]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame_incremental - fs/hugetlbfs/inode.c
eventpoll: don't decrement ep refcount while still holding the ep mutex
[thirdparty/kernel/stable.git] / fs / hugetlbfs / inode.c
... / ...
CommitLineData
1/*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/thread_info.h>
13#include <asm/current.h>
14#include <linux/falloc.h>
15#include <linux/fs.h>
16#include <linux/mount.h>
17#include <linux/file.h>
18#include <linux/kernel.h>
19#include <linux/writeback.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/init.h>
23#include <linux/string.h>
24#include <linux/capability.h>
25#include <linux/ctype.h>
26#include <linux/backing-dev.h>
27#include <linux/hugetlb.h>
28#include <linux/pagevec.h>
29#include <linux/fs_parser.h>
30#include <linux/mman.h>
31#include <linux/slab.h>
32#include <linux/dnotify.h>
33#include <linux/statfs.h>
34#include <linux/security.h>
35#include <linux/magic.h>
36#include <linux/migrate.h>
37#include <linux/uio.h>
38
39#include <linux/uaccess.h>
40#include <linux/sched/mm.h>
41
42#define CREATE_TRACE_POINTS
43#include <trace/events/hugetlbfs.h>
44
45static const struct address_space_operations hugetlbfs_aops;
46static const struct file_operations hugetlbfs_file_operations;
47static const struct inode_operations hugetlbfs_dir_inode_operations;
48static const struct inode_operations hugetlbfs_inode_operations;
49
50enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
51
52struct hugetlbfs_fs_context {
53 struct hstate *hstate;
54 unsigned long long max_size_opt;
55 unsigned long long min_size_opt;
56 long max_hpages;
57 long nr_inodes;
58 long min_hpages;
59 enum hugetlbfs_size_type max_val_type;
60 enum hugetlbfs_size_type min_val_type;
61 kuid_t uid;
62 kgid_t gid;
63 umode_t mode;
64};
65
66int sysctl_hugetlb_shm_group;
67
68enum hugetlb_param {
69 Opt_gid,
70 Opt_min_size,
71 Opt_mode,
72 Opt_nr_inodes,
73 Opt_pagesize,
74 Opt_size,
75 Opt_uid,
76};
77
78static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
79 fsparam_gid ("gid", Opt_gid),
80 fsparam_string("min_size", Opt_min_size),
81 fsparam_u32oct("mode", Opt_mode),
82 fsparam_string("nr_inodes", Opt_nr_inodes),
83 fsparam_string("pagesize", Opt_pagesize),
84 fsparam_string("size", Opt_size),
85 fsparam_uid ("uid", Opt_uid),
86 {}
87};
88
89/*
90 * Mask used when checking the page offset value passed in via system
91 * calls. This value will be converted to a loff_t which is signed.
92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
93 * value. The extra bit (- 1 in the shift value) is to take the sign
94 * bit into account.
95 */
96#define PGOFF_LOFFT_MAX \
97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
98
99static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
100{
101 struct inode *inode = file_inode(file);
102 loff_t len, vma_len;
103 int ret;
104 struct hstate *h = hstate_file(file);
105 vm_flags_t vm_flags;
106
107 /*
108 * vma address alignment (but not the pgoff alignment) has
109 * already been checked by prepare_hugepage_range. If you add
110 * any error returns here, do so after setting VM_HUGETLB, so
111 * is_vm_hugetlb_page tests below unmap_region go the right
112 * way when do_mmap unwinds (may be important on powerpc
113 * and ia64).
114 */
115 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
116 vma->vm_ops = &hugetlb_vm_ops;
117
118 /*
119 * page based offset in vm_pgoff could be sufficiently large to
120 * overflow a loff_t when converted to byte offset. This can
121 * only happen on architectures where sizeof(loff_t) ==
122 * sizeof(unsigned long). So, only check in those instances.
123 */
124 if (sizeof(unsigned long) == sizeof(loff_t)) {
125 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
126 return -EINVAL;
127 }
128
129 /* must be huge page aligned */
130 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
131 return -EINVAL;
132
133 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
134 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
135 /* check for overflow */
136 if (len < vma_len)
137 return -EINVAL;
138
139 inode_lock(inode);
140 file_accessed(file);
141
142 ret = -ENOMEM;
143
144 vm_flags = vma->vm_flags;
145 /*
146 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
147 * reserving here. Note: only for SHM hugetlbfs file, the inode
148 * flag S_PRIVATE is set.
149 */
150 if (inode->i_flags & S_PRIVATE)
151 vm_flags |= VM_NORESERVE;
152
153 if (!hugetlb_reserve_pages(inode,
154 vma->vm_pgoff >> huge_page_order(h),
155 len >> huge_page_shift(h), vma,
156 vm_flags))
157 goto out;
158
159 ret = 0;
160 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
161 i_size_write(inode, len);
162out:
163 inode_unlock(inode);
164
165 return ret;
166}
167
168/*
169 * Called under mmap_write_lock(mm).
170 */
171
172unsigned long
173hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
174 unsigned long len, unsigned long pgoff,
175 unsigned long flags)
176{
177 unsigned long addr0 = 0;
178 struct hstate *h = hstate_file(file);
179
180 if (len & ~huge_page_mask(h))
181 return -EINVAL;
182 if (flags & MAP_FIXED) {
183 if (addr & ~huge_page_mask(h))
184 return -EINVAL;
185 if (prepare_hugepage_range(file, addr, len))
186 return -EINVAL;
187 }
188 if (addr)
189 addr0 = ALIGN(addr, huge_page_size(h));
190
191 return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff,
192 flags, 0);
193}
194
195/*
196 * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset.
197 * Returns the maximum number of bytes one can read without touching the 1st raw
198 * HWPOISON page.
199 *
200 * The implementation borrows the iteration logic from copy_page_to_iter*.
201 */
202static size_t adjust_range_hwpoison(struct folio *folio, size_t offset,
203 size_t bytes)
204{
205 struct page *page;
206 size_t n = 0;
207 size_t res = 0;
208
209 /* First page to start the loop. */
210 page = folio_page(folio, offset / PAGE_SIZE);
211 offset %= PAGE_SIZE;
212 while (1) {
213 if (is_raw_hwpoison_page_in_hugepage(page))
214 break;
215
216 /* Safe to read n bytes without touching HWPOISON subpage. */
217 n = min(bytes, (size_t)PAGE_SIZE - offset);
218 res += n;
219 bytes -= n;
220 if (!bytes || !n)
221 break;
222 offset += n;
223 if (offset == PAGE_SIZE) {
224 page = nth_page(page, 1);
225 offset = 0;
226 }
227 }
228
229 return res;
230}
231
232/*
233 * Support for read() - Find the page attached to f_mapping and copy out the
234 * data. This provides functionality similar to filemap_read().
235 */
236static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
237{
238 struct file *file = iocb->ki_filp;
239 struct hstate *h = hstate_file(file);
240 struct address_space *mapping = file->f_mapping;
241 struct inode *inode = mapping->host;
242 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
243 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
244 unsigned long end_index;
245 loff_t isize;
246 ssize_t retval = 0;
247
248 while (iov_iter_count(to)) {
249 struct folio *folio;
250 size_t nr, copied, want;
251
252 /* nr is the maximum number of bytes to copy from this page */
253 nr = huge_page_size(h);
254 isize = i_size_read(inode);
255 if (!isize)
256 break;
257 end_index = (isize - 1) >> huge_page_shift(h);
258 if (index > end_index)
259 break;
260 if (index == end_index) {
261 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
262 if (nr <= offset)
263 break;
264 }
265 nr = nr - offset;
266
267 /* Find the folio */
268 folio = filemap_lock_hugetlb_folio(h, mapping, index);
269 if (IS_ERR(folio)) {
270 /*
271 * We have a HOLE, zero out the user-buffer for the
272 * length of the hole or request.
273 */
274 copied = iov_iter_zero(nr, to);
275 } else {
276 folio_unlock(folio);
277
278 if (!folio_test_hwpoison(folio))
279 want = nr;
280 else {
281 /*
282 * Adjust how many bytes safe to read without
283 * touching the 1st raw HWPOISON page after
284 * offset.
285 */
286 want = adjust_range_hwpoison(folio, offset, nr);
287 if (want == 0) {
288 folio_put(folio);
289 retval = -EIO;
290 break;
291 }
292 }
293
294 /*
295 * We have the folio, copy it to user space buffer.
296 */
297 copied = copy_folio_to_iter(folio, offset, want, to);
298 folio_put(folio);
299 }
300 offset += copied;
301 retval += copied;
302 if (copied != nr && iov_iter_count(to)) {
303 if (!retval)
304 retval = -EFAULT;
305 break;
306 }
307 index += offset >> huge_page_shift(h);
308 offset &= ~huge_page_mask(h);
309 }
310 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
311 return retval;
312}
313
314static int hugetlbfs_write_begin(struct file *file,
315 struct address_space *mapping,
316 loff_t pos, unsigned len,
317 struct folio **foliop, void **fsdata)
318{
319 return -EINVAL;
320}
321
322static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
323 loff_t pos, unsigned len, unsigned copied,
324 struct folio *folio, void *fsdata)
325{
326 BUG();
327 return -EINVAL;
328}
329
330static void hugetlb_delete_from_page_cache(struct folio *folio)
331{
332 folio_clear_dirty(folio);
333 folio_clear_uptodate(folio);
334 filemap_remove_folio(folio);
335}
336
337/*
338 * Called with i_mmap_rwsem held for inode based vma maps. This makes
339 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
340 * mutex for the page in the mapping. So, we can not race with page being
341 * faulted into the vma.
342 */
343static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma,
344 unsigned long addr, unsigned long pfn)
345{
346 pte_t *ptep, pte;
347
348 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
349 if (!ptep)
350 return false;
351
352 pte = huge_ptep_get(vma->vm_mm, addr, ptep);
353 if (huge_pte_none(pte) || !pte_present(pte))
354 return false;
355
356 if (pte_pfn(pte) == pfn)
357 return true;
358
359 return false;
360}
361
362/*
363 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
364 * No, because the interval tree returns us only those vmas
365 * which overlap the truncated area starting at pgoff,
366 * and no vma on a 32-bit arch can span beyond the 4GB.
367 */
368static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
369{
370 unsigned long offset = 0;
371
372 if (vma->vm_pgoff < start)
373 offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
374
375 return vma->vm_start + offset;
376}
377
378static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
379{
380 unsigned long t_end;
381
382 if (!end)
383 return vma->vm_end;
384
385 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
386 if (t_end > vma->vm_end)
387 t_end = vma->vm_end;
388 return t_end;
389}
390
391/*
392 * Called with hugetlb fault mutex held. Therefore, no more mappings to
393 * this folio can be created while executing the routine.
394 */
395static void hugetlb_unmap_file_folio(struct hstate *h,
396 struct address_space *mapping,
397 struct folio *folio, pgoff_t index)
398{
399 struct rb_root_cached *root = &mapping->i_mmap;
400 struct hugetlb_vma_lock *vma_lock;
401 unsigned long pfn = folio_pfn(folio);
402 struct vm_area_struct *vma;
403 unsigned long v_start;
404 unsigned long v_end;
405 pgoff_t start, end;
406
407 start = index * pages_per_huge_page(h);
408 end = (index + 1) * pages_per_huge_page(h);
409
410 i_mmap_lock_write(mapping);
411retry:
412 vma_lock = NULL;
413 vma_interval_tree_foreach(vma, root, start, end - 1) {
414 v_start = vma_offset_start(vma, start);
415 v_end = vma_offset_end(vma, end);
416
417 if (!hugetlb_vma_maps_pfn(vma, v_start, pfn))
418 continue;
419
420 if (!hugetlb_vma_trylock_write(vma)) {
421 vma_lock = vma->vm_private_data;
422 /*
423 * If we can not get vma lock, we need to drop
424 * immap_sema and take locks in order. First,
425 * take a ref on the vma_lock structure so that
426 * we can be guaranteed it will not go away when
427 * dropping immap_sema.
428 */
429 kref_get(&vma_lock->refs);
430 break;
431 }
432
433 unmap_hugepage_range(vma, v_start, v_end, NULL,
434 ZAP_FLAG_DROP_MARKER);
435 hugetlb_vma_unlock_write(vma);
436 }
437
438 i_mmap_unlock_write(mapping);
439
440 if (vma_lock) {
441 /*
442 * Wait on vma_lock. We know it is still valid as we have
443 * a reference. We must 'open code' vma locking as we do
444 * not know if vma_lock is still attached to vma.
445 */
446 down_write(&vma_lock->rw_sema);
447 i_mmap_lock_write(mapping);
448
449 vma = vma_lock->vma;
450 if (!vma) {
451 /*
452 * If lock is no longer attached to vma, then just
453 * unlock, drop our reference and retry looking for
454 * other vmas.
455 */
456 up_write(&vma_lock->rw_sema);
457 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
458 goto retry;
459 }
460
461 /*
462 * vma_lock is still attached to vma. Check to see if vma
463 * still maps page and if so, unmap.
464 */
465 v_start = vma_offset_start(vma, start);
466 v_end = vma_offset_end(vma, end);
467 if (hugetlb_vma_maps_pfn(vma, v_start, pfn))
468 unmap_hugepage_range(vma, v_start, v_end, NULL,
469 ZAP_FLAG_DROP_MARKER);
470
471 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
472 hugetlb_vma_unlock_write(vma);
473
474 goto retry;
475 }
476}
477
478static void
479hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
480 zap_flags_t zap_flags)
481{
482 struct vm_area_struct *vma;
483
484 /*
485 * end == 0 indicates that the entire range after start should be
486 * unmapped. Note, end is exclusive, whereas the interval tree takes
487 * an inclusive "last".
488 */
489 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
490 unsigned long v_start;
491 unsigned long v_end;
492
493 if (!hugetlb_vma_trylock_write(vma))
494 continue;
495
496 v_start = vma_offset_start(vma, start);
497 v_end = vma_offset_end(vma, end);
498
499 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
500
501 /*
502 * Note that vma lock only exists for shared/non-private
503 * vmas. Therefore, lock is not held when calling
504 * unmap_hugepage_range for private vmas.
505 */
506 hugetlb_vma_unlock_write(vma);
507 }
508}
509
510/*
511 * Called with hugetlb fault mutex held.
512 * Returns true if page was actually removed, false otherwise.
513 */
514static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
515 struct address_space *mapping,
516 struct folio *folio, pgoff_t index,
517 bool truncate_op)
518{
519 bool ret = false;
520
521 /*
522 * If folio is mapped, it was faulted in after being
523 * unmapped in caller. Unmap (again) while holding
524 * the fault mutex. The mutex will prevent faults
525 * until we finish removing the folio.
526 */
527 if (unlikely(folio_mapped(folio)))
528 hugetlb_unmap_file_folio(h, mapping, folio, index);
529
530 folio_lock(folio);
531 /*
532 * We must remove the folio from page cache before removing
533 * the region/ reserve map (hugetlb_unreserve_pages). In
534 * rare out of memory conditions, removal of the region/reserve
535 * map could fail. Correspondingly, the subpool and global
536 * reserve usage count can need to be adjusted.
537 */
538 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
539 hugetlb_delete_from_page_cache(folio);
540 ret = true;
541 if (!truncate_op) {
542 if (unlikely(hugetlb_unreserve_pages(inode, index,
543 index + 1, 1)))
544 hugetlb_fix_reserve_counts(inode);
545 }
546
547 folio_unlock(folio);
548 return ret;
549}
550
551/*
552 * remove_inode_hugepages handles two distinct cases: truncation and hole
553 * punch. There are subtle differences in operation for each case.
554 *
555 * truncation is indicated by end of range being LLONG_MAX
556 * In this case, we first scan the range and release found pages.
557 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
558 * maps and global counts. Page faults can race with truncation.
559 * During faults, hugetlb_no_page() checks i_size before page allocation,
560 * and again after obtaining page table lock. It will 'back out'
561 * allocations in the truncated range.
562 * hole punch is indicated if end is not LLONG_MAX
563 * In the hole punch case we scan the range and release found pages.
564 * Only when releasing a page is the associated region/reserve map
565 * deleted. The region/reserve map for ranges without associated
566 * pages are not modified. Page faults can race with hole punch.
567 * This is indicated if we find a mapped page.
568 * Note: If the passed end of range value is beyond the end of file, but
569 * not LLONG_MAX this routine still performs a hole punch operation.
570 */
571static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
572 loff_t lend)
573{
574 struct hstate *h = hstate_inode(inode);
575 struct address_space *mapping = &inode->i_data;
576 const pgoff_t end = lend >> PAGE_SHIFT;
577 struct folio_batch fbatch;
578 pgoff_t next, index;
579 int i, freed = 0;
580 bool truncate_op = (lend == LLONG_MAX);
581
582 folio_batch_init(&fbatch);
583 next = lstart >> PAGE_SHIFT;
584 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
585 for (i = 0; i < folio_batch_count(&fbatch); ++i) {
586 struct folio *folio = fbatch.folios[i];
587 u32 hash = 0;
588
589 index = folio->index >> huge_page_order(h);
590 hash = hugetlb_fault_mutex_hash(mapping, index);
591 mutex_lock(&hugetlb_fault_mutex_table[hash]);
592
593 /*
594 * Remove folio that was part of folio_batch.
595 */
596 if (remove_inode_single_folio(h, inode, mapping, folio,
597 index, truncate_op))
598 freed++;
599
600 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
601 }
602 folio_batch_release(&fbatch);
603 cond_resched();
604 }
605
606 if (truncate_op)
607 (void)hugetlb_unreserve_pages(inode,
608 lstart >> huge_page_shift(h),
609 LONG_MAX, freed);
610}
611
612static void hugetlbfs_evict_inode(struct inode *inode)
613{
614 struct resv_map *resv_map;
615
616 trace_hugetlbfs_evict_inode(inode);
617 remove_inode_hugepages(inode, 0, LLONG_MAX);
618
619 /*
620 * Get the resv_map from the address space embedded in the inode.
621 * This is the address space which points to any resv_map allocated
622 * at inode creation time. If this is a device special inode,
623 * i_mapping may not point to the original address space.
624 */
625 resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
626 /* Only regular and link inodes have associated reserve maps */
627 if (resv_map)
628 resv_map_release(&resv_map->refs);
629 clear_inode(inode);
630}
631
632static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
633{
634 pgoff_t pgoff;
635 struct address_space *mapping = inode->i_mapping;
636 struct hstate *h = hstate_inode(inode);
637
638 BUG_ON(offset & ~huge_page_mask(h));
639 pgoff = offset >> PAGE_SHIFT;
640
641 i_size_write(inode, offset);
642 i_mmap_lock_write(mapping);
643 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
644 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
645 ZAP_FLAG_DROP_MARKER);
646 i_mmap_unlock_write(mapping);
647 remove_inode_hugepages(inode, offset, LLONG_MAX);
648}
649
650static void hugetlbfs_zero_partial_page(struct hstate *h,
651 struct address_space *mapping,
652 loff_t start,
653 loff_t end)
654{
655 pgoff_t idx = start >> huge_page_shift(h);
656 struct folio *folio;
657
658 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
659 if (IS_ERR(folio))
660 return;
661
662 start = start & ~huge_page_mask(h);
663 end = end & ~huge_page_mask(h);
664 if (!end)
665 end = huge_page_size(h);
666
667 folio_zero_segment(folio, (size_t)start, (size_t)end);
668
669 folio_unlock(folio);
670 folio_put(folio);
671}
672
673static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
674{
675 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
676 struct address_space *mapping = inode->i_mapping;
677 struct hstate *h = hstate_inode(inode);
678 loff_t hpage_size = huge_page_size(h);
679 loff_t hole_start, hole_end;
680
681 /*
682 * hole_start and hole_end indicate the full pages within the hole.
683 */
684 hole_start = round_up(offset, hpage_size);
685 hole_end = round_down(offset + len, hpage_size);
686
687 inode_lock(inode);
688
689 /* protected by i_rwsem */
690 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
691 inode_unlock(inode);
692 return -EPERM;
693 }
694
695 i_mmap_lock_write(mapping);
696
697 /* If range starts before first full page, zero partial page. */
698 if (offset < hole_start)
699 hugetlbfs_zero_partial_page(h, mapping,
700 offset, min(offset + len, hole_start));
701
702 /* Unmap users of full pages in the hole. */
703 if (hole_end > hole_start) {
704 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
705 hugetlb_vmdelete_list(&mapping->i_mmap,
706 hole_start >> PAGE_SHIFT,
707 hole_end >> PAGE_SHIFT, 0);
708 }
709
710 /* If range extends beyond last full page, zero partial page. */
711 if ((offset + len) > hole_end && (offset + len) > hole_start)
712 hugetlbfs_zero_partial_page(h, mapping,
713 hole_end, offset + len);
714
715 i_mmap_unlock_write(mapping);
716
717 /* Remove full pages from the file. */
718 if (hole_end > hole_start)
719 remove_inode_hugepages(inode, hole_start, hole_end);
720
721 inode_unlock(inode);
722
723 return 0;
724}
725
726static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
727 loff_t len)
728{
729 struct inode *inode = file_inode(file);
730 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
731 struct address_space *mapping = inode->i_mapping;
732 struct hstate *h = hstate_inode(inode);
733 struct vm_area_struct pseudo_vma;
734 struct mm_struct *mm = current->mm;
735 loff_t hpage_size = huge_page_size(h);
736 unsigned long hpage_shift = huge_page_shift(h);
737 pgoff_t start, index, end;
738 int error;
739 u32 hash;
740
741 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
742 return -EOPNOTSUPP;
743
744 if (mode & FALLOC_FL_PUNCH_HOLE) {
745 error = hugetlbfs_punch_hole(inode, offset, len);
746 goto out_nolock;
747 }
748
749 /*
750 * Default preallocate case.
751 * For this range, start is rounded down and end is rounded up
752 * as well as being converted to page offsets.
753 */
754 start = offset >> hpage_shift;
755 end = (offset + len + hpage_size - 1) >> hpage_shift;
756
757 inode_lock(inode);
758
759 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
760 error = inode_newsize_ok(inode, offset + len);
761 if (error)
762 goto out;
763
764 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
765 error = -EPERM;
766 goto out;
767 }
768
769 /*
770 * Initialize a pseudo vma as this is required by the huge page
771 * allocation routines.
772 */
773 vma_init(&pseudo_vma, mm);
774 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
775 pseudo_vma.vm_file = file;
776
777 for (index = start; index < end; index++) {
778 /*
779 * This is supposed to be the vaddr where the page is being
780 * faulted in, but we have no vaddr here.
781 */
782 struct folio *folio;
783 unsigned long addr;
784
785 cond_resched();
786
787 /*
788 * fallocate(2) manpage permits EINTR; we may have been
789 * interrupted because we are using up too much memory.
790 */
791 if (signal_pending(current)) {
792 error = -EINTR;
793 break;
794 }
795
796 /* addr is the offset within the file (zero based) */
797 addr = index * hpage_size;
798
799 /* mutex taken here, fault path and hole punch */
800 hash = hugetlb_fault_mutex_hash(mapping, index);
801 mutex_lock(&hugetlb_fault_mutex_table[hash]);
802
803 /* See if already present in mapping to avoid alloc/free */
804 folio = filemap_get_folio(mapping, index << huge_page_order(h));
805 if (!IS_ERR(folio)) {
806 folio_put(folio);
807 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
808 continue;
809 }
810
811 /*
812 * Allocate folio without setting the avoid_reserve argument.
813 * There certainly are no reserves associated with the
814 * pseudo_vma. However, there could be shared mappings with
815 * reserves for the file at the inode level. If we fallocate
816 * folios in these areas, we need to consume the reserves
817 * to keep reservation accounting consistent.
818 */
819 folio = alloc_hugetlb_folio(&pseudo_vma, addr, false);
820 if (IS_ERR(folio)) {
821 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
822 error = PTR_ERR(folio);
823 goto out;
824 }
825 folio_zero_user(folio, addr);
826 __folio_mark_uptodate(folio);
827 error = hugetlb_add_to_page_cache(folio, mapping, index);
828 if (unlikely(error)) {
829 restore_reserve_on_error(h, &pseudo_vma, addr, folio);
830 folio_put(folio);
831 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
832 goto out;
833 }
834
835 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
836
837 folio_set_hugetlb_migratable(folio);
838 /*
839 * folio_unlock because locked by hugetlb_add_to_page_cache()
840 * folio_put() due to reference from alloc_hugetlb_folio()
841 */
842 folio_unlock(folio);
843 folio_put(folio);
844 }
845
846 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
847 i_size_write(inode, offset + len);
848 inode_set_ctime_current(inode);
849out:
850 inode_unlock(inode);
851
852out_nolock:
853 trace_hugetlbfs_fallocate(inode, mode, offset, len, error);
854 return error;
855}
856
857static int hugetlbfs_setattr(struct mnt_idmap *idmap,
858 struct dentry *dentry, struct iattr *attr)
859{
860 struct inode *inode = d_inode(dentry);
861 struct hstate *h = hstate_inode(inode);
862 int error;
863 unsigned int ia_valid = attr->ia_valid;
864 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
865
866 error = setattr_prepare(idmap, dentry, attr);
867 if (error)
868 return error;
869
870 trace_hugetlbfs_setattr(inode, dentry, attr);
871
872 if (ia_valid & ATTR_SIZE) {
873 loff_t oldsize = inode->i_size;
874 loff_t newsize = attr->ia_size;
875
876 if (newsize & ~huge_page_mask(h))
877 return -EINVAL;
878 /* protected by i_rwsem */
879 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
880 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
881 return -EPERM;
882 hugetlb_vmtruncate(inode, newsize);
883 }
884
885 setattr_copy(idmap, inode, attr);
886 mark_inode_dirty(inode);
887 return 0;
888}
889
890static struct inode *hugetlbfs_get_root(struct super_block *sb,
891 struct hugetlbfs_fs_context *ctx)
892{
893 struct inode *inode;
894
895 inode = new_inode(sb);
896 if (inode) {
897 inode->i_ino = get_next_ino();
898 inode->i_mode = S_IFDIR | ctx->mode;
899 inode->i_uid = ctx->uid;
900 inode->i_gid = ctx->gid;
901 simple_inode_init_ts(inode);
902 inode->i_op = &hugetlbfs_dir_inode_operations;
903 inode->i_fop = &simple_dir_operations;
904 /* directory inodes start off with i_nlink == 2 (for "." entry) */
905 inc_nlink(inode);
906 lockdep_annotate_inode_mutex_key(inode);
907 }
908 return inode;
909}
910
911/*
912 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
913 * be taken from reclaim -- unlike regular filesystems. This needs an
914 * annotation because huge_pmd_share() does an allocation under hugetlb's
915 * i_mmap_rwsem.
916 */
917static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
918
919static struct inode *hugetlbfs_get_inode(struct super_block *sb,
920 struct mnt_idmap *idmap,
921 struct inode *dir,
922 umode_t mode, dev_t dev)
923{
924 struct inode *inode;
925 struct resv_map *resv_map = NULL;
926
927 /*
928 * Reserve maps are only needed for inodes that can have associated
929 * page allocations.
930 */
931 if (S_ISREG(mode) || S_ISLNK(mode)) {
932 resv_map = resv_map_alloc();
933 if (!resv_map)
934 return NULL;
935 }
936
937 inode = new_inode(sb);
938 if (inode) {
939 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
940
941 inode->i_ino = get_next_ino();
942 inode_init_owner(idmap, inode, dir, mode);
943 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
944 &hugetlbfs_i_mmap_rwsem_key);
945 inode->i_mapping->a_ops = &hugetlbfs_aops;
946 simple_inode_init_ts(inode);
947 inode->i_mapping->i_private_data = resv_map;
948 info->seals = F_SEAL_SEAL;
949 switch (mode & S_IFMT) {
950 default:
951 init_special_inode(inode, mode, dev);
952 break;
953 case S_IFREG:
954 inode->i_op = &hugetlbfs_inode_operations;
955 inode->i_fop = &hugetlbfs_file_operations;
956 break;
957 case S_IFDIR:
958 inode->i_op = &hugetlbfs_dir_inode_operations;
959 inode->i_fop = &simple_dir_operations;
960
961 /* directory inodes start off with i_nlink == 2 (for "." entry) */
962 inc_nlink(inode);
963 break;
964 case S_IFLNK:
965 inode->i_op = &page_symlink_inode_operations;
966 inode_nohighmem(inode);
967 break;
968 }
969 lockdep_annotate_inode_mutex_key(inode);
970 trace_hugetlbfs_alloc_inode(inode, dir, mode);
971 } else {
972 if (resv_map)
973 kref_put(&resv_map->refs, resv_map_release);
974 }
975
976 return inode;
977}
978
979/*
980 * File creation. Allocate an inode, and we're done..
981 */
982static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
983 struct dentry *dentry, umode_t mode, dev_t dev)
984{
985 struct inode *inode;
986
987 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
988 if (!inode)
989 return -ENOSPC;
990 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
991 d_instantiate(dentry, inode);
992 dget(dentry);/* Extra count - pin the dentry in core */
993 return 0;
994}
995
996static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
997 struct dentry *dentry, umode_t mode)
998{
999 int retval = hugetlbfs_mknod(idmap, dir, dentry,
1000 mode | S_IFDIR, 0);
1001 if (!retval)
1002 inc_nlink(dir);
1003 return ERR_PTR(retval);
1004}
1005
1006static int hugetlbfs_create(struct mnt_idmap *idmap,
1007 struct inode *dir, struct dentry *dentry,
1008 umode_t mode, bool excl)
1009{
1010 return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
1011}
1012
1013static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1014 struct inode *dir, struct file *file,
1015 umode_t mode)
1016{
1017 struct inode *inode;
1018
1019 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
1020 if (!inode)
1021 return -ENOSPC;
1022 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1023 d_tmpfile(file, inode);
1024 return finish_open_simple(file, 0);
1025}
1026
1027static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1028 struct inode *dir, struct dentry *dentry,
1029 const char *symname)
1030{
1031 const umode_t mode = S_IFLNK|S_IRWXUGO;
1032 struct inode *inode;
1033 int error = -ENOSPC;
1034
1035 inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
1036 if (inode) {
1037 int l = strlen(symname)+1;
1038 error = page_symlink(inode, symname, l);
1039 if (!error) {
1040 d_instantiate(dentry, inode);
1041 dget(dentry);
1042 } else
1043 iput(inode);
1044 }
1045 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
1046
1047 return error;
1048}
1049
1050#ifdef CONFIG_MIGRATION
1051static int hugetlbfs_migrate_folio(struct address_space *mapping,
1052 struct folio *dst, struct folio *src,
1053 enum migrate_mode mode)
1054{
1055 int rc;
1056
1057 rc = migrate_huge_page_move_mapping(mapping, dst, src);
1058 if (rc != MIGRATEPAGE_SUCCESS)
1059 return rc;
1060
1061 if (hugetlb_folio_subpool(src)) {
1062 hugetlb_set_folio_subpool(dst,
1063 hugetlb_folio_subpool(src));
1064 hugetlb_set_folio_subpool(src, NULL);
1065 }
1066
1067 folio_migrate_flags(dst, src);
1068
1069 return MIGRATEPAGE_SUCCESS;
1070}
1071#else
1072#define hugetlbfs_migrate_folio NULL
1073#endif
1074
1075static int hugetlbfs_error_remove_folio(struct address_space *mapping,
1076 struct folio *folio)
1077{
1078 return 0;
1079}
1080
1081/*
1082 * Display the mount options in /proc/mounts.
1083 */
1084static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1085{
1086 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1087 struct hugepage_subpool *spool = sbinfo->spool;
1088 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1089 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1090 char mod;
1091
1092 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1093 seq_printf(m, ",uid=%u",
1094 from_kuid_munged(&init_user_ns, sbinfo->uid));
1095 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1096 seq_printf(m, ",gid=%u",
1097 from_kgid_munged(&init_user_ns, sbinfo->gid));
1098 if (sbinfo->mode != 0755)
1099 seq_printf(m, ",mode=%o", sbinfo->mode);
1100 if (sbinfo->max_inodes != -1)
1101 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1102
1103 hpage_size /= 1024;
1104 mod = 'K';
1105 if (hpage_size >= 1024) {
1106 hpage_size /= 1024;
1107 mod = 'M';
1108 }
1109 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1110 if (spool) {
1111 if (spool->max_hpages != -1)
1112 seq_printf(m, ",size=%llu",
1113 (unsigned long long)spool->max_hpages << hpage_shift);
1114 if (spool->min_hpages != -1)
1115 seq_printf(m, ",min_size=%llu",
1116 (unsigned long long)spool->min_hpages << hpage_shift);
1117 }
1118 return 0;
1119}
1120
1121static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1122{
1123 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1124 struct hstate *h = hstate_inode(d_inode(dentry));
1125 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
1126
1127 buf->f_fsid = u64_to_fsid(id);
1128 buf->f_type = HUGETLBFS_MAGIC;
1129 buf->f_bsize = huge_page_size(h);
1130 if (sbinfo) {
1131 spin_lock(&sbinfo->stat_lock);
1132 /* If no limits set, just report 0 or -1 for max/free/used
1133 * blocks, like simple_statfs() */
1134 if (sbinfo->spool) {
1135 long free_pages;
1136
1137 spin_lock_irq(&sbinfo->spool->lock);
1138 buf->f_blocks = sbinfo->spool->max_hpages;
1139 free_pages = sbinfo->spool->max_hpages
1140 - sbinfo->spool->used_hpages;
1141 buf->f_bavail = buf->f_bfree = free_pages;
1142 spin_unlock_irq(&sbinfo->spool->lock);
1143 buf->f_files = sbinfo->max_inodes;
1144 buf->f_ffree = sbinfo->free_inodes;
1145 }
1146 spin_unlock(&sbinfo->stat_lock);
1147 }
1148 buf->f_namelen = NAME_MAX;
1149 return 0;
1150}
1151
1152static void hugetlbfs_put_super(struct super_block *sb)
1153{
1154 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1155
1156 if (sbi) {
1157 sb->s_fs_info = NULL;
1158
1159 if (sbi->spool)
1160 hugepage_put_subpool(sbi->spool);
1161
1162 kfree(sbi);
1163 }
1164}
1165
1166static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1167{
1168 if (sbinfo->free_inodes >= 0) {
1169 spin_lock(&sbinfo->stat_lock);
1170 if (unlikely(!sbinfo->free_inodes)) {
1171 spin_unlock(&sbinfo->stat_lock);
1172 return 0;
1173 }
1174 sbinfo->free_inodes--;
1175 spin_unlock(&sbinfo->stat_lock);
1176 }
1177
1178 return 1;
1179}
1180
1181static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1182{
1183 if (sbinfo->free_inodes >= 0) {
1184 spin_lock(&sbinfo->stat_lock);
1185 sbinfo->free_inodes++;
1186 spin_unlock(&sbinfo->stat_lock);
1187 }
1188}
1189
1190
1191static struct kmem_cache *hugetlbfs_inode_cachep;
1192
1193static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1194{
1195 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1196 struct hugetlbfs_inode_info *p;
1197
1198 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1199 return NULL;
1200 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1201 if (unlikely(!p)) {
1202 hugetlbfs_inc_free_inodes(sbinfo);
1203 return NULL;
1204 }
1205 return &p->vfs_inode;
1206}
1207
1208static void hugetlbfs_free_inode(struct inode *inode)
1209{
1210 trace_hugetlbfs_free_inode(inode);
1211 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1212}
1213
1214static void hugetlbfs_destroy_inode(struct inode *inode)
1215{
1216 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1217}
1218
1219static const struct address_space_operations hugetlbfs_aops = {
1220 .write_begin = hugetlbfs_write_begin,
1221 .write_end = hugetlbfs_write_end,
1222 .dirty_folio = noop_dirty_folio,
1223 .migrate_folio = hugetlbfs_migrate_folio,
1224 .error_remove_folio = hugetlbfs_error_remove_folio,
1225};
1226
1227
1228static void init_once(void *foo)
1229{
1230 struct hugetlbfs_inode_info *ei = foo;
1231
1232 inode_init_once(&ei->vfs_inode);
1233}
1234
1235static const struct file_operations hugetlbfs_file_operations = {
1236 .read_iter = hugetlbfs_read_iter,
1237 .mmap = hugetlbfs_file_mmap,
1238 .fsync = noop_fsync,
1239 .get_unmapped_area = hugetlb_get_unmapped_area,
1240 .llseek = default_llseek,
1241 .fallocate = hugetlbfs_fallocate,
1242 .fop_flags = FOP_HUGE_PAGES,
1243};
1244
1245static const struct inode_operations hugetlbfs_dir_inode_operations = {
1246 .create = hugetlbfs_create,
1247 .lookup = simple_lookup,
1248 .link = simple_link,
1249 .unlink = simple_unlink,
1250 .symlink = hugetlbfs_symlink,
1251 .mkdir = hugetlbfs_mkdir,
1252 .rmdir = simple_rmdir,
1253 .mknod = hugetlbfs_mknod,
1254 .rename = simple_rename,
1255 .setattr = hugetlbfs_setattr,
1256 .tmpfile = hugetlbfs_tmpfile,
1257};
1258
1259static const struct inode_operations hugetlbfs_inode_operations = {
1260 .setattr = hugetlbfs_setattr,
1261};
1262
1263static const struct super_operations hugetlbfs_ops = {
1264 .alloc_inode = hugetlbfs_alloc_inode,
1265 .free_inode = hugetlbfs_free_inode,
1266 .destroy_inode = hugetlbfs_destroy_inode,
1267 .evict_inode = hugetlbfs_evict_inode,
1268 .statfs = hugetlbfs_statfs,
1269 .put_super = hugetlbfs_put_super,
1270 .show_options = hugetlbfs_show_options,
1271};
1272
1273/*
1274 * Convert size option passed from command line to number of huge pages
1275 * in the pool specified by hstate. Size option could be in bytes
1276 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1277 */
1278static long
1279hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1280 enum hugetlbfs_size_type val_type)
1281{
1282 if (val_type == NO_SIZE)
1283 return -1;
1284
1285 if (val_type == SIZE_PERCENT) {
1286 size_opt <<= huge_page_shift(h);
1287 size_opt *= h->max_huge_pages;
1288 do_div(size_opt, 100);
1289 }
1290
1291 size_opt >>= huge_page_shift(h);
1292 return size_opt;
1293}
1294
1295/*
1296 * Parse one mount parameter.
1297 */
1298static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1299{
1300 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1301 struct fs_parse_result result;
1302 struct hstate *h;
1303 char *rest;
1304 unsigned long ps;
1305 int opt;
1306
1307 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1308 if (opt < 0)
1309 return opt;
1310
1311 switch (opt) {
1312 case Opt_uid:
1313 ctx->uid = result.uid;
1314 return 0;
1315
1316 case Opt_gid:
1317 ctx->gid = result.gid;
1318 return 0;
1319
1320 case Opt_mode:
1321 ctx->mode = result.uint_32 & 01777U;
1322 return 0;
1323
1324 case Opt_size:
1325 /* memparse() will accept a K/M/G without a digit */
1326 if (!param->string || !isdigit(param->string[0]))
1327 goto bad_val;
1328 ctx->max_size_opt = memparse(param->string, &rest);
1329 ctx->max_val_type = SIZE_STD;
1330 if (*rest == '%')
1331 ctx->max_val_type = SIZE_PERCENT;
1332 return 0;
1333
1334 case Opt_nr_inodes:
1335 /* memparse() will accept a K/M/G without a digit */
1336 if (!param->string || !isdigit(param->string[0]))
1337 goto bad_val;
1338 ctx->nr_inodes = memparse(param->string, &rest);
1339 return 0;
1340
1341 case Opt_pagesize:
1342 ps = memparse(param->string, &rest);
1343 h = size_to_hstate(ps);
1344 if (!h) {
1345 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1346 return -EINVAL;
1347 }
1348 ctx->hstate = h;
1349 return 0;
1350
1351 case Opt_min_size:
1352 /* memparse() will accept a K/M/G without a digit */
1353 if (!param->string || !isdigit(param->string[0]))
1354 goto bad_val;
1355 ctx->min_size_opt = memparse(param->string, &rest);
1356 ctx->min_val_type = SIZE_STD;
1357 if (*rest == '%')
1358 ctx->min_val_type = SIZE_PERCENT;
1359 return 0;
1360
1361 default:
1362 return -EINVAL;
1363 }
1364
1365bad_val:
1366 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1367 param->string, param->key);
1368}
1369
1370/*
1371 * Validate the parsed options.
1372 */
1373static int hugetlbfs_validate(struct fs_context *fc)
1374{
1375 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1376
1377 /*
1378 * Use huge page pool size (in hstate) to convert the size
1379 * options to number of huge pages. If NO_SIZE, -1 is returned.
1380 */
1381 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1382 ctx->max_size_opt,
1383 ctx->max_val_type);
1384 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1385 ctx->min_size_opt,
1386 ctx->min_val_type);
1387
1388 /*
1389 * If max_size was specified, then min_size must be smaller
1390 */
1391 if (ctx->max_val_type > NO_SIZE &&
1392 ctx->min_hpages > ctx->max_hpages) {
1393 pr_err("Minimum size can not be greater than maximum size\n");
1394 return -EINVAL;
1395 }
1396
1397 return 0;
1398}
1399
1400static int
1401hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1402{
1403 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1404 struct hugetlbfs_sb_info *sbinfo;
1405
1406 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1407 if (!sbinfo)
1408 return -ENOMEM;
1409 sb->s_fs_info = sbinfo;
1410 spin_lock_init(&sbinfo->stat_lock);
1411 sbinfo->hstate = ctx->hstate;
1412 sbinfo->max_inodes = ctx->nr_inodes;
1413 sbinfo->free_inodes = ctx->nr_inodes;
1414 sbinfo->spool = NULL;
1415 sbinfo->uid = ctx->uid;
1416 sbinfo->gid = ctx->gid;
1417 sbinfo->mode = ctx->mode;
1418
1419 /*
1420 * Allocate and initialize subpool if maximum or minimum size is
1421 * specified. Any needed reservations (for minimum size) are taken
1422 * when the subpool is created.
1423 */
1424 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1425 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1426 ctx->max_hpages,
1427 ctx->min_hpages);
1428 if (!sbinfo->spool)
1429 goto out_free;
1430 }
1431 sb->s_maxbytes = MAX_LFS_FILESIZE;
1432 sb->s_blocksize = huge_page_size(ctx->hstate);
1433 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1434 sb->s_magic = HUGETLBFS_MAGIC;
1435 sb->s_op = &hugetlbfs_ops;
1436 sb->s_time_gran = 1;
1437
1438 /*
1439 * Due to the special and limited functionality of hugetlbfs, it does
1440 * not work well as a stacking filesystem.
1441 */
1442 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1443 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1444 if (!sb->s_root)
1445 goto out_free;
1446 return 0;
1447out_free:
1448 kfree(sbinfo->spool);
1449 kfree(sbinfo);
1450 return -ENOMEM;
1451}
1452
1453static int hugetlbfs_get_tree(struct fs_context *fc)
1454{
1455 int err = hugetlbfs_validate(fc);
1456 if (err)
1457 return err;
1458 return get_tree_nodev(fc, hugetlbfs_fill_super);
1459}
1460
1461static void hugetlbfs_fs_context_free(struct fs_context *fc)
1462{
1463 kfree(fc->fs_private);
1464}
1465
1466static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1467 .free = hugetlbfs_fs_context_free,
1468 .parse_param = hugetlbfs_parse_param,
1469 .get_tree = hugetlbfs_get_tree,
1470};
1471
1472static int hugetlbfs_init_fs_context(struct fs_context *fc)
1473{
1474 struct hugetlbfs_fs_context *ctx;
1475
1476 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1477 if (!ctx)
1478 return -ENOMEM;
1479
1480 ctx->max_hpages = -1; /* No limit on size by default */
1481 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1482 ctx->uid = current_fsuid();
1483 ctx->gid = current_fsgid();
1484 ctx->mode = 0755;
1485 ctx->hstate = &default_hstate;
1486 ctx->min_hpages = -1; /* No default minimum size */
1487 ctx->max_val_type = NO_SIZE;
1488 ctx->min_val_type = NO_SIZE;
1489 fc->fs_private = ctx;
1490 fc->ops = &hugetlbfs_fs_context_ops;
1491 return 0;
1492}
1493
1494static struct file_system_type hugetlbfs_fs_type = {
1495 .name = "hugetlbfs",
1496 .init_fs_context = hugetlbfs_init_fs_context,
1497 .parameters = hugetlb_fs_parameters,
1498 .kill_sb = kill_litter_super,
1499 .fs_flags = FS_ALLOW_IDMAP,
1500};
1501
1502static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1503
1504static int can_do_hugetlb_shm(void)
1505{
1506 kgid_t shm_group;
1507 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1508 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1509}
1510
1511static int get_hstate_idx(int page_size_log)
1512{
1513 struct hstate *h = hstate_sizelog(page_size_log);
1514
1515 if (!h)
1516 return -1;
1517 return hstate_index(h);
1518}
1519
1520/*
1521 * Note that size should be aligned to proper hugepage size in caller side,
1522 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1523 */
1524struct file *hugetlb_file_setup(const char *name, size_t size,
1525 vm_flags_t acctflag, int creat_flags,
1526 int page_size_log)
1527{
1528 struct inode *inode;
1529 struct vfsmount *mnt;
1530 int hstate_idx;
1531 struct file *file;
1532
1533 hstate_idx = get_hstate_idx(page_size_log);
1534 if (hstate_idx < 0)
1535 return ERR_PTR(-ENODEV);
1536
1537 mnt = hugetlbfs_vfsmount[hstate_idx];
1538 if (!mnt)
1539 return ERR_PTR(-ENOENT);
1540
1541 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1542 struct ucounts *ucounts = current_ucounts();
1543
1544 if (user_shm_lock(size, ucounts)) {
1545 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1546 current->comm, current->pid);
1547 user_shm_unlock(size, ucounts);
1548 }
1549 return ERR_PTR(-EPERM);
1550 }
1551
1552 file = ERR_PTR(-ENOSPC);
1553 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */
1554 inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
1555 S_IFREG | S_IRWXUGO, 0);
1556 if (!inode)
1557 goto out;
1558 if (creat_flags == HUGETLB_SHMFS_INODE)
1559 inode->i_flags |= S_PRIVATE;
1560
1561 inode->i_size = size;
1562 clear_nlink(inode);
1563
1564 if (!hugetlb_reserve_pages(inode, 0,
1565 size >> huge_page_shift(hstate_inode(inode)), NULL,
1566 acctflag))
1567 file = ERR_PTR(-ENOMEM);
1568 else
1569 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1570 &hugetlbfs_file_operations);
1571 if (!IS_ERR(file))
1572 return file;
1573
1574 iput(inode);
1575out:
1576 return file;
1577}
1578
1579static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1580{
1581 struct fs_context *fc;
1582 struct vfsmount *mnt;
1583
1584 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1585 if (IS_ERR(fc)) {
1586 mnt = ERR_CAST(fc);
1587 } else {
1588 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1589 ctx->hstate = h;
1590 mnt = fc_mount(fc);
1591 put_fs_context(fc);
1592 }
1593 if (IS_ERR(mnt))
1594 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1595 huge_page_size(h) / SZ_1K);
1596 return mnt;
1597}
1598
1599static int __init init_hugetlbfs_fs(void)
1600{
1601 struct vfsmount *mnt;
1602 struct hstate *h;
1603 int error;
1604 int i;
1605
1606 if (!hugepages_supported()) {
1607 pr_info("disabling because there are no supported hugepage sizes\n");
1608 return -ENOTSUPP;
1609 }
1610
1611 error = -ENOMEM;
1612 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1613 sizeof(struct hugetlbfs_inode_info),
1614 0, SLAB_ACCOUNT, init_once);
1615 if (hugetlbfs_inode_cachep == NULL)
1616 goto out;
1617
1618 error = register_filesystem(&hugetlbfs_fs_type);
1619 if (error)
1620 goto out_free;
1621
1622 /* default hstate mount is required */
1623 mnt = mount_one_hugetlbfs(&default_hstate);
1624 if (IS_ERR(mnt)) {
1625 error = PTR_ERR(mnt);
1626 goto out_unreg;
1627 }
1628 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1629
1630 /* other hstates are optional */
1631 i = 0;
1632 for_each_hstate(h) {
1633 if (i == default_hstate_idx) {
1634 i++;
1635 continue;
1636 }
1637
1638 mnt = mount_one_hugetlbfs(h);
1639 if (IS_ERR(mnt))
1640 hugetlbfs_vfsmount[i] = NULL;
1641 else
1642 hugetlbfs_vfsmount[i] = mnt;
1643 i++;
1644 }
1645
1646 return 0;
1647
1648 out_unreg:
1649 (void)unregister_filesystem(&hugetlbfs_fs_type);
1650 out_free:
1651 kmem_cache_destroy(hugetlbfs_inode_cachep);
1652 out:
1653 return error;
1654}
1655fs_initcall(init_hugetlbfs_fs)