]>
Commit | Line | Data |
---|---|---|
1 | // SPDX-License-Identifier: GPL-2.0-only | |
2 | /* | |
3 | * fs/fs-writeback.c | |
4 | * | |
5 | * Copyright (C) 2002, Linus Torvalds. | |
6 | * | |
7 | * Contains all the functions related to writing back and waiting | |
8 | * upon dirty inodes against superblocks, and writing back dirty | |
9 | * pages against inodes. ie: data writeback. Writeout of the | |
10 | * inode itself is not handled here. | |
11 | * | |
12 | * 10Apr2002 Andrew Morton | |
13 | * Split out of fs/inode.c | |
14 | * Additions for address_space-based writeback | |
15 | */ | |
16 | ||
17 | #include <linux/kernel.h> | |
18 | #include <linux/export.h> | |
19 | #include <linux/spinlock.h> | |
20 | #include <linux/slab.h> | |
21 | #include <linux/sched.h> | |
22 | #include <linux/fs.h> | |
23 | #include <linux/mm.h> | |
24 | #include <linux/pagemap.h> | |
25 | #include <linux/kthread.h> | |
26 | #include <linux/writeback.h> | |
27 | #include <linux/blkdev.h> | |
28 | #include <linux/backing-dev.h> | |
29 | #include <linux/tracepoint.h> | |
30 | #include <linux/device.h> | |
31 | #include <linux/memcontrol.h> | |
32 | #include "internal.h" | |
33 | ||
34 | /* | |
35 | * 4MB minimal write chunk size | |
36 | */ | |
37 | #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) | |
38 | ||
39 | /* | |
40 | * Passed into wb_writeback(), essentially a subset of writeback_control | |
41 | */ | |
42 | struct wb_writeback_work { | |
43 | long nr_pages; | |
44 | struct super_block *sb; | |
45 | enum writeback_sync_modes sync_mode; | |
46 | unsigned int tagged_writepages:1; | |
47 | unsigned int for_kupdate:1; | |
48 | unsigned int range_cyclic:1; | |
49 | unsigned int for_background:1; | |
50 | unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ | |
51 | unsigned int auto_free:1; /* free on completion */ | |
52 | enum wb_reason reason; /* why was writeback initiated? */ | |
53 | ||
54 | struct list_head list; /* pending work list */ | |
55 | struct wb_completion *done; /* set if the caller waits */ | |
56 | }; | |
57 | ||
58 | /* | |
59 | * If an inode is constantly having its pages dirtied, but then the | |
60 | * updates stop dirtytime_expire_interval seconds in the past, it's | |
61 | * possible for the worst case time between when an inode has its | |
62 | * timestamps updated and when they finally get written out to be two | |
63 | * dirtytime_expire_intervals. We set the default to 12 hours (in | |
64 | * seconds), which means most of the time inodes will have their | |
65 | * timestamps written to disk after 12 hours, but in the worst case a | |
66 | * few inodes might not their timestamps updated for 24 hours. | |
67 | */ | |
68 | static unsigned int dirtytime_expire_interval = 12 * 60 * 60; | |
69 | ||
70 | static inline struct inode *wb_inode(struct list_head *head) | |
71 | { | |
72 | return list_entry(head, struct inode, i_io_list); | |
73 | } | |
74 | ||
75 | /* | |
76 | * Include the creation of the trace points after defining the | |
77 | * wb_writeback_work structure and inline functions so that the definition | |
78 | * remains local to this file. | |
79 | */ | |
80 | #define CREATE_TRACE_POINTS | |
81 | #include <trace/events/writeback.h> | |
82 | ||
83 | EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); | |
84 | ||
85 | static bool wb_io_lists_populated(struct bdi_writeback *wb) | |
86 | { | |
87 | if (wb_has_dirty_io(wb)) { | |
88 | return false; | |
89 | } else { | |
90 | set_bit(WB_has_dirty_io, &wb->state); | |
91 | WARN_ON_ONCE(!wb->avg_write_bandwidth); | |
92 | atomic_long_add(wb->avg_write_bandwidth, | |
93 | &wb->bdi->tot_write_bandwidth); | |
94 | return true; | |
95 | } | |
96 | } | |
97 | ||
98 | static void wb_io_lists_depopulated(struct bdi_writeback *wb) | |
99 | { | |
100 | if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && | |
101 | list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { | |
102 | clear_bit(WB_has_dirty_io, &wb->state); | |
103 | WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, | |
104 | &wb->bdi->tot_write_bandwidth) < 0); | |
105 | } | |
106 | } | |
107 | ||
108 | /** | |
109 | * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list | |
110 | * @inode: inode to be moved | |
111 | * @wb: target bdi_writeback | |
112 | * @head: one of @wb->b_{dirty|io|more_io|dirty_time} | |
113 | * | |
114 | * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. | |
115 | * Returns %true if @inode is the first occupant of the !dirty_time IO | |
116 | * lists; otherwise, %false. | |
117 | */ | |
118 | static bool inode_io_list_move_locked(struct inode *inode, | |
119 | struct bdi_writeback *wb, | |
120 | struct list_head *head) | |
121 | { | |
122 | assert_spin_locked(&wb->list_lock); | |
123 | assert_spin_locked(&inode->i_lock); | |
124 | WARN_ON_ONCE(inode->i_state & I_FREEING); | |
125 | ||
126 | list_move(&inode->i_io_list, head); | |
127 | ||
128 | /* dirty_time doesn't count as dirty_io until expiration */ | |
129 | if (head != &wb->b_dirty_time) | |
130 | return wb_io_lists_populated(wb); | |
131 | ||
132 | wb_io_lists_depopulated(wb); | |
133 | return false; | |
134 | } | |
135 | ||
136 | static void wb_wakeup(struct bdi_writeback *wb) | |
137 | { | |
138 | spin_lock_irq(&wb->work_lock); | |
139 | if (test_bit(WB_registered, &wb->state)) | |
140 | mod_delayed_work(bdi_wq, &wb->dwork, 0); | |
141 | spin_unlock_irq(&wb->work_lock); | |
142 | } | |
143 | ||
144 | /* | |
145 | * This function is used when the first inode for this wb is marked dirty. It | |
146 | * wakes-up the corresponding bdi thread which should then take care of the | |
147 | * periodic background write-out of dirty inodes. Since the write-out would | |
148 | * starts only 'dirty_writeback_interval' centisecs from now anyway, we just | |
149 | * set up a timer which wakes the bdi thread up later. | |
150 | * | |
151 | * Note, we wouldn't bother setting up the timer, but this function is on the | |
152 | * fast-path (used by '__mark_inode_dirty()'), so we save few context switches | |
153 | * by delaying the wake-up. | |
154 | * | |
155 | * We have to be careful not to postpone flush work if it is scheduled for | |
156 | * earlier. Thus we use queue_delayed_work(). | |
157 | */ | |
158 | static void wb_wakeup_delayed(struct bdi_writeback *wb) | |
159 | { | |
160 | unsigned long timeout; | |
161 | ||
162 | timeout = msecs_to_jiffies(dirty_writeback_interval * 10); | |
163 | spin_lock_irq(&wb->work_lock); | |
164 | if (test_bit(WB_registered, &wb->state)) | |
165 | queue_delayed_work(bdi_wq, &wb->dwork, timeout); | |
166 | spin_unlock_irq(&wb->work_lock); | |
167 | } | |
168 | ||
169 | static void finish_writeback_work(struct wb_writeback_work *work) | |
170 | { | |
171 | struct wb_completion *done = work->done; | |
172 | ||
173 | if (work->auto_free) | |
174 | kfree(work); | |
175 | if (done) { | |
176 | wait_queue_head_t *waitq = done->waitq; | |
177 | ||
178 | /* @done can't be accessed after the following dec */ | |
179 | if (atomic_dec_and_test(&done->cnt)) | |
180 | wake_up_all(waitq); | |
181 | } | |
182 | } | |
183 | ||
184 | static void wb_queue_work(struct bdi_writeback *wb, | |
185 | struct wb_writeback_work *work) | |
186 | { | |
187 | trace_writeback_queue(wb, work); | |
188 | ||
189 | if (work->done) | |
190 | atomic_inc(&work->done->cnt); | |
191 | ||
192 | spin_lock_irq(&wb->work_lock); | |
193 | ||
194 | if (test_bit(WB_registered, &wb->state)) { | |
195 | list_add_tail(&work->list, &wb->work_list); | |
196 | mod_delayed_work(bdi_wq, &wb->dwork, 0); | |
197 | } else | |
198 | finish_writeback_work(work); | |
199 | ||
200 | spin_unlock_irq(&wb->work_lock); | |
201 | } | |
202 | ||
203 | /** | |
204 | * wb_wait_for_completion - wait for completion of bdi_writeback_works | |
205 | * @done: target wb_completion | |
206 | * | |
207 | * Wait for one or more work items issued to @bdi with their ->done field | |
208 | * set to @done, which should have been initialized with | |
209 | * DEFINE_WB_COMPLETION(). This function returns after all such work items | |
210 | * are completed. Work items which are waited upon aren't freed | |
211 | * automatically on completion. | |
212 | */ | |
213 | void wb_wait_for_completion(struct wb_completion *done) | |
214 | { | |
215 | atomic_dec(&done->cnt); /* put down the initial count */ | |
216 | wait_event(*done->waitq, !atomic_read(&done->cnt)); | |
217 | } | |
218 | ||
219 | #ifdef CONFIG_CGROUP_WRITEBACK | |
220 | ||
221 | /* | |
222 | * Parameters for foreign inode detection, see wbc_detach_inode() to see | |
223 | * how they're used. | |
224 | * | |
225 | * These paramters are inherently heuristical as the detection target | |
226 | * itself is fuzzy. All we want to do is detaching an inode from the | |
227 | * current owner if it's being written to by some other cgroups too much. | |
228 | * | |
229 | * The current cgroup writeback is built on the assumption that multiple | |
230 | * cgroups writing to the same inode concurrently is very rare and a mode | |
231 | * of operation which isn't well supported. As such, the goal is not | |
232 | * taking too long when a different cgroup takes over an inode while | |
233 | * avoiding too aggressive flip-flops from occasional foreign writes. | |
234 | * | |
235 | * We record, very roughly, 2s worth of IO time history and if more than | |
236 | * half of that is foreign, trigger the switch. The recording is quantized | |
237 | * to 16 slots. To avoid tiny writes from swinging the decision too much, | |
238 | * writes smaller than 1/8 of avg size are ignored. | |
239 | */ | |
240 | #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ | |
241 | #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ | |
242 | #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ | |
243 | #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ | |
244 | ||
245 | #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ | |
246 | #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) | |
247 | /* each slot's duration is 2s / 16 */ | |
248 | #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) | |
249 | /* if foreign slots >= 8, switch */ | |
250 | #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) | |
251 | /* one round can affect upto 5 slots */ | |
252 | #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ | |
253 | ||
254 | /* | |
255 | * Maximum inodes per isw. A specific value has been chosen to make | |
256 | * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. | |
257 | */ | |
258 | #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ | |
259 | / sizeof(struct inode *)) | |
260 | ||
261 | static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); | |
262 | static struct workqueue_struct *isw_wq; | |
263 | ||
264 | void __inode_attach_wb(struct inode *inode, struct folio *folio) | |
265 | { | |
266 | struct backing_dev_info *bdi = inode_to_bdi(inode); | |
267 | struct bdi_writeback *wb = NULL; | |
268 | ||
269 | if (inode_cgwb_enabled(inode)) { | |
270 | struct cgroup_subsys_state *memcg_css; | |
271 | ||
272 | if (folio) { | |
273 | memcg_css = mem_cgroup_css_from_folio(folio); | |
274 | wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); | |
275 | } else { | |
276 | /* must pin memcg_css, see wb_get_create() */ | |
277 | memcg_css = task_get_css(current, memory_cgrp_id); | |
278 | wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); | |
279 | css_put(memcg_css); | |
280 | } | |
281 | } | |
282 | ||
283 | if (!wb) | |
284 | wb = &bdi->wb; | |
285 | ||
286 | /* | |
287 | * There may be multiple instances of this function racing to | |
288 | * update the same inode. Use cmpxchg() to tell the winner. | |
289 | */ | |
290 | if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) | |
291 | wb_put(wb); | |
292 | } | |
293 | ||
294 | /** | |
295 | * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list | |
296 | * @inode: inode of interest with i_lock held | |
297 | * @wb: target bdi_writeback | |
298 | * | |
299 | * Remove the inode from wb's io lists and if necessarily put onto b_attached | |
300 | * list. Only inodes attached to cgwb's are kept on this list. | |
301 | */ | |
302 | static void inode_cgwb_move_to_attached(struct inode *inode, | |
303 | struct bdi_writeback *wb) | |
304 | { | |
305 | assert_spin_locked(&wb->list_lock); | |
306 | assert_spin_locked(&inode->i_lock); | |
307 | WARN_ON_ONCE(inode->i_state & I_FREEING); | |
308 | ||
309 | inode->i_state &= ~I_SYNC_QUEUED; | |
310 | if (wb != &wb->bdi->wb) | |
311 | list_move(&inode->i_io_list, &wb->b_attached); | |
312 | else | |
313 | list_del_init(&inode->i_io_list); | |
314 | wb_io_lists_depopulated(wb); | |
315 | } | |
316 | ||
317 | /** | |
318 | * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it | |
319 | * @inode: inode of interest with i_lock held | |
320 | * | |
321 | * Returns @inode's wb with its list_lock held. @inode->i_lock must be | |
322 | * held on entry and is released on return. The returned wb is guaranteed | |
323 | * to stay @inode's associated wb until its list_lock is released. | |
324 | */ | |
325 | static struct bdi_writeback * | |
326 | locked_inode_to_wb_and_lock_list(struct inode *inode) | |
327 | __releases(&inode->i_lock) | |
328 | __acquires(&wb->list_lock) | |
329 | { | |
330 | while (true) { | |
331 | struct bdi_writeback *wb = inode_to_wb(inode); | |
332 | ||
333 | /* | |
334 | * inode_to_wb() association is protected by both | |
335 | * @inode->i_lock and @wb->list_lock but list_lock nests | |
336 | * outside i_lock. Drop i_lock and verify that the | |
337 | * association hasn't changed after acquiring list_lock. | |
338 | */ | |
339 | wb_get(wb); | |
340 | spin_unlock(&inode->i_lock); | |
341 | spin_lock(&wb->list_lock); | |
342 | ||
343 | /* i_wb may have changed inbetween, can't use inode_to_wb() */ | |
344 | if (likely(wb == inode->i_wb)) { | |
345 | wb_put(wb); /* @inode already has ref */ | |
346 | return wb; | |
347 | } | |
348 | ||
349 | spin_unlock(&wb->list_lock); | |
350 | wb_put(wb); | |
351 | cpu_relax(); | |
352 | spin_lock(&inode->i_lock); | |
353 | } | |
354 | } | |
355 | ||
356 | /** | |
357 | * inode_to_wb_and_lock_list - determine an inode's wb and lock it | |
358 | * @inode: inode of interest | |
359 | * | |
360 | * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held | |
361 | * on entry. | |
362 | */ | |
363 | static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) | |
364 | __acquires(&wb->list_lock) | |
365 | { | |
366 | spin_lock(&inode->i_lock); | |
367 | return locked_inode_to_wb_and_lock_list(inode); | |
368 | } | |
369 | ||
370 | struct inode_switch_wbs_context { | |
371 | struct rcu_work work; | |
372 | ||
373 | /* | |
374 | * Multiple inodes can be switched at once. The switching procedure | |
375 | * consists of two parts, separated by a RCU grace period. To make | |
376 | * sure that the second part is executed for each inode gone through | |
377 | * the first part, all inode pointers are placed into a NULL-terminated | |
378 | * array embedded into struct inode_switch_wbs_context. Otherwise | |
379 | * an inode could be left in a non-consistent state. | |
380 | */ | |
381 | struct bdi_writeback *new_wb; | |
382 | struct inode *inodes[]; | |
383 | }; | |
384 | ||
385 | static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) | |
386 | { | |
387 | down_write(&bdi->wb_switch_rwsem); | |
388 | } | |
389 | ||
390 | static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) | |
391 | { | |
392 | up_write(&bdi->wb_switch_rwsem); | |
393 | } | |
394 | ||
395 | static bool inode_do_switch_wbs(struct inode *inode, | |
396 | struct bdi_writeback *old_wb, | |
397 | struct bdi_writeback *new_wb) | |
398 | { | |
399 | struct address_space *mapping = inode->i_mapping; | |
400 | XA_STATE(xas, &mapping->i_pages, 0); | |
401 | struct folio *folio; | |
402 | bool switched = false; | |
403 | ||
404 | spin_lock(&inode->i_lock); | |
405 | xa_lock_irq(&mapping->i_pages); | |
406 | ||
407 | /* | |
408 | * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction | |
409 | * path owns the inode and we shouldn't modify ->i_io_list. | |
410 | */ | |
411 | if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) | |
412 | goto skip_switch; | |
413 | ||
414 | trace_inode_switch_wbs(inode, old_wb, new_wb); | |
415 | ||
416 | /* | |
417 | * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points | |
418 | * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to | |
419 | * folios actually under writeback. | |
420 | */ | |
421 | xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) { | |
422 | if (folio_test_dirty(folio)) { | |
423 | long nr = folio_nr_pages(folio); | |
424 | wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr); | |
425 | wb_stat_mod(new_wb, WB_RECLAIMABLE, nr); | |
426 | } | |
427 | } | |
428 | ||
429 | xas_set(&xas, 0); | |
430 | xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { | |
431 | long nr = folio_nr_pages(folio); | |
432 | WARN_ON_ONCE(!folio_test_writeback(folio)); | |
433 | wb_stat_mod(old_wb, WB_WRITEBACK, -nr); | |
434 | wb_stat_mod(new_wb, WB_WRITEBACK, nr); | |
435 | } | |
436 | ||
437 | if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { | |
438 | atomic_dec(&old_wb->writeback_inodes); | |
439 | atomic_inc(&new_wb->writeback_inodes); | |
440 | } | |
441 | ||
442 | wb_get(new_wb); | |
443 | ||
444 | /* | |
445 | * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, | |
446 | * the specific list @inode was on is ignored and the @inode is put on | |
447 | * ->b_dirty which is always correct including from ->b_dirty_time. | |
448 | * The transfer preserves @inode->dirtied_when ordering. If the @inode | |
449 | * was clean, it means it was on the b_attached list, so move it onto | |
450 | * the b_attached list of @new_wb. | |
451 | */ | |
452 | if (!list_empty(&inode->i_io_list)) { | |
453 | inode->i_wb = new_wb; | |
454 | ||
455 | if (inode->i_state & I_DIRTY_ALL) { | |
456 | struct inode *pos; | |
457 | ||
458 | list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) | |
459 | if (time_after_eq(inode->dirtied_when, | |
460 | pos->dirtied_when)) | |
461 | break; | |
462 | inode_io_list_move_locked(inode, new_wb, | |
463 | pos->i_io_list.prev); | |
464 | } else { | |
465 | inode_cgwb_move_to_attached(inode, new_wb); | |
466 | } | |
467 | } else { | |
468 | inode->i_wb = new_wb; | |
469 | } | |
470 | ||
471 | /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ | |
472 | inode->i_wb_frn_winner = 0; | |
473 | inode->i_wb_frn_avg_time = 0; | |
474 | inode->i_wb_frn_history = 0; | |
475 | switched = true; | |
476 | skip_switch: | |
477 | /* | |
478 | * Paired with load_acquire in unlocked_inode_to_wb_begin() and | |
479 | * ensures that the new wb is visible if they see !I_WB_SWITCH. | |
480 | */ | |
481 | smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); | |
482 | ||
483 | xa_unlock_irq(&mapping->i_pages); | |
484 | spin_unlock(&inode->i_lock); | |
485 | ||
486 | return switched; | |
487 | } | |
488 | ||
489 | static void inode_switch_wbs_work_fn(struct work_struct *work) | |
490 | { | |
491 | struct inode_switch_wbs_context *isw = | |
492 | container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); | |
493 | struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); | |
494 | struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; | |
495 | struct bdi_writeback *new_wb = isw->new_wb; | |
496 | unsigned long nr_switched = 0; | |
497 | struct inode **inodep; | |
498 | ||
499 | /* | |
500 | * If @inode switches cgwb membership while sync_inodes_sb() is | |
501 | * being issued, sync_inodes_sb() might miss it. Synchronize. | |
502 | */ | |
503 | down_read(&bdi->wb_switch_rwsem); | |
504 | ||
505 | /* | |
506 | * By the time control reaches here, RCU grace period has passed | |
507 | * since I_WB_SWITCH assertion and all wb stat update transactions | |
508 | * between unlocked_inode_to_wb_begin/end() are guaranteed to be | |
509 | * synchronizing against the i_pages lock. | |
510 | * | |
511 | * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock | |
512 | * gives us exclusion against all wb related operations on @inode | |
513 | * including IO list manipulations and stat updates. | |
514 | */ | |
515 | if (old_wb < new_wb) { | |
516 | spin_lock(&old_wb->list_lock); | |
517 | spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); | |
518 | } else { | |
519 | spin_lock(&new_wb->list_lock); | |
520 | spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); | |
521 | } | |
522 | ||
523 | for (inodep = isw->inodes; *inodep; inodep++) { | |
524 | WARN_ON_ONCE((*inodep)->i_wb != old_wb); | |
525 | if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) | |
526 | nr_switched++; | |
527 | } | |
528 | ||
529 | spin_unlock(&new_wb->list_lock); | |
530 | spin_unlock(&old_wb->list_lock); | |
531 | ||
532 | up_read(&bdi->wb_switch_rwsem); | |
533 | ||
534 | if (nr_switched) { | |
535 | wb_wakeup(new_wb); | |
536 | wb_put_many(old_wb, nr_switched); | |
537 | } | |
538 | ||
539 | for (inodep = isw->inodes; *inodep; inodep++) | |
540 | iput(*inodep); | |
541 | wb_put(new_wb); | |
542 | kfree(isw); | |
543 | atomic_dec(&isw_nr_in_flight); | |
544 | } | |
545 | ||
546 | static bool inode_prepare_wbs_switch(struct inode *inode, | |
547 | struct bdi_writeback *new_wb) | |
548 | { | |
549 | /* | |
550 | * Paired with smp_mb() in cgroup_writeback_umount(). | |
551 | * isw_nr_in_flight must be increased before checking SB_ACTIVE and | |
552 | * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 | |
553 | * in cgroup_writeback_umount() and the isw_wq will be not flushed. | |
554 | */ | |
555 | smp_mb(); | |
556 | ||
557 | if (IS_DAX(inode)) | |
558 | return false; | |
559 | ||
560 | /* while holding I_WB_SWITCH, no one else can update the association */ | |
561 | spin_lock(&inode->i_lock); | |
562 | if (!(inode->i_sb->s_flags & SB_ACTIVE) || | |
563 | inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || | |
564 | inode_to_wb(inode) == new_wb) { | |
565 | spin_unlock(&inode->i_lock); | |
566 | return false; | |
567 | } | |
568 | inode->i_state |= I_WB_SWITCH; | |
569 | __iget(inode); | |
570 | spin_unlock(&inode->i_lock); | |
571 | ||
572 | return true; | |
573 | } | |
574 | ||
575 | /** | |
576 | * inode_switch_wbs - change the wb association of an inode | |
577 | * @inode: target inode | |
578 | * @new_wb_id: ID of the new wb | |
579 | * | |
580 | * Switch @inode's wb association to the wb identified by @new_wb_id. The | |
581 | * switching is performed asynchronously and may fail silently. | |
582 | */ | |
583 | static void inode_switch_wbs(struct inode *inode, int new_wb_id) | |
584 | { | |
585 | struct backing_dev_info *bdi = inode_to_bdi(inode); | |
586 | struct cgroup_subsys_state *memcg_css; | |
587 | struct inode_switch_wbs_context *isw; | |
588 | ||
589 | /* noop if seems to be already in progress */ | |
590 | if (inode->i_state & I_WB_SWITCH) | |
591 | return; | |
592 | ||
593 | /* avoid queueing a new switch if too many are already in flight */ | |
594 | if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) | |
595 | return; | |
596 | ||
597 | isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC); | |
598 | if (!isw) | |
599 | return; | |
600 | ||
601 | atomic_inc(&isw_nr_in_flight); | |
602 | ||
603 | /* find and pin the new wb */ | |
604 | rcu_read_lock(); | |
605 | memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); | |
606 | if (memcg_css && !css_tryget(memcg_css)) | |
607 | memcg_css = NULL; | |
608 | rcu_read_unlock(); | |
609 | if (!memcg_css) | |
610 | goto out_free; | |
611 | ||
612 | isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); | |
613 | css_put(memcg_css); | |
614 | if (!isw->new_wb) | |
615 | goto out_free; | |
616 | ||
617 | if (!inode_prepare_wbs_switch(inode, isw->new_wb)) | |
618 | goto out_free; | |
619 | ||
620 | isw->inodes[0] = inode; | |
621 | ||
622 | /* | |
623 | * In addition to synchronizing among switchers, I_WB_SWITCH tells | |
624 | * the RCU protected stat update paths to grab the i_page | |
625 | * lock so that stat transfer can synchronize against them. | |
626 | * Let's continue after I_WB_SWITCH is guaranteed to be visible. | |
627 | */ | |
628 | INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); | |
629 | queue_rcu_work(isw_wq, &isw->work); | |
630 | return; | |
631 | ||
632 | out_free: | |
633 | atomic_dec(&isw_nr_in_flight); | |
634 | if (isw->new_wb) | |
635 | wb_put(isw->new_wb); | |
636 | kfree(isw); | |
637 | } | |
638 | ||
639 | static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw, | |
640 | struct list_head *list, int *nr) | |
641 | { | |
642 | struct inode *inode; | |
643 | ||
644 | list_for_each_entry(inode, list, i_io_list) { | |
645 | if (!inode_prepare_wbs_switch(inode, isw->new_wb)) | |
646 | continue; | |
647 | ||
648 | isw->inodes[*nr] = inode; | |
649 | (*nr)++; | |
650 | ||
651 | if (*nr >= WB_MAX_INODES_PER_ISW - 1) | |
652 | return true; | |
653 | } | |
654 | return false; | |
655 | } | |
656 | ||
657 | /** | |
658 | * cleanup_offline_cgwb - detach associated inodes | |
659 | * @wb: target wb | |
660 | * | |
661 | * Switch all inodes attached to @wb to a nearest living ancestor's wb in order | |
662 | * to eventually release the dying @wb. Returns %true if not all inodes were | |
663 | * switched and the function has to be restarted. | |
664 | */ | |
665 | bool cleanup_offline_cgwb(struct bdi_writeback *wb) | |
666 | { | |
667 | struct cgroup_subsys_state *memcg_css; | |
668 | struct inode_switch_wbs_context *isw; | |
669 | int nr; | |
670 | bool restart = false; | |
671 | ||
672 | isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW), | |
673 | GFP_KERNEL); | |
674 | if (!isw) | |
675 | return restart; | |
676 | ||
677 | atomic_inc(&isw_nr_in_flight); | |
678 | ||
679 | for (memcg_css = wb->memcg_css->parent; memcg_css; | |
680 | memcg_css = memcg_css->parent) { | |
681 | isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); | |
682 | if (isw->new_wb) | |
683 | break; | |
684 | } | |
685 | if (unlikely(!isw->new_wb)) | |
686 | isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ | |
687 | ||
688 | nr = 0; | |
689 | spin_lock(&wb->list_lock); | |
690 | /* | |
691 | * In addition to the inodes that have completed writeback, also switch | |
692 | * cgwbs for those inodes only with dirty timestamps. Otherwise, those | |
693 | * inodes won't be written back for a long time when lazytime is | |
694 | * enabled, and thus pinning the dying cgwbs. It won't break the | |
695 | * bandwidth restrictions, as writeback of inode metadata is not | |
696 | * accounted for. | |
697 | */ | |
698 | restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr); | |
699 | if (!restart) | |
700 | restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr); | |
701 | spin_unlock(&wb->list_lock); | |
702 | ||
703 | /* no attached inodes? bail out */ | |
704 | if (nr == 0) { | |
705 | atomic_dec(&isw_nr_in_flight); | |
706 | wb_put(isw->new_wb); | |
707 | kfree(isw); | |
708 | return restart; | |
709 | } | |
710 | ||
711 | /* | |
712 | * In addition to synchronizing among switchers, I_WB_SWITCH tells | |
713 | * the RCU protected stat update paths to grab the i_page | |
714 | * lock so that stat transfer can synchronize against them. | |
715 | * Let's continue after I_WB_SWITCH is guaranteed to be visible. | |
716 | */ | |
717 | INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); | |
718 | queue_rcu_work(isw_wq, &isw->work); | |
719 | ||
720 | return restart; | |
721 | } | |
722 | ||
723 | /** | |
724 | * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it | |
725 | * @wbc: writeback_control of interest | |
726 | * @inode: target inode | |
727 | * | |
728 | * @inode is locked and about to be written back under the control of @wbc. | |
729 | * Record @inode's writeback context into @wbc and unlock the i_lock. On | |
730 | * writeback completion, wbc_detach_inode() should be called. This is used | |
731 | * to track the cgroup writeback context. | |
732 | */ | |
733 | static void wbc_attach_and_unlock_inode(struct writeback_control *wbc, | |
734 | struct inode *inode) | |
735 | __releases(&inode->i_lock) | |
736 | { | |
737 | if (!inode_cgwb_enabled(inode)) { | |
738 | spin_unlock(&inode->i_lock); | |
739 | return; | |
740 | } | |
741 | ||
742 | wbc->wb = inode_to_wb(inode); | |
743 | wbc->inode = inode; | |
744 | ||
745 | wbc->wb_id = wbc->wb->memcg_css->id; | |
746 | wbc->wb_lcand_id = inode->i_wb_frn_winner; | |
747 | wbc->wb_tcand_id = 0; | |
748 | wbc->wb_bytes = 0; | |
749 | wbc->wb_lcand_bytes = 0; | |
750 | wbc->wb_tcand_bytes = 0; | |
751 | ||
752 | wb_get(wbc->wb); | |
753 | spin_unlock(&inode->i_lock); | |
754 | ||
755 | /* | |
756 | * A dying wb indicates that either the blkcg associated with the | |
757 | * memcg changed or the associated memcg is dying. In the first | |
758 | * case, a replacement wb should already be available and we should | |
759 | * refresh the wb immediately. In the second case, trying to | |
760 | * refresh will keep failing. | |
761 | */ | |
762 | if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) | |
763 | inode_switch_wbs(inode, wbc->wb_id); | |
764 | } | |
765 | ||
766 | /** | |
767 | * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite | |
768 | * @wbc: writeback_control of interest | |
769 | * @inode: target inode | |
770 | * | |
771 | * This function is to be used by __filemap_fdatawrite_range(), which is an | |
772 | * alternative entry point into writeback code, and first ensures @inode is | |
773 | * associated with a bdi_writeback and attaches it to @wbc. | |
774 | */ | |
775 | void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, | |
776 | struct inode *inode) | |
777 | { | |
778 | spin_lock(&inode->i_lock); | |
779 | inode_attach_wb(inode, NULL); | |
780 | wbc_attach_and_unlock_inode(wbc, inode); | |
781 | } | |
782 | EXPORT_SYMBOL_GPL(wbc_attach_fdatawrite_inode); | |
783 | ||
784 | /** | |
785 | * wbc_detach_inode - disassociate wbc from inode and perform foreign detection | |
786 | * @wbc: writeback_control of the just finished writeback | |
787 | * | |
788 | * To be called after a writeback attempt of an inode finishes and undoes | |
789 | * wbc_attach_and_unlock_inode(). Can be called under any context. | |
790 | * | |
791 | * As concurrent write sharing of an inode is expected to be very rare and | |
792 | * memcg only tracks page ownership on first-use basis severely confining | |
793 | * the usefulness of such sharing, cgroup writeback tracks ownership | |
794 | * per-inode. While the support for concurrent write sharing of an inode | |
795 | * is deemed unnecessary, an inode being written to by different cgroups at | |
796 | * different points in time is a lot more common, and, more importantly, | |
797 | * charging only by first-use can too readily lead to grossly incorrect | |
798 | * behaviors (single foreign page can lead to gigabytes of writeback to be | |
799 | * incorrectly attributed). | |
800 | * | |
801 | * To resolve this issue, cgroup writeback detects the majority dirtier of | |
802 | * an inode and transfers the ownership to it. To avoid unnecessary | |
803 | * oscillation, the detection mechanism keeps track of history and gives | |
804 | * out the switch verdict only if the foreign usage pattern is stable over | |
805 | * a certain amount of time and/or writeback attempts. | |
806 | * | |
807 | * On each writeback attempt, @wbc tries to detect the majority writer | |
808 | * using Boyer-Moore majority vote algorithm. In addition to the byte | |
809 | * count from the majority voting, it also counts the bytes written for the | |
810 | * current wb and the last round's winner wb (max of last round's current | |
811 | * wb, the winner from two rounds ago, and the last round's majority | |
812 | * candidate). Keeping track of the historical winner helps the algorithm | |
813 | * to semi-reliably detect the most active writer even when it's not the | |
814 | * absolute majority. | |
815 | * | |
816 | * Once the winner of the round is determined, whether the winner is | |
817 | * foreign or not and how much IO time the round consumed is recorded in | |
818 | * inode->i_wb_frn_history. If the amount of recorded foreign IO time is | |
819 | * over a certain threshold, the switch verdict is given. | |
820 | */ | |
821 | void wbc_detach_inode(struct writeback_control *wbc) | |
822 | { | |
823 | struct bdi_writeback *wb = wbc->wb; | |
824 | struct inode *inode = wbc->inode; | |
825 | unsigned long avg_time, max_bytes, max_time; | |
826 | u16 history; | |
827 | int max_id; | |
828 | ||
829 | if (!wb) | |
830 | return; | |
831 | ||
832 | history = inode->i_wb_frn_history; | |
833 | avg_time = inode->i_wb_frn_avg_time; | |
834 | ||
835 | /* pick the winner of this round */ | |
836 | if (wbc->wb_bytes >= wbc->wb_lcand_bytes && | |
837 | wbc->wb_bytes >= wbc->wb_tcand_bytes) { | |
838 | max_id = wbc->wb_id; | |
839 | max_bytes = wbc->wb_bytes; | |
840 | } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { | |
841 | max_id = wbc->wb_lcand_id; | |
842 | max_bytes = wbc->wb_lcand_bytes; | |
843 | } else { | |
844 | max_id = wbc->wb_tcand_id; | |
845 | max_bytes = wbc->wb_tcand_bytes; | |
846 | } | |
847 | ||
848 | /* | |
849 | * Calculate the amount of IO time the winner consumed and fold it | |
850 | * into the running average kept per inode. If the consumed IO | |
851 | * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for | |
852 | * deciding whether to switch or not. This is to prevent one-off | |
853 | * small dirtiers from skewing the verdict. | |
854 | */ | |
855 | max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, | |
856 | wb->avg_write_bandwidth); | |
857 | if (avg_time) | |
858 | avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - | |
859 | (avg_time >> WB_FRN_TIME_AVG_SHIFT); | |
860 | else | |
861 | avg_time = max_time; /* immediate catch up on first run */ | |
862 | ||
863 | if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { | |
864 | int slots; | |
865 | ||
866 | /* | |
867 | * The switch verdict is reached if foreign wb's consume | |
868 | * more than a certain proportion of IO time in a | |
869 | * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot | |
870 | * history mask where each bit represents one sixteenth of | |
871 | * the period. Determine the number of slots to shift into | |
872 | * history from @max_time. | |
873 | */ | |
874 | slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), | |
875 | (unsigned long)WB_FRN_HIST_MAX_SLOTS); | |
876 | history <<= slots; | |
877 | if (wbc->wb_id != max_id) | |
878 | history |= (1U << slots) - 1; | |
879 | ||
880 | if (history) | |
881 | trace_inode_foreign_history(inode, wbc, history); | |
882 | ||
883 | /* | |
884 | * Switch if the current wb isn't the consistent winner. | |
885 | * If there are multiple closely competing dirtiers, the | |
886 | * inode may switch across them repeatedly over time, which | |
887 | * is okay. The main goal is avoiding keeping an inode on | |
888 | * the wrong wb for an extended period of time. | |
889 | */ | |
890 | if (hweight16(history) > WB_FRN_HIST_THR_SLOTS) | |
891 | inode_switch_wbs(inode, max_id); | |
892 | } | |
893 | ||
894 | /* | |
895 | * Multiple instances of this function may race to update the | |
896 | * following fields but we don't mind occassional inaccuracies. | |
897 | */ | |
898 | inode->i_wb_frn_winner = max_id; | |
899 | inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); | |
900 | inode->i_wb_frn_history = history; | |
901 | ||
902 | wb_put(wbc->wb); | |
903 | wbc->wb = NULL; | |
904 | } | |
905 | EXPORT_SYMBOL_GPL(wbc_detach_inode); | |
906 | ||
907 | /** | |
908 | * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership | |
909 | * @wbc: writeback_control of the writeback in progress | |
910 | * @folio: folio being written out | |
911 | * @bytes: number of bytes being written out | |
912 | * | |
913 | * @bytes from @folio are about to written out during the writeback | |
914 | * controlled by @wbc. Keep the book for foreign inode detection. See | |
915 | * wbc_detach_inode(). | |
916 | */ | |
917 | void wbc_account_cgroup_owner(struct writeback_control *wbc, struct folio *folio, | |
918 | size_t bytes) | |
919 | { | |
920 | struct cgroup_subsys_state *css; | |
921 | int id; | |
922 | ||
923 | /* | |
924 | * pageout() path doesn't attach @wbc to the inode being written | |
925 | * out. This is intentional as we don't want the function to block | |
926 | * behind a slow cgroup. Ultimately, we want pageout() to kick off | |
927 | * regular writeback instead of writing things out itself. | |
928 | */ | |
929 | if (!wbc->wb || wbc->no_cgroup_owner) | |
930 | return; | |
931 | ||
932 | css = mem_cgroup_css_from_folio(folio); | |
933 | /* dead cgroups shouldn't contribute to inode ownership arbitration */ | |
934 | if (!(css->flags & CSS_ONLINE)) | |
935 | return; | |
936 | ||
937 | id = css->id; | |
938 | ||
939 | if (id == wbc->wb_id) { | |
940 | wbc->wb_bytes += bytes; | |
941 | return; | |
942 | } | |
943 | ||
944 | if (id == wbc->wb_lcand_id) | |
945 | wbc->wb_lcand_bytes += bytes; | |
946 | ||
947 | /* Boyer-Moore majority vote algorithm */ | |
948 | if (!wbc->wb_tcand_bytes) | |
949 | wbc->wb_tcand_id = id; | |
950 | if (id == wbc->wb_tcand_id) | |
951 | wbc->wb_tcand_bytes += bytes; | |
952 | else | |
953 | wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); | |
954 | } | |
955 | EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); | |
956 | ||
957 | /** | |
958 | * wb_split_bdi_pages - split nr_pages to write according to bandwidth | |
959 | * @wb: target bdi_writeback to split @nr_pages to | |
960 | * @nr_pages: number of pages to write for the whole bdi | |
961 | * | |
962 | * Split @wb's portion of @nr_pages according to @wb's write bandwidth in | |
963 | * relation to the total write bandwidth of all wb's w/ dirty inodes on | |
964 | * @wb->bdi. | |
965 | */ | |
966 | static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) | |
967 | { | |
968 | unsigned long this_bw = wb->avg_write_bandwidth; | |
969 | unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); | |
970 | ||
971 | if (nr_pages == LONG_MAX) | |
972 | return LONG_MAX; | |
973 | ||
974 | /* | |
975 | * This may be called on clean wb's and proportional distribution | |
976 | * may not make sense, just use the original @nr_pages in those | |
977 | * cases. In general, we wanna err on the side of writing more. | |
978 | */ | |
979 | if (!tot_bw || this_bw >= tot_bw) | |
980 | return nr_pages; | |
981 | else | |
982 | return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); | |
983 | } | |
984 | ||
985 | /** | |
986 | * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi | |
987 | * @bdi: target backing_dev_info | |
988 | * @base_work: wb_writeback_work to issue | |
989 | * @skip_if_busy: skip wb's which already have writeback in progress | |
990 | * | |
991 | * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which | |
992 | * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's | |
993 | * distributed to the busy wbs according to each wb's proportion in the | |
994 | * total active write bandwidth of @bdi. | |
995 | */ | |
996 | static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, | |
997 | struct wb_writeback_work *base_work, | |
998 | bool skip_if_busy) | |
999 | { | |
1000 | struct bdi_writeback *last_wb = NULL; | |
1001 | struct bdi_writeback *wb = list_entry(&bdi->wb_list, | |
1002 | struct bdi_writeback, bdi_node); | |
1003 | ||
1004 | might_sleep(); | |
1005 | restart: | |
1006 | rcu_read_lock(); | |
1007 | list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { | |
1008 | DEFINE_WB_COMPLETION(fallback_work_done, bdi); | |
1009 | struct wb_writeback_work fallback_work; | |
1010 | struct wb_writeback_work *work; | |
1011 | long nr_pages; | |
1012 | ||
1013 | if (last_wb) { | |
1014 | wb_put(last_wb); | |
1015 | last_wb = NULL; | |
1016 | } | |
1017 | ||
1018 | /* SYNC_ALL writes out I_DIRTY_TIME too */ | |
1019 | if (!wb_has_dirty_io(wb) && | |
1020 | (base_work->sync_mode == WB_SYNC_NONE || | |
1021 | list_empty(&wb->b_dirty_time))) | |
1022 | continue; | |
1023 | if (skip_if_busy && writeback_in_progress(wb)) | |
1024 | continue; | |
1025 | ||
1026 | nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); | |
1027 | ||
1028 | work = kmalloc(sizeof(*work), GFP_ATOMIC); | |
1029 | if (work) { | |
1030 | *work = *base_work; | |
1031 | work->nr_pages = nr_pages; | |
1032 | work->auto_free = 1; | |
1033 | wb_queue_work(wb, work); | |
1034 | continue; | |
1035 | } | |
1036 | ||
1037 | /* | |
1038 | * If wb_tryget fails, the wb has been shutdown, skip it. | |
1039 | * | |
1040 | * Pin @wb so that it stays on @bdi->wb_list. This allows | |
1041 | * continuing iteration from @wb after dropping and | |
1042 | * regrabbing rcu read lock. | |
1043 | */ | |
1044 | if (!wb_tryget(wb)) | |
1045 | continue; | |
1046 | ||
1047 | /* alloc failed, execute synchronously using on-stack fallback */ | |
1048 | work = &fallback_work; | |
1049 | *work = *base_work; | |
1050 | work->nr_pages = nr_pages; | |
1051 | work->auto_free = 0; | |
1052 | work->done = &fallback_work_done; | |
1053 | ||
1054 | wb_queue_work(wb, work); | |
1055 | last_wb = wb; | |
1056 | ||
1057 | rcu_read_unlock(); | |
1058 | wb_wait_for_completion(&fallback_work_done); | |
1059 | goto restart; | |
1060 | } | |
1061 | rcu_read_unlock(); | |
1062 | ||
1063 | if (last_wb) | |
1064 | wb_put(last_wb); | |
1065 | } | |
1066 | ||
1067 | /** | |
1068 | * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs | |
1069 | * @bdi_id: target bdi id | |
1070 | * @memcg_id: target memcg css id | |
1071 | * @reason: reason why some writeback work initiated | |
1072 | * @done: target wb_completion | |
1073 | * | |
1074 | * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id | |
1075 | * with the specified parameters. | |
1076 | */ | |
1077 | int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, | |
1078 | enum wb_reason reason, struct wb_completion *done) | |
1079 | { | |
1080 | struct backing_dev_info *bdi; | |
1081 | struct cgroup_subsys_state *memcg_css; | |
1082 | struct bdi_writeback *wb; | |
1083 | struct wb_writeback_work *work; | |
1084 | unsigned long dirty; | |
1085 | int ret; | |
1086 | ||
1087 | /* lookup bdi and memcg */ | |
1088 | bdi = bdi_get_by_id(bdi_id); | |
1089 | if (!bdi) | |
1090 | return -ENOENT; | |
1091 | ||
1092 | rcu_read_lock(); | |
1093 | memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); | |
1094 | if (memcg_css && !css_tryget(memcg_css)) | |
1095 | memcg_css = NULL; | |
1096 | rcu_read_unlock(); | |
1097 | if (!memcg_css) { | |
1098 | ret = -ENOENT; | |
1099 | goto out_bdi_put; | |
1100 | } | |
1101 | ||
1102 | /* | |
1103 | * And find the associated wb. If the wb isn't there already | |
1104 | * there's nothing to flush, don't create one. | |
1105 | */ | |
1106 | wb = wb_get_lookup(bdi, memcg_css); | |
1107 | if (!wb) { | |
1108 | ret = -ENOENT; | |
1109 | goto out_css_put; | |
1110 | } | |
1111 | ||
1112 | /* | |
1113 | * The caller is attempting to write out most of | |
1114 | * the currently dirty pages. Let's take the current dirty page | |
1115 | * count and inflate it by 25% which should be large enough to | |
1116 | * flush out most dirty pages while avoiding getting livelocked by | |
1117 | * concurrent dirtiers. | |
1118 | * | |
1119 | * BTW the memcg stats are flushed periodically and this is best-effort | |
1120 | * estimation, so some potential error is ok. | |
1121 | */ | |
1122 | dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); | |
1123 | dirty = dirty * 10 / 8; | |
1124 | ||
1125 | /* issue the writeback work */ | |
1126 | work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); | |
1127 | if (work) { | |
1128 | work->nr_pages = dirty; | |
1129 | work->sync_mode = WB_SYNC_NONE; | |
1130 | work->range_cyclic = 1; | |
1131 | work->reason = reason; | |
1132 | work->done = done; | |
1133 | work->auto_free = 1; | |
1134 | wb_queue_work(wb, work); | |
1135 | ret = 0; | |
1136 | } else { | |
1137 | ret = -ENOMEM; | |
1138 | } | |
1139 | ||
1140 | wb_put(wb); | |
1141 | out_css_put: | |
1142 | css_put(memcg_css); | |
1143 | out_bdi_put: | |
1144 | bdi_put(bdi); | |
1145 | return ret; | |
1146 | } | |
1147 | ||
1148 | /** | |
1149 | * cgroup_writeback_umount - flush inode wb switches for umount | |
1150 | * @sb: target super_block | |
1151 | * | |
1152 | * This function is called when a super_block is about to be destroyed and | |
1153 | * flushes in-flight inode wb switches. An inode wb switch goes through | |
1154 | * RCU and then workqueue, so the two need to be flushed in order to ensure | |
1155 | * that all previously scheduled switches are finished. As wb switches are | |
1156 | * rare occurrences and synchronize_rcu() can take a while, perform | |
1157 | * flushing iff wb switches are in flight. | |
1158 | */ | |
1159 | void cgroup_writeback_umount(struct super_block *sb) | |
1160 | { | |
1161 | ||
1162 | if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK)) | |
1163 | return; | |
1164 | ||
1165 | /* | |
1166 | * SB_ACTIVE should be reliably cleared before checking | |
1167 | * isw_nr_in_flight, see generic_shutdown_super(). | |
1168 | */ | |
1169 | smp_mb(); | |
1170 | ||
1171 | if (atomic_read(&isw_nr_in_flight)) { | |
1172 | /* | |
1173 | * Use rcu_barrier() to wait for all pending callbacks to | |
1174 | * ensure that all in-flight wb switches are in the workqueue. | |
1175 | */ | |
1176 | rcu_barrier(); | |
1177 | flush_workqueue(isw_wq); | |
1178 | } | |
1179 | } | |
1180 | ||
1181 | static int __init cgroup_writeback_init(void) | |
1182 | { | |
1183 | isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); | |
1184 | if (!isw_wq) | |
1185 | return -ENOMEM; | |
1186 | return 0; | |
1187 | } | |
1188 | fs_initcall(cgroup_writeback_init); | |
1189 | ||
1190 | #else /* CONFIG_CGROUP_WRITEBACK */ | |
1191 | ||
1192 | static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } | |
1193 | static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } | |
1194 | ||
1195 | static void inode_cgwb_move_to_attached(struct inode *inode, | |
1196 | struct bdi_writeback *wb) | |
1197 | { | |
1198 | assert_spin_locked(&wb->list_lock); | |
1199 | assert_spin_locked(&inode->i_lock); | |
1200 | WARN_ON_ONCE(inode->i_state & I_FREEING); | |
1201 | ||
1202 | inode->i_state &= ~I_SYNC_QUEUED; | |
1203 | list_del_init(&inode->i_io_list); | |
1204 | wb_io_lists_depopulated(wb); | |
1205 | } | |
1206 | ||
1207 | static struct bdi_writeback * | |
1208 | locked_inode_to_wb_and_lock_list(struct inode *inode) | |
1209 | __releases(&inode->i_lock) | |
1210 | __acquires(&wb->list_lock) | |
1211 | { | |
1212 | struct bdi_writeback *wb = inode_to_wb(inode); | |
1213 | ||
1214 | spin_unlock(&inode->i_lock); | |
1215 | spin_lock(&wb->list_lock); | |
1216 | return wb; | |
1217 | } | |
1218 | ||
1219 | static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) | |
1220 | __acquires(&wb->list_lock) | |
1221 | { | |
1222 | struct bdi_writeback *wb = inode_to_wb(inode); | |
1223 | ||
1224 | spin_lock(&wb->list_lock); | |
1225 | return wb; | |
1226 | } | |
1227 | ||
1228 | static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) | |
1229 | { | |
1230 | return nr_pages; | |
1231 | } | |
1232 | ||
1233 | static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, | |
1234 | struct wb_writeback_work *base_work, | |
1235 | bool skip_if_busy) | |
1236 | { | |
1237 | might_sleep(); | |
1238 | ||
1239 | if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { | |
1240 | base_work->auto_free = 0; | |
1241 | wb_queue_work(&bdi->wb, base_work); | |
1242 | } | |
1243 | } | |
1244 | ||
1245 | static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc, | |
1246 | struct inode *inode) | |
1247 | __releases(&inode->i_lock) | |
1248 | { | |
1249 | spin_unlock(&inode->i_lock); | |
1250 | } | |
1251 | ||
1252 | #endif /* CONFIG_CGROUP_WRITEBACK */ | |
1253 | ||
1254 | /* | |
1255 | * Add in the number of potentially dirty inodes, because each inode | |
1256 | * write can dirty pagecache in the underlying blockdev. | |
1257 | */ | |
1258 | static unsigned long get_nr_dirty_pages(void) | |
1259 | { | |
1260 | return global_node_page_state(NR_FILE_DIRTY) + | |
1261 | get_nr_dirty_inodes(); | |
1262 | } | |
1263 | ||
1264 | static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) | |
1265 | { | |
1266 | if (!wb_has_dirty_io(wb)) | |
1267 | return; | |
1268 | ||
1269 | /* | |
1270 | * All callers of this function want to start writeback of all | |
1271 | * dirty pages. Places like vmscan can call this at a very | |
1272 | * high frequency, causing pointless allocations of tons of | |
1273 | * work items and keeping the flusher threads busy retrieving | |
1274 | * that work. Ensure that we only allow one of them pending and | |
1275 | * inflight at the time. | |
1276 | */ | |
1277 | if (test_bit(WB_start_all, &wb->state) || | |
1278 | test_and_set_bit(WB_start_all, &wb->state)) | |
1279 | return; | |
1280 | ||
1281 | wb->start_all_reason = reason; | |
1282 | wb_wakeup(wb); | |
1283 | } | |
1284 | ||
1285 | /** | |
1286 | * wb_start_background_writeback - start background writeback | |
1287 | * @wb: bdi_writback to write from | |
1288 | * | |
1289 | * Description: | |
1290 | * This makes sure WB_SYNC_NONE background writeback happens. When | |
1291 | * this function returns, it is only guaranteed that for given wb | |
1292 | * some IO is happening if we are over background dirty threshold. | |
1293 | * Caller need not hold sb s_umount semaphore. | |
1294 | */ | |
1295 | void wb_start_background_writeback(struct bdi_writeback *wb) | |
1296 | { | |
1297 | /* | |
1298 | * We just wake up the flusher thread. It will perform background | |
1299 | * writeback as soon as there is no other work to do. | |
1300 | */ | |
1301 | trace_writeback_wake_background(wb); | |
1302 | wb_wakeup(wb); | |
1303 | } | |
1304 | ||
1305 | /* | |
1306 | * Remove the inode from the writeback list it is on. | |
1307 | */ | |
1308 | void inode_io_list_del(struct inode *inode) | |
1309 | { | |
1310 | struct bdi_writeback *wb; | |
1311 | ||
1312 | wb = inode_to_wb_and_lock_list(inode); | |
1313 | spin_lock(&inode->i_lock); | |
1314 | ||
1315 | inode->i_state &= ~I_SYNC_QUEUED; | |
1316 | list_del_init(&inode->i_io_list); | |
1317 | wb_io_lists_depopulated(wb); | |
1318 | ||
1319 | spin_unlock(&inode->i_lock); | |
1320 | spin_unlock(&wb->list_lock); | |
1321 | } | |
1322 | EXPORT_SYMBOL(inode_io_list_del); | |
1323 | ||
1324 | /* | |
1325 | * mark an inode as under writeback on the sb | |
1326 | */ | |
1327 | void sb_mark_inode_writeback(struct inode *inode) | |
1328 | { | |
1329 | struct super_block *sb = inode->i_sb; | |
1330 | unsigned long flags; | |
1331 | ||
1332 | if (list_empty(&inode->i_wb_list)) { | |
1333 | spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); | |
1334 | if (list_empty(&inode->i_wb_list)) { | |
1335 | list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); | |
1336 | trace_sb_mark_inode_writeback(inode); | |
1337 | } | |
1338 | spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); | |
1339 | } | |
1340 | } | |
1341 | ||
1342 | /* | |
1343 | * clear an inode as under writeback on the sb | |
1344 | */ | |
1345 | void sb_clear_inode_writeback(struct inode *inode) | |
1346 | { | |
1347 | struct super_block *sb = inode->i_sb; | |
1348 | unsigned long flags; | |
1349 | ||
1350 | if (!list_empty(&inode->i_wb_list)) { | |
1351 | spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); | |
1352 | if (!list_empty(&inode->i_wb_list)) { | |
1353 | list_del_init(&inode->i_wb_list); | |
1354 | trace_sb_clear_inode_writeback(inode); | |
1355 | } | |
1356 | spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); | |
1357 | } | |
1358 | } | |
1359 | ||
1360 | /* | |
1361 | * Redirty an inode: set its when-it-was dirtied timestamp and move it to the | |
1362 | * furthest end of its superblock's dirty-inode list. | |
1363 | * | |
1364 | * Before stamping the inode's ->dirtied_when, we check to see whether it is | |
1365 | * already the most-recently-dirtied inode on the b_dirty list. If that is | |
1366 | * the case then the inode must have been redirtied while it was being written | |
1367 | * out and we don't reset its dirtied_when. | |
1368 | */ | |
1369 | static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) | |
1370 | { | |
1371 | assert_spin_locked(&inode->i_lock); | |
1372 | ||
1373 | inode->i_state &= ~I_SYNC_QUEUED; | |
1374 | /* | |
1375 | * When the inode is being freed just don't bother with dirty list | |
1376 | * tracking. Flush worker will ignore this inode anyway and it will | |
1377 | * trigger assertions in inode_io_list_move_locked(). | |
1378 | */ | |
1379 | if (inode->i_state & I_FREEING) { | |
1380 | list_del_init(&inode->i_io_list); | |
1381 | wb_io_lists_depopulated(wb); | |
1382 | return; | |
1383 | } | |
1384 | if (!list_empty(&wb->b_dirty)) { | |
1385 | struct inode *tail; | |
1386 | ||
1387 | tail = wb_inode(wb->b_dirty.next); | |
1388 | if (time_before(inode->dirtied_when, tail->dirtied_when)) | |
1389 | inode->dirtied_when = jiffies; | |
1390 | } | |
1391 | inode_io_list_move_locked(inode, wb, &wb->b_dirty); | |
1392 | } | |
1393 | ||
1394 | static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) | |
1395 | { | |
1396 | spin_lock(&inode->i_lock); | |
1397 | redirty_tail_locked(inode, wb); | |
1398 | spin_unlock(&inode->i_lock); | |
1399 | } | |
1400 | ||
1401 | /* | |
1402 | * requeue inode for re-scanning after bdi->b_io list is exhausted. | |
1403 | */ | |
1404 | static void requeue_io(struct inode *inode, struct bdi_writeback *wb) | |
1405 | { | |
1406 | inode_io_list_move_locked(inode, wb, &wb->b_more_io); | |
1407 | } | |
1408 | ||
1409 | static void inode_sync_complete(struct inode *inode) | |
1410 | { | |
1411 | assert_spin_locked(&inode->i_lock); | |
1412 | ||
1413 | inode->i_state &= ~I_SYNC; | |
1414 | /* If inode is clean an unused, put it into LRU now... */ | |
1415 | inode_add_lru(inode); | |
1416 | /* Called with inode->i_lock which ensures memory ordering. */ | |
1417 | inode_wake_up_bit(inode, __I_SYNC); | |
1418 | } | |
1419 | ||
1420 | static bool inode_dirtied_after(struct inode *inode, unsigned long t) | |
1421 | { | |
1422 | bool ret = time_after(inode->dirtied_when, t); | |
1423 | #ifndef CONFIG_64BIT | |
1424 | /* | |
1425 | * For inodes being constantly redirtied, dirtied_when can get stuck. | |
1426 | * It _appears_ to be in the future, but is actually in distant past. | |
1427 | * This test is necessary to prevent such wrapped-around relative times | |
1428 | * from permanently stopping the whole bdi writeback. | |
1429 | */ | |
1430 | ret = ret && time_before_eq(inode->dirtied_when, jiffies); | |
1431 | #endif | |
1432 | return ret; | |
1433 | } | |
1434 | ||
1435 | /* | |
1436 | * Move expired (dirtied before dirtied_before) dirty inodes from | |
1437 | * @delaying_queue to @dispatch_queue. | |
1438 | */ | |
1439 | static int move_expired_inodes(struct list_head *delaying_queue, | |
1440 | struct list_head *dispatch_queue, | |
1441 | unsigned long dirtied_before) | |
1442 | { | |
1443 | LIST_HEAD(tmp); | |
1444 | struct list_head *pos, *node; | |
1445 | struct super_block *sb = NULL; | |
1446 | struct inode *inode; | |
1447 | int do_sb_sort = 0; | |
1448 | int moved = 0; | |
1449 | ||
1450 | while (!list_empty(delaying_queue)) { | |
1451 | inode = wb_inode(delaying_queue->prev); | |
1452 | if (inode_dirtied_after(inode, dirtied_before)) | |
1453 | break; | |
1454 | spin_lock(&inode->i_lock); | |
1455 | list_move(&inode->i_io_list, &tmp); | |
1456 | moved++; | |
1457 | inode->i_state |= I_SYNC_QUEUED; | |
1458 | spin_unlock(&inode->i_lock); | |
1459 | if (sb_is_blkdev_sb(inode->i_sb)) | |
1460 | continue; | |
1461 | if (sb && sb != inode->i_sb) | |
1462 | do_sb_sort = 1; | |
1463 | sb = inode->i_sb; | |
1464 | } | |
1465 | ||
1466 | /* just one sb in list, splice to dispatch_queue and we're done */ | |
1467 | if (!do_sb_sort) { | |
1468 | list_splice(&tmp, dispatch_queue); | |
1469 | goto out; | |
1470 | } | |
1471 | ||
1472 | /* | |
1473 | * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue', | |
1474 | * we don't take inode->i_lock here because it is just a pointless overhead. | |
1475 | * Inode is already marked as I_SYNC_QUEUED so writeback list handling is | |
1476 | * fully under our control. | |
1477 | */ | |
1478 | while (!list_empty(&tmp)) { | |
1479 | sb = wb_inode(tmp.prev)->i_sb; | |
1480 | list_for_each_prev_safe(pos, node, &tmp) { | |
1481 | inode = wb_inode(pos); | |
1482 | if (inode->i_sb == sb) | |
1483 | list_move(&inode->i_io_list, dispatch_queue); | |
1484 | } | |
1485 | } | |
1486 | out: | |
1487 | return moved; | |
1488 | } | |
1489 | ||
1490 | /* | |
1491 | * Queue all expired dirty inodes for io, eldest first. | |
1492 | * Before | |
1493 | * newly dirtied b_dirty b_io b_more_io | |
1494 | * =============> gf edc BA | |
1495 | * After | |
1496 | * newly dirtied b_dirty b_io b_more_io | |
1497 | * =============> g fBAedc | |
1498 | * | | |
1499 | * +--> dequeue for IO | |
1500 | */ | |
1501 | static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, | |
1502 | unsigned long dirtied_before) | |
1503 | { | |
1504 | int moved; | |
1505 | unsigned long time_expire_jif = dirtied_before; | |
1506 | ||
1507 | assert_spin_locked(&wb->list_lock); | |
1508 | list_splice_init(&wb->b_more_io, &wb->b_io); | |
1509 | moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); | |
1510 | if (!work->for_sync) | |
1511 | time_expire_jif = jiffies - dirtytime_expire_interval * HZ; | |
1512 | moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, | |
1513 | time_expire_jif); | |
1514 | if (moved) | |
1515 | wb_io_lists_populated(wb); | |
1516 | trace_writeback_queue_io(wb, work, dirtied_before, moved); | |
1517 | } | |
1518 | ||
1519 | static int write_inode(struct inode *inode, struct writeback_control *wbc) | |
1520 | { | |
1521 | int ret; | |
1522 | ||
1523 | if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { | |
1524 | trace_writeback_write_inode_start(inode, wbc); | |
1525 | ret = inode->i_sb->s_op->write_inode(inode, wbc); | |
1526 | trace_writeback_write_inode(inode, wbc); | |
1527 | return ret; | |
1528 | } | |
1529 | return 0; | |
1530 | } | |
1531 | ||
1532 | /* | |
1533 | * Wait for writeback on an inode to complete. Called with i_lock held. | |
1534 | * Caller must make sure inode cannot go away when we drop i_lock. | |
1535 | */ | |
1536 | void inode_wait_for_writeback(struct inode *inode) | |
1537 | { | |
1538 | struct wait_bit_queue_entry wqe; | |
1539 | struct wait_queue_head *wq_head; | |
1540 | ||
1541 | assert_spin_locked(&inode->i_lock); | |
1542 | ||
1543 | if (!(inode->i_state & I_SYNC)) | |
1544 | return; | |
1545 | ||
1546 | wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC); | |
1547 | for (;;) { | |
1548 | prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); | |
1549 | /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */ | |
1550 | if (!(inode->i_state & I_SYNC)) | |
1551 | break; | |
1552 | spin_unlock(&inode->i_lock); | |
1553 | schedule(); | |
1554 | spin_lock(&inode->i_lock); | |
1555 | } | |
1556 | finish_wait(wq_head, &wqe.wq_entry); | |
1557 | } | |
1558 | ||
1559 | /* | |
1560 | * Sleep until I_SYNC is cleared. This function must be called with i_lock | |
1561 | * held and drops it. It is aimed for callers not holding any inode reference | |
1562 | * so once i_lock is dropped, inode can go away. | |
1563 | */ | |
1564 | static void inode_sleep_on_writeback(struct inode *inode) | |
1565 | __releases(inode->i_lock) | |
1566 | { | |
1567 | struct wait_bit_queue_entry wqe; | |
1568 | struct wait_queue_head *wq_head; | |
1569 | bool sleep; | |
1570 | ||
1571 | assert_spin_locked(&inode->i_lock); | |
1572 | ||
1573 | wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC); | |
1574 | prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); | |
1575 | /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */ | |
1576 | sleep = !!(inode->i_state & I_SYNC); | |
1577 | spin_unlock(&inode->i_lock); | |
1578 | if (sleep) | |
1579 | schedule(); | |
1580 | finish_wait(wq_head, &wqe.wq_entry); | |
1581 | } | |
1582 | ||
1583 | /* | |
1584 | * Find proper writeback list for the inode depending on its current state and | |
1585 | * possibly also change of its state while we were doing writeback. Here we | |
1586 | * handle things such as livelock prevention or fairness of writeback among | |
1587 | * inodes. This function can be called only by flusher thread - noone else | |
1588 | * processes all inodes in writeback lists and requeueing inodes behind flusher | |
1589 | * thread's back can have unexpected consequences. | |
1590 | */ | |
1591 | static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, | |
1592 | struct writeback_control *wbc, | |
1593 | unsigned long dirtied_before) | |
1594 | { | |
1595 | if (inode->i_state & I_FREEING) | |
1596 | return; | |
1597 | ||
1598 | /* | |
1599 | * Sync livelock prevention. Each inode is tagged and synced in one | |
1600 | * shot. If still dirty, it will be redirty_tail()'ed below. Update | |
1601 | * the dirty time to prevent enqueue and sync it again. | |
1602 | */ | |
1603 | if ((inode->i_state & I_DIRTY) && | |
1604 | (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) | |
1605 | inode->dirtied_when = jiffies; | |
1606 | ||
1607 | if (wbc->pages_skipped) { | |
1608 | /* | |
1609 | * Writeback is not making progress due to locked buffers. | |
1610 | * Skip this inode for now. Although having skipped pages | |
1611 | * is odd for clean inodes, it can happen for some | |
1612 | * filesystems so handle that gracefully. | |
1613 | */ | |
1614 | if (inode->i_state & I_DIRTY_ALL) | |
1615 | redirty_tail_locked(inode, wb); | |
1616 | else | |
1617 | inode_cgwb_move_to_attached(inode, wb); | |
1618 | return; | |
1619 | } | |
1620 | ||
1621 | if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { | |
1622 | /* | |
1623 | * We didn't write back all the pages. nfs_writepages() | |
1624 | * sometimes bales out without doing anything. | |
1625 | */ | |
1626 | if (wbc->nr_to_write <= 0 && | |
1627 | !inode_dirtied_after(inode, dirtied_before)) { | |
1628 | /* Slice used up. Queue for next turn. */ | |
1629 | requeue_io(inode, wb); | |
1630 | } else { | |
1631 | /* | |
1632 | * Writeback blocked by something other than | |
1633 | * congestion. Delay the inode for some time to | |
1634 | * avoid spinning on the CPU (100% iowait) | |
1635 | * retrying writeback of the dirty page/inode | |
1636 | * that cannot be performed immediately. | |
1637 | */ | |
1638 | redirty_tail_locked(inode, wb); | |
1639 | } | |
1640 | } else if (inode->i_state & I_DIRTY) { | |
1641 | /* | |
1642 | * Filesystems can dirty the inode during writeback operations, | |
1643 | * such as delayed allocation during submission or metadata | |
1644 | * updates after data IO completion. | |
1645 | */ | |
1646 | redirty_tail_locked(inode, wb); | |
1647 | } else if (inode->i_state & I_DIRTY_TIME) { | |
1648 | inode->dirtied_when = jiffies; | |
1649 | inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); | |
1650 | inode->i_state &= ~I_SYNC_QUEUED; | |
1651 | } else { | |
1652 | /* The inode is clean. Remove from writeback lists. */ | |
1653 | inode_cgwb_move_to_attached(inode, wb); | |
1654 | } | |
1655 | } | |
1656 | ||
1657 | /* | |
1658 | * Write out an inode and its dirty pages (or some of its dirty pages, depending | |
1659 | * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. | |
1660 | * | |
1661 | * This doesn't remove the inode from the writeback list it is on, except | |
1662 | * potentially to move it from b_dirty_time to b_dirty due to timestamp | |
1663 | * expiration. The caller is otherwise responsible for writeback list handling. | |
1664 | * | |
1665 | * The caller is also responsible for setting the I_SYNC flag beforehand and | |
1666 | * calling inode_sync_complete() to clear it afterwards. | |
1667 | */ | |
1668 | static int | |
1669 | __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) | |
1670 | { | |
1671 | struct address_space *mapping = inode->i_mapping; | |
1672 | long nr_to_write = wbc->nr_to_write; | |
1673 | unsigned dirty; | |
1674 | int ret; | |
1675 | ||
1676 | WARN_ON(!(inode->i_state & I_SYNC)); | |
1677 | ||
1678 | trace_writeback_single_inode_start(inode, wbc, nr_to_write); | |
1679 | ||
1680 | ret = do_writepages(mapping, wbc); | |
1681 | ||
1682 | /* | |
1683 | * Make sure to wait on the data before writing out the metadata. | |
1684 | * This is important for filesystems that modify metadata on data | |
1685 | * I/O completion. We don't do it for sync(2) writeback because it has a | |
1686 | * separate, external IO completion path and ->sync_fs for guaranteeing | |
1687 | * inode metadata is written back correctly. | |
1688 | */ | |
1689 | if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { | |
1690 | int err = filemap_fdatawait(mapping); | |
1691 | if (ret == 0) | |
1692 | ret = err; | |
1693 | } | |
1694 | ||
1695 | /* | |
1696 | * If the inode has dirty timestamps and we need to write them, call | |
1697 | * mark_inode_dirty_sync() to notify the filesystem about it and to | |
1698 | * change I_DIRTY_TIME into I_DIRTY_SYNC. | |
1699 | */ | |
1700 | if ((inode->i_state & I_DIRTY_TIME) && | |
1701 | (wbc->sync_mode == WB_SYNC_ALL || | |
1702 | time_after(jiffies, inode->dirtied_time_when + | |
1703 | dirtytime_expire_interval * HZ))) { | |
1704 | trace_writeback_lazytime(inode); | |
1705 | mark_inode_dirty_sync(inode); | |
1706 | } | |
1707 | ||
1708 | /* | |
1709 | * Get and clear the dirty flags from i_state. This needs to be done | |
1710 | * after calling writepages because some filesystems may redirty the | |
1711 | * inode during writepages due to delalloc. It also needs to be done | |
1712 | * after handling timestamp expiration, as that may dirty the inode too. | |
1713 | */ | |
1714 | spin_lock(&inode->i_lock); | |
1715 | dirty = inode->i_state & I_DIRTY; | |
1716 | inode->i_state &= ~dirty; | |
1717 | ||
1718 | /* | |
1719 | * Paired with smp_mb() in __mark_inode_dirty(). This allows | |
1720 | * __mark_inode_dirty() to test i_state without grabbing i_lock - | |
1721 | * either they see the I_DIRTY bits cleared or we see the dirtied | |
1722 | * inode. | |
1723 | * | |
1724 | * I_DIRTY_PAGES is always cleared together above even if @mapping | |
1725 | * still has dirty pages. The flag is reinstated after smp_mb() if | |
1726 | * necessary. This guarantees that either __mark_inode_dirty() | |
1727 | * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. | |
1728 | */ | |
1729 | smp_mb(); | |
1730 | ||
1731 | if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) | |
1732 | inode->i_state |= I_DIRTY_PAGES; | |
1733 | else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) { | |
1734 | if (!(inode->i_state & I_DIRTY_PAGES)) { | |
1735 | inode->i_state &= ~I_PINNING_NETFS_WB; | |
1736 | wbc->unpinned_netfs_wb = true; | |
1737 | dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */ | |
1738 | } | |
1739 | } | |
1740 | ||
1741 | spin_unlock(&inode->i_lock); | |
1742 | ||
1743 | /* Don't write the inode if only I_DIRTY_PAGES was set */ | |
1744 | if (dirty & ~I_DIRTY_PAGES) { | |
1745 | int err = write_inode(inode, wbc); | |
1746 | if (ret == 0) | |
1747 | ret = err; | |
1748 | } | |
1749 | wbc->unpinned_netfs_wb = false; | |
1750 | trace_writeback_single_inode(inode, wbc, nr_to_write); | |
1751 | return ret; | |
1752 | } | |
1753 | ||
1754 | /* | |
1755 | * Write out an inode's dirty data and metadata on-demand, i.e. separately from | |
1756 | * the regular batched writeback done by the flusher threads in | |
1757 | * writeback_sb_inodes(). @wbc controls various aspects of the write, such as | |
1758 | * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). | |
1759 | * | |
1760 | * To prevent the inode from going away, either the caller must have a reference | |
1761 | * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. | |
1762 | */ | |
1763 | static int writeback_single_inode(struct inode *inode, | |
1764 | struct writeback_control *wbc) | |
1765 | { | |
1766 | struct bdi_writeback *wb; | |
1767 | int ret = 0; | |
1768 | ||
1769 | spin_lock(&inode->i_lock); | |
1770 | if (!atomic_read(&inode->i_count)) | |
1771 | WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); | |
1772 | else | |
1773 | WARN_ON(inode->i_state & I_WILL_FREE); | |
1774 | ||
1775 | if (inode->i_state & I_SYNC) { | |
1776 | /* | |
1777 | * Writeback is already running on the inode. For WB_SYNC_NONE, | |
1778 | * that's enough and we can just return. For WB_SYNC_ALL, we | |
1779 | * must wait for the existing writeback to complete, then do | |
1780 | * writeback again if there's anything left. | |
1781 | */ | |
1782 | if (wbc->sync_mode != WB_SYNC_ALL) | |
1783 | goto out; | |
1784 | inode_wait_for_writeback(inode); | |
1785 | } | |
1786 | WARN_ON(inode->i_state & I_SYNC); | |
1787 | /* | |
1788 | * If the inode is already fully clean, then there's nothing to do. | |
1789 | * | |
1790 | * For data-integrity syncs we also need to check whether any pages are | |
1791 | * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If | |
1792 | * there are any such pages, we'll need to wait for them. | |
1793 | */ | |
1794 | if (!(inode->i_state & I_DIRTY_ALL) && | |
1795 | (wbc->sync_mode != WB_SYNC_ALL || | |
1796 | !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) | |
1797 | goto out; | |
1798 | inode->i_state |= I_SYNC; | |
1799 | wbc_attach_and_unlock_inode(wbc, inode); | |
1800 | ||
1801 | ret = __writeback_single_inode(inode, wbc); | |
1802 | ||
1803 | wbc_detach_inode(wbc); | |
1804 | ||
1805 | wb = inode_to_wb_and_lock_list(inode); | |
1806 | spin_lock(&inode->i_lock); | |
1807 | /* | |
1808 | * If the inode is freeing, its i_io_list shoudn't be updated | |
1809 | * as it can be finally deleted at this moment. | |
1810 | */ | |
1811 | if (!(inode->i_state & I_FREEING)) { | |
1812 | /* | |
1813 | * If the inode is now fully clean, then it can be safely | |
1814 | * removed from its writeback list (if any). Otherwise the | |
1815 | * flusher threads are responsible for the writeback lists. | |
1816 | */ | |
1817 | if (!(inode->i_state & I_DIRTY_ALL)) | |
1818 | inode_cgwb_move_to_attached(inode, wb); | |
1819 | else if (!(inode->i_state & I_SYNC_QUEUED)) { | |
1820 | if ((inode->i_state & I_DIRTY)) | |
1821 | redirty_tail_locked(inode, wb); | |
1822 | else if (inode->i_state & I_DIRTY_TIME) { | |
1823 | inode->dirtied_when = jiffies; | |
1824 | inode_io_list_move_locked(inode, | |
1825 | wb, | |
1826 | &wb->b_dirty_time); | |
1827 | } | |
1828 | } | |
1829 | } | |
1830 | ||
1831 | spin_unlock(&wb->list_lock); | |
1832 | inode_sync_complete(inode); | |
1833 | out: | |
1834 | spin_unlock(&inode->i_lock); | |
1835 | return ret; | |
1836 | } | |
1837 | ||
1838 | static long writeback_chunk_size(struct bdi_writeback *wb, | |
1839 | struct wb_writeback_work *work) | |
1840 | { | |
1841 | long pages; | |
1842 | ||
1843 | /* | |
1844 | * WB_SYNC_ALL mode does livelock avoidance by syncing dirty | |
1845 | * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX | |
1846 | * here avoids calling into writeback_inodes_wb() more than once. | |
1847 | * | |
1848 | * The intended call sequence for WB_SYNC_ALL writeback is: | |
1849 | * | |
1850 | * wb_writeback() | |
1851 | * writeback_sb_inodes() <== called only once | |
1852 | * write_cache_pages() <== called once for each inode | |
1853 | * (quickly) tag currently dirty pages | |
1854 | * (maybe slowly) sync all tagged pages | |
1855 | */ | |
1856 | if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) | |
1857 | pages = LONG_MAX; | |
1858 | else { | |
1859 | pages = min(wb->avg_write_bandwidth / 2, | |
1860 | global_wb_domain.dirty_limit / DIRTY_SCOPE); | |
1861 | pages = min(pages, work->nr_pages); | |
1862 | pages = round_down(pages + MIN_WRITEBACK_PAGES, | |
1863 | MIN_WRITEBACK_PAGES); | |
1864 | } | |
1865 | ||
1866 | return pages; | |
1867 | } | |
1868 | ||
1869 | /* | |
1870 | * Write a portion of b_io inodes which belong to @sb. | |
1871 | * | |
1872 | * Return the number of pages and/or inodes written. | |
1873 | * | |
1874 | * NOTE! This is called with wb->list_lock held, and will | |
1875 | * unlock and relock that for each inode it ends up doing | |
1876 | * IO for. | |
1877 | */ | |
1878 | static long writeback_sb_inodes(struct super_block *sb, | |
1879 | struct bdi_writeback *wb, | |
1880 | struct wb_writeback_work *work) | |
1881 | { | |
1882 | struct writeback_control wbc = { | |
1883 | .sync_mode = work->sync_mode, | |
1884 | .tagged_writepages = work->tagged_writepages, | |
1885 | .for_kupdate = work->for_kupdate, | |
1886 | .for_background = work->for_background, | |
1887 | .for_sync = work->for_sync, | |
1888 | .range_cyclic = work->range_cyclic, | |
1889 | .range_start = 0, | |
1890 | .range_end = LLONG_MAX, | |
1891 | }; | |
1892 | unsigned long start_time = jiffies; | |
1893 | long write_chunk; | |
1894 | long total_wrote = 0; /* count both pages and inodes */ | |
1895 | unsigned long dirtied_before = jiffies; | |
1896 | ||
1897 | if (work->for_kupdate) | |
1898 | dirtied_before = jiffies - | |
1899 | msecs_to_jiffies(dirty_expire_interval * 10); | |
1900 | ||
1901 | while (!list_empty(&wb->b_io)) { | |
1902 | struct inode *inode = wb_inode(wb->b_io.prev); | |
1903 | struct bdi_writeback *tmp_wb; | |
1904 | long wrote; | |
1905 | ||
1906 | if (inode->i_sb != sb) { | |
1907 | if (work->sb) { | |
1908 | /* | |
1909 | * We only want to write back data for this | |
1910 | * superblock, move all inodes not belonging | |
1911 | * to it back onto the dirty list. | |
1912 | */ | |
1913 | redirty_tail(inode, wb); | |
1914 | continue; | |
1915 | } | |
1916 | ||
1917 | /* | |
1918 | * The inode belongs to a different superblock. | |
1919 | * Bounce back to the caller to unpin this and | |
1920 | * pin the next superblock. | |
1921 | */ | |
1922 | break; | |
1923 | } | |
1924 | ||
1925 | /* | |
1926 | * Don't bother with new inodes or inodes being freed, first | |
1927 | * kind does not need periodic writeout yet, and for the latter | |
1928 | * kind writeout is handled by the freer. | |
1929 | */ | |
1930 | spin_lock(&inode->i_lock); | |
1931 | if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { | |
1932 | redirty_tail_locked(inode, wb); | |
1933 | spin_unlock(&inode->i_lock); | |
1934 | continue; | |
1935 | } | |
1936 | if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { | |
1937 | /* | |
1938 | * If this inode is locked for writeback and we are not | |
1939 | * doing writeback-for-data-integrity, move it to | |
1940 | * b_more_io so that writeback can proceed with the | |
1941 | * other inodes on s_io. | |
1942 | * | |
1943 | * We'll have another go at writing back this inode | |
1944 | * when we completed a full scan of b_io. | |
1945 | */ | |
1946 | requeue_io(inode, wb); | |
1947 | spin_unlock(&inode->i_lock); | |
1948 | trace_writeback_sb_inodes_requeue(inode); | |
1949 | continue; | |
1950 | } | |
1951 | spin_unlock(&wb->list_lock); | |
1952 | ||
1953 | /* | |
1954 | * We already requeued the inode if it had I_SYNC set and we | |
1955 | * are doing WB_SYNC_NONE writeback. So this catches only the | |
1956 | * WB_SYNC_ALL case. | |
1957 | */ | |
1958 | if (inode->i_state & I_SYNC) { | |
1959 | /* Wait for I_SYNC. This function drops i_lock... */ | |
1960 | inode_sleep_on_writeback(inode); | |
1961 | /* Inode may be gone, start again */ | |
1962 | spin_lock(&wb->list_lock); | |
1963 | continue; | |
1964 | } | |
1965 | inode->i_state |= I_SYNC; | |
1966 | wbc_attach_and_unlock_inode(&wbc, inode); | |
1967 | ||
1968 | write_chunk = writeback_chunk_size(wb, work); | |
1969 | wbc.nr_to_write = write_chunk; | |
1970 | wbc.pages_skipped = 0; | |
1971 | ||
1972 | /* | |
1973 | * We use I_SYNC to pin the inode in memory. While it is set | |
1974 | * evict_inode() will wait so the inode cannot be freed. | |
1975 | */ | |
1976 | __writeback_single_inode(inode, &wbc); | |
1977 | ||
1978 | wbc_detach_inode(&wbc); | |
1979 | work->nr_pages -= write_chunk - wbc.nr_to_write; | |
1980 | wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped; | |
1981 | wrote = wrote < 0 ? 0 : wrote; | |
1982 | total_wrote += wrote; | |
1983 | ||
1984 | if (need_resched()) { | |
1985 | /* | |
1986 | * We're trying to balance between building up a nice | |
1987 | * long list of IOs to improve our merge rate, and | |
1988 | * getting those IOs out quickly for anyone throttling | |
1989 | * in balance_dirty_pages(). cond_resched() doesn't | |
1990 | * unplug, so get our IOs out the door before we | |
1991 | * give up the CPU. | |
1992 | */ | |
1993 | blk_flush_plug(current->plug, false); | |
1994 | cond_resched(); | |
1995 | } | |
1996 | ||
1997 | /* | |
1998 | * Requeue @inode if still dirty. Be careful as @inode may | |
1999 | * have been switched to another wb in the meantime. | |
2000 | */ | |
2001 | tmp_wb = inode_to_wb_and_lock_list(inode); | |
2002 | spin_lock(&inode->i_lock); | |
2003 | if (!(inode->i_state & I_DIRTY_ALL)) | |
2004 | total_wrote++; | |
2005 | requeue_inode(inode, tmp_wb, &wbc, dirtied_before); | |
2006 | inode_sync_complete(inode); | |
2007 | spin_unlock(&inode->i_lock); | |
2008 | ||
2009 | if (unlikely(tmp_wb != wb)) { | |
2010 | spin_unlock(&tmp_wb->list_lock); | |
2011 | spin_lock(&wb->list_lock); | |
2012 | } | |
2013 | ||
2014 | /* | |
2015 | * bail out to wb_writeback() often enough to check | |
2016 | * background threshold and other termination conditions. | |
2017 | */ | |
2018 | if (total_wrote) { | |
2019 | if (time_is_before_jiffies(start_time + HZ / 10UL)) | |
2020 | break; | |
2021 | if (work->nr_pages <= 0) | |
2022 | break; | |
2023 | } | |
2024 | } | |
2025 | return total_wrote; | |
2026 | } | |
2027 | ||
2028 | static long __writeback_inodes_wb(struct bdi_writeback *wb, | |
2029 | struct wb_writeback_work *work) | |
2030 | { | |
2031 | unsigned long start_time = jiffies; | |
2032 | long wrote = 0; | |
2033 | ||
2034 | while (!list_empty(&wb->b_io)) { | |
2035 | struct inode *inode = wb_inode(wb->b_io.prev); | |
2036 | struct super_block *sb = inode->i_sb; | |
2037 | ||
2038 | if (!super_trylock_shared(sb)) { | |
2039 | /* | |
2040 | * super_trylock_shared() may fail consistently due to | |
2041 | * s_umount being grabbed by someone else. Don't use | |
2042 | * requeue_io() to avoid busy retrying the inode/sb. | |
2043 | */ | |
2044 | redirty_tail(inode, wb); | |
2045 | continue; | |
2046 | } | |
2047 | wrote += writeback_sb_inodes(sb, wb, work); | |
2048 | up_read(&sb->s_umount); | |
2049 | ||
2050 | /* refer to the same tests at the end of writeback_sb_inodes */ | |
2051 | if (wrote) { | |
2052 | if (time_is_before_jiffies(start_time + HZ / 10UL)) | |
2053 | break; | |
2054 | if (work->nr_pages <= 0) | |
2055 | break; | |
2056 | } | |
2057 | } | |
2058 | /* Leave any unwritten inodes on b_io */ | |
2059 | return wrote; | |
2060 | } | |
2061 | ||
2062 | static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, | |
2063 | enum wb_reason reason) | |
2064 | { | |
2065 | struct wb_writeback_work work = { | |
2066 | .nr_pages = nr_pages, | |
2067 | .sync_mode = WB_SYNC_NONE, | |
2068 | .range_cyclic = 1, | |
2069 | .reason = reason, | |
2070 | }; | |
2071 | struct blk_plug plug; | |
2072 | ||
2073 | blk_start_plug(&plug); | |
2074 | spin_lock(&wb->list_lock); | |
2075 | if (list_empty(&wb->b_io)) | |
2076 | queue_io(wb, &work, jiffies); | |
2077 | __writeback_inodes_wb(wb, &work); | |
2078 | spin_unlock(&wb->list_lock); | |
2079 | blk_finish_plug(&plug); | |
2080 | ||
2081 | return nr_pages - work.nr_pages; | |
2082 | } | |
2083 | ||
2084 | /* | |
2085 | * Explicit flushing or periodic writeback of "old" data. | |
2086 | * | |
2087 | * Define "old": the first time one of an inode's pages is dirtied, we mark the | |
2088 | * dirtying-time in the inode's address_space. So this periodic writeback code | |
2089 | * just walks the superblock inode list, writing back any inodes which are | |
2090 | * older than a specific point in time. | |
2091 | * | |
2092 | * Try to run once per dirty_writeback_interval. But if a writeback event | |
2093 | * takes longer than a dirty_writeback_interval interval, then leave a | |
2094 | * one-second gap. | |
2095 | * | |
2096 | * dirtied_before takes precedence over nr_to_write. So we'll only write back | |
2097 | * all dirty pages if they are all attached to "old" mappings. | |
2098 | */ | |
2099 | static long wb_writeback(struct bdi_writeback *wb, | |
2100 | struct wb_writeback_work *work) | |
2101 | { | |
2102 | long nr_pages = work->nr_pages; | |
2103 | unsigned long dirtied_before = jiffies; | |
2104 | struct inode *inode; | |
2105 | long progress; | |
2106 | struct blk_plug plug; | |
2107 | bool queued = false; | |
2108 | ||
2109 | blk_start_plug(&plug); | |
2110 | for (;;) { | |
2111 | /* | |
2112 | * Stop writeback when nr_pages has been consumed | |
2113 | */ | |
2114 | if (work->nr_pages <= 0) | |
2115 | break; | |
2116 | ||
2117 | /* | |
2118 | * Background writeout and kupdate-style writeback may | |
2119 | * run forever. Stop them if there is other work to do | |
2120 | * so that e.g. sync can proceed. They'll be restarted | |
2121 | * after the other works are all done. | |
2122 | */ | |
2123 | if ((work->for_background || work->for_kupdate) && | |
2124 | !list_empty(&wb->work_list)) | |
2125 | break; | |
2126 | ||
2127 | /* | |
2128 | * For background writeout, stop when we are below the | |
2129 | * background dirty threshold | |
2130 | */ | |
2131 | if (work->for_background && !wb_over_bg_thresh(wb)) | |
2132 | break; | |
2133 | ||
2134 | ||
2135 | spin_lock(&wb->list_lock); | |
2136 | ||
2137 | trace_writeback_start(wb, work); | |
2138 | if (list_empty(&wb->b_io)) { | |
2139 | /* | |
2140 | * Kupdate and background works are special and we want | |
2141 | * to include all inodes that need writing. Livelock | |
2142 | * avoidance is handled by these works yielding to any | |
2143 | * other work so we are safe. | |
2144 | */ | |
2145 | if (work->for_kupdate) { | |
2146 | dirtied_before = jiffies - | |
2147 | msecs_to_jiffies(dirty_expire_interval * | |
2148 | 10); | |
2149 | } else if (work->for_background) | |
2150 | dirtied_before = jiffies; | |
2151 | ||
2152 | queue_io(wb, work, dirtied_before); | |
2153 | queued = true; | |
2154 | } | |
2155 | if (work->sb) | |
2156 | progress = writeback_sb_inodes(work->sb, wb, work); | |
2157 | else | |
2158 | progress = __writeback_inodes_wb(wb, work); | |
2159 | trace_writeback_written(wb, work); | |
2160 | ||
2161 | /* | |
2162 | * Did we write something? Try for more | |
2163 | * | |
2164 | * Dirty inodes are moved to b_io for writeback in batches. | |
2165 | * The completion of the current batch does not necessarily | |
2166 | * mean the overall work is done. So we keep looping as long | |
2167 | * as made some progress on cleaning pages or inodes. | |
2168 | */ | |
2169 | if (progress || !queued) { | |
2170 | spin_unlock(&wb->list_lock); | |
2171 | continue; | |
2172 | } | |
2173 | ||
2174 | /* | |
2175 | * No more inodes for IO, bail | |
2176 | */ | |
2177 | if (list_empty(&wb->b_more_io)) { | |
2178 | spin_unlock(&wb->list_lock); | |
2179 | break; | |
2180 | } | |
2181 | ||
2182 | /* | |
2183 | * Nothing written. Wait for some inode to | |
2184 | * become available for writeback. Otherwise | |
2185 | * we'll just busyloop. | |
2186 | */ | |
2187 | trace_writeback_wait(wb, work); | |
2188 | inode = wb_inode(wb->b_more_io.prev); | |
2189 | spin_lock(&inode->i_lock); | |
2190 | spin_unlock(&wb->list_lock); | |
2191 | /* This function drops i_lock... */ | |
2192 | inode_sleep_on_writeback(inode); | |
2193 | } | |
2194 | blk_finish_plug(&plug); | |
2195 | ||
2196 | return nr_pages - work->nr_pages; | |
2197 | } | |
2198 | ||
2199 | /* | |
2200 | * Return the next wb_writeback_work struct that hasn't been processed yet. | |
2201 | */ | |
2202 | static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) | |
2203 | { | |
2204 | struct wb_writeback_work *work = NULL; | |
2205 | ||
2206 | spin_lock_irq(&wb->work_lock); | |
2207 | if (!list_empty(&wb->work_list)) { | |
2208 | work = list_entry(wb->work_list.next, | |
2209 | struct wb_writeback_work, list); | |
2210 | list_del_init(&work->list); | |
2211 | } | |
2212 | spin_unlock_irq(&wb->work_lock); | |
2213 | return work; | |
2214 | } | |
2215 | ||
2216 | static long wb_check_background_flush(struct bdi_writeback *wb) | |
2217 | { | |
2218 | if (wb_over_bg_thresh(wb)) { | |
2219 | ||
2220 | struct wb_writeback_work work = { | |
2221 | .nr_pages = LONG_MAX, | |
2222 | .sync_mode = WB_SYNC_NONE, | |
2223 | .for_background = 1, | |
2224 | .range_cyclic = 1, | |
2225 | .reason = WB_REASON_BACKGROUND, | |
2226 | }; | |
2227 | ||
2228 | return wb_writeback(wb, &work); | |
2229 | } | |
2230 | ||
2231 | return 0; | |
2232 | } | |
2233 | ||
2234 | static long wb_check_old_data_flush(struct bdi_writeback *wb) | |
2235 | { | |
2236 | unsigned long expired; | |
2237 | long nr_pages; | |
2238 | ||
2239 | /* | |
2240 | * When set to zero, disable periodic writeback | |
2241 | */ | |
2242 | if (!dirty_writeback_interval) | |
2243 | return 0; | |
2244 | ||
2245 | expired = wb->last_old_flush + | |
2246 | msecs_to_jiffies(dirty_writeback_interval * 10); | |
2247 | if (time_before(jiffies, expired)) | |
2248 | return 0; | |
2249 | ||
2250 | wb->last_old_flush = jiffies; | |
2251 | nr_pages = get_nr_dirty_pages(); | |
2252 | ||
2253 | if (nr_pages) { | |
2254 | struct wb_writeback_work work = { | |
2255 | .nr_pages = nr_pages, | |
2256 | .sync_mode = WB_SYNC_NONE, | |
2257 | .for_kupdate = 1, | |
2258 | .range_cyclic = 1, | |
2259 | .reason = WB_REASON_PERIODIC, | |
2260 | }; | |
2261 | ||
2262 | return wb_writeback(wb, &work); | |
2263 | } | |
2264 | ||
2265 | return 0; | |
2266 | } | |
2267 | ||
2268 | static long wb_check_start_all(struct bdi_writeback *wb) | |
2269 | { | |
2270 | long nr_pages; | |
2271 | ||
2272 | if (!test_bit(WB_start_all, &wb->state)) | |
2273 | return 0; | |
2274 | ||
2275 | nr_pages = get_nr_dirty_pages(); | |
2276 | if (nr_pages) { | |
2277 | struct wb_writeback_work work = { | |
2278 | .nr_pages = wb_split_bdi_pages(wb, nr_pages), | |
2279 | .sync_mode = WB_SYNC_NONE, | |
2280 | .range_cyclic = 1, | |
2281 | .reason = wb->start_all_reason, | |
2282 | }; | |
2283 | ||
2284 | nr_pages = wb_writeback(wb, &work); | |
2285 | } | |
2286 | ||
2287 | clear_bit(WB_start_all, &wb->state); | |
2288 | return nr_pages; | |
2289 | } | |
2290 | ||
2291 | ||
2292 | /* | |
2293 | * Retrieve work items and do the writeback they describe | |
2294 | */ | |
2295 | static long wb_do_writeback(struct bdi_writeback *wb) | |
2296 | { | |
2297 | struct wb_writeback_work *work; | |
2298 | long wrote = 0; | |
2299 | ||
2300 | set_bit(WB_writeback_running, &wb->state); | |
2301 | while ((work = get_next_work_item(wb)) != NULL) { | |
2302 | trace_writeback_exec(wb, work); | |
2303 | wrote += wb_writeback(wb, work); | |
2304 | finish_writeback_work(work); | |
2305 | } | |
2306 | ||
2307 | /* | |
2308 | * Check for a flush-everything request | |
2309 | */ | |
2310 | wrote += wb_check_start_all(wb); | |
2311 | ||
2312 | /* | |
2313 | * Check for periodic writeback, kupdated() style | |
2314 | */ | |
2315 | wrote += wb_check_old_data_flush(wb); | |
2316 | wrote += wb_check_background_flush(wb); | |
2317 | clear_bit(WB_writeback_running, &wb->state); | |
2318 | ||
2319 | return wrote; | |
2320 | } | |
2321 | ||
2322 | /* | |
2323 | * Handle writeback of dirty data for the device backed by this bdi. Also | |
2324 | * reschedules periodically and does kupdated style flushing. | |
2325 | */ | |
2326 | void wb_workfn(struct work_struct *work) | |
2327 | { | |
2328 | struct bdi_writeback *wb = container_of(to_delayed_work(work), | |
2329 | struct bdi_writeback, dwork); | |
2330 | long pages_written; | |
2331 | ||
2332 | set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); | |
2333 | ||
2334 | if (likely(!current_is_workqueue_rescuer() || | |
2335 | !test_bit(WB_registered, &wb->state))) { | |
2336 | /* | |
2337 | * The normal path. Keep writing back @wb until its | |
2338 | * work_list is empty. Note that this path is also taken | |
2339 | * if @wb is shutting down even when we're running off the | |
2340 | * rescuer as work_list needs to be drained. | |
2341 | */ | |
2342 | do { | |
2343 | pages_written = wb_do_writeback(wb); | |
2344 | trace_writeback_pages_written(pages_written); | |
2345 | } while (!list_empty(&wb->work_list)); | |
2346 | } else { | |
2347 | /* | |
2348 | * bdi_wq can't get enough workers and we're running off | |
2349 | * the emergency worker. Don't hog it. Hopefully, 1024 is | |
2350 | * enough for efficient IO. | |
2351 | */ | |
2352 | pages_written = writeback_inodes_wb(wb, 1024, | |
2353 | WB_REASON_FORKER_THREAD); | |
2354 | trace_writeback_pages_written(pages_written); | |
2355 | } | |
2356 | ||
2357 | if (!list_empty(&wb->work_list)) | |
2358 | wb_wakeup(wb); | |
2359 | else if (wb_has_dirty_io(wb) && dirty_writeback_interval) | |
2360 | wb_wakeup_delayed(wb); | |
2361 | } | |
2362 | ||
2363 | /* | |
2364 | * Start writeback of all dirty pages on this bdi. | |
2365 | */ | |
2366 | static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, | |
2367 | enum wb_reason reason) | |
2368 | { | |
2369 | struct bdi_writeback *wb; | |
2370 | ||
2371 | if (!bdi_has_dirty_io(bdi)) | |
2372 | return; | |
2373 | ||
2374 | list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) | |
2375 | wb_start_writeback(wb, reason); | |
2376 | } | |
2377 | ||
2378 | void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, | |
2379 | enum wb_reason reason) | |
2380 | { | |
2381 | rcu_read_lock(); | |
2382 | __wakeup_flusher_threads_bdi(bdi, reason); | |
2383 | rcu_read_unlock(); | |
2384 | } | |
2385 | ||
2386 | /* | |
2387 | * Wakeup the flusher threads to start writeback of all currently dirty pages | |
2388 | */ | |
2389 | void wakeup_flusher_threads(enum wb_reason reason) | |
2390 | { | |
2391 | struct backing_dev_info *bdi; | |
2392 | ||
2393 | /* | |
2394 | * If we are expecting writeback progress we must submit plugged IO. | |
2395 | */ | |
2396 | blk_flush_plug(current->plug, true); | |
2397 | ||
2398 | rcu_read_lock(); | |
2399 | list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) | |
2400 | __wakeup_flusher_threads_bdi(bdi, reason); | |
2401 | rcu_read_unlock(); | |
2402 | } | |
2403 | ||
2404 | /* | |
2405 | * Wake up bdi's periodically to make sure dirtytime inodes gets | |
2406 | * written back periodically. We deliberately do *not* check the | |
2407 | * b_dirtytime list in wb_has_dirty_io(), since this would cause the | |
2408 | * kernel to be constantly waking up once there are any dirtytime | |
2409 | * inodes on the system. So instead we define a separate delayed work | |
2410 | * function which gets called much more rarely. (By default, only | |
2411 | * once every 12 hours.) | |
2412 | * | |
2413 | * If there is any other write activity going on in the file system, | |
2414 | * this function won't be necessary. But if the only thing that has | |
2415 | * happened on the file system is a dirtytime inode caused by an atime | |
2416 | * update, we need this infrastructure below to make sure that inode | |
2417 | * eventually gets pushed out to disk. | |
2418 | */ | |
2419 | static void wakeup_dirtytime_writeback(struct work_struct *w); | |
2420 | static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); | |
2421 | ||
2422 | static void wakeup_dirtytime_writeback(struct work_struct *w) | |
2423 | { | |
2424 | struct backing_dev_info *bdi; | |
2425 | ||
2426 | rcu_read_lock(); | |
2427 | list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { | |
2428 | struct bdi_writeback *wb; | |
2429 | ||
2430 | list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) | |
2431 | if (!list_empty(&wb->b_dirty_time)) | |
2432 | wb_wakeup(wb); | |
2433 | } | |
2434 | rcu_read_unlock(); | |
2435 | schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); | |
2436 | } | |
2437 | ||
2438 | static int dirtytime_interval_handler(const struct ctl_table *table, int write, | |
2439 | void *buffer, size_t *lenp, loff_t *ppos) | |
2440 | { | |
2441 | int ret; | |
2442 | ||
2443 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | |
2444 | if (ret == 0 && write) | |
2445 | mod_delayed_work(system_wq, &dirtytime_work, 0); | |
2446 | return ret; | |
2447 | } | |
2448 | ||
2449 | static const struct ctl_table vm_fs_writeback_table[] = { | |
2450 | { | |
2451 | .procname = "dirtytime_expire_seconds", | |
2452 | .data = &dirtytime_expire_interval, | |
2453 | .maxlen = sizeof(dirtytime_expire_interval), | |
2454 | .mode = 0644, | |
2455 | .proc_handler = dirtytime_interval_handler, | |
2456 | .extra1 = SYSCTL_ZERO, | |
2457 | }, | |
2458 | }; | |
2459 | ||
2460 | static int __init start_dirtytime_writeback(void) | |
2461 | { | |
2462 | schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); | |
2463 | register_sysctl_init("vm", vm_fs_writeback_table); | |
2464 | return 0; | |
2465 | } | |
2466 | __initcall(start_dirtytime_writeback); | |
2467 | ||
2468 | /** | |
2469 | * __mark_inode_dirty - internal function to mark an inode dirty | |
2470 | * | |
2471 | * @inode: inode to mark | |
2472 | * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of | |
2473 | * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined | |
2474 | * with I_DIRTY_PAGES. | |
2475 | * | |
2476 | * Mark an inode as dirty. We notify the filesystem, then update the inode's | |
2477 | * dirty flags. Then, if needed we add the inode to the appropriate dirty list. | |
2478 | * | |
2479 | * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() | |
2480 | * instead of calling this directly. | |
2481 | * | |
2482 | * CAREFUL! We only add the inode to the dirty list if it is hashed or if it | |
2483 | * refers to a blockdev. Unhashed inodes will never be added to the dirty list | |
2484 | * even if they are later hashed, as they will have been marked dirty already. | |
2485 | * | |
2486 | * In short, ensure you hash any inodes _before_ you start marking them dirty. | |
2487 | * | |
2488 | * Note that for blockdevs, inode->dirtied_when represents the dirtying time of | |
2489 | * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of | |
2490 | * the kernel-internal blockdev inode represents the dirtying time of the | |
2491 | * blockdev's pages. This is why for I_DIRTY_PAGES we always use | |
2492 | * page->mapping->host, so the page-dirtying time is recorded in the internal | |
2493 | * blockdev inode. | |
2494 | */ | |
2495 | void __mark_inode_dirty(struct inode *inode, int flags) | |
2496 | { | |
2497 | struct super_block *sb = inode->i_sb; | |
2498 | int dirtytime = 0; | |
2499 | struct bdi_writeback *wb = NULL; | |
2500 | ||
2501 | trace_writeback_mark_inode_dirty(inode, flags); | |
2502 | ||
2503 | if (flags & I_DIRTY_INODE) { | |
2504 | /* | |
2505 | * Inode timestamp update will piggback on this dirtying. | |
2506 | * We tell ->dirty_inode callback that timestamps need to | |
2507 | * be updated by setting I_DIRTY_TIME in flags. | |
2508 | */ | |
2509 | if (inode->i_state & I_DIRTY_TIME) { | |
2510 | spin_lock(&inode->i_lock); | |
2511 | if (inode->i_state & I_DIRTY_TIME) { | |
2512 | inode->i_state &= ~I_DIRTY_TIME; | |
2513 | flags |= I_DIRTY_TIME; | |
2514 | } | |
2515 | spin_unlock(&inode->i_lock); | |
2516 | } | |
2517 | ||
2518 | /* | |
2519 | * Notify the filesystem about the inode being dirtied, so that | |
2520 | * (if needed) it can update on-disk fields and journal the | |
2521 | * inode. This is only needed when the inode itself is being | |
2522 | * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not | |
2523 | * for just I_DIRTY_PAGES or I_DIRTY_TIME. | |
2524 | */ | |
2525 | trace_writeback_dirty_inode_start(inode, flags); | |
2526 | if (sb->s_op->dirty_inode) | |
2527 | sb->s_op->dirty_inode(inode, | |
2528 | flags & (I_DIRTY_INODE | I_DIRTY_TIME)); | |
2529 | trace_writeback_dirty_inode(inode, flags); | |
2530 | ||
2531 | /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ | |
2532 | flags &= ~I_DIRTY_TIME; | |
2533 | } else { | |
2534 | /* | |
2535 | * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. | |
2536 | * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME | |
2537 | * in one call to __mark_inode_dirty().) | |
2538 | */ | |
2539 | dirtytime = flags & I_DIRTY_TIME; | |
2540 | WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); | |
2541 | } | |
2542 | ||
2543 | /* | |
2544 | * Paired with smp_mb() in __writeback_single_inode() for the | |
2545 | * following lockless i_state test. See there for details. | |
2546 | */ | |
2547 | smp_mb(); | |
2548 | ||
2549 | if ((inode->i_state & flags) == flags) | |
2550 | return; | |
2551 | ||
2552 | spin_lock(&inode->i_lock); | |
2553 | if ((inode->i_state & flags) != flags) { | |
2554 | const int was_dirty = inode->i_state & I_DIRTY; | |
2555 | ||
2556 | inode_attach_wb(inode, NULL); | |
2557 | ||
2558 | inode->i_state |= flags; | |
2559 | ||
2560 | /* | |
2561 | * Grab inode's wb early because it requires dropping i_lock and we | |
2562 | * need to make sure following checks happen atomically with dirty | |
2563 | * list handling so that we don't move inodes under flush worker's | |
2564 | * hands. | |
2565 | */ | |
2566 | if (!was_dirty) { | |
2567 | wb = locked_inode_to_wb_and_lock_list(inode); | |
2568 | spin_lock(&inode->i_lock); | |
2569 | } | |
2570 | ||
2571 | /* | |
2572 | * If the inode is queued for writeback by flush worker, just | |
2573 | * update its dirty state. Once the flush worker is done with | |
2574 | * the inode it will place it on the appropriate superblock | |
2575 | * list, based upon its state. | |
2576 | */ | |
2577 | if (inode->i_state & I_SYNC_QUEUED) | |
2578 | goto out_unlock; | |
2579 | ||
2580 | /* | |
2581 | * Only add valid (hashed) inodes to the superblock's | |
2582 | * dirty list. Add blockdev inodes as well. | |
2583 | */ | |
2584 | if (!S_ISBLK(inode->i_mode)) { | |
2585 | if (inode_unhashed(inode)) | |
2586 | goto out_unlock; | |
2587 | } | |
2588 | if (inode->i_state & I_FREEING) | |
2589 | goto out_unlock; | |
2590 | ||
2591 | /* | |
2592 | * If the inode was already on b_dirty/b_io/b_more_io, don't | |
2593 | * reposition it (that would break b_dirty time-ordering). | |
2594 | */ | |
2595 | if (!was_dirty) { | |
2596 | struct list_head *dirty_list; | |
2597 | bool wakeup_bdi = false; | |
2598 | ||
2599 | inode->dirtied_when = jiffies; | |
2600 | if (dirtytime) | |
2601 | inode->dirtied_time_when = jiffies; | |
2602 | ||
2603 | if (inode->i_state & I_DIRTY) | |
2604 | dirty_list = &wb->b_dirty; | |
2605 | else | |
2606 | dirty_list = &wb->b_dirty_time; | |
2607 | ||
2608 | wakeup_bdi = inode_io_list_move_locked(inode, wb, | |
2609 | dirty_list); | |
2610 | ||
2611 | spin_unlock(&wb->list_lock); | |
2612 | spin_unlock(&inode->i_lock); | |
2613 | trace_writeback_dirty_inode_enqueue(inode); | |
2614 | ||
2615 | /* | |
2616 | * If this is the first dirty inode for this bdi, | |
2617 | * we have to wake-up the corresponding bdi thread | |
2618 | * to make sure background write-back happens | |
2619 | * later. | |
2620 | */ | |
2621 | if (wakeup_bdi && | |
2622 | (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) | |
2623 | wb_wakeup_delayed(wb); | |
2624 | return; | |
2625 | } | |
2626 | } | |
2627 | out_unlock: | |
2628 | if (wb) | |
2629 | spin_unlock(&wb->list_lock); | |
2630 | spin_unlock(&inode->i_lock); | |
2631 | } | |
2632 | EXPORT_SYMBOL(__mark_inode_dirty); | |
2633 | ||
2634 | /* | |
2635 | * The @s_sync_lock is used to serialise concurrent sync operations | |
2636 | * to avoid lock contention problems with concurrent wait_sb_inodes() calls. | |
2637 | * Concurrent callers will block on the s_sync_lock rather than doing contending | |
2638 | * walks. The queueing maintains sync(2) required behaviour as all the IO that | |
2639 | * has been issued up to the time this function is enter is guaranteed to be | |
2640 | * completed by the time we have gained the lock and waited for all IO that is | |
2641 | * in progress regardless of the order callers are granted the lock. | |
2642 | */ | |
2643 | static void wait_sb_inodes(struct super_block *sb) | |
2644 | { | |
2645 | LIST_HEAD(sync_list); | |
2646 | ||
2647 | /* | |
2648 | * We need to be protected against the filesystem going from | |
2649 | * r/o to r/w or vice versa. | |
2650 | */ | |
2651 | WARN_ON(!rwsem_is_locked(&sb->s_umount)); | |
2652 | ||
2653 | mutex_lock(&sb->s_sync_lock); | |
2654 | ||
2655 | /* | |
2656 | * Splice the writeback list onto a temporary list to avoid waiting on | |
2657 | * inodes that have started writeback after this point. | |
2658 | * | |
2659 | * Use rcu_read_lock() to keep the inodes around until we have a | |
2660 | * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as | |
2661 | * the local list because inodes can be dropped from either by writeback | |
2662 | * completion. | |
2663 | */ | |
2664 | rcu_read_lock(); | |
2665 | spin_lock_irq(&sb->s_inode_wblist_lock); | |
2666 | list_splice_init(&sb->s_inodes_wb, &sync_list); | |
2667 | ||
2668 | /* | |
2669 | * Data integrity sync. Must wait for all pages under writeback, because | |
2670 | * there may have been pages dirtied before our sync call, but which had | |
2671 | * writeout started before we write it out. In which case, the inode | |
2672 | * may not be on the dirty list, but we still have to wait for that | |
2673 | * writeout. | |
2674 | */ | |
2675 | while (!list_empty(&sync_list)) { | |
2676 | struct inode *inode = list_first_entry(&sync_list, struct inode, | |
2677 | i_wb_list); | |
2678 | struct address_space *mapping = inode->i_mapping; | |
2679 | ||
2680 | /* | |
2681 | * Move each inode back to the wb list before we drop the lock | |
2682 | * to preserve consistency between i_wb_list and the mapping | |
2683 | * writeback tag. Writeback completion is responsible to remove | |
2684 | * the inode from either list once the writeback tag is cleared. | |
2685 | */ | |
2686 | list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); | |
2687 | ||
2688 | /* | |
2689 | * The mapping can appear untagged while still on-list since we | |
2690 | * do not have the mapping lock. Skip it here, wb completion | |
2691 | * will remove it. | |
2692 | */ | |
2693 | if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) | |
2694 | continue; | |
2695 | ||
2696 | spin_unlock_irq(&sb->s_inode_wblist_lock); | |
2697 | ||
2698 | spin_lock(&inode->i_lock); | |
2699 | if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { | |
2700 | spin_unlock(&inode->i_lock); | |
2701 | ||
2702 | spin_lock_irq(&sb->s_inode_wblist_lock); | |
2703 | continue; | |
2704 | } | |
2705 | __iget(inode); | |
2706 | spin_unlock(&inode->i_lock); | |
2707 | rcu_read_unlock(); | |
2708 | ||
2709 | /* | |
2710 | * We keep the error status of individual mapping so that | |
2711 | * applications can catch the writeback error using fsync(2). | |
2712 | * See filemap_fdatawait_keep_errors() for details. | |
2713 | */ | |
2714 | filemap_fdatawait_keep_errors(mapping); | |
2715 | ||
2716 | cond_resched(); | |
2717 | ||
2718 | iput(inode); | |
2719 | ||
2720 | rcu_read_lock(); | |
2721 | spin_lock_irq(&sb->s_inode_wblist_lock); | |
2722 | } | |
2723 | spin_unlock_irq(&sb->s_inode_wblist_lock); | |
2724 | rcu_read_unlock(); | |
2725 | mutex_unlock(&sb->s_sync_lock); | |
2726 | } | |
2727 | ||
2728 | static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, | |
2729 | enum wb_reason reason, bool skip_if_busy) | |
2730 | { | |
2731 | struct backing_dev_info *bdi = sb->s_bdi; | |
2732 | DEFINE_WB_COMPLETION(done, bdi); | |
2733 | struct wb_writeback_work work = { | |
2734 | .sb = sb, | |
2735 | .sync_mode = WB_SYNC_NONE, | |
2736 | .tagged_writepages = 1, | |
2737 | .done = &done, | |
2738 | .nr_pages = nr, | |
2739 | .reason = reason, | |
2740 | }; | |
2741 | ||
2742 | if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) | |
2743 | return; | |
2744 | WARN_ON(!rwsem_is_locked(&sb->s_umount)); | |
2745 | ||
2746 | bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); | |
2747 | wb_wait_for_completion(&done); | |
2748 | } | |
2749 | ||
2750 | /** | |
2751 | * writeback_inodes_sb_nr - writeback dirty inodes from given super_block | |
2752 | * @sb: the superblock | |
2753 | * @nr: the number of pages to write | |
2754 | * @reason: reason why some writeback work initiated | |
2755 | * | |
2756 | * Start writeback on some inodes on this super_block. No guarantees are made | |
2757 | * on how many (if any) will be written, and this function does not wait | |
2758 | * for IO completion of submitted IO. | |
2759 | */ | |
2760 | void writeback_inodes_sb_nr(struct super_block *sb, | |
2761 | unsigned long nr, | |
2762 | enum wb_reason reason) | |
2763 | { | |
2764 | __writeback_inodes_sb_nr(sb, nr, reason, false); | |
2765 | } | |
2766 | EXPORT_SYMBOL(writeback_inodes_sb_nr); | |
2767 | ||
2768 | /** | |
2769 | * writeback_inodes_sb - writeback dirty inodes from given super_block | |
2770 | * @sb: the superblock | |
2771 | * @reason: reason why some writeback work was initiated | |
2772 | * | |
2773 | * Start writeback on some inodes on this super_block. No guarantees are made | |
2774 | * on how many (if any) will be written, and this function does not wait | |
2775 | * for IO completion of submitted IO. | |
2776 | */ | |
2777 | void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) | |
2778 | { | |
2779 | writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); | |
2780 | } | |
2781 | EXPORT_SYMBOL(writeback_inodes_sb); | |
2782 | ||
2783 | /** | |
2784 | * try_to_writeback_inodes_sb - try to start writeback if none underway | |
2785 | * @sb: the superblock | |
2786 | * @reason: reason why some writeback work was initiated | |
2787 | * | |
2788 | * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. | |
2789 | */ | |
2790 | void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) | |
2791 | { | |
2792 | if (!down_read_trylock(&sb->s_umount)) | |
2793 | return; | |
2794 | ||
2795 | __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); | |
2796 | up_read(&sb->s_umount); | |
2797 | } | |
2798 | EXPORT_SYMBOL(try_to_writeback_inodes_sb); | |
2799 | ||
2800 | /** | |
2801 | * sync_inodes_sb - sync sb inode pages | |
2802 | * @sb: the superblock | |
2803 | * | |
2804 | * This function writes and waits on any dirty inode belonging to this | |
2805 | * super_block. | |
2806 | */ | |
2807 | void sync_inodes_sb(struct super_block *sb) | |
2808 | { | |
2809 | struct backing_dev_info *bdi = sb->s_bdi; | |
2810 | DEFINE_WB_COMPLETION(done, bdi); | |
2811 | struct wb_writeback_work work = { | |
2812 | .sb = sb, | |
2813 | .sync_mode = WB_SYNC_ALL, | |
2814 | .nr_pages = LONG_MAX, | |
2815 | .range_cyclic = 0, | |
2816 | .done = &done, | |
2817 | .reason = WB_REASON_SYNC, | |
2818 | .for_sync = 1, | |
2819 | }; | |
2820 | ||
2821 | /* | |
2822 | * Can't skip on !bdi_has_dirty() because we should wait for !dirty | |
2823 | * inodes under writeback and I_DIRTY_TIME inodes ignored by | |
2824 | * bdi_has_dirty() need to be written out too. | |
2825 | */ | |
2826 | if (bdi == &noop_backing_dev_info) | |
2827 | return; | |
2828 | WARN_ON(!rwsem_is_locked(&sb->s_umount)); | |
2829 | ||
2830 | /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ | |
2831 | bdi_down_write_wb_switch_rwsem(bdi); | |
2832 | bdi_split_work_to_wbs(bdi, &work, false); | |
2833 | wb_wait_for_completion(&done); | |
2834 | bdi_up_write_wb_switch_rwsem(bdi); | |
2835 | ||
2836 | wait_sb_inodes(sb); | |
2837 | } | |
2838 | EXPORT_SYMBOL(sync_inodes_sb); | |
2839 | ||
2840 | /** | |
2841 | * write_inode_now - write an inode to disk | |
2842 | * @inode: inode to write to disk | |
2843 | * @sync: whether the write should be synchronous or not | |
2844 | * | |
2845 | * This function commits an inode to disk immediately if it is dirty. This is | |
2846 | * primarily needed by knfsd. | |
2847 | * | |
2848 | * The caller must either have a ref on the inode or must have set I_WILL_FREE. | |
2849 | */ | |
2850 | int write_inode_now(struct inode *inode, int sync) | |
2851 | { | |
2852 | struct writeback_control wbc = { | |
2853 | .nr_to_write = LONG_MAX, | |
2854 | .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, | |
2855 | .range_start = 0, | |
2856 | .range_end = LLONG_MAX, | |
2857 | }; | |
2858 | ||
2859 | if (!mapping_can_writeback(inode->i_mapping)) | |
2860 | wbc.nr_to_write = 0; | |
2861 | ||
2862 | might_sleep(); | |
2863 | return writeback_single_inode(inode, &wbc); | |
2864 | } | |
2865 | EXPORT_SYMBOL(write_inode_now); | |
2866 | ||
2867 | /** | |
2868 | * sync_inode_metadata - write an inode to disk | |
2869 | * @inode: the inode to sync | |
2870 | * @wait: wait for I/O to complete. | |
2871 | * | |
2872 | * Write an inode to disk and adjust its dirty state after completion. | |
2873 | * | |
2874 | * Note: only writes the actual inode, no associated data or other metadata. | |
2875 | */ | |
2876 | int sync_inode_metadata(struct inode *inode, int wait) | |
2877 | { | |
2878 | struct writeback_control wbc = { | |
2879 | .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, | |
2880 | .nr_to_write = 0, /* metadata-only */ | |
2881 | }; | |
2882 | ||
2883 | return writeback_single_inode(inode, &wbc); | |
2884 | } | |
2885 | EXPORT_SYMBOL(sync_inode_metadata); |