]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame_incremental - block/blk-mq.c
blk-mq: improve blk_mq_try_issue_directly
[thirdparty/kernel/stable.git] / block / blk-mq.c
... / ...
CommitLineData
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/kmemleak.h>
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/sched/topology.h>
24#include <linux/sched/signal.h>
25#include <linux/delay.h>
26#include <linux/crash_dump.h>
27#include <linux/prefetch.h>
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
34#include "blk-mq-tag.h"
35#include "blk-stat.h"
36#include "blk-wbt.h"
37#include "blk-mq-sched.h"
38
39static DEFINE_MUTEX(all_q_mutex);
40static LIST_HEAD(all_q_list);
41
42static void blk_mq_poll_stats_start(struct request_queue *q);
43static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45/*
46 * Check if any of the ctx's have pending work in this hardware queue
47 */
48bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49{
50 return sbitmap_any_bit_set(&hctx->ctx_map) ||
51 !list_empty_careful(&hctx->dispatch) ||
52 blk_mq_sched_has_work(hctx);
53}
54
55/*
56 * Mark this ctx as having pending work in this hardware queue
57 */
58static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
59 struct blk_mq_ctx *ctx)
60{
61 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
62 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63}
64
65static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
66 struct blk_mq_ctx *ctx)
67{
68 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69}
70
71void blk_mq_freeze_queue_start(struct request_queue *q)
72{
73 int freeze_depth;
74
75 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
76 if (freeze_depth == 1) {
77 percpu_ref_kill(&q->q_usage_counter);
78 blk_mq_run_hw_queues(q, false);
79 }
80}
81EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
82
83void blk_mq_freeze_queue_wait(struct request_queue *q)
84{
85 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86}
87EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88
89int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
90 unsigned long timeout)
91{
92 return wait_event_timeout(q->mq_freeze_wq,
93 percpu_ref_is_zero(&q->q_usage_counter),
94 timeout);
95}
96EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97
98/*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
102void blk_freeze_queue(struct request_queue *q)
103{
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
111 blk_mq_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113}
114
115void blk_mq_freeze_queue(struct request_queue *q)
116{
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122}
123EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125void blk_mq_unfreeze_queue(struct request_queue *q)
126{
127 int freeze_depth;
128
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
132 percpu_ref_reinit(&q->q_usage_counter);
133 wake_up_all(&q->mq_freeze_wq);
134 }
135}
136EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138/**
139 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
140 * @q: request queue.
141 *
142 * Note: this function does not prevent that the struct request end_io()
143 * callback function is invoked. Additionally, it is not prevented that
144 * new queue_rq() calls occur unless the queue has been stopped first.
145 */
146void blk_mq_quiesce_queue(struct request_queue *q)
147{
148 struct blk_mq_hw_ctx *hctx;
149 unsigned int i;
150 bool rcu = false;
151
152 blk_mq_stop_hw_queues(q);
153
154 queue_for_each_hw_ctx(q, hctx, i) {
155 if (hctx->flags & BLK_MQ_F_BLOCKING)
156 synchronize_srcu(&hctx->queue_rq_srcu);
157 else
158 rcu = true;
159 }
160 if (rcu)
161 synchronize_rcu();
162}
163EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
164
165void blk_mq_wake_waiters(struct request_queue *q)
166{
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169
170 queue_for_each_hw_ctx(q, hctx, i)
171 if (blk_mq_hw_queue_mapped(hctx))
172 blk_mq_tag_wakeup_all(hctx->tags, true);
173
174 /*
175 * If we are called because the queue has now been marked as
176 * dying, we need to ensure that processes currently waiting on
177 * the queue are notified as well.
178 */
179 wake_up_all(&q->mq_freeze_wq);
180}
181
182bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
183{
184 return blk_mq_has_free_tags(hctx->tags);
185}
186EXPORT_SYMBOL(blk_mq_can_queue);
187
188void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
189 struct request *rq, unsigned int op)
190{
191 INIT_LIST_HEAD(&rq->queuelist);
192 /* csd/requeue_work/fifo_time is initialized before use */
193 rq->q = q;
194 rq->mq_ctx = ctx;
195 rq->cmd_flags = op;
196 if (blk_queue_io_stat(q))
197 rq->rq_flags |= RQF_IO_STAT;
198 /* do not touch atomic flags, it needs atomic ops against the timer */
199 rq->cpu = -1;
200 INIT_HLIST_NODE(&rq->hash);
201 RB_CLEAR_NODE(&rq->rb_node);
202 rq->rq_disk = NULL;
203 rq->part = NULL;
204 rq->start_time = jiffies;
205#ifdef CONFIG_BLK_CGROUP
206 rq->rl = NULL;
207 set_start_time_ns(rq);
208 rq->io_start_time_ns = 0;
209#endif
210 rq->nr_phys_segments = 0;
211#if defined(CONFIG_BLK_DEV_INTEGRITY)
212 rq->nr_integrity_segments = 0;
213#endif
214 rq->special = NULL;
215 /* tag was already set */
216 rq->errors = 0;
217 rq->extra_len = 0;
218
219 INIT_LIST_HEAD(&rq->timeout_list);
220 rq->timeout = 0;
221
222 rq->end_io = NULL;
223 rq->end_io_data = NULL;
224 rq->next_rq = NULL;
225
226 ctx->rq_dispatched[op_is_sync(op)]++;
227}
228EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229
230struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
231 unsigned int op)
232{
233 struct request *rq;
234 unsigned int tag;
235
236 tag = blk_mq_get_tag(data);
237 if (tag != BLK_MQ_TAG_FAIL) {
238 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
239
240 rq = tags->static_rqs[tag];
241
242 if (data->flags & BLK_MQ_REQ_INTERNAL) {
243 rq->tag = -1;
244 rq->internal_tag = tag;
245 } else {
246 if (blk_mq_tag_busy(data->hctx)) {
247 rq->rq_flags = RQF_MQ_INFLIGHT;
248 atomic_inc(&data->hctx->nr_active);
249 }
250 rq->tag = tag;
251 rq->internal_tag = -1;
252 data->hctx->tags->rqs[rq->tag] = rq;
253 }
254
255 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256 return rq;
257 }
258
259 return NULL;
260}
261EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262
263struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
264 unsigned int flags)
265{
266 struct blk_mq_alloc_data alloc_data = { .flags = flags };
267 struct request *rq;
268 int ret;
269
270 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271 if (ret)
272 return ERR_PTR(ret);
273
274 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275
276 blk_mq_put_ctx(alloc_data.ctx);
277 blk_queue_exit(q);
278
279 if (!rq)
280 return ERR_PTR(-EWOULDBLOCK);
281
282 rq->__data_len = 0;
283 rq->__sector = (sector_t) -1;
284 rq->bio = rq->biotail = NULL;
285 return rq;
286}
287EXPORT_SYMBOL(blk_mq_alloc_request);
288
289struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
290 unsigned int flags, unsigned int hctx_idx)
291{
292 struct blk_mq_alloc_data alloc_data = { .flags = flags };
293 struct request *rq;
294 unsigned int cpu;
295 int ret;
296
297 /*
298 * If the tag allocator sleeps we could get an allocation for a
299 * different hardware context. No need to complicate the low level
300 * allocator for this for the rare use case of a command tied to
301 * a specific queue.
302 */
303 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
304 return ERR_PTR(-EINVAL);
305
306 if (hctx_idx >= q->nr_hw_queues)
307 return ERR_PTR(-EIO);
308
309 ret = blk_queue_enter(q, true);
310 if (ret)
311 return ERR_PTR(ret);
312
313 /*
314 * Check if the hardware context is actually mapped to anything.
315 * If not tell the caller that it should skip this queue.
316 */
317 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
318 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
319 blk_queue_exit(q);
320 return ERR_PTR(-EXDEV);
321 }
322 cpu = cpumask_first(alloc_data.hctx->cpumask);
323 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
324
325 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326
327 blk_mq_put_ctx(alloc_data.ctx);
328 blk_queue_exit(q);
329
330 if (!rq)
331 return ERR_PTR(-EWOULDBLOCK);
332
333 return rq;
334}
335EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
336
337void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
338 struct request *rq)
339{
340 const int sched_tag = rq->internal_tag;
341 struct request_queue *q = rq->q;
342
343 if (rq->rq_flags & RQF_MQ_INFLIGHT)
344 atomic_dec(&hctx->nr_active);
345
346 wbt_done(q->rq_wb, &rq->issue_stat);
347 rq->rq_flags = 0;
348
349 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
350 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
351 if (rq->tag != -1)
352 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
353 if (sched_tag != -1)
354 blk_mq_sched_completed_request(hctx, rq);
355 blk_mq_sched_restart_queues(hctx);
356 blk_queue_exit(q);
357}
358
359static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
360 struct request *rq)
361{
362 struct blk_mq_ctx *ctx = rq->mq_ctx;
363
364 ctx->rq_completed[rq_is_sync(rq)]++;
365 __blk_mq_finish_request(hctx, ctx, rq);
366}
367
368void blk_mq_finish_request(struct request *rq)
369{
370 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
371}
372
373void blk_mq_free_request(struct request *rq)
374{
375 blk_mq_sched_put_request(rq);
376}
377EXPORT_SYMBOL_GPL(blk_mq_free_request);
378
379inline void __blk_mq_end_request(struct request *rq, int error)
380{
381 blk_account_io_done(rq);
382
383 if (rq->end_io) {
384 wbt_done(rq->q->rq_wb, &rq->issue_stat);
385 rq->end_io(rq, error);
386 } else {
387 if (unlikely(blk_bidi_rq(rq)))
388 blk_mq_free_request(rq->next_rq);
389 blk_mq_free_request(rq);
390 }
391}
392EXPORT_SYMBOL(__blk_mq_end_request);
393
394void blk_mq_end_request(struct request *rq, int error)
395{
396 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
397 BUG();
398 __blk_mq_end_request(rq, error);
399}
400EXPORT_SYMBOL(blk_mq_end_request);
401
402static void __blk_mq_complete_request_remote(void *data)
403{
404 struct request *rq = data;
405
406 rq->q->softirq_done_fn(rq);
407}
408
409static void blk_mq_ipi_complete_request(struct request *rq)
410{
411 struct blk_mq_ctx *ctx = rq->mq_ctx;
412 bool shared = false;
413 int cpu;
414
415 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
416 rq->q->softirq_done_fn(rq);
417 return;
418 }
419
420 cpu = get_cpu();
421 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
422 shared = cpus_share_cache(cpu, ctx->cpu);
423
424 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
425 rq->csd.func = __blk_mq_complete_request_remote;
426 rq->csd.info = rq;
427 rq->csd.flags = 0;
428 smp_call_function_single_async(ctx->cpu, &rq->csd);
429 } else {
430 rq->q->softirq_done_fn(rq);
431 }
432 put_cpu();
433}
434
435static void blk_mq_stat_add(struct request *rq)
436{
437 if (rq->rq_flags & RQF_STATS) {
438 blk_mq_poll_stats_start(rq->q);
439 blk_stat_add(rq);
440 }
441}
442
443static void __blk_mq_complete_request(struct request *rq)
444{
445 struct request_queue *q = rq->q;
446
447 blk_mq_stat_add(rq);
448
449 if (!q->softirq_done_fn)
450 blk_mq_end_request(rq, rq->errors);
451 else
452 blk_mq_ipi_complete_request(rq);
453}
454
455/**
456 * blk_mq_complete_request - end I/O on a request
457 * @rq: the request being processed
458 *
459 * Description:
460 * Ends all I/O on a request. It does not handle partial completions.
461 * The actual completion happens out-of-order, through a IPI handler.
462 **/
463void blk_mq_complete_request(struct request *rq, int error)
464{
465 struct request_queue *q = rq->q;
466
467 if (unlikely(blk_should_fake_timeout(q)))
468 return;
469 if (!blk_mark_rq_complete(rq)) {
470 rq->errors = error;
471 __blk_mq_complete_request(rq);
472 }
473}
474EXPORT_SYMBOL(blk_mq_complete_request);
475
476int blk_mq_request_started(struct request *rq)
477{
478 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479}
480EXPORT_SYMBOL_GPL(blk_mq_request_started);
481
482void blk_mq_start_request(struct request *rq)
483{
484 struct request_queue *q = rq->q;
485
486 blk_mq_sched_started_request(rq);
487
488 trace_block_rq_issue(q, rq);
489
490 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
491 blk_stat_set_issue_time(&rq->issue_stat);
492 rq->rq_flags |= RQF_STATS;
493 wbt_issue(q->rq_wb, &rq->issue_stat);
494 }
495
496 blk_add_timer(rq);
497
498 /*
499 * Ensure that ->deadline is visible before set the started
500 * flag and clear the completed flag.
501 */
502 smp_mb__before_atomic();
503
504 /*
505 * Mark us as started and clear complete. Complete might have been
506 * set if requeue raced with timeout, which then marked it as
507 * complete. So be sure to clear complete again when we start
508 * the request, otherwise we'll ignore the completion event.
509 */
510 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
511 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
512 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
513 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
514
515 if (q->dma_drain_size && blk_rq_bytes(rq)) {
516 /*
517 * Make sure space for the drain appears. We know we can do
518 * this because max_hw_segments has been adjusted to be one
519 * fewer than the device can handle.
520 */
521 rq->nr_phys_segments++;
522 }
523}
524EXPORT_SYMBOL(blk_mq_start_request);
525
526static void __blk_mq_requeue_request(struct request *rq)
527{
528 struct request_queue *q = rq->q;
529
530 trace_block_rq_requeue(q, rq);
531 wbt_requeue(q->rq_wb, &rq->issue_stat);
532 blk_mq_sched_requeue_request(rq);
533
534 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
535 if (q->dma_drain_size && blk_rq_bytes(rq))
536 rq->nr_phys_segments--;
537 }
538}
539
540void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
541{
542 __blk_mq_requeue_request(rq);
543
544 BUG_ON(blk_queued_rq(rq));
545 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
546}
547EXPORT_SYMBOL(blk_mq_requeue_request);
548
549static void blk_mq_requeue_work(struct work_struct *work)
550{
551 struct request_queue *q =
552 container_of(work, struct request_queue, requeue_work.work);
553 LIST_HEAD(rq_list);
554 struct request *rq, *next;
555 unsigned long flags;
556
557 spin_lock_irqsave(&q->requeue_lock, flags);
558 list_splice_init(&q->requeue_list, &rq_list);
559 spin_unlock_irqrestore(&q->requeue_lock, flags);
560
561 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
562 if (!(rq->rq_flags & RQF_SOFTBARRIER))
563 continue;
564
565 rq->rq_flags &= ~RQF_SOFTBARRIER;
566 list_del_init(&rq->queuelist);
567 blk_mq_sched_insert_request(rq, true, false, false, true);
568 }
569
570 while (!list_empty(&rq_list)) {
571 rq = list_entry(rq_list.next, struct request, queuelist);
572 list_del_init(&rq->queuelist);
573 blk_mq_sched_insert_request(rq, false, false, false, true);
574 }
575
576 blk_mq_run_hw_queues(q, false);
577}
578
579void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
580 bool kick_requeue_list)
581{
582 struct request_queue *q = rq->q;
583 unsigned long flags;
584
585 /*
586 * We abuse this flag that is otherwise used by the I/O scheduler to
587 * request head insertation from the workqueue.
588 */
589 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
590
591 spin_lock_irqsave(&q->requeue_lock, flags);
592 if (at_head) {
593 rq->rq_flags |= RQF_SOFTBARRIER;
594 list_add(&rq->queuelist, &q->requeue_list);
595 } else {
596 list_add_tail(&rq->queuelist, &q->requeue_list);
597 }
598 spin_unlock_irqrestore(&q->requeue_lock, flags);
599
600 if (kick_requeue_list)
601 blk_mq_kick_requeue_list(q);
602}
603EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
604
605void blk_mq_kick_requeue_list(struct request_queue *q)
606{
607 kblockd_schedule_delayed_work(&q->requeue_work, 0);
608}
609EXPORT_SYMBOL(blk_mq_kick_requeue_list);
610
611void blk_mq_delay_kick_requeue_list(struct request_queue *q,
612 unsigned long msecs)
613{
614 kblockd_schedule_delayed_work(&q->requeue_work,
615 msecs_to_jiffies(msecs));
616}
617EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
618
619void blk_mq_abort_requeue_list(struct request_queue *q)
620{
621 unsigned long flags;
622 LIST_HEAD(rq_list);
623
624 spin_lock_irqsave(&q->requeue_lock, flags);
625 list_splice_init(&q->requeue_list, &rq_list);
626 spin_unlock_irqrestore(&q->requeue_lock, flags);
627
628 while (!list_empty(&rq_list)) {
629 struct request *rq;
630
631 rq = list_first_entry(&rq_list, struct request, queuelist);
632 list_del_init(&rq->queuelist);
633 rq->errors = -EIO;
634 blk_mq_end_request(rq, rq->errors);
635 }
636}
637EXPORT_SYMBOL(blk_mq_abort_requeue_list);
638
639struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
640{
641 if (tag < tags->nr_tags) {
642 prefetch(tags->rqs[tag]);
643 return tags->rqs[tag];
644 }
645
646 return NULL;
647}
648EXPORT_SYMBOL(blk_mq_tag_to_rq);
649
650struct blk_mq_timeout_data {
651 unsigned long next;
652 unsigned int next_set;
653};
654
655void blk_mq_rq_timed_out(struct request *req, bool reserved)
656{
657 const struct blk_mq_ops *ops = req->q->mq_ops;
658 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
659
660 /*
661 * We know that complete is set at this point. If STARTED isn't set
662 * anymore, then the request isn't active and the "timeout" should
663 * just be ignored. This can happen due to the bitflag ordering.
664 * Timeout first checks if STARTED is set, and if it is, assumes
665 * the request is active. But if we race with completion, then
666 * we both flags will get cleared. So check here again, and ignore
667 * a timeout event with a request that isn't active.
668 */
669 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
670 return;
671
672 if (ops->timeout)
673 ret = ops->timeout(req, reserved);
674
675 switch (ret) {
676 case BLK_EH_HANDLED:
677 __blk_mq_complete_request(req);
678 break;
679 case BLK_EH_RESET_TIMER:
680 blk_add_timer(req);
681 blk_clear_rq_complete(req);
682 break;
683 case BLK_EH_NOT_HANDLED:
684 break;
685 default:
686 printk(KERN_ERR "block: bad eh return: %d\n", ret);
687 break;
688 }
689}
690
691static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
692 struct request *rq, void *priv, bool reserved)
693{
694 struct blk_mq_timeout_data *data = priv;
695
696 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
697 /*
698 * If a request wasn't started before the queue was
699 * marked dying, kill it here or it'll go unnoticed.
700 */
701 if (unlikely(blk_queue_dying(rq->q))) {
702 rq->errors = -EIO;
703 blk_mq_end_request(rq, rq->errors);
704 }
705 return;
706 }
707
708 if (time_after_eq(jiffies, rq->deadline)) {
709 if (!blk_mark_rq_complete(rq))
710 blk_mq_rq_timed_out(rq, reserved);
711 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
712 data->next = rq->deadline;
713 data->next_set = 1;
714 }
715}
716
717static void blk_mq_timeout_work(struct work_struct *work)
718{
719 struct request_queue *q =
720 container_of(work, struct request_queue, timeout_work);
721 struct blk_mq_timeout_data data = {
722 .next = 0,
723 .next_set = 0,
724 };
725 int i;
726
727 /* A deadlock might occur if a request is stuck requiring a
728 * timeout at the same time a queue freeze is waiting
729 * completion, since the timeout code would not be able to
730 * acquire the queue reference here.
731 *
732 * That's why we don't use blk_queue_enter here; instead, we use
733 * percpu_ref_tryget directly, because we need to be able to
734 * obtain a reference even in the short window between the queue
735 * starting to freeze, by dropping the first reference in
736 * blk_mq_freeze_queue_start, and the moment the last request is
737 * consumed, marked by the instant q_usage_counter reaches
738 * zero.
739 */
740 if (!percpu_ref_tryget(&q->q_usage_counter))
741 return;
742
743 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
744
745 if (data.next_set) {
746 data.next = blk_rq_timeout(round_jiffies_up(data.next));
747 mod_timer(&q->timeout, data.next);
748 } else {
749 struct blk_mq_hw_ctx *hctx;
750
751 queue_for_each_hw_ctx(q, hctx, i) {
752 /* the hctx may be unmapped, so check it here */
753 if (blk_mq_hw_queue_mapped(hctx))
754 blk_mq_tag_idle(hctx);
755 }
756 }
757 blk_queue_exit(q);
758}
759
760/*
761 * Reverse check our software queue for entries that we could potentially
762 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
763 * too much time checking for merges.
764 */
765static bool blk_mq_attempt_merge(struct request_queue *q,
766 struct blk_mq_ctx *ctx, struct bio *bio)
767{
768 struct request *rq;
769 int checked = 8;
770
771 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
772 bool merged = false;
773
774 if (!checked--)
775 break;
776
777 if (!blk_rq_merge_ok(rq, bio))
778 continue;
779
780 switch (blk_try_merge(rq, bio)) {
781 case ELEVATOR_BACK_MERGE:
782 if (blk_mq_sched_allow_merge(q, rq, bio))
783 merged = bio_attempt_back_merge(q, rq, bio);
784 break;
785 case ELEVATOR_FRONT_MERGE:
786 if (blk_mq_sched_allow_merge(q, rq, bio))
787 merged = bio_attempt_front_merge(q, rq, bio);
788 break;
789 case ELEVATOR_DISCARD_MERGE:
790 merged = bio_attempt_discard_merge(q, rq, bio);
791 break;
792 default:
793 continue;
794 }
795
796 if (merged)
797 ctx->rq_merged++;
798 return merged;
799 }
800
801 return false;
802}
803
804struct flush_busy_ctx_data {
805 struct blk_mq_hw_ctx *hctx;
806 struct list_head *list;
807};
808
809static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
810{
811 struct flush_busy_ctx_data *flush_data = data;
812 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
813 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
814
815 sbitmap_clear_bit(sb, bitnr);
816 spin_lock(&ctx->lock);
817 list_splice_tail_init(&ctx->rq_list, flush_data->list);
818 spin_unlock(&ctx->lock);
819 return true;
820}
821
822/*
823 * Process software queues that have been marked busy, splicing them
824 * to the for-dispatch
825 */
826void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
827{
828 struct flush_busy_ctx_data data = {
829 .hctx = hctx,
830 .list = list,
831 };
832
833 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
834}
835EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
836
837static inline unsigned int queued_to_index(unsigned int queued)
838{
839 if (!queued)
840 return 0;
841
842 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
843}
844
845bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
846 bool wait)
847{
848 struct blk_mq_alloc_data data = {
849 .q = rq->q,
850 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
851 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
852 };
853
854 if (rq->tag != -1) {
855done:
856 if (hctx)
857 *hctx = data.hctx;
858 return true;
859 }
860
861 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
862 data.flags |= BLK_MQ_REQ_RESERVED;
863
864 rq->tag = blk_mq_get_tag(&data);
865 if (rq->tag >= 0) {
866 if (blk_mq_tag_busy(data.hctx)) {
867 rq->rq_flags |= RQF_MQ_INFLIGHT;
868 atomic_inc(&data.hctx->nr_active);
869 }
870 data.hctx->tags->rqs[rq->tag] = rq;
871 goto done;
872 }
873
874 return false;
875}
876
877static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
878 struct request *rq)
879{
880 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
881 rq->tag = -1;
882
883 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
884 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
885 atomic_dec(&hctx->nr_active);
886 }
887}
888
889static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
890 struct request *rq)
891{
892 if (rq->tag == -1 || rq->internal_tag == -1)
893 return;
894
895 __blk_mq_put_driver_tag(hctx, rq);
896}
897
898static void blk_mq_put_driver_tag(struct request *rq)
899{
900 struct blk_mq_hw_ctx *hctx;
901
902 if (rq->tag == -1 || rq->internal_tag == -1)
903 return;
904
905 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
906 __blk_mq_put_driver_tag(hctx, rq);
907}
908
909/*
910 * If we fail getting a driver tag because all the driver tags are already
911 * assigned and on the dispatch list, BUT the first entry does not have a
912 * tag, then we could deadlock. For that case, move entries with assigned
913 * driver tags to the front, leaving the set of tagged requests in the
914 * same order, and the untagged set in the same order.
915 */
916static bool reorder_tags_to_front(struct list_head *list)
917{
918 struct request *rq, *tmp, *first = NULL;
919
920 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
921 if (rq == first)
922 break;
923 if (rq->tag != -1) {
924 list_move(&rq->queuelist, list);
925 if (!first)
926 first = rq;
927 }
928 }
929
930 return first != NULL;
931}
932
933static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
934 void *key)
935{
936 struct blk_mq_hw_ctx *hctx;
937
938 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
939
940 list_del(&wait->task_list);
941 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
942 blk_mq_run_hw_queue(hctx, true);
943 return 1;
944}
945
946static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
947{
948 struct sbq_wait_state *ws;
949
950 /*
951 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
952 * The thread which wins the race to grab this bit adds the hardware
953 * queue to the wait queue.
954 */
955 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
956 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
957 return false;
958
959 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
960 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
961
962 /*
963 * As soon as this returns, it's no longer safe to fiddle with
964 * hctx->dispatch_wait, since a completion can wake up the wait queue
965 * and unlock the bit.
966 */
967 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
968 return true;
969}
970
971bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
972{
973 struct request_queue *q = hctx->queue;
974 struct request *rq;
975 LIST_HEAD(driver_list);
976 struct list_head *dptr;
977 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
978
979 /*
980 * Start off with dptr being NULL, so we start the first request
981 * immediately, even if we have more pending.
982 */
983 dptr = NULL;
984
985 /*
986 * Now process all the entries, sending them to the driver.
987 */
988 queued = 0;
989 while (!list_empty(list)) {
990 struct blk_mq_queue_data bd;
991
992 rq = list_first_entry(list, struct request, queuelist);
993 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
994 if (!queued && reorder_tags_to_front(list))
995 continue;
996
997 /*
998 * The initial allocation attempt failed, so we need to
999 * rerun the hardware queue when a tag is freed.
1000 */
1001 if (blk_mq_dispatch_wait_add(hctx)) {
1002 /*
1003 * It's possible that a tag was freed in the
1004 * window between the allocation failure and
1005 * adding the hardware queue to the wait queue.
1006 */
1007 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1008 break;
1009 } else {
1010 break;
1011 }
1012 }
1013
1014 list_del_init(&rq->queuelist);
1015
1016 bd.rq = rq;
1017 bd.list = dptr;
1018
1019 /*
1020 * Flag last if we have no more requests, or if we have more
1021 * but can't assign a driver tag to it.
1022 */
1023 if (list_empty(list))
1024 bd.last = true;
1025 else {
1026 struct request *nxt;
1027
1028 nxt = list_first_entry(list, struct request, queuelist);
1029 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1030 }
1031
1032 ret = q->mq_ops->queue_rq(hctx, &bd);
1033 switch (ret) {
1034 case BLK_MQ_RQ_QUEUE_OK:
1035 queued++;
1036 break;
1037 case BLK_MQ_RQ_QUEUE_BUSY:
1038 blk_mq_put_driver_tag_hctx(hctx, rq);
1039 list_add(&rq->queuelist, list);
1040 __blk_mq_requeue_request(rq);
1041 break;
1042 default:
1043 pr_err("blk-mq: bad return on queue: %d\n", ret);
1044 case BLK_MQ_RQ_QUEUE_ERROR:
1045 rq->errors = -EIO;
1046 blk_mq_end_request(rq, rq->errors);
1047 break;
1048 }
1049
1050 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1051 break;
1052
1053 /*
1054 * We've done the first request. If we have more than 1
1055 * left in the list, set dptr to defer issue.
1056 */
1057 if (!dptr && list->next != list->prev)
1058 dptr = &driver_list;
1059 }
1060
1061 hctx->dispatched[queued_to_index(queued)]++;
1062
1063 /*
1064 * Any items that need requeuing? Stuff them into hctx->dispatch,
1065 * that is where we will continue on next queue run.
1066 */
1067 if (!list_empty(list)) {
1068 /*
1069 * If we got a driver tag for the next request already,
1070 * free it again.
1071 */
1072 rq = list_first_entry(list, struct request, queuelist);
1073 blk_mq_put_driver_tag(rq);
1074
1075 spin_lock(&hctx->lock);
1076 list_splice_init(list, &hctx->dispatch);
1077 spin_unlock(&hctx->lock);
1078
1079 /*
1080 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1081 * it's possible the queue is stopped and restarted again
1082 * before this. Queue restart will dispatch requests. And since
1083 * requests in rq_list aren't added into hctx->dispatch yet,
1084 * the requests in rq_list might get lost.
1085 *
1086 * blk_mq_run_hw_queue() already checks the STOPPED bit
1087 *
1088 * If RESTART or TAG_WAITING is set, then let completion restart
1089 * the queue instead of potentially looping here.
1090 */
1091 if (!blk_mq_sched_needs_restart(hctx) &&
1092 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1093 blk_mq_run_hw_queue(hctx, true);
1094 }
1095
1096 return queued != 0;
1097}
1098
1099static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1100{
1101 int srcu_idx;
1102
1103 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1104 cpu_online(hctx->next_cpu));
1105
1106 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1107 rcu_read_lock();
1108 blk_mq_sched_dispatch_requests(hctx);
1109 rcu_read_unlock();
1110 } else {
1111 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1112 blk_mq_sched_dispatch_requests(hctx);
1113 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1114 }
1115}
1116
1117/*
1118 * It'd be great if the workqueue API had a way to pass
1119 * in a mask and had some smarts for more clever placement.
1120 * For now we just round-robin here, switching for every
1121 * BLK_MQ_CPU_WORK_BATCH queued items.
1122 */
1123static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1124{
1125 if (hctx->queue->nr_hw_queues == 1)
1126 return WORK_CPU_UNBOUND;
1127
1128 if (--hctx->next_cpu_batch <= 0) {
1129 int next_cpu;
1130
1131 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1132 if (next_cpu >= nr_cpu_ids)
1133 next_cpu = cpumask_first(hctx->cpumask);
1134
1135 hctx->next_cpu = next_cpu;
1136 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1137 }
1138
1139 return hctx->next_cpu;
1140}
1141
1142void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1143{
1144 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1145 !blk_mq_hw_queue_mapped(hctx)))
1146 return;
1147
1148 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1149 int cpu = get_cpu();
1150 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1151 __blk_mq_run_hw_queue(hctx);
1152 put_cpu();
1153 return;
1154 }
1155
1156 put_cpu();
1157 }
1158
1159 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1160}
1161
1162void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1163{
1164 struct blk_mq_hw_ctx *hctx;
1165 int i;
1166
1167 queue_for_each_hw_ctx(q, hctx, i) {
1168 if (!blk_mq_hctx_has_pending(hctx) ||
1169 blk_mq_hctx_stopped(hctx))
1170 continue;
1171
1172 blk_mq_run_hw_queue(hctx, async);
1173 }
1174}
1175EXPORT_SYMBOL(blk_mq_run_hw_queues);
1176
1177/**
1178 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1179 * @q: request queue.
1180 *
1181 * The caller is responsible for serializing this function against
1182 * blk_mq_{start,stop}_hw_queue().
1183 */
1184bool blk_mq_queue_stopped(struct request_queue *q)
1185{
1186 struct blk_mq_hw_ctx *hctx;
1187 int i;
1188
1189 queue_for_each_hw_ctx(q, hctx, i)
1190 if (blk_mq_hctx_stopped(hctx))
1191 return true;
1192
1193 return false;
1194}
1195EXPORT_SYMBOL(blk_mq_queue_stopped);
1196
1197void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1198{
1199 cancel_work(&hctx->run_work);
1200 cancel_delayed_work(&hctx->delay_work);
1201 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1202}
1203EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1204
1205void blk_mq_stop_hw_queues(struct request_queue *q)
1206{
1207 struct blk_mq_hw_ctx *hctx;
1208 int i;
1209
1210 queue_for_each_hw_ctx(q, hctx, i)
1211 blk_mq_stop_hw_queue(hctx);
1212}
1213EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1214
1215void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1216{
1217 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1218
1219 blk_mq_run_hw_queue(hctx, false);
1220}
1221EXPORT_SYMBOL(blk_mq_start_hw_queue);
1222
1223void blk_mq_start_hw_queues(struct request_queue *q)
1224{
1225 struct blk_mq_hw_ctx *hctx;
1226 int i;
1227
1228 queue_for_each_hw_ctx(q, hctx, i)
1229 blk_mq_start_hw_queue(hctx);
1230}
1231EXPORT_SYMBOL(blk_mq_start_hw_queues);
1232
1233void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1234{
1235 if (!blk_mq_hctx_stopped(hctx))
1236 return;
1237
1238 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1239 blk_mq_run_hw_queue(hctx, async);
1240}
1241EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1242
1243void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1244{
1245 struct blk_mq_hw_ctx *hctx;
1246 int i;
1247
1248 queue_for_each_hw_ctx(q, hctx, i)
1249 blk_mq_start_stopped_hw_queue(hctx, async);
1250}
1251EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1252
1253static void blk_mq_run_work_fn(struct work_struct *work)
1254{
1255 struct blk_mq_hw_ctx *hctx;
1256
1257 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1258
1259 __blk_mq_run_hw_queue(hctx);
1260}
1261
1262static void blk_mq_delay_work_fn(struct work_struct *work)
1263{
1264 struct blk_mq_hw_ctx *hctx;
1265
1266 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1267
1268 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1269 __blk_mq_run_hw_queue(hctx);
1270}
1271
1272void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1273{
1274 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1275 return;
1276
1277 blk_mq_stop_hw_queue(hctx);
1278 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1279 &hctx->delay_work, msecs_to_jiffies(msecs));
1280}
1281EXPORT_SYMBOL(blk_mq_delay_queue);
1282
1283static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1284 struct request *rq,
1285 bool at_head)
1286{
1287 struct blk_mq_ctx *ctx = rq->mq_ctx;
1288
1289 trace_block_rq_insert(hctx->queue, rq);
1290
1291 if (at_head)
1292 list_add(&rq->queuelist, &ctx->rq_list);
1293 else
1294 list_add_tail(&rq->queuelist, &ctx->rq_list);
1295}
1296
1297void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1298 bool at_head)
1299{
1300 struct blk_mq_ctx *ctx = rq->mq_ctx;
1301
1302 __blk_mq_insert_req_list(hctx, rq, at_head);
1303 blk_mq_hctx_mark_pending(hctx, ctx);
1304}
1305
1306void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1307 struct list_head *list)
1308
1309{
1310 /*
1311 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1312 * offline now
1313 */
1314 spin_lock(&ctx->lock);
1315 while (!list_empty(list)) {
1316 struct request *rq;
1317
1318 rq = list_first_entry(list, struct request, queuelist);
1319 BUG_ON(rq->mq_ctx != ctx);
1320 list_del_init(&rq->queuelist);
1321 __blk_mq_insert_req_list(hctx, rq, false);
1322 }
1323 blk_mq_hctx_mark_pending(hctx, ctx);
1324 spin_unlock(&ctx->lock);
1325}
1326
1327static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1328{
1329 struct request *rqa = container_of(a, struct request, queuelist);
1330 struct request *rqb = container_of(b, struct request, queuelist);
1331
1332 return !(rqa->mq_ctx < rqb->mq_ctx ||
1333 (rqa->mq_ctx == rqb->mq_ctx &&
1334 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1335}
1336
1337void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1338{
1339 struct blk_mq_ctx *this_ctx;
1340 struct request_queue *this_q;
1341 struct request *rq;
1342 LIST_HEAD(list);
1343 LIST_HEAD(ctx_list);
1344 unsigned int depth;
1345
1346 list_splice_init(&plug->mq_list, &list);
1347
1348 list_sort(NULL, &list, plug_ctx_cmp);
1349
1350 this_q = NULL;
1351 this_ctx = NULL;
1352 depth = 0;
1353
1354 while (!list_empty(&list)) {
1355 rq = list_entry_rq(list.next);
1356 list_del_init(&rq->queuelist);
1357 BUG_ON(!rq->q);
1358 if (rq->mq_ctx != this_ctx) {
1359 if (this_ctx) {
1360 trace_block_unplug(this_q, depth, from_schedule);
1361 blk_mq_sched_insert_requests(this_q, this_ctx,
1362 &ctx_list,
1363 from_schedule);
1364 }
1365
1366 this_ctx = rq->mq_ctx;
1367 this_q = rq->q;
1368 depth = 0;
1369 }
1370
1371 depth++;
1372 list_add_tail(&rq->queuelist, &ctx_list);
1373 }
1374
1375 /*
1376 * If 'this_ctx' is set, we know we have entries to complete
1377 * on 'ctx_list'. Do those.
1378 */
1379 if (this_ctx) {
1380 trace_block_unplug(this_q, depth, from_schedule);
1381 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1382 from_schedule);
1383 }
1384}
1385
1386static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1387{
1388 init_request_from_bio(rq, bio);
1389
1390 blk_account_io_start(rq, true);
1391}
1392
1393static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1394{
1395 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1396 !blk_queue_nomerges(hctx->queue);
1397}
1398
1399static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1400 struct blk_mq_ctx *ctx,
1401 struct request *rq, struct bio *bio)
1402{
1403 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1404 blk_mq_bio_to_request(rq, bio);
1405 spin_lock(&ctx->lock);
1406insert_rq:
1407 __blk_mq_insert_request(hctx, rq, false);
1408 spin_unlock(&ctx->lock);
1409 return false;
1410 } else {
1411 struct request_queue *q = hctx->queue;
1412
1413 spin_lock(&ctx->lock);
1414 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1415 blk_mq_bio_to_request(rq, bio);
1416 goto insert_rq;
1417 }
1418
1419 spin_unlock(&ctx->lock);
1420 __blk_mq_finish_request(hctx, ctx, rq);
1421 return true;
1422 }
1423}
1424
1425static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1426{
1427 if (rq->tag != -1)
1428 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1429
1430 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1431}
1432
1433static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1434 bool may_sleep)
1435{
1436 struct request_queue *q = rq->q;
1437 struct blk_mq_queue_data bd = {
1438 .rq = rq,
1439 .list = NULL,
1440 .last = 1
1441 };
1442 struct blk_mq_hw_ctx *hctx;
1443 blk_qc_t new_cookie;
1444 int ret;
1445
1446 if (q->elevator)
1447 goto insert;
1448
1449 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1450 goto insert;
1451
1452 new_cookie = request_to_qc_t(hctx, rq);
1453
1454 /*
1455 * For OK queue, we are done. For error, kill it. Any other
1456 * error (busy), just add it to our list as we previously
1457 * would have done
1458 */
1459 ret = q->mq_ops->queue_rq(hctx, &bd);
1460 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1461 *cookie = new_cookie;
1462 return;
1463 }
1464
1465 __blk_mq_requeue_request(rq);
1466
1467 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1468 *cookie = BLK_QC_T_NONE;
1469 rq->errors = -EIO;
1470 blk_mq_end_request(rq, rq->errors);
1471 return;
1472 }
1473
1474insert:
1475 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1476}
1477
1478static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1479 struct request *rq, blk_qc_t *cookie)
1480{
1481 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1482 rcu_read_lock();
1483 __blk_mq_try_issue_directly(rq, cookie, false);
1484 rcu_read_unlock();
1485 } else {
1486 unsigned int srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1487 __blk_mq_try_issue_directly(rq, cookie, true);
1488 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1489 }
1490}
1491
1492static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1493{
1494 const int is_sync = op_is_sync(bio->bi_opf);
1495 const int is_flush_fua = op_is_flush(bio->bi_opf);
1496 struct blk_mq_alloc_data data = { .flags = 0 };
1497 struct request *rq;
1498 unsigned int request_count = 0;
1499 struct blk_plug *plug;
1500 struct request *same_queue_rq = NULL;
1501 blk_qc_t cookie;
1502 unsigned int wb_acct;
1503
1504 blk_queue_bounce(q, &bio);
1505
1506 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1507 bio_io_error(bio);
1508 return BLK_QC_T_NONE;
1509 }
1510
1511 blk_queue_split(q, &bio, q->bio_split);
1512
1513 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1514 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1515 return BLK_QC_T_NONE;
1516
1517 if (blk_mq_sched_bio_merge(q, bio))
1518 return BLK_QC_T_NONE;
1519
1520 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1521
1522 trace_block_getrq(q, bio, bio->bi_opf);
1523
1524 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1525 if (unlikely(!rq)) {
1526 __wbt_done(q->rq_wb, wb_acct);
1527 return BLK_QC_T_NONE;
1528 }
1529
1530 wbt_track(&rq->issue_stat, wb_acct);
1531
1532 cookie = request_to_qc_t(data.hctx, rq);
1533
1534 if (unlikely(is_flush_fua)) {
1535 if (q->elevator)
1536 goto elv_insert;
1537 blk_mq_bio_to_request(rq, bio);
1538 blk_insert_flush(rq);
1539 goto run_queue;
1540 }
1541
1542 plug = current->plug;
1543 if (plug && q->nr_hw_queues == 1) {
1544 struct request *last = NULL;
1545
1546 blk_mq_bio_to_request(rq, bio);
1547
1548 /*
1549 * @request_count may become stale because of schedule
1550 * out, so check the list again.
1551 */
1552 if (list_empty(&plug->mq_list))
1553 request_count = 0;
1554 else if (blk_queue_nomerges(q))
1555 request_count = blk_plug_queued_count(q);
1556
1557 if (!request_count)
1558 trace_block_plug(q);
1559 else
1560 last = list_entry_rq(plug->mq_list.prev);
1561
1562 blk_mq_put_ctx(data.ctx);
1563
1564 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1565 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1566 blk_flush_plug_list(plug, false);
1567 trace_block_plug(q);
1568 }
1569
1570 list_add_tail(&rq->queuelist, &plug->mq_list);
1571 goto done;
1572 } else if (((plug && !blk_queue_nomerges(q)) || is_sync)) {
1573 struct request *old_rq = NULL;
1574
1575 blk_mq_bio_to_request(rq, bio);
1576
1577 /*
1578 * We do limited plugging. If the bio can be merged, do that.
1579 * Otherwise the existing request in the plug list will be
1580 * issued. So the plug list will have one request at most
1581 */
1582 if (plug) {
1583 /*
1584 * The plug list might get flushed before this. If that
1585 * happens, same_queue_rq is invalid and plug list is
1586 * empty
1587 */
1588 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1589 old_rq = same_queue_rq;
1590 list_del_init(&old_rq->queuelist);
1591 }
1592 list_add_tail(&rq->queuelist, &plug->mq_list);
1593 } else /* is_sync */
1594 old_rq = rq;
1595 blk_mq_put_ctx(data.ctx);
1596 if (old_rq)
1597 blk_mq_try_issue_directly(data.hctx, old_rq, &cookie);
1598 goto done;
1599 }
1600
1601 if (q->elevator) {
1602elv_insert:
1603 blk_mq_put_ctx(data.ctx);
1604 blk_mq_bio_to_request(rq, bio);
1605 blk_mq_sched_insert_request(rq, false, true,
1606 !is_sync || is_flush_fua, true);
1607 goto done;
1608 }
1609 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1610 /*
1611 * For a SYNC request, send it to the hardware immediately. For
1612 * an ASYNC request, just ensure that we run it later on. The
1613 * latter allows for merging opportunities and more efficient
1614 * dispatching.
1615 */
1616run_queue:
1617 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1618 }
1619 blk_mq_put_ctx(data.ctx);
1620done:
1621 return cookie;
1622}
1623
1624void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1625 unsigned int hctx_idx)
1626{
1627 struct page *page;
1628
1629 if (tags->rqs && set->ops->exit_request) {
1630 int i;
1631
1632 for (i = 0; i < tags->nr_tags; i++) {
1633 struct request *rq = tags->static_rqs[i];
1634
1635 if (!rq)
1636 continue;
1637 set->ops->exit_request(set->driver_data, rq,
1638 hctx_idx, i);
1639 tags->static_rqs[i] = NULL;
1640 }
1641 }
1642
1643 while (!list_empty(&tags->page_list)) {
1644 page = list_first_entry(&tags->page_list, struct page, lru);
1645 list_del_init(&page->lru);
1646 /*
1647 * Remove kmemleak object previously allocated in
1648 * blk_mq_init_rq_map().
1649 */
1650 kmemleak_free(page_address(page));
1651 __free_pages(page, page->private);
1652 }
1653}
1654
1655void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1656{
1657 kfree(tags->rqs);
1658 tags->rqs = NULL;
1659 kfree(tags->static_rqs);
1660 tags->static_rqs = NULL;
1661
1662 blk_mq_free_tags(tags);
1663}
1664
1665struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1666 unsigned int hctx_idx,
1667 unsigned int nr_tags,
1668 unsigned int reserved_tags)
1669{
1670 struct blk_mq_tags *tags;
1671 int node;
1672
1673 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1674 if (node == NUMA_NO_NODE)
1675 node = set->numa_node;
1676
1677 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1678 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1679 if (!tags)
1680 return NULL;
1681
1682 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1683 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1684 node);
1685 if (!tags->rqs) {
1686 blk_mq_free_tags(tags);
1687 return NULL;
1688 }
1689
1690 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1691 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1692 node);
1693 if (!tags->static_rqs) {
1694 kfree(tags->rqs);
1695 blk_mq_free_tags(tags);
1696 return NULL;
1697 }
1698
1699 return tags;
1700}
1701
1702static size_t order_to_size(unsigned int order)
1703{
1704 return (size_t)PAGE_SIZE << order;
1705}
1706
1707int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1708 unsigned int hctx_idx, unsigned int depth)
1709{
1710 unsigned int i, j, entries_per_page, max_order = 4;
1711 size_t rq_size, left;
1712 int node;
1713
1714 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1715 if (node == NUMA_NO_NODE)
1716 node = set->numa_node;
1717
1718 INIT_LIST_HEAD(&tags->page_list);
1719
1720 /*
1721 * rq_size is the size of the request plus driver payload, rounded
1722 * to the cacheline size
1723 */
1724 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1725 cache_line_size());
1726 left = rq_size * depth;
1727
1728 for (i = 0; i < depth; ) {
1729 int this_order = max_order;
1730 struct page *page;
1731 int to_do;
1732 void *p;
1733
1734 while (this_order && left < order_to_size(this_order - 1))
1735 this_order--;
1736
1737 do {
1738 page = alloc_pages_node(node,
1739 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1740 this_order);
1741 if (page)
1742 break;
1743 if (!this_order--)
1744 break;
1745 if (order_to_size(this_order) < rq_size)
1746 break;
1747 } while (1);
1748
1749 if (!page)
1750 goto fail;
1751
1752 page->private = this_order;
1753 list_add_tail(&page->lru, &tags->page_list);
1754
1755 p = page_address(page);
1756 /*
1757 * Allow kmemleak to scan these pages as they contain pointers
1758 * to additional allocations like via ops->init_request().
1759 */
1760 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1761 entries_per_page = order_to_size(this_order) / rq_size;
1762 to_do = min(entries_per_page, depth - i);
1763 left -= to_do * rq_size;
1764 for (j = 0; j < to_do; j++) {
1765 struct request *rq = p;
1766
1767 tags->static_rqs[i] = rq;
1768 if (set->ops->init_request) {
1769 if (set->ops->init_request(set->driver_data,
1770 rq, hctx_idx, i,
1771 node)) {
1772 tags->static_rqs[i] = NULL;
1773 goto fail;
1774 }
1775 }
1776
1777 p += rq_size;
1778 i++;
1779 }
1780 }
1781 return 0;
1782
1783fail:
1784 blk_mq_free_rqs(set, tags, hctx_idx);
1785 return -ENOMEM;
1786}
1787
1788/*
1789 * 'cpu' is going away. splice any existing rq_list entries from this
1790 * software queue to the hw queue dispatch list, and ensure that it
1791 * gets run.
1792 */
1793static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1794{
1795 struct blk_mq_hw_ctx *hctx;
1796 struct blk_mq_ctx *ctx;
1797 LIST_HEAD(tmp);
1798
1799 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1800 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1801
1802 spin_lock(&ctx->lock);
1803 if (!list_empty(&ctx->rq_list)) {
1804 list_splice_init(&ctx->rq_list, &tmp);
1805 blk_mq_hctx_clear_pending(hctx, ctx);
1806 }
1807 spin_unlock(&ctx->lock);
1808
1809 if (list_empty(&tmp))
1810 return 0;
1811
1812 spin_lock(&hctx->lock);
1813 list_splice_tail_init(&tmp, &hctx->dispatch);
1814 spin_unlock(&hctx->lock);
1815
1816 blk_mq_run_hw_queue(hctx, true);
1817 return 0;
1818}
1819
1820static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1821{
1822 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1823 &hctx->cpuhp_dead);
1824}
1825
1826/* hctx->ctxs will be freed in queue's release handler */
1827static void blk_mq_exit_hctx(struct request_queue *q,
1828 struct blk_mq_tag_set *set,
1829 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1830{
1831 unsigned flush_start_tag = set->queue_depth;
1832
1833 blk_mq_tag_idle(hctx);
1834
1835 if (set->ops->exit_request)
1836 set->ops->exit_request(set->driver_data,
1837 hctx->fq->flush_rq, hctx_idx,
1838 flush_start_tag + hctx_idx);
1839
1840 if (set->ops->exit_hctx)
1841 set->ops->exit_hctx(hctx, hctx_idx);
1842
1843 if (hctx->flags & BLK_MQ_F_BLOCKING)
1844 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1845
1846 blk_mq_remove_cpuhp(hctx);
1847 blk_free_flush_queue(hctx->fq);
1848 sbitmap_free(&hctx->ctx_map);
1849}
1850
1851static void blk_mq_exit_hw_queues(struct request_queue *q,
1852 struct blk_mq_tag_set *set, int nr_queue)
1853{
1854 struct blk_mq_hw_ctx *hctx;
1855 unsigned int i;
1856
1857 queue_for_each_hw_ctx(q, hctx, i) {
1858 if (i == nr_queue)
1859 break;
1860 blk_mq_exit_hctx(q, set, hctx, i);
1861 }
1862}
1863
1864static int blk_mq_init_hctx(struct request_queue *q,
1865 struct blk_mq_tag_set *set,
1866 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1867{
1868 int node;
1869 unsigned flush_start_tag = set->queue_depth;
1870
1871 node = hctx->numa_node;
1872 if (node == NUMA_NO_NODE)
1873 node = hctx->numa_node = set->numa_node;
1874
1875 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1876 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1877 spin_lock_init(&hctx->lock);
1878 INIT_LIST_HEAD(&hctx->dispatch);
1879 hctx->queue = q;
1880 hctx->queue_num = hctx_idx;
1881 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1882
1883 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1884
1885 hctx->tags = set->tags[hctx_idx];
1886
1887 /*
1888 * Allocate space for all possible cpus to avoid allocation at
1889 * runtime
1890 */
1891 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1892 GFP_KERNEL, node);
1893 if (!hctx->ctxs)
1894 goto unregister_cpu_notifier;
1895
1896 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1897 node))
1898 goto free_ctxs;
1899
1900 hctx->nr_ctx = 0;
1901
1902 if (set->ops->init_hctx &&
1903 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1904 goto free_bitmap;
1905
1906 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1907 if (!hctx->fq)
1908 goto exit_hctx;
1909
1910 if (set->ops->init_request &&
1911 set->ops->init_request(set->driver_data,
1912 hctx->fq->flush_rq, hctx_idx,
1913 flush_start_tag + hctx_idx, node))
1914 goto free_fq;
1915
1916 if (hctx->flags & BLK_MQ_F_BLOCKING)
1917 init_srcu_struct(&hctx->queue_rq_srcu);
1918
1919 return 0;
1920
1921 free_fq:
1922 kfree(hctx->fq);
1923 exit_hctx:
1924 if (set->ops->exit_hctx)
1925 set->ops->exit_hctx(hctx, hctx_idx);
1926 free_bitmap:
1927 sbitmap_free(&hctx->ctx_map);
1928 free_ctxs:
1929 kfree(hctx->ctxs);
1930 unregister_cpu_notifier:
1931 blk_mq_remove_cpuhp(hctx);
1932 return -1;
1933}
1934
1935static void blk_mq_init_cpu_queues(struct request_queue *q,
1936 unsigned int nr_hw_queues)
1937{
1938 unsigned int i;
1939
1940 for_each_possible_cpu(i) {
1941 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1942 struct blk_mq_hw_ctx *hctx;
1943
1944 __ctx->cpu = i;
1945 spin_lock_init(&__ctx->lock);
1946 INIT_LIST_HEAD(&__ctx->rq_list);
1947 __ctx->queue = q;
1948
1949 /* If the cpu isn't online, the cpu is mapped to first hctx */
1950 if (!cpu_online(i))
1951 continue;
1952
1953 hctx = blk_mq_map_queue(q, i);
1954
1955 /*
1956 * Set local node, IFF we have more than one hw queue. If
1957 * not, we remain on the home node of the device
1958 */
1959 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1960 hctx->numa_node = local_memory_node(cpu_to_node(i));
1961 }
1962}
1963
1964static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1965{
1966 int ret = 0;
1967
1968 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1969 set->queue_depth, set->reserved_tags);
1970 if (!set->tags[hctx_idx])
1971 return false;
1972
1973 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1974 set->queue_depth);
1975 if (!ret)
1976 return true;
1977
1978 blk_mq_free_rq_map(set->tags[hctx_idx]);
1979 set->tags[hctx_idx] = NULL;
1980 return false;
1981}
1982
1983static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1984 unsigned int hctx_idx)
1985{
1986 if (set->tags[hctx_idx]) {
1987 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1988 blk_mq_free_rq_map(set->tags[hctx_idx]);
1989 set->tags[hctx_idx] = NULL;
1990 }
1991}
1992
1993static void blk_mq_map_swqueue(struct request_queue *q,
1994 const struct cpumask *online_mask)
1995{
1996 unsigned int i, hctx_idx;
1997 struct blk_mq_hw_ctx *hctx;
1998 struct blk_mq_ctx *ctx;
1999 struct blk_mq_tag_set *set = q->tag_set;
2000
2001 /*
2002 * Avoid others reading imcomplete hctx->cpumask through sysfs
2003 */
2004 mutex_lock(&q->sysfs_lock);
2005
2006 queue_for_each_hw_ctx(q, hctx, i) {
2007 cpumask_clear(hctx->cpumask);
2008 hctx->nr_ctx = 0;
2009 }
2010
2011 /*
2012 * Map software to hardware queues
2013 */
2014 for_each_possible_cpu(i) {
2015 /* If the cpu isn't online, the cpu is mapped to first hctx */
2016 if (!cpumask_test_cpu(i, online_mask))
2017 continue;
2018
2019 hctx_idx = q->mq_map[i];
2020 /* unmapped hw queue can be remapped after CPU topo changed */
2021 if (!set->tags[hctx_idx] &&
2022 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2023 /*
2024 * If tags initialization fail for some hctx,
2025 * that hctx won't be brought online. In this
2026 * case, remap the current ctx to hctx[0] which
2027 * is guaranteed to always have tags allocated
2028 */
2029 q->mq_map[i] = 0;
2030 }
2031
2032 ctx = per_cpu_ptr(q->queue_ctx, i);
2033 hctx = blk_mq_map_queue(q, i);
2034
2035 cpumask_set_cpu(i, hctx->cpumask);
2036 ctx->index_hw = hctx->nr_ctx;
2037 hctx->ctxs[hctx->nr_ctx++] = ctx;
2038 }
2039
2040 mutex_unlock(&q->sysfs_lock);
2041
2042 queue_for_each_hw_ctx(q, hctx, i) {
2043 /*
2044 * If no software queues are mapped to this hardware queue,
2045 * disable it and free the request entries.
2046 */
2047 if (!hctx->nr_ctx) {
2048 /* Never unmap queue 0. We need it as a
2049 * fallback in case of a new remap fails
2050 * allocation
2051 */
2052 if (i && set->tags[i])
2053 blk_mq_free_map_and_requests(set, i);
2054
2055 hctx->tags = NULL;
2056 continue;
2057 }
2058
2059 hctx->tags = set->tags[i];
2060 WARN_ON(!hctx->tags);
2061
2062 /*
2063 * Set the map size to the number of mapped software queues.
2064 * This is more accurate and more efficient than looping
2065 * over all possibly mapped software queues.
2066 */
2067 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2068
2069 /*
2070 * Initialize batch roundrobin counts
2071 */
2072 hctx->next_cpu = cpumask_first(hctx->cpumask);
2073 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2074 }
2075}
2076
2077static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2078{
2079 struct blk_mq_hw_ctx *hctx;
2080 int i;
2081
2082 queue_for_each_hw_ctx(q, hctx, i) {
2083 if (shared)
2084 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2085 else
2086 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2087 }
2088}
2089
2090static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2091{
2092 struct request_queue *q;
2093
2094 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2095 blk_mq_freeze_queue(q);
2096 queue_set_hctx_shared(q, shared);
2097 blk_mq_unfreeze_queue(q);
2098 }
2099}
2100
2101static void blk_mq_del_queue_tag_set(struct request_queue *q)
2102{
2103 struct blk_mq_tag_set *set = q->tag_set;
2104
2105 mutex_lock(&set->tag_list_lock);
2106 list_del_init(&q->tag_set_list);
2107 if (list_is_singular(&set->tag_list)) {
2108 /* just transitioned to unshared */
2109 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2110 /* update existing queue */
2111 blk_mq_update_tag_set_depth(set, false);
2112 }
2113 mutex_unlock(&set->tag_list_lock);
2114}
2115
2116static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2117 struct request_queue *q)
2118{
2119 q->tag_set = set;
2120
2121 mutex_lock(&set->tag_list_lock);
2122
2123 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2124 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2125 set->flags |= BLK_MQ_F_TAG_SHARED;
2126 /* update existing queue */
2127 blk_mq_update_tag_set_depth(set, true);
2128 }
2129 if (set->flags & BLK_MQ_F_TAG_SHARED)
2130 queue_set_hctx_shared(q, true);
2131 list_add_tail(&q->tag_set_list, &set->tag_list);
2132
2133 mutex_unlock(&set->tag_list_lock);
2134}
2135
2136/*
2137 * It is the actual release handler for mq, but we do it from
2138 * request queue's release handler for avoiding use-after-free
2139 * and headache because q->mq_kobj shouldn't have been introduced,
2140 * but we can't group ctx/kctx kobj without it.
2141 */
2142void blk_mq_release(struct request_queue *q)
2143{
2144 struct blk_mq_hw_ctx *hctx;
2145 unsigned int i;
2146
2147 blk_mq_sched_teardown(q);
2148
2149 /* hctx kobj stays in hctx */
2150 queue_for_each_hw_ctx(q, hctx, i) {
2151 if (!hctx)
2152 continue;
2153 kobject_put(&hctx->kobj);
2154 }
2155
2156 q->mq_map = NULL;
2157
2158 kfree(q->queue_hw_ctx);
2159
2160 /*
2161 * release .mq_kobj and sw queue's kobject now because
2162 * both share lifetime with request queue.
2163 */
2164 blk_mq_sysfs_deinit(q);
2165
2166 free_percpu(q->queue_ctx);
2167}
2168
2169struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2170{
2171 struct request_queue *uninit_q, *q;
2172
2173 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2174 if (!uninit_q)
2175 return ERR_PTR(-ENOMEM);
2176
2177 q = blk_mq_init_allocated_queue(set, uninit_q);
2178 if (IS_ERR(q))
2179 blk_cleanup_queue(uninit_q);
2180
2181 return q;
2182}
2183EXPORT_SYMBOL(blk_mq_init_queue);
2184
2185static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2186 struct request_queue *q)
2187{
2188 int i, j;
2189 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2190
2191 blk_mq_sysfs_unregister(q);
2192 for (i = 0; i < set->nr_hw_queues; i++) {
2193 int node;
2194
2195 if (hctxs[i])
2196 continue;
2197
2198 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2199 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2200 GFP_KERNEL, node);
2201 if (!hctxs[i])
2202 break;
2203
2204 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2205 node)) {
2206 kfree(hctxs[i]);
2207 hctxs[i] = NULL;
2208 break;
2209 }
2210
2211 atomic_set(&hctxs[i]->nr_active, 0);
2212 hctxs[i]->numa_node = node;
2213 hctxs[i]->queue_num = i;
2214
2215 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2216 free_cpumask_var(hctxs[i]->cpumask);
2217 kfree(hctxs[i]);
2218 hctxs[i] = NULL;
2219 break;
2220 }
2221 blk_mq_hctx_kobj_init(hctxs[i]);
2222 }
2223 for (j = i; j < q->nr_hw_queues; j++) {
2224 struct blk_mq_hw_ctx *hctx = hctxs[j];
2225
2226 if (hctx) {
2227 if (hctx->tags)
2228 blk_mq_free_map_and_requests(set, j);
2229 blk_mq_exit_hctx(q, set, hctx, j);
2230 kobject_put(&hctx->kobj);
2231 hctxs[j] = NULL;
2232
2233 }
2234 }
2235 q->nr_hw_queues = i;
2236 blk_mq_sysfs_register(q);
2237}
2238
2239struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2240 struct request_queue *q)
2241{
2242 /* mark the queue as mq asap */
2243 q->mq_ops = set->ops;
2244
2245 q->stats = blk_alloc_queue_stats();
2246 if (!q->stats)
2247 goto err_exit;
2248
2249 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2250 blk_stat_rq_ddir, 2, q);
2251 if (!q->poll_cb)
2252 goto err_exit;
2253
2254 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2255 if (!q->queue_ctx)
2256 goto err_exit;
2257
2258 /* init q->mq_kobj and sw queues' kobjects */
2259 blk_mq_sysfs_init(q);
2260
2261 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2262 GFP_KERNEL, set->numa_node);
2263 if (!q->queue_hw_ctx)
2264 goto err_percpu;
2265
2266 q->mq_map = set->mq_map;
2267
2268 blk_mq_realloc_hw_ctxs(set, q);
2269 if (!q->nr_hw_queues)
2270 goto err_hctxs;
2271
2272 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2273 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2274
2275 q->nr_queues = nr_cpu_ids;
2276
2277 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2278
2279 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2280 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2281
2282 q->sg_reserved_size = INT_MAX;
2283
2284 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2285 INIT_LIST_HEAD(&q->requeue_list);
2286 spin_lock_init(&q->requeue_lock);
2287
2288 blk_queue_make_request(q, blk_mq_make_request);
2289
2290 /*
2291 * Do this after blk_queue_make_request() overrides it...
2292 */
2293 q->nr_requests = set->queue_depth;
2294
2295 /*
2296 * Default to classic polling
2297 */
2298 q->poll_nsec = -1;
2299
2300 if (set->ops->complete)
2301 blk_queue_softirq_done(q, set->ops->complete);
2302
2303 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2304
2305 get_online_cpus();
2306 mutex_lock(&all_q_mutex);
2307
2308 list_add_tail(&q->all_q_node, &all_q_list);
2309 blk_mq_add_queue_tag_set(set, q);
2310 blk_mq_map_swqueue(q, cpu_online_mask);
2311
2312 mutex_unlock(&all_q_mutex);
2313 put_online_cpus();
2314
2315 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2316 int ret;
2317
2318 ret = blk_mq_sched_init(q);
2319 if (ret)
2320 return ERR_PTR(ret);
2321 }
2322
2323 return q;
2324
2325err_hctxs:
2326 kfree(q->queue_hw_ctx);
2327err_percpu:
2328 free_percpu(q->queue_ctx);
2329err_exit:
2330 q->mq_ops = NULL;
2331 return ERR_PTR(-ENOMEM);
2332}
2333EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2334
2335void blk_mq_free_queue(struct request_queue *q)
2336{
2337 struct blk_mq_tag_set *set = q->tag_set;
2338
2339 mutex_lock(&all_q_mutex);
2340 list_del_init(&q->all_q_node);
2341 mutex_unlock(&all_q_mutex);
2342
2343 blk_mq_del_queue_tag_set(q);
2344
2345 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2346}
2347
2348/* Basically redo blk_mq_init_queue with queue frozen */
2349static void blk_mq_queue_reinit(struct request_queue *q,
2350 const struct cpumask *online_mask)
2351{
2352 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2353
2354 blk_mq_sysfs_unregister(q);
2355
2356 /*
2357 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2358 * we should change hctx numa_node according to new topology (this
2359 * involves free and re-allocate memory, worthy doing?)
2360 */
2361
2362 blk_mq_map_swqueue(q, online_mask);
2363
2364 blk_mq_sysfs_register(q);
2365}
2366
2367/*
2368 * New online cpumask which is going to be set in this hotplug event.
2369 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2370 * one-by-one and dynamically allocating this could result in a failure.
2371 */
2372static struct cpumask cpuhp_online_new;
2373
2374static void blk_mq_queue_reinit_work(void)
2375{
2376 struct request_queue *q;
2377
2378 mutex_lock(&all_q_mutex);
2379 /*
2380 * We need to freeze and reinit all existing queues. Freezing
2381 * involves synchronous wait for an RCU grace period and doing it
2382 * one by one may take a long time. Start freezing all queues in
2383 * one swoop and then wait for the completions so that freezing can
2384 * take place in parallel.
2385 */
2386 list_for_each_entry(q, &all_q_list, all_q_node)
2387 blk_mq_freeze_queue_start(q);
2388 list_for_each_entry(q, &all_q_list, all_q_node)
2389 blk_mq_freeze_queue_wait(q);
2390
2391 list_for_each_entry(q, &all_q_list, all_q_node)
2392 blk_mq_queue_reinit(q, &cpuhp_online_new);
2393
2394 list_for_each_entry(q, &all_q_list, all_q_node)
2395 blk_mq_unfreeze_queue(q);
2396
2397 mutex_unlock(&all_q_mutex);
2398}
2399
2400static int blk_mq_queue_reinit_dead(unsigned int cpu)
2401{
2402 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2403 blk_mq_queue_reinit_work();
2404 return 0;
2405}
2406
2407/*
2408 * Before hotadded cpu starts handling requests, new mappings must be
2409 * established. Otherwise, these requests in hw queue might never be
2410 * dispatched.
2411 *
2412 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2413 * for CPU0, and ctx1 for CPU1).
2414 *
2415 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2416 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2417 *
2418 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2419 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2420 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2421 * ignored.
2422 */
2423static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2424{
2425 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2426 cpumask_set_cpu(cpu, &cpuhp_online_new);
2427 blk_mq_queue_reinit_work();
2428 return 0;
2429}
2430
2431static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2432{
2433 int i;
2434
2435 for (i = 0; i < set->nr_hw_queues; i++)
2436 if (!__blk_mq_alloc_rq_map(set, i))
2437 goto out_unwind;
2438
2439 return 0;
2440
2441out_unwind:
2442 while (--i >= 0)
2443 blk_mq_free_rq_map(set->tags[i]);
2444
2445 return -ENOMEM;
2446}
2447
2448/*
2449 * Allocate the request maps associated with this tag_set. Note that this
2450 * may reduce the depth asked for, if memory is tight. set->queue_depth
2451 * will be updated to reflect the allocated depth.
2452 */
2453static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2454{
2455 unsigned int depth;
2456 int err;
2457
2458 depth = set->queue_depth;
2459 do {
2460 err = __blk_mq_alloc_rq_maps(set);
2461 if (!err)
2462 break;
2463
2464 set->queue_depth >>= 1;
2465 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2466 err = -ENOMEM;
2467 break;
2468 }
2469 } while (set->queue_depth);
2470
2471 if (!set->queue_depth || err) {
2472 pr_err("blk-mq: failed to allocate request map\n");
2473 return -ENOMEM;
2474 }
2475
2476 if (depth != set->queue_depth)
2477 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2478 depth, set->queue_depth);
2479
2480 return 0;
2481}
2482
2483/*
2484 * Alloc a tag set to be associated with one or more request queues.
2485 * May fail with EINVAL for various error conditions. May adjust the
2486 * requested depth down, if if it too large. In that case, the set
2487 * value will be stored in set->queue_depth.
2488 */
2489int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2490{
2491 int ret;
2492
2493 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2494
2495 if (!set->nr_hw_queues)
2496 return -EINVAL;
2497 if (!set->queue_depth)
2498 return -EINVAL;
2499 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2500 return -EINVAL;
2501
2502 if (!set->ops->queue_rq)
2503 return -EINVAL;
2504
2505 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2506 pr_info("blk-mq: reduced tag depth to %u\n",
2507 BLK_MQ_MAX_DEPTH);
2508 set->queue_depth = BLK_MQ_MAX_DEPTH;
2509 }
2510
2511 /*
2512 * If a crashdump is active, then we are potentially in a very
2513 * memory constrained environment. Limit us to 1 queue and
2514 * 64 tags to prevent using too much memory.
2515 */
2516 if (is_kdump_kernel()) {
2517 set->nr_hw_queues = 1;
2518 set->queue_depth = min(64U, set->queue_depth);
2519 }
2520 /*
2521 * There is no use for more h/w queues than cpus.
2522 */
2523 if (set->nr_hw_queues > nr_cpu_ids)
2524 set->nr_hw_queues = nr_cpu_ids;
2525
2526 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2527 GFP_KERNEL, set->numa_node);
2528 if (!set->tags)
2529 return -ENOMEM;
2530
2531 ret = -ENOMEM;
2532 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2533 GFP_KERNEL, set->numa_node);
2534 if (!set->mq_map)
2535 goto out_free_tags;
2536
2537 if (set->ops->map_queues)
2538 ret = set->ops->map_queues(set);
2539 else
2540 ret = blk_mq_map_queues(set);
2541 if (ret)
2542 goto out_free_mq_map;
2543
2544 ret = blk_mq_alloc_rq_maps(set);
2545 if (ret)
2546 goto out_free_mq_map;
2547
2548 mutex_init(&set->tag_list_lock);
2549 INIT_LIST_HEAD(&set->tag_list);
2550
2551 return 0;
2552
2553out_free_mq_map:
2554 kfree(set->mq_map);
2555 set->mq_map = NULL;
2556out_free_tags:
2557 kfree(set->tags);
2558 set->tags = NULL;
2559 return ret;
2560}
2561EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2562
2563void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2564{
2565 int i;
2566
2567 for (i = 0; i < nr_cpu_ids; i++)
2568 blk_mq_free_map_and_requests(set, i);
2569
2570 kfree(set->mq_map);
2571 set->mq_map = NULL;
2572
2573 kfree(set->tags);
2574 set->tags = NULL;
2575}
2576EXPORT_SYMBOL(blk_mq_free_tag_set);
2577
2578int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2579{
2580 struct blk_mq_tag_set *set = q->tag_set;
2581 struct blk_mq_hw_ctx *hctx;
2582 int i, ret;
2583
2584 if (!set)
2585 return -EINVAL;
2586
2587 blk_mq_freeze_queue(q);
2588 blk_mq_quiesce_queue(q);
2589
2590 ret = 0;
2591 queue_for_each_hw_ctx(q, hctx, i) {
2592 if (!hctx->tags)
2593 continue;
2594 /*
2595 * If we're using an MQ scheduler, just update the scheduler
2596 * queue depth. This is similar to what the old code would do.
2597 */
2598 if (!hctx->sched_tags) {
2599 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2600 min(nr, set->queue_depth),
2601 false);
2602 } else {
2603 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2604 nr, true);
2605 }
2606 if (ret)
2607 break;
2608 }
2609
2610 if (!ret)
2611 q->nr_requests = nr;
2612
2613 blk_mq_unfreeze_queue(q);
2614 blk_mq_start_stopped_hw_queues(q, true);
2615
2616 return ret;
2617}
2618
2619void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2620{
2621 struct request_queue *q;
2622
2623 if (nr_hw_queues > nr_cpu_ids)
2624 nr_hw_queues = nr_cpu_ids;
2625 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2626 return;
2627
2628 list_for_each_entry(q, &set->tag_list, tag_set_list)
2629 blk_mq_freeze_queue(q);
2630
2631 set->nr_hw_queues = nr_hw_queues;
2632 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2633 blk_mq_realloc_hw_ctxs(set, q);
2634 blk_mq_queue_reinit(q, cpu_online_mask);
2635 }
2636
2637 list_for_each_entry(q, &set->tag_list, tag_set_list)
2638 blk_mq_unfreeze_queue(q);
2639}
2640EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2641
2642/* Enable polling stats and return whether they were already enabled. */
2643static bool blk_poll_stats_enable(struct request_queue *q)
2644{
2645 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2646 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2647 return true;
2648 blk_stat_add_callback(q, q->poll_cb);
2649 return false;
2650}
2651
2652static void blk_mq_poll_stats_start(struct request_queue *q)
2653{
2654 /*
2655 * We don't arm the callback if polling stats are not enabled or the
2656 * callback is already active.
2657 */
2658 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2659 blk_stat_is_active(q->poll_cb))
2660 return;
2661
2662 blk_stat_activate_msecs(q->poll_cb, 100);
2663}
2664
2665static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2666{
2667 struct request_queue *q = cb->data;
2668
2669 if (cb->stat[READ].nr_samples)
2670 q->poll_stat[READ] = cb->stat[READ];
2671 if (cb->stat[WRITE].nr_samples)
2672 q->poll_stat[WRITE] = cb->stat[WRITE];
2673}
2674
2675static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2676 struct blk_mq_hw_ctx *hctx,
2677 struct request *rq)
2678{
2679 unsigned long ret = 0;
2680
2681 /*
2682 * If stats collection isn't on, don't sleep but turn it on for
2683 * future users
2684 */
2685 if (!blk_poll_stats_enable(q))
2686 return 0;
2687
2688 /*
2689 * As an optimistic guess, use half of the mean service time
2690 * for this type of request. We can (and should) make this smarter.
2691 * For instance, if the completion latencies are tight, we can
2692 * get closer than just half the mean. This is especially
2693 * important on devices where the completion latencies are longer
2694 * than ~10 usec.
2695 */
2696 if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
2697 ret = (q->poll_stat[READ].mean + 1) / 2;
2698 else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
2699 ret = (q->poll_stat[WRITE].mean + 1) / 2;
2700
2701 return ret;
2702}
2703
2704static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2705 struct blk_mq_hw_ctx *hctx,
2706 struct request *rq)
2707{
2708 struct hrtimer_sleeper hs;
2709 enum hrtimer_mode mode;
2710 unsigned int nsecs;
2711 ktime_t kt;
2712
2713 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2714 return false;
2715
2716 /*
2717 * poll_nsec can be:
2718 *
2719 * -1: don't ever hybrid sleep
2720 * 0: use half of prev avg
2721 * >0: use this specific value
2722 */
2723 if (q->poll_nsec == -1)
2724 return false;
2725 else if (q->poll_nsec > 0)
2726 nsecs = q->poll_nsec;
2727 else
2728 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2729
2730 if (!nsecs)
2731 return false;
2732
2733 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2734
2735 /*
2736 * This will be replaced with the stats tracking code, using
2737 * 'avg_completion_time / 2' as the pre-sleep target.
2738 */
2739 kt = nsecs;
2740
2741 mode = HRTIMER_MODE_REL;
2742 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2743 hrtimer_set_expires(&hs.timer, kt);
2744
2745 hrtimer_init_sleeper(&hs, current);
2746 do {
2747 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2748 break;
2749 set_current_state(TASK_UNINTERRUPTIBLE);
2750 hrtimer_start_expires(&hs.timer, mode);
2751 if (hs.task)
2752 io_schedule();
2753 hrtimer_cancel(&hs.timer);
2754 mode = HRTIMER_MODE_ABS;
2755 } while (hs.task && !signal_pending(current));
2756
2757 __set_current_state(TASK_RUNNING);
2758 destroy_hrtimer_on_stack(&hs.timer);
2759 return true;
2760}
2761
2762static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2763{
2764 struct request_queue *q = hctx->queue;
2765 long state;
2766
2767 /*
2768 * If we sleep, have the caller restart the poll loop to reset
2769 * the state. Like for the other success return cases, the
2770 * caller is responsible for checking if the IO completed. If
2771 * the IO isn't complete, we'll get called again and will go
2772 * straight to the busy poll loop.
2773 */
2774 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2775 return true;
2776
2777 hctx->poll_considered++;
2778
2779 state = current->state;
2780 while (!need_resched()) {
2781 int ret;
2782
2783 hctx->poll_invoked++;
2784
2785 ret = q->mq_ops->poll(hctx, rq->tag);
2786 if (ret > 0) {
2787 hctx->poll_success++;
2788 set_current_state(TASK_RUNNING);
2789 return true;
2790 }
2791
2792 if (signal_pending_state(state, current))
2793 set_current_state(TASK_RUNNING);
2794
2795 if (current->state == TASK_RUNNING)
2796 return true;
2797 if (ret < 0)
2798 break;
2799 cpu_relax();
2800 }
2801
2802 return false;
2803}
2804
2805bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2806{
2807 struct blk_mq_hw_ctx *hctx;
2808 struct blk_plug *plug;
2809 struct request *rq;
2810
2811 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2812 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2813 return false;
2814
2815 plug = current->plug;
2816 if (plug)
2817 blk_flush_plug_list(plug, false);
2818
2819 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2820 if (!blk_qc_t_is_internal(cookie))
2821 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2822 else
2823 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2824
2825 return __blk_mq_poll(hctx, rq);
2826}
2827EXPORT_SYMBOL_GPL(blk_mq_poll);
2828
2829void blk_mq_disable_hotplug(void)
2830{
2831 mutex_lock(&all_q_mutex);
2832}
2833
2834void blk_mq_enable_hotplug(void)
2835{
2836 mutex_unlock(&all_q_mutex);
2837}
2838
2839static int __init blk_mq_init(void)
2840{
2841 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2842 blk_mq_hctx_notify_dead);
2843
2844 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2845 blk_mq_queue_reinit_prepare,
2846 blk_mq_queue_reinit_dead);
2847 return 0;
2848}
2849subsys_initcall(blk_mq_init);