]>
Commit | Line | Data |
---|---|---|
1 | // SPDX-License-Identifier: GPL-2.0-only | |
2 | ||
3 | /* | |
4 | * Local APIC virtualization | |
5 | * | |
6 | * Copyright (C) 2006 Qumranet, Inc. | |
7 | * Copyright (C) 2007 Novell | |
8 | * Copyright (C) 2007 Intel | |
9 | * Copyright 2009 Red Hat, Inc. and/or its affiliates. | |
10 | * | |
11 | * Authors: | |
12 | * Dor Laor <dor.laor@qumranet.com> | |
13 | * Gregory Haskins <ghaskins@novell.com> | |
14 | * Yaozu (Eddie) Dong <eddie.dong@intel.com> | |
15 | * | |
16 | * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. | |
17 | */ | |
18 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | |
19 | ||
20 | #include <linux/kvm_host.h> | |
21 | #include <linux/kvm.h> | |
22 | #include <linux/mm.h> | |
23 | #include <linux/highmem.h> | |
24 | #include <linux/smp.h> | |
25 | #include <linux/hrtimer.h> | |
26 | #include <linux/io.h> | |
27 | #include <linux/export.h> | |
28 | #include <linux/math64.h> | |
29 | #include <linux/slab.h> | |
30 | #include <asm/processor.h> | |
31 | #include <asm/mce.h> | |
32 | #include <asm/msr.h> | |
33 | #include <asm/page.h> | |
34 | #include <asm/current.h> | |
35 | #include <asm/apicdef.h> | |
36 | #include <asm/delay.h> | |
37 | #include <linux/atomic.h> | |
38 | #include <linux/jump_label.h> | |
39 | #include "kvm_cache_regs.h" | |
40 | #include "irq.h" | |
41 | #include "ioapic.h" | |
42 | #include "trace.h" | |
43 | #include "x86.h" | |
44 | #include "xen.h" | |
45 | #include "cpuid.h" | |
46 | #include "hyperv.h" | |
47 | #include "smm.h" | |
48 | ||
49 | #ifndef CONFIG_X86_64 | |
50 | #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) | |
51 | #else | |
52 | #define mod_64(x, y) ((x) % (y)) | |
53 | #endif | |
54 | ||
55 | /* 14 is the version for Xeon and Pentium 8.4.8*/ | |
56 | #define APIC_VERSION 0x14UL | |
57 | #define LAPIC_MMIO_LENGTH (1 << 12) | |
58 | /* followed define is not in apicdef.h */ | |
59 | #define MAX_APIC_VECTOR 256 | |
60 | #define APIC_VECTORS_PER_REG 32 | |
61 | ||
62 | /* | |
63 | * Enable local APIC timer advancement (tscdeadline mode only) with adaptive | |
64 | * tuning. When enabled, KVM programs the host timer event to fire early, i.e. | |
65 | * before the deadline expires, to account for the delay between taking the | |
66 | * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume | |
67 | * the guest, i.e. so that the interrupt arrives in the guest with minimal | |
68 | * latency relative to the deadline programmed by the guest. | |
69 | */ | |
70 | static bool lapic_timer_advance __read_mostly = true; | |
71 | module_param(lapic_timer_advance, bool, 0444); | |
72 | ||
73 | #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ | |
74 | #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ | |
75 | #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 | |
76 | #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 | |
77 | /* step-by-step approximation to mitigate fluctuation */ | |
78 | #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 | |
79 | static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data); | |
80 | static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data); | |
81 | ||
82 | static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val) | |
83 | { | |
84 | *((u32 *) (regs + reg_off)) = val; | |
85 | } | |
86 | ||
87 | static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) | |
88 | { | |
89 | __kvm_lapic_set_reg(apic->regs, reg_off, val); | |
90 | } | |
91 | ||
92 | static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg) | |
93 | { | |
94 | BUILD_BUG_ON(reg != APIC_ICR); | |
95 | return *((u64 *) (regs + reg)); | |
96 | } | |
97 | ||
98 | static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg) | |
99 | { | |
100 | return __kvm_lapic_get_reg64(apic->regs, reg); | |
101 | } | |
102 | ||
103 | static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val) | |
104 | { | |
105 | BUILD_BUG_ON(reg != APIC_ICR); | |
106 | *((u64 *) (regs + reg)) = val; | |
107 | } | |
108 | ||
109 | static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic, | |
110 | int reg, u64 val) | |
111 | { | |
112 | __kvm_lapic_set_reg64(apic->regs, reg, val); | |
113 | } | |
114 | ||
115 | static inline int apic_test_vector(int vec, void *bitmap) | |
116 | { | |
117 | return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); | |
118 | } | |
119 | ||
120 | bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) | |
121 | { | |
122 | struct kvm_lapic *apic = vcpu->arch.apic; | |
123 | ||
124 | return apic_test_vector(vector, apic->regs + APIC_ISR) || | |
125 | apic_test_vector(vector, apic->regs + APIC_IRR); | |
126 | } | |
127 | ||
128 | static inline int __apic_test_and_set_vector(int vec, void *bitmap) | |
129 | { | |
130 | return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); | |
131 | } | |
132 | ||
133 | static inline int __apic_test_and_clear_vector(int vec, void *bitmap) | |
134 | { | |
135 | return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); | |
136 | } | |
137 | ||
138 | __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); | |
139 | EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); | |
140 | ||
141 | __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); | |
142 | __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); | |
143 | ||
144 | static inline int apic_enabled(struct kvm_lapic *apic) | |
145 | { | |
146 | return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); | |
147 | } | |
148 | ||
149 | #define LVT_MASK \ | |
150 | (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) | |
151 | ||
152 | #define LINT_MASK \ | |
153 | (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ | |
154 | APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) | |
155 | ||
156 | static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) | |
157 | { | |
158 | return apic->vcpu->vcpu_id; | |
159 | } | |
160 | ||
161 | static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) | |
162 | { | |
163 | return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) && | |
164 | (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm)); | |
165 | } | |
166 | ||
167 | bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) | |
168 | { | |
169 | return kvm_x86_ops.set_hv_timer | |
170 | && !(kvm_mwait_in_guest(vcpu->kvm) || | |
171 | kvm_can_post_timer_interrupt(vcpu)); | |
172 | } | |
173 | ||
174 | static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) | |
175 | { | |
176 | return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; | |
177 | } | |
178 | ||
179 | static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) | |
180 | { | |
181 | return ((id >> 4) << 16) | (1 << (id & 0xf)); | |
182 | } | |
183 | ||
184 | static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, | |
185 | u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { | |
186 | switch (map->logical_mode) { | |
187 | case KVM_APIC_MODE_SW_DISABLED: | |
188 | /* Arbitrarily use the flat map so that @cluster isn't NULL. */ | |
189 | *cluster = map->xapic_flat_map; | |
190 | *mask = 0; | |
191 | return true; | |
192 | case KVM_APIC_MODE_X2APIC: { | |
193 | u32 offset = (dest_id >> 16) * 16; | |
194 | u32 max_apic_id = map->max_apic_id; | |
195 | ||
196 | if (offset <= max_apic_id) { | |
197 | u8 cluster_size = min(max_apic_id - offset + 1, 16U); | |
198 | ||
199 | offset = array_index_nospec(offset, map->max_apic_id + 1); | |
200 | *cluster = &map->phys_map[offset]; | |
201 | *mask = dest_id & (0xffff >> (16 - cluster_size)); | |
202 | } else { | |
203 | *mask = 0; | |
204 | } | |
205 | ||
206 | return true; | |
207 | } | |
208 | case KVM_APIC_MODE_XAPIC_FLAT: | |
209 | *cluster = map->xapic_flat_map; | |
210 | *mask = dest_id & 0xff; | |
211 | return true; | |
212 | case KVM_APIC_MODE_XAPIC_CLUSTER: | |
213 | *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; | |
214 | *mask = dest_id & 0xf; | |
215 | return true; | |
216 | case KVM_APIC_MODE_MAP_DISABLED: | |
217 | return false; | |
218 | default: | |
219 | WARN_ON_ONCE(1); | |
220 | return false; | |
221 | } | |
222 | } | |
223 | ||
224 | static int kvm_recalculate_phys_map(struct kvm_apic_map *new, | |
225 | struct kvm_vcpu *vcpu, | |
226 | bool *xapic_id_mismatch) | |
227 | { | |
228 | struct kvm_lapic *apic = vcpu->arch.apic; | |
229 | u32 x2apic_id = kvm_x2apic_id(apic); | |
230 | u32 xapic_id = kvm_xapic_id(apic); | |
231 | u32 physical_id; | |
232 | ||
233 | /* | |
234 | * For simplicity, KVM always allocates enough space for all possible | |
235 | * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on | |
236 | * without the optimized map. | |
237 | */ | |
238 | if (WARN_ON_ONCE(xapic_id > new->max_apic_id)) | |
239 | return -EINVAL; | |
240 | ||
241 | /* | |
242 | * Bail if a vCPU was added and/or enabled its APIC between allocating | |
243 | * the map and doing the actual calculations for the map. Note, KVM | |
244 | * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if | |
245 | * the compiler decides to reload x2apic_id after this check. | |
246 | */ | |
247 | if (x2apic_id > new->max_apic_id) | |
248 | return -E2BIG; | |
249 | ||
250 | /* | |
251 | * Deliberately truncate the vCPU ID when detecting a mismatched APIC | |
252 | * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a | |
253 | * 32-bit value. Any unwanted aliasing due to truncation results will | |
254 | * be detected below. | |
255 | */ | |
256 | if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id) | |
257 | *xapic_id_mismatch = true; | |
258 | ||
259 | /* | |
260 | * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs. | |
261 | * Allow sending events to vCPUs by their x2APIC ID even if the target | |
262 | * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs | |
263 | * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap | |
264 | * and collide). | |
265 | * | |
266 | * Honor the architectural (and KVM's non-optimized) behavior if | |
267 | * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed | |
268 | * to process messages independently. If multiple vCPUs have the same | |
269 | * effective APIC ID, e.g. due to the x2APIC wrap or because the guest | |
270 | * manually modified its xAPIC IDs, events targeting that ID are | |
271 | * supposed to be recognized by all vCPUs with said ID. | |
272 | */ | |
273 | if (vcpu->kvm->arch.x2apic_format) { | |
274 | /* See also kvm_apic_match_physical_addr(). */ | |
275 | if (apic_x2apic_mode(apic) || x2apic_id > 0xff) | |
276 | new->phys_map[x2apic_id] = apic; | |
277 | ||
278 | if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) | |
279 | new->phys_map[xapic_id] = apic; | |
280 | } else { | |
281 | /* | |
282 | * Disable the optimized map if the physical APIC ID is already | |
283 | * mapped, i.e. is aliased to multiple vCPUs. The optimized | |
284 | * map requires a strict 1:1 mapping between IDs and vCPUs. | |
285 | */ | |
286 | if (apic_x2apic_mode(apic)) | |
287 | physical_id = x2apic_id; | |
288 | else | |
289 | physical_id = xapic_id; | |
290 | ||
291 | if (new->phys_map[physical_id]) | |
292 | return -EINVAL; | |
293 | ||
294 | new->phys_map[physical_id] = apic; | |
295 | } | |
296 | ||
297 | return 0; | |
298 | } | |
299 | ||
300 | static void kvm_recalculate_logical_map(struct kvm_apic_map *new, | |
301 | struct kvm_vcpu *vcpu) | |
302 | { | |
303 | struct kvm_lapic *apic = vcpu->arch.apic; | |
304 | enum kvm_apic_logical_mode logical_mode; | |
305 | struct kvm_lapic **cluster; | |
306 | u16 mask; | |
307 | u32 ldr; | |
308 | ||
309 | if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) | |
310 | return; | |
311 | ||
312 | if (!kvm_apic_sw_enabled(apic)) | |
313 | return; | |
314 | ||
315 | ldr = kvm_lapic_get_reg(apic, APIC_LDR); | |
316 | if (!ldr) | |
317 | return; | |
318 | ||
319 | if (apic_x2apic_mode(apic)) { | |
320 | logical_mode = KVM_APIC_MODE_X2APIC; | |
321 | } else { | |
322 | ldr = GET_APIC_LOGICAL_ID(ldr); | |
323 | if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) | |
324 | logical_mode = KVM_APIC_MODE_XAPIC_FLAT; | |
325 | else | |
326 | logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER; | |
327 | } | |
328 | ||
329 | /* | |
330 | * To optimize logical mode delivery, all software-enabled APICs must | |
331 | * be configured for the same mode. | |
332 | */ | |
333 | if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) { | |
334 | new->logical_mode = logical_mode; | |
335 | } else if (new->logical_mode != logical_mode) { | |
336 | new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; | |
337 | return; | |
338 | } | |
339 | ||
340 | /* | |
341 | * In x2APIC mode, the LDR is read-only and derived directly from the | |
342 | * x2APIC ID, thus is guaranteed to be addressable. KVM reuses | |
343 | * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by | |
344 | * reversing the LDR calculation to get cluster of APICs, i.e. no | |
345 | * additional work is required. | |
346 | */ | |
347 | if (apic_x2apic_mode(apic)) | |
348 | return; | |
349 | ||
350 | if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr, | |
351 | &cluster, &mask))) { | |
352 | new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; | |
353 | return; | |
354 | } | |
355 | ||
356 | if (!mask) | |
357 | return; | |
358 | ||
359 | ldr = ffs(mask) - 1; | |
360 | if (!is_power_of_2(mask) || cluster[ldr]) | |
361 | new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; | |
362 | else | |
363 | cluster[ldr] = apic; | |
364 | } | |
365 | ||
366 | /* | |
367 | * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. | |
368 | * | |
369 | * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with | |
370 | * apic_map_lock_held. | |
371 | */ | |
372 | enum { | |
373 | CLEAN, | |
374 | UPDATE_IN_PROGRESS, | |
375 | DIRTY | |
376 | }; | |
377 | ||
378 | static void kvm_recalculate_apic_map(struct kvm *kvm) | |
379 | { | |
380 | struct kvm_apic_map *new, *old = NULL; | |
381 | struct kvm_vcpu *vcpu; | |
382 | unsigned long i; | |
383 | u32 max_id = 255; /* enough space for any xAPIC ID */ | |
384 | bool xapic_id_mismatch; | |
385 | int r; | |
386 | ||
387 | /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ | |
388 | if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) | |
389 | return; | |
390 | ||
391 | WARN_ONCE(!irqchip_in_kernel(kvm), | |
392 | "Dirty APIC map without an in-kernel local APIC"); | |
393 | ||
394 | mutex_lock(&kvm->arch.apic_map_lock); | |
395 | ||
396 | retry: | |
397 | /* | |
398 | * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean) | |
399 | * or the APIC registers (if dirty). Note, on retry the map may have | |
400 | * not yet been marked dirty by whatever task changed a vCPU's x2APIC | |
401 | * ID, i.e. the map may still show up as in-progress. In that case | |
402 | * this task still needs to retry and complete its calculation. | |
403 | */ | |
404 | if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, | |
405 | DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { | |
406 | /* Someone else has updated the map. */ | |
407 | mutex_unlock(&kvm->arch.apic_map_lock); | |
408 | return; | |
409 | } | |
410 | ||
411 | /* | |
412 | * Reset the mismatch flag between attempts so that KVM does the right | |
413 | * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e. | |
414 | * keep max_id strictly increasing. Disallowing max_id from shrinking | |
415 | * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU | |
416 | * with the highest x2APIC ID is toggling its APIC on and off. | |
417 | */ | |
418 | xapic_id_mismatch = false; | |
419 | ||
420 | kvm_for_each_vcpu(i, vcpu, kvm) | |
421 | if (kvm_apic_present(vcpu)) | |
422 | max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); | |
423 | ||
424 | new = kvzalloc(sizeof(struct kvm_apic_map) + | |
425 | sizeof(struct kvm_lapic *) * ((u64)max_id + 1), | |
426 | GFP_KERNEL_ACCOUNT); | |
427 | ||
428 | if (!new) | |
429 | goto out; | |
430 | ||
431 | new->max_apic_id = max_id; | |
432 | new->logical_mode = KVM_APIC_MODE_SW_DISABLED; | |
433 | ||
434 | kvm_for_each_vcpu(i, vcpu, kvm) { | |
435 | if (!kvm_apic_present(vcpu)) | |
436 | continue; | |
437 | ||
438 | r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch); | |
439 | if (r) { | |
440 | kvfree(new); | |
441 | new = NULL; | |
442 | if (r == -E2BIG) { | |
443 | cond_resched(); | |
444 | goto retry; | |
445 | } | |
446 | ||
447 | goto out; | |
448 | } | |
449 | ||
450 | kvm_recalculate_logical_map(new, vcpu); | |
451 | } | |
452 | out: | |
453 | /* | |
454 | * The optimized map is effectively KVM's internal version of APICv, | |
455 | * and all unwanted aliasing that results in disabling the optimized | |
456 | * map also applies to APICv. | |
457 | */ | |
458 | if (!new) | |
459 | kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); | |
460 | else | |
461 | kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); | |
462 | ||
463 | if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) | |
464 | kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); | |
465 | else | |
466 | kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); | |
467 | ||
468 | if (xapic_id_mismatch) | |
469 | kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); | |
470 | else | |
471 | kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); | |
472 | ||
473 | old = rcu_dereference_protected(kvm->arch.apic_map, | |
474 | lockdep_is_held(&kvm->arch.apic_map_lock)); | |
475 | rcu_assign_pointer(kvm->arch.apic_map, new); | |
476 | /* | |
477 | * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. | |
478 | * If another update has come in, leave it DIRTY. | |
479 | */ | |
480 | atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, | |
481 | UPDATE_IN_PROGRESS, CLEAN); | |
482 | mutex_unlock(&kvm->arch.apic_map_lock); | |
483 | ||
484 | if (old) | |
485 | kvfree_rcu(old, rcu); | |
486 | ||
487 | kvm_make_scan_ioapic_request(kvm); | |
488 | } | |
489 | ||
490 | static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) | |
491 | { | |
492 | bool enabled = val & APIC_SPIV_APIC_ENABLED; | |
493 | ||
494 | kvm_lapic_set_reg(apic, APIC_SPIV, val); | |
495 | ||
496 | if (enabled != apic->sw_enabled) { | |
497 | apic->sw_enabled = enabled; | |
498 | if (enabled) | |
499 | static_branch_slow_dec_deferred(&apic_sw_disabled); | |
500 | else | |
501 | static_branch_inc(&apic_sw_disabled.key); | |
502 | ||
503 | atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); | |
504 | } | |
505 | ||
506 | /* Check if there are APF page ready requests pending */ | |
507 | if (enabled) { | |
508 | kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); | |
509 | kvm_xen_sw_enable_lapic(apic->vcpu); | |
510 | } | |
511 | } | |
512 | ||
513 | static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) | |
514 | { | |
515 | kvm_lapic_set_reg(apic, APIC_ID, id << 24); | |
516 | atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); | |
517 | } | |
518 | ||
519 | static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) | |
520 | { | |
521 | kvm_lapic_set_reg(apic, APIC_LDR, id); | |
522 | atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); | |
523 | } | |
524 | ||
525 | static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) | |
526 | { | |
527 | kvm_lapic_set_reg(apic, APIC_DFR, val); | |
528 | atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); | |
529 | } | |
530 | ||
531 | static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) | |
532 | { | |
533 | u32 ldr = kvm_apic_calc_x2apic_ldr(id); | |
534 | ||
535 | WARN_ON_ONCE(id != apic->vcpu->vcpu_id); | |
536 | ||
537 | kvm_lapic_set_reg(apic, APIC_ID, id); | |
538 | kvm_lapic_set_reg(apic, APIC_LDR, ldr); | |
539 | atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); | |
540 | } | |
541 | ||
542 | static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) | |
543 | { | |
544 | return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); | |
545 | } | |
546 | ||
547 | static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) | |
548 | { | |
549 | return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; | |
550 | } | |
551 | ||
552 | static inline int apic_lvtt_period(struct kvm_lapic *apic) | |
553 | { | |
554 | return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; | |
555 | } | |
556 | ||
557 | static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) | |
558 | { | |
559 | return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; | |
560 | } | |
561 | ||
562 | static inline int apic_lvt_nmi_mode(u32 lvt_val) | |
563 | { | |
564 | return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; | |
565 | } | |
566 | ||
567 | static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index) | |
568 | { | |
569 | return apic->nr_lvt_entries > lvt_index; | |
570 | } | |
571 | ||
572 | static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu) | |
573 | { | |
574 | return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P); | |
575 | } | |
576 | ||
577 | void kvm_apic_set_version(struct kvm_vcpu *vcpu) | |
578 | { | |
579 | struct kvm_lapic *apic = vcpu->arch.apic; | |
580 | u32 v = 0; | |
581 | ||
582 | if (!lapic_in_kernel(vcpu)) | |
583 | return; | |
584 | ||
585 | v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16); | |
586 | ||
587 | /* | |
588 | * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) | |
589 | * which doesn't have EOI register; Some buggy OSes (e.g. Windows with | |
590 | * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC | |
591 | * version first and level-triggered interrupts never get EOIed in | |
592 | * IOAPIC. | |
593 | */ | |
594 | if (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) && | |
595 | !ioapic_in_kernel(vcpu->kvm)) | |
596 | v |= APIC_LVR_DIRECTED_EOI; | |
597 | kvm_lapic_set_reg(apic, APIC_LVR, v); | |
598 | } | |
599 | ||
600 | void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu) | |
601 | { | |
602 | int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); | |
603 | struct kvm_lapic *apic = vcpu->arch.apic; | |
604 | int i; | |
605 | ||
606 | if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries) | |
607 | return; | |
608 | ||
609 | /* Initialize/mask any "new" LVT entries. */ | |
610 | for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++) | |
611 | kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); | |
612 | ||
613 | apic->nr_lvt_entries = nr_lvt_entries; | |
614 | ||
615 | /* The number of LVT entries is reflected in the version register. */ | |
616 | kvm_apic_set_version(vcpu); | |
617 | } | |
618 | ||
619 | static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = { | |
620 | [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */ | |
621 | [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK, | |
622 | [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK, | |
623 | [LVT_LINT0] = LINT_MASK, | |
624 | [LVT_LINT1] = LINT_MASK, | |
625 | [LVT_ERROR] = LVT_MASK, | |
626 | [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK | |
627 | }; | |
628 | ||
629 | static int find_highest_vector(void *bitmap) | |
630 | { | |
631 | int vec; | |
632 | u32 *reg; | |
633 | ||
634 | for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; | |
635 | vec >= 0; vec -= APIC_VECTORS_PER_REG) { | |
636 | reg = bitmap + REG_POS(vec); | |
637 | if (*reg) | |
638 | return __fls(*reg) + vec; | |
639 | } | |
640 | ||
641 | return -1; | |
642 | } | |
643 | ||
644 | static u8 count_vectors(void *bitmap) | |
645 | { | |
646 | int vec; | |
647 | u32 *reg; | |
648 | u8 count = 0; | |
649 | ||
650 | for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { | |
651 | reg = bitmap + REG_POS(vec); | |
652 | count += hweight32(*reg); | |
653 | } | |
654 | ||
655 | return count; | |
656 | } | |
657 | ||
658 | bool __kvm_apic_update_irr(unsigned long *pir, void *regs, int *max_irr) | |
659 | { | |
660 | unsigned long pir_vals[NR_PIR_WORDS]; | |
661 | u32 *__pir = (void *)pir_vals; | |
662 | u32 i, vec; | |
663 | u32 irr_val, prev_irr_val; | |
664 | int max_updated_irr; | |
665 | ||
666 | max_updated_irr = -1; | |
667 | *max_irr = -1; | |
668 | ||
669 | if (!pi_harvest_pir(pir, pir_vals)) | |
670 | return false; | |
671 | ||
672 | for (i = vec = 0; i <= 7; i++, vec += 32) { | |
673 | u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10); | |
674 | ||
675 | irr_val = READ_ONCE(*p_irr); | |
676 | ||
677 | if (__pir[i]) { | |
678 | prev_irr_val = irr_val; | |
679 | do { | |
680 | irr_val = prev_irr_val | __pir[i]; | |
681 | } while (prev_irr_val != irr_val && | |
682 | !try_cmpxchg(p_irr, &prev_irr_val, irr_val)); | |
683 | ||
684 | if (prev_irr_val != irr_val) | |
685 | max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec; | |
686 | } | |
687 | if (irr_val) | |
688 | *max_irr = __fls(irr_val) + vec; | |
689 | } | |
690 | ||
691 | return ((max_updated_irr != -1) && | |
692 | (max_updated_irr == *max_irr)); | |
693 | } | |
694 | EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); | |
695 | ||
696 | bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, unsigned long *pir, int *max_irr) | |
697 | { | |
698 | struct kvm_lapic *apic = vcpu->arch.apic; | |
699 | bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr); | |
700 | ||
701 | if (unlikely(!apic->apicv_active && irr_updated)) | |
702 | apic->irr_pending = true; | |
703 | return irr_updated; | |
704 | } | |
705 | EXPORT_SYMBOL_GPL(kvm_apic_update_irr); | |
706 | ||
707 | static inline int apic_search_irr(struct kvm_lapic *apic) | |
708 | { | |
709 | return find_highest_vector(apic->regs + APIC_IRR); | |
710 | } | |
711 | ||
712 | static inline int apic_find_highest_irr(struct kvm_lapic *apic) | |
713 | { | |
714 | int result; | |
715 | ||
716 | /* | |
717 | * Note that irr_pending is just a hint. It will be always | |
718 | * true with virtual interrupt delivery enabled. | |
719 | */ | |
720 | if (!apic->irr_pending) | |
721 | return -1; | |
722 | ||
723 | result = apic_search_irr(apic); | |
724 | ASSERT(result == -1 || result >= 16); | |
725 | ||
726 | return result; | |
727 | } | |
728 | ||
729 | static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) | |
730 | { | |
731 | if (unlikely(apic->apicv_active)) { | |
732 | kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); | |
733 | } else { | |
734 | apic->irr_pending = false; | |
735 | kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); | |
736 | if (apic_search_irr(apic) != -1) | |
737 | apic->irr_pending = true; | |
738 | } | |
739 | } | |
740 | ||
741 | void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) | |
742 | { | |
743 | apic_clear_irr(vec, vcpu->arch.apic); | |
744 | } | |
745 | EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); | |
746 | ||
747 | static inline void apic_set_isr(int vec, struct kvm_lapic *apic) | |
748 | { | |
749 | if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) | |
750 | return; | |
751 | ||
752 | /* | |
753 | * With APIC virtualization enabled, all caching is disabled | |
754 | * because the processor can modify ISR under the hood. Instead | |
755 | * just set SVI. | |
756 | */ | |
757 | if (unlikely(apic->apicv_active)) | |
758 | kvm_x86_call(hwapic_isr_update)(apic->vcpu, vec); | |
759 | else { | |
760 | ++apic->isr_count; | |
761 | BUG_ON(apic->isr_count > MAX_APIC_VECTOR); | |
762 | /* | |
763 | * ISR (in service register) bit is set when injecting an interrupt. | |
764 | * The highest vector is injected. Thus the latest bit set matches | |
765 | * the highest bit in ISR. | |
766 | */ | |
767 | apic->highest_isr_cache = vec; | |
768 | } | |
769 | } | |
770 | ||
771 | static inline int apic_find_highest_isr(struct kvm_lapic *apic) | |
772 | { | |
773 | int result; | |
774 | ||
775 | /* | |
776 | * Note that isr_count is always 1, and highest_isr_cache | |
777 | * is always -1, with APIC virtualization enabled. | |
778 | */ | |
779 | if (!apic->isr_count) | |
780 | return -1; | |
781 | if (likely(apic->highest_isr_cache != -1)) | |
782 | return apic->highest_isr_cache; | |
783 | ||
784 | result = find_highest_vector(apic->regs + APIC_ISR); | |
785 | ASSERT(result == -1 || result >= 16); | |
786 | ||
787 | return result; | |
788 | } | |
789 | ||
790 | static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) | |
791 | { | |
792 | if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) | |
793 | return; | |
794 | ||
795 | /* | |
796 | * We do get here for APIC virtualization enabled if the guest | |
797 | * uses the Hyper-V APIC enlightenment. In this case we may need | |
798 | * to trigger a new interrupt delivery by writing the SVI field; | |
799 | * on the other hand isr_count and highest_isr_cache are unused | |
800 | * and must be left alone. | |
801 | */ | |
802 | if (unlikely(apic->apicv_active)) | |
803 | kvm_x86_call(hwapic_isr_update)(apic->vcpu, apic_find_highest_isr(apic)); | |
804 | else { | |
805 | --apic->isr_count; | |
806 | BUG_ON(apic->isr_count < 0); | |
807 | apic->highest_isr_cache = -1; | |
808 | } | |
809 | } | |
810 | ||
811 | void kvm_apic_update_hwapic_isr(struct kvm_vcpu *vcpu) | |
812 | { | |
813 | struct kvm_lapic *apic = vcpu->arch.apic; | |
814 | ||
815 | if (WARN_ON_ONCE(!lapic_in_kernel(vcpu)) || !apic->apicv_active) | |
816 | return; | |
817 | ||
818 | kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); | |
819 | } | |
820 | EXPORT_SYMBOL_GPL(kvm_apic_update_hwapic_isr); | |
821 | ||
822 | int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) | |
823 | { | |
824 | /* This may race with setting of irr in __apic_accept_irq() and | |
825 | * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq | |
826 | * will cause vmexit immediately and the value will be recalculated | |
827 | * on the next vmentry. | |
828 | */ | |
829 | return apic_find_highest_irr(vcpu->arch.apic); | |
830 | } | |
831 | EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); | |
832 | ||
833 | static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, | |
834 | int vector, int level, int trig_mode, | |
835 | struct dest_map *dest_map); | |
836 | ||
837 | int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, | |
838 | struct dest_map *dest_map) | |
839 | { | |
840 | struct kvm_lapic *apic = vcpu->arch.apic; | |
841 | ||
842 | return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, | |
843 | irq->level, irq->trig_mode, dest_map); | |
844 | } | |
845 | ||
846 | static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, | |
847 | struct kvm_lapic_irq *irq, u32 min) | |
848 | { | |
849 | int i, count = 0; | |
850 | struct kvm_vcpu *vcpu; | |
851 | ||
852 | if (min > map->max_apic_id) | |
853 | return 0; | |
854 | ||
855 | for_each_set_bit(i, ipi_bitmap, | |
856 | min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { | |
857 | if (map->phys_map[min + i]) { | |
858 | vcpu = map->phys_map[min + i]->vcpu; | |
859 | count += kvm_apic_set_irq(vcpu, irq, NULL); | |
860 | } | |
861 | } | |
862 | ||
863 | return count; | |
864 | } | |
865 | ||
866 | int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, | |
867 | unsigned long ipi_bitmap_high, u32 min, | |
868 | unsigned long icr, int op_64_bit) | |
869 | { | |
870 | struct kvm_apic_map *map; | |
871 | struct kvm_lapic_irq irq = {0}; | |
872 | int cluster_size = op_64_bit ? 64 : 32; | |
873 | int count; | |
874 | ||
875 | if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) | |
876 | return -KVM_EINVAL; | |
877 | ||
878 | irq.vector = icr & APIC_VECTOR_MASK; | |
879 | irq.delivery_mode = icr & APIC_MODE_MASK; | |
880 | irq.level = (icr & APIC_INT_ASSERT) != 0; | |
881 | irq.trig_mode = icr & APIC_INT_LEVELTRIG; | |
882 | ||
883 | rcu_read_lock(); | |
884 | map = rcu_dereference(kvm->arch.apic_map); | |
885 | ||
886 | count = -EOPNOTSUPP; | |
887 | if (likely(map)) { | |
888 | count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); | |
889 | min += cluster_size; | |
890 | count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); | |
891 | } | |
892 | ||
893 | rcu_read_unlock(); | |
894 | return count; | |
895 | } | |
896 | ||
897 | static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) | |
898 | { | |
899 | ||
900 | return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, | |
901 | sizeof(val)); | |
902 | } | |
903 | ||
904 | static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) | |
905 | { | |
906 | ||
907 | return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, | |
908 | sizeof(*val)); | |
909 | } | |
910 | ||
911 | static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) | |
912 | { | |
913 | return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; | |
914 | } | |
915 | ||
916 | static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) | |
917 | { | |
918 | if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) | |
919 | return; | |
920 | ||
921 | __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); | |
922 | } | |
923 | ||
924 | static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) | |
925 | { | |
926 | u8 val; | |
927 | ||
928 | if (pv_eoi_get_user(vcpu, &val) < 0) | |
929 | return false; | |
930 | ||
931 | val &= KVM_PV_EOI_ENABLED; | |
932 | ||
933 | if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) | |
934 | return false; | |
935 | ||
936 | /* | |
937 | * Clear pending bit in any case: it will be set again on vmentry. | |
938 | * While this might not be ideal from performance point of view, | |
939 | * this makes sure pv eoi is only enabled when we know it's safe. | |
940 | */ | |
941 | __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); | |
942 | ||
943 | return val; | |
944 | } | |
945 | ||
946 | static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) | |
947 | { | |
948 | int highest_irr; | |
949 | if (kvm_x86_ops.sync_pir_to_irr) | |
950 | highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu); | |
951 | else | |
952 | highest_irr = apic_find_highest_irr(apic); | |
953 | if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) | |
954 | return -1; | |
955 | return highest_irr; | |
956 | } | |
957 | ||
958 | static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) | |
959 | { | |
960 | u32 tpr, isrv, ppr, old_ppr; | |
961 | int isr; | |
962 | ||
963 | old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); | |
964 | tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); | |
965 | isr = apic_find_highest_isr(apic); | |
966 | isrv = (isr != -1) ? isr : 0; | |
967 | ||
968 | if ((tpr & 0xf0) >= (isrv & 0xf0)) | |
969 | ppr = tpr & 0xff; | |
970 | else | |
971 | ppr = isrv & 0xf0; | |
972 | ||
973 | *new_ppr = ppr; | |
974 | if (old_ppr != ppr) | |
975 | kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); | |
976 | ||
977 | return ppr < old_ppr; | |
978 | } | |
979 | ||
980 | static void apic_update_ppr(struct kvm_lapic *apic) | |
981 | { | |
982 | u32 ppr; | |
983 | ||
984 | if (__apic_update_ppr(apic, &ppr) && | |
985 | apic_has_interrupt_for_ppr(apic, ppr) != -1) | |
986 | kvm_make_request(KVM_REQ_EVENT, apic->vcpu); | |
987 | } | |
988 | ||
989 | void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) | |
990 | { | |
991 | apic_update_ppr(vcpu->arch.apic); | |
992 | } | |
993 | EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); | |
994 | ||
995 | static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) | |
996 | { | |
997 | kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); | |
998 | apic_update_ppr(apic); | |
999 | } | |
1000 | ||
1001 | static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) | |
1002 | { | |
1003 | return mda == (apic_x2apic_mode(apic) ? | |
1004 | X2APIC_BROADCAST : APIC_BROADCAST); | |
1005 | } | |
1006 | ||
1007 | static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) | |
1008 | { | |
1009 | if (kvm_apic_broadcast(apic, mda)) | |
1010 | return true; | |
1011 | ||
1012 | /* | |
1013 | * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they | |
1014 | * were in x2APIC mode if the target APIC ID can't be encoded as an | |
1015 | * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which | |
1016 | * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC | |
1017 | * mode. Match the x2APIC ID if and only if the target APIC ID can't | |
1018 | * be encoded in xAPIC to avoid spurious matches against a vCPU that | |
1019 | * changed its (addressable) xAPIC ID (which is writable). | |
1020 | */ | |
1021 | if (apic_x2apic_mode(apic) || mda > 0xff) | |
1022 | return mda == kvm_x2apic_id(apic); | |
1023 | ||
1024 | return mda == kvm_xapic_id(apic); | |
1025 | } | |
1026 | ||
1027 | static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) | |
1028 | { | |
1029 | u32 logical_id; | |
1030 | ||
1031 | if (kvm_apic_broadcast(apic, mda)) | |
1032 | return true; | |
1033 | ||
1034 | logical_id = kvm_lapic_get_reg(apic, APIC_LDR); | |
1035 | ||
1036 | if (apic_x2apic_mode(apic)) | |
1037 | return ((logical_id >> 16) == (mda >> 16)) | |
1038 | && (logical_id & mda & 0xffff) != 0; | |
1039 | ||
1040 | logical_id = GET_APIC_LOGICAL_ID(logical_id); | |
1041 | ||
1042 | switch (kvm_lapic_get_reg(apic, APIC_DFR)) { | |
1043 | case APIC_DFR_FLAT: | |
1044 | return (logical_id & mda) != 0; | |
1045 | case APIC_DFR_CLUSTER: | |
1046 | return ((logical_id >> 4) == (mda >> 4)) | |
1047 | && (logical_id & mda & 0xf) != 0; | |
1048 | default: | |
1049 | return false; | |
1050 | } | |
1051 | } | |
1052 | ||
1053 | /* The KVM local APIC implementation has two quirks: | |
1054 | * | |
1055 | * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs | |
1056 | * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. | |
1057 | * KVM doesn't do that aliasing. | |
1058 | * | |
1059 | * - in-kernel IOAPIC messages have to be delivered directly to | |
1060 | * x2APIC, because the kernel does not support interrupt remapping. | |
1061 | * In order to support broadcast without interrupt remapping, x2APIC | |
1062 | * rewrites the destination of non-IPI messages from APIC_BROADCAST | |
1063 | * to X2APIC_BROADCAST. | |
1064 | * | |
1065 | * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is | |
1066 | * important when userspace wants to use x2APIC-format MSIs, because | |
1067 | * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". | |
1068 | */ | |
1069 | static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, | |
1070 | struct kvm_lapic *source, struct kvm_lapic *target) | |
1071 | { | |
1072 | bool ipi = source != NULL; | |
1073 | ||
1074 | if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && | |
1075 | !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) | |
1076 | return X2APIC_BROADCAST; | |
1077 | ||
1078 | return dest_id; | |
1079 | } | |
1080 | ||
1081 | bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, | |
1082 | int shorthand, unsigned int dest, int dest_mode) | |
1083 | { | |
1084 | struct kvm_lapic *target = vcpu->arch.apic; | |
1085 | u32 mda = kvm_apic_mda(vcpu, dest, source, target); | |
1086 | ||
1087 | ASSERT(target); | |
1088 | switch (shorthand) { | |
1089 | case APIC_DEST_NOSHORT: | |
1090 | if (dest_mode == APIC_DEST_PHYSICAL) | |
1091 | return kvm_apic_match_physical_addr(target, mda); | |
1092 | else | |
1093 | return kvm_apic_match_logical_addr(target, mda); | |
1094 | case APIC_DEST_SELF: | |
1095 | return target == source; | |
1096 | case APIC_DEST_ALLINC: | |
1097 | return true; | |
1098 | case APIC_DEST_ALLBUT: | |
1099 | return target != source; | |
1100 | default: | |
1101 | return false; | |
1102 | } | |
1103 | } | |
1104 | EXPORT_SYMBOL_GPL(kvm_apic_match_dest); | |
1105 | ||
1106 | int kvm_vector_to_index(u32 vector, u32 dest_vcpus, | |
1107 | const unsigned long *bitmap, u32 bitmap_size) | |
1108 | { | |
1109 | u32 mod; | |
1110 | int i, idx = -1; | |
1111 | ||
1112 | mod = vector % dest_vcpus; | |
1113 | ||
1114 | for (i = 0; i <= mod; i++) { | |
1115 | idx = find_next_bit(bitmap, bitmap_size, idx + 1); | |
1116 | BUG_ON(idx == bitmap_size); | |
1117 | } | |
1118 | ||
1119 | return idx; | |
1120 | } | |
1121 | ||
1122 | static void kvm_apic_disabled_lapic_found(struct kvm *kvm) | |
1123 | { | |
1124 | if (!kvm->arch.disabled_lapic_found) { | |
1125 | kvm->arch.disabled_lapic_found = true; | |
1126 | pr_info("Disabled LAPIC found during irq injection\n"); | |
1127 | } | |
1128 | } | |
1129 | ||
1130 | static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, | |
1131 | struct kvm_lapic_irq *irq, struct kvm_apic_map *map) | |
1132 | { | |
1133 | if (kvm->arch.x2apic_broadcast_quirk_disabled) { | |
1134 | if ((irq->dest_id == APIC_BROADCAST && | |
1135 | map->logical_mode != KVM_APIC_MODE_X2APIC)) | |
1136 | return true; | |
1137 | if (irq->dest_id == X2APIC_BROADCAST) | |
1138 | return true; | |
1139 | } else { | |
1140 | bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); | |
1141 | if (irq->dest_id == (x2apic_ipi ? | |
1142 | X2APIC_BROADCAST : APIC_BROADCAST)) | |
1143 | return true; | |
1144 | } | |
1145 | ||
1146 | return false; | |
1147 | } | |
1148 | ||
1149 | /* Return true if the interrupt can be handled by using *bitmap as index mask | |
1150 | * for valid destinations in *dst array. | |
1151 | * Return false if kvm_apic_map_get_dest_lapic did nothing useful. | |
1152 | * Note: we may have zero kvm_lapic destinations when we return true, which | |
1153 | * means that the interrupt should be dropped. In this case, *bitmap would be | |
1154 | * zero and *dst undefined. | |
1155 | */ | |
1156 | static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, | |
1157 | struct kvm_lapic **src, struct kvm_lapic_irq *irq, | |
1158 | struct kvm_apic_map *map, struct kvm_lapic ***dst, | |
1159 | unsigned long *bitmap) | |
1160 | { | |
1161 | int i, lowest; | |
1162 | ||
1163 | if (irq->shorthand == APIC_DEST_SELF && src) { | |
1164 | *dst = src; | |
1165 | *bitmap = 1; | |
1166 | return true; | |
1167 | } else if (irq->shorthand) | |
1168 | return false; | |
1169 | ||
1170 | if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) | |
1171 | return false; | |
1172 | ||
1173 | if (irq->dest_mode == APIC_DEST_PHYSICAL) { | |
1174 | if (irq->dest_id > map->max_apic_id) { | |
1175 | *bitmap = 0; | |
1176 | } else { | |
1177 | u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); | |
1178 | *dst = &map->phys_map[dest_id]; | |
1179 | *bitmap = 1; | |
1180 | } | |
1181 | return true; | |
1182 | } | |
1183 | ||
1184 | *bitmap = 0; | |
1185 | if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, | |
1186 | (u16 *)bitmap)) | |
1187 | return false; | |
1188 | ||
1189 | if (!kvm_lowest_prio_delivery(irq)) | |
1190 | return true; | |
1191 | ||
1192 | if (!kvm_vector_hashing_enabled()) { | |
1193 | lowest = -1; | |
1194 | for_each_set_bit(i, bitmap, 16) { | |
1195 | if (!(*dst)[i]) | |
1196 | continue; | |
1197 | if (lowest < 0) | |
1198 | lowest = i; | |
1199 | else if (kvm_apic_compare_prio((*dst)[i]->vcpu, | |
1200 | (*dst)[lowest]->vcpu) < 0) | |
1201 | lowest = i; | |
1202 | } | |
1203 | } else { | |
1204 | if (!*bitmap) | |
1205 | return true; | |
1206 | ||
1207 | lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), | |
1208 | bitmap, 16); | |
1209 | ||
1210 | if (!(*dst)[lowest]) { | |
1211 | kvm_apic_disabled_lapic_found(kvm); | |
1212 | *bitmap = 0; | |
1213 | return true; | |
1214 | } | |
1215 | } | |
1216 | ||
1217 | *bitmap = (lowest >= 0) ? 1 << lowest : 0; | |
1218 | ||
1219 | return true; | |
1220 | } | |
1221 | ||
1222 | bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, | |
1223 | struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) | |
1224 | { | |
1225 | struct kvm_apic_map *map; | |
1226 | unsigned long bitmap; | |
1227 | struct kvm_lapic **dst = NULL; | |
1228 | int i; | |
1229 | bool ret; | |
1230 | ||
1231 | *r = -1; | |
1232 | ||
1233 | if (irq->shorthand == APIC_DEST_SELF) { | |
1234 | if (KVM_BUG_ON(!src, kvm)) { | |
1235 | *r = 0; | |
1236 | return true; | |
1237 | } | |
1238 | *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); | |
1239 | return true; | |
1240 | } | |
1241 | ||
1242 | rcu_read_lock(); | |
1243 | map = rcu_dereference(kvm->arch.apic_map); | |
1244 | ||
1245 | ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); | |
1246 | if (ret) { | |
1247 | *r = 0; | |
1248 | for_each_set_bit(i, &bitmap, 16) { | |
1249 | if (!dst[i]) | |
1250 | continue; | |
1251 | *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); | |
1252 | } | |
1253 | } | |
1254 | ||
1255 | rcu_read_unlock(); | |
1256 | return ret; | |
1257 | } | |
1258 | ||
1259 | /* | |
1260 | * This routine tries to handle interrupts in posted mode, here is how | |
1261 | * it deals with different cases: | |
1262 | * - For single-destination interrupts, handle it in posted mode | |
1263 | * - Else if vector hashing is enabled and it is a lowest-priority | |
1264 | * interrupt, handle it in posted mode and use the following mechanism | |
1265 | * to find the destination vCPU. | |
1266 | * 1. For lowest-priority interrupts, store all the possible | |
1267 | * destination vCPUs in an array. | |
1268 | * 2. Use "guest vector % max number of destination vCPUs" to find | |
1269 | * the right destination vCPU in the array for the lowest-priority | |
1270 | * interrupt. | |
1271 | * - Otherwise, use remapped mode to inject the interrupt. | |
1272 | */ | |
1273 | bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, | |
1274 | struct kvm_vcpu **dest_vcpu) | |
1275 | { | |
1276 | struct kvm_apic_map *map; | |
1277 | unsigned long bitmap; | |
1278 | struct kvm_lapic **dst = NULL; | |
1279 | bool ret = false; | |
1280 | ||
1281 | if (irq->shorthand) | |
1282 | return false; | |
1283 | ||
1284 | rcu_read_lock(); | |
1285 | map = rcu_dereference(kvm->arch.apic_map); | |
1286 | ||
1287 | if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && | |
1288 | hweight16(bitmap) == 1) { | |
1289 | unsigned long i = find_first_bit(&bitmap, 16); | |
1290 | ||
1291 | if (dst[i]) { | |
1292 | *dest_vcpu = dst[i]->vcpu; | |
1293 | ret = true; | |
1294 | } | |
1295 | } | |
1296 | ||
1297 | rcu_read_unlock(); | |
1298 | return ret; | |
1299 | } | |
1300 | ||
1301 | /* | |
1302 | * Add a pending IRQ into lapic. | |
1303 | * Return 1 if successfully added and 0 if discarded. | |
1304 | */ | |
1305 | static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, | |
1306 | int vector, int level, int trig_mode, | |
1307 | struct dest_map *dest_map) | |
1308 | { | |
1309 | int result = 0; | |
1310 | struct kvm_vcpu *vcpu = apic->vcpu; | |
1311 | ||
1312 | trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, | |
1313 | trig_mode, vector); | |
1314 | switch (delivery_mode) { | |
1315 | case APIC_DM_LOWEST: | |
1316 | vcpu->arch.apic_arb_prio++; | |
1317 | fallthrough; | |
1318 | case APIC_DM_FIXED: | |
1319 | if (unlikely(trig_mode && !level)) | |
1320 | break; | |
1321 | ||
1322 | /* FIXME add logic for vcpu on reset */ | |
1323 | if (unlikely(!apic_enabled(apic))) | |
1324 | break; | |
1325 | ||
1326 | result = 1; | |
1327 | ||
1328 | if (dest_map) { | |
1329 | __set_bit(vcpu->vcpu_id, dest_map->map); | |
1330 | dest_map->vectors[vcpu->vcpu_id] = vector; | |
1331 | } | |
1332 | ||
1333 | if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { | |
1334 | if (trig_mode) | |
1335 | kvm_lapic_set_vector(vector, | |
1336 | apic->regs + APIC_TMR); | |
1337 | else | |
1338 | kvm_lapic_clear_vector(vector, | |
1339 | apic->regs + APIC_TMR); | |
1340 | } | |
1341 | ||
1342 | kvm_x86_call(deliver_interrupt)(apic, delivery_mode, | |
1343 | trig_mode, vector); | |
1344 | break; | |
1345 | ||
1346 | case APIC_DM_REMRD: | |
1347 | result = 1; | |
1348 | vcpu->arch.pv.pv_unhalted = 1; | |
1349 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
1350 | kvm_vcpu_kick(vcpu); | |
1351 | break; | |
1352 | ||
1353 | case APIC_DM_SMI: | |
1354 | if (!kvm_inject_smi(vcpu)) { | |
1355 | kvm_vcpu_kick(vcpu); | |
1356 | result = 1; | |
1357 | } | |
1358 | break; | |
1359 | ||
1360 | case APIC_DM_NMI: | |
1361 | result = 1; | |
1362 | kvm_inject_nmi(vcpu); | |
1363 | kvm_vcpu_kick(vcpu); | |
1364 | break; | |
1365 | ||
1366 | case APIC_DM_INIT: | |
1367 | if (!trig_mode || level) { | |
1368 | result = 1; | |
1369 | /* assumes that there are only KVM_APIC_INIT/SIPI */ | |
1370 | apic->pending_events = (1UL << KVM_APIC_INIT); | |
1371 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
1372 | kvm_vcpu_kick(vcpu); | |
1373 | } | |
1374 | break; | |
1375 | ||
1376 | case APIC_DM_STARTUP: | |
1377 | result = 1; | |
1378 | apic->sipi_vector = vector; | |
1379 | /* make sure sipi_vector is visible for the receiver */ | |
1380 | smp_wmb(); | |
1381 | set_bit(KVM_APIC_SIPI, &apic->pending_events); | |
1382 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
1383 | kvm_vcpu_kick(vcpu); | |
1384 | break; | |
1385 | ||
1386 | case APIC_DM_EXTINT: | |
1387 | /* | |
1388 | * Should only be called by kvm_apic_local_deliver() with LVT0, | |
1389 | * before NMI watchdog was enabled. Already handled by | |
1390 | * kvm_apic_accept_pic_intr(). | |
1391 | */ | |
1392 | break; | |
1393 | ||
1394 | default: | |
1395 | printk(KERN_ERR "TODO: unsupported delivery mode %x\n", | |
1396 | delivery_mode); | |
1397 | break; | |
1398 | } | |
1399 | return result; | |
1400 | } | |
1401 | ||
1402 | /* | |
1403 | * This routine identifies the destination vcpus mask meant to receive the | |
1404 | * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find | |
1405 | * out the destination vcpus array and set the bitmap or it traverses to | |
1406 | * each available vcpu to identify the same. | |
1407 | */ | |
1408 | void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, | |
1409 | unsigned long *vcpu_bitmap) | |
1410 | { | |
1411 | struct kvm_lapic **dest_vcpu = NULL; | |
1412 | struct kvm_lapic *src = NULL; | |
1413 | struct kvm_apic_map *map; | |
1414 | struct kvm_vcpu *vcpu; | |
1415 | unsigned long bitmap, i; | |
1416 | int vcpu_idx; | |
1417 | bool ret; | |
1418 | ||
1419 | rcu_read_lock(); | |
1420 | map = rcu_dereference(kvm->arch.apic_map); | |
1421 | ||
1422 | ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, | |
1423 | &bitmap); | |
1424 | if (ret) { | |
1425 | for_each_set_bit(i, &bitmap, 16) { | |
1426 | if (!dest_vcpu[i]) | |
1427 | continue; | |
1428 | vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; | |
1429 | __set_bit(vcpu_idx, vcpu_bitmap); | |
1430 | } | |
1431 | } else { | |
1432 | kvm_for_each_vcpu(i, vcpu, kvm) { | |
1433 | if (!kvm_apic_present(vcpu)) | |
1434 | continue; | |
1435 | if (!kvm_apic_match_dest(vcpu, NULL, | |
1436 | irq->shorthand, | |
1437 | irq->dest_id, | |
1438 | irq->dest_mode)) | |
1439 | continue; | |
1440 | __set_bit(i, vcpu_bitmap); | |
1441 | } | |
1442 | } | |
1443 | rcu_read_unlock(); | |
1444 | } | |
1445 | ||
1446 | int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) | |
1447 | { | |
1448 | return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; | |
1449 | } | |
1450 | ||
1451 | static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) | |
1452 | { | |
1453 | return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); | |
1454 | } | |
1455 | ||
1456 | static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) | |
1457 | { | |
1458 | int trigger_mode; | |
1459 | ||
1460 | /* Eoi the ioapic only if the ioapic doesn't own the vector. */ | |
1461 | if (!kvm_ioapic_handles_vector(apic, vector)) | |
1462 | return; | |
1463 | ||
1464 | /* | |
1465 | * If the intercepted EOI is for an IRQ that was pending from previous | |
1466 | * routing, then re-scan the I/O APIC routes as EOIs for the IRQ likely | |
1467 | * no longer need to be intercepted. | |
1468 | */ | |
1469 | if (apic->vcpu->arch.highest_stale_pending_ioapic_eoi == vector) | |
1470 | kvm_make_request(KVM_REQ_SCAN_IOAPIC, apic->vcpu); | |
1471 | ||
1472 | /* Request a KVM exit to inform the userspace IOAPIC. */ | |
1473 | if (irqchip_split(apic->vcpu->kvm)) { | |
1474 | apic->vcpu->arch.pending_ioapic_eoi = vector; | |
1475 | kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); | |
1476 | return; | |
1477 | } | |
1478 | ||
1479 | if (apic_test_vector(vector, apic->regs + APIC_TMR)) | |
1480 | trigger_mode = IOAPIC_LEVEL_TRIG; | |
1481 | else | |
1482 | trigger_mode = IOAPIC_EDGE_TRIG; | |
1483 | ||
1484 | kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); | |
1485 | } | |
1486 | ||
1487 | static int apic_set_eoi(struct kvm_lapic *apic) | |
1488 | { | |
1489 | int vector = apic_find_highest_isr(apic); | |
1490 | ||
1491 | trace_kvm_eoi(apic, vector); | |
1492 | ||
1493 | /* | |
1494 | * Not every write EOI will has corresponding ISR, | |
1495 | * one example is when Kernel check timer on setup_IO_APIC | |
1496 | */ | |
1497 | if (vector == -1) | |
1498 | return vector; | |
1499 | ||
1500 | apic_clear_isr(vector, apic); | |
1501 | apic_update_ppr(apic); | |
1502 | ||
1503 | if (kvm_hv_synic_has_vector(apic->vcpu, vector)) | |
1504 | kvm_hv_synic_send_eoi(apic->vcpu, vector); | |
1505 | ||
1506 | kvm_ioapic_send_eoi(apic, vector); | |
1507 | kvm_make_request(KVM_REQ_EVENT, apic->vcpu); | |
1508 | return vector; | |
1509 | } | |
1510 | ||
1511 | /* | |
1512 | * this interface assumes a trap-like exit, which has already finished | |
1513 | * desired side effect including vISR and vPPR update. | |
1514 | */ | |
1515 | void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) | |
1516 | { | |
1517 | struct kvm_lapic *apic = vcpu->arch.apic; | |
1518 | ||
1519 | trace_kvm_eoi(apic, vector); | |
1520 | ||
1521 | kvm_ioapic_send_eoi(apic, vector); | |
1522 | kvm_make_request(KVM_REQ_EVENT, apic->vcpu); | |
1523 | } | |
1524 | EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); | |
1525 | ||
1526 | void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) | |
1527 | { | |
1528 | struct kvm_lapic_irq irq; | |
1529 | ||
1530 | /* KVM has no delay and should always clear the BUSY/PENDING flag. */ | |
1531 | WARN_ON_ONCE(icr_low & APIC_ICR_BUSY); | |
1532 | ||
1533 | irq.vector = icr_low & APIC_VECTOR_MASK; | |
1534 | irq.delivery_mode = icr_low & APIC_MODE_MASK; | |
1535 | irq.dest_mode = icr_low & APIC_DEST_MASK; | |
1536 | irq.level = (icr_low & APIC_INT_ASSERT) != 0; | |
1537 | irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; | |
1538 | irq.shorthand = icr_low & APIC_SHORT_MASK; | |
1539 | irq.msi_redir_hint = false; | |
1540 | if (apic_x2apic_mode(apic)) | |
1541 | irq.dest_id = icr_high; | |
1542 | else | |
1543 | irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high); | |
1544 | ||
1545 | trace_kvm_apic_ipi(icr_low, irq.dest_id); | |
1546 | ||
1547 | kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); | |
1548 | } | |
1549 | EXPORT_SYMBOL_GPL(kvm_apic_send_ipi); | |
1550 | ||
1551 | static u32 apic_get_tmcct(struct kvm_lapic *apic) | |
1552 | { | |
1553 | ktime_t remaining, now; | |
1554 | s64 ns; | |
1555 | ||
1556 | ASSERT(apic != NULL); | |
1557 | ||
1558 | /* if initial count is 0, current count should also be 0 */ | |
1559 | if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || | |
1560 | apic->lapic_timer.period == 0) | |
1561 | return 0; | |
1562 | ||
1563 | now = ktime_get(); | |
1564 | remaining = ktime_sub(apic->lapic_timer.target_expiration, now); | |
1565 | if (ktime_to_ns(remaining) < 0) | |
1566 | remaining = 0; | |
1567 | ||
1568 | ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); | |
1569 | return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns * | |
1570 | apic->divide_count)); | |
1571 | } | |
1572 | ||
1573 | static void __report_tpr_access(struct kvm_lapic *apic, bool write) | |
1574 | { | |
1575 | struct kvm_vcpu *vcpu = apic->vcpu; | |
1576 | struct kvm_run *run = vcpu->run; | |
1577 | ||
1578 | kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); | |
1579 | run->tpr_access.rip = kvm_rip_read(vcpu); | |
1580 | run->tpr_access.is_write = write; | |
1581 | } | |
1582 | ||
1583 | static inline void report_tpr_access(struct kvm_lapic *apic, bool write) | |
1584 | { | |
1585 | if (apic->vcpu->arch.tpr_access_reporting) | |
1586 | __report_tpr_access(apic, write); | |
1587 | } | |
1588 | ||
1589 | static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) | |
1590 | { | |
1591 | u32 val = 0; | |
1592 | ||
1593 | if (offset >= LAPIC_MMIO_LENGTH) | |
1594 | return 0; | |
1595 | ||
1596 | switch (offset) { | |
1597 | case APIC_ARBPRI: | |
1598 | break; | |
1599 | ||
1600 | case APIC_TMCCT: /* Timer CCR */ | |
1601 | if (apic_lvtt_tscdeadline(apic)) | |
1602 | return 0; | |
1603 | ||
1604 | val = apic_get_tmcct(apic); | |
1605 | break; | |
1606 | case APIC_PROCPRI: | |
1607 | apic_update_ppr(apic); | |
1608 | val = kvm_lapic_get_reg(apic, offset); | |
1609 | break; | |
1610 | case APIC_TASKPRI: | |
1611 | report_tpr_access(apic, false); | |
1612 | fallthrough; | |
1613 | default: | |
1614 | val = kvm_lapic_get_reg(apic, offset); | |
1615 | break; | |
1616 | } | |
1617 | ||
1618 | return val; | |
1619 | } | |
1620 | ||
1621 | static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) | |
1622 | { | |
1623 | return container_of(dev, struct kvm_lapic, dev); | |
1624 | } | |
1625 | ||
1626 | #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) | |
1627 | #define APIC_REGS_MASK(first, count) \ | |
1628 | (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) | |
1629 | ||
1630 | u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic) | |
1631 | { | |
1632 | /* Leave bits '0' for reserved and write-only registers. */ | |
1633 | u64 valid_reg_mask = | |
1634 | APIC_REG_MASK(APIC_ID) | | |
1635 | APIC_REG_MASK(APIC_LVR) | | |
1636 | APIC_REG_MASK(APIC_TASKPRI) | | |
1637 | APIC_REG_MASK(APIC_PROCPRI) | | |
1638 | APIC_REG_MASK(APIC_LDR) | | |
1639 | APIC_REG_MASK(APIC_SPIV) | | |
1640 | APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | | |
1641 | APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | | |
1642 | APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | | |
1643 | APIC_REG_MASK(APIC_ESR) | | |
1644 | APIC_REG_MASK(APIC_ICR) | | |
1645 | APIC_REG_MASK(APIC_LVTT) | | |
1646 | APIC_REG_MASK(APIC_LVTTHMR) | | |
1647 | APIC_REG_MASK(APIC_LVTPC) | | |
1648 | APIC_REG_MASK(APIC_LVT0) | | |
1649 | APIC_REG_MASK(APIC_LVT1) | | |
1650 | APIC_REG_MASK(APIC_LVTERR) | | |
1651 | APIC_REG_MASK(APIC_TMICT) | | |
1652 | APIC_REG_MASK(APIC_TMCCT) | | |
1653 | APIC_REG_MASK(APIC_TDCR); | |
1654 | ||
1655 | if (kvm_lapic_lvt_supported(apic, LVT_CMCI)) | |
1656 | valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI); | |
1657 | ||
1658 | /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */ | |
1659 | if (!apic_x2apic_mode(apic)) | |
1660 | valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) | | |
1661 | APIC_REG_MASK(APIC_DFR) | | |
1662 | APIC_REG_MASK(APIC_ICR2); | |
1663 | ||
1664 | return valid_reg_mask; | |
1665 | } | |
1666 | EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask); | |
1667 | ||
1668 | static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, | |
1669 | void *data) | |
1670 | { | |
1671 | unsigned char alignment = offset & 0xf; | |
1672 | u32 result; | |
1673 | ||
1674 | /* | |
1675 | * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in | |
1676 | * x2APIC and needs to be manually handled by the caller. | |
1677 | */ | |
1678 | WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR); | |
1679 | ||
1680 | if (alignment + len > 4) | |
1681 | return 1; | |
1682 | ||
1683 | if (offset > 0x3f0 || | |
1684 | !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset))) | |
1685 | return 1; | |
1686 | ||
1687 | result = __apic_read(apic, offset & ~0xf); | |
1688 | ||
1689 | trace_kvm_apic_read(offset, result); | |
1690 | ||
1691 | switch (len) { | |
1692 | case 1: | |
1693 | case 2: | |
1694 | case 4: | |
1695 | memcpy(data, (char *)&result + alignment, len); | |
1696 | break; | |
1697 | default: | |
1698 | printk(KERN_ERR "Local APIC read with len = %x, " | |
1699 | "should be 1,2, or 4 instead\n", len); | |
1700 | break; | |
1701 | } | |
1702 | return 0; | |
1703 | } | |
1704 | ||
1705 | static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) | |
1706 | { | |
1707 | return addr >= apic->base_address && | |
1708 | addr < apic->base_address + LAPIC_MMIO_LENGTH; | |
1709 | } | |
1710 | ||
1711 | static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, | |
1712 | gpa_t address, int len, void *data) | |
1713 | { | |
1714 | struct kvm_lapic *apic = to_lapic(this); | |
1715 | u32 offset = address - apic->base_address; | |
1716 | ||
1717 | if (!apic_mmio_in_range(apic, address)) | |
1718 | return -EOPNOTSUPP; | |
1719 | ||
1720 | if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { | |
1721 | if (!kvm_check_has_quirk(vcpu->kvm, | |
1722 | KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) | |
1723 | return -EOPNOTSUPP; | |
1724 | ||
1725 | memset(data, 0xff, len); | |
1726 | return 0; | |
1727 | } | |
1728 | ||
1729 | kvm_lapic_reg_read(apic, offset, len, data); | |
1730 | ||
1731 | return 0; | |
1732 | } | |
1733 | ||
1734 | static void update_divide_count(struct kvm_lapic *apic) | |
1735 | { | |
1736 | u32 tmp1, tmp2, tdcr; | |
1737 | ||
1738 | tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); | |
1739 | tmp1 = tdcr & 0xf; | |
1740 | tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; | |
1741 | apic->divide_count = 0x1 << (tmp2 & 0x7); | |
1742 | } | |
1743 | ||
1744 | static void limit_periodic_timer_frequency(struct kvm_lapic *apic) | |
1745 | { | |
1746 | /* | |
1747 | * Do not allow the guest to program periodic timers with small | |
1748 | * interval, since the hrtimers are not throttled by the host | |
1749 | * scheduler. | |
1750 | */ | |
1751 | if (apic_lvtt_period(apic) && apic->lapic_timer.period) { | |
1752 | s64 min_period = min_timer_period_us * 1000LL; | |
1753 | ||
1754 | if (apic->lapic_timer.period < min_period) { | |
1755 | pr_info_once( | |
1756 | "vcpu %i: requested %lld ns " | |
1757 | "lapic timer period limited to %lld ns\n", | |
1758 | apic->vcpu->vcpu_id, | |
1759 | apic->lapic_timer.period, min_period); | |
1760 | apic->lapic_timer.period = min_period; | |
1761 | } | |
1762 | } | |
1763 | } | |
1764 | ||
1765 | static void cancel_hv_timer(struct kvm_lapic *apic); | |
1766 | ||
1767 | static void cancel_apic_timer(struct kvm_lapic *apic) | |
1768 | { | |
1769 | hrtimer_cancel(&apic->lapic_timer.timer); | |
1770 | preempt_disable(); | |
1771 | if (apic->lapic_timer.hv_timer_in_use) | |
1772 | cancel_hv_timer(apic); | |
1773 | preempt_enable(); | |
1774 | atomic_set(&apic->lapic_timer.pending, 0); | |
1775 | } | |
1776 | ||
1777 | static void apic_update_lvtt(struct kvm_lapic *apic) | |
1778 | { | |
1779 | u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & | |
1780 | apic->lapic_timer.timer_mode_mask; | |
1781 | ||
1782 | if (apic->lapic_timer.timer_mode != timer_mode) { | |
1783 | if (apic_lvtt_tscdeadline(apic) != (timer_mode == | |
1784 | APIC_LVT_TIMER_TSCDEADLINE)) { | |
1785 | cancel_apic_timer(apic); | |
1786 | kvm_lapic_set_reg(apic, APIC_TMICT, 0); | |
1787 | apic->lapic_timer.period = 0; | |
1788 | apic->lapic_timer.tscdeadline = 0; | |
1789 | } | |
1790 | apic->lapic_timer.timer_mode = timer_mode; | |
1791 | limit_periodic_timer_frequency(apic); | |
1792 | } | |
1793 | } | |
1794 | ||
1795 | /* | |
1796 | * On APICv, this test will cause a busy wait | |
1797 | * during a higher-priority task. | |
1798 | */ | |
1799 | ||
1800 | static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) | |
1801 | { | |
1802 | struct kvm_lapic *apic = vcpu->arch.apic; | |
1803 | u32 reg; | |
1804 | ||
1805 | /* | |
1806 | * Assume a timer IRQ was "injected" if the APIC is protected. KVM's | |
1807 | * copy of the vIRR is bogus, it's the responsibility of the caller to | |
1808 | * precisely check whether or not a timer IRQ is pending. | |
1809 | */ | |
1810 | if (apic->guest_apic_protected) | |
1811 | return true; | |
1812 | ||
1813 | reg = kvm_lapic_get_reg(apic, APIC_LVTT); | |
1814 | if (kvm_apic_hw_enabled(apic)) { | |
1815 | int vec = reg & APIC_VECTOR_MASK; | |
1816 | void *bitmap = apic->regs + APIC_ISR; | |
1817 | ||
1818 | if (apic->apicv_active) | |
1819 | bitmap = apic->regs + APIC_IRR; | |
1820 | ||
1821 | if (apic_test_vector(vec, bitmap)) | |
1822 | return true; | |
1823 | } | |
1824 | return false; | |
1825 | } | |
1826 | ||
1827 | static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) | |
1828 | { | |
1829 | u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; | |
1830 | ||
1831 | /* | |
1832 | * If the guest TSC is running at a different ratio than the host, then | |
1833 | * convert the delay to nanoseconds to achieve an accurate delay. Note | |
1834 | * that __delay() uses delay_tsc whenever the hardware has TSC, thus | |
1835 | * always for VMX enabled hardware. | |
1836 | */ | |
1837 | if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) { | |
1838 | __delay(min(guest_cycles, | |
1839 | nsec_to_cycles(vcpu, timer_advance_ns))); | |
1840 | } else { | |
1841 | u64 delay_ns = guest_cycles * 1000000ULL; | |
1842 | do_div(delay_ns, vcpu->arch.virtual_tsc_khz); | |
1843 | ndelay(min_t(u32, delay_ns, timer_advance_ns)); | |
1844 | } | |
1845 | } | |
1846 | ||
1847 | static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, | |
1848 | s64 advance_expire_delta) | |
1849 | { | |
1850 | struct kvm_lapic *apic = vcpu->arch.apic; | |
1851 | u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; | |
1852 | u64 ns; | |
1853 | ||
1854 | /* Do not adjust for tiny fluctuations or large random spikes. */ | |
1855 | if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || | |
1856 | abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) | |
1857 | return; | |
1858 | ||
1859 | /* too early */ | |
1860 | if (advance_expire_delta < 0) { | |
1861 | ns = -advance_expire_delta * 1000000ULL; | |
1862 | do_div(ns, vcpu->arch.virtual_tsc_khz); | |
1863 | timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; | |
1864 | } else { | |
1865 | /* too late */ | |
1866 | ns = advance_expire_delta * 1000000ULL; | |
1867 | do_div(ns, vcpu->arch.virtual_tsc_khz); | |
1868 | timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; | |
1869 | } | |
1870 | ||
1871 | if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) | |
1872 | timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; | |
1873 | apic->lapic_timer.timer_advance_ns = timer_advance_ns; | |
1874 | } | |
1875 | ||
1876 | static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) | |
1877 | { | |
1878 | struct kvm_lapic *apic = vcpu->arch.apic; | |
1879 | u64 guest_tsc, tsc_deadline; | |
1880 | ||
1881 | tsc_deadline = apic->lapic_timer.expired_tscdeadline; | |
1882 | apic->lapic_timer.expired_tscdeadline = 0; | |
1883 | guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); | |
1884 | trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline); | |
1885 | ||
1886 | adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline); | |
1887 | ||
1888 | /* | |
1889 | * If the timer fired early, reread the TSC to account for the overhead | |
1890 | * of the above adjustment to avoid waiting longer than is necessary. | |
1891 | */ | |
1892 | if (guest_tsc < tsc_deadline) | |
1893 | guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); | |
1894 | ||
1895 | if (guest_tsc < tsc_deadline) | |
1896 | __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); | |
1897 | } | |
1898 | ||
1899 | void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) | |
1900 | { | |
1901 | if (lapic_in_kernel(vcpu) && | |
1902 | vcpu->arch.apic->lapic_timer.expired_tscdeadline && | |
1903 | vcpu->arch.apic->lapic_timer.timer_advance_ns && | |
1904 | lapic_timer_int_injected(vcpu)) | |
1905 | __kvm_wait_lapic_expire(vcpu); | |
1906 | } | |
1907 | EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); | |
1908 | ||
1909 | static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) | |
1910 | { | |
1911 | struct kvm_timer *ktimer = &apic->lapic_timer; | |
1912 | ||
1913 | kvm_apic_local_deliver(apic, APIC_LVTT); | |
1914 | if (apic_lvtt_tscdeadline(apic)) { | |
1915 | ktimer->tscdeadline = 0; | |
1916 | } else if (apic_lvtt_oneshot(apic)) { | |
1917 | ktimer->tscdeadline = 0; | |
1918 | ktimer->target_expiration = 0; | |
1919 | } | |
1920 | } | |
1921 | ||
1922 | static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) | |
1923 | { | |
1924 | struct kvm_vcpu *vcpu = apic->vcpu; | |
1925 | struct kvm_timer *ktimer = &apic->lapic_timer; | |
1926 | ||
1927 | if (atomic_read(&apic->lapic_timer.pending)) | |
1928 | return; | |
1929 | ||
1930 | if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) | |
1931 | ktimer->expired_tscdeadline = ktimer->tscdeadline; | |
1932 | ||
1933 | if (!from_timer_fn && apic->apicv_active) { | |
1934 | WARN_ON(kvm_get_running_vcpu() != vcpu); | |
1935 | kvm_apic_inject_pending_timer_irqs(apic); | |
1936 | return; | |
1937 | } | |
1938 | ||
1939 | if (kvm_use_posted_timer_interrupt(apic->vcpu)) { | |
1940 | /* | |
1941 | * Ensure the guest's timer has truly expired before posting an | |
1942 | * interrupt. Open code the relevant checks to avoid querying | |
1943 | * lapic_timer_int_injected(), which will be false since the | |
1944 | * interrupt isn't yet injected. Waiting until after injecting | |
1945 | * is not an option since that won't help a posted interrupt. | |
1946 | */ | |
1947 | if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && | |
1948 | vcpu->arch.apic->lapic_timer.timer_advance_ns) | |
1949 | __kvm_wait_lapic_expire(vcpu); | |
1950 | kvm_apic_inject_pending_timer_irqs(apic); | |
1951 | return; | |
1952 | } | |
1953 | ||
1954 | atomic_inc(&apic->lapic_timer.pending); | |
1955 | kvm_make_request(KVM_REQ_UNBLOCK, vcpu); | |
1956 | if (from_timer_fn) | |
1957 | kvm_vcpu_kick(vcpu); | |
1958 | } | |
1959 | ||
1960 | static void start_sw_tscdeadline(struct kvm_lapic *apic) | |
1961 | { | |
1962 | struct kvm_timer *ktimer = &apic->lapic_timer; | |
1963 | u64 guest_tsc, tscdeadline = ktimer->tscdeadline; | |
1964 | u64 ns = 0; | |
1965 | ktime_t expire; | |
1966 | struct kvm_vcpu *vcpu = apic->vcpu; | |
1967 | u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz; | |
1968 | unsigned long flags; | |
1969 | ktime_t now; | |
1970 | ||
1971 | if (unlikely(!tscdeadline || !this_tsc_khz)) | |
1972 | return; | |
1973 | ||
1974 | local_irq_save(flags); | |
1975 | ||
1976 | now = ktime_get(); | |
1977 | guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); | |
1978 | ||
1979 | ns = (tscdeadline - guest_tsc) * 1000000ULL; | |
1980 | do_div(ns, this_tsc_khz); | |
1981 | ||
1982 | if (likely(tscdeadline > guest_tsc) && | |
1983 | likely(ns > apic->lapic_timer.timer_advance_ns)) { | |
1984 | expire = ktime_add_ns(now, ns); | |
1985 | expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); | |
1986 | hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); | |
1987 | } else | |
1988 | apic_timer_expired(apic, false); | |
1989 | ||
1990 | local_irq_restore(flags); | |
1991 | } | |
1992 | ||
1993 | static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) | |
1994 | { | |
1995 | return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns * | |
1996 | (u64)apic->divide_count; | |
1997 | } | |
1998 | ||
1999 | static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) | |
2000 | { | |
2001 | ktime_t now, remaining; | |
2002 | u64 ns_remaining_old, ns_remaining_new; | |
2003 | ||
2004 | apic->lapic_timer.period = | |
2005 | tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); | |
2006 | limit_periodic_timer_frequency(apic); | |
2007 | ||
2008 | now = ktime_get(); | |
2009 | remaining = ktime_sub(apic->lapic_timer.target_expiration, now); | |
2010 | if (ktime_to_ns(remaining) < 0) | |
2011 | remaining = 0; | |
2012 | ||
2013 | ns_remaining_old = ktime_to_ns(remaining); | |
2014 | ns_remaining_new = mul_u64_u32_div(ns_remaining_old, | |
2015 | apic->divide_count, old_divisor); | |
2016 | ||
2017 | apic->lapic_timer.tscdeadline += | |
2018 | nsec_to_cycles(apic->vcpu, ns_remaining_new) - | |
2019 | nsec_to_cycles(apic->vcpu, ns_remaining_old); | |
2020 | apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); | |
2021 | } | |
2022 | ||
2023 | static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) | |
2024 | { | |
2025 | ktime_t now; | |
2026 | u64 tscl = rdtsc(); | |
2027 | s64 deadline; | |
2028 | ||
2029 | now = ktime_get(); | |
2030 | apic->lapic_timer.period = | |
2031 | tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); | |
2032 | ||
2033 | if (!apic->lapic_timer.period) { | |
2034 | apic->lapic_timer.tscdeadline = 0; | |
2035 | return false; | |
2036 | } | |
2037 | ||
2038 | limit_periodic_timer_frequency(apic); | |
2039 | deadline = apic->lapic_timer.period; | |
2040 | ||
2041 | if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { | |
2042 | if (unlikely(count_reg != APIC_TMICT)) { | |
2043 | deadline = tmict_to_ns(apic, | |
2044 | kvm_lapic_get_reg(apic, count_reg)); | |
2045 | if (unlikely(deadline <= 0)) { | |
2046 | if (apic_lvtt_period(apic)) | |
2047 | deadline = apic->lapic_timer.period; | |
2048 | else | |
2049 | deadline = 0; | |
2050 | } | |
2051 | else if (unlikely(deadline > apic->lapic_timer.period)) { | |
2052 | pr_info_ratelimited( | |
2053 | "vcpu %i: requested lapic timer restore with " | |
2054 | "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " | |
2055 | "Using initial count to start timer.\n", | |
2056 | apic->vcpu->vcpu_id, | |
2057 | count_reg, | |
2058 | kvm_lapic_get_reg(apic, count_reg), | |
2059 | deadline, apic->lapic_timer.period); | |
2060 | kvm_lapic_set_reg(apic, count_reg, 0); | |
2061 | deadline = apic->lapic_timer.period; | |
2062 | } | |
2063 | } | |
2064 | } | |
2065 | ||
2066 | apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + | |
2067 | nsec_to_cycles(apic->vcpu, deadline); | |
2068 | apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); | |
2069 | ||
2070 | return true; | |
2071 | } | |
2072 | ||
2073 | static void advance_periodic_target_expiration(struct kvm_lapic *apic) | |
2074 | { | |
2075 | ktime_t now = ktime_get(); | |
2076 | u64 tscl = rdtsc(); | |
2077 | ktime_t delta; | |
2078 | ||
2079 | /* | |
2080 | * Synchronize both deadlines to the same time source or | |
2081 | * differences in the periods (caused by differences in the | |
2082 | * underlying clocks or numerical approximation errors) will | |
2083 | * cause the two to drift apart over time as the errors | |
2084 | * accumulate. | |
2085 | */ | |
2086 | apic->lapic_timer.target_expiration = | |
2087 | ktime_add_ns(apic->lapic_timer.target_expiration, | |
2088 | apic->lapic_timer.period); | |
2089 | delta = ktime_sub(apic->lapic_timer.target_expiration, now); | |
2090 | apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + | |
2091 | nsec_to_cycles(apic->vcpu, delta); | |
2092 | } | |
2093 | ||
2094 | static void start_sw_period(struct kvm_lapic *apic) | |
2095 | { | |
2096 | if (!apic->lapic_timer.period) | |
2097 | return; | |
2098 | ||
2099 | if (ktime_after(ktime_get(), | |
2100 | apic->lapic_timer.target_expiration)) { | |
2101 | apic_timer_expired(apic, false); | |
2102 | ||
2103 | if (apic_lvtt_oneshot(apic)) | |
2104 | return; | |
2105 | ||
2106 | advance_periodic_target_expiration(apic); | |
2107 | } | |
2108 | ||
2109 | hrtimer_start(&apic->lapic_timer.timer, | |
2110 | apic->lapic_timer.target_expiration, | |
2111 | HRTIMER_MODE_ABS_HARD); | |
2112 | } | |
2113 | ||
2114 | bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) | |
2115 | { | |
2116 | if (!lapic_in_kernel(vcpu)) | |
2117 | return false; | |
2118 | ||
2119 | return vcpu->arch.apic->lapic_timer.hv_timer_in_use; | |
2120 | } | |
2121 | ||
2122 | static void cancel_hv_timer(struct kvm_lapic *apic) | |
2123 | { | |
2124 | WARN_ON(preemptible()); | |
2125 | WARN_ON(!apic->lapic_timer.hv_timer_in_use); | |
2126 | kvm_x86_call(cancel_hv_timer)(apic->vcpu); | |
2127 | apic->lapic_timer.hv_timer_in_use = false; | |
2128 | } | |
2129 | ||
2130 | static bool start_hv_timer(struct kvm_lapic *apic) | |
2131 | { | |
2132 | struct kvm_timer *ktimer = &apic->lapic_timer; | |
2133 | struct kvm_vcpu *vcpu = apic->vcpu; | |
2134 | bool expired; | |
2135 | ||
2136 | WARN_ON(preemptible()); | |
2137 | if (!kvm_can_use_hv_timer(vcpu)) | |
2138 | return false; | |
2139 | ||
2140 | if (!ktimer->tscdeadline) | |
2141 | return false; | |
2142 | ||
2143 | if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) | |
2144 | return false; | |
2145 | ||
2146 | ktimer->hv_timer_in_use = true; | |
2147 | hrtimer_cancel(&ktimer->timer); | |
2148 | ||
2149 | /* | |
2150 | * To simplify handling the periodic timer, leave the hv timer running | |
2151 | * even if the deadline timer has expired, i.e. rely on the resulting | |
2152 | * VM-Exit to recompute the periodic timer's target expiration. | |
2153 | */ | |
2154 | if (!apic_lvtt_period(apic)) { | |
2155 | /* | |
2156 | * Cancel the hv timer if the sw timer fired while the hv timer | |
2157 | * was being programmed, or if the hv timer itself expired. | |
2158 | */ | |
2159 | if (atomic_read(&ktimer->pending)) { | |
2160 | cancel_hv_timer(apic); | |
2161 | } else if (expired) { | |
2162 | apic_timer_expired(apic, false); | |
2163 | cancel_hv_timer(apic); | |
2164 | } | |
2165 | } | |
2166 | ||
2167 | trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); | |
2168 | ||
2169 | return true; | |
2170 | } | |
2171 | ||
2172 | static void start_sw_timer(struct kvm_lapic *apic) | |
2173 | { | |
2174 | struct kvm_timer *ktimer = &apic->lapic_timer; | |
2175 | ||
2176 | WARN_ON(preemptible()); | |
2177 | if (apic->lapic_timer.hv_timer_in_use) | |
2178 | cancel_hv_timer(apic); | |
2179 | if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) | |
2180 | return; | |
2181 | ||
2182 | if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) | |
2183 | start_sw_period(apic); | |
2184 | else if (apic_lvtt_tscdeadline(apic)) | |
2185 | start_sw_tscdeadline(apic); | |
2186 | trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); | |
2187 | } | |
2188 | ||
2189 | static void restart_apic_timer(struct kvm_lapic *apic) | |
2190 | { | |
2191 | preempt_disable(); | |
2192 | ||
2193 | if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) | |
2194 | goto out; | |
2195 | ||
2196 | if (!start_hv_timer(apic)) | |
2197 | start_sw_timer(apic); | |
2198 | out: | |
2199 | preempt_enable(); | |
2200 | } | |
2201 | ||
2202 | void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) | |
2203 | { | |
2204 | struct kvm_lapic *apic = vcpu->arch.apic; | |
2205 | ||
2206 | preempt_disable(); | |
2207 | /* If the preempt notifier has already run, it also called apic_timer_expired */ | |
2208 | if (!apic->lapic_timer.hv_timer_in_use) | |
2209 | goto out; | |
2210 | WARN_ON(kvm_vcpu_is_blocking(vcpu)); | |
2211 | apic_timer_expired(apic, false); | |
2212 | cancel_hv_timer(apic); | |
2213 | ||
2214 | if (apic_lvtt_period(apic) && apic->lapic_timer.period) { | |
2215 | advance_periodic_target_expiration(apic); | |
2216 | restart_apic_timer(apic); | |
2217 | } | |
2218 | out: | |
2219 | preempt_enable(); | |
2220 | } | |
2221 | EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); | |
2222 | ||
2223 | void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) | |
2224 | { | |
2225 | restart_apic_timer(vcpu->arch.apic); | |
2226 | } | |
2227 | ||
2228 | void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) | |
2229 | { | |
2230 | struct kvm_lapic *apic = vcpu->arch.apic; | |
2231 | ||
2232 | preempt_disable(); | |
2233 | /* Possibly the TSC deadline timer is not enabled yet */ | |
2234 | if (apic->lapic_timer.hv_timer_in_use) | |
2235 | start_sw_timer(apic); | |
2236 | preempt_enable(); | |
2237 | } | |
2238 | ||
2239 | void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) | |
2240 | { | |
2241 | struct kvm_lapic *apic = vcpu->arch.apic; | |
2242 | ||
2243 | WARN_ON(!apic->lapic_timer.hv_timer_in_use); | |
2244 | restart_apic_timer(apic); | |
2245 | } | |
2246 | ||
2247 | static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) | |
2248 | { | |
2249 | atomic_set(&apic->lapic_timer.pending, 0); | |
2250 | ||
2251 | if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) | |
2252 | && !set_target_expiration(apic, count_reg)) | |
2253 | return; | |
2254 | ||
2255 | restart_apic_timer(apic); | |
2256 | } | |
2257 | ||
2258 | static void start_apic_timer(struct kvm_lapic *apic) | |
2259 | { | |
2260 | __start_apic_timer(apic, APIC_TMICT); | |
2261 | } | |
2262 | ||
2263 | static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) | |
2264 | { | |
2265 | bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); | |
2266 | ||
2267 | if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { | |
2268 | apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; | |
2269 | if (lvt0_in_nmi_mode) { | |
2270 | atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); | |
2271 | } else | |
2272 | atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); | |
2273 | } | |
2274 | } | |
2275 | ||
2276 | static int get_lvt_index(u32 reg) | |
2277 | { | |
2278 | if (reg == APIC_LVTCMCI) | |
2279 | return LVT_CMCI; | |
2280 | if (reg < APIC_LVTT || reg > APIC_LVTERR) | |
2281 | return -1; | |
2282 | return array_index_nospec( | |
2283 | (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES); | |
2284 | } | |
2285 | ||
2286 | static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) | |
2287 | { | |
2288 | int ret = 0; | |
2289 | ||
2290 | trace_kvm_apic_write(reg, val); | |
2291 | ||
2292 | switch (reg) { | |
2293 | case APIC_ID: /* Local APIC ID */ | |
2294 | if (!apic_x2apic_mode(apic)) { | |
2295 | kvm_apic_set_xapic_id(apic, val >> 24); | |
2296 | } else { | |
2297 | ret = 1; | |
2298 | } | |
2299 | break; | |
2300 | ||
2301 | case APIC_TASKPRI: | |
2302 | report_tpr_access(apic, true); | |
2303 | apic_set_tpr(apic, val & 0xff); | |
2304 | break; | |
2305 | ||
2306 | case APIC_EOI: | |
2307 | apic_set_eoi(apic); | |
2308 | break; | |
2309 | ||
2310 | case APIC_LDR: | |
2311 | if (!apic_x2apic_mode(apic)) | |
2312 | kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); | |
2313 | else | |
2314 | ret = 1; | |
2315 | break; | |
2316 | ||
2317 | case APIC_DFR: | |
2318 | if (!apic_x2apic_mode(apic)) | |
2319 | kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); | |
2320 | else | |
2321 | ret = 1; | |
2322 | break; | |
2323 | ||
2324 | case APIC_SPIV: { | |
2325 | u32 mask = 0x3ff; | |
2326 | if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) | |
2327 | mask |= APIC_SPIV_DIRECTED_EOI; | |
2328 | apic_set_spiv(apic, val & mask); | |
2329 | if (!(val & APIC_SPIV_APIC_ENABLED)) { | |
2330 | int i; | |
2331 | ||
2332 | for (i = 0; i < apic->nr_lvt_entries; i++) { | |
2333 | kvm_lapic_set_reg(apic, APIC_LVTx(i), | |
2334 | kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED); | |
2335 | } | |
2336 | apic_update_lvtt(apic); | |
2337 | atomic_set(&apic->lapic_timer.pending, 0); | |
2338 | ||
2339 | } | |
2340 | break; | |
2341 | } | |
2342 | case APIC_ICR: | |
2343 | WARN_ON_ONCE(apic_x2apic_mode(apic)); | |
2344 | ||
2345 | /* No delay here, so we always clear the pending bit */ | |
2346 | val &= ~APIC_ICR_BUSY; | |
2347 | kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); | |
2348 | kvm_lapic_set_reg(apic, APIC_ICR, val); | |
2349 | break; | |
2350 | case APIC_ICR2: | |
2351 | if (apic_x2apic_mode(apic)) | |
2352 | ret = 1; | |
2353 | else | |
2354 | kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000); | |
2355 | break; | |
2356 | ||
2357 | case APIC_LVT0: | |
2358 | apic_manage_nmi_watchdog(apic, val); | |
2359 | fallthrough; | |
2360 | case APIC_LVTTHMR: | |
2361 | case APIC_LVTPC: | |
2362 | case APIC_LVT1: | |
2363 | case APIC_LVTERR: | |
2364 | case APIC_LVTCMCI: { | |
2365 | u32 index = get_lvt_index(reg); | |
2366 | if (!kvm_lapic_lvt_supported(apic, index)) { | |
2367 | ret = 1; | |
2368 | break; | |
2369 | } | |
2370 | if (!kvm_apic_sw_enabled(apic)) | |
2371 | val |= APIC_LVT_MASKED; | |
2372 | val &= apic_lvt_mask[index]; | |
2373 | kvm_lapic_set_reg(apic, reg, val); | |
2374 | break; | |
2375 | } | |
2376 | ||
2377 | case APIC_LVTT: | |
2378 | if (!kvm_apic_sw_enabled(apic)) | |
2379 | val |= APIC_LVT_MASKED; | |
2380 | val &= (apic_lvt_mask[LVT_TIMER] | apic->lapic_timer.timer_mode_mask); | |
2381 | kvm_lapic_set_reg(apic, APIC_LVTT, val); | |
2382 | apic_update_lvtt(apic); | |
2383 | break; | |
2384 | ||
2385 | case APIC_TMICT: | |
2386 | if (apic_lvtt_tscdeadline(apic)) | |
2387 | break; | |
2388 | ||
2389 | cancel_apic_timer(apic); | |
2390 | kvm_lapic_set_reg(apic, APIC_TMICT, val); | |
2391 | start_apic_timer(apic); | |
2392 | break; | |
2393 | ||
2394 | case APIC_TDCR: { | |
2395 | uint32_t old_divisor = apic->divide_count; | |
2396 | ||
2397 | kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); | |
2398 | update_divide_count(apic); | |
2399 | if (apic->divide_count != old_divisor && | |
2400 | apic->lapic_timer.period) { | |
2401 | hrtimer_cancel(&apic->lapic_timer.timer); | |
2402 | update_target_expiration(apic, old_divisor); | |
2403 | restart_apic_timer(apic); | |
2404 | } | |
2405 | break; | |
2406 | } | |
2407 | case APIC_ESR: | |
2408 | if (apic_x2apic_mode(apic) && val != 0) | |
2409 | ret = 1; | |
2410 | break; | |
2411 | ||
2412 | case APIC_SELF_IPI: | |
2413 | /* | |
2414 | * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold | |
2415 | * the vector, everything else is reserved. | |
2416 | */ | |
2417 | if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK)) | |
2418 | ret = 1; | |
2419 | else | |
2420 | kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0); | |
2421 | break; | |
2422 | default: | |
2423 | ret = 1; | |
2424 | break; | |
2425 | } | |
2426 | ||
2427 | /* | |
2428 | * Recalculate APIC maps if necessary, e.g. if the software enable bit | |
2429 | * was toggled, the APIC ID changed, etc... The maps are marked dirty | |
2430 | * on relevant changes, i.e. this is a nop for most writes. | |
2431 | */ | |
2432 | kvm_recalculate_apic_map(apic->vcpu->kvm); | |
2433 | ||
2434 | return ret; | |
2435 | } | |
2436 | ||
2437 | static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, | |
2438 | gpa_t address, int len, const void *data) | |
2439 | { | |
2440 | struct kvm_lapic *apic = to_lapic(this); | |
2441 | unsigned int offset = address - apic->base_address; | |
2442 | u32 val; | |
2443 | ||
2444 | if (!apic_mmio_in_range(apic, address)) | |
2445 | return -EOPNOTSUPP; | |
2446 | ||
2447 | if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { | |
2448 | if (!kvm_check_has_quirk(vcpu->kvm, | |
2449 | KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) | |
2450 | return -EOPNOTSUPP; | |
2451 | ||
2452 | return 0; | |
2453 | } | |
2454 | ||
2455 | /* | |
2456 | * APIC register must be aligned on 128-bits boundary. | |
2457 | * 32/64/128 bits registers must be accessed thru 32 bits. | |
2458 | * Refer SDM 8.4.1 | |
2459 | */ | |
2460 | if (len != 4 || (offset & 0xf)) | |
2461 | return 0; | |
2462 | ||
2463 | val = *(u32*)data; | |
2464 | ||
2465 | kvm_lapic_reg_write(apic, offset & 0xff0, val); | |
2466 | ||
2467 | return 0; | |
2468 | } | |
2469 | ||
2470 | void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) | |
2471 | { | |
2472 | kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); | |
2473 | } | |
2474 | EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); | |
2475 | ||
2476 | #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13)) | |
2477 | ||
2478 | int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data) | |
2479 | { | |
2480 | if (data & X2APIC_ICR_RESERVED_BITS) | |
2481 | return 1; | |
2482 | ||
2483 | /* | |
2484 | * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but | |
2485 | * only AMD requires it to be zero, Intel essentially just ignores the | |
2486 | * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled, | |
2487 | * the CPU performs the reserved bits checks, i.e. the underlying CPU | |
2488 | * behavior will "win". Arbitrarily clear the BUSY bit, as there is no | |
2489 | * sane way to provide consistent behavior with respect to hardware. | |
2490 | */ | |
2491 | data &= ~APIC_ICR_BUSY; | |
2492 | ||
2493 | kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32)); | |
2494 | if (kvm_x86_ops.x2apic_icr_is_split) { | |
2495 | kvm_lapic_set_reg(apic, APIC_ICR, data); | |
2496 | kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32); | |
2497 | } else { | |
2498 | kvm_lapic_set_reg64(apic, APIC_ICR, data); | |
2499 | } | |
2500 | trace_kvm_apic_write(APIC_ICR, data); | |
2501 | return 0; | |
2502 | } | |
2503 | ||
2504 | static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic) | |
2505 | { | |
2506 | if (kvm_x86_ops.x2apic_icr_is_split) | |
2507 | return (u64)kvm_lapic_get_reg(apic, APIC_ICR) | | |
2508 | (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32; | |
2509 | ||
2510 | return kvm_lapic_get_reg64(apic, APIC_ICR); | |
2511 | } | |
2512 | ||
2513 | /* emulate APIC access in a trap manner */ | |
2514 | void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) | |
2515 | { | |
2516 | struct kvm_lapic *apic = vcpu->arch.apic; | |
2517 | ||
2518 | /* | |
2519 | * ICR is a single 64-bit register when x2APIC is enabled, all others | |
2520 | * registers hold 32-bit values. For legacy xAPIC, ICR writes need to | |
2521 | * go down the common path to get the upper half from ICR2. | |
2522 | * | |
2523 | * Note, using the write helpers may incur an unnecessary write to the | |
2524 | * virtual APIC state, but KVM needs to conditionally modify the value | |
2525 | * in certain cases, e.g. to clear the ICR busy bit. The cost of extra | |
2526 | * conditional branches is likely a wash relative to the cost of the | |
2527 | * maybe-unecessary write, and both are in the noise anyways. | |
2528 | */ | |
2529 | if (apic_x2apic_mode(apic) && offset == APIC_ICR) | |
2530 | WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic))); | |
2531 | else | |
2532 | kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); | |
2533 | } | |
2534 | EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); | |
2535 | ||
2536 | void kvm_free_lapic(struct kvm_vcpu *vcpu) | |
2537 | { | |
2538 | struct kvm_lapic *apic = vcpu->arch.apic; | |
2539 | ||
2540 | if (!vcpu->arch.apic) { | |
2541 | static_branch_dec(&kvm_has_noapic_vcpu); | |
2542 | return; | |
2543 | } | |
2544 | ||
2545 | hrtimer_cancel(&apic->lapic_timer.timer); | |
2546 | ||
2547 | if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) | |
2548 | static_branch_slow_dec_deferred(&apic_hw_disabled); | |
2549 | ||
2550 | if (!apic->sw_enabled) | |
2551 | static_branch_slow_dec_deferred(&apic_sw_disabled); | |
2552 | ||
2553 | if (apic->regs) | |
2554 | free_page((unsigned long)apic->regs); | |
2555 | ||
2556 | kfree(apic); | |
2557 | } | |
2558 | ||
2559 | /* | |
2560 | *---------------------------------------------------------------------- | |
2561 | * LAPIC interface | |
2562 | *---------------------------------------------------------------------- | |
2563 | */ | |
2564 | u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) | |
2565 | { | |
2566 | struct kvm_lapic *apic = vcpu->arch.apic; | |
2567 | ||
2568 | if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) | |
2569 | return 0; | |
2570 | ||
2571 | return apic->lapic_timer.tscdeadline; | |
2572 | } | |
2573 | ||
2574 | void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) | |
2575 | { | |
2576 | struct kvm_lapic *apic = vcpu->arch.apic; | |
2577 | ||
2578 | if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) | |
2579 | return; | |
2580 | ||
2581 | hrtimer_cancel(&apic->lapic_timer.timer); | |
2582 | apic->lapic_timer.tscdeadline = data; | |
2583 | start_apic_timer(apic); | |
2584 | } | |
2585 | ||
2586 | void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) | |
2587 | { | |
2588 | apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4); | |
2589 | } | |
2590 | ||
2591 | u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) | |
2592 | { | |
2593 | u64 tpr; | |
2594 | ||
2595 | tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); | |
2596 | ||
2597 | return (tpr & 0xf0) >> 4; | |
2598 | } | |
2599 | ||
2600 | static void __kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value) | |
2601 | { | |
2602 | u64 old_value = vcpu->arch.apic_base; | |
2603 | struct kvm_lapic *apic = vcpu->arch.apic; | |
2604 | ||
2605 | vcpu->arch.apic_base = value; | |
2606 | ||
2607 | if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) | |
2608 | vcpu->arch.cpuid_dynamic_bits_dirty = true; | |
2609 | ||
2610 | if (!apic) | |
2611 | return; | |
2612 | ||
2613 | /* update jump label if enable bit changes */ | |
2614 | if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { | |
2615 | if (value & MSR_IA32_APICBASE_ENABLE) { | |
2616 | kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); | |
2617 | static_branch_slow_dec_deferred(&apic_hw_disabled); | |
2618 | /* Check if there are APF page ready requests pending */ | |
2619 | kvm_make_request(KVM_REQ_APF_READY, vcpu); | |
2620 | } else { | |
2621 | static_branch_inc(&apic_hw_disabled.key); | |
2622 | atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); | |
2623 | } | |
2624 | } | |
2625 | ||
2626 | if ((old_value ^ value) & X2APIC_ENABLE) { | |
2627 | if (value & X2APIC_ENABLE) | |
2628 | kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); | |
2629 | else if (value & MSR_IA32_APICBASE_ENABLE) | |
2630 | kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); | |
2631 | } | |
2632 | ||
2633 | if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) { | |
2634 | kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); | |
2635 | kvm_x86_call(set_virtual_apic_mode)(vcpu); | |
2636 | } | |
2637 | ||
2638 | apic->base_address = apic->vcpu->arch.apic_base & | |
2639 | MSR_IA32_APICBASE_BASE; | |
2640 | ||
2641 | if ((value & MSR_IA32_APICBASE_ENABLE) && | |
2642 | apic->base_address != APIC_DEFAULT_PHYS_BASE) { | |
2643 | kvm_set_apicv_inhibit(apic->vcpu->kvm, | |
2644 | APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); | |
2645 | } | |
2646 | } | |
2647 | ||
2648 | int kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value, bool host_initiated) | |
2649 | { | |
2650 | enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); | |
2651 | enum lapic_mode new_mode = kvm_apic_mode(value); | |
2652 | ||
2653 | if (vcpu->arch.apic_base == value) | |
2654 | return 0; | |
2655 | ||
2656 | u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | | |
2657 | (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); | |
2658 | ||
2659 | if ((value & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) | |
2660 | return 1; | |
2661 | if (!host_initiated) { | |
2662 | if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) | |
2663 | return 1; | |
2664 | if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) | |
2665 | return 1; | |
2666 | } | |
2667 | ||
2668 | __kvm_apic_set_base(vcpu, value); | |
2669 | kvm_recalculate_apic_map(vcpu->kvm); | |
2670 | return 0; | |
2671 | } | |
2672 | EXPORT_SYMBOL_GPL(kvm_apic_set_base); | |
2673 | ||
2674 | void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) | |
2675 | { | |
2676 | struct kvm_lapic *apic = vcpu->arch.apic; | |
2677 | ||
2678 | /* | |
2679 | * When APICv is enabled, KVM must always search the IRR for a pending | |
2680 | * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU | |
2681 | * isn't running. If APICv is disabled, KVM _should_ search the IRR | |
2682 | * for a pending IRQ. But KVM currently doesn't ensure *all* hardware, | |
2683 | * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching | |
2684 | * the IRR at this time could race with IRQ delivery from hardware that | |
2685 | * still sees APICv as being enabled. | |
2686 | * | |
2687 | * FIXME: Ensure other vCPUs and devices observe the change in APICv | |
2688 | * state prior to updating KVM's metadata caches, so that KVM | |
2689 | * can safely search the IRR and set irr_pending accordingly. | |
2690 | */ | |
2691 | apic->irr_pending = true; | |
2692 | ||
2693 | if (apic->apicv_active) | |
2694 | apic->isr_count = 1; | |
2695 | else | |
2696 | apic->isr_count = count_vectors(apic->regs + APIC_ISR); | |
2697 | ||
2698 | apic->highest_isr_cache = -1; | |
2699 | } | |
2700 | ||
2701 | int kvm_alloc_apic_access_page(struct kvm *kvm) | |
2702 | { | |
2703 | void __user *hva; | |
2704 | int ret = 0; | |
2705 | ||
2706 | mutex_lock(&kvm->slots_lock); | |
2707 | if (kvm->arch.apic_access_memslot_enabled || | |
2708 | kvm->arch.apic_access_memslot_inhibited) | |
2709 | goto out; | |
2710 | ||
2711 | hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, | |
2712 | APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); | |
2713 | if (IS_ERR(hva)) { | |
2714 | ret = PTR_ERR(hva); | |
2715 | goto out; | |
2716 | } | |
2717 | ||
2718 | kvm->arch.apic_access_memslot_enabled = true; | |
2719 | out: | |
2720 | mutex_unlock(&kvm->slots_lock); | |
2721 | return ret; | |
2722 | } | |
2723 | EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page); | |
2724 | ||
2725 | void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu) | |
2726 | { | |
2727 | struct kvm *kvm = vcpu->kvm; | |
2728 | ||
2729 | if (!kvm->arch.apic_access_memslot_enabled) | |
2730 | return; | |
2731 | ||
2732 | kvm_vcpu_srcu_read_unlock(vcpu); | |
2733 | ||
2734 | mutex_lock(&kvm->slots_lock); | |
2735 | ||
2736 | if (kvm->arch.apic_access_memslot_enabled) { | |
2737 | __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); | |
2738 | /* | |
2739 | * Clear "enabled" after the memslot is deleted so that a | |
2740 | * different vCPU doesn't get a false negative when checking | |
2741 | * the flag out of slots_lock. No additional memory barrier is | |
2742 | * needed as modifying memslots requires waiting other vCPUs to | |
2743 | * drop SRCU (see above), and false positives are ok as the | |
2744 | * flag is rechecked after acquiring slots_lock. | |
2745 | */ | |
2746 | kvm->arch.apic_access_memslot_enabled = false; | |
2747 | ||
2748 | /* | |
2749 | * Mark the memslot as inhibited to prevent reallocating the | |
2750 | * memslot during vCPU creation, e.g. if a vCPU is hotplugged. | |
2751 | */ | |
2752 | kvm->arch.apic_access_memslot_inhibited = true; | |
2753 | } | |
2754 | ||
2755 | mutex_unlock(&kvm->slots_lock); | |
2756 | ||
2757 | kvm_vcpu_srcu_read_lock(vcpu); | |
2758 | } | |
2759 | ||
2760 | void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) | |
2761 | { | |
2762 | struct kvm_lapic *apic = vcpu->arch.apic; | |
2763 | u64 msr_val; | |
2764 | int i; | |
2765 | ||
2766 | kvm_x86_call(apicv_pre_state_restore)(vcpu); | |
2767 | ||
2768 | if (!init_event) { | |
2769 | msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; | |
2770 | if (kvm_vcpu_is_reset_bsp(vcpu)) | |
2771 | msr_val |= MSR_IA32_APICBASE_BSP; | |
2772 | ||
2773 | /* | |
2774 | * Use the inner helper to avoid an extra recalcuation of the | |
2775 | * optimized APIC map if some other task has dirtied the map. | |
2776 | * The recalculation needed for this vCPU will be done after | |
2777 | * all APIC state has been initialized (see below). | |
2778 | */ | |
2779 | __kvm_apic_set_base(vcpu, msr_val); | |
2780 | } | |
2781 | ||
2782 | if (!apic) | |
2783 | return; | |
2784 | ||
2785 | /* Stop the timer in case it's a reset to an active apic */ | |
2786 | hrtimer_cancel(&apic->lapic_timer.timer); | |
2787 | ||
2788 | /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ | |
2789 | if (!init_event) | |
2790 | kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); | |
2791 | kvm_apic_set_version(apic->vcpu); | |
2792 | ||
2793 | for (i = 0; i < apic->nr_lvt_entries; i++) | |
2794 | kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); | |
2795 | apic_update_lvtt(apic); | |
2796 | if (kvm_vcpu_is_reset_bsp(vcpu) && | |
2797 | kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) | |
2798 | kvm_lapic_set_reg(apic, APIC_LVT0, | |
2799 | SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); | |
2800 | apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); | |
2801 | ||
2802 | kvm_apic_set_dfr(apic, 0xffffffffU); | |
2803 | apic_set_spiv(apic, 0xff); | |
2804 | kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); | |
2805 | if (!apic_x2apic_mode(apic)) | |
2806 | kvm_apic_set_ldr(apic, 0); | |
2807 | kvm_lapic_set_reg(apic, APIC_ESR, 0); | |
2808 | if (!apic_x2apic_mode(apic)) { | |
2809 | kvm_lapic_set_reg(apic, APIC_ICR, 0); | |
2810 | kvm_lapic_set_reg(apic, APIC_ICR2, 0); | |
2811 | } else { | |
2812 | kvm_lapic_set_reg64(apic, APIC_ICR, 0); | |
2813 | } | |
2814 | kvm_lapic_set_reg(apic, APIC_TDCR, 0); | |
2815 | kvm_lapic_set_reg(apic, APIC_TMICT, 0); | |
2816 | for (i = 0; i < 8; i++) { | |
2817 | kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); | |
2818 | kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); | |
2819 | kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); | |
2820 | } | |
2821 | kvm_apic_update_apicv(vcpu); | |
2822 | update_divide_count(apic); | |
2823 | atomic_set(&apic->lapic_timer.pending, 0); | |
2824 | ||
2825 | vcpu->arch.pv_eoi.msr_val = 0; | |
2826 | apic_update_ppr(apic); | |
2827 | if (apic->apicv_active) { | |
2828 | kvm_x86_call(apicv_post_state_restore)(vcpu); | |
2829 | kvm_x86_call(hwapic_isr_update)(vcpu, -1); | |
2830 | } | |
2831 | ||
2832 | vcpu->arch.apic_arb_prio = 0; | |
2833 | vcpu->arch.apic_attention = 0; | |
2834 | ||
2835 | kvm_recalculate_apic_map(vcpu->kvm); | |
2836 | } | |
2837 | ||
2838 | /* | |
2839 | *---------------------------------------------------------------------- | |
2840 | * timer interface | |
2841 | *---------------------------------------------------------------------- | |
2842 | */ | |
2843 | ||
2844 | static bool lapic_is_periodic(struct kvm_lapic *apic) | |
2845 | { | |
2846 | return apic_lvtt_period(apic); | |
2847 | } | |
2848 | ||
2849 | int apic_has_pending_timer(struct kvm_vcpu *vcpu) | |
2850 | { | |
2851 | struct kvm_lapic *apic = vcpu->arch.apic; | |
2852 | ||
2853 | if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) | |
2854 | return atomic_read(&apic->lapic_timer.pending); | |
2855 | ||
2856 | return 0; | |
2857 | } | |
2858 | ||
2859 | int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) | |
2860 | { | |
2861 | u32 reg = kvm_lapic_get_reg(apic, lvt_type); | |
2862 | int vector, mode, trig_mode; | |
2863 | int r; | |
2864 | ||
2865 | if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { | |
2866 | vector = reg & APIC_VECTOR_MASK; | |
2867 | mode = reg & APIC_MODE_MASK; | |
2868 | trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; | |
2869 | ||
2870 | r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL); | |
2871 | if (r && lvt_type == APIC_LVTPC && | |
2872 | guest_cpuid_is_intel_compatible(apic->vcpu)) | |
2873 | kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED); | |
2874 | return r; | |
2875 | } | |
2876 | return 0; | |
2877 | } | |
2878 | ||
2879 | void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) | |
2880 | { | |
2881 | struct kvm_lapic *apic = vcpu->arch.apic; | |
2882 | ||
2883 | if (apic) | |
2884 | kvm_apic_local_deliver(apic, APIC_LVT0); | |
2885 | } | |
2886 | ||
2887 | static const struct kvm_io_device_ops apic_mmio_ops = { | |
2888 | .read = apic_mmio_read, | |
2889 | .write = apic_mmio_write, | |
2890 | }; | |
2891 | ||
2892 | static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) | |
2893 | { | |
2894 | struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); | |
2895 | struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); | |
2896 | ||
2897 | apic_timer_expired(apic, true); | |
2898 | ||
2899 | if (lapic_is_periodic(apic)) { | |
2900 | advance_periodic_target_expiration(apic); | |
2901 | hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); | |
2902 | return HRTIMER_RESTART; | |
2903 | } else | |
2904 | return HRTIMER_NORESTART; | |
2905 | } | |
2906 | ||
2907 | int kvm_create_lapic(struct kvm_vcpu *vcpu) | |
2908 | { | |
2909 | struct kvm_lapic *apic; | |
2910 | ||
2911 | ASSERT(vcpu != NULL); | |
2912 | ||
2913 | if (!irqchip_in_kernel(vcpu->kvm)) { | |
2914 | static_branch_inc(&kvm_has_noapic_vcpu); | |
2915 | return 0; | |
2916 | } | |
2917 | ||
2918 | apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); | |
2919 | if (!apic) | |
2920 | goto nomem; | |
2921 | ||
2922 | vcpu->arch.apic = apic; | |
2923 | ||
2924 | if (kvm_x86_ops.alloc_apic_backing_page) | |
2925 | apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu); | |
2926 | else | |
2927 | apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); | |
2928 | if (!apic->regs) { | |
2929 | printk(KERN_ERR "malloc apic regs error for vcpu %x\n", | |
2930 | vcpu->vcpu_id); | |
2931 | goto nomem_free_apic; | |
2932 | } | |
2933 | apic->vcpu = vcpu; | |
2934 | ||
2935 | apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); | |
2936 | ||
2937 | hrtimer_setup(&apic->lapic_timer.timer, apic_timer_fn, CLOCK_MONOTONIC, | |
2938 | HRTIMER_MODE_ABS_HARD); | |
2939 | if (lapic_timer_advance) | |
2940 | apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; | |
2941 | ||
2942 | /* | |
2943 | * Stuff the APIC ENABLE bit in lieu of temporarily incrementing | |
2944 | * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). | |
2945 | */ | |
2946 | vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; | |
2947 | static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ | |
2948 | kvm_iodevice_init(&apic->dev, &apic_mmio_ops); | |
2949 | ||
2950 | /* | |
2951 | * Defer evaluating inhibits until the vCPU is first run, as this vCPU | |
2952 | * will not get notified of any changes until this vCPU is visible to | |
2953 | * other vCPUs (marked online and added to the set of vCPUs). | |
2954 | * | |
2955 | * Opportunistically mark APICv active as VMX in particularly is highly | |
2956 | * unlikely to have inhibits. Ignore the current per-VM APICv state so | |
2957 | * that vCPU creation is guaranteed to run with a deterministic value, | |
2958 | * the request will ensure the vCPU gets the correct state before VM-Entry. | |
2959 | */ | |
2960 | if (enable_apicv) { | |
2961 | apic->apicv_active = true; | |
2962 | kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); | |
2963 | } | |
2964 | ||
2965 | return 0; | |
2966 | nomem_free_apic: | |
2967 | kfree(apic); | |
2968 | vcpu->arch.apic = NULL; | |
2969 | nomem: | |
2970 | return -ENOMEM; | |
2971 | } | |
2972 | ||
2973 | int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) | |
2974 | { | |
2975 | struct kvm_lapic *apic = vcpu->arch.apic; | |
2976 | u32 ppr; | |
2977 | ||
2978 | if (!kvm_apic_present(vcpu)) | |
2979 | return -1; | |
2980 | ||
2981 | if (apic->guest_apic_protected) | |
2982 | return -1; | |
2983 | ||
2984 | __apic_update_ppr(apic, &ppr); | |
2985 | return apic_has_interrupt_for_ppr(apic, ppr); | |
2986 | } | |
2987 | EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); | |
2988 | ||
2989 | int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) | |
2990 | { | |
2991 | u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); | |
2992 | ||
2993 | if (!kvm_apic_hw_enabled(vcpu->arch.apic)) | |
2994 | return 1; | |
2995 | if ((lvt0 & APIC_LVT_MASKED) == 0 && | |
2996 | GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) | |
2997 | return 1; | |
2998 | return 0; | |
2999 | } | |
3000 | ||
3001 | void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) | |
3002 | { | |
3003 | struct kvm_lapic *apic = vcpu->arch.apic; | |
3004 | ||
3005 | if (atomic_read(&apic->lapic_timer.pending) > 0) { | |
3006 | kvm_apic_inject_pending_timer_irqs(apic); | |
3007 | atomic_set(&apic->lapic_timer.pending, 0); | |
3008 | } | |
3009 | } | |
3010 | ||
3011 | void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector) | |
3012 | { | |
3013 | struct kvm_lapic *apic = vcpu->arch.apic; | |
3014 | u32 ppr; | |
3015 | ||
3016 | if (WARN_ON_ONCE(vector < 0 || !apic)) | |
3017 | return; | |
3018 | ||
3019 | /* | |
3020 | * We get here even with APIC virtualization enabled, if doing | |
3021 | * nested virtualization and L1 runs with the "acknowledge interrupt | |
3022 | * on exit" mode. Then we cannot inject the interrupt via RVI, | |
3023 | * because the process would deliver it through the IDT. | |
3024 | */ | |
3025 | ||
3026 | apic_clear_irr(vector, apic); | |
3027 | if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) { | |
3028 | /* | |
3029 | * For auto-EOI interrupts, there might be another pending | |
3030 | * interrupt above PPR, so check whether to raise another | |
3031 | * KVM_REQ_EVENT. | |
3032 | */ | |
3033 | apic_update_ppr(apic); | |
3034 | } else { | |
3035 | /* | |
3036 | * For normal interrupts, PPR has been raised and there cannot | |
3037 | * be a higher-priority pending interrupt---except if there was | |
3038 | * a concurrent interrupt injection, but that would have | |
3039 | * triggered KVM_REQ_EVENT already. | |
3040 | */ | |
3041 | apic_set_isr(vector, apic); | |
3042 | __apic_update_ppr(apic, &ppr); | |
3043 | } | |
3044 | ||
3045 | } | |
3046 | EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt); | |
3047 | ||
3048 | static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, | |
3049 | struct kvm_lapic_state *s, bool set) | |
3050 | { | |
3051 | if (apic_x2apic_mode(vcpu->arch.apic)) { | |
3052 | u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic); | |
3053 | u32 *id = (u32 *)(s->regs + APIC_ID); | |
3054 | u32 *ldr = (u32 *)(s->regs + APIC_LDR); | |
3055 | u64 icr; | |
3056 | ||
3057 | if (vcpu->kvm->arch.x2apic_format) { | |
3058 | if (*id != x2apic_id) | |
3059 | return -EINVAL; | |
3060 | } else { | |
3061 | /* | |
3062 | * Ignore the userspace value when setting APIC state. | |
3063 | * KVM's model is that the x2APIC ID is readonly, e.g. | |
3064 | * KVM only supports delivering interrupts to KVM's | |
3065 | * version of the x2APIC ID. However, for backwards | |
3066 | * compatibility, don't reject attempts to set a | |
3067 | * mismatched ID for userspace that hasn't opted into | |
3068 | * x2apic_format. | |
3069 | */ | |
3070 | if (set) | |
3071 | *id = x2apic_id; | |
3072 | else | |
3073 | *id = x2apic_id << 24; | |
3074 | } | |
3075 | ||
3076 | /* | |
3077 | * In x2APIC mode, the LDR is fixed and based on the id. And | |
3078 | * if the ICR is _not_ split, ICR is internally a single 64-bit | |
3079 | * register, but needs to be split to ICR+ICR2 in userspace for | |
3080 | * backwards compatibility. | |
3081 | */ | |
3082 | if (set) | |
3083 | *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id); | |
3084 | ||
3085 | if (!kvm_x86_ops.x2apic_icr_is_split) { | |
3086 | if (set) { | |
3087 | icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) | | |
3088 | (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32; | |
3089 | __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr); | |
3090 | } else { | |
3091 | icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR); | |
3092 | __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32); | |
3093 | } | |
3094 | } | |
3095 | } | |
3096 | ||
3097 | return 0; | |
3098 | } | |
3099 | ||
3100 | int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) | |
3101 | { | |
3102 | memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); | |
3103 | ||
3104 | /* | |
3105 | * Get calculated timer current count for remaining timer period (if | |
3106 | * any) and store it in the returned register set. | |
3107 | */ | |
3108 | __kvm_lapic_set_reg(s->regs, APIC_TMCCT, | |
3109 | __apic_read(vcpu->arch.apic, APIC_TMCCT)); | |
3110 | ||
3111 | return kvm_apic_state_fixup(vcpu, s, false); | |
3112 | } | |
3113 | ||
3114 | int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) | |
3115 | { | |
3116 | struct kvm_lapic *apic = vcpu->arch.apic; | |
3117 | int r; | |
3118 | ||
3119 | kvm_x86_call(apicv_pre_state_restore)(vcpu); | |
3120 | ||
3121 | /* set SPIV separately to get count of SW disabled APICs right */ | |
3122 | apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); | |
3123 | ||
3124 | r = kvm_apic_state_fixup(vcpu, s, true); | |
3125 | if (r) { | |
3126 | kvm_recalculate_apic_map(vcpu->kvm); | |
3127 | return r; | |
3128 | } | |
3129 | memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); | |
3130 | ||
3131 | atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); | |
3132 | kvm_recalculate_apic_map(vcpu->kvm); | |
3133 | kvm_apic_set_version(vcpu); | |
3134 | ||
3135 | apic_update_ppr(apic); | |
3136 | cancel_apic_timer(apic); | |
3137 | apic->lapic_timer.expired_tscdeadline = 0; | |
3138 | apic_update_lvtt(apic); | |
3139 | apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); | |
3140 | update_divide_count(apic); | |
3141 | __start_apic_timer(apic, APIC_TMCCT); | |
3142 | kvm_lapic_set_reg(apic, APIC_TMCCT, 0); | |
3143 | kvm_apic_update_apicv(vcpu); | |
3144 | if (apic->apicv_active) { | |
3145 | kvm_x86_call(apicv_post_state_restore)(vcpu); | |
3146 | kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); | |
3147 | } | |
3148 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
3149 | if (ioapic_in_kernel(vcpu->kvm)) | |
3150 | kvm_rtc_eoi_tracking_restore_one(vcpu); | |
3151 | ||
3152 | vcpu->arch.apic_arb_prio = 0; | |
3153 | ||
3154 | return 0; | |
3155 | } | |
3156 | ||
3157 | void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) | |
3158 | { | |
3159 | struct hrtimer *timer; | |
3160 | ||
3161 | if (!lapic_in_kernel(vcpu) || | |
3162 | kvm_can_post_timer_interrupt(vcpu)) | |
3163 | return; | |
3164 | ||
3165 | timer = &vcpu->arch.apic->lapic_timer.timer; | |
3166 | if (hrtimer_cancel(timer)) | |
3167 | hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); | |
3168 | } | |
3169 | ||
3170 | /* | |
3171 | * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt | |
3172 | * | |
3173 | * Detect whether guest triggered PV EOI since the | |
3174 | * last entry. If yes, set EOI on guests's behalf. | |
3175 | * Clear PV EOI in guest memory in any case. | |
3176 | */ | |
3177 | static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, | |
3178 | struct kvm_lapic *apic) | |
3179 | { | |
3180 | int vector; | |
3181 | /* | |
3182 | * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host | |
3183 | * and KVM_PV_EOI_ENABLED in guest memory as follows: | |
3184 | * | |
3185 | * KVM_APIC_PV_EOI_PENDING is unset: | |
3186 | * -> host disabled PV EOI. | |
3187 | * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: | |
3188 | * -> host enabled PV EOI, guest did not execute EOI yet. | |
3189 | * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: | |
3190 | * -> host enabled PV EOI, guest executed EOI. | |
3191 | */ | |
3192 | BUG_ON(!pv_eoi_enabled(vcpu)); | |
3193 | ||
3194 | if (pv_eoi_test_and_clr_pending(vcpu)) | |
3195 | return; | |
3196 | vector = apic_set_eoi(apic); | |
3197 | trace_kvm_pv_eoi(apic, vector); | |
3198 | } | |
3199 | ||
3200 | void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) | |
3201 | { | |
3202 | u32 data; | |
3203 | ||
3204 | if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) | |
3205 | apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); | |
3206 | ||
3207 | if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) | |
3208 | return; | |
3209 | ||
3210 | if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, | |
3211 | sizeof(u32))) | |
3212 | return; | |
3213 | ||
3214 | apic_set_tpr(vcpu->arch.apic, data & 0xff); | |
3215 | } | |
3216 | ||
3217 | /* | |
3218 | * apic_sync_pv_eoi_to_guest - called before vmentry | |
3219 | * | |
3220 | * Detect whether it's safe to enable PV EOI and | |
3221 | * if yes do so. | |
3222 | */ | |
3223 | static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, | |
3224 | struct kvm_lapic *apic) | |
3225 | { | |
3226 | if (!pv_eoi_enabled(vcpu) || | |
3227 | /* IRR set or many bits in ISR: could be nested. */ | |
3228 | apic->irr_pending || | |
3229 | /* Cache not set: could be safe but we don't bother. */ | |
3230 | apic->highest_isr_cache == -1 || | |
3231 | /* Need EOI to update ioapic. */ | |
3232 | kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { | |
3233 | /* | |
3234 | * PV EOI was disabled by apic_sync_pv_eoi_from_guest | |
3235 | * so we need not do anything here. | |
3236 | */ | |
3237 | return; | |
3238 | } | |
3239 | ||
3240 | pv_eoi_set_pending(apic->vcpu); | |
3241 | } | |
3242 | ||
3243 | void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) | |
3244 | { | |
3245 | u32 data, tpr; | |
3246 | int max_irr, max_isr; | |
3247 | struct kvm_lapic *apic = vcpu->arch.apic; | |
3248 | ||
3249 | apic_sync_pv_eoi_to_guest(vcpu, apic); | |
3250 | ||
3251 | if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) | |
3252 | return; | |
3253 | ||
3254 | tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; | |
3255 | max_irr = apic_find_highest_irr(apic); | |
3256 | if (max_irr < 0) | |
3257 | max_irr = 0; | |
3258 | max_isr = apic_find_highest_isr(apic); | |
3259 | if (max_isr < 0) | |
3260 | max_isr = 0; | |
3261 | data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); | |
3262 | ||
3263 | kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, | |
3264 | sizeof(u32)); | |
3265 | } | |
3266 | ||
3267 | int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) | |
3268 | { | |
3269 | if (vapic_addr) { | |
3270 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, | |
3271 | &vcpu->arch.apic->vapic_cache, | |
3272 | vapic_addr, sizeof(u32))) | |
3273 | return -EINVAL; | |
3274 | __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); | |
3275 | } else { | |
3276 | __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); | |
3277 | } | |
3278 | ||
3279 | vcpu->arch.apic->vapic_addr = vapic_addr; | |
3280 | return 0; | |
3281 | } | |
3282 | ||
3283 | static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data) | |
3284 | { | |
3285 | u32 low; | |
3286 | ||
3287 | if (reg == APIC_ICR) { | |
3288 | *data = kvm_x2apic_icr_read(apic); | |
3289 | return 0; | |
3290 | } | |
3291 | ||
3292 | if (kvm_lapic_reg_read(apic, reg, 4, &low)) | |
3293 | return 1; | |
3294 | ||
3295 | *data = low; | |
3296 | ||
3297 | return 0; | |
3298 | } | |
3299 | ||
3300 | static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data) | |
3301 | { | |
3302 | /* | |
3303 | * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and | |
3304 | * can be written as such, all other registers remain accessible only | |
3305 | * through 32-bit reads/writes. | |
3306 | */ | |
3307 | if (reg == APIC_ICR) | |
3308 | return kvm_x2apic_icr_write(apic, data); | |
3309 | ||
3310 | /* Bits 63:32 are reserved in all other registers. */ | |
3311 | if (data >> 32) | |
3312 | return 1; | |
3313 | ||
3314 | return kvm_lapic_reg_write(apic, reg, (u32)data); | |
3315 | } | |
3316 | ||
3317 | int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) | |
3318 | { | |
3319 | struct kvm_lapic *apic = vcpu->arch.apic; | |
3320 | u32 reg = (msr - APIC_BASE_MSR) << 4; | |
3321 | ||
3322 | if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) | |
3323 | return 1; | |
3324 | ||
3325 | return kvm_lapic_msr_write(apic, reg, data); | |
3326 | } | |
3327 | ||
3328 | int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) | |
3329 | { | |
3330 | struct kvm_lapic *apic = vcpu->arch.apic; | |
3331 | u32 reg = (msr - APIC_BASE_MSR) << 4; | |
3332 | ||
3333 | if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) | |
3334 | return 1; | |
3335 | ||
3336 | return kvm_lapic_msr_read(apic, reg, data); | |
3337 | } | |
3338 | ||
3339 | int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) | |
3340 | { | |
3341 | if (!lapic_in_kernel(vcpu)) | |
3342 | return 1; | |
3343 | ||
3344 | return kvm_lapic_msr_write(vcpu->arch.apic, reg, data); | |
3345 | } | |
3346 | ||
3347 | int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) | |
3348 | { | |
3349 | if (!lapic_in_kernel(vcpu)) | |
3350 | return 1; | |
3351 | ||
3352 | return kvm_lapic_msr_read(vcpu->arch.apic, reg, data); | |
3353 | } | |
3354 | ||
3355 | int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) | |
3356 | { | |
3357 | u64 addr = data & ~KVM_MSR_ENABLED; | |
3358 | struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; | |
3359 | unsigned long new_len; | |
3360 | int ret; | |
3361 | ||
3362 | if (!IS_ALIGNED(addr, 4)) | |
3363 | return 1; | |
3364 | ||
3365 | if (data & KVM_MSR_ENABLED) { | |
3366 | if (addr == ghc->gpa && len <= ghc->len) | |
3367 | new_len = ghc->len; | |
3368 | else | |
3369 | new_len = len; | |
3370 | ||
3371 | ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); | |
3372 | if (ret) | |
3373 | return ret; | |
3374 | } | |
3375 | ||
3376 | vcpu->arch.pv_eoi.msr_val = data; | |
3377 | ||
3378 | return 0; | |
3379 | } | |
3380 | ||
3381 | int kvm_apic_accept_events(struct kvm_vcpu *vcpu) | |
3382 | { | |
3383 | struct kvm_lapic *apic = vcpu->arch.apic; | |
3384 | u8 sipi_vector; | |
3385 | int r; | |
3386 | ||
3387 | if (!kvm_apic_has_pending_init_or_sipi(vcpu)) | |
3388 | return 0; | |
3389 | ||
3390 | if (is_guest_mode(vcpu)) { | |
3391 | r = kvm_check_nested_events(vcpu); | |
3392 | if (r < 0) | |
3393 | return r == -EBUSY ? 0 : r; | |
3394 | /* | |
3395 | * Continue processing INIT/SIPI even if a nested VM-Exit | |
3396 | * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI | |
3397 | * are blocked as a result of transitioning to VMX root mode. | |
3398 | */ | |
3399 | } | |
3400 | ||
3401 | /* | |
3402 | * INITs are blocked while CPU is in specific states (SMM, VMX root | |
3403 | * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in | |
3404 | * wait-for-SIPI (WFS). | |
3405 | */ | |
3406 | if (!kvm_apic_init_sipi_allowed(vcpu)) { | |
3407 | WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); | |
3408 | clear_bit(KVM_APIC_SIPI, &apic->pending_events); | |
3409 | return 0; | |
3410 | } | |
3411 | ||
3412 | if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) { | |
3413 | kvm_vcpu_reset(vcpu, true); | |
3414 | if (kvm_vcpu_is_bsp(apic->vcpu)) | |
3415 | kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); | |
3416 | else | |
3417 | kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED); | |
3418 | } | |
3419 | if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) { | |
3420 | if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { | |
3421 | /* evaluate pending_events before reading the vector */ | |
3422 | smp_rmb(); | |
3423 | sipi_vector = apic->sipi_vector; | |
3424 | kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu, | |
3425 | sipi_vector); | |
3426 | kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); | |
3427 | } | |
3428 | } | |
3429 | return 0; | |
3430 | } | |
3431 | ||
3432 | void kvm_lapic_exit(void) | |
3433 | { | |
3434 | static_key_deferred_flush(&apic_hw_disabled); | |
3435 | WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); | |
3436 | static_key_deferred_flush(&apic_sw_disabled); | |
3437 | WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); | |
3438 | } |