_t gfn = gpa >> PAGE_SHIFT;
2749 int seg;
2750 int offset = offset_in_page(gpa);
2751 int ret;
2752
2753 while ((seg = next_segment(len, offset)) != 0) {
2754 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2755 if (ret < 0)
2756 return ret;
2757 offset = 0;
2758 len -= seg;
2759 data += seg;
2760 ++gfn;
2761 }
2762 return 0;
2763}
2764EXPORT_SYMBOL_GPL(kvm_read_guest);
2765
8e73485c 2766int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
7ec54588 2767{
7ec54588 2768 gfn_t gfn = gpa >> PAGE_SHIFT;
8e73485c 2769 int seg;
7ec54588 2770 int offset = offset_in_page(gpa);
8e73485c
PB
2771 int ret;
2772
2773 while ((seg = next_segment(len, offset)) != 0) {
2774 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2775 if (ret < 0)
2776 return ret;
2777 offset = 0;
2778 len -= seg;
2779 data += seg;
2780 ++gfn;
2781 }
2782 return 0;
2783}
2784EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
7ec54588 2785
8e73485c
PB
2786static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2787 void *data, int offset, unsigned long len)
2788{
2789 int r;
2790 unsigned long addr;
2791
2792 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
7ec54588
MT
2793 if (kvm_is_error_hva(addr))
2794 return -EFAULT;
0aac03f0 2795 pagefault_disable();
3180a7fc 2796 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
0aac03f0 2797 pagefault_enable();
7ec54588
MT
2798 if (r)
2799 return -EFAULT;
2800 return 0;
2801}
7ec54588 2802
8e73485c
PB
2803int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2804 void *data, unsigned long len)
2805{
2806 gfn_t gfn = gpa >> PAGE_SHIFT;
2807 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2808 int offset = offset_in_page(gpa);
2809
2810 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2811}
2812EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2813
28bd726a
PX
2814static int __kvm_write_guest_page(struct kvm *kvm,
2815 struct kvm_memory_slot *memslot, gfn_t gfn,
8e73485c 2816 const void *data, int offset, int len)
195aefde 2817{
e0506bcb
IE
2818 int r;
2819 unsigned long addr;
195aefde 2820
251eb841 2821 addr = gfn_to_hva_memslot(memslot, gfn);
e0506bcb
IE
2822 if (kvm_is_error_hva(addr))
2823 return -EFAULT;
8b0cedff 2824 r = __copy_to_user((void __user *)addr + offset, data, len);
e0506bcb 2825 if (r)
195aefde 2826 return -EFAULT;
28bd726a 2827 mark_page_dirty_in_slot(kvm, memslot, gfn);
195aefde
IE
2828 return 0;
2829}
8e73485c
PB
2830
2831int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2832 const void *data, int offset, int len)
2833{
2834 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2835
28bd726a 2836 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
8e73485c 2837}
195aefde
IE
2838EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2839
8e73485c
PB
2840int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2841 const void *data, int offset, int len)
2842{
2843 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2844
28bd726a 2845 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
8e73485c
PB
2846}
2847EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2848
195aefde
IE
2849int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2850 unsigned long len)
2851{
2852 gfn_t gfn = gpa >> PAGE_SHIFT;
2853 int seg;
2854 int offset = offset_in_page(gpa);
2855 int ret;
2856
2857 while ((seg = next_segment(len, offset)) != 0) {
2858 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2859 if (ret < 0)
2860 return ret;
2861 offset = 0;
2862 len -= seg;
2863 data += seg;
2864 ++gfn;
2865 }
2866 return 0;
2867}
ff651cb6 2868EXPORT_SYMBOL_GPL(kvm_write_guest);
195aefde 2869
8e73485c
PB
2870int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2871 unsigned long len)
2872{
2873 gfn_t gfn = gpa >> PAGE_SHIFT;
2874 int seg;
2875 int offset = offset_in_page(gpa);
2876 int ret;
2877
2878 while ((seg = next_segment(len, offset)) != 0) {
2879 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2880 if (ret < 0)
2881 return ret;
2882 offset = 0;
2883 len -= seg;
2884 data += seg;
2885 ++gfn;
2886 }
2887 return 0;
2888}
2889EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2890
5a2d4365
PB
2891static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2892 struct gfn_to_hva_cache *ghc,
2893 gpa_t gpa, unsigned long len)
49c7754c 2894{
49c7754c 2895 int offset = offset_in_page(gpa);
8f964525
AH
2896 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2897 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2898 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2899 gfn_t nr_pages_avail;
49c7754c 2900
6ad1e29f 2901 /* Update ghc->generation before performing any error checks. */
49c7754c 2902 ghc->generation = slots->generation;
6ad1e29f
SC
2903
2904 if (start_gfn > end_gfn) {
2905 ghc->hva = KVM_HVA_ERR_BAD;
2906 return -EINVAL;
2907 }
f1b9dd5e
JM
2908
2909 /*
2910 * If the requested region crosses two memslots, we still
2911 * verify that the entire region is valid here.
2912 */
6ad1e29f 2913 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
f1b9dd5e
JM
2914 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2915 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2916 &nr_pages_avail);
2917 if (kvm_is_error_hva(ghc->hva))
6ad1e29f 2918 return -EFAULT;
f1b9dd5e
JM
2919 }
2920
2921 /* Use the slow path for cross page reads and writes. */
6ad1e29f 2922 if (nr_pages_needed == 1)
49c7754c 2923 ghc->hva += offset;
f1b9dd5e 2924 else
8f964525 2925 ghc->memslot = NULL;
f1b9dd5e 2926
6ad1e29f
SC
2927 ghc->gpa = gpa;
2928 ghc->len = len;
2929 return 0;
49c7754c 2930}
5a2d4365 2931
4e335d9e 2932int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
5a2d4365
PB
2933 gpa_t gpa, unsigned long len)
2934{
4e335d9e 2935 struct kvm_memslots *slots = kvm_memslots(kvm);
5a2d4365
PB
2936 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2937}
4e335d9e 2938EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
49c7754c 2939
4e335d9e 2940int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
2941 void *data, unsigned int offset,
2942 unsigned long len)
49c7754c 2943{
4e335d9e 2944 struct kvm_memslots *slots = kvm_memslots(kvm);
49c7754c 2945 int r;
4ec6e863 2946 gpa_t gpa = ghc->gpa + offset;
49c7754c 2947
5f25e71e
PB
2948 if (WARN_ON_ONCE(len + offset > ghc->len))
2949 return -EINVAL;
8f964525 2950
dc9ce71e
SC
2951 if (slots->generation != ghc->generation) {
2952 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2953 return -EFAULT;
2954 }
8f964525 2955
49c7754c
GN
2956 if (kvm_is_error_hva(ghc->hva))
2957 return -EFAULT;
2958
fcfbc617
SC
2959 if (unlikely(!ghc->memslot))
2960 return kvm_write_guest(kvm, gpa, data, len);
2961
4ec6e863 2962 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
49c7754c
GN
2963 if (r)
2964 return -EFAULT;
28bd726a 2965 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
49c7754c
GN
2966
2967 return 0;
2968}
4e335d9e 2969EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
4ec6e863 2970
4e335d9e
PB
2971int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2972 void *data, unsigned long len)
4ec6e863 2973{
4e335d9e 2974 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
4ec6e863 2975}
4e335d9e 2976EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
49c7754c 2977
0958f0ce
VK
2978int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2979 void *data, unsigned int offset,
2980 unsigned long len)
e03b644f 2981{
4e335d9e 2982 struct kvm_memslots *slots = kvm_memslots(kvm);
e03b644f 2983 int r;
0958f0ce 2984 gpa_t gpa = ghc->gpa + offset;
e03b644f 2985
5f25e71e
PB
2986 if (WARN_ON_ONCE(len + offset > ghc->len))
2987 return -EINVAL;
8f964525 2988
dc9ce71e
SC
2989 if (slots->generation != ghc->generation) {
2990 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2991 return -EFAULT;
2992 }
8f964525 2993
e03b644f
GN
2994 if (kvm_is_error_hva(ghc->hva))
2995 return -EFAULT;
2996
fcfbc617 2997 if (unlikely(!ghc->memslot))
0958f0ce 2998 return kvm_read_guest(kvm, gpa, data, len);
fcfbc617 2999
0958f0ce 3000 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
e03b644f
GN
3001 if (r)
3002 return -EFAULT;
3003
3004 return 0;
3005}
0958f0ce
VK
3006EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3007
3008int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3009 void *data, unsigned long len)
3010{
3011 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3012}
4e335d9e 3013EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
e03b644f 3014
195aefde
IE
3015int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3016{
2f541442 3017 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
195aefde
IE
3018 gfn_t gfn = gpa >> PAGE_SHIFT;
3019 int seg;
3020 int offset = offset_in_page(gpa);
3021 int ret;
3022
bfda0e84 3023 while ((seg = next_segment(len, offset)) != 0) {
2f541442 3024 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
195aefde
IE
3025 if (ret < 0)
3026 return ret;
3027 offset = 0;
3028 len -= seg;
3029 ++gfn;
3030 }
3031 return 0;
3032}
3033EXPORT_SYMBOL_GPL(kvm_clear_guest);
3034
28bd726a
PX
3035void mark_page_dirty_in_slot(struct kvm *kvm,
3036 struct kvm_memory_slot *memslot,
3037 gfn_t gfn)
6aa8b732 3038{
044c59c4 3039 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
7e9d619d 3040 unsigned long rel_gfn = gfn - memslot->base_gfn;
fb04a1ed 3041 u32 slot = (memslot->as_id << 16) | memslot->id;
6aa8b732 3042
fb04a1ed
PX
3043 if (kvm->dirty_ring_size)
3044 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3045 slot, rel_gfn);
3046 else
3047 set_bit_le(rel_gfn, memslot->dirty_bitmap);
6aa8b732
AK
3048 }
3049}
a6a0b05d 3050EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
6aa8b732 3051
49c7754c
GN
3052void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3053{
3054 struct kvm_memory_slot *memslot;
3055
3056 memslot = gfn_to_memslot(kvm, gfn);
28bd726a 3057 mark_page_dirty_in_slot(kvm, memslot, gfn);
49c7754c 3058}
2ba9f0d8 3059EXPORT_SYMBOL_GPL(mark_page_dirty);
49c7754c 3060
8e73485c
PB
3061void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3062{
3063 struct kvm_memory_slot *memslot;
3064
3065 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
28bd726a 3066 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
8e73485c
PB
3067}
3068EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3069
20b7035c
JS
3070void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3071{
3072 if (!vcpu->sigset_active)
3073 return;
3074
3075 /*
3076 * This does a lockless modification of ->real_blocked, which is fine
3077 * because, only current can change ->real_blocked and all readers of
3078 * ->real_blocked don't care as long ->real_blocked is always a subset
3079 * of ->blocked.
3080 */
3081 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3082}
3083
3084void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3085{
3086 if (!vcpu->sigset_active)
3087 return;
3088
3089 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3090 sigemptyset(&current->real_blocked);
3091}
3092
aca6ff29
WL
3093static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3094{
dee339b5 3095 unsigned int old, val, grow, grow_start;
aca6ff29 3096
2cbd7824 3097 old = val = vcpu->halt_poll_ns;
dee339b5 3098 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 3099 grow = READ_ONCE(halt_poll_ns_grow);
7fa08e71
NW
3100 if (!grow)
3101 goto out;
3102
dee339b5
NW
3103 val *= grow;
3104 if (val < grow_start)
3105 val = grow_start;
aca6ff29 3106
258785ef
DM
3107 if (val > vcpu->kvm->max_halt_poll_ns)
3108 val = vcpu->kvm->max_halt_poll_ns;
313f636d 3109
aca6ff29 3110 vcpu->halt_poll_ns = val;
7fa08e71 3111out:
2cbd7824 3112 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
aca6ff29
WL
3113}
3114
3115static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3116{
ae232ea4 3117 unsigned int old, val, shrink, grow_start;
aca6ff29 3118
2cbd7824 3119 old = val = vcpu->halt_poll_ns;
6b6de68c 3120 shrink = READ_ONCE(halt_poll_ns_shrink);
ae232ea4 3121 grow_start = READ_ONCE(halt_poll_ns_grow_start);
6b6de68c 3122 if (shrink == 0)
aca6ff29
WL
3123 val = 0;
3124 else
6b6de68c 3125 val /= shrink;
aca6ff29 3126
ae232ea4
SS
3127 if (val < grow_start)
3128 val = 0;
3129
aca6ff29 3130 vcpu->halt_poll_ns = val;
2cbd7824 3131 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
aca6ff29
WL
3132}
3133
f7819512
PB
3134static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3135{
50c28f21
JS
3136 int ret = -EINTR;
3137 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3138
f7819512
PB
3139 if (kvm_arch_vcpu_runnable(vcpu)) {
3140 kvm_make_request(KVM_REQ_UNHALT, vcpu);
50c28f21 3141 goto out;
f7819512
PB
3142 }
3143 if (kvm_cpu_has_pending_timer(vcpu))
50c28f21 3144 goto out;
f7819512 3145 if (signal_pending(current))
50c28f21 3146 goto out;
084071d5
MT
3147 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3148 goto out;
f7819512 3149
50c28f21
JS
3150 ret = 0;
3151out:
3152 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3153 return ret;
f7819512
PB
3154}
3155
cb953129
DM
3156static inline void
3157update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3158{
3159 if (waited)
0193cc90 3160 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
cb953129 3161 else
0193cc90 3162 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
cb953129
DM
3163}
3164
b6958ce4
ED
3165/*
3166 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3167 */
8776e519 3168void kvm_vcpu_block(struct kvm_vcpu *vcpu)
d3bef15f 3169{
cb953129 3170 ktime_t start, cur, poll_end;
f7819512 3171 bool waited = false;
aca6ff29 3172 u64 block_ns;
f7819512 3173
07ab0f8d
MZ
3174 kvm_arch_vcpu_blocking(vcpu);
3175
cb953129 3176 start = cur = poll_end = ktime_get();
cdd6ad3a 3177 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
19020f8a 3178 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
f95ef0cd 3179
0193cc90 3180 ++vcpu->stat.generic.halt_attempted_poll;
f7819512
PB
3181 do {
3182 /*
3183 * This sets KVM_REQ_UNHALT if an interrupt
3184 * arrives.
3185 */
3186 if (kvm_vcpu_check_block(vcpu) < 0) {
0193cc90 3187 ++vcpu->stat.generic.halt_successful_poll;
3491caf2 3188 if (!vcpu_valid_wakeup(vcpu))
0193cc90 3189 ++vcpu->stat.generic.halt_poll_invalid;
8ccba534
JZ
3190
3191 KVM_STATS_LOG_HIST_UPDATE(
3192 vcpu->stat.generic.halt_poll_success_hist,
3193 ktime_to_ns(ktime_get()) -
3194 ktime_to_ns(start));
f7819512
PB
3195 goto out;
3196 }
74775654 3197 cpu_relax();
cb953129 3198 poll_end = cur = ktime_get();
6bd5b743 3199 } while (kvm_vcpu_can_poll(cur, stop));
8ccba534
JZ
3200
3201 KVM_STATS_LOG_HIST_UPDATE(
3202 vcpu->stat.generic.halt_poll_fail_hist,
3203 ktime_to_ns(ktime_get()) - ktime_to_ns(start));
f7819512 3204 }
e5c239cf 3205
8ccba534 3206
da4ad88c 3207 prepare_to_rcuwait(&vcpu->wait);
e5c239cf 3208 for (;;) {
da4ad88c 3209 set_current_state(TASK_INTERRUPTIBLE);
e5c239cf 3210
f7819512 3211 if (kvm_vcpu_check_block(vcpu) < 0)
e5c239cf
MT
3212 break;
3213
f7819512 3214 waited = true;
b6958ce4 3215 schedule();
b6958ce4 3216 }
da4ad88c 3217 finish_rcuwait(&vcpu->wait);
f7819512 3218 cur = ktime_get();
87bcc5fa
JZ
3219 if (waited) {
3220 vcpu->stat.generic.halt_wait_ns +=
3221 ktime_to_ns(cur) - ktime_to_ns(poll_end);
8ccba534
JZ
3222 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3223 ktime_to_ns(cur) - ktime_to_ns(poll_end));
87bcc5fa 3224 }
f7819512 3225out:
07ab0f8d 3226 kvm_arch_vcpu_unblocking(vcpu);
aca6ff29
WL
3227 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3228
cb953129
DM
3229 update_halt_poll_stats(
3230 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3231
44551b2f
WL
3232 if (!kvm_arch_no_poll(vcpu)) {
3233 if (!vcpu_valid_wakeup(vcpu)) {
aca6ff29 3234 shrink_halt_poll_ns(vcpu);
acd05785 3235 } else if (vcpu->kvm->max_halt_poll_ns) {
44551b2f
WL
3236 if (block_ns <= vcpu->halt_poll_ns)
3237 ;
3238 /* we had a long block, shrink polling */
acd05785
DM
3239 else if (vcpu->halt_poll_ns &&
3240 block_ns > vcpu->kvm->max_halt_poll_ns)
44551b2f
WL
3241 shrink_halt_poll_ns(vcpu);
3242 /* we had a short halt and our poll time is too small */
acd05785
DM
3243 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3244 block_ns < vcpu->kvm->max_halt_poll_ns)
44551b2f
WL
3245 grow_halt_poll_ns(vcpu);
3246 } else {
3247 vcpu->halt_poll_ns = 0;
3248 }
3249 }
aca6ff29 3250
3491caf2
CB
3251 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3252 kvm_arch_vcpu_block_finish(vcpu);
b6958ce4 3253}
2ba9f0d8 3254EXPORT_SYMBOL_GPL(kvm_vcpu_block);
b6958ce4 3255
178f02ff 3256bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
b6d33834 3257{
da4ad88c 3258 struct rcuwait *waitp;
b6d33834 3259
da4ad88c
DB
3260 waitp = kvm_arch_vcpu_get_wait(vcpu);
3261 if (rcuwait_wake_up(waitp)) {
d73eb57b 3262 WRITE_ONCE(vcpu->ready, true);
0193cc90 3263 ++vcpu->stat.generic.halt_wakeup;
178f02ff 3264 return true;
b6d33834
CD
3265 }
3266
178f02ff 3267 return false;
dd1a4cc1
RK
3268}
3269EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3270
0266c894 3271#ifndef CONFIG_S390
dd1a4cc1
RK
3272/*
3273 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3274 */
3275void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3276{
85b64045 3277 int me, cpu;
dd1a4cc1 3278
178f02ff
RK
3279 if (kvm_vcpu_wake_up(vcpu))
3280 return;
3281
85b64045
SC
3282 /*
3283 * Note, the vCPU could get migrated to a different pCPU at any point
3284 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3285 * IPI to the previous pCPU. But, that's ok because the purpose of the
3286 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3287 * vCPU also requires it to leave IN_GUEST_MODE.
3288 */
b6d33834 3289 me = get_cpu();
85b64045
SC
3290 if (kvm_arch_vcpu_should_kick(vcpu)) {
3291 cpu = READ_ONCE(vcpu->cpu);
3292 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
b6d33834 3293 smp_send_reschedule(cpu);
85b64045 3294 }
b6d33834
CD
3295 put_cpu();
3296}
a20ed54d 3297EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
0266c894 3298#endif /* !CONFIG_S390 */
b6d33834 3299
fa93384f 3300int kvm_vcpu_yield_to(struct kvm_vcpu *target)
41628d33
KW
3301{
3302 struct pid *pid;
3303 struct task_struct *task = NULL;
fa93384f 3304 int ret = 0;
41628d33
KW
3305
3306 rcu_read_lock();
3307 pid = rcu_dereference(target->pid);
3308 if (pid)
27fbe64b 3309 task = get_pid_task(pid, PIDTYPE_PID);
41628d33
KW
3310 rcu_read_unlock();
3311 if (!task)
c45c528e 3312 return ret;
c45c528e 3313 ret = yield_to(task, 1);
41628d33 3314 put_task_struct(task);
c45c528e
R
3315
3316 return ret;
41628d33
KW
3317}
3318EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3319
06e48c51
R
3320/*
3321 * Helper that checks whether a VCPU is eligible for directed yield.
3322 * Most eligible candidate to yield is decided by following heuristics:
3323 *
3324 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3325 * (preempted lock holder), indicated by @in_spin_loop.
656012c7 3326 * Set at the beginning and cleared at the end of interception/PLE handler.
06e48c51
R
3327 *
3328 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3329 * chance last time (mostly it has become eligible now since we have probably
3330 * yielded to lockholder in last iteration. This is done by toggling
3331 * @dy_eligible each time a VCPU checked for eligibility.)
3332 *
3333 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3334 * to preempted lock-holder could result in wrong VCPU selection and CPU
3335 * burning. Giving priority for a potential lock-holder increases lock
3336 * progress.
3337 *
3338 * Since algorithm is based on heuristics, accessing another VCPU data without
3339 * locking does not harm. It may result in trying to yield to same VCPU, fail
3340 * and continue with next VCPU and so on.
3341 */
7940876e 3342static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
06e48c51 3343{
4a55dd72 3344#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
06e48c51
R
3345 bool eligible;
3346
3347 eligible = !vcpu->spin_loop.in_spin_loop ||
34656113 3348 vcpu->spin_loop.dy_eligible;
06e48c51
R
3349
3350 if (vcpu->spin_loop.in_spin_loop)
3351 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3352
3353 return eligible;
4a55dd72
SW
3354#else
3355 return true;
06e48c51 3356#endif
4a55dd72 3357}
c45c528e 3358
17e433b5
WL
3359/*
3360 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3361 * a vcpu_load/vcpu_put pair. However, for most architectures
3362 * kvm_arch_vcpu_runnable does not require vcpu_load.
3363 */
3364bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3365{
3366 return kvm_arch_vcpu_runnable(vcpu);
3367}
3368
3369static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3370{
3371 if (kvm_arch_dy_runnable(vcpu))
3372 return true;
3373
3374#ifdef CONFIG_KVM_ASYNC_PF
3375 if (!list_empty_careful(&vcpu->async_pf.done))
3376 return true;
3377#endif
3378
3379 return false;
3380}
3381
52acd22f
WL
3382bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3383{
3384 return false;
3385}
3386
199b5763 3387void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
d255f4f2 3388{
217ece61
RR
3389 struct kvm *kvm = me->kvm;
3390 struct kvm_vcpu *vcpu;
3391 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3392 int yielded = 0;
c45c528e 3393 int try = 3;
217ece61
RR
3394 int pass;
3395 int i;
d255f4f2 3396
4c088493 3397 kvm_vcpu_set_in_spin_loop(me, true);
217ece61
RR
3398 /*
3399 * We boost the priority of a VCPU that is runnable but not
3400 * currently running, because it got preempted by something
3401 * else and called schedule in __vcpu_run. Hopefully that
3402 * VCPU is holding the lock that we need and will release it.
3403 * We approximate round-robin by starting at the last boosted VCPU.
3404 */
c45c528e 3405 for (pass = 0; pass < 2 && !yielded && try; pass++) {
217ece61 3406 kvm_for_each_vcpu(i, vcpu, kvm) {
5cfc2aab 3407 if (!pass && i <= last_boosted_vcpu) {
217ece61
RR
3408 i = last_boosted_vcpu;
3409 continue;
3410 } else if (pass && i > last_boosted_vcpu)
3411 break;
d73eb57b 3412 if (!READ_ONCE(vcpu->ready))
7bc7ae25 3413 continue;
217ece61
RR
3414 if (vcpu == me)
3415 continue;
da4ad88c
DB
3416 if (rcuwait_active(&vcpu->wait) &&
3417 !vcpu_dy_runnable(vcpu))
217ece61 3418 continue;
046ddeed 3419 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
52acd22f
WL
3420 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3421 !kvm_arch_vcpu_in_kernel(vcpu))
199b5763 3422 continue;
06e48c51
R
3423 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3424 continue;
c45c528e
R
3425
3426 yielded = kvm_vcpu_yield_to(vcpu);
3427 if (yielded > 0) {
217ece61 3428 kvm->last_boosted_vcpu = i;
217ece61 3429 break;
c45c528e
R
3430 } else if (yielded < 0) {
3431 try--;
3432 if (!try)
3433 break;
217ece61 3434 }
217ece61
RR
3435 }
3436 }
4c088493 3437 kvm_vcpu_set_in_spin_loop(me, false);
06e48c51
R
3438
3439 /* Ensure vcpu is not eligible during next spinloop */
3440 kvm_vcpu_set_dy_eligible(me, false);
d255f4f2
ZE
3441}
3442EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3443
fb04a1ed
PX
3444static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3445{
3446#if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3447 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3448 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3449 kvm->dirty_ring_size / PAGE_SIZE);
3450#else
3451 return false;
3452#endif
3453}
3454
1499fa80 3455static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
9a2bb7f4 3456{
11bac800 3457 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
9a2bb7f4
AK
3458 struct page *page;
3459
e4a533a4 3460 if (vmf->pgoff == 0)
039576c0 3461 page = virt_to_page(vcpu->run);
09566765 3462#ifdef CONFIG_X86
e4a533a4 3463 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
ad312c7c 3464 page = virt_to_page(vcpu->arch.pio_data);
5f94c174 3465#endif
4b4357e0 3466#ifdef CONFIG_KVM_MMIO
5f94c174
LV
3467 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3468 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
09566765 3469#endif
fb04a1ed
PX
3470 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3471 page = kvm_dirty_ring_get_page(
3472 &vcpu->dirty_ring,
3473 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
039576c0 3474 else
5b1c1493 3475 return kvm_arch_vcpu_fault(vcpu, vmf);
9a2bb7f4 3476 get_page(page);
e4a533a4
NP
3477 vmf->page = page;
3478 return 0;
9a2bb7f4
AK
3479}
3480
f0f37e2f 3481static const struct vm_operations_struct kvm_vcpu_vm_ops = {
e4a533a4 3482 .fault = kvm_vcpu_fault,
9a2bb7f4
AK
3483};
3484
3485static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3486{
fb04a1ed 3487 struct kvm_vcpu *vcpu = file->private_data;
11476d27 3488 unsigned long pages = vma_pages(vma);
fb04a1ed
PX
3489
3490 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3491 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3492 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3493 return -EINVAL;
3494
9a2bb7f4
AK
3495 vma->vm_ops = &kvm_vcpu_vm_ops;
3496 return 0;
3497}
3498
bccf2150
AK
3499static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3500{
3501 struct kvm_vcpu *vcpu = filp->private_data;
3502
66c0b394 3503 kvm_put_kvm(vcpu->kvm);
bccf2150
AK
3504 return 0;
3505}
3506
3d3aab1b 3507static struct file_operations kvm_vcpu_fops = {
bccf2150
AK
3508 .release = kvm_vcpu_release,
3509 .unlocked_ioctl = kvm_vcpu_ioctl,
9a2bb7f4 3510 .mmap = kvm_vcpu_mmap,
6038f373 3511 .llseek = noop_llseek,
7ddfd3e0 3512 KVM_COMPAT(kvm_vcpu_compat_ioctl),
bccf2150
AK
3513};
3514
3515/*
3516 * Allocates an inode for the vcpu.
3517 */
3518static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3519{
e46b4692
MY
3520 char name[8 + 1 + ITOA_MAX_LEN + 1];
3521
3522 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3523 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
bccf2150
AK
3524}
3525
3e7093d0 3526static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
45b5939e 3527{
741cbbae 3528#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
d56f5136 3529 struct dentry *debugfs_dentry;
45b5939e 3530 char dir_name[ITOA_MAX_LEN * 2];
45b5939e 3531
45b5939e 3532 if (!debugfs_initialized())
3e7093d0 3533 return;
45b5939e
LC
3534
3535 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
d56f5136
PB
3536 debugfs_dentry = debugfs_create_dir(dir_name,
3537 vcpu->kvm->debugfs_dentry);
45b5939e 3538
d56f5136 3539 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
741cbbae 3540#endif
45b5939e
LC
3541}
3542
c5ea7660
AK
3543/*
3544 * Creates some virtual cpus. Good luck creating more than one.
3545 */
73880c80 3546static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
c5ea7660
AK
3547{
3548 int r;
e09fefde 3549 struct kvm_vcpu *vcpu;
8bd826d6 3550 struct page *page;
c5ea7660 3551
a1c42dde 3552 if (id >= KVM_MAX_VCPU_IDS)
338c7dba
AH
3553 return -EINVAL;
3554
6c7caebc
PB
3555 mutex_lock(&kvm->lock);
3556 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3557 mutex_unlock(&kvm->lock);
3558 return -EINVAL;
3559 }
3560
3561 kvm->created_vcpus++;
3562 mutex_unlock(&kvm->lock);
3563
897cc38e
SC
3564 r = kvm_arch_vcpu_precreate(kvm, id);
3565 if (r)
3566 goto vcpu_decrement;
3567
85f47930 3568 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
e529ef66
SC
3569 if (!vcpu) {
3570 r = -ENOMEM;
6c7caebc
PB
3571 goto vcpu_decrement;
3572 }
c5ea7660 3573
fcd97ad5 3574 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
93bb59ca 3575 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
8bd826d6
SC
3576 if (!page) {
3577 r = -ENOMEM;
e529ef66 3578 goto vcpu_free;
8bd826d6
SC
3579 }
3580 vcpu->run = page_address(page);
3581
3582 kvm_vcpu_init(vcpu, kvm, id);
e529ef66
SC
3583
3584 r = kvm_arch_vcpu_create(vcpu);
3585 if (r)
8bd826d6 3586 goto vcpu_free_run_page;
e529ef66 3587
fb04a1ed
PX
3588 if (kvm->dirty_ring_size) {
3589 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3590 id, kvm->dirty_ring_size);
3591 if (r)
3592 goto arch_vcpu_destroy;
3593 }
3594
11ec2804 3595 mutex_lock(&kvm->lock);
e09fefde
DH
3596 if (kvm_get_vcpu_by_id(kvm, id)) {
3597 r = -EEXIST;
3598 goto unlock_vcpu_destroy;
3599 }
73880c80 3600
8750e72a 3601 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
c5b07754
MZ
3602 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3603 BUG_ON(r == -EBUSY);
3604 if (r)
3605 goto unlock_vcpu_destroy;
c5ea7660 3606
ce55c049
JZ
3607 /* Fill the stats id string for the vcpu */
3608 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3609 task_pid_nr(current), id);
3610
fb3f0f51 3611 /* Now it's all set up, let userspace reach it */
66c0b394 3612 kvm_get_kvm(kvm);
bccf2150 3613 r = create_vcpu_fd(vcpu);
73880c80 3614 if (r < 0) {
c5b07754 3615 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
149487bd 3616 kvm_put_kvm_no_destroy(kvm);
d780592b 3617 goto unlock_vcpu_destroy;
73880c80
GN
3618 }
3619
dd489240 3620 /*
c5b07754
MZ
3621 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
3622 * pointer before kvm->online_vcpu's incremented value.
dd489240 3623 */
73880c80
GN
3624 smp_wmb();
3625 atomic_inc(&kvm->online_vcpus);
3626
73880c80 3627 mutex_unlock(&kvm->lock);
42897d86 3628 kvm_arch_vcpu_postcreate(vcpu);
63d04348 3629 kvm_create_vcpu_debugfs(vcpu);
fb3f0f51 3630 return r;
39c3b86e 3631
d780592b 3632unlock_vcpu_destroy:
7d8fece6 3633 mutex_unlock(&kvm->lock);
fb04a1ed
PX
3634 kvm_dirty_ring_free(&vcpu->dirty_ring);
3635arch_vcpu_destroy:
d40ccc62 3636 kvm_arch_vcpu_destroy(vcpu);
8bd826d6
SC
3637vcpu_free_run_page:
3638 free_page((unsigned long)vcpu->run);
e529ef66
SC
3639vcpu_free:
3640 kmem_cache_free(kvm_vcpu_cache, vcpu);
6c7caebc
PB
3641vcpu_decrement:
3642 mutex_lock(&kvm->lock);
3643 kvm->created_vcpus--;
3644 mutex_unlock(&kvm->lock);
c5ea7660
AK
3645 return r;
3646}
3647
1961d276
AK
3648static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3649{
3650 if (sigset) {
3651 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3652 vcpu->sigset_active = 1;
3653 vcpu->sigset = *sigset;
3654 } else
3655 vcpu->sigset_active = 0;
3656 return 0;
3657}
3658
ce55c049
JZ
3659static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3660 size_t size, loff_t *offset)
3661{
3662 struct kvm_vcpu *vcpu = file->private_data;
3663
3664 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3665 &kvm_vcpu_stats_desc[0], &vcpu->stat,
3666 sizeof(vcpu->stat), user_buffer, size, offset);
3667}
3668
3669static const struct file_operations kvm_vcpu_stats_fops = {
3670 .read = kvm_vcpu_stats_read,
3671 .llseek = noop_llseek,
3672};
3673
3674static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3675{
3676 int fd;
3677 struct file *file;
3678 char name[15 + ITOA_MAX_LEN + 1];
3679
3680 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3681
3682 fd = get_unused_fd_flags(O_CLOEXEC);
3683 if (fd < 0)
3684 return fd;
3685
3686 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3687 if (IS_ERR(file)) {
3688 put_unused_fd(fd);
3689 return PTR_ERR(file);
3690 }
3691 file->f_mode |= FMODE_PREAD;
3692 fd_install(fd, file);
3693
3694 return fd;
3695}
3696
bccf2150
AK
3697static long kvm_vcpu_ioctl(struct file *filp,
3698 unsigned int ioctl, unsigned long arg)
6aa8b732 3699{
bccf2150 3700 struct kvm_vcpu *vcpu = filp->private_data;
2f366987 3701 void __user *argp = (void __user *)arg;
313a3dc7 3702 int r;
fa3795a7
DH
3703 struct kvm_fpu *fpu = NULL;
3704 struct kvm_sregs *kvm_sregs = NULL;
6aa8b732 3705
f4d31653 3706 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
6d4e4c4f 3707 return -EIO;
2122ff5e 3708
2ea75be3
DM
3709 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3710 return -EINVAL;
3711
2122ff5e 3712 /*
5cb0944c
PB
3713 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3714 * execution; mutex_lock() would break them.
2122ff5e 3715 */
5cb0944c
PB
3716 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3717 if (r != -ENOIOCTLCMD)
9fc77441 3718 return r;
2122ff5e 3719
ec7660cc
CD
3720 if (mutex_lock_killable(&vcpu->mutex))
3721 return -EINTR;
6aa8b732 3722 switch (ioctl) {
0e4524a5
CB
3723 case KVM_RUN: {
3724 struct pid *oldpid;
f0fe5108
AK
3725 r = -EINVAL;
3726 if (arg)
3727 goto out;
0e4524a5 3728 oldpid = rcu_access_pointer(vcpu->pid);
71dbc8a9 3729 if (unlikely(oldpid != task_pid(current))) {
7a72f7a1 3730 /* The thread running this VCPU changed. */
bd2a6394 3731 struct pid *newpid;
f95ef0cd 3732
bd2a6394
CD
3733 r = kvm_arch_vcpu_run_pid_change(vcpu);
3734 if (r)
3735 break;
3736
3737 newpid = get_task_pid(current, PIDTYPE_PID);
7a72f7a1
CB
3738 rcu_assign_pointer(vcpu->pid, newpid);
3739 if (oldpid)
3740 synchronize_rcu();
3741 put_pid(oldpid);
3742 }
1b94f6f8 3743 r = kvm_arch_vcpu_ioctl_run(vcpu);
64be5007 3744 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
6aa8b732 3745 break;
0e4524a5 3746 }
6aa8b732 3747 case KVM_GET_REGS: {
3e4bb3ac 3748 struct kvm_regs *kvm_regs;
6aa8b732 3749
3e4bb3ac 3750 r = -ENOMEM;
b12ce36a 3751 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3e4bb3ac 3752 if (!kvm_regs)
6aa8b732 3753 goto out;
3e4bb3ac
XZ
3754 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3755 if (r)
3756 goto out_free1;
6aa8b732 3757 r = -EFAULT;
3e4bb3ac
XZ
3758 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3759 goto out_free1;
6aa8b732 3760 r = 0;
3e4bb3ac
XZ
3761out_free1:
3762 kfree(kvm_regs);
6aa8b732
AK
3763 break;
3764 }
3765 case KVM_SET_REGS: {
3e4bb3ac 3766 struct kvm_regs *kvm_regs;
6aa8b732 3767
ff5c2c03
SL
3768 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3769 if (IS_ERR(kvm_regs)) {
3770 r = PTR_ERR(kvm_regs);
6aa8b732 3771 goto out;
ff5c2c03 3772 }
3e4bb3ac 3773 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3e4bb3ac 3774 kfree(kvm_regs);
6aa8b732
AK
3775 break;
3776 }
3777 case KVM_GET_SREGS: {
b12ce36a
BG
3778 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3779 GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3780 r = -ENOMEM;
3781 if (!kvm_sregs)
3782 goto out;
3783 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
6aa8b732
AK
3784 if (r)
3785 goto out;
3786 r = -EFAULT;
fa3795a7 3787 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
6aa8b732
AK
3788 goto out;
3789 r = 0;
3790 break;
3791 }
3792 case KVM_SET_SREGS: {
ff5c2c03
SL
3793 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3794 if (IS_ERR(kvm_sregs)) {
3795 r = PTR_ERR(kvm_sregs);
18595411 3796 kvm_sregs = NULL;
6aa8b732 3797 goto out;
ff5c2c03 3798 }
fa3795a7 3799 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
6aa8b732
AK
3800 break;
3801 }
62d9f0db
MT
3802 case KVM_GET_MP_STATE: {
3803 struct kvm_mp_state mp_state;
3804
3805 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3806 if (r)
3807 goto out;
3808 r = -EFAULT;
893bdbf1 3809 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
62d9f0db
MT
3810 goto out;
3811 r = 0;
3812 break;
3813 }
3814 case KVM_SET_MP_STATE: {
3815 struct kvm_mp_state mp_state;
3816
3817 r = -EFAULT;
893bdbf1 3818 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
62d9f0db
MT
3819 goto out;
3820 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
62d9f0db
MT
3821 break;
3822 }
6aa8b732
AK
3823 case KVM_TRANSLATE: {
3824 struct kvm_translation tr;
3825
3826 r = -EFAULT;
893bdbf1 3827 if (copy_from_user(&tr, argp, sizeof(tr)))
6aa8b732 3828 goto out;
8b006791 3829 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
6aa8b732
AK
3830 if (r)
3831 goto out;
3832 r = -EFAULT;
893bdbf1 3833 if (copy_to_user(argp, &tr, sizeof(tr)))
6aa8b732
AK
3834 goto out;
3835 r = 0;
3836 break;
3837 }
d0bfb940
JK
3838 case KVM_SET_GUEST_DEBUG: {
3839 struct kvm_guest_debug dbg;
6aa8b732
AK
3840
3841 r = -EFAULT;
893bdbf1 3842 if (copy_from_user(&dbg, argp, sizeof(dbg)))
6aa8b732 3843 goto out;
d0bfb940 3844 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
6aa8b732
AK
3845 break;
3846 }
1961d276
AK
3847 case KVM_SET_SIGNAL_MASK: {
3848 struct kvm_signal_mask __user *sigmask_arg = argp;
3849 struct kvm_signal_mask kvm_sigmask;
3850 sigset_t sigset, *p;
3851
3852 p = NULL;
3853 if (argp) {
3854 r = -EFAULT;
3855 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3856 sizeof(kvm_sigmask)))
1961d276
AK
3857 goto out;
3858 r = -EINVAL;
893bdbf1 3859 if (kvm_sigmask.len != sizeof(sigset))
1961d276
AK
3860 goto out;
3861 r = -EFAULT;
3862 if (copy_from_user(&sigset, sigmask_arg->sigset,
893bdbf1 3863 sizeof(sigset)))
1961d276
AK
3864 goto out;
3865 p = &sigset;
3866 }
376d41ff 3867 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1961d276
AK
3868 break;
3869 }
b8836737 3870 case KVM_GET_FPU: {
b12ce36a 3871 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
fa3795a7
DH
3872 r = -ENOMEM;
3873 if (!fpu)
3874 goto out;
3875 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
b8836737
AK
3876 if (r)
3877 goto out;
3878 r = -EFAULT;
fa3795a7 3879 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
b8836737
AK
3880 goto out;
3881 r = 0;
3882 break;
3883 }
3884 case KVM_SET_FPU: {
ff5c2c03
SL
3885 fpu = memdup_user(argp, sizeof(*fpu));
3886 if (IS_ERR(fpu)) {
3887 r = PTR_ERR(fpu);
18595411 3888 fpu = NULL;
b8836737 3889 goto out;
ff5c2c03 3890 }
fa3795a7 3891 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
b8836737
AK
3892 break;
3893 }
ce55c049
JZ
3894 case KVM_GET_STATS_FD: {
3895 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3896 break;
3897 }
bccf2150 3898 default:
313a3dc7 3899 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
bccf2150
AK
3900 }
3901out:
ec7660cc 3902 mutex_unlock(&vcpu->mutex);
fa3795a7
DH
3903 kfree(fpu);
3904 kfree(kvm_sregs);
bccf2150
AK
3905 return r;
3906}
3907
de8e5d74 3908#ifdef CONFIG_KVM_COMPAT
1dda606c
AG
3909static long kvm_vcpu_compat_ioctl(struct file *filp,
3910 unsigned int ioctl, unsigned long arg)
3911{
3912 struct kvm_vcpu *vcpu = filp->private_data;
3913 void __user *argp = compat_ptr(arg);
3914 int r;
3915
f4d31653 3916 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
1dda606c
AG
3917 return -EIO;
3918
3919 switch (ioctl) {
3920 case KVM_SET_SIGNAL_MASK: {
3921 struct kvm_signal_mask __user *sigmask_arg = argp;
3922 struct kvm_signal_mask kvm_sigmask;
1dda606c
AG
3923 sigset_t sigset;
3924
3925 if (argp) {
3926 r = -EFAULT;
3927 if (copy_from_user(&kvm_sigmask, argp,
893bdbf1 3928 sizeof(kvm_sigmask)))
1dda606c
AG
3929 goto out;
3930 r = -EINVAL;
3968cf62 3931 if (kvm_sigmask.len != sizeof(compat_sigset_t))
1dda606c
AG
3932 goto out;
3933 r = -EFAULT;
1393b4aa
PB
3934 if (get_compat_sigset(&sigset,
3935 (compat_sigset_t __user *)sigmask_arg->sigset))
1dda606c 3936 goto out;
760a9a30
AC
3937 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3938 } else
3939 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1dda606c
AG
3940 break;
3941 }
3942 default:
3943 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3944 }
3945
3946out:
3947 return r;
3948}
3949#endif
3950
a1cd3f08
CLG
3951static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3952{
3953 struct kvm_device *dev = filp->private_data;
3954
3955 if (dev->ops->mmap)
3956 return dev->ops->mmap(dev, vma);
3957
3958 return -ENODEV;
3959}
3960
852b6d57
SW
3961static int kvm_device_ioctl_attr(struct kvm_device *dev,
3962 int (*accessor)(struct kvm_device *dev,
3963 struct kvm_device_attr *attr),
3964 unsigned long arg)
3965{
3966 struct kvm_device_attr attr;
3967
3968 if (!accessor)
3969 return -EPERM;
3970
3971 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3972 return -EFAULT;
3973
3974 return accessor(dev, &attr);
3975}
3976
3977static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3978 unsigned long arg)
3979{
3980 struct kvm_device *dev = filp->private_data;
3981
f4d31653 3982 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
ddba9180
SC
3983 return -EIO;
3984
852b6d57
SW
3985 switch (ioctl) {
3986 case KVM_SET_DEVICE_ATTR:
3987 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3988 case KVM_GET_DEVICE_ATTR:
3989 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3990 case KVM_HAS_DEVICE_ATTR:
3991 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3992 default:
3993 if (dev->ops->ioctl)
3994 return dev->ops->ioctl(dev, ioctl, arg);
3995
3996 return -ENOTTY;
3997 }
3998}
3999
852b6d57
SW
4000static int kvm_device_release(struct inode *inode, struct file *filp)
4001{
4002 struct kvm_device *dev = filp->private_data;
4003 struct kvm *kvm = dev->kvm;
4004
2bde9b3e
CLG
4005 if (dev->ops->release) {
4006 mutex_lock(&kvm->lock);
4007 list_del(&dev->vm_node);
4008 dev->ops->release(dev);
4009 mutex_unlock(&kvm->lock);
4010 }
4011
852b6d57
SW
4012 kvm_put_kvm(kvm);
4013 return 0;
4014}
4015
4016static const struct file_operations kvm_device_fops = {
4017 .unlocked_ioctl = kvm_device_ioctl,
4018 .release = kvm_device_release,
7ddfd3e0 4019 KVM_COMPAT(kvm_device_ioctl),
a1cd3f08 4020 .mmap = kvm_device_mmap,
852b6d57
SW
4021};
4022
4023struct kvm_device *kvm_device_from_filp(struct file *filp)
4024{
4025 if (filp->f_op != &kvm_device_fops)
4026 return NULL;
4027
4028 return filp->private_data;
4029}
4030
8538cb22 4031static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
5df554ad 4032#ifdef CONFIG_KVM_MPIC
d60eacb0
WD
4033 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4034 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
5975a2e0 4035#endif
d60eacb0
WD
4036};
4037
8538cb22 4038int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
d60eacb0
WD
4039{
4040 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4041 return -ENOSPC;
4042
4043 if (kvm_device_ops_table[type] != NULL)
4044 return -EEXIST;
4045
4046 kvm_device_ops_table[type] = ops;
4047 return 0;
4048}
4049
571ee1b6
WL
4050void kvm_unregister_device_ops(u32 type)
4051{
4052 if (kvm_device_ops_table[type] != NULL)
4053 kvm_device_ops_table[type] = NULL;
4054}
4055
852b6d57
SW
4056static int kvm_ioctl_create_device(struct kvm *kvm,
4057 struct kvm_create_device *cd)
4058{
8538cb22 4059 const struct kvm_device_ops *ops = NULL;
852b6d57
SW
4060 struct kvm_device *dev;
4061 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
1d487e9b 4062 int type;
852b6d57
SW
4063 int ret;
4064
d60eacb0
WD
4065 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4066 return -ENODEV;
4067
1d487e9b
PB
4068 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4069 ops = kvm_device_ops_table[type];
d60eacb0 4070 if (ops == NULL)
852b6d57 4071 return -ENODEV;
852b6d57
SW
4072
4073 if (test)
4074 return 0;
4075
b12ce36a 4076 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
852b6d57
SW
4077 if (!dev)
4078 return -ENOMEM;
4079
4080 dev->ops = ops;
4081 dev->kvm = kvm;
852b6d57 4082
a28ebea2 4083 mutex_lock(&kvm->lock);
1d487e9b 4084 ret = ops->create(dev, type);
852b6d57 4085 if (ret < 0) {
a28ebea2 4086 mutex_unlock(&kvm->lock);
852b6d57
SW
4087 kfree(dev);
4088 return ret;
4089 }
a28ebea2
CD
4090 list_add(&dev->vm_node, &kvm->devices);
4091 mutex_unlock(&kvm->lock);
852b6d57 4092
023e9fdd
CD
4093 if (ops->init)
4094 ops->init(dev);
4095
cfa39381 4096 kvm_get_kvm(kvm);
24009b05 4097 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
852b6d57 4098 if (ret < 0) {
149487bd 4099 kvm_put_kvm_no_destroy(kvm);
a28ebea2
CD
4100 mutex_lock(&kvm->lock);
4101 list_del(&dev->vm_node);
4102 mutex_unlock(&kvm->lock);
a0f1d21c 4103 ops->destroy(dev);
852b6d57
SW
4104 return ret;
4105 }
4106
852b6d57
SW
4107 cd->fd = ret;
4108 return 0;
4109}
4110
92b591a4
AG
4111static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4112{
4113 switch (arg) {
4114 case KVM_CAP_USER_MEMORY:
4115 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4116 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
92b591a4
AG
4117 case KVM_CAP_INTERNAL_ERROR_DATA:
4118#ifdef CONFIG_HAVE_KVM_MSI
4119 case KVM_CAP_SIGNAL_MSI:
4120#endif
297e2105 4121#ifdef CONFIG_HAVE_KVM_IRQFD
dc9be0fa 4122 case KVM_CAP_IRQFD:
92b591a4
AG
4123 case KVM_CAP_IRQFD_RESAMPLE:
4124#endif
e9ea5069 4125 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
92b591a4 4126 case KVM_CAP_CHECK_EXTENSION_VM:
e5d83c74 4127 case KVM_CAP_ENABLE_CAP_VM:
acd05785 4128 case KVM_CAP_HALT_POLL:
92b591a4 4129 return 1;
4b4357e0 4130#ifdef CONFIG_KVM_MMIO
30422558
PB
4131 case KVM_CAP_COALESCED_MMIO:
4132 return KVM_COALESCED_MMIO_PAGE_OFFSET;
0804c849
PH
4133 case KVM_CAP_COALESCED_PIO:
4134 return 1;
30422558 4135#endif
3c9bd400
JZ
4136#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4137 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4138 return KVM_DIRTY_LOG_MANUAL_CAPS;
4139#endif
92b591a4
AG
4140#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4141 case KVM_CAP_IRQ_ROUTING:
4142 return KVM_MAX_IRQ_ROUTES;
f481b069
PB
4143#endif
4144#if KVM_ADDRESS_SPACE_NUM > 1
4145 case KVM_CAP_MULTI_ADDRESS_SPACE:
4146 return KVM_ADDRESS_SPACE_NUM;
92b591a4 4147#endif
c110ae57
PB
4148 case KVM_CAP_NR_MEMSLOTS:
4149 return KVM_USER_MEM_SLOTS;
fb04a1ed
PX
4150 case KVM_CAP_DIRTY_LOG_RING:
4151#if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4152 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4153#else
4154 return 0;
4155#endif
ce55c049
JZ
4156 case KVM_CAP_BINARY_STATS_FD:
4157 return 1;
92b591a4
AG
4158 default:
4159 break;
4160 }
4161 return kvm_vm_ioctl_check_extension(kvm, arg);
4162}
4163
fb04a1ed
PX
4164static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4165{
4166 int r;
4167
4168 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4169 return -EINVAL;
4170
4171 /* the size should be power of 2 */
4172 if (!size || (size & (size - 1)))
4173 return -EINVAL;
4174
4175 /* Should be bigger to keep the reserved entries, or a page */
4176 if (size < kvm_dirty_ring_get_rsvd_entries() *
4177 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4178 return -EINVAL;
4179
4180 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4181 sizeof(struct kvm_dirty_gfn))
4182 return -E2BIG;
4183
4184 /* We only allow it to set once */
4185 if (kvm->dirty_ring_size)
4186 return -EINVAL;
4187
4188 mutex_lock(&kvm->lock);
4189
4190 if (kvm->created_vcpus) {
4191 /* We don't allow to change this value after vcpu created */
4192 r = -EINVAL;
4193 } else {
4194 kvm->dirty_ring_size = size;
4195 r = 0;
4196 }
4197
4198 mutex_unlock(&kvm->lock);
4199 return r;
4200}
4201
4202static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4203{
4204 int i;
4205 struct kvm_vcpu *vcpu;
4206 int cleared = 0;
4207
4208 if (!kvm->dirty_ring_size)
4209 return -EINVAL;
4210
4211 mutex_lock(&kvm->slots_lock);
4212
4213 kvm_for_each_vcpu(i, vcpu, kvm)
4214 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4215
4216 mutex_unlock(&kvm->slots_lock);
4217
4218 if (cleared)
4219 kvm_flush_remote_tlbs(kvm);
4220
4221 return cleared;
4222}
4223
e5d83c74
PB
4224int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4225 struct kvm_enable_cap *cap)
4226{
4227 return -EINVAL;
4228}
4229
4230static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4231 struct kvm_enable_cap *cap)
4232{
4233 switch (cap->cap) {
2a31b9db 4234#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3c9bd400
JZ
4235 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4236 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4237
4238 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4239 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4240
4241 if (cap->flags || (cap->args[0] & ~allowed_options))
2a31b9db
PB
4242 return -EINVAL;
4243 kvm->manual_dirty_log_protect = cap->args[0];
4244 return 0;
3c9bd400 4245 }
2a31b9db 4246#endif
acd05785
DM
4247 case KVM_CAP_HALT_POLL: {
4248 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4249 return -EINVAL;
4250
4251 kvm->max_halt_poll_ns = cap->args[0];
4252 return 0;
4253 }
fb04a1ed
PX
4254 case KVM_CAP_DIRTY_LOG_RING:
4255 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
e5d83c74
PB
4256 default:
4257 return kvm_vm_ioctl_enable_cap(kvm, cap);
4258 }
4259}
4260
fcfe1bae
JZ
4261static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4262 size_t size, loff_t *offset)
4263{
4264 struct kvm *kvm = file->private_data;
4265
4266 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4267 &kvm_vm_stats_desc[0], &kvm->stat,
4268 sizeof(kvm->stat), user_buffer, size, offset);
4269}
4270
4271static const struct file_operations kvm_vm_stats_fops = {
4272 .read = kvm_vm_stats_read,
4273 .llseek = noop_llseek,
4274};
4275
4276static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4277{
4278 int fd;
4279 struct file *file;
4280
4281 fd = get_unused_fd_flags(O_CLOEXEC);
4282 if (fd < 0)
4283 return fd;
4284
4285 file = anon_inode_getfile("kvm-vm-stats",
4286 &kvm_vm_stats_fops, kvm, O_RDONLY);
4287 if (IS_ERR(file)) {
4288 put_unused_fd(fd);
4289 return PTR_ERR(file);
4290 }
4291 file->f_mode |= FMODE_PREAD;
4292 fd_install(fd, file);
4293
4294 return fd;
4295}
4296
bccf2150
AK
4297static long kvm_vm_ioctl(struct file *filp,
4298 unsigned int ioctl, unsigned long arg)
4299{
4300 struct kvm *kvm = filp->private_data;
4301 void __user *argp = (void __user *)arg;
1fe779f8 4302 int r;
bccf2150 4303
f4d31653 4304 if (kvm->mm != current->mm || kvm->vm_dead)
6d4e4c4f 4305 return -EIO;
bccf2150
AK
4306 switch (ioctl) {
4307 case KVM_CREATE_VCPU:
4308 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
bccf2150 4309 break;
e5d83c74
PB
4310 case KVM_ENABLE_CAP: {
4311 struct kvm_enable_cap cap;
4312
4313 r = -EFAULT;
4314 if (copy_from_user(&cap, argp, sizeof(cap)))
4315 goto out;
4316 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4317 break;
4318 }
6fc138d2
IE
4319 case KVM_SET_USER_MEMORY_REGION: {
4320 struct kvm_userspace_memory_region kvm_userspace_mem;
4321
4322 r = -EFAULT;
4323 if (copy_from_user(&kvm_userspace_mem, argp,
893bdbf1 4324 sizeof(kvm_userspace_mem)))
6fc138d2
IE
4325 goto out;
4326
47ae31e2 4327 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
6aa8b732
AK
4328 break;
4329 }
4330 case KVM_GET_DIRTY_LOG: {
4331 struct kvm_dirty_log log;
4332
4333 r = -EFAULT;
893bdbf1 4334 if (copy_from_user(&log, argp, sizeof(log)))
6aa8b732 4335 goto out;
2c6f5df9 4336 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6aa8b732
AK
4337 break;
4338 }
2a31b9db
PB
4339#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4340 case KVM_CLEAR_DIRTY_LOG: {
4341 struct kvm_clear_dirty_log log;
4342
4343 r = -EFAULT;
4344 if (copy_from_user(&log, argp, sizeof(log)))
4345 goto out;
4346 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4347 break;
4348 }
4349#endif
4b4357e0 4350#ifdef CONFIG_KVM_MMIO
5f94c174
LV
4351 case KVM_REGISTER_COALESCED_MMIO: {
4352 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 4353
5f94c174 4354 r = -EFAULT;
893bdbf1 4355 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 4356 goto out;
5f94c174 4357 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5f94c174
LV
4358 break;
4359 }
4360 case KVM_UNREGISTER_COALESCED_MMIO: {
4361 struct kvm_coalesced_mmio_zone zone;
f95ef0cd 4362
5f94c174 4363 r = -EFAULT;
893bdbf1 4364 if (copy_from_user(&zone, argp, sizeof(zone)))
5f94c174 4365 goto out;
5f94c174 4366 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5f94c174
LV
4367 break;
4368 }
4369#endif
721eecbf
GH
4370 case KVM_IRQFD: {
4371 struct kvm_irqfd data;
4372
4373 r = -EFAULT;
893bdbf1 4374 if (copy_from_user(&data, argp, sizeof(data)))
721eecbf 4375 goto out;
d4db2935 4376 r = kvm_irqfd(kvm, &data);
721eecbf
GH
4377 break;
4378 }
d34e6b17
GH
4379 case KVM_IOEVENTFD: {
4380 struct kvm_ioeventfd data;
4381
4382 r = -EFAULT;
893bdbf1 4383 if (copy_from_user(&data, argp, sizeof(data)))
d34e6b17
GH
4384 goto out;
4385 r = kvm_ioeventfd(kvm, &data);
4386 break;
4387 }
07975ad3
JK
4388#ifdef CONFIG_HAVE_KVM_MSI
4389 case KVM_SIGNAL_MSI: {
4390 struct kvm_msi msi;
4391
4392 r = -EFAULT;
893bdbf1 4393 if (copy_from_user(&msi, argp, sizeof(msi)))
07975ad3
JK
4394 goto out;
4395 r = kvm_send_userspace_msi(kvm, &msi);
4396 break;
4397 }
23d43cf9
CD
4398#endif
4399#ifdef __KVM_HAVE_IRQ_LINE
4400 case KVM_IRQ_LINE_STATUS:
4401 case KVM_IRQ_LINE: {
4402 struct kvm_irq_level irq_event;
4403
4404 r = -EFAULT;
893bdbf1 4405 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
23d43cf9
CD
4406 goto out;
4407
aa2fbe6d
YZ
4408 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4409 ioctl == KVM_IRQ_LINE_STATUS);
23d43cf9
CD
4410 if (r)
4411 goto out;
4412
4413 r = -EFAULT;
4414 if (ioctl == KVM_IRQ_LINE_STATUS) {
893bdbf1 4415 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
23d43cf9
CD
4416 goto out;
4417 }
4418
4419 r = 0;
4420 break;
4421 }
73880c80 4422#endif
aa8d5944
AG
4423#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4424 case KVM_SET_GSI_ROUTING: {
4425 struct kvm_irq_routing routing;
4426 struct kvm_irq_routing __user *urouting;
f8c1b85b 4427 struct kvm_irq_routing_entry *entries = NULL;
aa8d5944
AG
4428
4429 r = -EFAULT;
4430 if (copy_from_user(&routing, argp, sizeof(routing)))
4431 goto out;
4432 r = -EINVAL;
5c0aea0e
DH
4433 if (!kvm_arch_can_set_irq_routing(kvm))
4434 goto out;
caf1ff26 4435 if (routing.nr > KVM_MAX_IRQ_ROUTES)
aa8d5944
AG
4436 goto out;
4437 if (routing.flags)
4438 goto out;
f8c1b85b 4439 if (routing.nr) {
f8c1b85b 4440 urouting = argp;
7ec28e26
DE
4441 entries = vmemdup_user(urouting->entries,
4442 array_size(sizeof(*entries),
4443 routing.nr));
4444 if (IS_ERR(entries)) {
4445 r = PTR_ERR(entries);
4446 goto out;
4447 }
f8c1b85b 4448 }
aa8d5944
AG
4449 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4450 routing.flags);
7ec28e26 4451 kvfree(entries);
aa8d5944
AG
4452 break;
4453 }
4454#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
852b6d57
SW
4455 case KVM_CREATE_DEVICE: {
4456 struct kvm_create_device cd;
4457
4458 r = -EFAULT;
4459 if (copy_from_user(&cd, argp, sizeof(cd)))
4460 goto out;
4461
4462 r = kvm_ioctl_create_device(kvm, &cd);
4463 if (r)
4464 goto out;
4465
4466 r = -EFAULT;
4467 if (copy_to_user(argp, &cd, sizeof(cd)))
4468 goto out;
4469
4470 r = 0;
4471 break;
4472 }
92b591a4
AG
4473 case KVM_CHECK_EXTENSION:
4474 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4475 break;
fb04a1ed
PX
4476 case KVM_RESET_DIRTY_RINGS:
4477 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4478 break;
fcfe1bae
JZ
4479 case KVM_GET_STATS_FD:
4480 r = kvm_vm_ioctl_get_stats_fd(kvm);
4481 break;
f17abe9a 4482 default:
1fe779f8 4483 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
f17abe9a
AK
4484 }
4485out:
4486 return r;
4487}
4488
de8e5d74 4489#ifdef CONFIG_KVM_COMPAT
6ff5894c
AB
4490struct compat_kvm_dirty_log {
4491 __u32 slot;
4492 __u32 padding1;
4493 union {
4494 compat_uptr_t dirty_bitmap; /* one bit per page */
4495 __u64 padding2;
4496 };
4497};
4498
8750f9bb
PB
4499struct compat_kvm_clear_dirty_log {
4500 __u32 slot;
4501 __u32 num_pages;
4502 __u64 first_page;
4503 union {
4504 compat_uptr_t dirty_bitmap; /* one bit per page */
4505 __u64 padding2;
4506 };
4507};
4508
6ff5894c
AB
4509static long kvm_vm_compat_ioctl(struct file *filp,
4510 unsigned int ioctl, unsigned long arg)
4511{
4512 struct kvm *kvm = filp->private_data;
4513 int r;
4514
f4d31653 4515 if (kvm->mm != current->mm || kvm->vm_dead)
6ff5894c
AB
4516 return -EIO;
4517 switch (ioctl) {
8750f9bb
PB
4518#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4519 case KVM_CLEAR_DIRTY_LOG: {
4520 struct compat_kvm_clear_dirty_log compat_log;
4521 struct kvm_clear_dirty_log log;
4522
4523 if (copy_from_user(&compat_log, (void __user *)arg,
4524 sizeof(compat_log)))
4525 return -EFAULT;
4526 log.slot = compat_log.slot;
4527 log.num_pages = compat_log.num_pages;
4528 log.first_page = compat_log.first_page;
4529 log.padding2 = compat_log.padding2;
4530 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4531
4532 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4533 break;
4534 }
4535#endif
6ff5894c
AB
4536 case KVM_GET_DIRTY_LOG: {
4537 struct compat_kvm_dirty_log compat_log;
4538 struct kvm_dirty_log log;
4539
6ff5894c
AB
4540 if (copy_from_user(&compat_log, (void __user *)arg,
4541 sizeof(compat_log)))
f6a3b168 4542 return -EFAULT;
6ff5894c
AB
4543 log.slot = compat_log.slot;
4544 log.padding1 = compat_log.padding1;
4545 log.padding2 = compat_log.padding2;
4546 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4547
4548 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
6ff5894c
AB
4549 break;
4550 }
4551 default:
4552 r = kvm_vm_ioctl(filp, ioctl, arg);
4553 }
6ff5894c
AB
4554 return r;
4555}
4556#endif
4557
3d3aab1b 4558static struct file_operations kvm_vm_fops = {
f17abe9a
AK
4559 .release = kvm_vm_release,
4560 .unlocked_ioctl = kvm_vm_ioctl,
6038f373 4561 .llseek = noop_llseek,
7ddfd3e0 4562 KVM_COMPAT(kvm_vm_compat_ioctl),
f17abe9a
AK
4563};
4564
54526d1f
NT
4565bool file_is_kvm(struct file *file)
4566{
4567 return file && file->f_op == &kvm_vm_fops;
4568}
4569EXPORT_SYMBOL_GPL(file_is_kvm);
4570
e08b9637 4571static int kvm_dev_ioctl_create_vm(unsigned long type)
f17abe9a 4572{
aac87636 4573 int r;
f17abe9a 4574 struct kvm *kvm;
506cfba9 4575 struct file *file;
f17abe9a 4576
e08b9637 4577 kvm = kvm_create_vm(type);
d6d28168
AK
4578 if (IS_ERR(kvm))
4579 return PTR_ERR(kvm);
4b4357e0 4580#ifdef CONFIG_KVM_MMIO
6ce5a090 4581 r = kvm_coalesced_mmio_init(kvm);
78588335
ME
4582 if (r < 0)
4583 goto put_kvm;
6ce5a090 4584#endif
506cfba9 4585 r = get_unused_fd_flags(O_CLOEXEC);
78588335
ME
4586 if (r < 0)
4587 goto put_kvm;
4588
fcfe1bae
JZ
4589 snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4590 "kvm-%d", task_pid_nr(current));
4591
506cfba9
AV
4592 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4593 if (IS_ERR(file)) {
4594 put_unused_fd(r);
78588335
ME
4595 r = PTR_ERR(file);
4596 goto put_kvm;
506cfba9 4597 }
536a6f88 4598
525df861
PB
4599 /*
4600 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4601 * already set, with ->release() being kvm_vm_release(). In error
4602 * cases it will be called by the final fput(file) and will take
4603 * care of doing kvm_put_kvm(kvm).
4604 */
536a6f88 4605 if (kvm_create_vm_debugfs(kvm, r) < 0) {
506cfba9
AV
4606 put_unused_fd(r);
4607 fput(file);
536a6f88
JF
4608 return -ENOMEM;
4609 }
286de8f6 4610 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
f17abe9a 4611
506cfba9 4612 fd_install(r, file);
aac87636 4613 return r;
78588335
ME
4614
4615put_kvm:
4616 kvm_put_kvm(kvm);
4617 return r;
f17abe9a
AK
4618}
4619
4620static long kvm_dev_ioctl(struct file *filp,
4621 unsigned int ioctl, unsigned long arg)
4622{
07c45a36 4623 long r = -EINVAL;
f17abe9a
AK
4624
4625 switch (ioctl) {
4626 case KVM_GET_API_VERSION:
f0fe5108
AK
4627 if (arg)
4628 goto out;
f17abe9a
AK
4629 r = KVM_API_VERSION;
4630 break;
4631 case KVM_CREATE_VM:
e08b9637 4632 r = kvm_dev_ioctl_create_vm(arg);
f17abe9a 4633 break;
018d00d2 4634 case KVM_CHECK_EXTENSION:
784aa3d7 4635 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5d308f45 4636 break;
07c45a36 4637 case KVM_GET_VCPU_MMAP_SIZE:
07c45a36
AK
4638 if (arg)
4639 goto out;
adb1ff46
AK
4640 r = PAGE_SIZE; /* struct kvm_run */
4641#ifdef CONFIG_X86
4642 r += PAGE_SIZE; /* pio data page */
5f94c174 4643#endif
4b4357e0 4644#ifdef CONFIG_KVM_MMIO
5f94c174 4645 r += PAGE_SIZE; /* coalesced mmio ring page */
adb1ff46 4646#endif
07c45a36 4647 break;
d4c9ff2d
FEL
4648 case KVM_TRACE_ENABLE:
4649 case KVM_TRACE_PAUSE:
4650 case KVM_TRACE_DISABLE:
2023a29c 4651 r = -EOPNOTSUPP;
d4c9ff2d 4652 break;
6aa8b732 4653 default:
043405e1 4654 return kvm_arch_dev_ioctl(filp, ioctl, arg);
6aa8b732
AK
4655 }
4656out:
4657 return r;
4658}
4659
6aa8b732 4660static struct file_operations kvm_chardev_ops = {
6aa8b732 4661 .unlocked_ioctl = kvm_dev_ioctl,
6038f373 4662 .llseek = noop_llseek,
7ddfd3e0 4663 KVM_COMPAT(kvm_dev_ioctl),
6aa8b732
AK
4664};
4665
4666static struct miscdevice kvm_dev = {
bbe4432e 4667 KVM_MINOR,
6aa8b732
AK
4668 "kvm",
4669 &kvm_chardev_ops,
4670};
4671
75b7127c 4672static void hardware_enable_nolock(void *junk)
1b6c0168
AK
4673{
4674 int cpu = raw_smp_processor_id();
10474ae8 4675 int r;
1b6c0168 4676
7f59f492 4677 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 4678 return;
10474ae8 4679
7f59f492 4680 cpumask_set_cpu(cpu, cpus_hardware_enabled);
10474ae8 4681
13a34e06 4682 r = kvm_arch_hardware_enable();
10474ae8
AG
4683
4684 if (r) {
4685 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4686 atomic_inc(&hardware_enable_failed);
1170adc6 4687 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
10474ae8 4688 }
1b6c0168
AK
4689}
4690
8c18b2d2 4691static int kvm_starting_cpu(unsigned int cpu)
75b7127c 4692{
4a937f96 4693 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
4694 if (kvm_usage_count)
4695 hardware_enable_nolock(NULL);
4a937f96 4696 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 4697 return 0;
75b7127c
TY
4698}
4699
4700static void hardware_disable_nolock(void *junk)
1b6c0168
AK
4701{
4702 int cpu = raw_smp_processor_id();
4703
7f59f492 4704 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1b6c0168 4705 return;
7f59f492 4706 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
13a34e06 4707 kvm_arch_hardware_disable();
1b6c0168
AK
4708}
4709
8c18b2d2 4710static int kvm_dying_cpu(unsigned int cpu)
75b7127c 4711{
4a937f96 4712 raw_spin_lock(&kvm_count_lock);
4fa92fb2
PB
4713 if (kvm_usage_count)
4714 hardware_disable_nolock(NULL);
4a937f96 4715 raw_spin_unlock(&kvm_count_lock);
8c18b2d2 4716 return 0;
75b7127c
TY
4717}
4718
10474ae8
AG
4719static void hardware_disable_all_nolock(void)
4720{
4721 BUG_ON(!kvm_usage_count);
4722
4723 kvm_usage_count--;
4724 if (!kvm_usage_count)
75b7127c 4725 on_each_cpu(hardware_disable_nolock, NULL, 1);
10474ae8
AG
4726}
4727
4728static void hardware_disable_all(void)
4729{
4a937f96 4730 raw_spin_lock(&kvm_count_lock);
10474ae8 4731 hardware_disable_all_nolock();
4a937f96 4732 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
4733}
4734
4735static int hardware_enable_all(void)
4736{
4737 int r = 0;
4738
4a937f96 4739 raw_spin_lock(&kvm_count_lock);
10474ae8
AG
4740
4741 kvm_usage_count++;
4742 if (kvm_usage_count == 1) {
4743 atomic_set(&hardware_enable_failed, 0);
75b7127c 4744 on_each_cpu(hardware_enable_nolock, NULL, 1);
10474ae8
AG
4745
4746 if (atomic_read(&hardware_enable_failed)) {
4747 hardware_disable_all_nolock();
4748 r = -EBUSY;
4749 }
4750 }
4751
4a937f96 4752 raw_spin_unlock(&kvm_count_lock);
10474ae8
AG
4753
4754 return r;
4755}
4756
9a2b85c6 4757static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
d77c26fc 4758 void *v)
9a2b85c6 4759{
8e1c1815
SY
4760 /*
4761 * Some (well, at least mine) BIOSes hang on reboot if
4762 * in vmx root mode.
4763 *
4764 * And Intel TXT required VMX off for all cpu when system shutdown.
4765 */
1170adc6 4766 pr_info("kvm: exiting hardware virtualization\n");
8e1c1815 4767 kvm_rebooting = true;
75b7127c 4768 on_each_cpu(hardware_disable_nolock, NULL, 1);
9a2b85c6
RR
4769 return NOTIFY_OK;
4770}
4771
4772static struct notifier_block kvm_reboot_notifier = {
4773 .notifier_call = kvm_reboot,
4774 .priority = 0,
4775};
4776
e93f8a0f 4777static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2eeb2e94
GH
4778{
4779 int i;
4780
4781 for (i = 0; i < bus->dev_count; i++) {
743eeb0b 4782 struct kvm_io_device *pos = bus->range[i].dev;
2eeb2e94
GH
4783
4784 kvm_iodevice_destructor(pos);
4785 }
e93f8a0f 4786 kfree(bus);
2eeb2e94
GH
4787}
4788
c21fbff1 4789static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
20e87b72 4790 const struct kvm_io_range *r2)
743eeb0b 4791{
8f4216c7
JW
4792 gpa_t addr1 = r1->addr;
4793 gpa_t addr2 = r2->addr;
4794
4795 if (addr1 < addr2)
743eeb0b 4796 return -1;
8f4216c7
JW
4797
4798 /* If r2->len == 0, match the exact address. If r2->len != 0,
4799 * accept any overlapping write. Any order is acceptable for
4800 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4801 * we process all of them.
4802 */
4803 if (r2->len) {
4804 addr1 += r1->len;
4805 addr2 += r2->len;
4806 }
4807
4808 if (addr1 > addr2)
743eeb0b 4809 return 1;
8f4216c7 4810
743eeb0b
SL
4811 return 0;
4812}
4813
a343c9b7
PB
4814static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4815{
c21fbff1 4816 return kvm_io_bus_cmp(p1, p2);
a343c9b7
PB
4817}
4818
39369f7a 4819static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
743eeb0b
SL
4820 gpa_t addr, int len)
4821{
4822 struct kvm_io_range *range, key;
4823 int off;
4824
4825 key = (struct kvm_io_range) {
4826 .addr = addr,
4827 .len = len,
4828 };
4829
4830 range = bsearch(&key, bus->range, bus->dev_count,
4831 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4832 if (range == NULL)
4833 return -ENOENT;
4834
4835 off = range - bus->range;
4836
c21fbff1 4837 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
743eeb0b
SL
4838 off--;
4839
4840 return off;
4841}
4842
e32edf4f 4843static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
126a5af5
CH
4844 struct kvm_io_range *range, const void *val)
4845{
4846 int idx;
4847
4848 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4849 if (idx < 0)
4850 return -EOPNOTSUPP;
4851
4852 while (idx < bus->dev_count &&
c21fbff1 4853 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 4854 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
4855 range->len, val))
4856 return idx;
4857 idx++;
4858 }
4859
4860 return -EOPNOTSUPP;
4861}
4862
bda9020e 4863/* kvm_io_bus_write - called under kvm->slots_lock */
e32edf4f 4864int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
bda9020e 4865 int len, const void *val)
2eeb2e94 4866{
90d83dc3 4867 struct kvm_io_bus *bus;
743eeb0b 4868 struct kvm_io_range range;
126a5af5 4869 int r;
743eeb0b
SL
4870
4871 range = (struct kvm_io_range) {
4872 .addr = addr,
4873 .len = len,
4874 };
90d83dc3 4875
e32edf4f 4876 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4877 if (!bus)
4878 return -ENOMEM;
e32edf4f 4879 r = __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
4880 return r < 0 ? r : 0;
4881}
a2420107 4882EXPORT_SYMBOL_GPL(kvm_io_bus_write);
126a5af5
CH
4883
4884/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
e32edf4f
NN
4885int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4886 gpa_t addr, int len, const void *val, long cookie)
126a5af5
CH
4887{
4888 struct kvm_io_bus *bus;
4889 struct kvm_io_range range;
4890
4891 range = (struct kvm_io_range) {
4892 .addr = addr,
4893 .len = len,
4894 };
4895
e32edf4f 4896 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4897 if (!bus)
4898 return -ENOMEM;
126a5af5
CH
4899
4900 /* First try the device referenced by cookie. */
4901 if ((cookie >= 0) && (cookie < bus->dev_count) &&
c21fbff1 4902 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
e32edf4f 4903 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
126a5af5
CH
4904 val))
4905 return cookie;
4906
4907 /*
4908 * cookie contained garbage; fall back to search and return the
4909 * correct cookie value.
4910 */
e32edf4f 4911 return __kvm_io_bus_write(vcpu, bus, &range, val);
126a5af5
CH
4912}
4913
e32edf4f
NN
4914static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4915 struct kvm_io_range *range, void *val)
126a5af5
CH
4916{
4917 int idx;
4918
4919 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
743eeb0b
SL
4920 if (idx < 0)
4921 return -EOPNOTSUPP;
4922
4923 while (idx < bus->dev_count &&
c21fbff1 4924 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
e32edf4f 4925 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
126a5af5
CH
4926 range->len, val))
4927 return idx;
743eeb0b
SL
4928 idx++;
4929 }
4930
bda9020e
MT
4931 return -EOPNOTSUPP;
4932}
2eeb2e94 4933
bda9020e 4934/* kvm_io_bus_read - called under kvm->slots_lock */
e32edf4f 4935int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 4936 int len, void *val)
bda9020e 4937{
90d83dc3 4938 struct kvm_io_bus *bus;
743eeb0b 4939 struct kvm_io_range range;
126a5af5 4940 int r;
743eeb0b
SL
4941
4942 range = (struct kvm_io_range) {
4943 .addr = addr,
4944 .len = len,
4945 };
e93f8a0f 4946
e32edf4f 4947 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
90db1043
DH
4948 if (!bus)
4949 return -ENOMEM;
e32edf4f 4950 r = __kvm_io_bus_read(vcpu, bus, &range, val);
126a5af5
CH
4951 return r < 0 ? r : 0;
4952}
743eeb0b 4953
79fac95e 4954/* Caller must hold slots_lock. */
743eeb0b
SL
4955int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4956 int len, struct kvm_io_device *dev)
6c474694 4957{
d4c67a7a 4958 int i;
e93f8a0f 4959 struct kvm_io_bus *new_bus, *bus;
d4c67a7a 4960 struct kvm_io_range range;
090b7aff 4961
4a12f951 4962 bus = kvm_get_bus(kvm, bus_idx);
90db1043
DH
4963 if (!bus)
4964 return -ENOMEM;
4965
6ea34c9b
AK
4966 /* exclude ioeventfd which is limited by maximum fd */
4967 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
090b7aff 4968 return -ENOSPC;
2eeb2e94 4969
90952cd3 4970 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
b12ce36a 4971 GFP_KERNEL_ACCOUNT);
e93f8a0f
MT
4972 if (!new_bus)
4973 return -ENOMEM;
d4c67a7a
GH
4974
4975 range = (struct kvm_io_range) {
4976 .addr = addr,
4977 .len = len,
4978 .dev = dev,
4979 };
4980
4981 for (i = 0; i < bus->dev_count; i++)
4982 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4983 break;
4984
4985 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4986 new_bus->dev_count++;
4987 new_bus->range[i] = range;
4988 memcpy(new_bus->range + i + 1, bus->range + i,
4989 (bus->dev_count - i) * sizeof(struct kvm_io_range));
e93f8a0f
MT
4990 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4991 synchronize_srcu_expedited(&kvm->srcu);
4992 kfree(bus);
090b7aff
GH
4993
4994 return 0;
4995}
4996
5d3c4c79
SC
4997int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4998 struct kvm_io_device *dev)
090b7aff 4999{
f6588660 5000 int i, j;
e93f8a0f 5001 struct kvm_io_bus *new_bus, *bus;
090b7aff 5002
7c896d37
SC
5003 lockdep_assert_held(&kvm->slots_lock);
5004
4a12f951 5005 bus = kvm_get_bus(kvm, bus_idx);
df630b8c 5006 if (!bus)
5d3c4c79 5007 return 0;
df630b8c 5008
7c896d37 5009 for (i = 0; i < bus->dev_count; i++) {
a1300716 5010 if (bus->range[i].dev == dev) {
090b7aff
GH
5011 break;
5012 }
7c896d37 5013 }
e93f8a0f 5014
90db1043 5015 if (i == bus->dev_count)
5d3c4c79 5016 return 0;
a1300716 5017
90952cd3 5018 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
b12ce36a 5019 GFP_KERNEL_ACCOUNT);
f6588660 5020 if (new_bus) {
871c433b 5021 memcpy(new_bus, bus, struct_size(bus, range, i));
f6588660
RK
5022 new_bus->dev_count--;
5023 memcpy(new_bus->range + i, bus->range + i + 1,
871c433b 5024 flex_array_size(new_bus, range, new_bus->dev_count - i));
2ee37574
SC
5025 }
5026
5027 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5028 synchronize_srcu_expedited(&kvm->srcu);
5029
5030 /* Destroy the old bus _after_ installing the (null) bus. */
5031 if (!new_bus) {
90db1043 5032 pr_err("kvm: failed to shrink bus, removing it completely\n");
f6588660
RK
5033 for (j = 0; j < bus->dev_count; j++) {
5034 if (j == i)
5035 continue;
5036 kvm_iodevice_destructor(bus->range[j].dev);
5037 }
90db1043 5038 }
a1300716 5039
e93f8a0f 5040 kfree(bus);
5d3c4c79 5041 return new_bus ? 0 : -ENOMEM;
2eeb2e94
GH
5042}
5043
8a39d006
AP
5044struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5045 gpa_t addr)
5046{
5047 struct kvm_io_bus *bus;
5048 int dev_idx, srcu_idx;
5049 struct kvm_io_device *iodev = NULL;
5050
5051 srcu_idx = srcu_read_lock(&kvm->srcu);
5052
5053 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
90db1043
DH
5054 if (!bus)
5055 goto out_unlock;
8a39d006
AP
5056
5057 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5058 if (dev_idx < 0)
5059 goto out_unlock;
5060
5061 iodev = bus->range[dev_idx].dev;
5062
5063out_unlock:
5064 srcu_read_unlock(&kvm->srcu, srcu_idx);
5065
5066 return iodev;
5067}
5068EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5069
536a6f88
JF
5070static int kvm_debugfs_open(struct inode *inode, struct file *file,
5071 int (*get)(void *, u64 *), int (*set)(void *, u64),
5072 const char *fmt)
5073{
5074 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5075 inode->i_private;
5076
605c7130
PX
5077 /*
5078 * The debugfs files are a reference to the kvm struct which
5079 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5080 * avoids the race between open and the removal of the debugfs directory.
536a6f88 5081 */
605c7130 5082 if (!kvm_get_kvm_safe(stat_data->kvm))
536a6f88
JF
5083 return -ENOENT;
5084
833b45de 5085 if (simple_attr_open(inode, file, get,
bc9e9e67 5086 kvm_stats_debugfs_mode(stat_data->desc) & 0222
09cbcef6
MP
5087 ? set : NULL,
5088 fmt)) {
536a6f88
JF
5089 kvm_put_kvm(stat_data->kvm);
5090 return -ENOMEM;
5091 }
5092
5093 return 0;
5094}
5095
5096static int kvm_debugfs_release(struct inode *inode, struct file *file)
5097{
5098 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5099 inode->i_private;
5100
5101 simple_attr_release(inode, file);
5102 kvm_put_kvm(stat_data->kvm);
5103
5104 return 0;
5105}
5106
09cbcef6 5107static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
536a6f88 5108{
bc9e9e67 5109 *val = *(u64 *)((void *)(&kvm->stat) + offset);
536a6f88 5110
09cbcef6
MP
5111 return 0;
5112}
5113
5114static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5115{
bc9e9e67 5116 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
536a6f88
JF
5117
5118 return 0;
5119}
5120
09cbcef6 5121static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
ce35ef27 5122{
09cbcef6
MP
5123 int i;
5124 struct kvm_vcpu *vcpu;
ce35ef27 5125
09cbcef6 5126 *val = 0;
ce35ef27 5127
09cbcef6 5128 kvm_for_each_vcpu(i, vcpu, kvm)
bc9e9e67 5129 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
ce35ef27
SJS
5130
5131 return 0;
5132}
5133
09cbcef6 5134static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
536a6f88 5135{
09cbcef6
MP
5136 int i;
5137 struct kvm_vcpu *vcpu;
536a6f88 5138
09cbcef6 5139 kvm_for_each_vcpu(i, vcpu, kvm)
bc9e9e67 5140 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
09cbcef6
MP
5141
5142 return 0;
5143}
536a6f88 5144
09cbcef6 5145static int kvm_stat_data_get(void *data, u64 *val)
536a6f88 5146{
09cbcef6 5147 int r = -EFAULT;
536a6f88 5148 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
536a6f88 5149
bc9e9e67 5150 switch (stat_data->kind) {
09cbcef6
MP
5151 case KVM_STAT_VM:
5152 r = kvm_get_stat_per_vm(stat_data->kvm,
bc9e9e67 5153 stat_data->desc->desc.offset, val);
09cbcef6
MP
5154 break;
5155 case KVM_STAT_VCPU:
5156 r = kvm_get_stat_per_vcpu(stat_data->kvm,
bc9e9e67 5157 stat_data->desc->desc.offset, val);
09cbcef6
MP
5158 break;
5159 }
536a6f88 5160
09cbcef6 5161 return r;
536a6f88
JF
5162}
5163
09cbcef6 5164static int kvm_stat_data_clear(void *data, u64 val)
ce35ef27 5165{
09cbcef6 5166 int r = -EFAULT;
ce35ef27 5167 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
ce35ef27
SJS
5168
5169 if (val)
5170 return -EINVAL;
5171
bc9e9e67 5172 switch (stat_data->kind) {
09cbcef6
MP
5173 case KVM_STAT_VM:
5174 r = kvm_clear_stat_per_vm(stat_data->kvm,
bc9e9e67 5175 stat_data->desc->desc.offset);
09cbcef6
MP
5176 break;
5177 case KVM_STAT_VCPU:
5178 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
bc9e9e67 5179 stat_data->desc->desc.offset);
09cbcef6
MP
5180 break;
5181 }
ce35ef27 5182
09cbcef6 5183 return r;
ce35ef27
SJS
5184}
5185
09cbcef6 5186static int kvm_stat_data_open(struct inode *inode, struct file *file)
536a6f88
JF
5187{
5188 __simple_attr_check_format("%llu\n", 0ull);
09cbcef6
MP
5189 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5190 kvm_stat_data_clear, "%llu\n");
536a6f88
JF
5191}
5192
09cbcef6
MP
5193static const struct file_operations stat_fops_per_vm = {
5194 .owner = THIS_MODULE,
5195 .open = kvm_stat_data_open,
536a6f88 5196 .release = kvm_debugfs_release,
09cbcef6
MP
5197 .read = simple_attr_read,
5198 .write = simple_attr_write,
5199 .llseek = no_llseek,
536a6f88
JF
5200};
5201
8b88b099 5202static int vm_stat_get(void *_offset, u64 *val)
ba1389b7
AK
5203{
5204 unsigned offset = (long)_offset;
ba1389b7 5205 struct kvm *kvm;
536a6f88 5206 u64 tmp_val;
ba1389b7 5207
8b88b099 5208 *val = 0;
0d9ce162 5209 mutex_lock(&kvm_lock);
536a6f88 5210 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5211 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
536a6f88
JF
5212 *val += tmp_val;
5213 }
0d9ce162 5214 mutex_unlock(&kvm_lock);
8b88b099 5215 return 0;
ba1389b7
AK
5216}
5217
ce35ef27
SJS
5218static int vm_stat_clear(void *_offset, u64 val)
5219{
5220 unsigned offset = (long)_offset;
5221 struct kvm *kvm;
ce35ef27
SJS
5222
5223 if (val)
5224 return -EINVAL;
5225
0d9ce162 5226 mutex_lock(&kvm_lock);
ce35ef27 5227 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5228 kvm_clear_stat_per_vm(kvm, offset);
ce35ef27 5229 }
0d9ce162 5230 mutex_unlock(&kvm_lock);
ce35ef27
SJS
5231
5232 return 0;
5233}
5234
5235DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
bc9e9e67 5236DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
ba1389b7 5237
8b88b099 5238static int vcpu_stat_get(void *_offset, u64 *val)
1165f5fe
AK
5239{
5240 unsigned offset = (long)_offset;
1165f5fe 5241 struct kvm *kvm;
536a6f88 5242 u64 tmp_val;
1165f5fe 5243
8b88b099 5244 *val = 0;
0d9ce162 5245 mutex_lock(&kvm_lock);
536a6f88 5246 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5247 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
536a6f88
JF
5248 *val += tmp_val;
5249 }
0d9ce162 5250 mutex_unlock(&kvm_lock);
8b88b099 5251 return 0;
1165f5fe
AK
5252}
5253
ce35ef27
SJS
5254static int vcpu_stat_clear(void *_offset, u64 val)
5255{
5256 unsigned offset = (long)_offset;
5257 struct kvm *kvm;
ce35ef27
SJS
5258
5259 if (val)
5260 return -EINVAL;
5261
0d9ce162 5262 mutex_lock(&kvm_lock);
ce35ef27 5263 list_for_each_entry(kvm, &vm_list, vm_list) {
09cbcef6 5264 kvm_clear_stat_per_vcpu(kvm, offset);
ce35ef27 5265 }
0d9ce162 5266 mutex_unlock(&kvm_lock);
ce35ef27
SJS
5267
5268 return 0;
5269}
5270
5271DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5272 "%llu\n");
bc9e9e67 5273DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
1165f5fe 5274
286de8f6
CI
5275static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5276{
5277 struct kobj_uevent_env *env;
286de8f6
CI
5278 unsigned long long created, active;
5279
5280 if (!kvm_dev.this_device || !kvm)
5281 return;
5282
0d9ce162 5283 mutex_lock(&kvm_lock);
286de8f6
CI
5284 if (type == KVM_EVENT_CREATE_VM) {
5285 kvm_createvm_count++;
5286 kvm_active_vms++;
5287 } else if (type == KVM_EVENT_DESTROY_VM) {
5288 kvm_active_vms--;
5289 }
5290 created = kvm_createvm_count;
5291 active = kvm_active_vms;
0d9ce162 5292 mutex_unlock(&kvm_lock);
286de8f6 5293
b12ce36a 5294 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
286de8f6
CI
5295 if (!env)
5296 return;
5297
5298 add_uevent_var(env, "CREATED=%llu", created);
5299 add_uevent_var(env, "COUNT=%llu", active);
5300
fdeaf7e3 5301 if (type == KVM_EVENT_CREATE_VM) {
286de8f6 5302 add_uevent_var(env, "EVENT=create");
fdeaf7e3
CI
5303 kvm->userspace_pid = task_pid_nr(current);
5304 } else if (type == KVM_EVENT_DESTROY_VM) {
286de8f6 5305 add_uevent_var(env, "EVENT=destroy");
fdeaf7e3
CI
5306 }
5307 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
286de8f6 5308
85cd39af 5309 if (kvm->debugfs_dentry) {
b12ce36a 5310 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
fdeaf7e3
CI
5311
5312 if (p) {
5313 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5314 if (!IS_ERR(tmp))
5315 add_uevent_var(env, "STATS_PATH=%s", tmp);
5316 kfree(p);
286de8f6
CI
5317 }
5318 }
5319 /* no need for checks, since we are adding at most only 5 keys */
5320 env->envp[env->envp_idx++] = NULL;
5321 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5322 kfree(env);
286de8f6
CI
5323}
5324
929f45e3 5325static void kvm_init_debug(void)
6aa8b732 5326{
bc9e9e67
JZ
5327 const struct file_operations *fops;
5328 const struct _kvm_stats_desc *pdesc;
5329 int i;
6aa8b732 5330
76f7c879 5331 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4f69b680 5332
bc9e9e67
JZ
5333 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5334 pdesc = &kvm_vm_stats_desc[i];
5335 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5336 fops = &vm_stat_fops;
5337 else
5338 fops = &vm_stat_readonly_fops;
5339 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5340 kvm_debugfs_dir,
5341 (void *)(long)pdesc->desc.offset, fops);
5342 }
5343
5344 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5345 pdesc = &kvm_vcpu_stats_desc[i];
5346 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5347 fops = &vcpu_stat_fops;
5348 else
5349 fops = &vcpu_stat_readonly_fops;
5350 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5351 kvm_debugfs_dir,
5352 (void *)(long)pdesc->desc.offset, fops);
4f69b680 5353 }
6aa8b732
AK
5354}
5355
fb3600cc 5356static int kvm_suspend(void)
59ae6c6b 5357{
10474ae8 5358 if (kvm_usage_count)
75b7127c 5359 hardware_disable_nolock(NULL);
59ae6c6b
AK
5360 return 0;
5361}
5362
fb3600cc 5363static void kvm_resume(void)
59ae6c6b 5364{
ca84d1a2 5365 if (kvm_usage_count) {
2eb06c30
WL
5366#ifdef CONFIG_LOCKDEP
5367 WARN_ON(lockdep_is_held(&kvm_count_lock));
5368#endif
75b7127c 5369 hardware_enable_nolock(NULL);
ca84d1a2 5370 }
59ae6c6b
AK
5371}
5372
fb3600cc 5373static struct syscore_ops kvm_syscore_ops = {
59ae6c6b
AK
5374 .suspend = kvm_suspend,
5375 .resume = kvm_resume,
5376};
5377
15ad7146
AK
5378static inline
5379struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5380{
5381 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5382}
5383
5384static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5385{
5386 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
f95ef0cd 5387
046ddeed 5388 WRITE_ONCE(vcpu->preempted, false);
d73eb57b 5389 WRITE_ONCE(vcpu->ready, false);
15ad7146 5390
7495e22b 5391 __this_cpu_write(kvm_running_vcpu, vcpu);
e790d9ef 5392 kvm_arch_sched_in(vcpu, cpu);
e9b11c17 5393 kvm_arch_vcpu_load(vcpu, cpu);
15ad7146
AK
5394}
5395
5396static void kvm_sched_out(struct preempt_notifier *pn,
5397 struct task_struct *next)
5398{
5399 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5400
3ba9f93b 5401 if (current->on_rq) {
046ddeed 5402 WRITE_ONCE(vcpu->preempted, true);
d73eb57b
WL
5403 WRITE_ONCE(vcpu->ready, true);
5404 }
e9b11c17 5405 kvm_arch_vcpu_put(vcpu);
7495e22b
PB
5406 __this_cpu_write(kvm_running_vcpu, NULL);
5407}
5408
5409/**
5410 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
1f03b2bc
MZ
5411 *
5412 * We can disable preemption locally around accessing the per-CPU variable,
5413 * and use the resolved vcpu pointer after enabling preemption again,
5414 * because even if the current thread is migrated to another CPU, reading
5415 * the per-CPU value later will give us the same value as we update the
5416 * per-CPU variable in the preempt notifier handlers.
7495e22b
PB
5417 */
5418struct kvm_vcpu *kvm_get_running_vcpu(void)
5419{
1f03b2bc
MZ
5420 struct kvm_vcpu *vcpu;
5421
5422 preempt_disable();
5423 vcpu = __this_cpu_read(kvm_running_vcpu);
5424 preempt_enable();
5425
5426 return vcpu;
7495e22b 5427}
379a3c8e 5428EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
7495e22b
PB
5429
5430/**
5431 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5432 */
5433struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5434{
5435 return &kvm_running_vcpu;
15ad7146
AK
5436}
5437
b9904085
SC
5438struct kvm_cpu_compat_check {
5439 void *opaque;
5440 int *ret;
5441};
5442
5443static void check_processor_compat(void *data)
f257d6dc 5444{
b9904085
SC
5445 struct kvm_cpu_compat_check *c = data;
5446
5447 *c->ret = kvm_arch_check_processor_compat(c->opaque);
f257d6dc
SC
5448}
5449
0ee75bea 5450int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
c16f862d 5451 struct module *module)
6aa8b732 5452{
b9904085 5453 struct kvm_cpu_compat_check c;
6aa8b732 5454 int r;
002c7f7c 5455 int cpu;
6aa8b732 5456
f8c16bba
ZX
5457 r = kvm_arch_init(opaque);
5458 if (r)
d2308784 5459 goto out_fail;
cb498ea2 5460
7dac16c3
AH
5461 /*
5462 * kvm_arch_init makes sure there's at most one caller
5463 * for architectures that support multiple implementations,
5464 * like intel and amd on x86.
36343f6e
PB
5465 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5466 * conflicts in case kvm is already setup for another implementation.
7dac16c3 5467 */
36343f6e
PB
5468 r = kvm_irqfd_init();
5469 if (r)
5470 goto out_irqfd;
7dac16c3 5471
8437a617 5472 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
7f59f492
RR
5473 r = -ENOMEM;
5474 goto out_free_0;
5475 }
5476
b9904085 5477 r = kvm_arch_hardware_setup(opaque);
6aa8b732 5478 if (r < 0)
faf0be22 5479 goto out_free_1;
6aa8b732 5480
b9904085
SC
5481 c.ret = &r;
5482 c.opaque = opaque;
002c7f7c 5483 for_each_online_cpu(cpu) {
b9904085 5484 smp_call_function_single(cpu, check_processor_compat, &c, 1);
002c7f7c 5485 if (r < 0)
faf0be22 5486 goto out_free_2;
002c7f7c
YS
5487 }
5488
73c1b41e 5489 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
8c18b2d2 5490 kvm_starting_cpu, kvm_dying_cpu);
774c47f1 5491 if (r)
d2308784 5492 goto out_free_2;
6aa8b732
AK
5493 register_reboot_notifier(&kvm_reboot_notifier);
5494
c16f862d 5495 /* A kmem cache lets us meet the alignment requirements of fx_save. */
0ee75bea
AK
5496 if (!vcpu_align)
5497 vcpu_align = __alignof__(struct kvm_vcpu);
46515736
PB
5498 kvm_vcpu_cache =
5499 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5500 SLAB_ACCOUNT,
5501 offsetof(struct kvm_vcpu, arch),
ce55c049
JZ
5502 offsetofend(struct kvm_vcpu, stats_id)
5503 - offsetof(struct kvm_vcpu, arch),
46515736 5504 NULL);
c16f862d
RR
5505 if (!kvm_vcpu_cache) {
5506 r = -ENOMEM;
fb3600cc 5507 goto out_free_3;
c16f862d
RR
5508 }
5509
baff59cc
VK
5510 for_each_possible_cpu(cpu) {
5511 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5512 GFP_KERNEL, cpu_to_node(cpu))) {
5513 r = -ENOMEM;
5514 goto out_free_4;
5515 }
5516 }
5517
af585b92
GN
5518 r = kvm_async_pf_init();
5519 if (r)
baff59cc 5520 goto out_free_5;
af585b92 5521
6aa8b732 5522 kvm_chardev_ops.owner = module;
3d3aab1b
CB
5523 kvm_vm_fops.owner = module;
5524 kvm_vcpu_fops.owner = module;
6aa8b732
AK
5525
5526 r = misc_register(&kvm_dev);
5527 if (r) {
1170adc6 5528 pr_err("kvm: misc device register failed\n");
af585b92 5529 goto out_unreg;
6aa8b732
AK
5530 }
5531
fb3600cc
RW
5532 register_syscore_ops(&kvm_syscore_ops);
5533
15ad7146
AK
5534 kvm_preempt_ops.sched_in = kvm_sched_in;
5535 kvm_preempt_ops.sched_out = kvm_sched_out;
5536
929f45e3 5537 kvm_init_debug();
0ea4ed8e 5538
3c3c29fd
PB
5539 r = kvm_vfio_ops_init();
5540 WARN_ON(r);
5541
c7addb90 5542 return 0;
6aa8b732 5543
af585b92
GN
5544out_unreg:
5545 kvm_async_pf_deinit();
baff59cc
VK
5546out_free_5:
5547 for_each_possible_cpu(cpu)
5548 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5549out_free_4:
c16f862d 5550 kmem_cache_destroy(kvm_vcpu_cache);
d2308784 5551out_free_3:
6aa8b732 5552 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 5553 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
d2308784 5554out_free_2:
e9b11c17 5555 kvm_arch_hardware_unsetup();
faf0be22 5556out_free_1:
7f59f492 5557 free_cpumask_var(cpus_hardware_enabled);
d2308784 5558out_free_0:
a0f155e9 5559 kvm_irqfd_exit();
36343f6e 5560out_irqfd:
7dac16c3
AH
5561 kvm_arch_exit();
5562out_fail:
6aa8b732
AK
5563 return r;
5564}
cb498ea2 5565EXPORT_SYMBOL_GPL(kvm_init);
6aa8b732 5566
cb498ea2 5567void kvm_exit(void)
6aa8b732 5568{
baff59cc
VK
5569 int cpu;
5570
4bd33b56 5571 debugfs_remove_recursive(kvm_debugfs_dir);
6aa8b732 5572 misc_deregister(&kvm_dev);
baff59cc
VK
5573 for_each_possible_cpu(cpu)
5574 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
c16f862d 5575 kmem_cache_destroy(kvm_vcpu_cache);
af585b92 5576 kvm_async_pf_deinit();
fb3600cc 5577 unregister_syscore_ops(&kvm_syscore_ops);
6aa8b732 5578 unregister_reboot_notifier(&kvm_reboot_notifier);
8c18b2d2 5579 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
75b7127c 5580 on_each_cpu(hardware_disable_nolock, NULL, 1);
e9b11c17 5581 kvm_arch_hardware_unsetup();
f8c16bba 5582 kvm_arch_exit();
a0f155e9 5583 kvm_irqfd_exit();
7f59f492 5584 free_cpumask_var(cpus_hardware_enabled);
571ee1b6 5585 kvm_vfio_ops_exit();
6aa8b732 5586}
cb498ea2 5587EXPORT_SYMBOL_GPL(kvm_exit);
c57c8046
JS
5588
5589struct kvm_vm_worker_thread_context {
5590 struct kvm *kvm;
5591 struct task_struct *parent;
5592 struct completion init_done;
5593 kvm_vm_thread_fn_t thread_fn;
5594 uintptr_t data;
5595 int err;
5596};
5597
5598static int kvm_vm_worker_thread(void *context)
5599{
5600 /*
5601 * The init_context is allocated on the stack of the parent thread, so
5602 * we have to locally copy anything that is needed beyond initialization
5603 */
5604 struct kvm_vm_worker_thread_context *init_context = context;
5605 struct kvm *kvm = init_context->kvm;
5606 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5607 uintptr_t data = init_context->data;
5608 int err;
5609
5610 err = kthread_park(current);
5611 /* kthread_park(current) is never supposed to return an error */
5612 WARN_ON(err != 0);
5613 if (err)
5614 goto init_complete;
5615
5616 err = cgroup_attach_task_all(init_context->parent, current);
5617 if (err) {
5618 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5619 __func__, err);
5620 goto init_complete;
5621 }
5622
5623 set_user_nice(current, task_nice(init_context->parent));
5624
5625init_complete:
5626 init_context->err = err;
5627 complete(&init_context->init_done);
5628 init_context = NULL;
5629
5630 if (err)
5631 return err;
5632
5633 /* Wait to be woken up by the spawner before proceeding. */
5634 kthread_parkme();
5635
5636 if (!kthread_should_stop())
5637 err = thread_fn(kvm, data);
5638
5639 return err;
5640}
5641
5642int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5643 uintptr_t data, const char *name,
5644 struct task_struct **thread_ptr)
5645{
5646 struct kvm_vm_worker_thread_context init_context = {};
5647 struct task_struct *thread;
5648
5649 *thread_ptr = NULL;
5650 init_context.kvm = kvm;
5651 init_context.parent = current;
5652 init_context.thread_fn = thread_fn;
5653 init_context.data = data;
5654 init_completion(&init_context.init_done);
5655
5656 thread = kthread_run(kvm_vm_worker_thread, &init_context,
5657 "%s-%d", name, task_pid_nr(current));
5658 if (IS_ERR(thread))
5659 return PTR_ERR(thread);
5660
5661 /* kthread_run is never supposed to return NULL */
5662 WARN_ON(thread == NULL);
5663
5664 wait_for_completion(&init_context.init_done);
5665
5666 if (!init_context.err)
5667 *thread_ptr = thread;
5668
5669 return init_context.err;
5670}