]>
| Commit | Line | Data |
|---|---|---|
| 1 | // SPDX-License-Identifier: GPL-2.0-only | |
| 2 | /* | |
| 3 | * Xilinx Axi Ethernet device driver | |
| 4 | * | |
| 5 | * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi | |
| 6 | * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net> | |
| 7 | * Copyright (c) 2008-2009 Secret Lab Technologies Ltd. | |
| 8 | * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu> | |
| 9 | * Copyright (c) 2010 - 2011 PetaLogix | |
| 10 | * Copyright (c) 2019 - 2022 Calian Advanced Technologies | |
| 11 | * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved. | |
| 12 | * | |
| 13 | * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6 | |
| 14 | * and Spartan6. | |
| 15 | * | |
| 16 | * TODO: | |
| 17 | * - Add Axi Fifo support. | |
| 18 | * - Factor out Axi DMA code into separate driver. | |
| 19 | * - Test and fix basic multicast filtering. | |
| 20 | * - Add support for extended multicast filtering. | |
| 21 | * - Test basic VLAN support. | |
| 22 | * - Add support for extended VLAN support. | |
| 23 | */ | |
| 24 | ||
| 25 | #include <linux/clk.h> | |
| 26 | #include <linux/delay.h> | |
| 27 | #include <linux/etherdevice.h> | |
| 28 | #include <linux/module.h> | |
| 29 | #include <linux/netdevice.h> | |
| 30 | #include <linux/of.h> | |
| 31 | #include <linux/of_mdio.h> | |
| 32 | #include <linux/of_net.h> | |
| 33 | #include <linux/of_irq.h> | |
| 34 | #include <linux/of_address.h> | |
| 35 | #include <linux/platform_device.h> | |
| 36 | #include <linux/skbuff.h> | |
| 37 | #include <linux/math64.h> | |
| 38 | #include <linux/phy.h> | |
| 39 | #include <linux/mii.h> | |
| 40 | #include <linux/ethtool.h> | |
| 41 | #include <linux/dmaengine.h> | |
| 42 | #include <linux/dma-mapping.h> | |
| 43 | #include <linux/dma/xilinx_dma.h> | |
| 44 | #include <linux/circ_buf.h> | |
| 45 | #include <net/netdev_queues.h> | |
| 46 | ||
| 47 | #include "xilinx_axienet.h" | |
| 48 | ||
| 49 | /* Descriptors defines for Tx and Rx DMA */ | |
| 50 | #define TX_BD_NUM_DEFAULT 128 | |
| 51 | #define RX_BD_NUM_DEFAULT 1024 | |
| 52 | #define TX_BD_NUM_MIN (MAX_SKB_FRAGS + 1) | |
| 53 | #define TX_BD_NUM_MAX 4096 | |
| 54 | #define RX_BD_NUM_MAX 4096 | |
| 55 | #define DMA_NUM_APP_WORDS 5 | |
| 56 | #define LEN_APP 4 | |
| 57 | #define RX_BUF_NUM_DEFAULT 128 | |
| 58 | ||
| 59 | /* Must be shorter than length of ethtool_drvinfo.driver field to fit */ | |
| 60 | #define DRIVER_NAME "xaxienet" | |
| 61 | #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver" | |
| 62 | #define DRIVER_VERSION "1.00a" | |
| 63 | ||
| 64 | #define AXIENET_REGS_N 40 | |
| 65 | ||
| 66 | static void axienet_rx_submit_desc(struct net_device *ndev); | |
| 67 | ||
| 68 | /* Match table for of_platform binding */ | |
| 69 | static const struct of_device_id axienet_of_match[] = { | |
| 70 | { .compatible = "xlnx,axi-ethernet-1.00.a", }, | |
| 71 | { .compatible = "xlnx,axi-ethernet-1.01.a", }, | |
| 72 | { .compatible = "xlnx,axi-ethernet-2.01.a", }, | |
| 73 | {}, | |
| 74 | }; | |
| 75 | ||
| 76 | MODULE_DEVICE_TABLE(of, axienet_of_match); | |
| 77 | ||
| 78 | /* Option table for setting up Axi Ethernet hardware options */ | |
| 79 | static struct axienet_option axienet_options[] = { | |
| 80 | /* Turn on jumbo packet support for both Rx and Tx */ | |
| 81 | { | |
| 82 | .opt = XAE_OPTION_JUMBO, | |
| 83 | .reg = XAE_TC_OFFSET, | |
| 84 | .m_or = XAE_TC_JUM_MASK, | |
| 85 | }, { | |
| 86 | .opt = XAE_OPTION_JUMBO, | |
| 87 | .reg = XAE_RCW1_OFFSET, | |
| 88 | .m_or = XAE_RCW1_JUM_MASK, | |
| 89 | }, { /* Turn on VLAN packet support for both Rx and Tx */ | |
| 90 | .opt = XAE_OPTION_VLAN, | |
| 91 | .reg = XAE_TC_OFFSET, | |
| 92 | .m_or = XAE_TC_VLAN_MASK, | |
| 93 | }, { | |
| 94 | .opt = XAE_OPTION_VLAN, | |
| 95 | .reg = XAE_RCW1_OFFSET, | |
| 96 | .m_or = XAE_RCW1_VLAN_MASK, | |
| 97 | }, { /* Turn on FCS stripping on receive packets */ | |
| 98 | .opt = XAE_OPTION_FCS_STRIP, | |
| 99 | .reg = XAE_RCW1_OFFSET, | |
| 100 | .m_or = XAE_RCW1_FCS_MASK, | |
| 101 | }, { /* Turn on FCS insertion on transmit packets */ | |
| 102 | .opt = XAE_OPTION_FCS_INSERT, | |
| 103 | .reg = XAE_TC_OFFSET, | |
| 104 | .m_or = XAE_TC_FCS_MASK, | |
| 105 | }, { /* Turn off length/type field checking on receive packets */ | |
| 106 | .opt = XAE_OPTION_LENTYPE_ERR, | |
| 107 | .reg = XAE_RCW1_OFFSET, | |
| 108 | .m_or = XAE_RCW1_LT_DIS_MASK, | |
| 109 | }, { /* Turn on Rx flow control */ | |
| 110 | .opt = XAE_OPTION_FLOW_CONTROL, | |
| 111 | .reg = XAE_FCC_OFFSET, | |
| 112 | .m_or = XAE_FCC_FCRX_MASK, | |
| 113 | }, { /* Turn on Tx flow control */ | |
| 114 | .opt = XAE_OPTION_FLOW_CONTROL, | |
| 115 | .reg = XAE_FCC_OFFSET, | |
| 116 | .m_or = XAE_FCC_FCTX_MASK, | |
| 117 | }, { /* Turn on promiscuous frame filtering */ | |
| 118 | .opt = XAE_OPTION_PROMISC, | |
| 119 | .reg = XAE_FMI_OFFSET, | |
| 120 | .m_or = XAE_FMI_PM_MASK, | |
| 121 | }, { /* Enable transmitter */ | |
| 122 | .opt = XAE_OPTION_TXEN, | |
| 123 | .reg = XAE_TC_OFFSET, | |
| 124 | .m_or = XAE_TC_TX_MASK, | |
| 125 | }, { /* Enable receiver */ | |
| 126 | .opt = XAE_OPTION_RXEN, | |
| 127 | .reg = XAE_RCW1_OFFSET, | |
| 128 | .m_or = XAE_RCW1_RX_MASK, | |
| 129 | }, | |
| 130 | {} | |
| 131 | }; | |
| 132 | ||
| 133 | static struct skbuf_dma_descriptor *axienet_get_rx_desc(struct axienet_local *lp, int i) | |
| 134 | { | |
| 135 | return lp->rx_skb_ring[i & (RX_BUF_NUM_DEFAULT - 1)]; | |
| 136 | } | |
| 137 | ||
| 138 | static struct skbuf_dma_descriptor *axienet_get_tx_desc(struct axienet_local *lp, int i) | |
| 139 | { | |
| 140 | return lp->tx_skb_ring[i & (TX_BD_NUM_MAX - 1)]; | |
| 141 | } | |
| 142 | ||
| 143 | /** | |
| 144 | * axienet_dma_in32 - Memory mapped Axi DMA register read | |
| 145 | * @lp: Pointer to axienet local structure | |
| 146 | * @reg: Address offset from the base address of the Axi DMA core | |
| 147 | * | |
| 148 | * Return: The contents of the Axi DMA register | |
| 149 | * | |
| 150 | * This function returns the contents of the corresponding Axi DMA register. | |
| 151 | */ | |
| 152 | static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg) | |
| 153 | { | |
| 154 | return ioread32(lp->dma_regs + reg); | |
| 155 | } | |
| 156 | ||
| 157 | static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr, | |
| 158 | struct axidma_bd *desc) | |
| 159 | { | |
| 160 | desc->phys = lower_32_bits(addr); | |
| 161 | if (lp->features & XAE_FEATURE_DMA_64BIT) | |
| 162 | desc->phys_msb = upper_32_bits(addr); | |
| 163 | } | |
| 164 | ||
| 165 | static dma_addr_t desc_get_phys_addr(struct axienet_local *lp, | |
| 166 | struct axidma_bd *desc) | |
| 167 | { | |
| 168 | dma_addr_t ret = desc->phys; | |
| 169 | ||
| 170 | if (lp->features & XAE_FEATURE_DMA_64BIT) | |
| 171 | ret |= ((dma_addr_t)desc->phys_msb << 16) << 16; | |
| 172 | ||
| 173 | return ret; | |
| 174 | } | |
| 175 | ||
| 176 | /** | |
| 177 | * axienet_dma_bd_release - Release buffer descriptor rings | |
| 178 | * @ndev: Pointer to the net_device structure | |
| 179 | * | |
| 180 | * This function is used to release the descriptors allocated in | |
| 181 | * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet | |
| 182 | * driver stop api is called. | |
| 183 | */ | |
| 184 | static void axienet_dma_bd_release(struct net_device *ndev) | |
| 185 | { | |
| 186 | int i; | |
| 187 | struct axienet_local *lp = netdev_priv(ndev); | |
| 188 | ||
| 189 | /* If we end up here, tx_bd_v must have been DMA allocated. */ | |
| 190 | dma_free_coherent(lp->dev, | |
| 191 | sizeof(*lp->tx_bd_v) * lp->tx_bd_num, | |
| 192 | lp->tx_bd_v, | |
| 193 | lp->tx_bd_p); | |
| 194 | ||
| 195 | if (!lp->rx_bd_v) | |
| 196 | return; | |
| 197 | ||
| 198 | for (i = 0; i < lp->rx_bd_num; i++) { | |
| 199 | dma_addr_t phys; | |
| 200 | ||
| 201 | /* A NULL skb means this descriptor has not been initialised | |
| 202 | * at all. | |
| 203 | */ | |
| 204 | if (!lp->rx_bd_v[i].skb) | |
| 205 | break; | |
| 206 | ||
| 207 | dev_kfree_skb(lp->rx_bd_v[i].skb); | |
| 208 | ||
| 209 | /* For each descriptor, we programmed cntrl with the (non-zero) | |
| 210 | * descriptor size, after it had been successfully allocated. | |
| 211 | * So a non-zero value in there means we need to unmap it. | |
| 212 | */ | |
| 213 | if (lp->rx_bd_v[i].cntrl) { | |
| 214 | phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]); | |
| 215 | dma_unmap_single(lp->dev, phys, | |
| 216 | lp->max_frm_size, DMA_FROM_DEVICE); | |
| 217 | } | |
| 218 | } | |
| 219 | ||
| 220 | dma_free_coherent(lp->dev, | |
| 221 | sizeof(*lp->rx_bd_v) * lp->rx_bd_num, | |
| 222 | lp->rx_bd_v, | |
| 223 | lp->rx_bd_p); | |
| 224 | } | |
| 225 | ||
| 226 | static u64 axienet_dma_rate(struct axienet_local *lp) | |
| 227 | { | |
| 228 | if (lp->axi_clk) | |
| 229 | return clk_get_rate(lp->axi_clk); | |
| 230 | return 125000000; /* arbitrary guess if no clock rate set */ | |
| 231 | } | |
| 232 | ||
| 233 | /** | |
| 234 | * axienet_calc_cr() - Calculate control register value | |
| 235 | * @lp: Device private data | |
| 236 | * @count: Number of completions before an interrupt | |
| 237 | * @usec: Microseconds after the last completion before an interrupt | |
| 238 | * | |
| 239 | * Calculate a control register value based on the coalescing settings. The | |
| 240 | * run/stop bit is not set. | |
| 241 | * | |
| 242 | * Return: Control register value with coalescing settings configured. | |
| 243 | */ | |
| 244 | static u32 axienet_calc_cr(struct axienet_local *lp, u32 count, u32 usec) | |
| 245 | { | |
| 246 | u32 cr; | |
| 247 | ||
| 248 | cr = FIELD_PREP(XAXIDMA_COALESCE_MASK, count) | XAXIDMA_IRQ_IOC_MASK | | |
| 249 | XAXIDMA_IRQ_ERROR_MASK; | |
| 250 | /* Only set interrupt delay timer if not generating an interrupt on | |
| 251 | * the first packet. Otherwise leave at 0 to disable delay interrupt. | |
| 252 | */ | |
| 253 | if (count > 1) { | |
| 254 | u64 clk_rate = axienet_dma_rate(lp); | |
| 255 | u32 timer; | |
| 256 | ||
| 257 | /* 1 Timeout Interval = 125 * (clock period of SG clock) */ | |
| 258 | timer = DIV64_U64_ROUND_CLOSEST((u64)usec * clk_rate, | |
| 259 | XAXIDMA_DELAY_SCALE); | |
| 260 | ||
| 261 | timer = min(timer, FIELD_MAX(XAXIDMA_DELAY_MASK)); | |
| 262 | cr |= FIELD_PREP(XAXIDMA_DELAY_MASK, timer) | | |
| 263 | XAXIDMA_IRQ_DELAY_MASK; | |
| 264 | } | |
| 265 | ||
| 266 | return cr; | |
| 267 | } | |
| 268 | ||
| 269 | /** | |
| 270 | * axienet_coalesce_params() - Extract coalesce parameters from the CR | |
| 271 | * @lp: Device private data | |
| 272 | * @cr: The control register to parse | |
| 273 | * @count: Number of packets before an interrupt | |
| 274 | * @usec: Idle time (in usec) before an interrupt | |
| 275 | */ | |
| 276 | static void axienet_coalesce_params(struct axienet_local *lp, u32 cr, | |
| 277 | u32 *count, u32 *usec) | |
| 278 | { | |
| 279 | u64 clk_rate = axienet_dma_rate(lp); | |
| 280 | u64 timer = FIELD_GET(XAXIDMA_DELAY_MASK, cr); | |
| 281 | ||
| 282 | *count = FIELD_GET(XAXIDMA_COALESCE_MASK, cr); | |
| 283 | *usec = DIV64_U64_ROUND_CLOSEST(timer * XAXIDMA_DELAY_SCALE, clk_rate); | |
| 284 | } | |
| 285 | ||
| 286 | /** | |
| 287 | * axienet_dma_start - Set up DMA registers and start DMA operation | |
| 288 | * @lp: Pointer to the axienet_local structure | |
| 289 | */ | |
| 290 | static void axienet_dma_start(struct axienet_local *lp) | |
| 291 | { | |
| 292 | spin_lock_irq(&lp->rx_cr_lock); | |
| 293 | ||
| 294 | /* Start updating the Rx channel control register */ | |
| 295 | lp->rx_dma_cr &= ~XAXIDMA_CR_RUNSTOP_MASK; | |
| 296 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); | |
| 297 | ||
| 298 | /* Populate the tail pointer and bring the Rx Axi DMA engine out of | |
| 299 | * halted state. This will make the Rx side ready for reception. | |
| 300 | */ | |
| 301 | axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p); | |
| 302 | lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; | |
| 303 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); | |
| 304 | axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p + | |
| 305 | (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1))); | |
| 306 | lp->rx_dma_started = true; | |
| 307 | ||
| 308 | spin_unlock_irq(&lp->rx_cr_lock); | |
| 309 | spin_lock_irq(&lp->tx_cr_lock); | |
| 310 | ||
| 311 | /* Start updating the Tx channel control register */ | |
| 312 | lp->tx_dma_cr &= ~XAXIDMA_CR_RUNSTOP_MASK; | |
| 313 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); | |
| 314 | ||
| 315 | /* Write to the RS (Run-stop) bit in the Tx channel control register. | |
| 316 | * Tx channel is now ready to run. But only after we write to the | |
| 317 | * tail pointer register that the Tx channel will start transmitting. | |
| 318 | */ | |
| 319 | axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p); | |
| 320 | lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; | |
| 321 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); | |
| 322 | lp->tx_dma_started = true; | |
| 323 | ||
| 324 | spin_unlock_irq(&lp->tx_cr_lock); | |
| 325 | } | |
| 326 | ||
| 327 | /** | |
| 328 | * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA | |
| 329 | * @ndev: Pointer to the net_device structure | |
| 330 | * | |
| 331 | * Return: 0, on success -ENOMEM, on failure | |
| 332 | * | |
| 333 | * This function is called to initialize the Rx and Tx DMA descriptor | |
| 334 | * rings. This initializes the descriptors with required default values | |
| 335 | * and is called when Axi Ethernet driver reset is called. | |
| 336 | */ | |
| 337 | static int axienet_dma_bd_init(struct net_device *ndev) | |
| 338 | { | |
| 339 | int i; | |
| 340 | struct sk_buff *skb; | |
| 341 | struct axienet_local *lp = netdev_priv(ndev); | |
| 342 | ||
| 343 | /* Reset the indexes which are used for accessing the BDs */ | |
| 344 | lp->tx_bd_ci = 0; | |
| 345 | lp->tx_bd_tail = 0; | |
| 346 | lp->rx_bd_ci = 0; | |
| 347 | ||
| 348 | /* Allocate the Tx and Rx buffer descriptors. */ | |
| 349 | lp->tx_bd_v = dma_alloc_coherent(lp->dev, | |
| 350 | sizeof(*lp->tx_bd_v) * lp->tx_bd_num, | |
| 351 | &lp->tx_bd_p, GFP_KERNEL); | |
| 352 | if (!lp->tx_bd_v) | |
| 353 | return -ENOMEM; | |
| 354 | ||
| 355 | lp->rx_bd_v = dma_alloc_coherent(lp->dev, | |
| 356 | sizeof(*lp->rx_bd_v) * lp->rx_bd_num, | |
| 357 | &lp->rx_bd_p, GFP_KERNEL); | |
| 358 | if (!lp->rx_bd_v) | |
| 359 | goto out; | |
| 360 | ||
| 361 | for (i = 0; i < lp->tx_bd_num; i++) { | |
| 362 | dma_addr_t addr = lp->tx_bd_p + | |
| 363 | sizeof(*lp->tx_bd_v) * | |
| 364 | ((i + 1) % lp->tx_bd_num); | |
| 365 | ||
| 366 | lp->tx_bd_v[i].next = lower_32_bits(addr); | |
| 367 | if (lp->features & XAE_FEATURE_DMA_64BIT) | |
| 368 | lp->tx_bd_v[i].next_msb = upper_32_bits(addr); | |
| 369 | } | |
| 370 | ||
| 371 | for (i = 0; i < lp->rx_bd_num; i++) { | |
| 372 | dma_addr_t addr; | |
| 373 | ||
| 374 | addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * | |
| 375 | ((i + 1) % lp->rx_bd_num); | |
| 376 | lp->rx_bd_v[i].next = lower_32_bits(addr); | |
| 377 | if (lp->features & XAE_FEATURE_DMA_64BIT) | |
| 378 | lp->rx_bd_v[i].next_msb = upper_32_bits(addr); | |
| 379 | ||
| 380 | skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size); | |
| 381 | if (!skb) | |
| 382 | goto out; | |
| 383 | ||
| 384 | lp->rx_bd_v[i].skb = skb; | |
| 385 | addr = dma_map_single(lp->dev, skb->data, | |
| 386 | lp->max_frm_size, DMA_FROM_DEVICE); | |
| 387 | if (dma_mapping_error(lp->dev, addr)) { | |
| 388 | netdev_err(ndev, "DMA mapping error\n"); | |
| 389 | goto out; | |
| 390 | } | |
| 391 | desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]); | |
| 392 | ||
| 393 | lp->rx_bd_v[i].cntrl = lp->max_frm_size; | |
| 394 | } | |
| 395 | ||
| 396 | axienet_dma_start(lp); | |
| 397 | ||
| 398 | return 0; | |
| 399 | out: | |
| 400 | axienet_dma_bd_release(ndev); | |
| 401 | return -ENOMEM; | |
| 402 | } | |
| 403 | ||
| 404 | /** | |
| 405 | * axienet_set_mac_address - Write the MAC address | |
| 406 | * @ndev: Pointer to the net_device structure | |
| 407 | * @address: 6 byte Address to be written as MAC address | |
| 408 | * | |
| 409 | * This function is called to initialize the MAC address of the Axi Ethernet | |
| 410 | * core. It writes to the UAW0 and UAW1 registers of the core. | |
| 411 | */ | |
| 412 | static void axienet_set_mac_address(struct net_device *ndev, | |
| 413 | const void *address) | |
| 414 | { | |
| 415 | struct axienet_local *lp = netdev_priv(ndev); | |
| 416 | ||
| 417 | if (address) | |
| 418 | eth_hw_addr_set(ndev, address); | |
| 419 | if (!is_valid_ether_addr(ndev->dev_addr)) | |
| 420 | eth_hw_addr_random(ndev); | |
| 421 | ||
| 422 | /* Set up unicast MAC address filter set its mac address */ | |
| 423 | axienet_iow(lp, XAE_UAW0_OFFSET, | |
| 424 | (ndev->dev_addr[0]) | | |
| 425 | (ndev->dev_addr[1] << 8) | | |
| 426 | (ndev->dev_addr[2] << 16) | | |
| 427 | (ndev->dev_addr[3] << 24)); | |
| 428 | axienet_iow(lp, XAE_UAW1_OFFSET, | |
| 429 | (((axienet_ior(lp, XAE_UAW1_OFFSET)) & | |
| 430 | ~XAE_UAW1_UNICASTADDR_MASK) | | |
| 431 | (ndev->dev_addr[4] | | |
| 432 | (ndev->dev_addr[5] << 8)))); | |
| 433 | } | |
| 434 | ||
| 435 | /** | |
| 436 | * netdev_set_mac_address - Write the MAC address (from outside the driver) | |
| 437 | * @ndev: Pointer to the net_device structure | |
| 438 | * @p: 6 byte Address to be written as MAC address | |
| 439 | * | |
| 440 | * Return: 0 for all conditions. Presently, there is no failure case. | |
| 441 | * | |
| 442 | * This function is called to initialize the MAC address of the Axi Ethernet | |
| 443 | * core. It calls the core specific axienet_set_mac_address. This is the | |
| 444 | * function that goes into net_device_ops structure entry ndo_set_mac_address. | |
| 445 | */ | |
| 446 | static int netdev_set_mac_address(struct net_device *ndev, void *p) | |
| 447 | { | |
| 448 | struct sockaddr *addr = p; | |
| 449 | ||
| 450 | axienet_set_mac_address(ndev, addr->sa_data); | |
| 451 | return 0; | |
| 452 | } | |
| 453 | ||
| 454 | /** | |
| 455 | * axienet_set_multicast_list - Prepare the multicast table | |
| 456 | * @ndev: Pointer to the net_device structure | |
| 457 | * | |
| 458 | * This function is called to initialize the multicast table during | |
| 459 | * initialization. The Axi Ethernet basic multicast support has a four-entry | |
| 460 | * multicast table which is initialized here. Additionally this function | |
| 461 | * goes into the net_device_ops structure entry ndo_set_multicast_list. This | |
| 462 | * means whenever the multicast table entries need to be updated this | |
| 463 | * function gets called. | |
| 464 | */ | |
| 465 | static void axienet_set_multicast_list(struct net_device *ndev) | |
| 466 | { | |
| 467 | int i = 0; | |
| 468 | u32 reg, af0reg, af1reg; | |
| 469 | struct axienet_local *lp = netdev_priv(ndev); | |
| 470 | ||
| 471 | reg = axienet_ior(lp, XAE_FMI_OFFSET); | |
| 472 | reg &= ~XAE_FMI_PM_MASK; | |
| 473 | if (ndev->flags & IFF_PROMISC) | |
| 474 | reg |= XAE_FMI_PM_MASK; | |
| 475 | else | |
| 476 | reg &= ~XAE_FMI_PM_MASK; | |
| 477 | axienet_iow(lp, XAE_FMI_OFFSET, reg); | |
| 478 | ||
| 479 | if (ndev->flags & IFF_ALLMULTI || | |
| 480 | netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) { | |
| 481 | reg &= 0xFFFFFF00; | |
| 482 | axienet_iow(lp, XAE_FMI_OFFSET, reg); | |
| 483 | axienet_iow(lp, XAE_AF0_OFFSET, 1); /* Multicast bit */ | |
| 484 | axienet_iow(lp, XAE_AF1_OFFSET, 0); | |
| 485 | axienet_iow(lp, XAE_AM0_OFFSET, 1); /* ditto */ | |
| 486 | axienet_iow(lp, XAE_AM1_OFFSET, 0); | |
| 487 | axienet_iow(lp, XAE_FFE_OFFSET, 1); | |
| 488 | i = 1; | |
| 489 | } else if (!netdev_mc_empty(ndev)) { | |
| 490 | struct netdev_hw_addr *ha; | |
| 491 | ||
| 492 | netdev_for_each_mc_addr(ha, ndev) { | |
| 493 | if (i >= XAE_MULTICAST_CAM_TABLE_NUM) | |
| 494 | break; | |
| 495 | ||
| 496 | af0reg = (ha->addr[0]); | |
| 497 | af0reg |= (ha->addr[1] << 8); | |
| 498 | af0reg |= (ha->addr[2] << 16); | |
| 499 | af0reg |= (ha->addr[3] << 24); | |
| 500 | ||
| 501 | af1reg = (ha->addr[4]); | |
| 502 | af1reg |= (ha->addr[5] << 8); | |
| 503 | ||
| 504 | reg &= 0xFFFFFF00; | |
| 505 | reg |= i; | |
| 506 | ||
| 507 | axienet_iow(lp, XAE_FMI_OFFSET, reg); | |
| 508 | axienet_iow(lp, XAE_AF0_OFFSET, af0reg); | |
| 509 | axienet_iow(lp, XAE_AF1_OFFSET, af1reg); | |
| 510 | axienet_iow(lp, XAE_AM0_OFFSET, 0xffffffff); | |
| 511 | axienet_iow(lp, XAE_AM1_OFFSET, 0x0000ffff); | |
| 512 | axienet_iow(lp, XAE_FFE_OFFSET, 1); | |
| 513 | i++; | |
| 514 | } | |
| 515 | } | |
| 516 | ||
| 517 | for (; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) { | |
| 518 | reg &= 0xFFFFFF00; | |
| 519 | reg |= i; | |
| 520 | axienet_iow(lp, XAE_FMI_OFFSET, reg); | |
| 521 | axienet_iow(lp, XAE_FFE_OFFSET, 0); | |
| 522 | } | |
| 523 | } | |
| 524 | ||
| 525 | /** | |
| 526 | * axienet_setoptions - Set an Axi Ethernet option | |
| 527 | * @ndev: Pointer to the net_device structure | |
| 528 | * @options: Option to be enabled/disabled | |
| 529 | * | |
| 530 | * The Axi Ethernet core has multiple features which can be selectively turned | |
| 531 | * on or off. The typical options could be jumbo frame option, basic VLAN | |
| 532 | * option, promiscuous mode option etc. This function is used to set or clear | |
| 533 | * these options in the Axi Ethernet hardware. This is done through | |
| 534 | * axienet_option structure . | |
| 535 | */ | |
| 536 | static void axienet_setoptions(struct net_device *ndev, u32 options) | |
| 537 | { | |
| 538 | int reg; | |
| 539 | struct axienet_local *lp = netdev_priv(ndev); | |
| 540 | struct axienet_option *tp = &axienet_options[0]; | |
| 541 | ||
| 542 | while (tp->opt) { | |
| 543 | reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or)); | |
| 544 | if (options & tp->opt) | |
| 545 | reg |= tp->m_or; | |
| 546 | axienet_iow(lp, tp->reg, reg); | |
| 547 | tp++; | |
| 548 | } | |
| 549 | ||
| 550 | lp->options |= options; | |
| 551 | } | |
| 552 | ||
| 553 | static u64 axienet_stat(struct axienet_local *lp, enum temac_stat stat) | |
| 554 | { | |
| 555 | u32 counter; | |
| 556 | ||
| 557 | if (lp->reset_in_progress) | |
| 558 | return lp->hw_stat_base[stat]; | |
| 559 | ||
| 560 | counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8); | |
| 561 | return lp->hw_stat_base[stat] + (counter - lp->hw_last_counter[stat]); | |
| 562 | } | |
| 563 | ||
| 564 | static void axienet_stats_update(struct axienet_local *lp, bool reset) | |
| 565 | { | |
| 566 | enum temac_stat stat; | |
| 567 | ||
| 568 | write_seqcount_begin(&lp->hw_stats_seqcount); | |
| 569 | lp->reset_in_progress = reset; | |
| 570 | for (stat = 0; stat < STAT_COUNT; stat++) { | |
| 571 | u32 counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8); | |
| 572 | ||
| 573 | lp->hw_stat_base[stat] += counter - lp->hw_last_counter[stat]; | |
| 574 | lp->hw_last_counter[stat] = counter; | |
| 575 | } | |
| 576 | write_seqcount_end(&lp->hw_stats_seqcount); | |
| 577 | } | |
| 578 | ||
| 579 | static void axienet_refresh_stats(struct work_struct *work) | |
| 580 | { | |
| 581 | struct axienet_local *lp = container_of(work, struct axienet_local, | |
| 582 | stats_work.work); | |
| 583 | ||
| 584 | mutex_lock(&lp->stats_lock); | |
| 585 | axienet_stats_update(lp, false); | |
| 586 | mutex_unlock(&lp->stats_lock); | |
| 587 | ||
| 588 | /* Just less than 2^32 bytes at 2.5 GBit/s */ | |
| 589 | schedule_delayed_work(&lp->stats_work, 13 * HZ); | |
| 590 | } | |
| 591 | ||
| 592 | static int __axienet_device_reset(struct axienet_local *lp) | |
| 593 | { | |
| 594 | u32 value; | |
| 595 | int ret; | |
| 596 | ||
| 597 | /* Save statistics counters in case they will be reset */ | |
| 598 | mutex_lock(&lp->stats_lock); | |
| 599 | if (lp->features & XAE_FEATURE_STATS) | |
| 600 | axienet_stats_update(lp, true); | |
| 601 | ||
| 602 | /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset | |
| 603 | * process of Axi DMA takes a while to complete as all pending | |
| 604 | * commands/transfers will be flushed or completed during this | |
| 605 | * reset process. | |
| 606 | * Note that even though both TX and RX have their own reset register, | |
| 607 | * they both reset the entire DMA core, so only one needs to be used. | |
| 608 | */ | |
| 609 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK); | |
| 610 | ret = read_poll_timeout(axienet_dma_in32, value, | |
| 611 | !(value & XAXIDMA_CR_RESET_MASK), | |
| 612 | DELAY_OF_ONE_MILLISEC, 50000, false, lp, | |
| 613 | XAXIDMA_TX_CR_OFFSET); | |
| 614 | if (ret) { | |
| 615 | dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__); | |
| 616 | goto out; | |
| 617 | } | |
| 618 | ||
| 619 | /* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */ | |
| 620 | ret = read_poll_timeout(axienet_ior, value, | |
| 621 | value & XAE_INT_PHYRSTCMPLT_MASK, | |
| 622 | DELAY_OF_ONE_MILLISEC, 50000, false, lp, | |
| 623 | XAE_IS_OFFSET); | |
| 624 | if (ret) { | |
| 625 | dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__); | |
| 626 | goto out; | |
| 627 | } | |
| 628 | ||
| 629 | /* Update statistics counters with new values */ | |
| 630 | if (lp->features & XAE_FEATURE_STATS) { | |
| 631 | enum temac_stat stat; | |
| 632 | ||
| 633 | write_seqcount_begin(&lp->hw_stats_seqcount); | |
| 634 | lp->reset_in_progress = false; | |
| 635 | for (stat = 0; stat < STAT_COUNT; stat++) { | |
| 636 | u32 counter = | |
| 637 | axienet_ior(lp, XAE_STATS_OFFSET + stat * 8); | |
| 638 | ||
| 639 | lp->hw_stat_base[stat] += | |
| 640 | lp->hw_last_counter[stat] - counter; | |
| 641 | lp->hw_last_counter[stat] = counter; | |
| 642 | } | |
| 643 | write_seqcount_end(&lp->hw_stats_seqcount); | |
| 644 | } | |
| 645 | ||
| 646 | out: | |
| 647 | mutex_unlock(&lp->stats_lock); | |
| 648 | return ret; | |
| 649 | } | |
| 650 | ||
| 651 | /** | |
| 652 | * axienet_dma_stop - Stop DMA operation | |
| 653 | * @lp: Pointer to the axienet_local structure | |
| 654 | */ | |
| 655 | static void axienet_dma_stop(struct axienet_local *lp) | |
| 656 | { | |
| 657 | int count; | |
| 658 | u32 cr, sr; | |
| 659 | ||
| 660 | spin_lock_irq(&lp->rx_cr_lock); | |
| 661 | ||
| 662 | cr = lp->rx_dma_cr & ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); | |
| 663 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); | |
| 664 | lp->rx_dma_started = false; | |
| 665 | ||
| 666 | spin_unlock_irq(&lp->rx_cr_lock); | |
| 667 | synchronize_irq(lp->rx_irq); | |
| 668 | ||
| 669 | spin_lock_irq(&lp->tx_cr_lock); | |
| 670 | ||
| 671 | cr = lp->tx_dma_cr & ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); | |
| 672 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); | |
| 673 | lp->tx_dma_started = false; | |
| 674 | ||
| 675 | spin_unlock_irq(&lp->tx_cr_lock); | |
| 676 | synchronize_irq(lp->tx_irq); | |
| 677 | ||
| 678 | /* Give DMAs a chance to halt gracefully */ | |
| 679 | sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); | |
| 680 | for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { | |
| 681 | msleep(20); | |
| 682 | sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); | |
| 683 | } | |
| 684 | ||
| 685 | sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); | |
| 686 | for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { | |
| 687 | msleep(20); | |
| 688 | sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); | |
| 689 | } | |
| 690 | ||
| 691 | /* Do a reset to ensure DMA is really stopped */ | |
| 692 | axienet_lock_mii(lp); | |
| 693 | __axienet_device_reset(lp); | |
| 694 | axienet_unlock_mii(lp); | |
| 695 | } | |
| 696 | ||
| 697 | /** | |
| 698 | * axienet_device_reset - Reset and initialize the Axi Ethernet hardware. | |
| 699 | * @ndev: Pointer to the net_device structure | |
| 700 | * | |
| 701 | * This function is called to reset and initialize the Axi Ethernet core. This | |
| 702 | * is typically called during initialization. It does a reset of the Axi DMA | |
| 703 | * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines | |
| 704 | * are connected to Axi Ethernet reset lines, this in turn resets the Axi | |
| 705 | * Ethernet core. No separate hardware reset is done for the Axi Ethernet | |
| 706 | * core. | |
| 707 | * | |
| 708 | * Return: 0 on success or a negative error number otherwise. | |
| 709 | */ | |
| 710 | static int axienet_device_reset(struct net_device *ndev) | |
| 711 | { | |
| 712 | u32 axienet_status; | |
| 713 | struct axienet_local *lp = netdev_priv(ndev); | |
| 714 | int ret; | |
| 715 | ||
| 716 | lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE; | |
| 717 | lp->options |= XAE_OPTION_VLAN; | |
| 718 | lp->options &= (~XAE_OPTION_JUMBO); | |
| 719 | ||
| 720 | if (ndev->mtu > XAE_MTU && ndev->mtu <= XAE_JUMBO_MTU) { | |
| 721 | lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN + | |
| 722 | XAE_TRL_SIZE; | |
| 723 | ||
| 724 | if (lp->max_frm_size <= lp->rxmem) | |
| 725 | lp->options |= XAE_OPTION_JUMBO; | |
| 726 | } | |
| 727 | ||
| 728 | if (!lp->use_dmaengine) { | |
| 729 | ret = __axienet_device_reset(lp); | |
| 730 | if (ret) | |
| 731 | return ret; | |
| 732 | ||
| 733 | ret = axienet_dma_bd_init(ndev); | |
| 734 | if (ret) { | |
| 735 | netdev_err(ndev, "%s: descriptor allocation failed\n", | |
| 736 | __func__); | |
| 737 | return ret; | |
| 738 | } | |
| 739 | } | |
| 740 | ||
| 741 | axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); | |
| 742 | axienet_status &= ~XAE_RCW1_RX_MASK; | |
| 743 | axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); | |
| 744 | ||
| 745 | axienet_status = axienet_ior(lp, XAE_IP_OFFSET); | |
| 746 | if (axienet_status & XAE_INT_RXRJECT_MASK) | |
| 747 | axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); | |
| 748 | axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ? | |
| 749 | XAE_INT_RECV_ERROR_MASK : 0); | |
| 750 | ||
| 751 | axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); | |
| 752 | ||
| 753 | /* Sync default options with HW but leave receiver and | |
| 754 | * transmitter disabled. | |
| 755 | */ | |
| 756 | axienet_setoptions(ndev, lp->options & | |
| 757 | ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); | |
| 758 | axienet_set_mac_address(ndev, NULL); | |
| 759 | axienet_set_multicast_list(ndev); | |
| 760 | axienet_setoptions(ndev, lp->options); | |
| 761 | ||
| 762 | netif_trans_update(ndev); | |
| 763 | ||
| 764 | return 0; | |
| 765 | } | |
| 766 | ||
| 767 | /** | |
| 768 | * axienet_free_tx_chain - Clean up a series of linked TX descriptors. | |
| 769 | * @lp: Pointer to the axienet_local structure | |
| 770 | * @first_bd: Index of first descriptor to clean up | |
| 771 | * @nr_bds: Max number of descriptors to clean up | |
| 772 | * @force: Whether to clean descriptors even if not complete | |
| 773 | * @sizep: Pointer to a u32 filled with the total sum of all bytes | |
| 774 | * in all cleaned-up descriptors. Ignored if NULL. | |
| 775 | * @budget: NAPI budget (use 0 when not called from NAPI poll) | |
| 776 | * | |
| 777 | * Would either be called after a successful transmit operation, or after | |
| 778 | * there was an error when setting up the chain. | |
| 779 | * | |
| 780 | * Return: The number of packets handled. | |
| 781 | */ | |
| 782 | static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd, | |
| 783 | int nr_bds, bool force, u32 *sizep, int budget) | |
| 784 | { | |
| 785 | struct axidma_bd *cur_p; | |
| 786 | unsigned int status; | |
| 787 | int i, packets = 0; | |
| 788 | dma_addr_t phys; | |
| 789 | ||
| 790 | for (i = 0; i < nr_bds; i++) { | |
| 791 | cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num]; | |
| 792 | status = cur_p->status; | |
| 793 | ||
| 794 | /* If force is not specified, clean up only descriptors | |
| 795 | * that have been completed by the MAC. | |
| 796 | */ | |
| 797 | if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK)) | |
| 798 | break; | |
| 799 | ||
| 800 | /* Ensure we see complete descriptor update */ | |
| 801 | dma_rmb(); | |
| 802 | phys = desc_get_phys_addr(lp, cur_p); | |
| 803 | dma_unmap_single(lp->dev, phys, | |
| 804 | (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK), | |
| 805 | DMA_TO_DEVICE); | |
| 806 | ||
| 807 | if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK)) { | |
| 808 | napi_consume_skb(cur_p->skb, budget); | |
| 809 | packets++; | |
| 810 | } | |
| 811 | ||
| 812 | cur_p->app0 = 0; | |
| 813 | cur_p->app1 = 0; | |
| 814 | cur_p->app2 = 0; | |
| 815 | cur_p->app4 = 0; | |
| 816 | cur_p->skb = NULL; | |
| 817 | /* ensure our transmit path and device don't prematurely see status cleared */ | |
| 818 | wmb(); | |
| 819 | cur_p->cntrl = 0; | |
| 820 | cur_p->status = 0; | |
| 821 | ||
| 822 | if (sizep) | |
| 823 | *sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK; | |
| 824 | } | |
| 825 | ||
| 826 | if (!force) { | |
| 827 | lp->tx_bd_ci += i; | |
| 828 | if (lp->tx_bd_ci >= lp->tx_bd_num) | |
| 829 | lp->tx_bd_ci %= lp->tx_bd_num; | |
| 830 | } | |
| 831 | ||
| 832 | return packets; | |
| 833 | } | |
| 834 | ||
| 835 | /** | |
| 836 | * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy | |
| 837 | * @lp: Pointer to the axienet_local structure | |
| 838 | * @num_frag: The number of BDs to check for | |
| 839 | * | |
| 840 | * Return: 0, on success | |
| 841 | * NETDEV_TX_BUSY, if any of the descriptors are not free | |
| 842 | * | |
| 843 | * This function is invoked before BDs are allocated and transmission starts. | |
| 844 | * This function returns 0 if a BD or group of BDs can be allocated for | |
| 845 | * transmission. If the BD or any of the BDs are not free the function | |
| 846 | * returns a busy status. | |
| 847 | */ | |
| 848 | static inline int axienet_check_tx_bd_space(struct axienet_local *lp, | |
| 849 | int num_frag) | |
| 850 | { | |
| 851 | struct axidma_bd *cur_p; | |
| 852 | ||
| 853 | /* Ensure we see all descriptor updates from device or TX polling */ | |
| 854 | rmb(); | |
| 855 | cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) % | |
| 856 | lp->tx_bd_num]; | |
| 857 | if (cur_p->cntrl) | |
| 858 | return NETDEV_TX_BUSY; | |
| 859 | return 0; | |
| 860 | } | |
| 861 | ||
| 862 | /** | |
| 863 | * axienet_dma_tx_cb - DMA engine callback for TX channel. | |
| 864 | * @data: Pointer to the axienet_local structure. | |
| 865 | * @result: error reporting through dmaengine_result. | |
| 866 | * This function is called by dmaengine driver for TX channel to notify | |
| 867 | * that the transmit is done. | |
| 868 | */ | |
| 869 | static void axienet_dma_tx_cb(void *data, const struct dmaengine_result *result) | |
| 870 | { | |
| 871 | struct skbuf_dma_descriptor *skbuf_dma; | |
| 872 | struct axienet_local *lp = data; | |
| 873 | struct netdev_queue *txq; | |
| 874 | int len; | |
| 875 | ||
| 876 | skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_tail++); | |
| 877 | len = skbuf_dma->skb->len; | |
| 878 | txq = skb_get_tx_queue(lp->ndev, skbuf_dma->skb); | |
| 879 | u64_stats_update_begin(&lp->tx_stat_sync); | |
| 880 | u64_stats_add(&lp->tx_bytes, len); | |
| 881 | u64_stats_add(&lp->tx_packets, 1); | |
| 882 | u64_stats_update_end(&lp->tx_stat_sync); | |
| 883 | dma_unmap_sg(lp->dev, skbuf_dma->sgl, skbuf_dma->sg_len, DMA_TO_DEVICE); | |
| 884 | dev_consume_skb_any(skbuf_dma->skb); | |
| 885 | netif_txq_completed_wake(txq, 1, len, | |
| 886 | CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX), | |
| 887 | 2); | |
| 888 | } | |
| 889 | ||
| 890 | /** | |
| 891 | * axienet_start_xmit_dmaengine - Starts the transmission. | |
| 892 | * @skb: sk_buff pointer that contains data to be Txed. | |
| 893 | * @ndev: Pointer to net_device structure. | |
| 894 | * | |
| 895 | * Return: NETDEV_TX_OK on success or any non space errors. | |
| 896 | * NETDEV_TX_BUSY when free element in TX skb ring buffer | |
| 897 | * is not available. | |
| 898 | * | |
| 899 | * This function is invoked to initiate transmission. The | |
| 900 | * function sets the skbs, register dma callback API and submit | |
| 901 | * the dma transaction. | |
| 902 | * Additionally if checksum offloading is supported, | |
| 903 | * it populates AXI Stream Control fields with appropriate values. | |
| 904 | */ | |
| 905 | static netdev_tx_t | |
| 906 | axienet_start_xmit_dmaengine(struct sk_buff *skb, struct net_device *ndev) | |
| 907 | { | |
| 908 | struct dma_async_tx_descriptor *dma_tx_desc = NULL; | |
| 909 | struct axienet_local *lp = netdev_priv(ndev); | |
| 910 | u32 app_metadata[DMA_NUM_APP_WORDS] = {0}; | |
| 911 | struct skbuf_dma_descriptor *skbuf_dma; | |
| 912 | struct dma_device *dma_dev; | |
| 913 | struct netdev_queue *txq; | |
| 914 | u32 csum_start_off; | |
| 915 | u32 csum_index_off; | |
| 916 | int sg_len; | |
| 917 | int ret; | |
| 918 | ||
| 919 | dma_dev = lp->tx_chan->device; | |
| 920 | sg_len = skb_shinfo(skb)->nr_frags + 1; | |
| 921 | if (CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX) <= 1) { | |
| 922 | netif_stop_queue(ndev); | |
| 923 | if (net_ratelimit()) | |
| 924 | netdev_warn(ndev, "TX ring unexpectedly full\n"); | |
| 925 | return NETDEV_TX_BUSY; | |
| 926 | } | |
| 927 | ||
| 928 | skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_head); | |
| 929 | if (!skbuf_dma) | |
| 930 | goto xmit_error_drop_skb; | |
| 931 | ||
| 932 | lp->tx_ring_head++; | |
| 933 | sg_init_table(skbuf_dma->sgl, sg_len); | |
| 934 | ret = skb_to_sgvec(skb, skbuf_dma->sgl, 0, skb->len); | |
| 935 | if (ret < 0) | |
| 936 | goto xmit_error_drop_skb; | |
| 937 | ||
| 938 | ret = dma_map_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE); | |
| 939 | if (!ret) | |
| 940 | goto xmit_error_drop_skb; | |
| 941 | ||
| 942 | /* Fill up app fields for checksum */ | |
| 943 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | |
| 944 | if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { | |
| 945 | /* Tx Full Checksum Offload Enabled */ | |
| 946 | app_metadata[0] |= 2; | |
| 947 | } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) { | |
| 948 | csum_start_off = skb_transport_offset(skb); | |
| 949 | csum_index_off = csum_start_off + skb->csum_offset; | |
| 950 | /* Tx Partial Checksum Offload Enabled */ | |
| 951 | app_metadata[0] |= 1; | |
| 952 | app_metadata[1] = (csum_start_off << 16) | csum_index_off; | |
| 953 | } | |
| 954 | } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { | |
| 955 | app_metadata[0] |= 2; /* Tx Full Checksum Offload Enabled */ | |
| 956 | } | |
| 957 | ||
| 958 | dma_tx_desc = dma_dev->device_prep_slave_sg(lp->tx_chan, skbuf_dma->sgl, | |
| 959 | sg_len, DMA_MEM_TO_DEV, | |
| 960 | DMA_PREP_INTERRUPT, (void *)app_metadata); | |
| 961 | if (!dma_tx_desc) | |
| 962 | goto xmit_error_unmap_sg; | |
| 963 | ||
| 964 | skbuf_dma->skb = skb; | |
| 965 | skbuf_dma->sg_len = sg_len; | |
| 966 | dma_tx_desc->callback_param = lp; | |
| 967 | dma_tx_desc->callback_result = axienet_dma_tx_cb; | |
| 968 | txq = skb_get_tx_queue(lp->ndev, skb); | |
| 969 | netdev_tx_sent_queue(txq, skb->len); | |
| 970 | netif_txq_maybe_stop(txq, CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX), | |
| 971 | 1, 2); | |
| 972 | ||
| 973 | dmaengine_submit(dma_tx_desc); | |
| 974 | dma_async_issue_pending(lp->tx_chan); | |
| 975 | return NETDEV_TX_OK; | |
| 976 | ||
| 977 | xmit_error_unmap_sg: | |
| 978 | dma_unmap_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE); | |
| 979 | xmit_error_drop_skb: | |
| 980 | dev_kfree_skb_any(skb); | |
| 981 | return NETDEV_TX_OK; | |
| 982 | } | |
| 983 | ||
| 984 | /** | |
| 985 | * axienet_tx_poll - Invoked once a transmit is completed by the | |
| 986 | * Axi DMA Tx channel. | |
| 987 | * @napi: Pointer to NAPI structure. | |
| 988 | * @budget: Max number of TX packets to process. | |
| 989 | * | |
| 990 | * Return: Number of TX packets processed. | |
| 991 | * | |
| 992 | * This function is invoked from the NAPI processing to notify the completion | |
| 993 | * of transmit operation. It clears fields in the corresponding Tx BDs and | |
| 994 | * unmaps the corresponding buffer so that CPU can regain ownership of the | |
| 995 | * buffer. It finally invokes "netif_wake_queue" to restart transmission if | |
| 996 | * required. | |
| 997 | */ | |
| 998 | static int axienet_tx_poll(struct napi_struct *napi, int budget) | |
| 999 | { | |
| 1000 | struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx); | |
| 1001 | struct net_device *ndev = lp->ndev; | |
| 1002 | u32 size = 0; | |
| 1003 | int packets; | |
| 1004 | ||
| 1005 | packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, lp->tx_bd_num, false, | |
| 1006 | &size, budget); | |
| 1007 | ||
| 1008 | if (packets) { | |
| 1009 | netdev_completed_queue(ndev, packets, size); | |
| 1010 | u64_stats_update_begin(&lp->tx_stat_sync); | |
| 1011 | u64_stats_add(&lp->tx_packets, packets); | |
| 1012 | u64_stats_add(&lp->tx_bytes, size); | |
| 1013 | u64_stats_update_end(&lp->tx_stat_sync); | |
| 1014 | ||
| 1015 | /* Matches barrier in axienet_start_xmit */ | |
| 1016 | smp_mb(); | |
| 1017 | ||
| 1018 | if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) | |
| 1019 | netif_wake_queue(ndev); | |
| 1020 | } | |
| 1021 | ||
| 1022 | if (packets < budget && napi_complete_done(napi, packets)) { | |
| 1023 | /* Re-enable TX completion interrupts. This should | |
| 1024 | * cause an immediate interrupt if any TX packets are | |
| 1025 | * already pending. | |
| 1026 | */ | |
| 1027 | spin_lock_irq(&lp->tx_cr_lock); | |
| 1028 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); | |
| 1029 | spin_unlock_irq(&lp->tx_cr_lock); | |
| 1030 | } | |
| 1031 | return packets; | |
| 1032 | } | |
| 1033 | ||
| 1034 | /** | |
| 1035 | * axienet_start_xmit - Starts the transmission. | |
| 1036 | * @skb: sk_buff pointer that contains data to be Txed. | |
| 1037 | * @ndev: Pointer to net_device structure. | |
| 1038 | * | |
| 1039 | * Return: NETDEV_TX_OK, on success | |
| 1040 | * NETDEV_TX_BUSY, if any of the descriptors are not free | |
| 1041 | * | |
| 1042 | * This function is invoked from upper layers to initiate transmission. The | |
| 1043 | * function uses the next available free BDs and populates their fields to | |
| 1044 | * start the transmission. Additionally if checksum offloading is supported, | |
| 1045 | * it populates AXI Stream Control fields with appropriate values. | |
| 1046 | */ | |
| 1047 | static netdev_tx_t | |
| 1048 | axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev) | |
| 1049 | { | |
| 1050 | u32 ii; | |
| 1051 | u32 num_frag; | |
| 1052 | u32 csum_start_off; | |
| 1053 | u32 csum_index_off; | |
| 1054 | skb_frag_t *frag; | |
| 1055 | dma_addr_t tail_p, phys; | |
| 1056 | u32 orig_tail_ptr, new_tail_ptr; | |
| 1057 | struct axienet_local *lp = netdev_priv(ndev); | |
| 1058 | struct axidma_bd *cur_p; | |
| 1059 | ||
| 1060 | orig_tail_ptr = lp->tx_bd_tail; | |
| 1061 | new_tail_ptr = orig_tail_ptr; | |
| 1062 | ||
| 1063 | num_frag = skb_shinfo(skb)->nr_frags; | |
| 1064 | cur_p = &lp->tx_bd_v[orig_tail_ptr]; | |
| 1065 | ||
| 1066 | if (axienet_check_tx_bd_space(lp, num_frag + 1)) { | |
| 1067 | /* Should not happen as last start_xmit call should have | |
| 1068 | * checked for sufficient space and queue should only be | |
| 1069 | * woken when sufficient space is available. | |
| 1070 | */ | |
| 1071 | netif_stop_queue(ndev); | |
| 1072 | if (net_ratelimit()) | |
| 1073 | netdev_warn(ndev, "TX ring unexpectedly full\n"); | |
| 1074 | return NETDEV_TX_BUSY; | |
| 1075 | } | |
| 1076 | ||
| 1077 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | |
| 1078 | if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { | |
| 1079 | /* Tx Full Checksum Offload Enabled */ | |
| 1080 | cur_p->app0 |= 2; | |
| 1081 | } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) { | |
| 1082 | csum_start_off = skb_transport_offset(skb); | |
| 1083 | csum_index_off = csum_start_off + skb->csum_offset; | |
| 1084 | /* Tx Partial Checksum Offload Enabled */ | |
| 1085 | cur_p->app0 |= 1; | |
| 1086 | cur_p->app1 = (csum_start_off << 16) | csum_index_off; | |
| 1087 | } | |
| 1088 | } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { | |
| 1089 | cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */ | |
| 1090 | } | |
| 1091 | ||
| 1092 | phys = dma_map_single(lp->dev, skb->data, | |
| 1093 | skb_headlen(skb), DMA_TO_DEVICE); | |
| 1094 | if (unlikely(dma_mapping_error(lp->dev, phys))) { | |
| 1095 | if (net_ratelimit()) | |
| 1096 | netdev_err(ndev, "TX DMA mapping error\n"); | |
| 1097 | ndev->stats.tx_dropped++; | |
| 1098 | dev_kfree_skb_any(skb); | |
| 1099 | return NETDEV_TX_OK; | |
| 1100 | } | |
| 1101 | desc_set_phys_addr(lp, phys, cur_p); | |
| 1102 | cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK; | |
| 1103 | ||
| 1104 | for (ii = 0; ii < num_frag; ii++) { | |
| 1105 | if (++new_tail_ptr >= lp->tx_bd_num) | |
| 1106 | new_tail_ptr = 0; | |
| 1107 | cur_p = &lp->tx_bd_v[new_tail_ptr]; | |
| 1108 | frag = &skb_shinfo(skb)->frags[ii]; | |
| 1109 | phys = dma_map_single(lp->dev, | |
| 1110 | skb_frag_address(frag), | |
| 1111 | skb_frag_size(frag), | |
| 1112 | DMA_TO_DEVICE); | |
| 1113 | if (unlikely(dma_mapping_error(lp->dev, phys))) { | |
| 1114 | if (net_ratelimit()) | |
| 1115 | netdev_err(ndev, "TX DMA mapping error\n"); | |
| 1116 | ndev->stats.tx_dropped++; | |
| 1117 | axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1, | |
| 1118 | true, NULL, 0); | |
| 1119 | dev_kfree_skb_any(skb); | |
| 1120 | return NETDEV_TX_OK; | |
| 1121 | } | |
| 1122 | desc_set_phys_addr(lp, phys, cur_p); | |
| 1123 | cur_p->cntrl = skb_frag_size(frag); | |
| 1124 | } | |
| 1125 | ||
| 1126 | cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK; | |
| 1127 | cur_p->skb = skb; | |
| 1128 | ||
| 1129 | tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr; | |
| 1130 | if (++new_tail_ptr >= lp->tx_bd_num) | |
| 1131 | new_tail_ptr = 0; | |
| 1132 | WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr); | |
| 1133 | netdev_sent_queue(ndev, skb->len); | |
| 1134 | ||
| 1135 | /* Start the transfer */ | |
| 1136 | axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p); | |
| 1137 | ||
| 1138 | /* Stop queue if next transmit may not have space */ | |
| 1139 | if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) { | |
| 1140 | netif_stop_queue(ndev); | |
| 1141 | ||
| 1142 | /* Matches barrier in axienet_tx_poll */ | |
| 1143 | smp_mb(); | |
| 1144 | ||
| 1145 | /* Space might have just been freed - check again */ | |
| 1146 | if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) | |
| 1147 | netif_wake_queue(ndev); | |
| 1148 | } | |
| 1149 | ||
| 1150 | return NETDEV_TX_OK; | |
| 1151 | } | |
| 1152 | ||
| 1153 | /** | |
| 1154 | * axienet_dma_rx_cb - DMA engine callback for RX channel. | |
| 1155 | * @data: Pointer to the skbuf_dma_descriptor structure. | |
| 1156 | * @result: error reporting through dmaengine_result. | |
| 1157 | * This function is called by dmaengine driver for RX channel to notify | |
| 1158 | * that the packet is received. | |
| 1159 | */ | |
| 1160 | static void axienet_dma_rx_cb(void *data, const struct dmaengine_result *result) | |
| 1161 | { | |
| 1162 | struct skbuf_dma_descriptor *skbuf_dma; | |
| 1163 | size_t meta_len, meta_max_len, rx_len; | |
| 1164 | struct axienet_local *lp = data; | |
| 1165 | struct sk_buff *skb; | |
| 1166 | u32 *app_metadata; | |
| 1167 | int i; | |
| 1168 | ||
| 1169 | skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_tail++); | |
| 1170 | skb = skbuf_dma->skb; | |
| 1171 | app_metadata = dmaengine_desc_get_metadata_ptr(skbuf_dma->desc, &meta_len, | |
| 1172 | &meta_max_len); | |
| 1173 | dma_unmap_single(lp->dev, skbuf_dma->dma_address, lp->max_frm_size, | |
| 1174 | DMA_FROM_DEVICE); | |
| 1175 | ||
| 1176 | if (IS_ERR(app_metadata)) { | |
| 1177 | if (net_ratelimit()) | |
| 1178 | netdev_err(lp->ndev, "Failed to get RX metadata pointer\n"); | |
| 1179 | dev_kfree_skb_any(skb); | |
| 1180 | lp->ndev->stats.rx_dropped++; | |
| 1181 | goto rx_submit; | |
| 1182 | } | |
| 1183 | ||
| 1184 | /* TODO: Derive app word index programmatically */ | |
| 1185 | rx_len = (app_metadata[LEN_APP] & 0xFFFF); | |
| 1186 | skb_put(skb, rx_len); | |
| 1187 | skb->protocol = eth_type_trans(skb, lp->ndev); | |
| 1188 | skb->ip_summed = CHECKSUM_NONE; | |
| 1189 | ||
| 1190 | __netif_rx(skb); | |
| 1191 | u64_stats_update_begin(&lp->rx_stat_sync); | |
| 1192 | u64_stats_add(&lp->rx_packets, 1); | |
| 1193 | u64_stats_add(&lp->rx_bytes, rx_len); | |
| 1194 | u64_stats_update_end(&lp->rx_stat_sync); | |
| 1195 | ||
| 1196 | rx_submit: | |
| 1197 | for (i = 0; i < CIRC_SPACE(lp->rx_ring_head, lp->rx_ring_tail, | |
| 1198 | RX_BUF_NUM_DEFAULT); i++) | |
| 1199 | axienet_rx_submit_desc(lp->ndev); | |
| 1200 | dma_async_issue_pending(lp->rx_chan); | |
| 1201 | } | |
| 1202 | ||
| 1203 | /** | |
| 1204 | * axienet_rx_poll - Triggered by RX ISR to complete the BD processing. | |
| 1205 | * @napi: Pointer to NAPI structure. | |
| 1206 | * @budget: Max number of RX packets to process. | |
| 1207 | * | |
| 1208 | * Return: Number of RX packets processed. | |
| 1209 | */ | |
| 1210 | static int axienet_rx_poll(struct napi_struct *napi, int budget) | |
| 1211 | { | |
| 1212 | u32 length; | |
| 1213 | u32 csumstatus; | |
| 1214 | u32 size = 0; | |
| 1215 | int packets = 0; | |
| 1216 | dma_addr_t tail_p = 0; | |
| 1217 | struct axidma_bd *cur_p; | |
| 1218 | struct sk_buff *skb, *new_skb; | |
| 1219 | struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx); | |
| 1220 | ||
| 1221 | cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; | |
| 1222 | ||
| 1223 | while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) { | |
| 1224 | dma_addr_t phys; | |
| 1225 | ||
| 1226 | /* Ensure we see complete descriptor update */ | |
| 1227 | dma_rmb(); | |
| 1228 | ||
| 1229 | skb = cur_p->skb; | |
| 1230 | cur_p->skb = NULL; | |
| 1231 | ||
| 1232 | /* skb could be NULL if a previous pass already received the | |
| 1233 | * packet for this slot in the ring, but failed to refill it | |
| 1234 | * with a newly allocated buffer. In this case, don't try to | |
| 1235 | * receive it again. | |
| 1236 | */ | |
| 1237 | if (likely(skb)) { | |
| 1238 | length = cur_p->app4 & 0x0000FFFF; | |
| 1239 | ||
| 1240 | phys = desc_get_phys_addr(lp, cur_p); | |
| 1241 | dma_unmap_single(lp->dev, phys, lp->max_frm_size, | |
| 1242 | DMA_FROM_DEVICE); | |
| 1243 | ||
| 1244 | skb_put(skb, length); | |
| 1245 | skb->protocol = eth_type_trans(skb, lp->ndev); | |
| 1246 | /*skb_checksum_none_assert(skb);*/ | |
| 1247 | skb->ip_summed = CHECKSUM_NONE; | |
| 1248 | ||
| 1249 | /* if we're doing Rx csum offload, set it up */ | |
| 1250 | if (lp->features & XAE_FEATURE_FULL_RX_CSUM) { | |
| 1251 | csumstatus = (cur_p->app2 & | |
| 1252 | XAE_FULL_CSUM_STATUS_MASK) >> 3; | |
| 1253 | if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED || | |
| 1254 | csumstatus == XAE_IP_UDP_CSUM_VALIDATED) { | |
| 1255 | skb->ip_summed = CHECKSUM_UNNECESSARY; | |
| 1256 | } | |
| 1257 | } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) { | |
| 1258 | skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF); | |
| 1259 | skb->ip_summed = CHECKSUM_COMPLETE; | |
| 1260 | } | |
| 1261 | ||
| 1262 | napi_gro_receive(napi, skb); | |
| 1263 | ||
| 1264 | size += length; | |
| 1265 | packets++; | |
| 1266 | } | |
| 1267 | ||
| 1268 | new_skb = napi_alloc_skb(napi, lp->max_frm_size); | |
| 1269 | if (!new_skb) | |
| 1270 | break; | |
| 1271 | ||
| 1272 | phys = dma_map_single(lp->dev, new_skb->data, | |
| 1273 | lp->max_frm_size, | |
| 1274 | DMA_FROM_DEVICE); | |
| 1275 | if (unlikely(dma_mapping_error(lp->dev, phys))) { | |
| 1276 | if (net_ratelimit()) | |
| 1277 | netdev_err(lp->ndev, "RX DMA mapping error\n"); | |
| 1278 | dev_kfree_skb(new_skb); | |
| 1279 | break; | |
| 1280 | } | |
| 1281 | desc_set_phys_addr(lp, phys, cur_p); | |
| 1282 | ||
| 1283 | cur_p->cntrl = lp->max_frm_size; | |
| 1284 | cur_p->status = 0; | |
| 1285 | cur_p->skb = new_skb; | |
| 1286 | ||
| 1287 | /* Only update tail_p to mark this slot as usable after it has | |
| 1288 | * been successfully refilled. | |
| 1289 | */ | |
| 1290 | tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci; | |
| 1291 | ||
| 1292 | if (++lp->rx_bd_ci >= lp->rx_bd_num) | |
| 1293 | lp->rx_bd_ci = 0; | |
| 1294 | cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; | |
| 1295 | } | |
| 1296 | ||
| 1297 | u64_stats_update_begin(&lp->rx_stat_sync); | |
| 1298 | u64_stats_add(&lp->rx_packets, packets); | |
| 1299 | u64_stats_add(&lp->rx_bytes, size); | |
| 1300 | u64_stats_update_end(&lp->rx_stat_sync); | |
| 1301 | ||
| 1302 | if (tail_p) | |
| 1303 | axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p); | |
| 1304 | ||
| 1305 | if (packets < budget && napi_complete_done(napi, packets)) { | |
| 1306 | if (READ_ONCE(lp->rx_dim_enabled)) { | |
| 1307 | struct dim_sample sample = { | |
| 1308 | .time = ktime_get(), | |
| 1309 | /* Safe because we are the only writer */ | |
| 1310 | .pkt_ctr = u64_stats_read(&lp->rx_packets), | |
| 1311 | .byte_ctr = u64_stats_read(&lp->rx_bytes), | |
| 1312 | .event_ctr = READ_ONCE(lp->rx_irqs), | |
| 1313 | }; | |
| 1314 | ||
| 1315 | net_dim(&lp->rx_dim, &sample); | |
| 1316 | } | |
| 1317 | ||
| 1318 | /* Re-enable RX completion interrupts. This should | |
| 1319 | * cause an immediate interrupt if any RX packets are | |
| 1320 | * already pending. | |
| 1321 | */ | |
| 1322 | spin_lock_irq(&lp->rx_cr_lock); | |
| 1323 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); | |
| 1324 | spin_unlock_irq(&lp->rx_cr_lock); | |
| 1325 | } | |
| 1326 | return packets; | |
| 1327 | } | |
| 1328 | ||
| 1329 | /** | |
| 1330 | * axienet_tx_irq - Tx Done Isr. | |
| 1331 | * @irq: irq number | |
| 1332 | * @_ndev: net_device pointer | |
| 1333 | * | |
| 1334 | * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise. | |
| 1335 | * | |
| 1336 | * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the | |
| 1337 | * TX BD processing. | |
| 1338 | */ | |
| 1339 | static irqreturn_t axienet_tx_irq(int irq, void *_ndev) | |
| 1340 | { | |
| 1341 | unsigned int status; | |
| 1342 | struct net_device *ndev = _ndev; | |
| 1343 | struct axienet_local *lp = netdev_priv(ndev); | |
| 1344 | ||
| 1345 | status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); | |
| 1346 | ||
| 1347 | if (!(status & XAXIDMA_IRQ_ALL_MASK)) | |
| 1348 | return IRQ_NONE; | |
| 1349 | ||
| 1350 | axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status); | |
| 1351 | ||
| 1352 | if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { | |
| 1353 | netdev_err(ndev, "DMA Tx error 0x%x\n", status); | |
| 1354 | netdev_err(ndev, "Current BD is at: 0x%x%08x\n", | |
| 1355 | (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb, | |
| 1356 | (lp->tx_bd_v[lp->tx_bd_ci]).phys); | |
| 1357 | schedule_work(&lp->dma_err_task); | |
| 1358 | } else { | |
| 1359 | /* Disable further TX completion interrupts and schedule | |
| 1360 | * NAPI to handle the completions. | |
| 1361 | */ | |
| 1362 | if (napi_schedule_prep(&lp->napi_tx)) { | |
| 1363 | u32 cr; | |
| 1364 | ||
| 1365 | spin_lock(&lp->tx_cr_lock); | |
| 1366 | cr = lp->tx_dma_cr; | |
| 1367 | cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); | |
| 1368 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); | |
| 1369 | spin_unlock(&lp->tx_cr_lock); | |
| 1370 | __napi_schedule(&lp->napi_tx); | |
| 1371 | } | |
| 1372 | } | |
| 1373 | ||
| 1374 | return IRQ_HANDLED; | |
| 1375 | } | |
| 1376 | ||
| 1377 | /** | |
| 1378 | * axienet_rx_irq - Rx Isr. | |
| 1379 | * @irq: irq number | |
| 1380 | * @_ndev: net_device pointer | |
| 1381 | * | |
| 1382 | * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise. | |
| 1383 | * | |
| 1384 | * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD | |
| 1385 | * processing. | |
| 1386 | */ | |
| 1387 | static irqreturn_t axienet_rx_irq(int irq, void *_ndev) | |
| 1388 | { | |
| 1389 | unsigned int status; | |
| 1390 | struct net_device *ndev = _ndev; | |
| 1391 | struct axienet_local *lp = netdev_priv(ndev); | |
| 1392 | ||
| 1393 | status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); | |
| 1394 | ||
| 1395 | if (!(status & XAXIDMA_IRQ_ALL_MASK)) | |
| 1396 | return IRQ_NONE; | |
| 1397 | ||
| 1398 | axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status); | |
| 1399 | ||
| 1400 | if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { | |
| 1401 | netdev_err(ndev, "DMA Rx error 0x%x\n", status); | |
| 1402 | netdev_err(ndev, "Current BD is at: 0x%x%08x\n", | |
| 1403 | (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb, | |
| 1404 | (lp->rx_bd_v[lp->rx_bd_ci]).phys); | |
| 1405 | schedule_work(&lp->dma_err_task); | |
| 1406 | } else { | |
| 1407 | /* Disable further RX completion interrupts and schedule | |
| 1408 | * NAPI receive. | |
| 1409 | */ | |
| 1410 | WRITE_ONCE(lp->rx_irqs, READ_ONCE(lp->rx_irqs) + 1); | |
| 1411 | if (napi_schedule_prep(&lp->napi_rx)) { | |
| 1412 | u32 cr; | |
| 1413 | ||
| 1414 | spin_lock(&lp->rx_cr_lock); | |
| 1415 | cr = lp->rx_dma_cr; | |
| 1416 | cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); | |
| 1417 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); | |
| 1418 | spin_unlock(&lp->rx_cr_lock); | |
| 1419 | ||
| 1420 | __napi_schedule(&lp->napi_rx); | |
| 1421 | } | |
| 1422 | } | |
| 1423 | ||
| 1424 | return IRQ_HANDLED; | |
| 1425 | } | |
| 1426 | ||
| 1427 | /** | |
| 1428 | * axienet_eth_irq - Ethernet core Isr. | |
| 1429 | * @irq: irq number | |
| 1430 | * @_ndev: net_device pointer | |
| 1431 | * | |
| 1432 | * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise. | |
| 1433 | * | |
| 1434 | * Handle miscellaneous conditions indicated by Ethernet core IRQ. | |
| 1435 | */ | |
| 1436 | static irqreturn_t axienet_eth_irq(int irq, void *_ndev) | |
| 1437 | { | |
| 1438 | struct net_device *ndev = _ndev; | |
| 1439 | struct axienet_local *lp = netdev_priv(ndev); | |
| 1440 | unsigned int pending; | |
| 1441 | ||
| 1442 | pending = axienet_ior(lp, XAE_IP_OFFSET); | |
| 1443 | if (!pending) | |
| 1444 | return IRQ_NONE; | |
| 1445 | ||
| 1446 | if (pending & XAE_INT_RXFIFOOVR_MASK) | |
| 1447 | ndev->stats.rx_missed_errors++; | |
| 1448 | ||
| 1449 | if (pending & XAE_INT_RXRJECT_MASK) | |
| 1450 | ndev->stats.rx_dropped++; | |
| 1451 | ||
| 1452 | axienet_iow(lp, XAE_IS_OFFSET, pending); | |
| 1453 | return IRQ_HANDLED; | |
| 1454 | } | |
| 1455 | ||
| 1456 | static void axienet_dma_err_handler(struct work_struct *work); | |
| 1457 | ||
| 1458 | /** | |
| 1459 | * axienet_rx_submit_desc - Submit the rx descriptors to dmaengine. | |
| 1460 | * allocate skbuff, map the scatterlist and obtain a descriptor | |
| 1461 | * and then add the callback information and submit descriptor. | |
| 1462 | * | |
| 1463 | * @ndev: net_device pointer | |
| 1464 | * | |
| 1465 | */ | |
| 1466 | static void axienet_rx_submit_desc(struct net_device *ndev) | |
| 1467 | { | |
| 1468 | struct dma_async_tx_descriptor *dma_rx_desc = NULL; | |
| 1469 | struct axienet_local *lp = netdev_priv(ndev); | |
| 1470 | struct skbuf_dma_descriptor *skbuf_dma; | |
| 1471 | struct sk_buff *skb; | |
| 1472 | dma_addr_t addr; | |
| 1473 | ||
| 1474 | skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_head); | |
| 1475 | if (!skbuf_dma) | |
| 1476 | return; | |
| 1477 | ||
| 1478 | skb = netdev_alloc_skb(ndev, lp->max_frm_size); | |
| 1479 | if (!skb) | |
| 1480 | return; | |
| 1481 | ||
| 1482 | sg_init_table(skbuf_dma->sgl, 1); | |
| 1483 | addr = dma_map_single(lp->dev, skb->data, lp->max_frm_size, DMA_FROM_DEVICE); | |
| 1484 | if (unlikely(dma_mapping_error(lp->dev, addr))) { | |
| 1485 | if (net_ratelimit()) | |
| 1486 | netdev_err(ndev, "DMA mapping error\n"); | |
| 1487 | goto rx_submit_err_free_skb; | |
| 1488 | } | |
| 1489 | sg_dma_address(skbuf_dma->sgl) = addr; | |
| 1490 | sg_dma_len(skbuf_dma->sgl) = lp->max_frm_size; | |
| 1491 | dma_rx_desc = dmaengine_prep_slave_sg(lp->rx_chan, skbuf_dma->sgl, | |
| 1492 | 1, DMA_DEV_TO_MEM, | |
| 1493 | DMA_PREP_INTERRUPT); | |
| 1494 | if (!dma_rx_desc) | |
| 1495 | goto rx_submit_err_unmap_skb; | |
| 1496 | ||
| 1497 | skbuf_dma->skb = skb; | |
| 1498 | skbuf_dma->dma_address = sg_dma_address(skbuf_dma->sgl); | |
| 1499 | skbuf_dma->desc = dma_rx_desc; | |
| 1500 | dma_rx_desc->callback_param = lp; | |
| 1501 | dma_rx_desc->callback_result = axienet_dma_rx_cb; | |
| 1502 | lp->rx_ring_head++; | |
| 1503 | dmaengine_submit(dma_rx_desc); | |
| 1504 | ||
| 1505 | return; | |
| 1506 | ||
| 1507 | rx_submit_err_unmap_skb: | |
| 1508 | dma_unmap_single(lp->dev, addr, lp->max_frm_size, DMA_FROM_DEVICE); | |
| 1509 | rx_submit_err_free_skb: | |
| 1510 | dev_kfree_skb(skb); | |
| 1511 | } | |
| 1512 | ||
| 1513 | /** | |
| 1514 | * axienet_init_dmaengine - init the dmaengine code. | |
| 1515 | * @ndev: Pointer to net_device structure | |
| 1516 | * | |
| 1517 | * Return: 0, on success. | |
| 1518 | * non-zero error value on failure | |
| 1519 | * | |
| 1520 | * This is the dmaengine initialization code. | |
| 1521 | */ | |
| 1522 | static int axienet_init_dmaengine(struct net_device *ndev) | |
| 1523 | { | |
| 1524 | struct axienet_local *lp = netdev_priv(ndev); | |
| 1525 | struct skbuf_dma_descriptor *skbuf_dma; | |
| 1526 | int i, ret; | |
| 1527 | ||
| 1528 | lp->tx_chan = dma_request_chan(lp->dev, "tx_chan0"); | |
| 1529 | if (IS_ERR(lp->tx_chan)) { | |
| 1530 | dev_err(lp->dev, "No Ethernet DMA (TX) channel found\n"); | |
| 1531 | return PTR_ERR(lp->tx_chan); | |
| 1532 | } | |
| 1533 | ||
| 1534 | lp->rx_chan = dma_request_chan(lp->dev, "rx_chan0"); | |
| 1535 | if (IS_ERR(lp->rx_chan)) { | |
| 1536 | ret = PTR_ERR(lp->rx_chan); | |
| 1537 | dev_err(lp->dev, "No Ethernet DMA (RX) channel found\n"); | |
| 1538 | goto err_dma_release_tx; | |
| 1539 | } | |
| 1540 | ||
| 1541 | lp->tx_ring_tail = 0; | |
| 1542 | lp->tx_ring_head = 0; | |
| 1543 | lp->rx_ring_tail = 0; | |
| 1544 | lp->rx_ring_head = 0; | |
| 1545 | lp->tx_skb_ring = kcalloc(TX_BD_NUM_MAX, sizeof(*lp->tx_skb_ring), | |
| 1546 | GFP_KERNEL); | |
| 1547 | if (!lp->tx_skb_ring) { | |
| 1548 | ret = -ENOMEM; | |
| 1549 | goto err_dma_release_rx; | |
| 1550 | } | |
| 1551 | for (i = 0; i < TX_BD_NUM_MAX; i++) { | |
| 1552 | skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL); | |
| 1553 | if (!skbuf_dma) { | |
| 1554 | ret = -ENOMEM; | |
| 1555 | goto err_free_tx_skb_ring; | |
| 1556 | } | |
| 1557 | lp->tx_skb_ring[i] = skbuf_dma; | |
| 1558 | } | |
| 1559 | ||
| 1560 | lp->rx_skb_ring = kcalloc(RX_BUF_NUM_DEFAULT, sizeof(*lp->rx_skb_ring), | |
| 1561 | GFP_KERNEL); | |
| 1562 | if (!lp->rx_skb_ring) { | |
| 1563 | ret = -ENOMEM; | |
| 1564 | goto err_free_tx_skb_ring; | |
| 1565 | } | |
| 1566 | for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) { | |
| 1567 | skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL); | |
| 1568 | if (!skbuf_dma) { | |
| 1569 | ret = -ENOMEM; | |
| 1570 | goto err_free_rx_skb_ring; | |
| 1571 | } | |
| 1572 | lp->rx_skb_ring[i] = skbuf_dma; | |
| 1573 | } | |
| 1574 | /* TODO: Instead of BD_NUM_DEFAULT use runtime support */ | |
| 1575 | for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) | |
| 1576 | axienet_rx_submit_desc(ndev); | |
| 1577 | dma_async_issue_pending(lp->rx_chan); | |
| 1578 | ||
| 1579 | return 0; | |
| 1580 | ||
| 1581 | err_free_rx_skb_ring: | |
| 1582 | for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) | |
| 1583 | kfree(lp->rx_skb_ring[i]); | |
| 1584 | kfree(lp->rx_skb_ring); | |
| 1585 | err_free_tx_skb_ring: | |
| 1586 | for (i = 0; i < TX_BD_NUM_MAX; i++) | |
| 1587 | kfree(lp->tx_skb_ring[i]); | |
| 1588 | kfree(lp->tx_skb_ring); | |
| 1589 | err_dma_release_rx: | |
| 1590 | dma_release_channel(lp->rx_chan); | |
| 1591 | err_dma_release_tx: | |
| 1592 | dma_release_channel(lp->tx_chan); | |
| 1593 | return ret; | |
| 1594 | } | |
| 1595 | ||
| 1596 | /** | |
| 1597 | * axienet_init_legacy_dma - init the dma legacy code. | |
| 1598 | * @ndev: Pointer to net_device structure | |
| 1599 | * | |
| 1600 | * Return: 0, on success. | |
| 1601 | * non-zero error value on failure | |
| 1602 | * | |
| 1603 | * This is the dma initialization code. It also allocates interrupt | |
| 1604 | * service routines, enables the interrupt lines and ISR handling. | |
| 1605 | * | |
| 1606 | */ | |
| 1607 | static int axienet_init_legacy_dma(struct net_device *ndev) | |
| 1608 | { | |
| 1609 | int ret; | |
| 1610 | struct axienet_local *lp = netdev_priv(ndev); | |
| 1611 | ||
| 1612 | /* Enable worker thread for Axi DMA error handling */ | |
| 1613 | lp->stopping = false; | |
| 1614 | INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler); | |
| 1615 | ||
| 1616 | napi_enable(&lp->napi_rx); | |
| 1617 | napi_enable(&lp->napi_tx); | |
| 1618 | ||
| 1619 | /* Enable interrupts for Axi DMA Tx */ | |
| 1620 | ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED, | |
| 1621 | ndev->name, ndev); | |
| 1622 | if (ret) | |
| 1623 | goto err_tx_irq; | |
| 1624 | /* Enable interrupts for Axi DMA Rx */ | |
| 1625 | ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED, | |
| 1626 | ndev->name, ndev); | |
| 1627 | if (ret) | |
| 1628 | goto err_rx_irq; | |
| 1629 | /* Enable interrupts for Axi Ethernet core (if defined) */ | |
| 1630 | if (lp->eth_irq > 0) { | |
| 1631 | ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED, | |
| 1632 | ndev->name, ndev); | |
| 1633 | if (ret) | |
| 1634 | goto err_eth_irq; | |
| 1635 | } | |
| 1636 | ||
| 1637 | return 0; | |
| 1638 | ||
| 1639 | err_eth_irq: | |
| 1640 | free_irq(lp->rx_irq, ndev); | |
| 1641 | err_rx_irq: | |
| 1642 | free_irq(lp->tx_irq, ndev); | |
| 1643 | err_tx_irq: | |
| 1644 | napi_disable(&lp->napi_tx); | |
| 1645 | napi_disable(&lp->napi_rx); | |
| 1646 | cancel_work_sync(&lp->dma_err_task); | |
| 1647 | dev_err(lp->dev, "request_irq() failed\n"); | |
| 1648 | return ret; | |
| 1649 | } | |
| 1650 | ||
| 1651 | /** | |
| 1652 | * axienet_open - Driver open routine. | |
| 1653 | * @ndev: Pointer to net_device structure | |
| 1654 | * | |
| 1655 | * Return: 0, on success. | |
| 1656 | * non-zero error value on failure | |
| 1657 | * | |
| 1658 | * This is the driver open routine. It calls phylink_start to start the | |
| 1659 | * PHY device. | |
| 1660 | * It also allocates interrupt service routines, enables the interrupt lines | |
| 1661 | * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer | |
| 1662 | * descriptors are initialized. | |
| 1663 | */ | |
| 1664 | static int axienet_open(struct net_device *ndev) | |
| 1665 | { | |
| 1666 | int ret; | |
| 1667 | struct axienet_local *lp = netdev_priv(ndev); | |
| 1668 | ||
| 1669 | /* When we do an Axi Ethernet reset, it resets the complete core | |
| 1670 | * including the MDIO. MDIO must be disabled before resetting. | |
| 1671 | * Hold MDIO bus lock to avoid MDIO accesses during the reset. | |
| 1672 | */ | |
| 1673 | axienet_lock_mii(lp); | |
| 1674 | ret = axienet_device_reset(ndev); | |
| 1675 | axienet_unlock_mii(lp); | |
| 1676 | ||
| 1677 | ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0); | |
| 1678 | if (ret) { | |
| 1679 | dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret); | |
| 1680 | return ret; | |
| 1681 | } | |
| 1682 | ||
| 1683 | phylink_start(lp->phylink); | |
| 1684 | ||
| 1685 | /* Start the statistics refresh work */ | |
| 1686 | schedule_delayed_work(&lp->stats_work, 0); | |
| 1687 | ||
| 1688 | if (lp->use_dmaengine) { | |
| 1689 | /* Enable interrupts for Axi Ethernet core (if defined) */ | |
| 1690 | if (lp->eth_irq > 0) { | |
| 1691 | ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED, | |
| 1692 | ndev->name, ndev); | |
| 1693 | if (ret) | |
| 1694 | goto err_phy; | |
| 1695 | } | |
| 1696 | ||
| 1697 | ret = axienet_init_dmaengine(ndev); | |
| 1698 | if (ret < 0) | |
| 1699 | goto err_free_eth_irq; | |
| 1700 | } else { | |
| 1701 | ret = axienet_init_legacy_dma(ndev); | |
| 1702 | if (ret) | |
| 1703 | goto err_phy; | |
| 1704 | } | |
| 1705 | ||
| 1706 | return 0; | |
| 1707 | ||
| 1708 | err_free_eth_irq: | |
| 1709 | if (lp->eth_irq > 0) | |
| 1710 | free_irq(lp->eth_irq, ndev); | |
| 1711 | err_phy: | |
| 1712 | cancel_work_sync(&lp->rx_dim.work); | |
| 1713 | cancel_delayed_work_sync(&lp->stats_work); | |
| 1714 | phylink_stop(lp->phylink); | |
| 1715 | phylink_disconnect_phy(lp->phylink); | |
| 1716 | return ret; | |
| 1717 | } | |
| 1718 | ||
| 1719 | /** | |
| 1720 | * axienet_stop - Driver stop routine. | |
| 1721 | * @ndev: Pointer to net_device structure | |
| 1722 | * | |
| 1723 | * Return: 0, on success. | |
| 1724 | * | |
| 1725 | * This is the driver stop routine. It calls phylink_disconnect to stop the PHY | |
| 1726 | * device. It also removes the interrupt handlers and disables the interrupts. | |
| 1727 | * The Axi DMA Tx/Rx BDs are released. | |
| 1728 | */ | |
| 1729 | static int axienet_stop(struct net_device *ndev) | |
| 1730 | { | |
| 1731 | struct axienet_local *lp = netdev_priv(ndev); | |
| 1732 | int i; | |
| 1733 | ||
| 1734 | if (!lp->use_dmaengine) { | |
| 1735 | WRITE_ONCE(lp->stopping, true); | |
| 1736 | flush_work(&lp->dma_err_task); | |
| 1737 | ||
| 1738 | napi_disable(&lp->napi_tx); | |
| 1739 | napi_disable(&lp->napi_rx); | |
| 1740 | } | |
| 1741 | ||
| 1742 | cancel_work_sync(&lp->rx_dim.work); | |
| 1743 | cancel_delayed_work_sync(&lp->stats_work); | |
| 1744 | ||
| 1745 | phylink_stop(lp->phylink); | |
| 1746 | phylink_disconnect_phy(lp->phylink); | |
| 1747 | ||
| 1748 | axienet_setoptions(ndev, lp->options & | |
| 1749 | ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); | |
| 1750 | ||
| 1751 | if (!lp->use_dmaengine) { | |
| 1752 | axienet_dma_stop(lp); | |
| 1753 | cancel_work_sync(&lp->dma_err_task); | |
| 1754 | free_irq(lp->tx_irq, ndev); | |
| 1755 | free_irq(lp->rx_irq, ndev); | |
| 1756 | axienet_dma_bd_release(ndev); | |
| 1757 | } else { | |
| 1758 | dmaengine_terminate_sync(lp->tx_chan); | |
| 1759 | dmaengine_synchronize(lp->tx_chan); | |
| 1760 | dmaengine_terminate_sync(lp->rx_chan); | |
| 1761 | dmaengine_synchronize(lp->rx_chan); | |
| 1762 | ||
| 1763 | for (i = 0; i < TX_BD_NUM_MAX; i++) | |
| 1764 | kfree(lp->tx_skb_ring[i]); | |
| 1765 | kfree(lp->tx_skb_ring); | |
| 1766 | for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) | |
| 1767 | kfree(lp->rx_skb_ring[i]); | |
| 1768 | kfree(lp->rx_skb_ring); | |
| 1769 | ||
| 1770 | dma_release_channel(lp->rx_chan); | |
| 1771 | dma_release_channel(lp->tx_chan); | |
| 1772 | } | |
| 1773 | ||
| 1774 | netdev_reset_queue(ndev); | |
| 1775 | axienet_iow(lp, XAE_IE_OFFSET, 0); | |
| 1776 | ||
| 1777 | if (lp->eth_irq > 0) | |
| 1778 | free_irq(lp->eth_irq, ndev); | |
| 1779 | return 0; | |
| 1780 | } | |
| 1781 | ||
| 1782 | /** | |
| 1783 | * axienet_change_mtu - Driver change mtu routine. | |
| 1784 | * @ndev: Pointer to net_device structure | |
| 1785 | * @new_mtu: New mtu value to be applied | |
| 1786 | * | |
| 1787 | * Return: Always returns 0 (success). | |
| 1788 | * | |
| 1789 | * This is the change mtu driver routine. It checks if the Axi Ethernet | |
| 1790 | * hardware supports jumbo frames before changing the mtu. This can be | |
| 1791 | * called only when the device is not up. | |
| 1792 | */ | |
| 1793 | static int axienet_change_mtu(struct net_device *ndev, int new_mtu) | |
| 1794 | { | |
| 1795 | struct axienet_local *lp = netdev_priv(ndev); | |
| 1796 | ||
| 1797 | if (netif_running(ndev)) | |
| 1798 | return -EBUSY; | |
| 1799 | ||
| 1800 | if ((new_mtu + VLAN_ETH_HLEN + | |
| 1801 | XAE_TRL_SIZE) > lp->rxmem) | |
| 1802 | return -EINVAL; | |
| 1803 | ||
| 1804 | WRITE_ONCE(ndev->mtu, new_mtu); | |
| 1805 | ||
| 1806 | return 0; | |
| 1807 | } | |
| 1808 | ||
| 1809 | #ifdef CONFIG_NET_POLL_CONTROLLER | |
| 1810 | /** | |
| 1811 | * axienet_poll_controller - Axi Ethernet poll mechanism. | |
| 1812 | * @ndev: Pointer to net_device structure | |
| 1813 | * | |
| 1814 | * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior | |
| 1815 | * to polling the ISRs and are enabled back after the polling is done. | |
| 1816 | */ | |
| 1817 | static void axienet_poll_controller(struct net_device *ndev) | |
| 1818 | { | |
| 1819 | struct axienet_local *lp = netdev_priv(ndev); | |
| 1820 | ||
| 1821 | disable_irq(lp->tx_irq); | |
| 1822 | disable_irq(lp->rx_irq); | |
| 1823 | axienet_rx_irq(lp->tx_irq, ndev); | |
| 1824 | axienet_tx_irq(lp->rx_irq, ndev); | |
| 1825 | enable_irq(lp->tx_irq); | |
| 1826 | enable_irq(lp->rx_irq); | |
| 1827 | } | |
| 1828 | #endif | |
| 1829 | ||
| 1830 | static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | |
| 1831 | { | |
| 1832 | struct axienet_local *lp = netdev_priv(dev); | |
| 1833 | ||
| 1834 | if (!netif_running(dev)) | |
| 1835 | return -EINVAL; | |
| 1836 | ||
| 1837 | return phylink_mii_ioctl(lp->phylink, rq, cmd); | |
| 1838 | } | |
| 1839 | ||
| 1840 | static void | |
| 1841 | axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) | |
| 1842 | { | |
| 1843 | struct axienet_local *lp = netdev_priv(dev); | |
| 1844 | unsigned int start; | |
| 1845 | ||
| 1846 | netdev_stats_to_stats64(stats, &dev->stats); | |
| 1847 | ||
| 1848 | do { | |
| 1849 | start = u64_stats_fetch_begin(&lp->rx_stat_sync); | |
| 1850 | stats->rx_packets = u64_stats_read(&lp->rx_packets); | |
| 1851 | stats->rx_bytes = u64_stats_read(&lp->rx_bytes); | |
| 1852 | } while (u64_stats_fetch_retry(&lp->rx_stat_sync, start)); | |
| 1853 | ||
| 1854 | do { | |
| 1855 | start = u64_stats_fetch_begin(&lp->tx_stat_sync); | |
| 1856 | stats->tx_packets = u64_stats_read(&lp->tx_packets); | |
| 1857 | stats->tx_bytes = u64_stats_read(&lp->tx_bytes); | |
| 1858 | } while (u64_stats_fetch_retry(&lp->tx_stat_sync, start)); | |
| 1859 | ||
| 1860 | if (!(lp->features & XAE_FEATURE_STATS)) | |
| 1861 | return; | |
| 1862 | ||
| 1863 | do { | |
| 1864 | start = read_seqcount_begin(&lp->hw_stats_seqcount); | |
| 1865 | stats->rx_length_errors = | |
| 1866 | axienet_stat(lp, STAT_RX_LENGTH_ERRORS); | |
| 1867 | stats->rx_crc_errors = axienet_stat(lp, STAT_RX_FCS_ERRORS); | |
| 1868 | stats->rx_frame_errors = | |
| 1869 | axienet_stat(lp, STAT_RX_ALIGNMENT_ERRORS); | |
| 1870 | stats->rx_errors = axienet_stat(lp, STAT_UNDERSIZE_FRAMES) + | |
| 1871 | axienet_stat(lp, STAT_FRAGMENT_FRAMES) + | |
| 1872 | stats->rx_length_errors + | |
| 1873 | stats->rx_crc_errors + | |
| 1874 | stats->rx_frame_errors; | |
| 1875 | stats->multicast = axienet_stat(lp, STAT_RX_MULTICAST_FRAMES); | |
| 1876 | ||
| 1877 | stats->tx_aborted_errors = | |
| 1878 | axienet_stat(lp, STAT_TX_EXCESS_COLLISIONS); | |
| 1879 | stats->tx_fifo_errors = | |
| 1880 | axienet_stat(lp, STAT_TX_UNDERRUN_ERRORS); | |
| 1881 | stats->tx_window_errors = | |
| 1882 | axienet_stat(lp, STAT_TX_LATE_COLLISIONS); | |
| 1883 | stats->tx_errors = axienet_stat(lp, STAT_TX_EXCESS_DEFERRAL) + | |
| 1884 | stats->tx_aborted_errors + | |
| 1885 | stats->tx_fifo_errors + | |
| 1886 | stats->tx_window_errors; | |
| 1887 | } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); | |
| 1888 | } | |
| 1889 | ||
| 1890 | static const struct net_device_ops axienet_netdev_ops = { | |
| 1891 | .ndo_open = axienet_open, | |
| 1892 | .ndo_stop = axienet_stop, | |
| 1893 | .ndo_start_xmit = axienet_start_xmit, | |
| 1894 | .ndo_get_stats64 = axienet_get_stats64, | |
| 1895 | .ndo_change_mtu = axienet_change_mtu, | |
| 1896 | .ndo_set_mac_address = netdev_set_mac_address, | |
| 1897 | .ndo_validate_addr = eth_validate_addr, | |
| 1898 | .ndo_eth_ioctl = axienet_ioctl, | |
| 1899 | .ndo_set_rx_mode = axienet_set_multicast_list, | |
| 1900 | #ifdef CONFIG_NET_POLL_CONTROLLER | |
| 1901 | .ndo_poll_controller = axienet_poll_controller, | |
| 1902 | #endif | |
| 1903 | }; | |
| 1904 | ||
| 1905 | static const struct net_device_ops axienet_netdev_dmaengine_ops = { | |
| 1906 | .ndo_open = axienet_open, | |
| 1907 | .ndo_stop = axienet_stop, | |
| 1908 | .ndo_start_xmit = axienet_start_xmit_dmaengine, | |
| 1909 | .ndo_get_stats64 = axienet_get_stats64, | |
| 1910 | .ndo_change_mtu = axienet_change_mtu, | |
| 1911 | .ndo_set_mac_address = netdev_set_mac_address, | |
| 1912 | .ndo_validate_addr = eth_validate_addr, | |
| 1913 | .ndo_eth_ioctl = axienet_ioctl, | |
| 1914 | .ndo_set_rx_mode = axienet_set_multicast_list, | |
| 1915 | }; | |
| 1916 | ||
| 1917 | /** | |
| 1918 | * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information. | |
| 1919 | * @ndev: Pointer to net_device structure | |
| 1920 | * @ed: Pointer to ethtool_drvinfo structure | |
| 1921 | * | |
| 1922 | * This implements ethtool command for getting the driver information. | |
| 1923 | * Issue "ethtool -i ethX" under linux prompt to execute this function. | |
| 1924 | */ | |
| 1925 | static void axienet_ethtools_get_drvinfo(struct net_device *ndev, | |
| 1926 | struct ethtool_drvinfo *ed) | |
| 1927 | { | |
| 1928 | strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver)); | |
| 1929 | strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version)); | |
| 1930 | } | |
| 1931 | ||
| 1932 | /** | |
| 1933 | * axienet_ethtools_get_regs_len - Get the total regs length present in the | |
| 1934 | * AxiEthernet core. | |
| 1935 | * @ndev: Pointer to net_device structure | |
| 1936 | * | |
| 1937 | * This implements ethtool command for getting the total register length | |
| 1938 | * information. | |
| 1939 | * | |
| 1940 | * Return: the total regs length | |
| 1941 | */ | |
| 1942 | static int axienet_ethtools_get_regs_len(struct net_device *ndev) | |
| 1943 | { | |
| 1944 | return sizeof(u32) * AXIENET_REGS_N; | |
| 1945 | } | |
| 1946 | ||
| 1947 | /** | |
| 1948 | * axienet_ethtools_get_regs - Dump the contents of all registers present | |
| 1949 | * in AxiEthernet core. | |
| 1950 | * @ndev: Pointer to net_device structure | |
| 1951 | * @regs: Pointer to ethtool_regs structure | |
| 1952 | * @ret: Void pointer used to return the contents of the registers. | |
| 1953 | * | |
| 1954 | * This implements ethtool command for getting the Axi Ethernet register dump. | |
| 1955 | * Issue "ethtool -d ethX" to execute this function. | |
| 1956 | */ | |
| 1957 | static void axienet_ethtools_get_regs(struct net_device *ndev, | |
| 1958 | struct ethtool_regs *regs, void *ret) | |
| 1959 | { | |
| 1960 | u32 *data = (u32 *)ret; | |
| 1961 | size_t len = sizeof(u32) * AXIENET_REGS_N; | |
| 1962 | struct axienet_local *lp = netdev_priv(ndev); | |
| 1963 | ||
| 1964 | regs->version = 0; | |
| 1965 | regs->len = len; | |
| 1966 | ||
| 1967 | memset(data, 0, len); | |
| 1968 | data[0] = axienet_ior(lp, XAE_RAF_OFFSET); | |
| 1969 | data[1] = axienet_ior(lp, XAE_TPF_OFFSET); | |
| 1970 | data[2] = axienet_ior(lp, XAE_IFGP_OFFSET); | |
| 1971 | data[3] = axienet_ior(lp, XAE_IS_OFFSET); | |
| 1972 | data[4] = axienet_ior(lp, XAE_IP_OFFSET); | |
| 1973 | data[5] = axienet_ior(lp, XAE_IE_OFFSET); | |
| 1974 | data[6] = axienet_ior(lp, XAE_TTAG_OFFSET); | |
| 1975 | data[7] = axienet_ior(lp, XAE_RTAG_OFFSET); | |
| 1976 | data[8] = axienet_ior(lp, XAE_UAWL_OFFSET); | |
| 1977 | data[9] = axienet_ior(lp, XAE_UAWU_OFFSET); | |
| 1978 | data[10] = axienet_ior(lp, XAE_TPID0_OFFSET); | |
| 1979 | data[11] = axienet_ior(lp, XAE_TPID1_OFFSET); | |
| 1980 | data[12] = axienet_ior(lp, XAE_PPST_OFFSET); | |
| 1981 | data[13] = axienet_ior(lp, XAE_RCW0_OFFSET); | |
| 1982 | data[14] = axienet_ior(lp, XAE_RCW1_OFFSET); | |
| 1983 | data[15] = axienet_ior(lp, XAE_TC_OFFSET); | |
| 1984 | data[16] = axienet_ior(lp, XAE_FCC_OFFSET); | |
| 1985 | data[17] = axienet_ior(lp, XAE_EMMC_OFFSET); | |
| 1986 | data[18] = axienet_ior(lp, XAE_PHYC_OFFSET); | |
| 1987 | data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET); | |
| 1988 | data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET); | |
| 1989 | data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET); | |
| 1990 | data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET); | |
| 1991 | data[27] = axienet_ior(lp, XAE_UAW0_OFFSET); | |
| 1992 | data[28] = axienet_ior(lp, XAE_UAW1_OFFSET); | |
| 1993 | data[29] = axienet_ior(lp, XAE_FMI_OFFSET); | |
| 1994 | data[30] = axienet_ior(lp, XAE_AF0_OFFSET); | |
| 1995 | data[31] = axienet_ior(lp, XAE_AF1_OFFSET); | |
| 1996 | if (!lp->use_dmaengine) { | |
| 1997 | data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); | |
| 1998 | data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); | |
| 1999 | data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET); | |
| 2000 | data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET); | |
| 2001 | data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); | |
| 2002 | data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); | |
| 2003 | data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET); | |
| 2004 | data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET); | |
| 2005 | } | |
| 2006 | } | |
| 2007 | ||
| 2008 | static void | |
| 2009 | axienet_ethtools_get_ringparam(struct net_device *ndev, | |
| 2010 | struct ethtool_ringparam *ering, | |
| 2011 | struct kernel_ethtool_ringparam *kernel_ering, | |
| 2012 | struct netlink_ext_ack *extack) | |
| 2013 | { | |
| 2014 | struct axienet_local *lp = netdev_priv(ndev); | |
| 2015 | ||
| 2016 | ering->rx_max_pending = RX_BD_NUM_MAX; | |
| 2017 | ering->rx_mini_max_pending = 0; | |
| 2018 | ering->rx_jumbo_max_pending = 0; | |
| 2019 | ering->tx_max_pending = TX_BD_NUM_MAX; | |
| 2020 | ering->rx_pending = lp->rx_bd_num; | |
| 2021 | ering->rx_mini_pending = 0; | |
| 2022 | ering->rx_jumbo_pending = 0; | |
| 2023 | ering->tx_pending = lp->tx_bd_num; | |
| 2024 | } | |
| 2025 | ||
| 2026 | static int | |
| 2027 | axienet_ethtools_set_ringparam(struct net_device *ndev, | |
| 2028 | struct ethtool_ringparam *ering, | |
| 2029 | struct kernel_ethtool_ringparam *kernel_ering, | |
| 2030 | struct netlink_ext_ack *extack) | |
| 2031 | { | |
| 2032 | struct axienet_local *lp = netdev_priv(ndev); | |
| 2033 | ||
| 2034 | if (ering->rx_pending > RX_BD_NUM_MAX || | |
| 2035 | ering->rx_mini_pending || | |
| 2036 | ering->rx_jumbo_pending || | |
| 2037 | ering->tx_pending < TX_BD_NUM_MIN || | |
| 2038 | ering->tx_pending > TX_BD_NUM_MAX) | |
| 2039 | return -EINVAL; | |
| 2040 | ||
| 2041 | if (netif_running(ndev)) | |
| 2042 | return -EBUSY; | |
| 2043 | ||
| 2044 | lp->rx_bd_num = ering->rx_pending; | |
| 2045 | lp->tx_bd_num = ering->tx_pending; | |
| 2046 | return 0; | |
| 2047 | } | |
| 2048 | ||
| 2049 | /** | |
| 2050 | * axienet_ethtools_get_pauseparam - Get the pause parameter setting for | |
| 2051 | * Tx and Rx paths. | |
| 2052 | * @ndev: Pointer to net_device structure | |
| 2053 | * @epauseparm: Pointer to ethtool_pauseparam structure. | |
| 2054 | * | |
| 2055 | * This implements ethtool command for getting axi ethernet pause frame | |
| 2056 | * setting. Issue "ethtool -a ethX" to execute this function. | |
| 2057 | */ | |
| 2058 | static void | |
| 2059 | axienet_ethtools_get_pauseparam(struct net_device *ndev, | |
| 2060 | struct ethtool_pauseparam *epauseparm) | |
| 2061 | { | |
| 2062 | struct axienet_local *lp = netdev_priv(ndev); | |
| 2063 | ||
| 2064 | phylink_ethtool_get_pauseparam(lp->phylink, epauseparm); | |
| 2065 | } | |
| 2066 | ||
| 2067 | /** | |
| 2068 | * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control) | |
| 2069 | * settings. | |
| 2070 | * @ndev: Pointer to net_device structure | |
| 2071 | * @epauseparm:Pointer to ethtool_pauseparam structure | |
| 2072 | * | |
| 2073 | * This implements ethtool command for enabling flow control on Rx and Tx | |
| 2074 | * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this | |
| 2075 | * function. | |
| 2076 | * | |
| 2077 | * Return: 0 on success, -EFAULT if device is running | |
| 2078 | */ | |
| 2079 | static int | |
| 2080 | axienet_ethtools_set_pauseparam(struct net_device *ndev, | |
| 2081 | struct ethtool_pauseparam *epauseparm) | |
| 2082 | { | |
| 2083 | struct axienet_local *lp = netdev_priv(ndev); | |
| 2084 | ||
| 2085 | return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm); | |
| 2086 | } | |
| 2087 | ||
| 2088 | /** | |
| 2089 | * axienet_update_coalesce_rx() - Set RX CR | |
| 2090 | * @lp: Device private data | |
| 2091 | * @cr: Value to write to the RX CR | |
| 2092 | * @mask: Bits to set from @cr | |
| 2093 | */ | |
| 2094 | static void axienet_update_coalesce_rx(struct axienet_local *lp, u32 cr, | |
| 2095 | u32 mask) | |
| 2096 | { | |
| 2097 | spin_lock_irq(&lp->rx_cr_lock); | |
| 2098 | lp->rx_dma_cr &= ~mask; | |
| 2099 | lp->rx_dma_cr |= cr; | |
| 2100 | /* If DMA isn't started, then the settings will be applied the next | |
| 2101 | * time dma_start() is called. | |
| 2102 | */ | |
| 2103 | if (lp->rx_dma_started) { | |
| 2104 | u32 reg = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); | |
| 2105 | ||
| 2106 | /* Don't enable IRQs if they are disabled by NAPI */ | |
| 2107 | if (reg & XAXIDMA_IRQ_ALL_MASK) | |
| 2108 | cr = lp->rx_dma_cr; | |
| 2109 | else | |
| 2110 | cr = lp->rx_dma_cr & ~XAXIDMA_IRQ_ALL_MASK; | |
| 2111 | axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); | |
| 2112 | } | |
| 2113 | spin_unlock_irq(&lp->rx_cr_lock); | |
| 2114 | } | |
| 2115 | ||
| 2116 | /** | |
| 2117 | * axienet_dim_coalesce_count_rx() - RX coalesce count for DIM | |
| 2118 | * @lp: Device private data | |
| 2119 | * | |
| 2120 | * Return: RX coalescing frame count value for DIM. | |
| 2121 | */ | |
| 2122 | static u32 axienet_dim_coalesce_count_rx(struct axienet_local *lp) | |
| 2123 | { | |
| 2124 | return min(1 << (lp->rx_dim.profile_ix << 1), 255); | |
| 2125 | } | |
| 2126 | ||
| 2127 | /** | |
| 2128 | * axienet_rx_dim_work() - Adjust RX DIM settings | |
| 2129 | * @work: The work struct | |
| 2130 | */ | |
| 2131 | static void axienet_rx_dim_work(struct work_struct *work) | |
| 2132 | { | |
| 2133 | struct axienet_local *lp = | |
| 2134 | container_of(work, struct axienet_local, rx_dim.work); | |
| 2135 | u32 cr = axienet_calc_cr(lp, axienet_dim_coalesce_count_rx(lp), 0); | |
| 2136 | u32 mask = XAXIDMA_COALESCE_MASK | XAXIDMA_IRQ_IOC_MASK | | |
| 2137 | XAXIDMA_IRQ_ERROR_MASK; | |
| 2138 | ||
| 2139 | axienet_update_coalesce_rx(lp, cr, mask); | |
| 2140 | lp->rx_dim.state = DIM_START_MEASURE; | |
| 2141 | } | |
| 2142 | ||
| 2143 | /** | |
| 2144 | * axienet_update_coalesce_tx() - Set TX CR | |
| 2145 | * @lp: Device private data | |
| 2146 | * @cr: Value to write to the TX CR | |
| 2147 | * @mask: Bits to set from @cr | |
| 2148 | */ | |
| 2149 | static void axienet_update_coalesce_tx(struct axienet_local *lp, u32 cr, | |
| 2150 | u32 mask) | |
| 2151 | { | |
| 2152 | spin_lock_irq(&lp->tx_cr_lock); | |
| 2153 | lp->tx_dma_cr &= ~mask; | |
| 2154 | lp->tx_dma_cr |= cr; | |
| 2155 | /* If DMA isn't started, then the settings will be applied the next | |
| 2156 | * time dma_start() is called. | |
| 2157 | */ | |
| 2158 | if (lp->tx_dma_started) { | |
| 2159 | u32 reg = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); | |
| 2160 | ||
| 2161 | /* Don't enable IRQs if they are disabled by NAPI */ | |
| 2162 | if (reg & XAXIDMA_IRQ_ALL_MASK) | |
| 2163 | cr = lp->tx_dma_cr; | |
| 2164 | else | |
| 2165 | cr = lp->tx_dma_cr & ~XAXIDMA_IRQ_ALL_MASK; | |
| 2166 | axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); | |
| 2167 | } | |
| 2168 | spin_unlock_irq(&lp->tx_cr_lock); | |
| 2169 | } | |
| 2170 | ||
| 2171 | /** | |
| 2172 | * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count. | |
| 2173 | * @ndev: Pointer to net_device structure | |
| 2174 | * @ecoalesce: Pointer to ethtool_coalesce structure | |
| 2175 | * @kernel_coal: ethtool CQE mode setting structure | |
| 2176 | * @extack: extack for reporting error messages | |
| 2177 | * | |
| 2178 | * This implements ethtool command for getting the DMA interrupt coalescing | |
| 2179 | * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to | |
| 2180 | * execute this function. | |
| 2181 | * | |
| 2182 | * Return: 0 always | |
| 2183 | */ | |
| 2184 | static int | |
| 2185 | axienet_ethtools_get_coalesce(struct net_device *ndev, | |
| 2186 | struct ethtool_coalesce *ecoalesce, | |
| 2187 | struct kernel_ethtool_coalesce *kernel_coal, | |
| 2188 | struct netlink_ext_ack *extack) | |
| 2189 | { | |
| 2190 | struct axienet_local *lp = netdev_priv(ndev); | |
| 2191 | u32 cr; | |
| 2192 | ||
| 2193 | ecoalesce->use_adaptive_rx_coalesce = lp->rx_dim_enabled; | |
| 2194 | ||
| 2195 | spin_lock_irq(&lp->rx_cr_lock); | |
| 2196 | cr = lp->rx_dma_cr; | |
| 2197 | spin_unlock_irq(&lp->rx_cr_lock); | |
| 2198 | axienet_coalesce_params(lp, cr, | |
| 2199 | &ecoalesce->rx_max_coalesced_frames, | |
| 2200 | &ecoalesce->rx_coalesce_usecs); | |
| 2201 | ||
| 2202 | spin_lock_irq(&lp->tx_cr_lock); | |
| 2203 | cr = lp->tx_dma_cr; | |
| 2204 | spin_unlock_irq(&lp->tx_cr_lock); | |
| 2205 | axienet_coalesce_params(lp, cr, | |
| 2206 | &ecoalesce->tx_max_coalesced_frames, | |
| 2207 | &ecoalesce->tx_coalesce_usecs); | |
| 2208 | return 0; | |
| 2209 | } | |
| 2210 | ||
| 2211 | /** | |
| 2212 | * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count. | |
| 2213 | * @ndev: Pointer to net_device structure | |
| 2214 | * @ecoalesce: Pointer to ethtool_coalesce structure | |
| 2215 | * @kernel_coal: ethtool CQE mode setting structure | |
| 2216 | * @extack: extack for reporting error messages | |
| 2217 | * | |
| 2218 | * This implements ethtool command for setting the DMA interrupt coalescing | |
| 2219 | * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux | |
| 2220 | * prompt to execute this function. | |
| 2221 | * | |
| 2222 | * Return: 0, on success, Non-zero error value on failure. | |
| 2223 | */ | |
| 2224 | static int | |
| 2225 | axienet_ethtools_set_coalesce(struct net_device *ndev, | |
| 2226 | struct ethtool_coalesce *ecoalesce, | |
| 2227 | struct kernel_ethtool_coalesce *kernel_coal, | |
| 2228 | struct netlink_ext_ack *extack) | |
| 2229 | { | |
| 2230 | struct axienet_local *lp = netdev_priv(ndev); | |
| 2231 | bool new_dim = ecoalesce->use_adaptive_rx_coalesce; | |
| 2232 | bool old_dim = lp->rx_dim_enabled; | |
| 2233 | u32 cr, mask = ~XAXIDMA_CR_RUNSTOP_MASK; | |
| 2234 | ||
| 2235 | if (ecoalesce->rx_max_coalesced_frames > 255 || | |
| 2236 | ecoalesce->tx_max_coalesced_frames > 255) { | |
| 2237 | NL_SET_ERR_MSG(extack, "frames must be less than 256"); | |
| 2238 | return -EINVAL; | |
| 2239 | } | |
| 2240 | ||
| 2241 | if (!ecoalesce->rx_max_coalesced_frames || | |
| 2242 | !ecoalesce->tx_max_coalesced_frames) { | |
| 2243 | NL_SET_ERR_MSG(extack, "frames must be non-zero"); | |
| 2244 | return -EINVAL; | |
| 2245 | } | |
| 2246 | ||
| 2247 | if (((ecoalesce->rx_max_coalesced_frames > 1 || new_dim) && | |
| 2248 | !ecoalesce->rx_coalesce_usecs) || | |
| 2249 | (ecoalesce->tx_max_coalesced_frames > 1 && | |
| 2250 | !ecoalesce->tx_coalesce_usecs)) { | |
| 2251 | NL_SET_ERR_MSG(extack, | |
| 2252 | "usecs must be non-zero when frames is greater than one"); | |
| 2253 | return -EINVAL; | |
| 2254 | } | |
| 2255 | ||
| 2256 | if (new_dim && !old_dim) { | |
| 2257 | cr = axienet_calc_cr(lp, axienet_dim_coalesce_count_rx(lp), | |
| 2258 | ecoalesce->rx_coalesce_usecs); | |
| 2259 | } else if (!new_dim) { | |
| 2260 | if (old_dim) { | |
| 2261 | WRITE_ONCE(lp->rx_dim_enabled, false); | |
| 2262 | napi_synchronize(&lp->napi_rx); | |
| 2263 | flush_work(&lp->rx_dim.work); | |
| 2264 | } | |
| 2265 | ||
| 2266 | cr = axienet_calc_cr(lp, ecoalesce->rx_max_coalesced_frames, | |
| 2267 | ecoalesce->rx_coalesce_usecs); | |
| 2268 | } else { | |
| 2269 | /* Dummy value for count just to calculate timer */ | |
| 2270 | cr = axienet_calc_cr(lp, 2, ecoalesce->rx_coalesce_usecs); | |
| 2271 | mask = XAXIDMA_DELAY_MASK | XAXIDMA_IRQ_DELAY_MASK; | |
| 2272 | } | |
| 2273 | ||
| 2274 | axienet_update_coalesce_rx(lp, cr, mask); | |
| 2275 | if (new_dim && !old_dim) | |
| 2276 | WRITE_ONCE(lp->rx_dim_enabled, true); | |
| 2277 | ||
| 2278 | cr = axienet_calc_cr(lp, ecoalesce->tx_max_coalesced_frames, | |
| 2279 | ecoalesce->tx_coalesce_usecs); | |
| 2280 | axienet_update_coalesce_tx(lp, cr, ~XAXIDMA_CR_RUNSTOP_MASK); | |
| 2281 | return 0; | |
| 2282 | } | |
| 2283 | ||
| 2284 | static int | |
| 2285 | axienet_ethtools_get_link_ksettings(struct net_device *ndev, | |
| 2286 | struct ethtool_link_ksettings *cmd) | |
| 2287 | { | |
| 2288 | struct axienet_local *lp = netdev_priv(ndev); | |
| 2289 | ||
| 2290 | return phylink_ethtool_ksettings_get(lp->phylink, cmd); | |
| 2291 | } | |
| 2292 | ||
| 2293 | static int | |
| 2294 | axienet_ethtools_set_link_ksettings(struct net_device *ndev, | |
| 2295 | const struct ethtool_link_ksettings *cmd) | |
| 2296 | { | |
| 2297 | struct axienet_local *lp = netdev_priv(ndev); | |
| 2298 | ||
| 2299 | return phylink_ethtool_ksettings_set(lp->phylink, cmd); | |
| 2300 | } | |
| 2301 | ||
| 2302 | static int axienet_ethtools_nway_reset(struct net_device *dev) | |
| 2303 | { | |
| 2304 | struct axienet_local *lp = netdev_priv(dev); | |
| 2305 | ||
| 2306 | return phylink_ethtool_nway_reset(lp->phylink); | |
| 2307 | } | |
| 2308 | ||
| 2309 | static void axienet_ethtools_get_ethtool_stats(struct net_device *dev, | |
| 2310 | struct ethtool_stats *stats, | |
| 2311 | u64 *data) | |
| 2312 | { | |
| 2313 | struct axienet_local *lp = netdev_priv(dev); | |
| 2314 | unsigned int start; | |
| 2315 | ||
| 2316 | do { | |
| 2317 | start = read_seqcount_begin(&lp->hw_stats_seqcount); | |
| 2318 | data[0] = axienet_stat(lp, STAT_RX_BYTES); | |
| 2319 | data[1] = axienet_stat(lp, STAT_TX_BYTES); | |
| 2320 | data[2] = axienet_stat(lp, STAT_RX_VLAN_FRAMES); | |
| 2321 | data[3] = axienet_stat(lp, STAT_TX_VLAN_FRAMES); | |
| 2322 | data[6] = axienet_stat(lp, STAT_TX_PFC_FRAMES); | |
| 2323 | data[7] = axienet_stat(lp, STAT_RX_PFC_FRAMES); | |
| 2324 | data[8] = axienet_stat(lp, STAT_USER_DEFINED0); | |
| 2325 | data[9] = axienet_stat(lp, STAT_USER_DEFINED1); | |
| 2326 | data[10] = axienet_stat(lp, STAT_USER_DEFINED2); | |
| 2327 | } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); | |
| 2328 | } | |
| 2329 | ||
| 2330 | static const char axienet_ethtool_stats_strings[][ETH_GSTRING_LEN] = { | |
| 2331 | "Received bytes", | |
| 2332 | "Transmitted bytes", | |
| 2333 | "RX Good VLAN Tagged Frames", | |
| 2334 | "TX Good VLAN Tagged Frames", | |
| 2335 | "TX Good PFC Frames", | |
| 2336 | "RX Good PFC Frames", | |
| 2337 | "User Defined Counter 0", | |
| 2338 | "User Defined Counter 1", | |
| 2339 | "User Defined Counter 2", | |
| 2340 | }; | |
| 2341 | ||
| 2342 | static void axienet_ethtools_get_strings(struct net_device *dev, u32 stringset, u8 *data) | |
| 2343 | { | |
| 2344 | switch (stringset) { | |
| 2345 | case ETH_SS_STATS: | |
| 2346 | memcpy(data, axienet_ethtool_stats_strings, | |
| 2347 | sizeof(axienet_ethtool_stats_strings)); | |
| 2348 | break; | |
| 2349 | } | |
| 2350 | } | |
| 2351 | ||
| 2352 | static int axienet_ethtools_get_sset_count(struct net_device *dev, int sset) | |
| 2353 | { | |
| 2354 | struct axienet_local *lp = netdev_priv(dev); | |
| 2355 | ||
| 2356 | switch (sset) { | |
| 2357 | case ETH_SS_STATS: | |
| 2358 | if (lp->features & XAE_FEATURE_STATS) | |
| 2359 | return ARRAY_SIZE(axienet_ethtool_stats_strings); | |
| 2360 | fallthrough; | |
| 2361 | default: | |
| 2362 | return -EOPNOTSUPP; | |
| 2363 | } | |
| 2364 | } | |
| 2365 | ||
| 2366 | static void | |
| 2367 | axienet_ethtools_get_pause_stats(struct net_device *dev, | |
| 2368 | struct ethtool_pause_stats *pause_stats) | |
| 2369 | { | |
| 2370 | struct axienet_local *lp = netdev_priv(dev); | |
| 2371 | unsigned int start; | |
| 2372 | ||
| 2373 | if (!(lp->features & XAE_FEATURE_STATS)) | |
| 2374 | return; | |
| 2375 | ||
| 2376 | do { | |
| 2377 | start = read_seqcount_begin(&lp->hw_stats_seqcount); | |
| 2378 | pause_stats->tx_pause_frames = | |
| 2379 | axienet_stat(lp, STAT_TX_PAUSE_FRAMES); | |
| 2380 | pause_stats->rx_pause_frames = | |
| 2381 | axienet_stat(lp, STAT_RX_PAUSE_FRAMES); | |
| 2382 | } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); | |
| 2383 | } | |
| 2384 | ||
| 2385 | static void | |
| 2386 | axienet_ethtool_get_eth_mac_stats(struct net_device *dev, | |
| 2387 | struct ethtool_eth_mac_stats *mac_stats) | |
| 2388 | { | |
| 2389 | struct axienet_local *lp = netdev_priv(dev); | |
| 2390 | unsigned int start; | |
| 2391 | ||
| 2392 | if (!(lp->features & XAE_FEATURE_STATS)) | |
| 2393 | return; | |
| 2394 | ||
| 2395 | do { | |
| 2396 | start = read_seqcount_begin(&lp->hw_stats_seqcount); | |
| 2397 | mac_stats->FramesTransmittedOK = | |
| 2398 | axienet_stat(lp, STAT_TX_GOOD_FRAMES); | |
| 2399 | mac_stats->SingleCollisionFrames = | |
| 2400 | axienet_stat(lp, STAT_TX_SINGLE_COLLISION_FRAMES); | |
| 2401 | mac_stats->MultipleCollisionFrames = | |
| 2402 | axienet_stat(lp, STAT_TX_MULTIPLE_COLLISION_FRAMES); | |
| 2403 | mac_stats->FramesReceivedOK = | |
| 2404 | axienet_stat(lp, STAT_RX_GOOD_FRAMES); | |
| 2405 | mac_stats->FrameCheckSequenceErrors = | |
| 2406 | axienet_stat(lp, STAT_RX_FCS_ERRORS); | |
| 2407 | mac_stats->AlignmentErrors = | |
| 2408 | axienet_stat(lp, STAT_RX_ALIGNMENT_ERRORS); | |
| 2409 | mac_stats->FramesWithDeferredXmissions = | |
| 2410 | axienet_stat(lp, STAT_TX_DEFERRED_FRAMES); | |
| 2411 | mac_stats->LateCollisions = | |
| 2412 | axienet_stat(lp, STAT_TX_LATE_COLLISIONS); | |
| 2413 | mac_stats->FramesAbortedDueToXSColls = | |
| 2414 | axienet_stat(lp, STAT_TX_EXCESS_COLLISIONS); | |
| 2415 | mac_stats->MulticastFramesXmittedOK = | |
| 2416 | axienet_stat(lp, STAT_TX_MULTICAST_FRAMES); | |
| 2417 | mac_stats->BroadcastFramesXmittedOK = | |
| 2418 | axienet_stat(lp, STAT_TX_BROADCAST_FRAMES); | |
| 2419 | mac_stats->FramesWithExcessiveDeferral = | |
| 2420 | axienet_stat(lp, STAT_TX_EXCESS_DEFERRAL); | |
| 2421 | mac_stats->MulticastFramesReceivedOK = | |
| 2422 | axienet_stat(lp, STAT_RX_MULTICAST_FRAMES); | |
| 2423 | mac_stats->BroadcastFramesReceivedOK = | |
| 2424 | axienet_stat(lp, STAT_RX_BROADCAST_FRAMES); | |
| 2425 | mac_stats->InRangeLengthErrors = | |
| 2426 | axienet_stat(lp, STAT_RX_LENGTH_ERRORS); | |
| 2427 | } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); | |
| 2428 | } | |
| 2429 | ||
| 2430 | static void | |
| 2431 | axienet_ethtool_get_eth_ctrl_stats(struct net_device *dev, | |
| 2432 | struct ethtool_eth_ctrl_stats *ctrl_stats) | |
| 2433 | { | |
| 2434 | struct axienet_local *lp = netdev_priv(dev); | |
| 2435 | unsigned int start; | |
| 2436 | ||
| 2437 | if (!(lp->features & XAE_FEATURE_STATS)) | |
| 2438 | return; | |
| 2439 | ||
| 2440 | do { | |
| 2441 | start = read_seqcount_begin(&lp->hw_stats_seqcount); | |
| 2442 | ctrl_stats->MACControlFramesTransmitted = | |
| 2443 | axienet_stat(lp, STAT_TX_CONTROL_FRAMES); | |
| 2444 | ctrl_stats->MACControlFramesReceived = | |
| 2445 | axienet_stat(lp, STAT_RX_CONTROL_FRAMES); | |
| 2446 | ctrl_stats->UnsupportedOpcodesReceived = | |
| 2447 | axienet_stat(lp, STAT_RX_CONTROL_OPCODE_ERRORS); | |
| 2448 | } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); | |
| 2449 | } | |
| 2450 | ||
| 2451 | static const struct ethtool_rmon_hist_range axienet_rmon_ranges[] = { | |
| 2452 | { 64, 64 }, | |
| 2453 | { 65, 127 }, | |
| 2454 | { 128, 255 }, | |
| 2455 | { 256, 511 }, | |
| 2456 | { 512, 1023 }, | |
| 2457 | { 1024, 1518 }, | |
| 2458 | { 1519, 16384 }, | |
| 2459 | { }, | |
| 2460 | }; | |
| 2461 | ||
| 2462 | static void | |
| 2463 | axienet_ethtool_get_rmon_stats(struct net_device *dev, | |
| 2464 | struct ethtool_rmon_stats *rmon_stats, | |
| 2465 | const struct ethtool_rmon_hist_range **ranges) | |
| 2466 | { | |
| 2467 | struct axienet_local *lp = netdev_priv(dev); | |
| 2468 | unsigned int start; | |
| 2469 | ||
| 2470 | if (!(lp->features & XAE_FEATURE_STATS)) | |
| 2471 | return; | |
| 2472 | ||
| 2473 | do { | |
| 2474 | start = read_seqcount_begin(&lp->hw_stats_seqcount); | |
| 2475 | rmon_stats->undersize_pkts = | |
| 2476 | axienet_stat(lp, STAT_UNDERSIZE_FRAMES); | |
| 2477 | rmon_stats->oversize_pkts = | |
| 2478 | axienet_stat(lp, STAT_RX_OVERSIZE_FRAMES); | |
| 2479 | rmon_stats->fragments = | |
| 2480 | axienet_stat(lp, STAT_FRAGMENT_FRAMES); | |
| 2481 | ||
| 2482 | rmon_stats->hist[0] = | |
| 2483 | axienet_stat(lp, STAT_RX_64_BYTE_FRAMES); | |
| 2484 | rmon_stats->hist[1] = | |
| 2485 | axienet_stat(lp, STAT_RX_65_127_BYTE_FRAMES); | |
| 2486 | rmon_stats->hist[2] = | |
| 2487 | axienet_stat(lp, STAT_RX_128_255_BYTE_FRAMES); | |
| 2488 | rmon_stats->hist[3] = | |
| 2489 | axienet_stat(lp, STAT_RX_256_511_BYTE_FRAMES); | |
| 2490 | rmon_stats->hist[4] = | |
| 2491 | axienet_stat(lp, STAT_RX_512_1023_BYTE_FRAMES); | |
| 2492 | rmon_stats->hist[5] = | |
| 2493 | axienet_stat(lp, STAT_RX_1024_MAX_BYTE_FRAMES); | |
| 2494 | rmon_stats->hist[6] = | |
| 2495 | rmon_stats->oversize_pkts; | |
| 2496 | ||
| 2497 | rmon_stats->hist_tx[0] = | |
| 2498 | axienet_stat(lp, STAT_TX_64_BYTE_FRAMES); | |
| 2499 | rmon_stats->hist_tx[1] = | |
| 2500 | axienet_stat(lp, STAT_TX_65_127_BYTE_FRAMES); | |
| 2501 | rmon_stats->hist_tx[2] = | |
| 2502 | axienet_stat(lp, STAT_TX_128_255_BYTE_FRAMES); | |
| 2503 | rmon_stats->hist_tx[3] = | |
| 2504 | axienet_stat(lp, STAT_TX_256_511_BYTE_FRAMES); | |
| 2505 | rmon_stats->hist_tx[4] = | |
| 2506 | axienet_stat(lp, STAT_TX_512_1023_BYTE_FRAMES); | |
| 2507 | rmon_stats->hist_tx[5] = | |
| 2508 | axienet_stat(lp, STAT_TX_1024_MAX_BYTE_FRAMES); | |
| 2509 | rmon_stats->hist_tx[6] = | |
| 2510 | axienet_stat(lp, STAT_TX_OVERSIZE_FRAMES); | |
| 2511 | } while (read_seqcount_retry(&lp->hw_stats_seqcount, start)); | |
| 2512 | ||
| 2513 | *ranges = axienet_rmon_ranges; | |
| 2514 | } | |
| 2515 | ||
| 2516 | static const struct ethtool_ops axienet_ethtool_ops = { | |
| 2517 | .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES | | |
| 2518 | ETHTOOL_COALESCE_USECS | | |
| 2519 | ETHTOOL_COALESCE_USE_ADAPTIVE_RX, | |
| 2520 | .get_drvinfo = axienet_ethtools_get_drvinfo, | |
| 2521 | .get_regs_len = axienet_ethtools_get_regs_len, | |
| 2522 | .get_regs = axienet_ethtools_get_regs, | |
| 2523 | .get_link = ethtool_op_get_link, | |
| 2524 | .get_ringparam = axienet_ethtools_get_ringparam, | |
| 2525 | .set_ringparam = axienet_ethtools_set_ringparam, | |
| 2526 | .get_pauseparam = axienet_ethtools_get_pauseparam, | |
| 2527 | .set_pauseparam = axienet_ethtools_set_pauseparam, | |
| 2528 | .get_coalesce = axienet_ethtools_get_coalesce, | |
| 2529 | .set_coalesce = axienet_ethtools_set_coalesce, | |
| 2530 | .get_link_ksettings = axienet_ethtools_get_link_ksettings, | |
| 2531 | .set_link_ksettings = axienet_ethtools_set_link_ksettings, | |
| 2532 | .nway_reset = axienet_ethtools_nway_reset, | |
| 2533 | .get_ethtool_stats = axienet_ethtools_get_ethtool_stats, | |
| 2534 | .get_strings = axienet_ethtools_get_strings, | |
| 2535 | .get_sset_count = axienet_ethtools_get_sset_count, | |
| 2536 | .get_pause_stats = axienet_ethtools_get_pause_stats, | |
| 2537 | .get_eth_mac_stats = axienet_ethtool_get_eth_mac_stats, | |
| 2538 | .get_eth_ctrl_stats = axienet_ethtool_get_eth_ctrl_stats, | |
| 2539 | .get_rmon_stats = axienet_ethtool_get_rmon_stats, | |
| 2540 | }; | |
| 2541 | ||
| 2542 | static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs) | |
| 2543 | { | |
| 2544 | return container_of(pcs, struct axienet_local, pcs); | |
| 2545 | } | |
| 2546 | ||
| 2547 | static void axienet_pcs_get_state(struct phylink_pcs *pcs, | |
| 2548 | unsigned int neg_mode, | |
| 2549 | struct phylink_link_state *state) | |
| 2550 | { | |
| 2551 | struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; | |
| 2552 | ||
| 2553 | phylink_mii_c22_pcs_get_state(pcs_phy, neg_mode, state); | |
| 2554 | } | |
| 2555 | ||
| 2556 | static void axienet_pcs_an_restart(struct phylink_pcs *pcs) | |
| 2557 | { | |
| 2558 | struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; | |
| 2559 | ||
| 2560 | phylink_mii_c22_pcs_an_restart(pcs_phy); | |
| 2561 | } | |
| 2562 | ||
| 2563 | static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode, | |
| 2564 | phy_interface_t interface, | |
| 2565 | const unsigned long *advertising, | |
| 2566 | bool permit_pause_to_mac) | |
| 2567 | { | |
| 2568 | struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; | |
| 2569 | struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev; | |
| 2570 | struct axienet_local *lp = netdev_priv(ndev); | |
| 2571 | int ret; | |
| 2572 | ||
| 2573 | if (lp->switch_x_sgmii) { | |
| 2574 | ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG, | |
| 2575 | interface == PHY_INTERFACE_MODE_SGMII ? | |
| 2576 | XLNX_MII_STD_SELECT_SGMII : 0); | |
| 2577 | if (ret < 0) { | |
| 2578 | netdev_warn(ndev, | |
| 2579 | "Failed to switch PHY interface: %d\n", | |
| 2580 | ret); | |
| 2581 | return ret; | |
| 2582 | } | |
| 2583 | } | |
| 2584 | ||
| 2585 | ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising, | |
| 2586 | neg_mode); | |
| 2587 | if (ret < 0) | |
| 2588 | netdev_warn(ndev, "Failed to configure PCS: %d\n", ret); | |
| 2589 | ||
| 2590 | return ret; | |
| 2591 | } | |
| 2592 | ||
| 2593 | static const struct phylink_pcs_ops axienet_pcs_ops = { | |
| 2594 | .pcs_get_state = axienet_pcs_get_state, | |
| 2595 | .pcs_config = axienet_pcs_config, | |
| 2596 | .pcs_an_restart = axienet_pcs_an_restart, | |
| 2597 | }; | |
| 2598 | ||
| 2599 | static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config, | |
| 2600 | phy_interface_t interface) | |
| 2601 | { | |
| 2602 | struct net_device *ndev = to_net_dev(config->dev); | |
| 2603 | struct axienet_local *lp = netdev_priv(ndev); | |
| 2604 | ||
| 2605 | if (interface == PHY_INTERFACE_MODE_1000BASEX || | |
| 2606 | interface == PHY_INTERFACE_MODE_SGMII) | |
| 2607 | return &lp->pcs; | |
| 2608 | ||
| 2609 | return NULL; | |
| 2610 | } | |
| 2611 | ||
| 2612 | static void axienet_mac_config(struct phylink_config *config, unsigned int mode, | |
| 2613 | const struct phylink_link_state *state) | |
| 2614 | { | |
| 2615 | /* nothing meaningful to do */ | |
| 2616 | } | |
| 2617 | ||
| 2618 | static void axienet_mac_link_down(struct phylink_config *config, | |
| 2619 | unsigned int mode, | |
| 2620 | phy_interface_t interface) | |
| 2621 | { | |
| 2622 | /* nothing meaningful to do */ | |
| 2623 | } | |
| 2624 | ||
| 2625 | static void axienet_mac_link_up(struct phylink_config *config, | |
| 2626 | struct phy_device *phy, | |
| 2627 | unsigned int mode, phy_interface_t interface, | |
| 2628 | int speed, int duplex, | |
| 2629 | bool tx_pause, bool rx_pause) | |
| 2630 | { | |
| 2631 | struct net_device *ndev = to_net_dev(config->dev); | |
| 2632 | struct axienet_local *lp = netdev_priv(ndev); | |
| 2633 | u32 emmc_reg, fcc_reg; | |
| 2634 | ||
| 2635 | emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET); | |
| 2636 | emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK; | |
| 2637 | ||
| 2638 | switch (speed) { | |
| 2639 | case SPEED_1000: | |
| 2640 | emmc_reg |= XAE_EMMC_LINKSPD_1000; | |
| 2641 | break; | |
| 2642 | case SPEED_100: | |
| 2643 | emmc_reg |= XAE_EMMC_LINKSPD_100; | |
| 2644 | break; | |
| 2645 | case SPEED_10: | |
| 2646 | emmc_reg |= XAE_EMMC_LINKSPD_10; | |
| 2647 | break; | |
| 2648 | default: | |
| 2649 | dev_err(&ndev->dev, | |
| 2650 | "Speed other than 10, 100 or 1Gbps is not supported\n"); | |
| 2651 | break; | |
| 2652 | } | |
| 2653 | ||
| 2654 | axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg); | |
| 2655 | ||
| 2656 | fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET); | |
| 2657 | if (tx_pause) | |
| 2658 | fcc_reg |= XAE_FCC_FCTX_MASK; | |
| 2659 | else | |
| 2660 | fcc_reg &= ~XAE_FCC_FCTX_MASK; | |
| 2661 | if (rx_pause) | |
| 2662 | fcc_reg |= XAE_FCC_FCRX_MASK; | |
| 2663 | else | |
| 2664 | fcc_reg &= ~XAE_FCC_FCRX_MASK; | |
| 2665 | axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg); | |
| 2666 | } | |
| 2667 | ||
| 2668 | static const struct phylink_mac_ops axienet_phylink_ops = { | |
| 2669 | .mac_select_pcs = axienet_mac_select_pcs, | |
| 2670 | .mac_config = axienet_mac_config, | |
| 2671 | .mac_link_down = axienet_mac_link_down, | |
| 2672 | .mac_link_up = axienet_mac_link_up, | |
| 2673 | }; | |
| 2674 | ||
| 2675 | /** | |
| 2676 | * axienet_dma_err_handler - Work queue task for Axi DMA Error | |
| 2677 | * @work: pointer to work_struct | |
| 2678 | * | |
| 2679 | * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the | |
| 2680 | * Tx/Rx BDs. | |
| 2681 | */ | |
| 2682 | static void axienet_dma_err_handler(struct work_struct *work) | |
| 2683 | { | |
| 2684 | u32 i; | |
| 2685 | u32 axienet_status; | |
| 2686 | struct axidma_bd *cur_p; | |
| 2687 | struct axienet_local *lp = container_of(work, struct axienet_local, | |
| 2688 | dma_err_task); | |
| 2689 | struct net_device *ndev = lp->ndev; | |
| 2690 | ||
| 2691 | /* Don't bother if we are going to stop anyway */ | |
| 2692 | if (READ_ONCE(lp->stopping)) | |
| 2693 | return; | |
| 2694 | ||
| 2695 | napi_disable(&lp->napi_tx); | |
| 2696 | napi_disable(&lp->napi_rx); | |
| 2697 | ||
| 2698 | axienet_setoptions(ndev, lp->options & | |
| 2699 | ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); | |
| 2700 | ||
| 2701 | axienet_dma_stop(lp); | |
| 2702 | netdev_reset_queue(ndev); | |
| 2703 | ||
| 2704 | for (i = 0; i < lp->tx_bd_num; i++) { | |
| 2705 | cur_p = &lp->tx_bd_v[i]; | |
| 2706 | if (cur_p->cntrl) { | |
| 2707 | dma_addr_t addr = desc_get_phys_addr(lp, cur_p); | |
| 2708 | ||
| 2709 | dma_unmap_single(lp->dev, addr, | |
| 2710 | (cur_p->cntrl & | |
| 2711 | XAXIDMA_BD_CTRL_LENGTH_MASK), | |
| 2712 | DMA_TO_DEVICE); | |
| 2713 | } | |
| 2714 | if (cur_p->skb) | |
| 2715 | dev_kfree_skb_irq(cur_p->skb); | |
| 2716 | cur_p->phys = 0; | |
| 2717 | cur_p->phys_msb = 0; | |
| 2718 | cur_p->cntrl = 0; | |
| 2719 | cur_p->status = 0; | |
| 2720 | cur_p->app0 = 0; | |
| 2721 | cur_p->app1 = 0; | |
| 2722 | cur_p->app2 = 0; | |
| 2723 | cur_p->app3 = 0; | |
| 2724 | cur_p->app4 = 0; | |
| 2725 | cur_p->skb = NULL; | |
| 2726 | } | |
| 2727 | ||
| 2728 | for (i = 0; i < lp->rx_bd_num; i++) { | |
| 2729 | cur_p = &lp->rx_bd_v[i]; | |
| 2730 | cur_p->status = 0; | |
| 2731 | cur_p->app0 = 0; | |
| 2732 | cur_p->app1 = 0; | |
| 2733 | cur_p->app2 = 0; | |
| 2734 | cur_p->app3 = 0; | |
| 2735 | cur_p->app4 = 0; | |
| 2736 | } | |
| 2737 | ||
| 2738 | lp->tx_bd_ci = 0; | |
| 2739 | lp->tx_bd_tail = 0; | |
| 2740 | lp->rx_bd_ci = 0; | |
| 2741 | ||
| 2742 | axienet_dma_start(lp); | |
| 2743 | ||
| 2744 | axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); | |
| 2745 | axienet_status &= ~XAE_RCW1_RX_MASK; | |
| 2746 | axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); | |
| 2747 | ||
| 2748 | axienet_status = axienet_ior(lp, XAE_IP_OFFSET); | |
| 2749 | if (axienet_status & XAE_INT_RXRJECT_MASK) | |
| 2750 | axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); | |
| 2751 | axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ? | |
| 2752 | XAE_INT_RECV_ERROR_MASK : 0); | |
| 2753 | axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); | |
| 2754 | ||
| 2755 | /* Sync default options with HW but leave receiver and | |
| 2756 | * transmitter disabled. | |
| 2757 | */ | |
| 2758 | axienet_setoptions(ndev, lp->options & | |
| 2759 | ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); | |
| 2760 | axienet_set_mac_address(ndev, NULL); | |
| 2761 | axienet_set_multicast_list(ndev); | |
| 2762 | napi_enable(&lp->napi_rx); | |
| 2763 | napi_enable(&lp->napi_tx); | |
| 2764 | axienet_setoptions(ndev, lp->options); | |
| 2765 | } | |
| 2766 | ||
| 2767 | /** | |
| 2768 | * axienet_probe - Axi Ethernet probe function. | |
| 2769 | * @pdev: Pointer to platform device structure. | |
| 2770 | * | |
| 2771 | * Return: 0, on success | |
| 2772 | * Non-zero error value on failure. | |
| 2773 | * | |
| 2774 | * This is the probe routine for Axi Ethernet driver. This is called before | |
| 2775 | * any other driver routines are invoked. It allocates and sets up the Ethernet | |
| 2776 | * device. Parses through device tree and populates fields of | |
| 2777 | * axienet_local. It registers the Ethernet device. | |
| 2778 | */ | |
| 2779 | static int axienet_probe(struct platform_device *pdev) | |
| 2780 | { | |
| 2781 | int ret; | |
| 2782 | struct device_node *np; | |
| 2783 | struct axienet_local *lp; | |
| 2784 | struct net_device *ndev; | |
| 2785 | struct resource *ethres; | |
| 2786 | u8 mac_addr[ETH_ALEN]; | |
| 2787 | int addr_width = 32; | |
| 2788 | u32 value; | |
| 2789 | ||
| 2790 | ndev = alloc_etherdev(sizeof(*lp)); | |
| 2791 | if (!ndev) | |
| 2792 | return -ENOMEM; | |
| 2793 | ||
| 2794 | platform_set_drvdata(pdev, ndev); | |
| 2795 | ||
| 2796 | SET_NETDEV_DEV(ndev, &pdev->dev); | |
| 2797 | ndev->features = NETIF_F_SG; | |
| 2798 | ndev->ethtool_ops = &axienet_ethtool_ops; | |
| 2799 | ||
| 2800 | /* MTU range: 64 - 9000 */ | |
| 2801 | ndev->min_mtu = 64; | |
| 2802 | ndev->max_mtu = XAE_JUMBO_MTU; | |
| 2803 | ||
| 2804 | lp = netdev_priv(ndev); | |
| 2805 | lp->ndev = ndev; | |
| 2806 | lp->dev = &pdev->dev; | |
| 2807 | lp->options = XAE_OPTION_DEFAULTS; | |
| 2808 | lp->rx_bd_num = RX_BD_NUM_DEFAULT; | |
| 2809 | lp->tx_bd_num = TX_BD_NUM_DEFAULT; | |
| 2810 | ||
| 2811 | u64_stats_init(&lp->rx_stat_sync); | |
| 2812 | u64_stats_init(&lp->tx_stat_sync); | |
| 2813 | ||
| 2814 | mutex_init(&lp->stats_lock); | |
| 2815 | seqcount_mutex_init(&lp->hw_stats_seqcount, &lp->stats_lock); | |
| 2816 | INIT_DEFERRABLE_WORK(&lp->stats_work, axienet_refresh_stats); | |
| 2817 | ||
| 2818 | lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk"); | |
| 2819 | if (!lp->axi_clk) { | |
| 2820 | /* For backward compatibility, if named AXI clock is not present, | |
| 2821 | * treat the first clock specified as the AXI clock. | |
| 2822 | */ | |
| 2823 | lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL); | |
| 2824 | } | |
| 2825 | if (IS_ERR(lp->axi_clk)) { | |
| 2826 | ret = PTR_ERR(lp->axi_clk); | |
| 2827 | goto free_netdev; | |
| 2828 | } | |
| 2829 | ret = clk_prepare_enable(lp->axi_clk); | |
| 2830 | if (ret) { | |
| 2831 | dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret); | |
| 2832 | goto free_netdev; | |
| 2833 | } | |
| 2834 | ||
| 2835 | lp->misc_clks[0].id = "axis_clk"; | |
| 2836 | lp->misc_clks[1].id = "ref_clk"; | |
| 2837 | lp->misc_clks[2].id = "mgt_clk"; | |
| 2838 | ||
| 2839 | ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks); | |
| 2840 | if (ret) | |
| 2841 | goto cleanup_clk; | |
| 2842 | ||
| 2843 | ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks); | |
| 2844 | if (ret) | |
| 2845 | goto cleanup_clk; | |
| 2846 | ||
| 2847 | /* Map device registers */ | |
| 2848 | lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ðres); | |
| 2849 | if (IS_ERR(lp->regs)) { | |
| 2850 | ret = PTR_ERR(lp->regs); | |
| 2851 | goto cleanup_clk; | |
| 2852 | } | |
| 2853 | lp->regs_start = ethres->start; | |
| 2854 | ||
| 2855 | /* Setup checksum offload, but default to off if not specified */ | |
| 2856 | lp->features = 0; | |
| 2857 | ||
| 2858 | if (axienet_ior(lp, XAE_ABILITY_OFFSET) & XAE_ABILITY_STATS) | |
| 2859 | lp->features |= XAE_FEATURE_STATS; | |
| 2860 | ||
| 2861 | ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value); | |
| 2862 | if (!ret) { | |
| 2863 | switch (value) { | |
| 2864 | case 1: | |
| 2865 | lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM; | |
| 2866 | /* Can checksum any contiguous range */ | |
| 2867 | ndev->features |= NETIF_F_HW_CSUM; | |
| 2868 | break; | |
| 2869 | case 2: | |
| 2870 | lp->features |= XAE_FEATURE_FULL_TX_CSUM; | |
| 2871 | /* Can checksum TCP/UDP over IPv4. */ | |
| 2872 | ndev->features |= NETIF_F_IP_CSUM; | |
| 2873 | break; | |
| 2874 | } | |
| 2875 | } | |
| 2876 | ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value); | |
| 2877 | if (!ret) { | |
| 2878 | switch (value) { | |
| 2879 | case 1: | |
| 2880 | lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM; | |
| 2881 | ndev->features |= NETIF_F_RXCSUM; | |
| 2882 | break; | |
| 2883 | case 2: | |
| 2884 | lp->features |= XAE_FEATURE_FULL_RX_CSUM; | |
| 2885 | ndev->features |= NETIF_F_RXCSUM; | |
| 2886 | break; | |
| 2887 | } | |
| 2888 | } | |
| 2889 | /* For supporting jumbo frames, the Axi Ethernet hardware must have | |
| 2890 | * a larger Rx/Tx Memory. Typically, the size must be large so that | |
| 2891 | * we can enable jumbo option and start supporting jumbo frames. | |
| 2892 | * Here we check for memory allocated for Rx/Tx in the hardware from | |
| 2893 | * the device-tree and accordingly set flags. | |
| 2894 | */ | |
| 2895 | of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem); | |
| 2896 | ||
| 2897 | lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node, | |
| 2898 | "xlnx,switch-x-sgmii"); | |
| 2899 | ||
| 2900 | /* Start with the proprietary, and broken phy_type */ | |
| 2901 | ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value); | |
| 2902 | if (!ret) { | |
| 2903 | netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode"); | |
| 2904 | switch (value) { | |
| 2905 | case XAE_PHY_TYPE_MII: | |
| 2906 | lp->phy_mode = PHY_INTERFACE_MODE_MII; | |
| 2907 | break; | |
| 2908 | case XAE_PHY_TYPE_GMII: | |
| 2909 | lp->phy_mode = PHY_INTERFACE_MODE_GMII; | |
| 2910 | break; | |
| 2911 | case XAE_PHY_TYPE_RGMII_2_0: | |
| 2912 | lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID; | |
| 2913 | break; | |
| 2914 | case XAE_PHY_TYPE_SGMII: | |
| 2915 | lp->phy_mode = PHY_INTERFACE_MODE_SGMII; | |
| 2916 | break; | |
| 2917 | case XAE_PHY_TYPE_1000BASE_X: | |
| 2918 | lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX; | |
| 2919 | break; | |
| 2920 | default: | |
| 2921 | ret = -EINVAL; | |
| 2922 | goto cleanup_clk; | |
| 2923 | } | |
| 2924 | } else { | |
| 2925 | ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode); | |
| 2926 | if (ret) | |
| 2927 | goto cleanup_clk; | |
| 2928 | } | |
| 2929 | if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII && | |
| 2930 | lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) { | |
| 2931 | dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n"); | |
| 2932 | ret = -EINVAL; | |
| 2933 | goto cleanup_clk; | |
| 2934 | } | |
| 2935 | ||
| 2936 | if (!of_property_present(pdev->dev.of_node, "dmas")) { | |
| 2937 | /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */ | |
| 2938 | np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0); | |
| 2939 | ||
| 2940 | if (np) { | |
| 2941 | struct resource dmares; | |
| 2942 | ||
| 2943 | ret = of_address_to_resource(np, 0, &dmares); | |
| 2944 | if (ret) { | |
| 2945 | dev_err(&pdev->dev, | |
| 2946 | "unable to get DMA resource\n"); | |
| 2947 | of_node_put(np); | |
| 2948 | goto cleanup_clk; | |
| 2949 | } | |
| 2950 | lp->dma_regs = devm_ioremap_resource(&pdev->dev, | |
| 2951 | &dmares); | |
| 2952 | lp->rx_irq = irq_of_parse_and_map(np, 1); | |
| 2953 | lp->tx_irq = irq_of_parse_and_map(np, 0); | |
| 2954 | of_node_put(np); | |
| 2955 | lp->eth_irq = platform_get_irq_optional(pdev, 0); | |
| 2956 | } else { | |
| 2957 | /* Check for these resources directly on the Ethernet node. */ | |
| 2958 | lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL); | |
| 2959 | lp->rx_irq = platform_get_irq(pdev, 1); | |
| 2960 | lp->tx_irq = platform_get_irq(pdev, 0); | |
| 2961 | lp->eth_irq = platform_get_irq_optional(pdev, 2); | |
| 2962 | } | |
| 2963 | if (IS_ERR(lp->dma_regs)) { | |
| 2964 | dev_err(&pdev->dev, "could not map DMA regs\n"); | |
| 2965 | ret = PTR_ERR(lp->dma_regs); | |
| 2966 | goto cleanup_clk; | |
| 2967 | } | |
| 2968 | if (lp->rx_irq <= 0 || lp->tx_irq <= 0) { | |
| 2969 | dev_err(&pdev->dev, "could not determine irqs\n"); | |
| 2970 | ret = -ENOMEM; | |
| 2971 | goto cleanup_clk; | |
| 2972 | } | |
| 2973 | ||
| 2974 | /* Reset core now that clocks are enabled, prior to accessing MDIO */ | |
| 2975 | ret = __axienet_device_reset(lp); | |
| 2976 | if (ret) | |
| 2977 | goto cleanup_clk; | |
| 2978 | ||
| 2979 | /* Autodetect the need for 64-bit DMA pointers. | |
| 2980 | * When the IP is configured for a bus width bigger than 32 bits, | |
| 2981 | * writing the MSB registers is mandatory, even if they are all 0. | |
| 2982 | * We can detect this case by writing all 1's to one such register | |
| 2983 | * and see if that sticks: when the IP is configured for 32 bits | |
| 2984 | * only, those registers are RES0. | |
| 2985 | * Those MSB registers were introduced in IP v7.1, which we check first. | |
| 2986 | */ | |
| 2987 | if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) { | |
| 2988 | void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4; | |
| 2989 | ||
| 2990 | iowrite32(0x0, desc); | |
| 2991 | if (ioread32(desc) == 0) { /* sanity check */ | |
| 2992 | iowrite32(0xffffffff, desc); | |
| 2993 | if (ioread32(desc) > 0) { | |
| 2994 | lp->features |= XAE_FEATURE_DMA_64BIT; | |
| 2995 | addr_width = 64; | |
| 2996 | dev_info(&pdev->dev, | |
| 2997 | "autodetected 64-bit DMA range\n"); | |
| 2998 | } | |
| 2999 | iowrite32(0x0, desc); | |
| 3000 | } | |
| 3001 | } | |
| 3002 | if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) { | |
| 3003 | dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit architecture\n"); | |
| 3004 | ret = -EINVAL; | |
| 3005 | goto cleanup_clk; | |
| 3006 | } | |
| 3007 | ||
| 3008 | ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width)); | |
| 3009 | if (ret) { | |
| 3010 | dev_err(&pdev->dev, "No suitable DMA available\n"); | |
| 3011 | goto cleanup_clk; | |
| 3012 | } | |
| 3013 | netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll); | |
| 3014 | netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll); | |
| 3015 | } else { | |
| 3016 | struct xilinx_vdma_config cfg; | |
| 3017 | struct dma_chan *tx_chan; | |
| 3018 | ||
| 3019 | lp->eth_irq = platform_get_irq_optional(pdev, 0); | |
| 3020 | if (lp->eth_irq < 0 && lp->eth_irq != -ENXIO) { | |
| 3021 | ret = lp->eth_irq; | |
| 3022 | goto cleanup_clk; | |
| 3023 | } | |
| 3024 | tx_chan = dma_request_chan(lp->dev, "tx_chan0"); | |
| 3025 | if (IS_ERR(tx_chan)) { | |
| 3026 | ret = PTR_ERR(tx_chan); | |
| 3027 | dev_err_probe(lp->dev, ret, "No Ethernet DMA (TX) channel found\n"); | |
| 3028 | goto cleanup_clk; | |
| 3029 | } | |
| 3030 | ||
| 3031 | cfg.reset = 1; | |
| 3032 | /* As name says VDMA but it has support for DMA channel reset */ | |
| 3033 | ret = xilinx_vdma_channel_set_config(tx_chan, &cfg); | |
| 3034 | if (ret < 0) { | |
| 3035 | dev_err(&pdev->dev, "Reset channel failed\n"); | |
| 3036 | dma_release_channel(tx_chan); | |
| 3037 | goto cleanup_clk; | |
| 3038 | } | |
| 3039 | ||
| 3040 | dma_release_channel(tx_chan); | |
| 3041 | lp->use_dmaengine = 1; | |
| 3042 | } | |
| 3043 | ||
| 3044 | if (lp->use_dmaengine) | |
| 3045 | ndev->netdev_ops = &axienet_netdev_dmaengine_ops; | |
| 3046 | else | |
| 3047 | ndev->netdev_ops = &axienet_netdev_ops; | |
| 3048 | /* Check for Ethernet core IRQ (optional) */ | |
| 3049 | if (lp->eth_irq <= 0) | |
| 3050 | dev_info(&pdev->dev, "Ethernet core IRQ not defined\n"); | |
| 3051 | ||
| 3052 | /* Retrieve the MAC address */ | |
| 3053 | ret = of_get_mac_address(pdev->dev.of_node, mac_addr); | |
| 3054 | if (!ret) { | |
| 3055 | axienet_set_mac_address(ndev, mac_addr); | |
| 3056 | } else { | |
| 3057 | dev_warn(&pdev->dev, "could not find MAC address property: %d\n", | |
| 3058 | ret); | |
| 3059 | axienet_set_mac_address(ndev, NULL); | |
| 3060 | } | |
| 3061 | ||
| 3062 | spin_lock_init(&lp->rx_cr_lock); | |
| 3063 | spin_lock_init(&lp->tx_cr_lock); | |
| 3064 | INIT_WORK(&lp->rx_dim.work, axienet_rx_dim_work); | |
| 3065 | lp->rx_dim_enabled = true; | |
| 3066 | lp->rx_dim.profile_ix = 1; | |
| 3067 | lp->rx_dma_cr = axienet_calc_cr(lp, axienet_dim_coalesce_count_rx(lp), | |
| 3068 | XAXIDMA_DFT_RX_USEC); | |
| 3069 | lp->tx_dma_cr = axienet_calc_cr(lp, XAXIDMA_DFT_TX_THRESHOLD, | |
| 3070 | XAXIDMA_DFT_TX_USEC); | |
| 3071 | ||
| 3072 | ret = axienet_mdio_setup(lp); | |
| 3073 | if (ret) | |
| 3074 | dev_warn(&pdev->dev, | |
| 3075 | "error registering MDIO bus: %d\n", ret); | |
| 3076 | ||
| 3077 | if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII || | |
| 3078 | lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) { | |
| 3079 | np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0); | |
| 3080 | if (!np) { | |
| 3081 | /* Deprecated: Always use "pcs-handle" for pcs_phy. | |
| 3082 | * Falling back to "phy-handle" here is only for | |
| 3083 | * backward compatibility with old device trees. | |
| 3084 | */ | |
| 3085 | np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); | |
| 3086 | } | |
| 3087 | if (!np) { | |
| 3088 | dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n"); | |
| 3089 | ret = -EINVAL; | |
| 3090 | goto cleanup_mdio; | |
| 3091 | } | |
| 3092 | lp->pcs_phy = of_mdio_find_device(np); | |
| 3093 | if (!lp->pcs_phy) { | |
| 3094 | ret = -EPROBE_DEFER; | |
| 3095 | of_node_put(np); | |
| 3096 | goto cleanup_mdio; | |
| 3097 | } | |
| 3098 | of_node_put(np); | |
| 3099 | lp->pcs.ops = &axienet_pcs_ops; | |
| 3100 | lp->pcs.poll = true; | |
| 3101 | } | |
| 3102 | ||
| 3103 | lp->phylink_config.dev = &ndev->dev; | |
| 3104 | lp->phylink_config.type = PHYLINK_NETDEV; | |
| 3105 | lp->phylink_config.mac_managed_pm = true; | |
| 3106 | lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE | | |
| 3107 | MAC_10FD | MAC_100FD | MAC_1000FD; | |
| 3108 | ||
| 3109 | __set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces); | |
| 3110 | if (lp->switch_x_sgmii) { | |
| 3111 | __set_bit(PHY_INTERFACE_MODE_1000BASEX, | |
| 3112 | lp->phylink_config.supported_interfaces); | |
| 3113 | __set_bit(PHY_INTERFACE_MODE_SGMII, | |
| 3114 | lp->phylink_config.supported_interfaces); | |
| 3115 | } | |
| 3116 | ||
| 3117 | lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode, | |
| 3118 | lp->phy_mode, | |
| 3119 | &axienet_phylink_ops); | |
| 3120 | if (IS_ERR(lp->phylink)) { | |
| 3121 | ret = PTR_ERR(lp->phylink); | |
| 3122 | dev_err(&pdev->dev, "phylink_create error (%i)\n", ret); | |
| 3123 | goto cleanup_mdio; | |
| 3124 | } | |
| 3125 | ||
| 3126 | ret = register_netdev(lp->ndev); | |
| 3127 | if (ret) { | |
| 3128 | dev_err(lp->dev, "register_netdev() error (%i)\n", ret); | |
| 3129 | goto cleanup_phylink; | |
| 3130 | } | |
| 3131 | ||
| 3132 | return 0; | |
| 3133 | ||
| 3134 | cleanup_phylink: | |
| 3135 | phylink_destroy(lp->phylink); | |
| 3136 | ||
| 3137 | cleanup_mdio: | |
| 3138 | if (lp->pcs_phy) | |
| 3139 | put_device(&lp->pcs_phy->dev); | |
| 3140 | if (lp->mii_bus) | |
| 3141 | axienet_mdio_teardown(lp); | |
| 3142 | cleanup_clk: | |
| 3143 | clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks); | |
| 3144 | clk_disable_unprepare(lp->axi_clk); | |
| 3145 | ||
| 3146 | free_netdev: | |
| 3147 | free_netdev(ndev); | |
| 3148 | ||
| 3149 | return ret; | |
| 3150 | } | |
| 3151 | ||
| 3152 | static void axienet_remove(struct platform_device *pdev) | |
| 3153 | { | |
| 3154 | struct net_device *ndev = platform_get_drvdata(pdev); | |
| 3155 | struct axienet_local *lp = netdev_priv(ndev); | |
| 3156 | ||
| 3157 | unregister_netdev(ndev); | |
| 3158 | ||
| 3159 | if (lp->phylink) | |
| 3160 | phylink_destroy(lp->phylink); | |
| 3161 | ||
| 3162 | if (lp->pcs_phy) | |
| 3163 | put_device(&lp->pcs_phy->dev); | |
| 3164 | ||
| 3165 | axienet_mdio_teardown(lp); | |
| 3166 | ||
| 3167 | clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks); | |
| 3168 | clk_disable_unprepare(lp->axi_clk); | |
| 3169 | ||
| 3170 | free_netdev(ndev); | |
| 3171 | } | |
| 3172 | ||
| 3173 | static void axienet_shutdown(struct platform_device *pdev) | |
| 3174 | { | |
| 3175 | struct net_device *ndev = platform_get_drvdata(pdev); | |
| 3176 | ||
| 3177 | rtnl_lock(); | |
| 3178 | netif_device_detach(ndev); | |
| 3179 | ||
| 3180 | if (netif_running(ndev)) | |
| 3181 | dev_close(ndev); | |
| 3182 | ||
| 3183 | rtnl_unlock(); | |
| 3184 | } | |
| 3185 | ||
| 3186 | static int axienet_suspend(struct device *dev) | |
| 3187 | { | |
| 3188 | struct net_device *ndev = dev_get_drvdata(dev); | |
| 3189 | ||
| 3190 | if (!netif_running(ndev)) | |
| 3191 | return 0; | |
| 3192 | ||
| 3193 | netif_device_detach(ndev); | |
| 3194 | ||
| 3195 | rtnl_lock(); | |
| 3196 | axienet_stop(ndev); | |
| 3197 | rtnl_unlock(); | |
| 3198 | ||
| 3199 | return 0; | |
| 3200 | } | |
| 3201 | ||
| 3202 | static int axienet_resume(struct device *dev) | |
| 3203 | { | |
| 3204 | struct net_device *ndev = dev_get_drvdata(dev); | |
| 3205 | ||
| 3206 | if (!netif_running(ndev)) | |
| 3207 | return 0; | |
| 3208 | ||
| 3209 | rtnl_lock(); | |
| 3210 | axienet_open(ndev); | |
| 3211 | rtnl_unlock(); | |
| 3212 | ||
| 3213 | netif_device_attach(ndev); | |
| 3214 | ||
| 3215 | return 0; | |
| 3216 | } | |
| 3217 | ||
| 3218 | static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops, | |
| 3219 | axienet_suspend, axienet_resume); | |
| 3220 | ||
| 3221 | static struct platform_driver axienet_driver = { | |
| 3222 | .probe = axienet_probe, | |
| 3223 | .remove = axienet_remove, | |
| 3224 | .shutdown = axienet_shutdown, | |
| 3225 | .driver = { | |
| 3226 | .name = "xilinx_axienet", | |
| 3227 | .pm = &axienet_pm_ops, | |
| 3228 | .of_match_table = axienet_of_match, | |
| 3229 | }, | |
| 3230 | }; | |
| 3231 | ||
| 3232 | module_platform_driver(axienet_driver); | |
| 3233 | ||
| 3234 | MODULE_DESCRIPTION("Xilinx Axi Ethernet driver"); | |
| 3235 | MODULE_AUTHOR("Xilinx"); | |
| 3236 | MODULE_LICENSE("GPL"); |