]>
Commit | Line | Data |
---|---|---|
1 | // SPDX-License-Identifier: GPL-2.0 | |
2 | /* | |
3 | * Interface for controlling IO bandwidth on a request queue | |
4 | * | |
5 | * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> | |
6 | */ | |
7 | ||
8 | #include <linux/module.h> | |
9 | #include <linux/slab.h> | |
10 | #include <linux/blkdev.h> | |
11 | #include <linux/bio.h> | |
12 | #include <linux/blktrace_api.h> | |
13 | #include "blk.h" | |
14 | #include "blk-cgroup-rwstat.h" | |
15 | #include "blk-stat.h" | |
16 | #include "blk-throttle.h" | |
17 | ||
18 | /* Max dispatch from a group in 1 round */ | |
19 | #define THROTL_GRP_QUANTUM 8 | |
20 | ||
21 | /* Total max dispatch from all groups in one round */ | |
22 | #define THROTL_QUANTUM 32 | |
23 | ||
24 | /* Throttling is performed over a slice and after that slice is renewed */ | |
25 | #define DFL_THROTL_SLICE_HD (HZ / 10) | |
26 | #define DFL_THROTL_SLICE_SSD (HZ / 50) | |
27 | #define MAX_THROTL_SLICE (HZ) | |
28 | ||
29 | /* A workqueue to queue throttle related work */ | |
30 | static struct workqueue_struct *kthrotld_workqueue; | |
31 | ||
32 | #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) | |
33 | ||
34 | struct throtl_data | |
35 | { | |
36 | /* service tree for active throtl groups */ | |
37 | struct throtl_service_queue service_queue; | |
38 | ||
39 | struct request_queue *queue; | |
40 | ||
41 | /* Total Number of queued bios on READ and WRITE lists */ | |
42 | unsigned int nr_queued[2]; | |
43 | ||
44 | unsigned int throtl_slice; | |
45 | ||
46 | /* Work for dispatching throttled bios */ | |
47 | struct work_struct dispatch_work; | |
48 | ||
49 | bool track_bio_latency; | |
50 | }; | |
51 | ||
52 | static void throtl_pending_timer_fn(struct timer_list *t); | |
53 | ||
54 | static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) | |
55 | { | |
56 | return pd_to_blkg(&tg->pd); | |
57 | } | |
58 | ||
59 | /** | |
60 | * sq_to_tg - return the throl_grp the specified service queue belongs to | |
61 | * @sq: the throtl_service_queue of interest | |
62 | * | |
63 | * Return the throtl_grp @sq belongs to. If @sq is the top-level one | |
64 | * embedded in throtl_data, %NULL is returned. | |
65 | */ | |
66 | static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) | |
67 | { | |
68 | if (sq && sq->parent_sq) | |
69 | return container_of(sq, struct throtl_grp, service_queue); | |
70 | else | |
71 | return NULL; | |
72 | } | |
73 | ||
74 | /** | |
75 | * sq_to_td - return throtl_data the specified service queue belongs to | |
76 | * @sq: the throtl_service_queue of interest | |
77 | * | |
78 | * A service_queue can be embedded in either a throtl_grp or throtl_data. | |
79 | * Determine the associated throtl_data accordingly and return it. | |
80 | */ | |
81 | static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) | |
82 | { | |
83 | struct throtl_grp *tg = sq_to_tg(sq); | |
84 | ||
85 | if (tg) | |
86 | return tg->td; | |
87 | else | |
88 | return container_of(sq, struct throtl_data, service_queue); | |
89 | } | |
90 | ||
91 | static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) | |
92 | { | |
93 | struct blkcg_gq *blkg = tg_to_blkg(tg); | |
94 | ||
95 | if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) | |
96 | return U64_MAX; | |
97 | ||
98 | return tg->bps[rw]; | |
99 | } | |
100 | ||
101 | static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) | |
102 | { | |
103 | struct blkcg_gq *blkg = tg_to_blkg(tg); | |
104 | ||
105 | if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) | |
106 | return UINT_MAX; | |
107 | ||
108 | return tg->iops[rw]; | |
109 | } | |
110 | ||
111 | /** | |
112 | * throtl_log - log debug message via blktrace | |
113 | * @sq: the service_queue being reported | |
114 | * @fmt: printf format string | |
115 | * @args: printf args | |
116 | * | |
117 | * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a | |
118 | * throtl_grp; otherwise, just "throtl". | |
119 | */ | |
120 | #define throtl_log(sq, fmt, args...) do { \ | |
121 | struct throtl_grp *__tg = sq_to_tg((sq)); \ | |
122 | struct throtl_data *__td = sq_to_td((sq)); \ | |
123 | \ | |
124 | (void)__td; \ | |
125 | if (likely(!blk_trace_note_message_enabled(__td->queue))) \ | |
126 | break; \ | |
127 | if ((__tg)) { \ | |
128 | blk_add_cgroup_trace_msg(__td->queue, \ | |
129 | &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\ | |
130 | } else { \ | |
131 | blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ | |
132 | } \ | |
133 | } while (0) | |
134 | ||
135 | static inline unsigned int throtl_bio_data_size(struct bio *bio) | |
136 | { | |
137 | /* assume it's one sector */ | |
138 | if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) | |
139 | return 512; | |
140 | return bio->bi_iter.bi_size; | |
141 | } | |
142 | ||
143 | static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) | |
144 | { | |
145 | INIT_LIST_HEAD(&qn->node); | |
146 | bio_list_init(&qn->bios_bps); | |
147 | bio_list_init(&qn->bios_iops); | |
148 | qn->tg = tg; | |
149 | } | |
150 | ||
151 | /** | |
152 | * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it | |
153 | * @bio: bio being added | |
154 | * @qn: qnode to add bio to | |
155 | * @sq: the service_queue @qn belongs to | |
156 | * | |
157 | * Add @bio to @qn and put @qn on @sq->queued if it's not already on. | |
158 | * @qn->tg's reference count is bumped when @qn is activated. See the | |
159 | * comment on top of throtl_qnode definition for details. | |
160 | */ | |
161 | static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, | |
162 | struct throtl_service_queue *sq) | |
163 | { | |
164 | bool rw = bio_data_dir(bio); | |
165 | ||
166 | /* | |
167 | * Split bios have already been throttled by bps, so they are | |
168 | * directly queued into the iops path. | |
169 | */ | |
170 | if (bio_flagged(bio, BIO_TG_BPS_THROTTLED) || | |
171 | bio_flagged(bio, BIO_BPS_THROTTLED)) { | |
172 | bio_list_add(&qn->bios_iops, bio); | |
173 | sq->nr_queued_iops[rw]++; | |
174 | } else { | |
175 | bio_list_add(&qn->bios_bps, bio); | |
176 | sq->nr_queued_bps[rw]++; | |
177 | } | |
178 | ||
179 | if (list_empty(&qn->node)) { | |
180 | list_add_tail(&qn->node, &sq->queued[rw]); | |
181 | blkg_get(tg_to_blkg(qn->tg)); | |
182 | } | |
183 | } | |
184 | ||
185 | /** | |
186 | * throtl_peek_queued - peek the first bio on a qnode list | |
187 | * @queued: the qnode list to peek | |
188 | * | |
189 | * Always take a bio from the head of the iops queue first. If the queue is | |
190 | * empty, we then take it from the bps queue to maintain the overall idea of | |
191 | * fetching bios from the head. | |
192 | */ | |
193 | static struct bio *throtl_peek_queued(struct list_head *queued) | |
194 | { | |
195 | struct throtl_qnode *qn; | |
196 | struct bio *bio; | |
197 | ||
198 | if (list_empty(queued)) | |
199 | return NULL; | |
200 | ||
201 | qn = list_first_entry(queued, struct throtl_qnode, node); | |
202 | bio = bio_list_peek(&qn->bios_iops); | |
203 | if (!bio) | |
204 | bio = bio_list_peek(&qn->bios_bps); | |
205 | WARN_ON_ONCE(!bio); | |
206 | return bio; | |
207 | } | |
208 | ||
209 | /** | |
210 | * throtl_pop_queued - pop the first bio form a qnode list | |
211 | * @sq: the service_queue to pop a bio from | |
212 | * @tg_to_put: optional out argument for throtl_grp to put | |
213 | * @rw: read/write | |
214 | * | |
215 | * Pop the first bio from the qnode list @sq->queued. Note that we firstly | |
216 | * focus on the iops list because bios are ultimately dispatched from it. | |
217 | * After popping, the first qnode is removed from @sq->queued if empty or moved | |
218 | * to the end of @sq->queued so that the popping order is round-robin. | |
219 | * | |
220 | * When the first qnode is removed, its associated throtl_grp should be put | |
221 | * too. If @tg_to_put is NULL, this function automatically puts it; | |
222 | * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is | |
223 | * responsible for putting it. | |
224 | */ | |
225 | static struct bio *throtl_pop_queued(struct throtl_service_queue *sq, | |
226 | struct throtl_grp **tg_to_put, bool rw) | |
227 | { | |
228 | struct list_head *queued = &sq->queued[rw]; | |
229 | struct throtl_qnode *qn; | |
230 | struct bio *bio; | |
231 | ||
232 | if (list_empty(queued)) | |
233 | return NULL; | |
234 | ||
235 | qn = list_first_entry(queued, struct throtl_qnode, node); | |
236 | bio = bio_list_pop(&qn->bios_iops); | |
237 | if (bio) { | |
238 | sq->nr_queued_iops[rw]--; | |
239 | } else { | |
240 | bio = bio_list_pop(&qn->bios_bps); | |
241 | if (bio) | |
242 | sq->nr_queued_bps[rw]--; | |
243 | } | |
244 | WARN_ON_ONCE(!bio); | |
245 | ||
246 | if (bio_list_empty(&qn->bios_bps) && bio_list_empty(&qn->bios_iops)) { | |
247 | list_del_init(&qn->node); | |
248 | if (tg_to_put) | |
249 | *tg_to_put = qn->tg; | |
250 | else | |
251 | blkg_put(tg_to_blkg(qn->tg)); | |
252 | } else { | |
253 | list_move_tail(&qn->node, queued); | |
254 | } | |
255 | ||
256 | return bio; | |
257 | } | |
258 | ||
259 | /* init a service_queue, assumes the caller zeroed it */ | |
260 | static void throtl_service_queue_init(struct throtl_service_queue *sq) | |
261 | { | |
262 | INIT_LIST_HEAD(&sq->queued[READ]); | |
263 | INIT_LIST_HEAD(&sq->queued[WRITE]); | |
264 | sq->pending_tree = RB_ROOT_CACHED; | |
265 | timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); | |
266 | } | |
267 | ||
268 | static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk, | |
269 | struct blkcg *blkcg, gfp_t gfp) | |
270 | { | |
271 | struct throtl_grp *tg; | |
272 | int rw; | |
273 | ||
274 | tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id); | |
275 | if (!tg) | |
276 | return NULL; | |
277 | ||
278 | if (blkg_rwstat_init(&tg->stat_bytes, gfp)) | |
279 | goto err_free_tg; | |
280 | ||
281 | if (blkg_rwstat_init(&tg->stat_ios, gfp)) | |
282 | goto err_exit_stat_bytes; | |
283 | ||
284 | throtl_service_queue_init(&tg->service_queue); | |
285 | ||
286 | for (rw = READ; rw <= WRITE; rw++) { | |
287 | throtl_qnode_init(&tg->qnode_on_self[rw], tg); | |
288 | throtl_qnode_init(&tg->qnode_on_parent[rw], tg); | |
289 | } | |
290 | ||
291 | RB_CLEAR_NODE(&tg->rb_node); | |
292 | tg->bps[READ] = U64_MAX; | |
293 | tg->bps[WRITE] = U64_MAX; | |
294 | tg->iops[READ] = UINT_MAX; | |
295 | tg->iops[WRITE] = UINT_MAX; | |
296 | ||
297 | return &tg->pd; | |
298 | ||
299 | err_exit_stat_bytes: | |
300 | blkg_rwstat_exit(&tg->stat_bytes); | |
301 | err_free_tg: | |
302 | kfree(tg); | |
303 | return NULL; | |
304 | } | |
305 | ||
306 | static void throtl_pd_init(struct blkg_policy_data *pd) | |
307 | { | |
308 | struct throtl_grp *tg = pd_to_tg(pd); | |
309 | struct blkcg_gq *blkg = tg_to_blkg(tg); | |
310 | struct throtl_data *td = blkg->q->td; | |
311 | struct throtl_service_queue *sq = &tg->service_queue; | |
312 | ||
313 | /* | |
314 | * If on the default hierarchy, we switch to properly hierarchical | |
315 | * behavior where limits on a given throtl_grp are applied to the | |
316 | * whole subtree rather than just the group itself. e.g. If 16M | |
317 | * read_bps limit is set on a parent group, summary bps of | |
318 | * parent group and its subtree groups can't exceed 16M for the | |
319 | * device. | |
320 | * | |
321 | * If not on the default hierarchy, the broken flat hierarchy | |
322 | * behavior is retained where all throtl_grps are treated as if | |
323 | * they're all separate root groups right below throtl_data. | |
324 | * Limits of a group don't interact with limits of other groups | |
325 | * regardless of the position of the group in the hierarchy. | |
326 | */ | |
327 | sq->parent_sq = &td->service_queue; | |
328 | if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) | |
329 | sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; | |
330 | tg->td = td; | |
331 | } | |
332 | ||
333 | /* | |
334 | * Set has_rules[] if @tg or any of its parents have limits configured. | |
335 | * This doesn't require walking up to the top of the hierarchy as the | |
336 | * parent's has_rules[] is guaranteed to be correct. | |
337 | */ | |
338 | static void tg_update_has_rules(struct throtl_grp *tg) | |
339 | { | |
340 | struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); | |
341 | int rw; | |
342 | ||
343 | for (rw = READ; rw <= WRITE; rw++) { | |
344 | tg->has_rules_iops[rw] = | |
345 | (parent_tg && parent_tg->has_rules_iops[rw]) || | |
346 | tg_iops_limit(tg, rw) != UINT_MAX; | |
347 | tg->has_rules_bps[rw] = | |
348 | (parent_tg && parent_tg->has_rules_bps[rw]) || | |
349 | tg_bps_limit(tg, rw) != U64_MAX; | |
350 | } | |
351 | } | |
352 | ||
353 | static void throtl_pd_online(struct blkg_policy_data *pd) | |
354 | { | |
355 | struct throtl_grp *tg = pd_to_tg(pd); | |
356 | /* | |
357 | * We don't want new groups to escape the limits of its ancestors. | |
358 | * Update has_rules[] after a new group is brought online. | |
359 | */ | |
360 | tg_update_has_rules(tg); | |
361 | } | |
362 | ||
363 | static void throtl_pd_free(struct blkg_policy_data *pd) | |
364 | { | |
365 | struct throtl_grp *tg = pd_to_tg(pd); | |
366 | ||
367 | timer_delete_sync(&tg->service_queue.pending_timer); | |
368 | blkg_rwstat_exit(&tg->stat_bytes); | |
369 | blkg_rwstat_exit(&tg->stat_ios); | |
370 | kfree(tg); | |
371 | } | |
372 | ||
373 | static struct throtl_grp * | |
374 | throtl_rb_first(struct throtl_service_queue *parent_sq) | |
375 | { | |
376 | struct rb_node *n; | |
377 | ||
378 | n = rb_first_cached(&parent_sq->pending_tree); | |
379 | WARN_ON_ONCE(!n); | |
380 | if (!n) | |
381 | return NULL; | |
382 | return rb_entry_tg(n); | |
383 | } | |
384 | ||
385 | static void throtl_rb_erase(struct rb_node *n, | |
386 | struct throtl_service_queue *parent_sq) | |
387 | { | |
388 | rb_erase_cached(n, &parent_sq->pending_tree); | |
389 | RB_CLEAR_NODE(n); | |
390 | } | |
391 | ||
392 | static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) | |
393 | { | |
394 | struct throtl_grp *tg; | |
395 | ||
396 | tg = throtl_rb_first(parent_sq); | |
397 | if (!tg) | |
398 | return; | |
399 | ||
400 | parent_sq->first_pending_disptime = tg->disptime; | |
401 | } | |
402 | ||
403 | static void tg_service_queue_add(struct throtl_grp *tg) | |
404 | { | |
405 | struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; | |
406 | struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node; | |
407 | struct rb_node *parent = NULL; | |
408 | struct throtl_grp *__tg; | |
409 | unsigned long key = tg->disptime; | |
410 | bool leftmost = true; | |
411 | ||
412 | while (*node != NULL) { | |
413 | parent = *node; | |
414 | __tg = rb_entry_tg(parent); | |
415 | ||
416 | if (time_before(key, __tg->disptime)) | |
417 | node = &parent->rb_left; | |
418 | else { | |
419 | node = &parent->rb_right; | |
420 | leftmost = false; | |
421 | } | |
422 | } | |
423 | ||
424 | rb_link_node(&tg->rb_node, parent, node); | |
425 | rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree, | |
426 | leftmost); | |
427 | } | |
428 | ||
429 | static void throtl_enqueue_tg(struct throtl_grp *tg) | |
430 | { | |
431 | if (!(tg->flags & THROTL_TG_PENDING)) { | |
432 | tg_service_queue_add(tg); | |
433 | tg->flags |= THROTL_TG_PENDING; | |
434 | tg->service_queue.parent_sq->nr_pending++; | |
435 | } | |
436 | } | |
437 | ||
438 | static void throtl_dequeue_tg(struct throtl_grp *tg) | |
439 | { | |
440 | if (tg->flags & THROTL_TG_PENDING) { | |
441 | struct throtl_service_queue *parent_sq = | |
442 | tg->service_queue.parent_sq; | |
443 | ||
444 | throtl_rb_erase(&tg->rb_node, parent_sq); | |
445 | --parent_sq->nr_pending; | |
446 | tg->flags &= ~THROTL_TG_PENDING; | |
447 | } | |
448 | } | |
449 | ||
450 | /* Call with queue lock held */ | |
451 | static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, | |
452 | unsigned long expires) | |
453 | { | |
454 | unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; | |
455 | ||
456 | /* | |
457 | * Since we are adjusting the throttle limit dynamically, the sleep | |
458 | * time calculated according to previous limit might be invalid. It's | |
459 | * possible the cgroup sleep time is very long and no other cgroups | |
460 | * have IO running so notify the limit changes. Make sure the cgroup | |
461 | * doesn't sleep too long to avoid the missed notification. | |
462 | */ | |
463 | if (time_after(expires, max_expire)) | |
464 | expires = max_expire; | |
465 | mod_timer(&sq->pending_timer, expires); | |
466 | throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", | |
467 | expires - jiffies, jiffies); | |
468 | } | |
469 | ||
470 | /** | |
471 | * throtl_schedule_next_dispatch - schedule the next dispatch cycle | |
472 | * @sq: the service_queue to schedule dispatch for | |
473 | * @force: force scheduling | |
474 | * | |
475 | * Arm @sq->pending_timer so that the next dispatch cycle starts on the | |
476 | * dispatch time of the first pending child. Returns %true if either timer | |
477 | * is armed or there's no pending child left. %false if the current | |
478 | * dispatch window is still open and the caller should continue | |
479 | * dispatching. | |
480 | * | |
481 | * If @force is %true, the dispatch timer is always scheduled and this | |
482 | * function is guaranteed to return %true. This is to be used when the | |
483 | * caller can't dispatch itself and needs to invoke pending_timer | |
484 | * unconditionally. Note that forced scheduling is likely to induce short | |
485 | * delay before dispatch starts even if @sq->first_pending_disptime is not | |
486 | * in the future and thus shouldn't be used in hot paths. | |
487 | */ | |
488 | static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, | |
489 | bool force) | |
490 | { | |
491 | /* any pending children left? */ | |
492 | if (!sq->nr_pending) | |
493 | return true; | |
494 | ||
495 | update_min_dispatch_time(sq); | |
496 | ||
497 | /* is the next dispatch time in the future? */ | |
498 | if (force || time_after(sq->first_pending_disptime, jiffies)) { | |
499 | throtl_schedule_pending_timer(sq, sq->first_pending_disptime); | |
500 | return true; | |
501 | } | |
502 | ||
503 | /* tell the caller to continue dispatching */ | |
504 | return false; | |
505 | } | |
506 | ||
507 | static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, | |
508 | bool rw, unsigned long start) | |
509 | { | |
510 | tg->bytes_disp[rw] = 0; | |
511 | tg->io_disp[rw] = 0; | |
512 | ||
513 | /* | |
514 | * Previous slice has expired. We must have trimmed it after last | |
515 | * bio dispatch. That means since start of last slice, we never used | |
516 | * that bandwidth. Do try to make use of that bandwidth while giving | |
517 | * credit. | |
518 | */ | |
519 | if (time_after(start, tg->slice_start[rw])) | |
520 | tg->slice_start[rw] = start; | |
521 | ||
522 | tg->slice_end[rw] = jiffies + tg->td->throtl_slice; | |
523 | throtl_log(&tg->service_queue, | |
524 | "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", | |
525 | rw == READ ? 'R' : 'W', tg->slice_start[rw], | |
526 | tg->slice_end[rw], jiffies); | |
527 | } | |
528 | ||
529 | static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw, | |
530 | bool clear) | |
531 | { | |
532 | if (clear) { | |
533 | tg->bytes_disp[rw] = 0; | |
534 | tg->io_disp[rw] = 0; | |
535 | } | |
536 | tg->slice_start[rw] = jiffies; | |
537 | tg->slice_end[rw] = jiffies + tg->td->throtl_slice; | |
538 | ||
539 | throtl_log(&tg->service_queue, | |
540 | "[%c] new slice start=%lu end=%lu jiffies=%lu", | |
541 | rw == READ ? 'R' : 'W', tg->slice_start[rw], | |
542 | tg->slice_end[rw], jiffies); | |
543 | } | |
544 | ||
545 | static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, | |
546 | unsigned long jiffy_end) | |
547 | { | |
548 | tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); | |
549 | } | |
550 | ||
551 | static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, | |
552 | unsigned long jiffy_end) | |
553 | { | |
554 | if (!time_before(tg->slice_end[rw], jiffy_end)) | |
555 | return; | |
556 | ||
557 | throtl_set_slice_end(tg, rw, jiffy_end); | |
558 | throtl_log(&tg->service_queue, | |
559 | "[%c] extend slice start=%lu end=%lu jiffies=%lu", | |
560 | rw == READ ? 'R' : 'W', tg->slice_start[rw], | |
561 | tg->slice_end[rw], jiffies); | |
562 | } | |
563 | ||
564 | /* Determine if previously allocated or extended slice is complete or not */ | |
565 | static bool throtl_slice_used(struct throtl_grp *tg, bool rw) | |
566 | { | |
567 | if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) | |
568 | return false; | |
569 | ||
570 | return true; | |
571 | } | |
572 | ||
573 | static unsigned int sq_queued(struct throtl_service_queue *sq, int type) | |
574 | { | |
575 | return sq->nr_queued_bps[type] + sq->nr_queued_iops[type]; | |
576 | } | |
577 | ||
578 | static unsigned int calculate_io_allowed(u32 iops_limit, | |
579 | unsigned long jiffy_elapsed) | |
580 | { | |
581 | unsigned int io_allowed; | |
582 | u64 tmp; | |
583 | ||
584 | /* | |
585 | * jiffy_elapsed should not be a big value as minimum iops can be | |
586 | * 1 then at max jiffy elapsed should be equivalent of 1 second as we | |
587 | * will allow dispatch after 1 second and after that slice should | |
588 | * have been trimmed. | |
589 | */ | |
590 | ||
591 | tmp = (u64)iops_limit * jiffy_elapsed; | |
592 | do_div(tmp, HZ); | |
593 | ||
594 | if (tmp > UINT_MAX) | |
595 | io_allowed = UINT_MAX; | |
596 | else | |
597 | io_allowed = tmp; | |
598 | ||
599 | return io_allowed; | |
600 | } | |
601 | ||
602 | static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed) | |
603 | { | |
604 | /* | |
605 | * Can result be wider than 64 bits? | |
606 | * We check against 62, not 64, due to ilog2 truncation. | |
607 | */ | |
608 | if (ilog2(bps_limit) + ilog2(jiffy_elapsed) - ilog2(HZ) > 62) | |
609 | return U64_MAX; | |
610 | return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ); | |
611 | } | |
612 | ||
613 | static long long throtl_trim_bps(struct throtl_grp *tg, bool rw, | |
614 | unsigned long time_elapsed) | |
615 | { | |
616 | u64 bps_limit = tg_bps_limit(tg, rw); | |
617 | long long bytes_trim; | |
618 | ||
619 | if (bps_limit == U64_MAX) | |
620 | return 0; | |
621 | ||
622 | /* Need to consider the case of bytes_allowed overflow. */ | |
623 | bytes_trim = calculate_bytes_allowed(bps_limit, time_elapsed); | |
624 | if (bytes_trim <= 0 || tg->bytes_disp[rw] < bytes_trim) { | |
625 | bytes_trim = tg->bytes_disp[rw]; | |
626 | tg->bytes_disp[rw] = 0; | |
627 | } else { | |
628 | tg->bytes_disp[rw] -= bytes_trim; | |
629 | } | |
630 | ||
631 | return bytes_trim; | |
632 | } | |
633 | ||
634 | static int throtl_trim_iops(struct throtl_grp *tg, bool rw, | |
635 | unsigned long time_elapsed) | |
636 | { | |
637 | u32 iops_limit = tg_iops_limit(tg, rw); | |
638 | int io_trim; | |
639 | ||
640 | if (iops_limit == UINT_MAX) | |
641 | return 0; | |
642 | ||
643 | /* Need to consider the case of io_allowed overflow. */ | |
644 | io_trim = calculate_io_allowed(iops_limit, time_elapsed); | |
645 | if (io_trim <= 0 || tg->io_disp[rw] < io_trim) { | |
646 | io_trim = tg->io_disp[rw]; | |
647 | tg->io_disp[rw] = 0; | |
648 | } else { | |
649 | tg->io_disp[rw] -= io_trim; | |
650 | } | |
651 | ||
652 | return io_trim; | |
653 | } | |
654 | ||
655 | /* Trim the used slices and adjust slice start accordingly */ | |
656 | static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) | |
657 | { | |
658 | unsigned long time_elapsed; | |
659 | long long bytes_trim; | |
660 | int io_trim; | |
661 | ||
662 | BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); | |
663 | ||
664 | /* | |
665 | * If bps are unlimited (-1), then time slice don't get | |
666 | * renewed. Don't try to trim the slice if slice is used. A new | |
667 | * slice will start when appropriate. | |
668 | */ | |
669 | if (throtl_slice_used(tg, rw)) | |
670 | return; | |
671 | ||
672 | /* | |
673 | * A bio has been dispatched. Also adjust slice_end. It might happen | |
674 | * that initially cgroup limit was very low resulting in high | |
675 | * slice_end, but later limit was bumped up and bio was dispatched | |
676 | * sooner, then we need to reduce slice_end. A high bogus slice_end | |
677 | * is bad because it does not allow new slice to start. | |
678 | */ | |
679 | throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); | |
680 | ||
681 | time_elapsed = rounddown(jiffies - tg->slice_start[rw], | |
682 | tg->td->throtl_slice); | |
683 | /* Don't trim slice until at least 2 slices are used */ | |
684 | if (time_elapsed < tg->td->throtl_slice * 2) | |
685 | return; | |
686 | ||
687 | /* | |
688 | * The bio submission time may be a few jiffies more than the expected | |
689 | * waiting time, due to 'extra_bytes' can't be divided in | |
690 | * tg_within_bps_limit(), and also due to timer wakeup delay. In this | |
691 | * case, adjust slice_start will discard the extra wait time, causing | |
692 | * lower rate than expected. Therefore, other than the above rounddown, | |
693 | * one extra slice is preserved for deviation. | |
694 | */ | |
695 | time_elapsed -= tg->td->throtl_slice; | |
696 | bytes_trim = throtl_trim_bps(tg, rw, time_elapsed); | |
697 | io_trim = throtl_trim_iops(tg, rw, time_elapsed); | |
698 | if (!bytes_trim && !io_trim) | |
699 | return; | |
700 | ||
701 | tg->slice_start[rw] += time_elapsed; | |
702 | ||
703 | throtl_log(&tg->service_queue, | |
704 | "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu", | |
705 | rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice, | |
706 | bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw], | |
707 | jiffies); | |
708 | } | |
709 | ||
710 | static void __tg_update_carryover(struct throtl_grp *tg, bool rw, | |
711 | long long *bytes, int *ios) | |
712 | { | |
713 | unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw]; | |
714 | u64 bps_limit = tg_bps_limit(tg, rw); | |
715 | u32 iops_limit = tg_iops_limit(tg, rw); | |
716 | long long bytes_allowed; | |
717 | int io_allowed; | |
718 | ||
719 | /* | |
720 | * If the queue is empty, carryover handling is not needed. In such cases, | |
721 | * tg->[bytes/io]_disp should be reset to 0 to avoid impacting the dispatch | |
722 | * of subsequent bios. The same handling applies when the previous BPS/IOPS | |
723 | * limit was set to max. | |
724 | */ | |
725 | if (sq_queued(&tg->service_queue, rw) == 0) { | |
726 | tg->bytes_disp[rw] = 0; | |
727 | tg->io_disp[rw] = 0; | |
728 | return; | |
729 | } | |
730 | ||
731 | /* | |
732 | * If config is updated while bios are still throttled, calculate and | |
733 | * accumulate how many bytes/ios are waited across changes. And use the | |
734 | * calculated carryover (@bytes/@ios) to update [bytes/io]_disp, which | |
735 | * will be used to calculate new wait time under new configuration. | |
736 | * And we need to consider the case of bytes/io_allowed overflow. | |
737 | */ | |
738 | if (bps_limit != U64_MAX) { | |
739 | bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed); | |
740 | if (bytes_allowed > 0) | |
741 | *bytes = bytes_allowed - tg->bytes_disp[rw]; | |
742 | } | |
743 | if (iops_limit != UINT_MAX) { | |
744 | io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed); | |
745 | if (io_allowed > 0) | |
746 | *ios = io_allowed - tg->io_disp[rw]; | |
747 | } | |
748 | ||
749 | tg->bytes_disp[rw] = -*bytes; | |
750 | tg->io_disp[rw] = -*ios; | |
751 | } | |
752 | ||
753 | static void tg_update_carryover(struct throtl_grp *tg) | |
754 | { | |
755 | long long bytes[2] = {0}; | |
756 | int ios[2] = {0}; | |
757 | ||
758 | __tg_update_carryover(tg, READ, &bytes[READ], &ios[READ]); | |
759 | __tg_update_carryover(tg, WRITE, &bytes[WRITE], &ios[WRITE]); | |
760 | ||
761 | /* see comments in struct throtl_grp for meaning of carryover. */ | |
762 | throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__, | |
763 | bytes[READ], bytes[WRITE], ios[READ], ios[WRITE]); | |
764 | } | |
765 | ||
766 | static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio, | |
767 | u32 iops_limit) | |
768 | { | |
769 | bool rw = bio_data_dir(bio); | |
770 | int io_allowed; | |
771 | unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; | |
772 | ||
773 | jiffy_elapsed = jiffies - tg->slice_start[rw]; | |
774 | ||
775 | /* Round up to the next throttle slice, wait time must be nonzero */ | |
776 | jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice); | |
777 | io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd); | |
778 | if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed) | |
779 | return 0; | |
780 | ||
781 | /* Calc approx time to dispatch */ | |
782 | jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; | |
783 | ||
784 | /* make sure at least one io can be dispatched after waiting */ | |
785 | jiffy_wait = max(jiffy_wait, HZ / iops_limit + 1); | |
786 | return jiffy_wait; | |
787 | } | |
788 | ||
789 | static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio, | |
790 | u64 bps_limit) | |
791 | { | |
792 | bool rw = bio_data_dir(bio); | |
793 | long long bytes_allowed; | |
794 | u64 extra_bytes; | |
795 | unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; | |
796 | unsigned int bio_size = throtl_bio_data_size(bio); | |
797 | ||
798 | jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; | |
799 | ||
800 | /* Slice has just started. Consider one slice interval */ | |
801 | if (!jiffy_elapsed) | |
802 | jiffy_elapsed_rnd = tg->td->throtl_slice; | |
803 | ||
804 | jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); | |
805 | bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd); | |
806 | /* Need to consider the case of bytes_allowed overflow. */ | |
807 | if ((bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed) | |
808 | || bytes_allowed < 0) | |
809 | return 0; | |
810 | ||
811 | /* Calc approx time to dispatch */ | |
812 | extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; | |
813 | jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit); | |
814 | ||
815 | if (!jiffy_wait) | |
816 | jiffy_wait = 1; | |
817 | ||
818 | /* | |
819 | * This wait time is without taking into consideration the rounding | |
820 | * up we did. Add that time also. | |
821 | */ | |
822 | jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); | |
823 | return jiffy_wait; | |
824 | } | |
825 | ||
826 | static void throtl_charge_bps_bio(struct throtl_grp *tg, struct bio *bio) | |
827 | { | |
828 | unsigned int bio_size = throtl_bio_data_size(bio); | |
829 | ||
830 | /* Charge the bio to the group */ | |
831 | if (!bio_flagged(bio, BIO_BPS_THROTTLED) && | |
832 | !bio_flagged(bio, BIO_TG_BPS_THROTTLED)) { | |
833 | bio_set_flag(bio, BIO_TG_BPS_THROTTLED); | |
834 | tg->bytes_disp[bio_data_dir(bio)] += bio_size; | |
835 | } | |
836 | } | |
837 | ||
838 | static void throtl_charge_iops_bio(struct throtl_grp *tg, struct bio *bio) | |
839 | { | |
840 | bio_clear_flag(bio, BIO_TG_BPS_THROTTLED); | |
841 | tg->io_disp[bio_data_dir(bio)]++; | |
842 | } | |
843 | ||
844 | /* | |
845 | * If previous slice expired, start a new one otherwise renew/extend existing | |
846 | * slice to make sure it is at least throtl_slice interval long since now. New | |
847 | * slice is started only for empty throttle group. If there is queued bio, that | |
848 | * means there should be an active slice and it should be extended instead. | |
849 | */ | |
850 | static void tg_update_slice(struct throtl_grp *tg, bool rw) | |
851 | { | |
852 | if (throtl_slice_used(tg, rw) && | |
853 | sq_queued(&tg->service_queue, rw) == 0) | |
854 | throtl_start_new_slice(tg, rw, true); | |
855 | else | |
856 | throtl_extend_slice(tg, rw, jiffies + tg->td->throtl_slice); | |
857 | } | |
858 | ||
859 | static unsigned long tg_dispatch_bps_time(struct throtl_grp *tg, struct bio *bio) | |
860 | { | |
861 | bool rw = bio_data_dir(bio); | |
862 | u64 bps_limit = tg_bps_limit(tg, rw); | |
863 | unsigned long bps_wait; | |
864 | ||
865 | /* no need to throttle if this bio's bytes have been accounted */ | |
866 | if (bps_limit == U64_MAX || tg->flags & THROTL_TG_CANCELING || | |
867 | bio_flagged(bio, BIO_BPS_THROTTLED) || | |
868 | bio_flagged(bio, BIO_TG_BPS_THROTTLED)) | |
869 | return 0; | |
870 | ||
871 | tg_update_slice(tg, rw); | |
872 | bps_wait = tg_within_bps_limit(tg, bio, bps_limit); | |
873 | throtl_extend_slice(tg, rw, jiffies + bps_wait); | |
874 | ||
875 | return bps_wait; | |
876 | } | |
877 | ||
878 | static unsigned long tg_dispatch_iops_time(struct throtl_grp *tg, struct bio *bio) | |
879 | { | |
880 | bool rw = bio_data_dir(bio); | |
881 | u32 iops_limit = tg_iops_limit(tg, rw); | |
882 | unsigned long iops_wait; | |
883 | ||
884 | if (iops_limit == UINT_MAX || tg->flags & THROTL_TG_CANCELING) | |
885 | return 0; | |
886 | ||
887 | tg_update_slice(tg, rw); | |
888 | iops_wait = tg_within_iops_limit(tg, bio, iops_limit); | |
889 | throtl_extend_slice(tg, rw, jiffies + iops_wait); | |
890 | ||
891 | return iops_wait; | |
892 | } | |
893 | ||
894 | /* | |
895 | * Returns approx number of jiffies to wait before this bio is with-in IO rate | |
896 | * and can be moved to other queue or dispatched. | |
897 | */ | |
898 | static unsigned long tg_dispatch_time(struct throtl_grp *tg, struct bio *bio) | |
899 | { | |
900 | bool rw = bio_data_dir(bio); | |
901 | unsigned long wait; | |
902 | ||
903 | /* | |
904 | * Currently whole state machine of group depends on first bio | |
905 | * queued in the group bio list. So one should not be calling | |
906 | * this function with a different bio if there are other bios | |
907 | * queued. | |
908 | */ | |
909 | BUG_ON(sq_queued(&tg->service_queue, rw) && | |
910 | bio != throtl_peek_queued(&tg->service_queue.queued[rw])); | |
911 | ||
912 | wait = tg_dispatch_bps_time(tg, bio); | |
913 | if (wait != 0) | |
914 | return wait; | |
915 | ||
916 | /* | |
917 | * Charge bps here because @bio will be directly placed into the | |
918 | * iops queue afterward. | |
919 | */ | |
920 | throtl_charge_bps_bio(tg, bio); | |
921 | ||
922 | return tg_dispatch_iops_time(tg, bio); | |
923 | } | |
924 | ||
925 | /** | |
926 | * throtl_add_bio_tg - add a bio to the specified throtl_grp | |
927 | * @bio: bio to add | |
928 | * @qn: qnode to use | |
929 | * @tg: the target throtl_grp | |
930 | * | |
931 | * Add @bio to @tg's service_queue using @qn. If @qn is not specified, | |
932 | * tg->qnode_on_self[] is used. | |
933 | */ | |
934 | static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, | |
935 | struct throtl_grp *tg) | |
936 | { | |
937 | struct throtl_service_queue *sq = &tg->service_queue; | |
938 | bool rw = bio_data_dir(bio); | |
939 | ||
940 | if (!qn) | |
941 | qn = &tg->qnode_on_self[rw]; | |
942 | ||
943 | /* | |
944 | * If @tg doesn't currently have any bios queued in the same | |
945 | * direction, queueing @bio can change when @tg should be | |
946 | * dispatched. Mark that @tg was empty. This is automatically | |
947 | * cleared on the next tg_update_disptime(). | |
948 | */ | |
949 | if (sq_queued(sq, rw) == 0) | |
950 | tg->flags |= THROTL_TG_WAS_EMPTY; | |
951 | ||
952 | throtl_qnode_add_bio(bio, qn, sq); | |
953 | ||
954 | /* | |
955 | * Since we have split the queues, when the iops queue is | |
956 | * previously empty and a new @bio is added into the first @qn, | |
957 | * we also need to update the @tg->disptime. | |
958 | */ | |
959 | if (bio_flagged(bio, BIO_BPS_THROTTLED) && | |
960 | bio == throtl_peek_queued(&sq->queued[rw])) | |
961 | tg->flags |= THROTL_TG_IOPS_WAS_EMPTY; | |
962 | ||
963 | throtl_enqueue_tg(tg); | |
964 | } | |
965 | ||
966 | static void tg_update_disptime(struct throtl_grp *tg) | |
967 | { | |
968 | struct throtl_service_queue *sq = &tg->service_queue; | |
969 | unsigned long read_wait = -1, write_wait = -1, min_wait, disptime; | |
970 | struct bio *bio; | |
971 | ||
972 | bio = throtl_peek_queued(&sq->queued[READ]); | |
973 | if (bio) | |
974 | read_wait = tg_dispatch_time(tg, bio); | |
975 | ||
976 | bio = throtl_peek_queued(&sq->queued[WRITE]); | |
977 | if (bio) | |
978 | write_wait = tg_dispatch_time(tg, bio); | |
979 | ||
980 | min_wait = min(read_wait, write_wait); | |
981 | disptime = jiffies + min_wait; | |
982 | ||
983 | /* Update dispatch time */ | |
984 | throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); | |
985 | tg->disptime = disptime; | |
986 | tg_service_queue_add(tg); | |
987 | ||
988 | /* see throtl_add_bio_tg() */ | |
989 | tg->flags &= ~THROTL_TG_WAS_EMPTY; | |
990 | tg->flags &= ~THROTL_TG_IOPS_WAS_EMPTY; | |
991 | } | |
992 | ||
993 | static void start_parent_slice_with_credit(struct throtl_grp *child_tg, | |
994 | struct throtl_grp *parent_tg, bool rw) | |
995 | { | |
996 | if (throtl_slice_used(parent_tg, rw)) { | |
997 | throtl_start_new_slice_with_credit(parent_tg, rw, | |
998 | child_tg->slice_start[rw]); | |
999 | } | |
1000 | ||
1001 | } | |
1002 | ||
1003 | static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) | |
1004 | { | |
1005 | struct throtl_service_queue *sq = &tg->service_queue; | |
1006 | struct throtl_service_queue *parent_sq = sq->parent_sq; | |
1007 | struct throtl_grp *parent_tg = sq_to_tg(parent_sq); | |
1008 | struct throtl_grp *tg_to_put = NULL; | |
1009 | struct bio *bio; | |
1010 | ||
1011 | /* | |
1012 | * @bio is being transferred from @tg to @parent_sq. Popping a bio | |
1013 | * from @tg may put its reference and @parent_sq might end up | |
1014 | * getting released prematurely. Remember the tg to put and put it | |
1015 | * after @bio is transferred to @parent_sq. | |
1016 | */ | |
1017 | bio = throtl_pop_queued(sq, &tg_to_put, rw); | |
1018 | ||
1019 | throtl_charge_iops_bio(tg, bio); | |
1020 | ||
1021 | /* | |
1022 | * If our parent is another tg, we just need to transfer @bio to | |
1023 | * the parent using throtl_add_bio_tg(). If our parent is | |
1024 | * @td->service_queue, @bio is ready to be issued. Put it on its | |
1025 | * bio_lists[] and decrease total number queued. The caller is | |
1026 | * responsible for issuing these bios. | |
1027 | */ | |
1028 | if (parent_tg) { | |
1029 | throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); | |
1030 | start_parent_slice_with_credit(tg, parent_tg, rw); | |
1031 | } else { | |
1032 | bio_set_flag(bio, BIO_BPS_THROTTLED); | |
1033 | throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], | |
1034 | parent_sq); | |
1035 | BUG_ON(tg->td->nr_queued[rw] <= 0); | |
1036 | tg->td->nr_queued[rw]--; | |
1037 | } | |
1038 | ||
1039 | throtl_trim_slice(tg, rw); | |
1040 | ||
1041 | if (tg_to_put) | |
1042 | blkg_put(tg_to_blkg(tg_to_put)); | |
1043 | } | |
1044 | ||
1045 | static int throtl_dispatch_tg(struct throtl_grp *tg) | |
1046 | { | |
1047 | struct throtl_service_queue *sq = &tg->service_queue; | |
1048 | unsigned int nr_reads = 0, nr_writes = 0; | |
1049 | unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4; | |
1050 | unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads; | |
1051 | struct bio *bio; | |
1052 | ||
1053 | /* Try to dispatch 75% READS and 25% WRITES */ | |
1054 | ||
1055 | while ((bio = throtl_peek_queued(&sq->queued[READ])) && | |
1056 | tg_dispatch_time(tg, bio) == 0) { | |
1057 | ||
1058 | tg_dispatch_one_bio(tg, READ); | |
1059 | nr_reads++; | |
1060 | ||
1061 | if (nr_reads >= max_nr_reads) | |
1062 | break; | |
1063 | } | |
1064 | ||
1065 | while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && | |
1066 | tg_dispatch_time(tg, bio) == 0) { | |
1067 | ||
1068 | tg_dispatch_one_bio(tg, WRITE); | |
1069 | nr_writes++; | |
1070 | ||
1071 | if (nr_writes >= max_nr_writes) | |
1072 | break; | |
1073 | } | |
1074 | ||
1075 | return nr_reads + nr_writes; | |
1076 | } | |
1077 | ||
1078 | static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) | |
1079 | { | |
1080 | unsigned int nr_disp = 0; | |
1081 | ||
1082 | while (1) { | |
1083 | struct throtl_grp *tg; | |
1084 | struct throtl_service_queue *sq; | |
1085 | ||
1086 | if (!parent_sq->nr_pending) | |
1087 | break; | |
1088 | ||
1089 | tg = throtl_rb_first(parent_sq); | |
1090 | if (!tg) | |
1091 | break; | |
1092 | ||
1093 | if (time_before(jiffies, tg->disptime)) | |
1094 | break; | |
1095 | ||
1096 | nr_disp += throtl_dispatch_tg(tg); | |
1097 | ||
1098 | sq = &tg->service_queue; | |
1099 | if (sq_queued(sq, READ) || sq_queued(sq, WRITE)) | |
1100 | tg_update_disptime(tg); | |
1101 | else | |
1102 | throtl_dequeue_tg(tg); | |
1103 | ||
1104 | if (nr_disp >= THROTL_QUANTUM) | |
1105 | break; | |
1106 | } | |
1107 | ||
1108 | return nr_disp; | |
1109 | } | |
1110 | ||
1111 | /** | |
1112 | * throtl_pending_timer_fn - timer function for service_queue->pending_timer | |
1113 | * @t: the pending_timer member of the throtl_service_queue being serviced | |
1114 | * | |
1115 | * This timer is armed when a child throtl_grp with active bio's become | |
1116 | * pending and queued on the service_queue's pending_tree and expires when | |
1117 | * the first child throtl_grp should be dispatched. This function | |
1118 | * dispatches bio's from the children throtl_grps to the parent | |
1119 | * service_queue. | |
1120 | * | |
1121 | * If the parent's parent is another throtl_grp, dispatching is propagated | |
1122 | * by either arming its pending_timer or repeating dispatch directly. If | |
1123 | * the top-level service_tree is reached, throtl_data->dispatch_work is | |
1124 | * kicked so that the ready bio's are issued. | |
1125 | */ | |
1126 | static void throtl_pending_timer_fn(struct timer_list *t) | |
1127 | { | |
1128 | struct throtl_service_queue *sq = timer_container_of(sq, t, | |
1129 | pending_timer); | |
1130 | struct throtl_grp *tg = sq_to_tg(sq); | |
1131 | struct throtl_data *td = sq_to_td(sq); | |
1132 | struct throtl_service_queue *parent_sq; | |
1133 | struct request_queue *q; | |
1134 | bool dispatched; | |
1135 | int ret; | |
1136 | ||
1137 | /* throtl_data may be gone, so figure out request queue by blkg */ | |
1138 | if (tg) | |
1139 | q = tg->pd.blkg->q; | |
1140 | else | |
1141 | q = td->queue; | |
1142 | ||
1143 | spin_lock_irq(&q->queue_lock); | |
1144 | ||
1145 | if (!q->root_blkg) | |
1146 | goto out_unlock; | |
1147 | ||
1148 | again: | |
1149 | parent_sq = sq->parent_sq; | |
1150 | dispatched = false; | |
1151 | ||
1152 | while (true) { | |
1153 | unsigned int __maybe_unused bio_cnt_r = sq_queued(sq, READ); | |
1154 | unsigned int __maybe_unused bio_cnt_w = sq_queued(sq, WRITE); | |
1155 | ||
1156 | throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", | |
1157 | bio_cnt_r + bio_cnt_w, bio_cnt_r, bio_cnt_w); | |
1158 | ||
1159 | ret = throtl_select_dispatch(sq); | |
1160 | if (ret) { | |
1161 | throtl_log(sq, "bios disp=%u", ret); | |
1162 | dispatched = true; | |
1163 | } | |
1164 | ||
1165 | if (throtl_schedule_next_dispatch(sq, false)) | |
1166 | break; | |
1167 | ||
1168 | /* this dispatch windows is still open, relax and repeat */ | |
1169 | spin_unlock_irq(&q->queue_lock); | |
1170 | cpu_relax(); | |
1171 | spin_lock_irq(&q->queue_lock); | |
1172 | } | |
1173 | ||
1174 | if (!dispatched) | |
1175 | goto out_unlock; | |
1176 | ||
1177 | if (parent_sq) { | |
1178 | /* @parent_sq is another throl_grp, propagate dispatch */ | |
1179 | if (tg->flags & THROTL_TG_WAS_EMPTY || | |
1180 | tg->flags & THROTL_TG_IOPS_WAS_EMPTY) { | |
1181 | tg_update_disptime(tg); | |
1182 | if (!throtl_schedule_next_dispatch(parent_sq, false)) { | |
1183 | /* window is already open, repeat dispatching */ | |
1184 | sq = parent_sq; | |
1185 | tg = sq_to_tg(sq); | |
1186 | goto again; | |
1187 | } | |
1188 | } | |
1189 | } else { | |
1190 | /* reached the top-level, queue issuing */ | |
1191 | queue_work(kthrotld_workqueue, &td->dispatch_work); | |
1192 | } | |
1193 | out_unlock: | |
1194 | spin_unlock_irq(&q->queue_lock); | |
1195 | } | |
1196 | ||
1197 | /** | |
1198 | * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work | |
1199 | * @work: work item being executed | |
1200 | * | |
1201 | * This function is queued for execution when bios reach the bio_lists[] | |
1202 | * of throtl_data->service_queue. Those bios are ready and issued by this | |
1203 | * function. | |
1204 | */ | |
1205 | static void blk_throtl_dispatch_work_fn(struct work_struct *work) | |
1206 | { | |
1207 | struct throtl_data *td = container_of(work, struct throtl_data, | |
1208 | dispatch_work); | |
1209 | struct throtl_service_queue *td_sq = &td->service_queue; | |
1210 | struct request_queue *q = td->queue; | |
1211 | struct bio_list bio_list_on_stack; | |
1212 | struct bio *bio; | |
1213 | struct blk_plug plug; | |
1214 | int rw; | |
1215 | ||
1216 | bio_list_init(&bio_list_on_stack); | |
1217 | ||
1218 | spin_lock_irq(&q->queue_lock); | |
1219 | for (rw = READ; rw <= WRITE; rw++) | |
1220 | while ((bio = throtl_pop_queued(td_sq, NULL, rw))) | |
1221 | bio_list_add(&bio_list_on_stack, bio); | |
1222 | spin_unlock_irq(&q->queue_lock); | |
1223 | ||
1224 | if (!bio_list_empty(&bio_list_on_stack)) { | |
1225 | blk_start_plug(&plug); | |
1226 | while ((bio = bio_list_pop(&bio_list_on_stack))) | |
1227 | submit_bio_noacct_nocheck(bio); | |
1228 | blk_finish_plug(&plug); | |
1229 | } | |
1230 | } | |
1231 | ||
1232 | static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, | |
1233 | int off) | |
1234 | { | |
1235 | struct throtl_grp *tg = pd_to_tg(pd); | |
1236 | u64 v = *(u64 *)((void *)tg + off); | |
1237 | ||
1238 | if (v == U64_MAX) | |
1239 | return 0; | |
1240 | return __blkg_prfill_u64(sf, pd, v); | |
1241 | } | |
1242 | ||
1243 | static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, | |
1244 | int off) | |
1245 | { | |
1246 | struct throtl_grp *tg = pd_to_tg(pd); | |
1247 | unsigned int v = *(unsigned int *)((void *)tg + off); | |
1248 | ||
1249 | if (v == UINT_MAX) | |
1250 | return 0; | |
1251 | return __blkg_prfill_u64(sf, pd, v); | |
1252 | } | |
1253 | ||
1254 | static int tg_print_conf_u64(struct seq_file *sf, void *v) | |
1255 | { | |
1256 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, | |
1257 | &blkcg_policy_throtl, seq_cft(sf)->private, false); | |
1258 | return 0; | |
1259 | } | |
1260 | ||
1261 | static int tg_print_conf_uint(struct seq_file *sf, void *v) | |
1262 | { | |
1263 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, | |
1264 | &blkcg_policy_throtl, seq_cft(sf)->private, false); | |
1265 | return 0; | |
1266 | } | |
1267 | ||
1268 | static void tg_conf_updated(struct throtl_grp *tg, bool global) | |
1269 | { | |
1270 | struct throtl_service_queue *sq = &tg->service_queue; | |
1271 | struct cgroup_subsys_state *pos_css; | |
1272 | struct blkcg_gq *blkg; | |
1273 | ||
1274 | throtl_log(&tg->service_queue, | |
1275 | "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", | |
1276 | tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), | |
1277 | tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); | |
1278 | ||
1279 | rcu_read_lock(); | |
1280 | /* | |
1281 | * Update has_rules[] flags for the updated tg's subtree. A tg is | |
1282 | * considered to have rules if either the tg itself or any of its | |
1283 | * ancestors has rules. This identifies groups without any | |
1284 | * restrictions in the whole hierarchy and allows them to bypass | |
1285 | * blk-throttle. | |
1286 | */ | |
1287 | blkg_for_each_descendant_pre(blkg, pos_css, | |
1288 | global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { | |
1289 | struct throtl_grp *this_tg = blkg_to_tg(blkg); | |
1290 | ||
1291 | tg_update_has_rules(this_tg); | |
1292 | /* ignore root/second level */ | |
1293 | if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || | |
1294 | !blkg->parent->parent) | |
1295 | continue; | |
1296 | } | |
1297 | rcu_read_unlock(); | |
1298 | ||
1299 | /* | |
1300 | * We're already holding queue_lock and know @tg is valid. Let's | |
1301 | * apply the new config directly. | |
1302 | * | |
1303 | * Restart the slices for both READ and WRITES. It might happen | |
1304 | * that a group's limit are dropped suddenly and we don't want to | |
1305 | * account recently dispatched IO with new low rate. | |
1306 | */ | |
1307 | throtl_start_new_slice(tg, READ, false); | |
1308 | throtl_start_new_slice(tg, WRITE, false); | |
1309 | ||
1310 | if (tg->flags & THROTL_TG_PENDING) { | |
1311 | tg_update_disptime(tg); | |
1312 | throtl_schedule_next_dispatch(sq->parent_sq, true); | |
1313 | } | |
1314 | } | |
1315 | ||
1316 | static int blk_throtl_init(struct gendisk *disk) | |
1317 | { | |
1318 | struct request_queue *q = disk->queue; | |
1319 | struct throtl_data *td; | |
1320 | unsigned int memflags; | |
1321 | int ret; | |
1322 | ||
1323 | td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); | |
1324 | if (!td) | |
1325 | return -ENOMEM; | |
1326 | ||
1327 | INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); | |
1328 | throtl_service_queue_init(&td->service_queue); | |
1329 | ||
1330 | /* | |
1331 | * Freeze queue before activating policy, to synchronize with IO path, | |
1332 | * which is protected by 'q_usage_counter'. | |
1333 | */ | |
1334 | memflags = blk_mq_freeze_queue(disk->queue); | |
1335 | blk_mq_quiesce_queue(disk->queue); | |
1336 | ||
1337 | q->td = td; | |
1338 | td->queue = q; | |
1339 | ||
1340 | /* activate policy */ | |
1341 | ret = blkcg_activate_policy(disk, &blkcg_policy_throtl); | |
1342 | if (ret) { | |
1343 | q->td = NULL; | |
1344 | kfree(td); | |
1345 | goto out; | |
1346 | } | |
1347 | ||
1348 | if (blk_queue_nonrot(q)) | |
1349 | td->throtl_slice = DFL_THROTL_SLICE_SSD; | |
1350 | else | |
1351 | td->throtl_slice = DFL_THROTL_SLICE_HD; | |
1352 | td->track_bio_latency = !queue_is_mq(q); | |
1353 | if (!td->track_bio_latency) | |
1354 | blk_stat_enable_accounting(q); | |
1355 | ||
1356 | out: | |
1357 | blk_mq_unquiesce_queue(disk->queue); | |
1358 | blk_mq_unfreeze_queue(disk->queue, memflags); | |
1359 | ||
1360 | return ret; | |
1361 | } | |
1362 | ||
1363 | ||
1364 | static ssize_t tg_set_conf(struct kernfs_open_file *of, | |
1365 | char *buf, size_t nbytes, loff_t off, bool is_u64) | |
1366 | { | |
1367 | struct blkcg *blkcg = css_to_blkcg(of_css(of)); | |
1368 | struct blkg_conf_ctx ctx; | |
1369 | struct throtl_grp *tg; | |
1370 | int ret; | |
1371 | u64 v; | |
1372 | ||
1373 | blkg_conf_init(&ctx, buf); | |
1374 | ||
1375 | ret = blkg_conf_open_bdev(&ctx); | |
1376 | if (ret) | |
1377 | goto out_finish; | |
1378 | ||
1379 | if (!blk_throtl_activated(ctx.bdev->bd_queue)) { | |
1380 | ret = blk_throtl_init(ctx.bdev->bd_disk); | |
1381 | if (ret) | |
1382 | goto out_finish; | |
1383 | } | |
1384 | ||
1385 | ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx); | |
1386 | if (ret) | |
1387 | goto out_finish; | |
1388 | ||
1389 | ret = -EINVAL; | |
1390 | if (sscanf(ctx.body, "%llu", &v) != 1) | |
1391 | goto out_finish; | |
1392 | if (!v) | |
1393 | v = U64_MAX; | |
1394 | ||
1395 | tg = blkg_to_tg(ctx.blkg); | |
1396 | tg_update_carryover(tg); | |
1397 | ||
1398 | if (is_u64) | |
1399 | *(u64 *)((void *)tg + of_cft(of)->private) = v; | |
1400 | else | |
1401 | *(unsigned int *)((void *)tg + of_cft(of)->private) = v; | |
1402 | ||
1403 | tg_conf_updated(tg, false); | |
1404 | ret = 0; | |
1405 | out_finish: | |
1406 | blkg_conf_exit(&ctx); | |
1407 | return ret ?: nbytes; | |
1408 | } | |
1409 | ||
1410 | static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, | |
1411 | char *buf, size_t nbytes, loff_t off) | |
1412 | { | |
1413 | return tg_set_conf(of, buf, nbytes, off, true); | |
1414 | } | |
1415 | ||
1416 | static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, | |
1417 | char *buf, size_t nbytes, loff_t off) | |
1418 | { | |
1419 | return tg_set_conf(of, buf, nbytes, off, false); | |
1420 | } | |
1421 | ||
1422 | static int tg_print_rwstat(struct seq_file *sf, void *v) | |
1423 | { | |
1424 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | |
1425 | blkg_prfill_rwstat, &blkcg_policy_throtl, | |
1426 | seq_cft(sf)->private, true); | |
1427 | return 0; | |
1428 | } | |
1429 | ||
1430 | static u64 tg_prfill_rwstat_recursive(struct seq_file *sf, | |
1431 | struct blkg_policy_data *pd, int off) | |
1432 | { | |
1433 | struct blkg_rwstat_sample sum; | |
1434 | ||
1435 | blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off, | |
1436 | &sum); | |
1437 | return __blkg_prfill_rwstat(sf, pd, &sum); | |
1438 | } | |
1439 | ||
1440 | static int tg_print_rwstat_recursive(struct seq_file *sf, void *v) | |
1441 | { | |
1442 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | |
1443 | tg_prfill_rwstat_recursive, &blkcg_policy_throtl, | |
1444 | seq_cft(sf)->private, true); | |
1445 | return 0; | |
1446 | } | |
1447 | ||
1448 | static struct cftype throtl_legacy_files[] = { | |
1449 | { | |
1450 | .name = "throttle.read_bps_device", | |
1451 | .private = offsetof(struct throtl_grp, bps[READ]), | |
1452 | .seq_show = tg_print_conf_u64, | |
1453 | .write = tg_set_conf_u64, | |
1454 | }, | |
1455 | { | |
1456 | .name = "throttle.write_bps_device", | |
1457 | .private = offsetof(struct throtl_grp, bps[WRITE]), | |
1458 | .seq_show = tg_print_conf_u64, | |
1459 | .write = tg_set_conf_u64, | |
1460 | }, | |
1461 | { | |
1462 | .name = "throttle.read_iops_device", | |
1463 | .private = offsetof(struct throtl_grp, iops[READ]), | |
1464 | .seq_show = tg_print_conf_uint, | |
1465 | .write = tg_set_conf_uint, | |
1466 | }, | |
1467 | { | |
1468 | .name = "throttle.write_iops_device", | |
1469 | .private = offsetof(struct throtl_grp, iops[WRITE]), | |
1470 | .seq_show = tg_print_conf_uint, | |
1471 | .write = tg_set_conf_uint, | |
1472 | }, | |
1473 | { | |
1474 | .name = "throttle.io_service_bytes", | |
1475 | .private = offsetof(struct throtl_grp, stat_bytes), | |
1476 | .seq_show = tg_print_rwstat, | |
1477 | }, | |
1478 | { | |
1479 | .name = "throttle.io_service_bytes_recursive", | |
1480 | .private = offsetof(struct throtl_grp, stat_bytes), | |
1481 | .seq_show = tg_print_rwstat_recursive, | |
1482 | }, | |
1483 | { | |
1484 | .name = "throttle.io_serviced", | |
1485 | .private = offsetof(struct throtl_grp, stat_ios), | |
1486 | .seq_show = tg_print_rwstat, | |
1487 | }, | |
1488 | { | |
1489 | .name = "throttle.io_serviced_recursive", | |
1490 | .private = offsetof(struct throtl_grp, stat_ios), | |
1491 | .seq_show = tg_print_rwstat_recursive, | |
1492 | }, | |
1493 | { } /* terminate */ | |
1494 | }; | |
1495 | ||
1496 | static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, | |
1497 | int off) | |
1498 | { | |
1499 | struct throtl_grp *tg = pd_to_tg(pd); | |
1500 | const char *dname = blkg_dev_name(pd->blkg); | |
1501 | u64 bps_dft; | |
1502 | unsigned int iops_dft; | |
1503 | ||
1504 | if (!dname) | |
1505 | return 0; | |
1506 | ||
1507 | bps_dft = U64_MAX; | |
1508 | iops_dft = UINT_MAX; | |
1509 | ||
1510 | if (tg->bps[READ] == bps_dft && | |
1511 | tg->bps[WRITE] == bps_dft && | |
1512 | tg->iops[READ] == iops_dft && | |
1513 | tg->iops[WRITE] == iops_dft) | |
1514 | return 0; | |
1515 | ||
1516 | seq_printf(sf, "%s", dname); | |
1517 | if (tg->bps[READ] == U64_MAX) | |
1518 | seq_printf(sf, " rbps=max"); | |
1519 | else | |
1520 | seq_printf(sf, " rbps=%llu", tg->bps[READ]); | |
1521 | ||
1522 | if (tg->bps[WRITE] == U64_MAX) | |
1523 | seq_printf(sf, " wbps=max"); | |
1524 | else | |
1525 | seq_printf(sf, " wbps=%llu", tg->bps[WRITE]); | |
1526 | ||
1527 | if (tg->iops[READ] == UINT_MAX) | |
1528 | seq_printf(sf, " riops=max"); | |
1529 | else | |
1530 | seq_printf(sf, " riops=%u", tg->iops[READ]); | |
1531 | ||
1532 | if (tg->iops[WRITE] == UINT_MAX) | |
1533 | seq_printf(sf, " wiops=max"); | |
1534 | else | |
1535 | seq_printf(sf, " wiops=%u", tg->iops[WRITE]); | |
1536 | ||
1537 | seq_printf(sf, "\n"); | |
1538 | return 0; | |
1539 | } | |
1540 | ||
1541 | static int tg_print_limit(struct seq_file *sf, void *v) | |
1542 | { | |
1543 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, | |
1544 | &blkcg_policy_throtl, seq_cft(sf)->private, false); | |
1545 | return 0; | |
1546 | } | |
1547 | ||
1548 | static ssize_t tg_set_limit(struct kernfs_open_file *of, | |
1549 | char *buf, size_t nbytes, loff_t off) | |
1550 | { | |
1551 | struct blkcg *blkcg = css_to_blkcg(of_css(of)); | |
1552 | struct blkg_conf_ctx ctx; | |
1553 | struct throtl_grp *tg; | |
1554 | u64 v[4]; | |
1555 | int ret; | |
1556 | ||
1557 | blkg_conf_init(&ctx, buf); | |
1558 | ||
1559 | ret = blkg_conf_open_bdev(&ctx); | |
1560 | if (ret) | |
1561 | goto out_finish; | |
1562 | ||
1563 | if (!blk_throtl_activated(ctx.bdev->bd_queue)) { | |
1564 | ret = blk_throtl_init(ctx.bdev->bd_disk); | |
1565 | if (ret) | |
1566 | goto out_finish; | |
1567 | } | |
1568 | ||
1569 | ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx); | |
1570 | if (ret) | |
1571 | goto out_finish; | |
1572 | ||
1573 | tg = blkg_to_tg(ctx.blkg); | |
1574 | tg_update_carryover(tg); | |
1575 | ||
1576 | v[0] = tg->bps[READ]; | |
1577 | v[1] = tg->bps[WRITE]; | |
1578 | v[2] = tg->iops[READ]; | |
1579 | v[3] = tg->iops[WRITE]; | |
1580 | ||
1581 | while (true) { | |
1582 | char tok[27]; /* wiops=18446744073709551616 */ | |
1583 | char *p; | |
1584 | u64 val = U64_MAX; | |
1585 | int len; | |
1586 | ||
1587 | if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) | |
1588 | break; | |
1589 | if (tok[0] == '\0') | |
1590 | break; | |
1591 | ctx.body += len; | |
1592 | ||
1593 | ret = -EINVAL; | |
1594 | p = tok; | |
1595 | strsep(&p, "="); | |
1596 | if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) | |
1597 | goto out_finish; | |
1598 | ||
1599 | ret = -ERANGE; | |
1600 | if (!val) | |
1601 | goto out_finish; | |
1602 | ||
1603 | ret = -EINVAL; | |
1604 | if (!strcmp(tok, "rbps")) | |
1605 | v[0] = val; | |
1606 | else if (!strcmp(tok, "wbps")) | |
1607 | v[1] = val; | |
1608 | else if (!strcmp(tok, "riops")) | |
1609 | v[2] = min_t(u64, val, UINT_MAX); | |
1610 | else if (!strcmp(tok, "wiops")) | |
1611 | v[3] = min_t(u64, val, UINT_MAX); | |
1612 | else | |
1613 | goto out_finish; | |
1614 | } | |
1615 | ||
1616 | tg->bps[READ] = v[0]; | |
1617 | tg->bps[WRITE] = v[1]; | |
1618 | tg->iops[READ] = v[2]; | |
1619 | tg->iops[WRITE] = v[3]; | |
1620 | ||
1621 | tg_conf_updated(tg, false); | |
1622 | ret = 0; | |
1623 | out_finish: | |
1624 | blkg_conf_exit(&ctx); | |
1625 | return ret ?: nbytes; | |
1626 | } | |
1627 | ||
1628 | static struct cftype throtl_files[] = { | |
1629 | { | |
1630 | .name = "max", | |
1631 | .flags = CFTYPE_NOT_ON_ROOT, | |
1632 | .seq_show = tg_print_limit, | |
1633 | .write = tg_set_limit, | |
1634 | }, | |
1635 | { } /* terminate */ | |
1636 | }; | |
1637 | ||
1638 | static void throtl_shutdown_wq(struct request_queue *q) | |
1639 | { | |
1640 | struct throtl_data *td = q->td; | |
1641 | ||
1642 | cancel_work_sync(&td->dispatch_work); | |
1643 | } | |
1644 | ||
1645 | static void tg_flush_bios(struct throtl_grp *tg) | |
1646 | { | |
1647 | struct throtl_service_queue *sq = &tg->service_queue; | |
1648 | ||
1649 | if (tg->flags & THROTL_TG_CANCELING) | |
1650 | return; | |
1651 | /* | |
1652 | * Set the flag to make sure throtl_pending_timer_fn() won't | |
1653 | * stop until all throttled bios are dispatched. | |
1654 | */ | |
1655 | tg->flags |= THROTL_TG_CANCELING; | |
1656 | ||
1657 | /* | |
1658 | * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup | |
1659 | * will be inserted to service queue without THROTL_TG_PENDING | |
1660 | * set in tg_update_disptime below. Then IO dispatched from | |
1661 | * child in tg_dispatch_one_bio will trigger double insertion | |
1662 | * and corrupt the tree. | |
1663 | */ | |
1664 | if (!(tg->flags & THROTL_TG_PENDING)) | |
1665 | return; | |
1666 | ||
1667 | /* | |
1668 | * Update disptime after setting the above flag to make sure | |
1669 | * throtl_select_dispatch() won't exit without dispatching. | |
1670 | */ | |
1671 | tg_update_disptime(tg); | |
1672 | ||
1673 | throtl_schedule_pending_timer(sq, jiffies + 1); | |
1674 | } | |
1675 | ||
1676 | static void throtl_pd_offline(struct blkg_policy_data *pd) | |
1677 | { | |
1678 | tg_flush_bios(pd_to_tg(pd)); | |
1679 | } | |
1680 | ||
1681 | struct blkcg_policy blkcg_policy_throtl = { | |
1682 | .dfl_cftypes = throtl_files, | |
1683 | .legacy_cftypes = throtl_legacy_files, | |
1684 | ||
1685 | .pd_alloc_fn = throtl_pd_alloc, | |
1686 | .pd_init_fn = throtl_pd_init, | |
1687 | .pd_online_fn = throtl_pd_online, | |
1688 | .pd_offline_fn = throtl_pd_offline, | |
1689 | .pd_free_fn = throtl_pd_free, | |
1690 | }; | |
1691 | ||
1692 | void blk_throtl_cancel_bios(struct gendisk *disk) | |
1693 | { | |
1694 | struct request_queue *q = disk->queue; | |
1695 | struct cgroup_subsys_state *pos_css; | |
1696 | struct blkcg_gq *blkg; | |
1697 | ||
1698 | if (!blk_throtl_activated(q)) | |
1699 | return; | |
1700 | ||
1701 | spin_lock_irq(&q->queue_lock); | |
1702 | /* | |
1703 | * queue_lock is held, rcu lock is not needed here technically. | |
1704 | * However, rcu lock is still held to emphasize that following | |
1705 | * path need RCU protection and to prevent warning from lockdep. | |
1706 | */ | |
1707 | rcu_read_lock(); | |
1708 | blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) { | |
1709 | /* | |
1710 | * disk_release will call pd_offline_fn to cancel bios. | |
1711 | * However, disk_release can't be called if someone get | |
1712 | * the refcount of device and issued bios which are | |
1713 | * inflight after del_gendisk. | |
1714 | * Cancel bios here to ensure no bios are inflight after | |
1715 | * del_gendisk. | |
1716 | */ | |
1717 | tg_flush_bios(blkg_to_tg(blkg)); | |
1718 | } | |
1719 | rcu_read_unlock(); | |
1720 | spin_unlock_irq(&q->queue_lock); | |
1721 | } | |
1722 | ||
1723 | static bool tg_within_limit(struct throtl_grp *tg, struct bio *bio, bool rw) | |
1724 | { | |
1725 | struct throtl_service_queue *sq = &tg->service_queue; | |
1726 | ||
1727 | /* | |
1728 | * For a split bio, we need to specifically distinguish whether the | |
1729 | * iops queue is empty. | |
1730 | */ | |
1731 | if (bio_flagged(bio, BIO_BPS_THROTTLED)) | |
1732 | return sq->nr_queued_iops[rw] == 0 && | |
1733 | tg_dispatch_iops_time(tg, bio) == 0; | |
1734 | ||
1735 | /* | |
1736 | * Throtl is FIFO - if bios are already queued, should queue. | |
1737 | * If the bps queue is empty and @bio is within the bps limit, charge | |
1738 | * bps here for direct placement into the iops queue. | |
1739 | */ | |
1740 | if (sq_queued(&tg->service_queue, rw)) { | |
1741 | if (sq->nr_queued_bps[rw] == 0 && | |
1742 | tg_dispatch_bps_time(tg, bio) == 0) | |
1743 | throtl_charge_bps_bio(tg, bio); | |
1744 | ||
1745 | return false; | |
1746 | } | |
1747 | ||
1748 | return tg_dispatch_time(tg, bio) == 0; | |
1749 | } | |
1750 | ||
1751 | bool __blk_throtl_bio(struct bio *bio) | |
1752 | { | |
1753 | struct request_queue *q = bdev_get_queue(bio->bi_bdev); | |
1754 | struct blkcg_gq *blkg = bio->bi_blkg; | |
1755 | struct throtl_qnode *qn = NULL; | |
1756 | struct throtl_grp *tg = blkg_to_tg(blkg); | |
1757 | struct throtl_service_queue *sq; | |
1758 | bool rw = bio_data_dir(bio); | |
1759 | bool throttled = false; | |
1760 | struct throtl_data *td = tg->td; | |
1761 | ||
1762 | rcu_read_lock(); | |
1763 | spin_lock_irq(&q->queue_lock); | |
1764 | sq = &tg->service_queue; | |
1765 | ||
1766 | while (true) { | |
1767 | if (tg_within_limit(tg, bio, rw)) { | |
1768 | /* within limits, let's charge and dispatch directly */ | |
1769 | throtl_charge_iops_bio(tg, bio); | |
1770 | ||
1771 | /* | |
1772 | * We need to trim slice even when bios are not being | |
1773 | * queued otherwise it might happen that a bio is not | |
1774 | * queued for a long time and slice keeps on extending | |
1775 | * and trim is not called for a long time. Now if limits | |
1776 | * are reduced suddenly we take into account all the IO | |
1777 | * dispatched so far at new low rate and * newly queued | |
1778 | * IO gets a really long dispatch time. | |
1779 | * | |
1780 | * So keep on trimming slice even if bio is not queued. | |
1781 | */ | |
1782 | throtl_trim_slice(tg, rw); | |
1783 | } else if (bio_issue_as_root_blkg(bio)) { | |
1784 | /* | |
1785 | * IOs which may cause priority inversions are | |
1786 | * dispatched directly, even if they're over limit. | |
1787 | * | |
1788 | * Charge and dispatch directly, and our throttle | |
1789 | * control algorithm is adaptive, and extra IO bytes | |
1790 | * will be throttled for paying the debt | |
1791 | */ | |
1792 | throtl_charge_bps_bio(tg, bio); | |
1793 | throtl_charge_iops_bio(tg, bio); | |
1794 | } else { | |
1795 | /* if above limits, break to queue */ | |
1796 | break; | |
1797 | } | |
1798 | ||
1799 | /* | |
1800 | * @bio passed through this layer without being throttled. | |
1801 | * Climb up the ladder. If we're already at the top, it | |
1802 | * can be executed directly. | |
1803 | */ | |
1804 | qn = &tg->qnode_on_parent[rw]; | |
1805 | sq = sq->parent_sq; | |
1806 | tg = sq_to_tg(sq); | |
1807 | if (!tg) { | |
1808 | bio_set_flag(bio, BIO_BPS_THROTTLED); | |
1809 | goto out_unlock; | |
1810 | } | |
1811 | } | |
1812 | ||
1813 | /* out-of-limit, queue to @tg */ | |
1814 | throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", | |
1815 | rw == READ ? 'R' : 'W', | |
1816 | tg->bytes_disp[rw], bio->bi_iter.bi_size, | |
1817 | tg_bps_limit(tg, rw), | |
1818 | tg->io_disp[rw], tg_iops_limit(tg, rw), | |
1819 | sq_queued(sq, READ), sq_queued(sq, WRITE)); | |
1820 | ||
1821 | td->nr_queued[rw]++; | |
1822 | throtl_add_bio_tg(bio, qn, tg); | |
1823 | throttled = true; | |
1824 | ||
1825 | /* | |
1826 | * Update @tg's dispatch time and force schedule dispatch if @tg | |
1827 | * was empty before @bio, or the iops queue is empty and @bio will | |
1828 | * add to. The forced scheduling isn't likely to cause undue | |
1829 | * delay as @bio is likely to be dispatched directly if its @tg's | |
1830 | * disptime is not in the future. | |
1831 | */ | |
1832 | if (tg->flags & THROTL_TG_WAS_EMPTY || | |
1833 | tg->flags & THROTL_TG_IOPS_WAS_EMPTY) { | |
1834 | tg_update_disptime(tg); | |
1835 | throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); | |
1836 | } | |
1837 | ||
1838 | out_unlock: | |
1839 | spin_unlock_irq(&q->queue_lock); | |
1840 | ||
1841 | rcu_read_unlock(); | |
1842 | return throttled; | |
1843 | } | |
1844 | ||
1845 | void blk_throtl_exit(struct gendisk *disk) | |
1846 | { | |
1847 | struct request_queue *q = disk->queue; | |
1848 | ||
1849 | if (!blk_throtl_activated(q)) | |
1850 | return; | |
1851 | ||
1852 | timer_delete_sync(&q->td->service_queue.pending_timer); | |
1853 | throtl_shutdown_wq(q); | |
1854 | blkcg_deactivate_policy(disk, &blkcg_policy_throtl); | |
1855 | kfree(q->td); | |
1856 | } | |
1857 | ||
1858 | static int __init throtl_init(void) | |
1859 | { | |
1860 | kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); | |
1861 | if (!kthrotld_workqueue) | |
1862 | panic("Failed to create kthrotld\n"); | |
1863 | ||
1864 | return blkcg_policy_register(&blkcg_policy_throtl); | |
1865 | } | |
1866 | ||
1867 | module_init(throtl_init); |