]> git.ipfire.org Git - thirdparty/qemu.git/blame_incremental - exec.c
tcg: Remove TCGV_EQUAL*
[thirdparty/qemu.git] / exec.c
... / ...
CommitLineData
1/*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19#include "qemu/osdep.h"
20#include "qapi/error.h"
21#ifndef _WIN32
22#endif
23
24#include "qemu/cutils.h"
25#include "cpu.h"
26#include "exec/exec-all.h"
27#include "exec/target_page.h"
28#include "tcg.h"
29#include "hw/qdev-core.h"
30#include "hw/qdev-properties.h"
31#if !defined(CONFIG_USER_ONLY)
32#include "hw/boards.h"
33#include "hw/xen/xen.h"
34#endif
35#include "sysemu/kvm.h"
36#include "sysemu/sysemu.h"
37#include "qemu/timer.h"
38#include "qemu/config-file.h"
39#include "qemu/error-report.h"
40#if defined(CONFIG_USER_ONLY)
41#include "qemu.h"
42#else /* !CONFIG_USER_ONLY */
43#include "hw/hw.h"
44#include "exec/memory.h"
45#include "exec/ioport.h"
46#include "sysemu/dma.h"
47#include "sysemu/numa.h"
48#include "sysemu/hw_accel.h"
49#include "exec/address-spaces.h"
50#include "sysemu/xen-mapcache.h"
51#include "trace-root.h"
52
53#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54#include <fcntl.h>
55#include <linux/falloc.h>
56#endif
57
58#endif
59#include "qemu/rcu_queue.h"
60#include "qemu/main-loop.h"
61#include "translate-all.h"
62#include "sysemu/replay.h"
63
64#include "exec/memory-internal.h"
65#include "exec/ram_addr.h"
66#include "exec/log.h"
67
68#include "migration/vmstate.h"
69
70#include "qemu/range.h"
71#ifndef _WIN32
72#include "qemu/mmap-alloc.h"
73#endif
74
75#include "monitor/monitor.h"
76
77//#define DEBUG_SUBPAGE
78
79#if !defined(CONFIG_USER_ONLY)
80/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
83RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
84
85static MemoryRegion *system_memory;
86static MemoryRegion *system_io;
87
88AddressSpace address_space_io;
89AddressSpace address_space_memory;
90
91MemoryRegion io_mem_rom, io_mem_notdirty;
92static MemoryRegion io_mem_unassigned;
93
94/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95#define RAM_PREALLOC (1 << 0)
96
97/* RAM is mmap-ed with MAP_SHARED */
98#define RAM_SHARED (1 << 1)
99
100/* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
102 */
103#define RAM_RESIZEABLE (1 << 2)
104
105#endif
106
107#ifdef TARGET_PAGE_BITS_VARY
108int target_page_bits;
109bool target_page_bits_decided;
110#endif
111
112struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
113/* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115__thread CPUState *current_cpu;
116/* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119int use_icount;
120
121uintptr_t qemu_host_page_size;
122intptr_t qemu_host_page_mask;
123
124bool set_preferred_target_page_bits(int bits)
125{
126 /* The target page size is the lowest common denominator for all
127 * the CPUs in the system, so we can only make it smaller, never
128 * larger. And we can't make it smaller once we've committed to
129 * a particular size.
130 */
131#ifdef TARGET_PAGE_BITS_VARY
132 assert(bits >= TARGET_PAGE_BITS_MIN);
133 if (target_page_bits == 0 || target_page_bits > bits) {
134 if (target_page_bits_decided) {
135 return false;
136 }
137 target_page_bits = bits;
138 }
139#endif
140 return true;
141}
142
143#if !defined(CONFIG_USER_ONLY)
144
145static void finalize_target_page_bits(void)
146{
147#ifdef TARGET_PAGE_BITS_VARY
148 if (target_page_bits == 0) {
149 target_page_bits = TARGET_PAGE_BITS_MIN;
150 }
151 target_page_bits_decided = true;
152#endif
153}
154
155typedef struct PhysPageEntry PhysPageEntry;
156
157struct PhysPageEntry {
158 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
159 uint32_t skip : 6;
160 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
161 uint32_t ptr : 26;
162};
163
164#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
165
166/* Size of the L2 (and L3, etc) page tables. */
167#define ADDR_SPACE_BITS 64
168
169#define P_L2_BITS 9
170#define P_L2_SIZE (1 << P_L2_BITS)
171
172#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
173
174typedef PhysPageEntry Node[P_L2_SIZE];
175
176typedef struct PhysPageMap {
177 struct rcu_head rcu;
178
179 unsigned sections_nb;
180 unsigned sections_nb_alloc;
181 unsigned nodes_nb;
182 unsigned nodes_nb_alloc;
183 Node *nodes;
184 MemoryRegionSection *sections;
185} PhysPageMap;
186
187struct AddressSpaceDispatch {
188 MemoryRegionSection *mru_section;
189 /* This is a multi-level map on the physical address space.
190 * The bottom level has pointers to MemoryRegionSections.
191 */
192 PhysPageEntry phys_map;
193 PhysPageMap map;
194};
195
196#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197typedef struct subpage_t {
198 MemoryRegion iomem;
199 FlatView *fv;
200 hwaddr base;
201 uint16_t sub_section[];
202} subpage_t;
203
204#define PHYS_SECTION_UNASSIGNED 0
205#define PHYS_SECTION_NOTDIRTY 1
206#define PHYS_SECTION_ROM 2
207#define PHYS_SECTION_WATCH 3
208
209static void io_mem_init(void);
210static void memory_map_init(void);
211static void tcg_commit(MemoryListener *listener);
212
213static MemoryRegion io_mem_watch;
214
215/**
216 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
217 * @cpu: the CPU whose AddressSpace this is
218 * @as: the AddressSpace itself
219 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
220 * @tcg_as_listener: listener for tracking changes to the AddressSpace
221 */
222struct CPUAddressSpace {
223 CPUState *cpu;
224 AddressSpace *as;
225 struct AddressSpaceDispatch *memory_dispatch;
226 MemoryListener tcg_as_listener;
227};
228
229struct DirtyBitmapSnapshot {
230 ram_addr_t start;
231 ram_addr_t end;
232 unsigned long dirty[];
233};
234
235#endif
236
237#if !defined(CONFIG_USER_ONLY)
238
239static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
240{
241 static unsigned alloc_hint = 16;
242 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
243 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
244 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
245 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
246 alloc_hint = map->nodes_nb_alloc;
247 }
248}
249
250static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
251{
252 unsigned i;
253 uint32_t ret;
254 PhysPageEntry e;
255 PhysPageEntry *p;
256
257 ret = map->nodes_nb++;
258 p = map->nodes[ret];
259 assert(ret != PHYS_MAP_NODE_NIL);
260 assert(ret != map->nodes_nb_alloc);
261
262 e.skip = leaf ? 0 : 1;
263 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
264 for (i = 0; i < P_L2_SIZE; ++i) {
265 memcpy(&p[i], &e, sizeof(e));
266 }
267 return ret;
268}
269
270static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
271 hwaddr *index, hwaddr *nb, uint16_t leaf,
272 int level)
273{
274 PhysPageEntry *p;
275 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
276
277 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
278 lp->ptr = phys_map_node_alloc(map, level == 0);
279 }
280 p = map->nodes[lp->ptr];
281 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
282
283 while (*nb && lp < &p[P_L2_SIZE]) {
284 if ((*index & (step - 1)) == 0 && *nb >= step) {
285 lp->skip = 0;
286 lp->ptr = leaf;
287 *index += step;
288 *nb -= step;
289 } else {
290 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
291 }
292 ++lp;
293 }
294}
295
296static void phys_page_set(AddressSpaceDispatch *d,
297 hwaddr index, hwaddr nb,
298 uint16_t leaf)
299{
300 /* Wildly overreserve - it doesn't matter much. */
301 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
302
303 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
304}
305
306/* Compact a non leaf page entry. Simply detect that the entry has a single child,
307 * and update our entry so we can skip it and go directly to the destination.
308 */
309static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
310{
311 unsigned valid_ptr = P_L2_SIZE;
312 int valid = 0;
313 PhysPageEntry *p;
314 int i;
315
316 if (lp->ptr == PHYS_MAP_NODE_NIL) {
317 return;
318 }
319
320 p = nodes[lp->ptr];
321 for (i = 0; i < P_L2_SIZE; i++) {
322 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
323 continue;
324 }
325
326 valid_ptr = i;
327 valid++;
328 if (p[i].skip) {
329 phys_page_compact(&p[i], nodes);
330 }
331 }
332
333 /* We can only compress if there's only one child. */
334 if (valid != 1) {
335 return;
336 }
337
338 assert(valid_ptr < P_L2_SIZE);
339
340 /* Don't compress if it won't fit in the # of bits we have. */
341 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
342 return;
343 }
344
345 lp->ptr = p[valid_ptr].ptr;
346 if (!p[valid_ptr].skip) {
347 /* If our only child is a leaf, make this a leaf. */
348 /* By design, we should have made this node a leaf to begin with so we
349 * should never reach here.
350 * But since it's so simple to handle this, let's do it just in case we
351 * change this rule.
352 */
353 lp->skip = 0;
354 } else {
355 lp->skip += p[valid_ptr].skip;
356 }
357}
358
359void address_space_dispatch_compact(AddressSpaceDispatch *d)
360{
361 if (d->phys_map.skip) {
362 phys_page_compact(&d->phys_map, d->map.nodes);
363 }
364}
365
366static inline bool section_covers_addr(const MemoryRegionSection *section,
367 hwaddr addr)
368{
369 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
370 * the section must cover the entire address space.
371 */
372 return int128_gethi(section->size) ||
373 range_covers_byte(section->offset_within_address_space,
374 int128_getlo(section->size), addr);
375}
376
377static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
378{
379 PhysPageEntry lp = d->phys_map, *p;
380 Node *nodes = d->map.nodes;
381 MemoryRegionSection *sections = d->map.sections;
382 hwaddr index = addr >> TARGET_PAGE_BITS;
383 int i;
384
385 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
386 if (lp.ptr == PHYS_MAP_NODE_NIL) {
387 return &sections[PHYS_SECTION_UNASSIGNED];
388 }
389 p = nodes[lp.ptr];
390 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
391 }
392
393 if (section_covers_addr(&sections[lp.ptr], addr)) {
394 return &sections[lp.ptr];
395 } else {
396 return &sections[PHYS_SECTION_UNASSIGNED];
397 }
398}
399
400bool memory_region_is_unassigned(MemoryRegion *mr)
401{
402 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
403 && mr != &io_mem_watch;
404}
405
406/* Called from RCU critical section */
407static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
408 hwaddr addr,
409 bool resolve_subpage)
410{
411 MemoryRegionSection *section = atomic_read(&d->mru_section);
412 subpage_t *subpage;
413 bool update;
414
415 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
416 section_covers_addr(section, addr)) {
417 update = false;
418 } else {
419 section = phys_page_find(d, addr);
420 update = true;
421 }
422 if (resolve_subpage && section->mr->subpage) {
423 subpage = container_of(section->mr, subpage_t, iomem);
424 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
425 }
426 if (update) {
427 atomic_set(&d->mru_section, section);
428 }
429 return section;
430}
431
432/* Called from RCU critical section */
433static MemoryRegionSection *
434address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
435 hwaddr *plen, bool resolve_subpage)
436{
437 MemoryRegionSection *section;
438 MemoryRegion *mr;
439 Int128 diff;
440
441 section = address_space_lookup_region(d, addr, resolve_subpage);
442 /* Compute offset within MemoryRegionSection */
443 addr -= section->offset_within_address_space;
444
445 /* Compute offset within MemoryRegion */
446 *xlat = addr + section->offset_within_region;
447
448 mr = section->mr;
449
450 /* MMIO registers can be expected to perform full-width accesses based only
451 * on their address, without considering adjacent registers that could
452 * decode to completely different MemoryRegions. When such registers
453 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
454 * regions overlap wildly. For this reason we cannot clamp the accesses
455 * here.
456 *
457 * If the length is small (as is the case for address_space_ldl/stl),
458 * everything works fine. If the incoming length is large, however,
459 * the caller really has to do the clamping through memory_access_size.
460 */
461 if (memory_region_is_ram(mr)) {
462 diff = int128_sub(section->size, int128_make64(addr));
463 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
464 }
465 return section;
466}
467
468/**
469 * flatview_do_translate - translate an address in FlatView
470 *
471 * @fv: the flat view that we want to translate on
472 * @addr: the address to be translated in above address space
473 * @xlat: the translated address offset within memory region. It
474 * cannot be @NULL.
475 * @plen_out: valid read/write length of the translated address. It
476 * can be @NULL when we don't care about it.
477 * @page_mask_out: page mask for the translated address. This
478 * should only be meaningful for IOMMU translated
479 * addresses, since there may be huge pages that this bit
480 * would tell. It can be @NULL if we don't care about it.
481 * @is_write: whether the translation operation is for write
482 * @is_mmio: whether this can be MMIO, set true if it can
483 *
484 * This function is called from RCU critical section
485 */
486static MemoryRegionSection flatview_do_translate(FlatView *fv,
487 hwaddr addr,
488 hwaddr *xlat,
489 hwaddr *plen_out,
490 hwaddr *page_mask_out,
491 bool is_write,
492 bool is_mmio,
493 AddressSpace **target_as)
494{
495 IOMMUTLBEntry iotlb;
496 MemoryRegionSection *section;
497 IOMMUMemoryRegion *iommu_mr;
498 IOMMUMemoryRegionClass *imrc;
499 hwaddr page_mask = (hwaddr)(-1);
500 hwaddr plen = (hwaddr)(-1);
501
502 if (plen_out) {
503 plen = *plen_out;
504 }
505
506 for (;;) {
507 section = address_space_translate_internal(
508 flatview_to_dispatch(fv), addr, &addr,
509 &plen, is_mmio);
510
511 iommu_mr = memory_region_get_iommu(section->mr);
512 if (!iommu_mr) {
513 break;
514 }
515 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
516
517 iotlb = imrc->translate(iommu_mr, addr, is_write ?
518 IOMMU_WO : IOMMU_RO);
519 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
520 | (addr & iotlb.addr_mask));
521 page_mask &= iotlb.addr_mask;
522 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
523 if (!(iotlb.perm & (1 << is_write))) {
524 goto translate_fail;
525 }
526
527 fv = address_space_to_flatview(iotlb.target_as);
528 *target_as = iotlb.target_as;
529 }
530
531 *xlat = addr;
532
533 if (page_mask == (hwaddr)(-1)) {
534 /* Not behind an IOMMU, use default page size. */
535 page_mask = ~TARGET_PAGE_MASK;
536 }
537
538 if (page_mask_out) {
539 *page_mask_out = page_mask;
540 }
541
542 if (plen_out) {
543 *plen_out = plen;
544 }
545
546 return *section;
547
548translate_fail:
549 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
550}
551
552/* Called from RCU critical section */
553IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
554 bool is_write)
555{
556 MemoryRegionSection section;
557 hwaddr xlat, page_mask;
558
559 /*
560 * This can never be MMIO, and we don't really care about plen,
561 * but page mask.
562 */
563 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
564 NULL, &page_mask, is_write, false, &as);
565
566 /* Illegal translation */
567 if (section.mr == &io_mem_unassigned) {
568 goto iotlb_fail;
569 }
570
571 /* Convert memory region offset into address space offset */
572 xlat += section.offset_within_address_space -
573 section.offset_within_region;
574
575 return (IOMMUTLBEntry) {
576 .target_as = as,
577 .iova = addr & ~page_mask,
578 .translated_addr = xlat & ~page_mask,
579 .addr_mask = page_mask,
580 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
581 .perm = IOMMU_RW,
582 };
583
584iotlb_fail:
585 return (IOMMUTLBEntry) {0};
586}
587
588/* Called from RCU critical section */
589MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
590 hwaddr *plen, bool is_write)
591{
592 MemoryRegion *mr;
593 MemoryRegionSection section;
594 AddressSpace *as = NULL;
595
596 /* This can be MMIO, so setup MMIO bit. */
597 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
598 is_write, true, &as);
599 mr = section.mr;
600
601 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
602 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
603 *plen = MIN(page, *plen);
604 }
605
606 return mr;
607}
608
609/* Called from RCU critical section */
610MemoryRegionSection *
611address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
612 hwaddr *xlat, hwaddr *plen)
613{
614 MemoryRegionSection *section;
615 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
616
617 section = address_space_translate_internal(d, addr, xlat, plen, false);
618
619 assert(!memory_region_is_iommu(section->mr));
620 return section;
621}
622#endif
623
624#if !defined(CONFIG_USER_ONLY)
625
626static int cpu_common_post_load(void *opaque, int version_id)
627{
628 CPUState *cpu = opaque;
629
630 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
631 version_id is increased. */
632 cpu->interrupt_request &= ~0x01;
633 tlb_flush(cpu);
634
635 return 0;
636}
637
638static int cpu_common_pre_load(void *opaque)
639{
640 CPUState *cpu = opaque;
641
642 cpu->exception_index = -1;
643
644 return 0;
645}
646
647static bool cpu_common_exception_index_needed(void *opaque)
648{
649 CPUState *cpu = opaque;
650
651 return tcg_enabled() && cpu->exception_index != -1;
652}
653
654static const VMStateDescription vmstate_cpu_common_exception_index = {
655 .name = "cpu_common/exception_index",
656 .version_id = 1,
657 .minimum_version_id = 1,
658 .needed = cpu_common_exception_index_needed,
659 .fields = (VMStateField[]) {
660 VMSTATE_INT32(exception_index, CPUState),
661 VMSTATE_END_OF_LIST()
662 }
663};
664
665static bool cpu_common_crash_occurred_needed(void *opaque)
666{
667 CPUState *cpu = opaque;
668
669 return cpu->crash_occurred;
670}
671
672static const VMStateDescription vmstate_cpu_common_crash_occurred = {
673 .name = "cpu_common/crash_occurred",
674 .version_id = 1,
675 .minimum_version_id = 1,
676 .needed = cpu_common_crash_occurred_needed,
677 .fields = (VMStateField[]) {
678 VMSTATE_BOOL(crash_occurred, CPUState),
679 VMSTATE_END_OF_LIST()
680 }
681};
682
683const VMStateDescription vmstate_cpu_common = {
684 .name = "cpu_common",
685 .version_id = 1,
686 .minimum_version_id = 1,
687 .pre_load = cpu_common_pre_load,
688 .post_load = cpu_common_post_load,
689 .fields = (VMStateField[]) {
690 VMSTATE_UINT32(halted, CPUState),
691 VMSTATE_UINT32(interrupt_request, CPUState),
692 VMSTATE_END_OF_LIST()
693 },
694 .subsections = (const VMStateDescription*[]) {
695 &vmstate_cpu_common_exception_index,
696 &vmstate_cpu_common_crash_occurred,
697 NULL
698 }
699};
700
701#endif
702
703CPUState *qemu_get_cpu(int index)
704{
705 CPUState *cpu;
706
707 CPU_FOREACH(cpu) {
708 if (cpu->cpu_index == index) {
709 return cpu;
710 }
711 }
712
713 return NULL;
714}
715
716#if !defined(CONFIG_USER_ONLY)
717void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
718{
719 CPUAddressSpace *newas;
720
721 /* Target code should have set num_ases before calling us */
722 assert(asidx < cpu->num_ases);
723
724 if (asidx == 0) {
725 /* address space 0 gets the convenience alias */
726 cpu->as = as;
727 }
728
729 /* KVM cannot currently support multiple address spaces. */
730 assert(asidx == 0 || !kvm_enabled());
731
732 if (!cpu->cpu_ases) {
733 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
734 }
735
736 newas = &cpu->cpu_ases[asidx];
737 newas->cpu = cpu;
738 newas->as = as;
739 if (tcg_enabled()) {
740 newas->tcg_as_listener.commit = tcg_commit;
741 memory_listener_register(&newas->tcg_as_listener, as);
742 }
743}
744
745AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
746{
747 /* Return the AddressSpace corresponding to the specified index */
748 return cpu->cpu_ases[asidx].as;
749}
750#endif
751
752void cpu_exec_unrealizefn(CPUState *cpu)
753{
754 CPUClass *cc = CPU_GET_CLASS(cpu);
755
756 cpu_list_remove(cpu);
757
758 if (cc->vmsd != NULL) {
759 vmstate_unregister(NULL, cc->vmsd, cpu);
760 }
761 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
762 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
763 }
764}
765
766Property cpu_common_props[] = {
767#ifndef CONFIG_USER_ONLY
768 /* Create a memory property for softmmu CPU object,
769 * so users can wire up its memory. (This can't go in qom/cpu.c
770 * because that file is compiled only once for both user-mode
771 * and system builds.) The default if no link is set up is to use
772 * the system address space.
773 */
774 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
775 MemoryRegion *),
776#endif
777 DEFINE_PROP_END_OF_LIST(),
778};
779
780void cpu_exec_initfn(CPUState *cpu)
781{
782 cpu->as = NULL;
783 cpu->num_ases = 0;
784
785#ifndef CONFIG_USER_ONLY
786 cpu->thread_id = qemu_get_thread_id();
787 cpu->memory = system_memory;
788 object_ref(OBJECT(cpu->memory));
789#endif
790}
791
792void cpu_exec_realizefn(CPUState *cpu, Error **errp)
793{
794 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
795
796 cpu_list_add(cpu);
797
798#ifndef CONFIG_USER_ONLY
799 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
800 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
801 }
802 if (cc->vmsd != NULL) {
803 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
804 }
805#endif
806}
807
808#if defined(CONFIG_USER_ONLY)
809static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
810{
811 mmap_lock();
812 tb_lock();
813 tb_invalidate_phys_page_range(pc, pc + 1, 0);
814 tb_unlock();
815 mmap_unlock();
816}
817#else
818static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
819{
820 MemTxAttrs attrs;
821 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
822 int asidx = cpu_asidx_from_attrs(cpu, attrs);
823 if (phys != -1) {
824 /* Locks grabbed by tb_invalidate_phys_addr */
825 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
826 phys | (pc & ~TARGET_PAGE_MASK));
827 }
828}
829#endif
830
831#if defined(CONFIG_USER_ONLY)
832void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
833
834{
835}
836
837int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
838 int flags)
839{
840 return -ENOSYS;
841}
842
843void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
844{
845}
846
847int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
848 int flags, CPUWatchpoint **watchpoint)
849{
850 return -ENOSYS;
851}
852#else
853/* Add a watchpoint. */
854int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
855 int flags, CPUWatchpoint **watchpoint)
856{
857 CPUWatchpoint *wp;
858
859 /* forbid ranges which are empty or run off the end of the address space */
860 if (len == 0 || (addr + len - 1) < addr) {
861 error_report("tried to set invalid watchpoint at %"
862 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
863 return -EINVAL;
864 }
865 wp = g_malloc(sizeof(*wp));
866
867 wp->vaddr = addr;
868 wp->len = len;
869 wp->flags = flags;
870
871 /* keep all GDB-injected watchpoints in front */
872 if (flags & BP_GDB) {
873 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
874 } else {
875 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
876 }
877
878 tlb_flush_page(cpu, addr);
879
880 if (watchpoint)
881 *watchpoint = wp;
882 return 0;
883}
884
885/* Remove a specific watchpoint. */
886int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
887 int flags)
888{
889 CPUWatchpoint *wp;
890
891 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
892 if (addr == wp->vaddr && len == wp->len
893 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
894 cpu_watchpoint_remove_by_ref(cpu, wp);
895 return 0;
896 }
897 }
898 return -ENOENT;
899}
900
901/* Remove a specific watchpoint by reference. */
902void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
903{
904 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
905
906 tlb_flush_page(cpu, watchpoint->vaddr);
907
908 g_free(watchpoint);
909}
910
911/* Remove all matching watchpoints. */
912void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
913{
914 CPUWatchpoint *wp, *next;
915
916 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
917 if (wp->flags & mask) {
918 cpu_watchpoint_remove_by_ref(cpu, wp);
919 }
920 }
921}
922
923/* Return true if this watchpoint address matches the specified
924 * access (ie the address range covered by the watchpoint overlaps
925 * partially or completely with the address range covered by the
926 * access).
927 */
928static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
929 vaddr addr,
930 vaddr len)
931{
932 /* We know the lengths are non-zero, but a little caution is
933 * required to avoid errors in the case where the range ends
934 * exactly at the top of the address space and so addr + len
935 * wraps round to zero.
936 */
937 vaddr wpend = wp->vaddr + wp->len - 1;
938 vaddr addrend = addr + len - 1;
939
940 return !(addr > wpend || wp->vaddr > addrend);
941}
942
943#endif
944
945/* Add a breakpoint. */
946int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
947 CPUBreakpoint **breakpoint)
948{
949 CPUBreakpoint *bp;
950
951 bp = g_malloc(sizeof(*bp));
952
953 bp->pc = pc;
954 bp->flags = flags;
955
956 /* keep all GDB-injected breakpoints in front */
957 if (flags & BP_GDB) {
958 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
959 } else {
960 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
961 }
962
963 breakpoint_invalidate(cpu, pc);
964
965 if (breakpoint) {
966 *breakpoint = bp;
967 }
968 return 0;
969}
970
971/* Remove a specific breakpoint. */
972int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
973{
974 CPUBreakpoint *bp;
975
976 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
977 if (bp->pc == pc && bp->flags == flags) {
978 cpu_breakpoint_remove_by_ref(cpu, bp);
979 return 0;
980 }
981 }
982 return -ENOENT;
983}
984
985/* Remove a specific breakpoint by reference. */
986void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
987{
988 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
989
990 breakpoint_invalidate(cpu, breakpoint->pc);
991
992 g_free(breakpoint);
993}
994
995/* Remove all matching breakpoints. */
996void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
997{
998 CPUBreakpoint *bp, *next;
999
1000 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1001 if (bp->flags & mask) {
1002 cpu_breakpoint_remove_by_ref(cpu, bp);
1003 }
1004 }
1005}
1006
1007/* enable or disable single step mode. EXCP_DEBUG is returned by the
1008 CPU loop after each instruction */
1009void cpu_single_step(CPUState *cpu, int enabled)
1010{
1011 if (cpu->singlestep_enabled != enabled) {
1012 cpu->singlestep_enabled = enabled;
1013 if (kvm_enabled()) {
1014 kvm_update_guest_debug(cpu, 0);
1015 } else {
1016 /* must flush all the translated code to avoid inconsistencies */
1017 /* XXX: only flush what is necessary */
1018 tb_flush(cpu);
1019 }
1020 }
1021}
1022
1023void cpu_abort(CPUState *cpu, const char *fmt, ...)
1024{
1025 va_list ap;
1026 va_list ap2;
1027
1028 va_start(ap, fmt);
1029 va_copy(ap2, ap);
1030 fprintf(stderr, "qemu: fatal: ");
1031 vfprintf(stderr, fmt, ap);
1032 fprintf(stderr, "\n");
1033 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1034 if (qemu_log_separate()) {
1035 qemu_log_lock();
1036 qemu_log("qemu: fatal: ");
1037 qemu_log_vprintf(fmt, ap2);
1038 qemu_log("\n");
1039 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1040 qemu_log_flush();
1041 qemu_log_unlock();
1042 qemu_log_close();
1043 }
1044 va_end(ap2);
1045 va_end(ap);
1046 replay_finish();
1047#if defined(CONFIG_USER_ONLY)
1048 {
1049 struct sigaction act;
1050 sigfillset(&act.sa_mask);
1051 act.sa_handler = SIG_DFL;
1052 sigaction(SIGABRT, &act, NULL);
1053 }
1054#endif
1055 abort();
1056}
1057
1058#if !defined(CONFIG_USER_ONLY)
1059/* Called from RCU critical section */
1060static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1061{
1062 RAMBlock *block;
1063
1064 block = atomic_rcu_read(&ram_list.mru_block);
1065 if (block && addr - block->offset < block->max_length) {
1066 return block;
1067 }
1068 RAMBLOCK_FOREACH(block) {
1069 if (addr - block->offset < block->max_length) {
1070 goto found;
1071 }
1072 }
1073
1074 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1075 abort();
1076
1077found:
1078 /* It is safe to write mru_block outside the iothread lock. This
1079 * is what happens:
1080 *
1081 * mru_block = xxx
1082 * rcu_read_unlock()
1083 * xxx removed from list
1084 * rcu_read_lock()
1085 * read mru_block
1086 * mru_block = NULL;
1087 * call_rcu(reclaim_ramblock, xxx);
1088 * rcu_read_unlock()
1089 *
1090 * atomic_rcu_set is not needed here. The block was already published
1091 * when it was placed into the list. Here we're just making an extra
1092 * copy of the pointer.
1093 */
1094 ram_list.mru_block = block;
1095 return block;
1096}
1097
1098static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1099{
1100 CPUState *cpu;
1101 ram_addr_t start1;
1102 RAMBlock *block;
1103 ram_addr_t end;
1104
1105 end = TARGET_PAGE_ALIGN(start + length);
1106 start &= TARGET_PAGE_MASK;
1107
1108 rcu_read_lock();
1109 block = qemu_get_ram_block(start);
1110 assert(block == qemu_get_ram_block(end - 1));
1111 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1112 CPU_FOREACH(cpu) {
1113 tlb_reset_dirty(cpu, start1, length);
1114 }
1115 rcu_read_unlock();
1116}
1117
1118/* Note: start and end must be within the same ram block. */
1119bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1120 ram_addr_t length,
1121 unsigned client)
1122{
1123 DirtyMemoryBlocks *blocks;
1124 unsigned long end, page;
1125 bool dirty = false;
1126
1127 if (length == 0) {
1128 return false;
1129 }
1130
1131 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1132 page = start >> TARGET_PAGE_BITS;
1133
1134 rcu_read_lock();
1135
1136 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1137
1138 while (page < end) {
1139 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1140 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1141 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1142
1143 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1144 offset, num);
1145 page += num;
1146 }
1147
1148 rcu_read_unlock();
1149
1150 if (dirty && tcg_enabled()) {
1151 tlb_reset_dirty_range_all(start, length);
1152 }
1153
1154 return dirty;
1155}
1156
1157DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1158 (ram_addr_t start, ram_addr_t length, unsigned client)
1159{
1160 DirtyMemoryBlocks *blocks;
1161 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1162 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1163 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1164 DirtyBitmapSnapshot *snap;
1165 unsigned long page, end, dest;
1166
1167 snap = g_malloc0(sizeof(*snap) +
1168 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1169 snap->start = first;
1170 snap->end = last;
1171
1172 page = first >> TARGET_PAGE_BITS;
1173 end = last >> TARGET_PAGE_BITS;
1174 dest = 0;
1175
1176 rcu_read_lock();
1177
1178 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1179
1180 while (page < end) {
1181 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1182 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1183 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1184
1185 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1186 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1187 offset >>= BITS_PER_LEVEL;
1188
1189 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1190 blocks->blocks[idx] + offset,
1191 num);
1192 page += num;
1193 dest += num >> BITS_PER_LEVEL;
1194 }
1195
1196 rcu_read_unlock();
1197
1198 if (tcg_enabled()) {
1199 tlb_reset_dirty_range_all(start, length);
1200 }
1201
1202 return snap;
1203}
1204
1205bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1206 ram_addr_t start,
1207 ram_addr_t length)
1208{
1209 unsigned long page, end;
1210
1211 assert(start >= snap->start);
1212 assert(start + length <= snap->end);
1213
1214 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1215 page = (start - snap->start) >> TARGET_PAGE_BITS;
1216
1217 while (page < end) {
1218 if (test_bit(page, snap->dirty)) {
1219 return true;
1220 }
1221 page++;
1222 }
1223 return false;
1224}
1225
1226/* Called from RCU critical section */
1227hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1228 MemoryRegionSection *section,
1229 target_ulong vaddr,
1230 hwaddr paddr, hwaddr xlat,
1231 int prot,
1232 target_ulong *address)
1233{
1234 hwaddr iotlb;
1235 CPUWatchpoint *wp;
1236
1237 if (memory_region_is_ram(section->mr)) {
1238 /* Normal RAM. */
1239 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1240 if (!section->readonly) {
1241 iotlb |= PHYS_SECTION_NOTDIRTY;
1242 } else {
1243 iotlb |= PHYS_SECTION_ROM;
1244 }
1245 } else {
1246 AddressSpaceDispatch *d;
1247
1248 d = flatview_to_dispatch(section->fv);
1249 iotlb = section - d->map.sections;
1250 iotlb += xlat;
1251 }
1252
1253 /* Make accesses to pages with watchpoints go via the
1254 watchpoint trap routines. */
1255 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1256 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1257 /* Avoid trapping reads of pages with a write breakpoint. */
1258 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1259 iotlb = PHYS_SECTION_WATCH + paddr;
1260 *address |= TLB_MMIO;
1261 break;
1262 }
1263 }
1264 }
1265
1266 return iotlb;
1267}
1268#endif /* defined(CONFIG_USER_ONLY) */
1269
1270#if !defined(CONFIG_USER_ONLY)
1271
1272static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1273 uint16_t section);
1274static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1275
1276static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1277 qemu_anon_ram_alloc;
1278
1279/*
1280 * Set a custom physical guest memory alloator.
1281 * Accelerators with unusual needs may need this. Hopefully, we can
1282 * get rid of it eventually.
1283 */
1284void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1285{
1286 phys_mem_alloc = alloc;
1287}
1288
1289static uint16_t phys_section_add(PhysPageMap *map,
1290 MemoryRegionSection *section)
1291{
1292 /* The physical section number is ORed with a page-aligned
1293 * pointer to produce the iotlb entries. Thus it should
1294 * never overflow into the page-aligned value.
1295 */
1296 assert(map->sections_nb < TARGET_PAGE_SIZE);
1297
1298 if (map->sections_nb == map->sections_nb_alloc) {
1299 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1300 map->sections = g_renew(MemoryRegionSection, map->sections,
1301 map->sections_nb_alloc);
1302 }
1303 map->sections[map->sections_nb] = *section;
1304 memory_region_ref(section->mr);
1305 return map->sections_nb++;
1306}
1307
1308static void phys_section_destroy(MemoryRegion *mr)
1309{
1310 bool have_sub_page = mr->subpage;
1311
1312 memory_region_unref(mr);
1313
1314 if (have_sub_page) {
1315 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1316 object_unref(OBJECT(&subpage->iomem));
1317 g_free(subpage);
1318 }
1319}
1320
1321static void phys_sections_free(PhysPageMap *map)
1322{
1323 while (map->sections_nb > 0) {
1324 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1325 phys_section_destroy(section->mr);
1326 }
1327 g_free(map->sections);
1328 g_free(map->nodes);
1329}
1330
1331static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1332{
1333 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1334 subpage_t *subpage;
1335 hwaddr base = section->offset_within_address_space
1336 & TARGET_PAGE_MASK;
1337 MemoryRegionSection *existing = phys_page_find(d, base);
1338 MemoryRegionSection subsection = {
1339 .offset_within_address_space = base,
1340 .size = int128_make64(TARGET_PAGE_SIZE),
1341 };
1342 hwaddr start, end;
1343
1344 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1345
1346 if (!(existing->mr->subpage)) {
1347 subpage = subpage_init(fv, base);
1348 subsection.fv = fv;
1349 subsection.mr = &subpage->iomem;
1350 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1351 phys_section_add(&d->map, &subsection));
1352 } else {
1353 subpage = container_of(existing->mr, subpage_t, iomem);
1354 }
1355 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1356 end = start + int128_get64(section->size) - 1;
1357 subpage_register(subpage, start, end,
1358 phys_section_add(&d->map, section));
1359}
1360
1361
1362static void register_multipage(FlatView *fv,
1363 MemoryRegionSection *section)
1364{
1365 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1366 hwaddr start_addr = section->offset_within_address_space;
1367 uint16_t section_index = phys_section_add(&d->map, section);
1368 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1369 TARGET_PAGE_BITS));
1370
1371 assert(num_pages);
1372 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1373}
1374
1375void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1376{
1377 MemoryRegionSection now = *section, remain = *section;
1378 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1379
1380 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1381 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1382 - now.offset_within_address_space;
1383
1384 now.size = int128_min(int128_make64(left), now.size);
1385 register_subpage(fv, &now);
1386 } else {
1387 now.size = int128_zero();
1388 }
1389 while (int128_ne(remain.size, now.size)) {
1390 remain.size = int128_sub(remain.size, now.size);
1391 remain.offset_within_address_space += int128_get64(now.size);
1392 remain.offset_within_region += int128_get64(now.size);
1393 now = remain;
1394 if (int128_lt(remain.size, page_size)) {
1395 register_subpage(fv, &now);
1396 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1397 now.size = page_size;
1398 register_subpage(fv, &now);
1399 } else {
1400 now.size = int128_and(now.size, int128_neg(page_size));
1401 register_multipage(fv, &now);
1402 }
1403 }
1404}
1405
1406void qemu_flush_coalesced_mmio_buffer(void)
1407{
1408 if (kvm_enabled())
1409 kvm_flush_coalesced_mmio_buffer();
1410}
1411
1412void qemu_mutex_lock_ramlist(void)
1413{
1414 qemu_mutex_lock(&ram_list.mutex);
1415}
1416
1417void qemu_mutex_unlock_ramlist(void)
1418{
1419 qemu_mutex_unlock(&ram_list.mutex);
1420}
1421
1422void ram_block_dump(Monitor *mon)
1423{
1424 RAMBlock *block;
1425 char *psize;
1426
1427 rcu_read_lock();
1428 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1429 "Block Name", "PSize", "Offset", "Used", "Total");
1430 RAMBLOCK_FOREACH(block) {
1431 psize = size_to_str(block->page_size);
1432 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1433 " 0x%016" PRIx64 "\n", block->idstr, psize,
1434 (uint64_t)block->offset,
1435 (uint64_t)block->used_length,
1436 (uint64_t)block->max_length);
1437 g_free(psize);
1438 }
1439 rcu_read_unlock();
1440}
1441
1442#ifdef __linux__
1443/*
1444 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1445 * may or may not name the same files / on the same filesystem now as
1446 * when we actually open and map them. Iterate over the file
1447 * descriptors instead, and use qemu_fd_getpagesize().
1448 */
1449static int find_max_supported_pagesize(Object *obj, void *opaque)
1450{
1451 char *mem_path;
1452 long *hpsize_min = opaque;
1453
1454 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1455 mem_path = object_property_get_str(obj, "mem-path", NULL);
1456 if (mem_path) {
1457 long hpsize = qemu_mempath_getpagesize(mem_path);
1458 if (hpsize < *hpsize_min) {
1459 *hpsize_min = hpsize;
1460 }
1461 } else {
1462 *hpsize_min = getpagesize();
1463 }
1464 }
1465
1466 return 0;
1467}
1468
1469long qemu_getrampagesize(void)
1470{
1471 long hpsize = LONG_MAX;
1472 long mainrampagesize;
1473 Object *memdev_root;
1474
1475 if (mem_path) {
1476 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1477 } else {
1478 mainrampagesize = getpagesize();
1479 }
1480
1481 /* it's possible we have memory-backend objects with
1482 * hugepage-backed RAM. these may get mapped into system
1483 * address space via -numa parameters or memory hotplug
1484 * hooks. we want to take these into account, but we
1485 * also want to make sure these supported hugepage
1486 * sizes are applicable across the entire range of memory
1487 * we may boot from, so we take the min across all
1488 * backends, and assume normal pages in cases where a
1489 * backend isn't backed by hugepages.
1490 */
1491 memdev_root = object_resolve_path("/objects", NULL);
1492 if (memdev_root) {
1493 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1494 }
1495 if (hpsize == LONG_MAX) {
1496 /* No additional memory regions found ==> Report main RAM page size */
1497 return mainrampagesize;
1498 }
1499
1500 /* If NUMA is disabled or the NUMA nodes are not backed with a
1501 * memory-backend, then there is at least one node using "normal" RAM,
1502 * so if its page size is smaller we have got to report that size instead.
1503 */
1504 if (hpsize > mainrampagesize &&
1505 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1506 static bool warned;
1507 if (!warned) {
1508 error_report("Huge page support disabled (n/a for main memory).");
1509 warned = true;
1510 }
1511 return mainrampagesize;
1512 }
1513
1514 return hpsize;
1515}
1516#else
1517long qemu_getrampagesize(void)
1518{
1519 return getpagesize();
1520}
1521#endif
1522
1523#ifdef __linux__
1524static int64_t get_file_size(int fd)
1525{
1526 int64_t size = lseek(fd, 0, SEEK_END);
1527 if (size < 0) {
1528 return -errno;
1529 }
1530 return size;
1531}
1532
1533static int file_ram_open(const char *path,
1534 const char *region_name,
1535 bool *created,
1536 Error **errp)
1537{
1538 char *filename;
1539 char *sanitized_name;
1540 char *c;
1541 int fd = -1;
1542
1543 *created = false;
1544 for (;;) {
1545 fd = open(path, O_RDWR);
1546 if (fd >= 0) {
1547 /* @path names an existing file, use it */
1548 break;
1549 }
1550 if (errno == ENOENT) {
1551 /* @path names a file that doesn't exist, create it */
1552 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1553 if (fd >= 0) {
1554 *created = true;
1555 break;
1556 }
1557 } else if (errno == EISDIR) {
1558 /* @path names a directory, create a file there */
1559 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1560 sanitized_name = g_strdup(region_name);
1561 for (c = sanitized_name; *c != '\0'; c++) {
1562 if (*c == '/') {
1563 *c = '_';
1564 }
1565 }
1566
1567 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1568 sanitized_name);
1569 g_free(sanitized_name);
1570
1571 fd = mkstemp(filename);
1572 if (fd >= 0) {
1573 unlink(filename);
1574 g_free(filename);
1575 break;
1576 }
1577 g_free(filename);
1578 }
1579 if (errno != EEXIST && errno != EINTR) {
1580 error_setg_errno(errp, errno,
1581 "can't open backing store %s for guest RAM",
1582 path);
1583 return -1;
1584 }
1585 /*
1586 * Try again on EINTR and EEXIST. The latter happens when
1587 * something else creates the file between our two open().
1588 */
1589 }
1590
1591 return fd;
1592}
1593
1594static void *file_ram_alloc(RAMBlock *block,
1595 ram_addr_t memory,
1596 int fd,
1597 bool truncate,
1598 Error **errp)
1599{
1600 void *area;
1601
1602 block->page_size = qemu_fd_getpagesize(fd);
1603 block->mr->align = block->page_size;
1604#if defined(__s390x__)
1605 if (kvm_enabled()) {
1606 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1607 }
1608#endif
1609
1610 if (memory < block->page_size) {
1611 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1612 "or larger than page size 0x%zx",
1613 memory, block->page_size);
1614 return NULL;
1615 }
1616
1617 memory = ROUND_UP(memory, block->page_size);
1618
1619 /*
1620 * ftruncate is not supported by hugetlbfs in older
1621 * hosts, so don't bother bailing out on errors.
1622 * If anything goes wrong with it under other filesystems,
1623 * mmap will fail.
1624 *
1625 * Do not truncate the non-empty backend file to avoid corrupting
1626 * the existing data in the file. Disabling shrinking is not
1627 * enough. For example, the current vNVDIMM implementation stores
1628 * the guest NVDIMM labels at the end of the backend file. If the
1629 * backend file is later extended, QEMU will not be able to find
1630 * those labels. Therefore, extending the non-empty backend file
1631 * is disabled as well.
1632 */
1633 if (truncate && ftruncate(fd, memory)) {
1634 perror("ftruncate");
1635 }
1636
1637 area = qemu_ram_mmap(fd, memory, block->mr->align,
1638 block->flags & RAM_SHARED);
1639 if (area == MAP_FAILED) {
1640 error_setg_errno(errp, errno,
1641 "unable to map backing store for guest RAM");
1642 return NULL;
1643 }
1644
1645 if (mem_prealloc) {
1646 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1647 if (errp && *errp) {
1648 qemu_ram_munmap(area, memory);
1649 return NULL;
1650 }
1651 }
1652
1653 block->fd = fd;
1654 return area;
1655}
1656#endif
1657
1658/* Called with the ramlist lock held. */
1659static ram_addr_t find_ram_offset(ram_addr_t size)
1660{
1661 RAMBlock *block, *next_block;
1662 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1663
1664 assert(size != 0); /* it would hand out same offset multiple times */
1665
1666 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1667 return 0;
1668 }
1669
1670 RAMBLOCK_FOREACH(block) {
1671 ram_addr_t end, next = RAM_ADDR_MAX;
1672
1673 end = block->offset + block->max_length;
1674
1675 RAMBLOCK_FOREACH(next_block) {
1676 if (next_block->offset >= end) {
1677 next = MIN(next, next_block->offset);
1678 }
1679 }
1680 if (next - end >= size && next - end < mingap) {
1681 offset = end;
1682 mingap = next - end;
1683 }
1684 }
1685
1686 if (offset == RAM_ADDR_MAX) {
1687 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1688 (uint64_t)size);
1689 abort();
1690 }
1691
1692 return offset;
1693}
1694
1695unsigned long last_ram_page(void)
1696{
1697 RAMBlock *block;
1698 ram_addr_t last = 0;
1699
1700 rcu_read_lock();
1701 RAMBLOCK_FOREACH(block) {
1702 last = MAX(last, block->offset + block->max_length);
1703 }
1704 rcu_read_unlock();
1705 return last >> TARGET_PAGE_BITS;
1706}
1707
1708static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1709{
1710 int ret;
1711
1712 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1713 if (!machine_dump_guest_core(current_machine)) {
1714 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1715 if (ret) {
1716 perror("qemu_madvise");
1717 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1718 "but dump_guest_core=off specified\n");
1719 }
1720 }
1721}
1722
1723const char *qemu_ram_get_idstr(RAMBlock *rb)
1724{
1725 return rb->idstr;
1726}
1727
1728bool qemu_ram_is_shared(RAMBlock *rb)
1729{
1730 return rb->flags & RAM_SHARED;
1731}
1732
1733/* Called with iothread lock held. */
1734void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1735{
1736 RAMBlock *block;
1737
1738 assert(new_block);
1739 assert(!new_block->idstr[0]);
1740
1741 if (dev) {
1742 char *id = qdev_get_dev_path(dev);
1743 if (id) {
1744 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1745 g_free(id);
1746 }
1747 }
1748 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1749
1750 rcu_read_lock();
1751 RAMBLOCK_FOREACH(block) {
1752 if (block != new_block &&
1753 !strcmp(block->idstr, new_block->idstr)) {
1754 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1755 new_block->idstr);
1756 abort();
1757 }
1758 }
1759 rcu_read_unlock();
1760}
1761
1762/* Called with iothread lock held. */
1763void qemu_ram_unset_idstr(RAMBlock *block)
1764{
1765 /* FIXME: arch_init.c assumes that this is not called throughout
1766 * migration. Ignore the problem since hot-unplug during migration
1767 * does not work anyway.
1768 */
1769 if (block) {
1770 memset(block->idstr, 0, sizeof(block->idstr));
1771 }
1772}
1773
1774size_t qemu_ram_pagesize(RAMBlock *rb)
1775{
1776 return rb->page_size;
1777}
1778
1779/* Returns the largest size of page in use */
1780size_t qemu_ram_pagesize_largest(void)
1781{
1782 RAMBlock *block;
1783 size_t largest = 0;
1784
1785 RAMBLOCK_FOREACH(block) {
1786 largest = MAX(largest, qemu_ram_pagesize(block));
1787 }
1788
1789 return largest;
1790}
1791
1792static int memory_try_enable_merging(void *addr, size_t len)
1793{
1794 if (!machine_mem_merge(current_machine)) {
1795 /* disabled by the user */
1796 return 0;
1797 }
1798
1799 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1800}
1801
1802/* Only legal before guest might have detected the memory size: e.g. on
1803 * incoming migration, or right after reset.
1804 *
1805 * As memory core doesn't know how is memory accessed, it is up to
1806 * resize callback to update device state and/or add assertions to detect
1807 * misuse, if necessary.
1808 */
1809int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1810{
1811 assert(block);
1812
1813 newsize = HOST_PAGE_ALIGN(newsize);
1814
1815 if (block->used_length == newsize) {
1816 return 0;
1817 }
1818
1819 if (!(block->flags & RAM_RESIZEABLE)) {
1820 error_setg_errno(errp, EINVAL,
1821 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1822 " in != 0x" RAM_ADDR_FMT, block->idstr,
1823 newsize, block->used_length);
1824 return -EINVAL;
1825 }
1826
1827 if (block->max_length < newsize) {
1828 error_setg_errno(errp, EINVAL,
1829 "Length too large: %s: 0x" RAM_ADDR_FMT
1830 " > 0x" RAM_ADDR_FMT, block->idstr,
1831 newsize, block->max_length);
1832 return -EINVAL;
1833 }
1834
1835 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1836 block->used_length = newsize;
1837 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1838 DIRTY_CLIENTS_ALL);
1839 memory_region_set_size(block->mr, newsize);
1840 if (block->resized) {
1841 block->resized(block->idstr, newsize, block->host);
1842 }
1843 return 0;
1844}
1845
1846/* Called with ram_list.mutex held */
1847static void dirty_memory_extend(ram_addr_t old_ram_size,
1848 ram_addr_t new_ram_size)
1849{
1850 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1851 DIRTY_MEMORY_BLOCK_SIZE);
1852 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1853 DIRTY_MEMORY_BLOCK_SIZE);
1854 int i;
1855
1856 /* Only need to extend if block count increased */
1857 if (new_num_blocks <= old_num_blocks) {
1858 return;
1859 }
1860
1861 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1862 DirtyMemoryBlocks *old_blocks;
1863 DirtyMemoryBlocks *new_blocks;
1864 int j;
1865
1866 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1867 new_blocks = g_malloc(sizeof(*new_blocks) +
1868 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1869
1870 if (old_num_blocks) {
1871 memcpy(new_blocks->blocks, old_blocks->blocks,
1872 old_num_blocks * sizeof(old_blocks->blocks[0]));
1873 }
1874
1875 for (j = old_num_blocks; j < new_num_blocks; j++) {
1876 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1877 }
1878
1879 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1880
1881 if (old_blocks) {
1882 g_free_rcu(old_blocks, rcu);
1883 }
1884 }
1885}
1886
1887static void ram_block_add(RAMBlock *new_block, Error **errp)
1888{
1889 RAMBlock *block;
1890 RAMBlock *last_block = NULL;
1891 ram_addr_t old_ram_size, new_ram_size;
1892 Error *err = NULL;
1893
1894 old_ram_size = last_ram_page();
1895
1896 qemu_mutex_lock_ramlist();
1897 new_block->offset = find_ram_offset(new_block->max_length);
1898
1899 if (!new_block->host) {
1900 if (xen_enabled()) {
1901 xen_ram_alloc(new_block->offset, new_block->max_length,
1902 new_block->mr, &err);
1903 if (err) {
1904 error_propagate(errp, err);
1905 qemu_mutex_unlock_ramlist();
1906 return;
1907 }
1908 } else {
1909 new_block->host = phys_mem_alloc(new_block->max_length,
1910 &new_block->mr->align);
1911 if (!new_block->host) {
1912 error_setg_errno(errp, errno,
1913 "cannot set up guest memory '%s'",
1914 memory_region_name(new_block->mr));
1915 qemu_mutex_unlock_ramlist();
1916 return;
1917 }
1918 memory_try_enable_merging(new_block->host, new_block->max_length);
1919 }
1920 }
1921
1922 new_ram_size = MAX(old_ram_size,
1923 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1924 if (new_ram_size > old_ram_size) {
1925 dirty_memory_extend(old_ram_size, new_ram_size);
1926 }
1927 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1928 * QLIST (which has an RCU-friendly variant) does not have insertion at
1929 * tail, so save the last element in last_block.
1930 */
1931 RAMBLOCK_FOREACH(block) {
1932 last_block = block;
1933 if (block->max_length < new_block->max_length) {
1934 break;
1935 }
1936 }
1937 if (block) {
1938 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1939 } else if (last_block) {
1940 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1941 } else { /* list is empty */
1942 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1943 }
1944 ram_list.mru_block = NULL;
1945
1946 /* Write list before version */
1947 smp_wmb();
1948 ram_list.version++;
1949 qemu_mutex_unlock_ramlist();
1950
1951 cpu_physical_memory_set_dirty_range(new_block->offset,
1952 new_block->used_length,
1953 DIRTY_CLIENTS_ALL);
1954
1955 if (new_block->host) {
1956 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1957 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1958 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1959 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1960 ram_block_notify_add(new_block->host, new_block->max_length);
1961 }
1962}
1963
1964#ifdef __linux__
1965RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1966 bool share, int fd,
1967 Error **errp)
1968{
1969 RAMBlock *new_block;
1970 Error *local_err = NULL;
1971 int64_t file_size;
1972
1973 if (xen_enabled()) {
1974 error_setg(errp, "-mem-path not supported with Xen");
1975 return NULL;
1976 }
1977
1978 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1979 error_setg(errp,
1980 "host lacks kvm mmu notifiers, -mem-path unsupported");
1981 return NULL;
1982 }
1983
1984 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1985 /*
1986 * file_ram_alloc() needs to allocate just like
1987 * phys_mem_alloc, but we haven't bothered to provide
1988 * a hook there.
1989 */
1990 error_setg(errp,
1991 "-mem-path not supported with this accelerator");
1992 return NULL;
1993 }
1994
1995 size = HOST_PAGE_ALIGN(size);
1996 file_size = get_file_size(fd);
1997 if (file_size > 0 && file_size < size) {
1998 error_setg(errp, "backing store %s size 0x%" PRIx64
1999 " does not match 'size' option 0x" RAM_ADDR_FMT,
2000 mem_path, file_size, size);
2001 return NULL;
2002 }
2003
2004 new_block = g_malloc0(sizeof(*new_block));
2005 new_block->mr = mr;
2006 new_block->used_length = size;
2007 new_block->max_length = size;
2008 new_block->flags = share ? RAM_SHARED : 0;
2009 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2010 if (!new_block->host) {
2011 g_free(new_block);
2012 return NULL;
2013 }
2014
2015 ram_block_add(new_block, &local_err);
2016 if (local_err) {
2017 g_free(new_block);
2018 error_propagate(errp, local_err);
2019 return NULL;
2020 }
2021 return new_block;
2022
2023}
2024
2025
2026RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2027 bool share, const char *mem_path,
2028 Error **errp)
2029{
2030 int fd;
2031 bool created;
2032 RAMBlock *block;
2033
2034 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2035 if (fd < 0) {
2036 return NULL;
2037 }
2038
2039 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2040 if (!block) {
2041 if (created) {
2042 unlink(mem_path);
2043 }
2044 close(fd);
2045 return NULL;
2046 }
2047
2048 return block;
2049}
2050#endif
2051
2052static
2053RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2054 void (*resized)(const char*,
2055 uint64_t length,
2056 void *host),
2057 void *host, bool resizeable,
2058 MemoryRegion *mr, Error **errp)
2059{
2060 RAMBlock *new_block;
2061 Error *local_err = NULL;
2062
2063 size = HOST_PAGE_ALIGN(size);
2064 max_size = HOST_PAGE_ALIGN(max_size);
2065 new_block = g_malloc0(sizeof(*new_block));
2066 new_block->mr = mr;
2067 new_block->resized = resized;
2068 new_block->used_length = size;
2069 new_block->max_length = max_size;
2070 assert(max_size >= size);
2071 new_block->fd = -1;
2072 new_block->page_size = getpagesize();
2073 new_block->host = host;
2074 if (host) {
2075 new_block->flags |= RAM_PREALLOC;
2076 }
2077 if (resizeable) {
2078 new_block->flags |= RAM_RESIZEABLE;
2079 }
2080 ram_block_add(new_block, &local_err);
2081 if (local_err) {
2082 g_free(new_block);
2083 error_propagate(errp, local_err);
2084 return NULL;
2085 }
2086 return new_block;
2087}
2088
2089RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2090 MemoryRegion *mr, Error **errp)
2091{
2092 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2093}
2094
2095RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2096{
2097 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2098}
2099
2100RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2101 void (*resized)(const char*,
2102 uint64_t length,
2103 void *host),
2104 MemoryRegion *mr, Error **errp)
2105{
2106 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2107}
2108
2109static void reclaim_ramblock(RAMBlock *block)
2110{
2111 if (block->flags & RAM_PREALLOC) {
2112 ;
2113 } else if (xen_enabled()) {
2114 xen_invalidate_map_cache_entry(block->host);
2115#ifndef _WIN32
2116 } else if (block->fd >= 0) {
2117 qemu_ram_munmap(block->host, block->max_length);
2118 close(block->fd);
2119#endif
2120 } else {
2121 qemu_anon_ram_free(block->host, block->max_length);
2122 }
2123 g_free(block);
2124}
2125
2126void qemu_ram_free(RAMBlock *block)
2127{
2128 if (!block) {
2129 return;
2130 }
2131
2132 if (block->host) {
2133 ram_block_notify_remove(block->host, block->max_length);
2134 }
2135
2136 qemu_mutex_lock_ramlist();
2137 QLIST_REMOVE_RCU(block, next);
2138 ram_list.mru_block = NULL;
2139 /* Write list before version */
2140 smp_wmb();
2141 ram_list.version++;
2142 call_rcu(block, reclaim_ramblock, rcu);
2143 qemu_mutex_unlock_ramlist();
2144}
2145
2146#ifndef _WIN32
2147void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2148{
2149 RAMBlock *block;
2150 ram_addr_t offset;
2151 int flags;
2152 void *area, *vaddr;
2153
2154 RAMBLOCK_FOREACH(block) {
2155 offset = addr - block->offset;
2156 if (offset < block->max_length) {
2157 vaddr = ramblock_ptr(block, offset);
2158 if (block->flags & RAM_PREALLOC) {
2159 ;
2160 } else if (xen_enabled()) {
2161 abort();
2162 } else {
2163 flags = MAP_FIXED;
2164 if (block->fd >= 0) {
2165 flags |= (block->flags & RAM_SHARED ?
2166 MAP_SHARED : MAP_PRIVATE);
2167 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2168 flags, block->fd, offset);
2169 } else {
2170 /*
2171 * Remap needs to match alloc. Accelerators that
2172 * set phys_mem_alloc never remap. If they did,
2173 * we'd need a remap hook here.
2174 */
2175 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2176
2177 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2178 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2179 flags, -1, 0);
2180 }
2181 if (area != vaddr) {
2182 fprintf(stderr, "Could not remap addr: "
2183 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2184 length, addr);
2185 exit(1);
2186 }
2187 memory_try_enable_merging(vaddr, length);
2188 qemu_ram_setup_dump(vaddr, length);
2189 }
2190 }
2191 }
2192}
2193#endif /* !_WIN32 */
2194
2195/* Return a host pointer to ram allocated with qemu_ram_alloc.
2196 * This should not be used for general purpose DMA. Use address_space_map
2197 * or address_space_rw instead. For local memory (e.g. video ram) that the
2198 * device owns, use memory_region_get_ram_ptr.
2199 *
2200 * Called within RCU critical section.
2201 */
2202void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2203{
2204 RAMBlock *block = ram_block;
2205
2206 if (block == NULL) {
2207 block = qemu_get_ram_block(addr);
2208 addr -= block->offset;
2209 }
2210
2211 if (xen_enabled() && block->host == NULL) {
2212 /* We need to check if the requested address is in the RAM
2213 * because we don't want to map the entire memory in QEMU.
2214 * In that case just map until the end of the page.
2215 */
2216 if (block->offset == 0) {
2217 return xen_map_cache(addr, 0, 0, false);
2218 }
2219
2220 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2221 }
2222 return ramblock_ptr(block, addr);
2223}
2224
2225/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2226 * but takes a size argument.
2227 *
2228 * Called within RCU critical section.
2229 */
2230static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2231 hwaddr *size, bool lock)
2232{
2233 RAMBlock *block = ram_block;
2234 if (*size == 0) {
2235 return NULL;
2236 }
2237
2238 if (block == NULL) {
2239 block = qemu_get_ram_block(addr);
2240 addr -= block->offset;
2241 }
2242 *size = MIN(*size, block->max_length - addr);
2243
2244 if (xen_enabled() && block->host == NULL) {
2245 /* We need to check if the requested address is in the RAM
2246 * because we don't want to map the entire memory in QEMU.
2247 * In that case just map the requested area.
2248 */
2249 if (block->offset == 0) {
2250 return xen_map_cache(addr, *size, lock, lock);
2251 }
2252
2253 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2254 }
2255
2256 return ramblock_ptr(block, addr);
2257}
2258
2259/*
2260 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2261 * in that RAMBlock.
2262 *
2263 * ptr: Host pointer to look up
2264 * round_offset: If true round the result offset down to a page boundary
2265 * *ram_addr: set to result ram_addr
2266 * *offset: set to result offset within the RAMBlock
2267 *
2268 * Returns: RAMBlock (or NULL if not found)
2269 *
2270 * By the time this function returns, the returned pointer is not protected
2271 * by RCU anymore. If the caller is not within an RCU critical section and
2272 * does not hold the iothread lock, it must have other means of protecting the
2273 * pointer, such as a reference to the region that includes the incoming
2274 * ram_addr_t.
2275 */
2276RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2277 ram_addr_t *offset)
2278{
2279 RAMBlock *block;
2280 uint8_t *host = ptr;
2281
2282 if (xen_enabled()) {
2283 ram_addr_t ram_addr;
2284 rcu_read_lock();
2285 ram_addr = xen_ram_addr_from_mapcache(ptr);
2286 block = qemu_get_ram_block(ram_addr);
2287 if (block) {
2288 *offset = ram_addr - block->offset;
2289 }
2290 rcu_read_unlock();
2291 return block;
2292 }
2293
2294 rcu_read_lock();
2295 block = atomic_rcu_read(&ram_list.mru_block);
2296 if (block && block->host && host - block->host < block->max_length) {
2297 goto found;
2298 }
2299
2300 RAMBLOCK_FOREACH(block) {
2301 /* This case append when the block is not mapped. */
2302 if (block->host == NULL) {
2303 continue;
2304 }
2305 if (host - block->host < block->max_length) {
2306 goto found;
2307 }
2308 }
2309
2310 rcu_read_unlock();
2311 return NULL;
2312
2313found:
2314 *offset = (host - block->host);
2315 if (round_offset) {
2316 *offset &= TARGET_PAGE_MASK;
2317 }
2318 rcu_read_unlock();
2319 return block;
2320}
2321
2322/*
2323 * Finds the named RAMBlock
2324 *
2325 * name: The name of RAMBlock to find
2326 *
2327 * Returns: RAMBlock (or NULL if not found)
2328 */
2329RAMBlock *qemu_ram_block_by_name(const char *name)
2330{
2331 RAMBlock *block;
2332
2333 RAMBLOCK_FOREACH(block) {
2334 if (!strcmp(name, block->idstr)) {
2335 return block;
2336 }
2337 }
2338
2339 return NULL;
2340}
2341
2342/* Some of the softmmu routines need to translate from a host pointer
2343 (typically a TLB entry) back to a ram offset. */
2344ram_addr_t qemu_ram_addr_from_host(void *ptr)
2345{
2346 RAMBlock *block;
2347 ram_addr_t offset;
2348
2349 block = qemu_ram_block_from_host(ptr, false, &offset);
2350 if (!block) {
2351 return RAM_ADDR_INVALID;
2352 }
2353
2354 return block->offset + offset;
2355}
2356
2357/* Called within RCU critical section. */
2358static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2359 uint64_t val, unsigned size)
2360{
2361 bool locked = false;
2362
2363 assert(tcg_enabled());
2364 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2365 locked = true;
2366 tb_lock();
2367 tb_invalidate_phys_page_fast(ram_addr, size);
2368 }
2369 switch (size) {
2370 case 1:
2371 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2372 break;
2373 case 2:
2374 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2375 break;
2376 case 4:
2377 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2378 break;
2379 case 8:
2380 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2381 break;
2382 default:
2383 abort();
2384 }
2385
2386 if (locked) {
2387 tb_unlock();
2388 }
2389
2390 /* Set both VGA and migration bits for simplicity and to remove
2391 * the notdirty callback faster.
2392 */
2393 cpu_physical_memory_set_dirty_range(ram_addr, size,
2394 DIRTY_CLIENTS_NOCODE);
2395 /* we remove the notdirty callback only if the code has been
2396 flushed */
2397 if (!cpu_physical_memory_is_clean(ram_addr)) {
2398 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2399 }
2400}
2401
2402static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2403 unsigned size, bool is_write)
2404{
2405 return is_write;
2406}
2407
2408static const MemoryRegionOps notdirty_mem_ops = {
2409 .write = notdirty_mem_write,
2410 .valid.accepts = notdirty_mem_accepts,
2411 .endianness = DEVICE_NATIVE_ENDIAN,
2412 .valid = {
2413 .min_access_size = 1,
2414 .max_access_size = 8,
2415 .unaligned = false,
2416 },
2417 .impl = {
2418 .min_access_size = 1,
2419 .max_access_size = 8,
2420 .unaligned = false,
2421 },
2422};
2423
2424/* Generate a debug exception if a watchpoint has been hit. */
2425static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2426{
2427 CPUState *cpu = current_cpu;
2428 CPUClass *cc = CPU_GET_CLASS(cpu);
2429 CPUArchState *env = cpu->env_ptr;
2430 target_ulong pc, cs_base;
2431 target_ulong vaddr;
2432 CPUWatchpoint *wp;
2433 uint32_t cpu_flags;
2434
2435 assert(tcg_enabled());
2436 if (cpu->watchpoint_hit) {
2437 /* We re-entered the check after replacing the TB. Now raise
2438 * the debug interrupt so that is will trigger after the
2439 * current instruction. */
2440 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2441 return;
2442 }
2443 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2444 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2445 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2446 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2447 && (wp->flags & flags)) {
2448 if (flags == BP_MEM_READ) {
2449 wp->flags |= BP_WATCHPOINT_HIT_READ;
2450 } else {
2451 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2452 }
2453 wp->hitaddr = vaddr;
2454 wp->hitattrs = attrs;
2455 if (!cpu->watchpoint_hit) {
2456 if (wp->flags & BP_CPU &&
2457 !cc->debug_check_watchpoint(cpu, wp)) {
2458 wp->flags &= ~BP_WATCHPOINT_HIT;
2459 continue;
2460 }
2461 cpu->watchpoint_hit = wp;
2462
2463 /* Both tb_lock and iothread_mutex will be reset when
2464 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2465 * back into the cpu_exec main loop.
2466 */
2467 tb_lock();
2468 tb_check_watchpoint(cpu);
2469 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2470 cpu->exception_index = EXCP_DEBUG;
2471 cpu_loop_exit(cpu);
2472 } else {
2473 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2474 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2475 cpu_loop_exit_noexc(cpu);
2476 }
2477 }
2478 } else {
2479 wp->flags &= ~BP_WATCHPOINT_HIT;
2480 }
2481 }
2482}
2483
2484/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2485 so these check for a hit then pass through to the normal out-of-line
2486 phys routines. */
2487static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2488 unsigned size, MemTxAttrs attrs)
2489{
2490 MemTxResult res;
2491 uint64_t data;
2492 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2493 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2494
2495 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2496 switch (size) {
2497 case 1:
2498 data = address_space_ldub(as, addr, attrs, &res);
2499 break;
2500 case 2:
2501 data = address_space_lduw(as, addr, attrs, &res);
2502 break;
2503 case 4:
2504 data = address_space_ldl(as, addr, attrs, &res);
2505 break;
2506 case 8:
2507 data = address_space_ldq(as, addr, attrs, &res);
2508 break;
2509 default: abort();
2510 }
2511 *pdata = data;
2512 return res;
2513}
2514
2515static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2516 uint64_t val, unsigned size,
2517 MemTxAttrs attrs)
2518{
2519 MemTxResult res;
2520 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2521 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2522
2523 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2524 switch (size) {
2525 case 1:
2526 address_space_stb(as, addr, val, attrs, &res);
2527 break;
2528 case 2:
2529 address_space_stw(as, addr, val, attrs, &res);
2530 break;
2531 case 4:
2532 address_space_stl(as, addr, val, attrs, &res);
2533 break;
2534 case 8:
2535 address_space_stq(as, addr, val, attrs, &res);
2536 break;
2537 default: abort();
2538 }
2539 return res;
2540}
2541
2542static const MemoryRegionOps watch_mem_ops = {
2543 .read_with_attrs = watch_mem_read,
2544 .write_with_attrs = watch_mem_write,
2545 .endianness = DEVICE_NATIVE_ENDIAN,
2546 .valid = {
2547 .min_access_size = 1,
2548 .max_access_size = 8,
2549 .unaligned = false,
2550 },
2551 .impl = {
2552 .min_access_size = 1,
2553 .max_access_size = 8,
2554 .unaligned = false,
2555 },
2556};
2557
2558static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2559 const uint8_t *buf, int len);
2560static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2561 bool is_write);
2562
2563static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2564 unsigned len, MemTxAttrs attrs)
2565{
2566 subpage_t *subpage = opaque;
2567 uint8_t buf[8];
2568 MemTxResult res;
2569
2570#if defined(DEBUG_SUBPAGE)
2571 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2572 subpage, len, addr);
2573#endif
2574 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2575 if (res) {
2576 return res;
2577 }
2578 switch (len) {
2579 case 1:
2580 *data = ldub_p(buf);
2581 return MEMTX_OK;
2582 case 2:
2583 *data = lduw_p(buf);
2584 return MEMTX_OK;
2585 case 4:
2586 *data = ldl_p(buf);
2587 return MEMTX_OK;
2588 case 8:
2589 *data = ldq_p(buf);
2590 return MEMTX_OK;
2591 default:
2592 abort();
2593 }
2594}
2595
2596static MemTxResult subpage_write(void *opaque, hwaddr addr,
2597 uint64_t value, unsigned len, MemTxAttrs attrs)
2598{
2599 subpage_t *subpage = opaque;
2600 uint8_t buf[8];
2601
2602#if defined(DEBUG_SUBPAGE)
2603 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2604 " value %"PRIx64"\n",
2605 __func__, subpage, len, addr, value);
2606#endif
2607 switch (len) {
2608 case 1:
2609 stb_p(buf, value);
2610 break;
2611 case 2:
2612 stw_p(buf, value);
2613 break;
2614 case 4:
2615 stl_p(buf, value);
2616 break;
2617 case 8:
2618 stq_p(buf, value);
2619 break;
2620 default:
2621 abort();
2622 }
2623 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2624}
2625
2626static bool subpage_accepts(void *opaque, hwaddr addr,
2627 unsigned len, bool is_write)
2628{
2629 subpage_t *subpage = opaque;
2630#if defined(DEBUG_SUBPAGE)
2631 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2632 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2633#endif
2634
2635 return flatview_access_valid(subpage->fv, addr + subpage->base,
2636 len, is_write);
2637}
2638
2639static const MemoryRegionOps subpage_ops = {
2640 .read_with_attrs = subpage_read,
2641 .write_with_attrs = subpage_write,
2642 .impl.min_access_size = 1,
2643 .impl.max_access_size = 8,
2644 .valid.min_access_size = 1,
2645 .valid.max_access_size = 8,
2646 .valid.accepts = subpage_accepts,
2647 .endianness = DEVICE_NATIVE_ENDIAN,
2648};
2649
2650static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2651 uint16_t section)
2652{
2653 int idx, eidx;
2654
2655 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2656 return -1;
2657 idx = SUBPAGE_IDX(start);
2658 eidx = SUBPAGE_IDX(end);
2659#if defined(DEBUG_SUBPAGE)
2660 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2661 __func__, mmio, start, end, idx, eidx, section);
2662#endif
2663 for (; idx <= eidx; idx++) {
2664 mmio->sub_section[idx] = section;
2665 }
2666
2667 return 0;
2668}
2669
2670static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2671{
2672 subpage_t *mmio;
2673
2674 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2675 mmio->fv = fv;
2676 mmio->base = base;
2677 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2678 NULL, TARGET_PAGE_SIZE);
2679 mmio->iomem.subpage = true;
2680#if defined(DEBUG_SUBPAGE)
2681 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2682 mmio, base, TARGET_PAGE_SIZE);
2683#endif
2684 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2685
2686 return mmio;
2687}
2688
2689static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2690{
2691 assert(fv);
2692 MemoryRegionSection section = {
2693 .fv = fv,
2694 .mr = mr,
2695 .offset_within_address_space = 0,
2696 .offset_within_region = 0,
2697 .size = int128_2_64(),
2698 };
2699
2700 return phys_section_add(map, &section);
2701}
2702
2703MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2704{
2705 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2706 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2707 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2708 MemoryRegionSection *sections = d->map.sections;
2709
2710 return sections[index & ~TARGET_PAGE_MASK].mr;
2711}
2712
2713static void io_mem_init(void)
2714{
2715 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2716 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2717 NULL, UINT64_MAX);
2718
2719 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2720 * which can be called without the iothread mutex.
2721 */
2722 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2723 NULL, UINT64_MAX);
2724 memory_region_clear_global_locking(&io_mem_notdirty);
2725
2726 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2727 NULL, UINT64_MAX);
2728}
2729
2730AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2731{
2732 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2733 uint16_t n;
2734
2735 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2736 assert(n == PHYS_SECTION_UNASSIGNED);
2737 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2738 assert(n == PHYS_SECTION_NOTDIRTY);
2739 n = dummy_section(&d->map, fv, &io_mem_rom);
2740 assert(n == PHYS_SECTION_ROM);
2741 n = dummy_section(&d->map, fv, &io_mem_watch);
2742 assert(n == PHYS_SECTION_WATCH);
2743
2744 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2745
2746 return d;
2747}
2748
2749void address_space_dispatch_free(AddressSpaceDispatch *d)
2750{
2751 phys_sections_free(&d->map);
2752 g_free(d);
2753}
2754
2755static void tcg_commit(MemoryListener *listener)
2756{
2757 CPUAddressSpace *cpuas;
2758 AddressSpaceDispatch *d;
2759
2760 /* since each CPU stores ram addresses in its TLB cache, we must
2761 reset the modified entries */
2762 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2763 cpu_reloading_memory_map();
2764 /* The CPU and TLB are protected by the iothread lock.
2765 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2766 * may have split the RCU critical section.
2767 */
2768 d = address_space_to_dispatch(cpuas->as);
2769 atomic_rcu_set(&cpuas->memory_dispatch, d);
2770 tlb_flush(cpuas->cpu);
2771}
2772
2773static void memory_map_init(void)
2774{
2775 system_memory = g_malloc(sizeof(*system_memory));
2776
2777 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2778 address_space_init(&address_space_memory, system_memory, "memory");
2779
2780 system_io = g_malloc(sizeof(*system_io));
2781 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2782 65536);
2783 address_space_init(&address_space_io, system_io, "I/O");
2784}
2785
2786MemoryRegion *get_system_memory(void)
2787{
2788 return system_memory;
2789}
2790
2791MemoryRegion *get_system_io(void)
2792{
2793 return system_io;
2794}
2795
2796#endif /* !defined(CONFIG_USER_ONLY) */
2797
2798/* physical memory access (slow version, mainly for debug) */
2799#if defined(CONFIG_USER_ONLY)
2800int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2801 uint8_t *buf, int len, int is_write)
2802{
2803 int l, flags;
2804 target_ulong page;
2805 void * p;
2806
2807 while (len > 0) {
2808 page = addr & TARGET_PAGE_MASK;
2809 l = (page + TARGET_PAGE_SIZE) - addr;
2810 if (l > len)
2811 l = len;
2812 flags = page_get_flags(page);
2813 if (!(flags & PAGE_VALID))
2814 return -1;
2815 if (is_write) {
2816 if (!(flags & PAGE_WRITE))
2817 return -1;
2818 /* XXX: this code should not depend on lock_user */
2819 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2820 return -1;
2821 memcpy(p, buf, l);
2822 unlock_user(p, addr, l);
2823 } else {
2824 if (!(flags & PAGE_READ))
2825 return -1;
2826 /* XXX: this code should not depend on lock_user */
2827 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2828 return -1;
2829 memcpy(buf, p, l);
2830 unlock_user(p, addr, 0);
2831 }
2832 len -= l;
2833 buf += l;
2834 addr += l;
2835 }
2836 return 0;
2837}
2838
2839#else
2840
2841static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2842 hwaddr length)
2843{
2844 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2845 addr += memory_region_get_ram_addr(mr);
2846
2847 /* No early return if dirty_log_mask is or becomes 0, because
2848 * cpu_physical_memory_set_dirty_range will still call
2849 * xen_modified_memory.
2850 */
2851 if (dirty_log_mask) {
2852 dirty_log_mask =
2853 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2854 }
2855 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2856 assert(tcg_enabled());
2857 tb_lock();
2858 tb_invalidate_phys_range(addr, addr + length);
2859 tb_unlock();
2860 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2861 }
2862 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2863}
2864
2865static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2866{
2867 unsigned access_size_max = mr->ops->valid.max_access_size;
2868
2869 /* Regions are assumed to support 1-4 byte accesses unless
2870 otherwise specified. */
2871 if (access_size_max == 0) {
2872 access_size_max = 4;
2873 }
2874
2875 /* Bound the maximum access by the alignment of the address. */
2876 if (!mr->ops->impl.unaligned) {
2877 unsigned align_size_max = addr & -addr;
2878 if (align_size_max != 0 && align_size_max < access_size_max) {
2879 access_size_max = align_size_max;
2880 }
2881 }
2882
2883 /* Don't attempt accesses larger than the maximum. */
2884 if (l > access_size_max) {
2885 l = access_size_max;
2886 }
2887 l = pow2floor(l);
2888
2889 return l;
2890}
2891
2892static bool prepare_mmio_access(MemoryRegion *mr)
2893{
2894 bool unlocked = !qemu_mutex_iothread_locked();
2895 bool release_lock = false;
2896
2897 if (unlocked && mr->global_locking) {
2898 qemu_mutex_lock_iothread();
2899 unlocked = false;
2900 release_lock = true;
2901 }
2902 if (mr->flush_coalesced_mmio) {
2903 if (unlocked) {
2904 qemu_mutex_lock_iothread();
2905 }
2906 qemu_flush_coalesced_mmio_buffer();
2907 if (unlocked) {
2908 qemu_mutex_unlock_iothread();
2909 }
2910 }
2911
2912 return release_lock;
2913}
2914
2915/* Called within RCU critical section. */
2916static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2917 MemTxAttrs attrs,
2918 const uint8_t *buf,
2919 int len, hwaddr addr1,
2920 hwaddr l, MemoryRegion *mr)
2921{
2922 uint8_t *ptr;
2923 uint64_t val;
2924 MemTxResult result = MEMTX_OK;
2925 bool release_lock = false;
2926
2927 for (;;) {
2928 if (!memory_access_is_direct(mr, true)) {
2929 release_lock |= prepare_mmio_access(mr);
2930 l = memory_access_size(mr, l, addr1);
2931 /* XXX: could force current_cpu to NULL to avoid
2932 potential bugs */
2933 switch (l) {
2934 case 8:
2935 /* 64 bit write access */
2936 val = ldq_p(buf);
2937 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2938 attrs);
2939 break;
2940 case 4:
2941 /* 32 bit write access */
2942 val = (uint32_t)ldl_p(buf);
2943 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2944 attrs);
2945 break;
2946 case 2:
2947 /* 16 bit write access */
2948 val = lduw_p(buf);
2949 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2950 attrs);
2951 break;
2952 case 1:
2953 /* 8 bit write access */
2954 val = ldub_p(buf);
2955 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2956 attrs);
2957 break;
2958 default:
2959 abort();
2960 }
2961 } else {
2962 /* RAM case */
2963 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2964 memcpy(ptr, buf, l);
2965 invalidate_and_set_dirty(mr, addr1, l);
2966 }
2967
2968 if (release_lock) {
2969 qemu_mutex_unlock_iothread();
2970 release_lock = false;
2971 }
2972
2973 len -= l;
2974 buf += l;
2975 addr += l;
2976
2977 if (!len) {
2978 break;
2979 }
2980
2981 l = len;
2982 mr = flatview_translate(fv, addr, &addr1, &l, true);
2983 }
2984
2985 return result;
2986}
2987
2988static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2989 const uint8_t *buf, int len)
2990{
2991 hwaddr l;
2992 hwaddr addr1;
2993 MemoryRegion *mr;
2994 MemTxResult result = MEMTX_OK;
2995
2996 if (len > 0) {
2997 rcu_read_lock();
2998 l = len;
2999 mr = flatview_translate(fv, addr, &addr1, &l, true);
3000 result = flatview_write_continue(fv, addr, attrs, buf, len,
3001 addr1, l, mr);
3002 rcu_read_unlock();
3003 }
3004
3005 return result;
3006}
3007
3008MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3009 MemTxAttrs attrs,
3010 const uint8_t *buf, int len)
3011{
3012 return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
3013}
3014
3015/* Called within RCU critical section. */
3016MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3017 MemTxAttrs attrs, uint8_t *buf,
3018 int len, hwaddr addr1, hwaddr l,
3019 MemoryRegion *mr)
3020{
3021 uint8_t *ptr;
3022 uint64_t val;
3023 MemTxResult result = MEMTX_OK;
3024 bool release_lock = false;
3025
3026 for (;;) {
3027 if (!memory_access_is_direct(mr, false)) {
3028 /* I/O case */
3029 release_lock |= prepare_mmio_access(mr);
3030 l = memory_access_size(mr, l, addr1);
3031 switch (l) {
3032 case 8:
3033 /* 64 bit read access */
3034 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3035 attrs);
3036 stq_p(buf, val);
3037 break;
3038 case 4:
3039 /* 32 bit read access */
3040 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3041 attrs);
3042 stl_p(buf, val);
3043 break;
3044 case 2:
3045 /* 16 bit read access */
3046 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3047 attrs);
3048 stw_p(buf, val);
3049 break;
3050 case 1:
3051 /* 8 bit read access */
3052 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3053 attrs);
3054 stb_p(buf, val);
3055 break;
3056 default:
3057 abort();
3058 }
3059 } else {
3060 /* RAM case */
3061 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3062 memcpy(buf, ptr, l);
3063 }
3064
3065 if (release_lock) {
3066 qemu_mutex_unlock_iothread();
3067 release_lock = false;
3068 }
3069
3070 len -= l;
3071 buf += l;
3072 addr += l;
3073
3074 if (!len) {
3075 break;
3076 }
3077
3078 l = len;
3079 mr = flatview_translate(fv, addr, &addr1, &l, false);
3080 }
3081
3082 return result;
3083}
3084
3085MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
3086 MemTxAttrs attrs, uint8_t *buf, int len)
3087{
3088 hwaddr l;
3089 hwaddr addr1;
3090 MemoryRegion *mr;
3091 MemTxResult result = MEMTX_OK;
3092
3093 if (len > 0) {
3094 rcu_read_lock();
3095 l = len;
3096 mr = flatview_translate(fv, addr, &addr1, &l, false);
3097 result = flatview_read_continue(fv, addr, attrs, buf, len,
3098 addr1, l, mr);
3099 rcu_read_unlock();
3100 }
3101
3102 return result;
3103}
3104
3105static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3106 uint8_t *buf, int len, bool is_write)
3107{
3108 if (is_write) {
3109 return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
3110 } else {
3111 return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
3112 }
3113}
3114
3115MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
3116 MemTxAttrs attrs, uint8_t *buf,
3117 int len, bool is_write)
3118{
3119 return flatview_rw(address_space_to_flatview(as),
3120 addr, attrs, buf, len, is_write);
3121}
3122
3123void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3124 int len, int is_write)
3125{
3126 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3127 buf, len, is_write);
3128}
3129
3130enum write_rom_type {
3131 WRITE_DATA,
3132 FLUSH_CACHE,
3133};
3134
3135static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3136 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3137{
3138 hwaddr l;
3139 uint8_t *ptr;
3140 hwaddr addr1;
3141 MemoryRegion *mr;
3142
3143 rcu_read_lock();
3144 while (len > 0) {
3145 l = len;
3146 mr = address_space_translate(as, addr, &addr1, &l, true);
3147
3148 if (!(memory_region_is_ram(mr) ||
3149 memory_region_is_romd(mr))) {
3150 l = memory_access_size(mr, l, addr1);
3151 } else {
3152 /* ROM/RAM case */
3153 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3154 switch (type) {
3155 case WRITE_DATA:
3156 memcpy(ptr, buf, l);
3157 invalidate_and_set_dirty(mr, addr1, l);
3158 break;
3159 case FLUSH_CACHE:
3160 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3161 break;
3162 }
3163 }
3164 len -= l;
3165 buf += l;
3166 addr += l;
3167 }
3168 rcu_read_unlock();
3169}
3170
3171/* used for ROM loading : can write in RAM and ROM */
3172void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3173 const uint8_t *buf, int len)
3174{
3175 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3176}
3177
3178void cpu_flush_icache_range(hwaddr start, int len)
3179{
3180 /*
3181 * This function should do the same thing as an icache flush that was
3182 * triggered from within the guest. For TCG we are always cache coherent,
3183 * so there is no need to flush anything. For KVM / Xen we need to flush
3184 * the host's instruction cache at least.
3185 */
3186 if (tcg_enabled()) {
3187 return;
3188 }
3189
3190 cpu_physical_memory_write_rom_internal(&address_space_memory,
3191 start, NULL, len, FLUSH_CACHE);
3192}
3193
3194typedef struct {
3195 MemoryRegion *mr;
3196 void *buffer;
3197 hwaddr addr;
3198 hwaddr len;
3199 bool in_use;
3200} BounceBuffer;
3201
3202static BounceBuffer bounce;
3203
3204typedef struct MapClient {
3205 QEMUBH *bh;
3206 QLIST_ENTRY(MapClient) link;
3207} MapClient;
3208
3209QemuMutex map_client_list_lock;
3210static QLIST_HEAD(map_client_list, MapClient) map_client_list
3211 = QLIST_HEAD_INITIALIZER(map_client_list);
3212
3213static void cpu_unregister_map_client_do(MapClient *client)
3214{
3215 QLIST_REMOVE(client, link);
3216 g_free(client);
3217}
3218
3219static void cpu_notify_map_clients_locked(void)
3220{
3221 MapClient *client;
3222
3223 while (!QLIST_EMPTY(&map_client_list)) {
3224 client = QLIST_FIRST(&map_client_list);
3225 qemu_bh_schedule(client->bh);
3226 cpu_unregister_map_client_do(client);
3227 }
3228}
3229
3230void cpu_register_map_client(QEMUBH *bh)
3231{
3232 MapClient *client = g_malloc(sizeof(*client));
3233
3234 qemu_mutex_lock(&map_client_list_lock);
3235 client->bh = bh;
3236 QLIST_INSERT_HEAD(&map_client_list, client, link);
3237 if (!atomic_read(&bounce.in_use)) {
3238 cpu_notify_map_clients_locked();
3239 }
3240 qemu_mutex_unlock(&map_client_list_lock);
3241}
3242
3243void cpu_exec_init_all(void)
3244{
3245 qemu_mutex_init(&ram_list.mutex);
3246 /* The data structures we set up here depend on knowing the page size,
3247 * so no more changes can be made after this point.
3248 * In an ideal world, nothing we did before we had finished the
3249 * machine setup would care about the target page size, and we could
3250 * do this much later, rather than requiring board models to state
3251 * up front what their requirements are.
3252 */
3253 finalize_target_page_bits();
3254 io_mem_init();
3255 memory_map_init();
3256 qemu_mutex_init(&map_client_list_lock);
3257}
3258
3259void cpu_unregister_map_client(QEMUBH *bh)
3260{
3261 MapClient *client;
3262
3263 qemu_mutex_lock(&map_client_list_lock);
3264 QLIST_FOREACH(client, &map_client_list, link) {
3265 if (client->bh == bh) {
3266 cpu_unregister_map_client_do(client);
3267 break;
3268 }
3269 }
3270 qemu_mutex_unlock(&map_client_list_lock);
3271}
3272
3273static void cpu_notify_map_clients(void)
3274{
3275 qemu_mutex_lock(&map_client_list_lock);
3276 cpu_notify_map_clients_locked();
3277 qemu_mutex_unlock(&map_client_list_lock);
3278}
3279
3280static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3281 bool is_write)
3282{
3283 MemoryRegion *mr;
3284 hwaddr l, xlat;
3285
3286 rcu_read_lock();
3287 while (len > 0) {
3288 l = len;
3289 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3290 if (!memory_access_is_direct(mr, is_write)) {
3291 l = memory_access_size(mr, l, addr);
3292 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3293 rcu_read_unlock();
3294 return false;
3295 }
3296 }
3297
3298 len -= l;
3299 addr += l;
3300 }
3301 rcu_read_unlock();
3302 return true;
3303}
3304
3305bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3306 int len, bool is_write)
3307{
3308 return flatview_access_valid(address_space_to_flatview(as),
3309 addr, len, is_write);
3310}
3311
3312static hwaddr
3313flatview_extend_translation(FlatView *fv, hwaddr addr,
3314 hwaddr target_len,
3315 MemoryRegion *mr, hwaddr base, hwaddr len,
3316 bool is_write)
3317{
3318 hwaddr done = 0;
3319 hwaddr xlat;
3320 MemoryRegion *this_mr;
3321
3322 for (;;) {
3323 target_len -= len;
3324 addr += len;
3325 done += len;
3326 if (target_len == 0) {
3327 return done;
3328 }
3329
3330 len = target_len;
3331 this_mr = flatview_translate(fv, addr, &xlat,
3332 &len, is_write);
3333 if (this_mr != mr || xlat != base + done) {
3334 return done;
3335 }
3336 }
3337}
3338
3339/* Map a physical memory region into a host virtual address.
3340 * May map a subset of the requested range, given by and returned in *plen.
3341 * May return NULL if resources needed to perform the mapping are exhausted.
3342 * Use only for reads OR writes - not for read-modify-write operations.
3343 * Use cpu_register_map_client() to know when retrying the map operation is
3344 * likely to succeed.
3345 */
3346void *address_space_map(AddressSpace *as,
3347 hwaddr addr,
3348 hwaddr *plen,
3349 bool is_write)
3350{
3351 hwaddr len = *plen;
3352 hwaddr l, xlat;
3353 MemoryRegion *mr;
3354 void *ptr;
3355 FlatView *fv = address_space_to_flatview(as);
3356
3357 if (len == 0) {
3358 return NULL;
3359 }
3360
3361 l = len;
3362 rcu_read_lock();
3363 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3364
3365 if (!memory_access_is_direct(mr, is_write)) {
3366 if (atomic_xchg(&bounce.in_use, true)) {
3367 rcu_read_unlock();
3368 return NULL;
3369 }
3370 /* Avoid unbounded allocations */
3371 l = MIN(l, TARGET_PAGE_SIZE);
3372 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3373 bounce.addr = addr;
3374 bounce.len = l;
3375
3376 memory_region_ref(mr);
3377 bounce.mr = mr;
3378 if (!is_write) {
3379 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3380 bounce.buffer, l);
3381 }
3382
3383 rcu_read_unlock();
3384 *plen = l;
3385 return bounce.buffer;
3386 }
3387
3388
3389 memory_region_ref(mr);
3390 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3391 l, is_write);
3392 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3393 rcu_read_unlock();
3394
3395 return ptr;
3396}
3397
3398/* Unmaps a memory region previously mapped by address_space_map().
3399 * Will also mark the memory as dirty if is_write == 1. access_len gives
3400 * the amount of memory that was actually read or written by the caller.
3401 */
3402void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3403 int is_write, hwaddr access_len)
3404{
3405 if (buffer != bounce.buffer) {
3406 MemoryRegion *mr;
3407 ram_addr_t addr1;
3408
3409 mr = memory_region_from_host(buffer, &addr1);
3410 assert(mr != NULL);
3411 if (is_write) {
3412 invalidate_and_set_dirty(mr, addr1, access_len);
3413 }
3414 if (xen_enabled()) {
3415 xen_invalidate_map_cache_entry(buffer);
3416 }
3417 memory_region_unref(mr);
3418 return;
3419 }
3420 if (is_write) {
3421 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3422 bounce.buffer, access_len);
3423 }
3424 qemu_vfree(bounce.buffer);
3425 bounce.buffer = NULL;
3426 memory_region_unref(bounce.mr);
3427 atomic_mb_set(&bounce.in_use, false);
3428 cpu_notify_map_clients();
3429}
3430
3431void *cpu_physical_memory_map(hwaddr addr,
3432 hwaddr *plen,
3433 int is_write)
3434{
3435 return address_space_map(&address_space_memory, addr, plen, is_write);
3436}
3437
3438void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3439 int is_write, hwaddr access_len)
3440{
3441 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3442}
3443
3444#define ARG1_DECL AddressSpace *as
3445#define ARG1 as
3446#define SUFFIX
3447#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3448#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3449#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3450#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3451#define RCU_READ_LOCK(...) rcu_read_lock()
3452#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3453#include "memory_ldst.inc.c"
3454
3455int64_t address_space_cache_init(MemoryRegionCache *cache,
3456 AddressSpace *as,
3457 hwaddr addr,
3458 hwaddr len,
3459 bool is_write)
3460{
3461 cache->len = len;
3462 cache->as = as;
3463 cache->xlat = addr;
3464 return len;
3465}
3466
3467void address_space_cache_invalidate(MemoryRegionCache *cache,
3468 hwaddr addr,
3469 hwaddr access_len)
3470{
3471}
3472
3473void address_space_cache_destroy(MemoryRegionCache *cache)
3474{
3475 cache->as = NULL;
3476}
3477
3478#define ARG1_DECL MemoryRegionCache *cache
3479#define ARG1 cache
3480#define SUFFIX _cached
3481#define TRANSLATE(addr, ...) \
3482 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3483#define IS_DIRECT(mr, is_write) true
3484#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3485#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3486#define RCU_READ_LOCK() rcu_read_lock()
3487#define RCU_READ_UNLOCK() rcu_read_unlock()
3488#include "memory_ldst.inc.c"
3489
3490/* virtual memory access for debug (includes writing to ROM) */
3491int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3492 uint8_t *buf, int len, int is_write)
3493{
3494 int l;
3495 hwaddr phys_addr;
3496 target_ulong page;
3497
3498 cpu_synchronize_state(cpu);
3499 while (len > 0) {
3500 int asidx;
3501 MemTxAttrs attrs;
3502
3503 page = addr & TARGET_PAGE_MASK;
3504 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3505 asidx = cpu_asidx_from_attrs(cpu, attrs);
3506 /* if no physical page mapped, return an error */
3507 if (phys_addr == -1)
3508 return -1;
3509 l = (page + TARGET_PAGE_SIZE) - addr;
3510 if (l > len)
3511 l = len;
3512 phys_addr += (addr & ~TARGET_PAGE_MASK);
3513 if (is_write) {
3514 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3515 phys_addr, buf, l);
3516 } else {
3517 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3518 MEMTXATTRS_UNSPECIFIED,
3519 buf, l, 0);
3520 }
3521 len -= l;
3522 buf += l;
3523 addr += l;
3524 }
3525 return 0;
3526}
3527
3528/*
3529 * Allows code that needs to deal with migration bitmaps etc to still be built
3530 * target independent.
3531 */
3532size_t qemu_target_page_size(void)
3533{
3534 return TARGET_PAGE_SIZE;
3535}
3536
3537int qemu_target_page_bits(void)
3538{
3539 return TARGET_PAGE_BITS;
3540}
3541
3542int qemu_target_page_bits_min(void)
3543{
3544 return TARGET_PAGE_BITS_MIN;
3545}
3546#endif
3547
3548/*
3549 * A helper function for the _utterly broken_ virtio device model to find out if
3550 * it's running on a big endian machine. Don't do this at home kids!
3551 */
3552bool target_words_bigendian(void);
3553bool target_words_bigendian(void)
3554{
3555#if defined(TARGET_WORDS_BIGENDIAN)
3556 return true;
3557#else
3558 return false;
3559#endif
3560}
3561
3562#ifndef CONFIG_USER_ONLY
3563bool cpu_physical_memory_is_io(hwaddr phys_addr)
3564{
3565 MemoryRegion*mr;
3566 hwaddr l = 1;
3567 bool res;
3568
3569 rcu_read_lock();
3570 mr = address_space_translate(&address_space_memory,
3571 phys_addr, &phys_addr, &l, false);
3572
3573 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3574 rcu_read_unlock();
3575 return res;
3576}
3577
3578int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3579{
3580 RAMBlock *block;
3581 int ret = 0;
3582
3583 rcu_read_lock();
3584 RAMBLOCK_FOREACH(block) {
3585 ret = func(block->idstr, block->host, block->offset,
3586 block->used_length, opaque);
3587 if (ret) {
3588 break;
3589 }
3590 }
3591 rcu_read_unlock();
3592 return ret;
3593}
3594
3595/*
3596 * Unmap pages of memory from start to start+length such that
3597 * they a) read as 0, b) Trigger whatever fault mechanism
3598 * the OS provides for postcopy.
3599 * The pages must be unmapped by the end of the function.
3600 * Returns: 0 on success, none-0 on failure
3601 *
3602 */
3603int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3604{
3605 int ret = -1;
3606
3607 uint8_t *host_startaddr = rb->host + start;
3608
3609 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3610 error_report("ram_block_discard_range: Unaligned start address: %p",
3611 host_startaddr);
3612 goto err;
3613 }
3614
3615 if ((start + length) <= rb->used_length) {
3616 uint8_t *host_endaddr = host_startaddr + length;
3617 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3618 error_report("ram_block_discard_range: Unaligned end address: %p",
3619 host_endaddr);
3620 goto err;
3621 }
3622
3623 errno = ENOTSUP; /* If we are missing MADVISE etc */
3624
3625 if (rb->page_size == qemu_host_page_size) {
3626#if defined(CONFIG_MADVISE)
3627 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3628 * freeing the page.
3629 */
3630 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3631#endif
3632 } else {
3633 /* Huge page case - unfortunately it can't do DONTNEED, but
3634 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3635 * huge page file.
3636 */
3637#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3638 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3639 start, length);
3640#endif
3641 }
3642 if (ret) {
3643 ret = -errno;
3644 error_report("ram_block_discard_range: Failed to discard range "
3645 "%s:%" PRIx64 " +%zx (%d)",
3646 rb->idstr, start, length, ret);
3647 }
3648 } else {
3649 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3650 "/%zx/" RAM_ADDR_FMT")",
3651 rb->idstr, start, length, rb->used_length);
3652 }
3653
3654err:
3655 return ret;
3656}
3657
3658#endif
3659
3660void page_size_init(void)
3661{
3662 /* NOTE: we can always suppose that qemu_host_page_size >=
3663 TARGET_PAGE_SIZE */
3664 if (qemu_host_page_size == 0) {
3665 qemu_host_page_size = qemu_real_host_page_size;
3666 }
3667 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3668 qemu_host_page_size = TARGET_PAGE_SIZE;
3669 }
3670 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3671}
3672
3673#if !defined(CONFIG_USER_ONLY)
3674
3675static void mtree_print_phys_entries(fprintf_function mon, void *f,
3676 int start, int end, int skip, int ptr)
3677{
3678 if (start == end - 1) {
3679 mon(f, "\t%3d ", start);
3680 } else {
3681 mon(f, "\t%3d..%-3d ", start, end - 1);
3682 }
3683 mon(f, " skip=%d ", skip);
3684 if (ptr == PHYS_MAP_NODE_NIL) {
3685 mon(f, " ptr=NIL");
3686 } else if (!skip) {
3687 mon(f, " ptr=#%d", ptr);
3688 } else {
3689 mon(f, " ptr=[%d]", ptr);
3690 }
3691 mon(f, "\n");
3692}
3693
3694#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3695 int128_sub((size), int128_one())) : 0)
3696
3697void mtree_print_dispatch(fprintf_function mon, void *f,
3698 AddressSpaceDispatch *d, MemoryRegion *root)
3699{
3700 int i;
3701
3702 mon(f, " Dispatch\n");
3703 mon(f, " Physical sections\n");
3704
3705 for (i = 0; i < d->map.sections_nb; ++i) {
3706 MemoryRegionSection *s = d->map.sections + i;
3707 const char *names[] = { " [unassigned]", " [not dirty]",
3708 " [ROM]", " [watch]" };
3709
3710 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3711 i,
3712 s->offset_within_address_space,
3713 s->offset_within_address_space + MR_SIZE(s->mr->size),
3714 s->mr->name ? s->mr->name : "(noname)",
3715 i < ARRAY_SIZE(names) ? names[i] : "",
3716 s->mr == root ? " [ROOT]" : "",
3717 s == d->mru_section ? " [MRU]" : "",
3718 s->mr->is_iommu ? " [iommu]" : "");
3719
3720 if (s->mr->alias) {
3721 mon(f, " alias=%s", s->mr->alias->name ?
3722 s->mr->alias->name : "noname");
3723 }
3724 mon(f, "\n");
3725 }
3726
3727 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3728 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3729 for (i = 0; i < d->map.nodes_nb; ++i) {
3730 int j, jprev;
3731 PhysPageEntry prev;
3732 Node *n = d->map.nodes + i;
3733
3734 mon(f, " [%d]\n", i);
3735
3736 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3737 PhysPageEntry *pe = *n + j;
3738
3739 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3740 continue;
3741 }
3742
3743 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3744
3745 jprev = j;
3746 prev = *pe;
3747 }
3748
3749 if (jprev != ARRAY_SIZE(*n)) {
3750 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3751 }
3752 }
3753}
3754
3755#endif