]> git.ipfire.org Git - people/ms/linux.git/blame_incremental - fs/namespace.c
resizable namespace.c hashes
[people/ms/linux.git] / fs / namespace.c
... / ...
CommitLineData
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/syscalls.h>
12#include <linux/export.h>
13#include <linux/capability.h>
14#include <linux/mnt_namespace.h>
15#include <linux/user_namespace.h>
16#include <linux/namei.h>
17#include <linux/security.h>
18#include <linux/idr.h>
19#include <linux/acct.h> /* acct_auto_close_mnt */
20#include <linux/init.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
24#include <linux/proc_ns.h>
25#include <linux/magic.h>
26#include <linux/bootmem.h>
27#include "pnode.h"
28#include "internal.h"
29
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
54
55static int event;
56static DEFINE_IDA(mnt_id_ida);
57static DEFINE_IDA(mnt_group_ida);
58static DEFINE_SPINLOCK(mnt_id_lock);
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
61
62static struct list_head *mount_hashtable __read_mostly;
63static struct hlist_head *mountpoint_hashtable __read_mostly;
64static struct kmem_cache *mnt_cache __read_mostly;
65static DECLARE_RWSEM(namespace_sem);
66
67/* /sys/fs */
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
70
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80
81static inline struct list_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82{
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
94}
95
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
100static int mnt_alloc_id(struct mount *mnt)
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
117static void mnt_free_id(struct mount *mnt)
118{
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
125}
126
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
132static int mnt_alloc_group_id(struct mount *mnt)
133{
134 int res;
135
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
144
145 return res;
146}
147
148/*
149 * Release a peer group ID
150 */
151void mnt_release_group_id(struct mount *mnt)
152{
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
158}
159
160/*
161 * vfsmount lock must be held for read
162 */
163static inline void mnt_add_count(struct mount *mnt, int n)
164{
165#ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167#else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171#endif
172}
173
174/*
175 * vfsmount lock must be held for write
176 */
177unsigned int mnt_get_count(struct mount *mnt)
178{
179#ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 }
186
187 return count;
188#else
189 return mnt->mnt_count;
190#endif
191}
192
193static struct mount *alloc_vfsmnt(const char *name)
194{
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
197 int err;
198
199 err = mnt_alloc_id(mnt);
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
206 goto out_free_id;
207 }
208
209#ifdef CONFIG_SMP
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
212 goto out_free_devname;
213
214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
215#else
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
218#endif
219
220 INIT_LIST_HEAD(&mnt->mnt_hash);
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
228#ifdef CONFIG_FSNOTIFY
229 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
230#endif
231 }
232 return mnt;
233
234#ifdef CONFIG_SMP
235out_free_devname:
236 kfree(mnt->mnt_devname);
237#endif
238out_free_id:
239 mnt_free_id(mnt);
240out_free_cache:
241 kmem_cache_free(mnt_cache, mnt);
242 return NULL;
243}
244
245/*
246 * Most r/o checks on a fs are for operations that take
247 * discrete amounts of time, like a write() or unlink().
248 * We must keep track of when those operations start
249 * (for permission checks) and when they end, so that
250 * we can determine when writes are able to occur to
251 * a filesystem.
252 */
253/*
254 * __mnt_is_readonly: check whether a mount is read-only
255 * @mnt: the mount to check for its write status
256 *
257 * This shouldn't be used directly ouside of the VFS.
258 * It does not guarantee that the filesystem will stay
259 * r/w, just that it is right *now*. This can not and
260 * should not be used in place of IS_RDONLY(inode).
261 * mnt_want/drop_write() will _keep_ the filesystem
262 * r/w.
263 */
264int __mnt_is_readonly(struct vfsmount *mnt)
265{
266 if (mnt->mnt_flags & MNT_READONLY)
267 return 1;
268 if (mnt->mnt_sb->s_flags & MS_RDONLY)
269 return 1;
270 return 0;
271}
272EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273
274static inline void mnt_inc_writers(struct mount *mnt)
275{
276#ifdef CONFIG_SMP
277 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
278#else
279 mnt->mnt_writers++;
280#endif
281}
282
283static inline void mnt_dec_writers(struct mount *mnt)
284{
285#ifdef CONFIG_SMP
286 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
287#else
288 mnt->mnt_writers--;
289#endif
290}
291
292static unsigned int mnt_get_writers(struct mount *mnt)
293{
294#ifdef CONFIG_SMP
295 unsigned int count = 0;
296 int cpu;
297
298 for_each_possible_cpu(cpu) {
299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
300 }
301
302 return count;
303#else
304 return mnt->mnt_writers;
305#endif
306}
307
308static int mnt_is_readonly(struct vfsmount *mnt)
309{
310 if (mnt->mnt_sb->s_readonly_remount)
311 return 1;
312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 smp_rmb();
314 return __mnt_is_readonly(mnt);
315}
316
317/*
318 * Most r/o & frozen checks on a fs are for operations that take discrete
319 * amounts of time, like a write() or unlink(). We must keep track of when
320 * those operations start (for permission checks) and when they end, so that we
321 * can determine when writes are able to occur to a filesystem.
322 */
323/**
324 * __mnt_want_write - get write access to a mount without freeze protection
325 * @m: the mount on which to take a write
326 *
327 * This tells the low-level filesystem that a write is about to be performed to
328 * it, and makes sure that writes are allowed (mnt it read-write) before
329 * returning success. This operation does not protect against filesystem being
330 * frozen. When the write operation is finished, __mnt_drop_write() must be
331 * called. This is effectively a refcount.
332 */
333int __mnt_want_write(struct vfsmount *m)
334{
335 struct mount *mnt = real_mount(m);
336 int ret = 0;
337
338 preempt_disable();
339 mnt_inc_writers(mnt);
340 /*
341 * The store to mnt_inc_writers must be visible before we pass
342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 * incremented count after it has set MNT_WRITE_HOLD.
344 */
345 smp_mb();
346 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
347 cpu_relax();
348 /*
349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 * be set to match its requirements. So we must not load that until
351 * MNT_WRITE_HOLD is cleared.
352 */
353 smp_rmb();
354 if (mnt_is_readonly(m)) {
355 mnt_dec_writers(mnt);
356 ret = -EROFS;
357 }
358 preempt_enable();
359
360 return ret;
361}
362
363/**
364 * mnt_want_write - get write access to a mount
365 * @m: the mount on which to take a write
366 *
367 * This tells the low-level filesystem that a write is about to be performed to
368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
369 * is not frozen) before returning success. When the write operation is
370 * finished, mnt_drop_write() must be called. This is effectively a refcount.
371 */
372int mnt_want_write(struct vfsmount *m)
373{
374 int ret;
375
376 sb_start_write(m->mnt_sb);
377 ret = __mnt_want_write(m);
378 if (ret)
379 sb_end_write(m->mnt_sb);
380 return ret;
381}
382EXPORT_SYMBOL_GPL(mnt_want_write);
383
384/**
385 * mnt_clone_write - get write access to a mount
386 * @mnt: the mount on which to take a write
387 *
388 * This is effectively like mnt_want_write, except
389 * it must only be used to take an extra write reference
390 * on a mountpoint that we already know has a write reference
391 * on it. This allows some optimisation.
392 *
393 * After finished, mnt_drop_write must be called as usual to
394 * drop the reference.
395 */
396int mnt_clone_write(struct vfsmount *mnt)
397{
398 /* superblock may be r/o */
399 if (__mnt_is_readonly(mnt))
400 return -EROFS;
401 preempt_disable();
402 mnt_inc_writers(real_mount(mnt));
403 preempt_enable();
404 return 0;
405}
406EXPORT_SYMBOL_GPL(mnt_clone_write);
407
408/**
409 * __mnt_want_write_file - get write access to a file's mount
410 * @file: the file who's mount on which to take a write
411 *
412 * This is like __mnt_want_write, but it takes a file and can
413 * do some optimisations if the file is open for write already
414 */
415int __mnt_want_write_file(struct file *file)
416{
417 struct inode *inode = file_inode(file);
418
419 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
420 return __mnt_want_write(file->f_path.mnt);
421 else
422 return mnt_clone_write(file->f_path.mnt);
423}
424
425/**
426 * mnt_want_write_file - get write access to a file's mount
427 * @file: the file who's mount on which to take a write
428 *
429 * This is like mnt_want_write, but it takes a file and can
430 * do some optimisations if the file is open for write already
431 */
432int mnt_want_write_file(struct file *file)
433{
434 int ret;
435
436 sb_start_write(file->f_path.mnt->mnt_sb);
437 ret = __mnt_want_write_file(file);
438 if (ret)
439 sb_end_write(file->f_path.mnt->mnt_sb);
440 return ret;
441}
442EXPORT_SYMBOL_GPL(mnt_want_write_file);
443
444/**
445 * __mnt_drop_write - give up write access to a mount
446 * @mnt: the mount on which to give up write access
447 *
448 * Tells the low-level filesystem that we are done
449 * performing writes to it. Must be matched with
450 * __mnt_want_write() call above.
451 */
452void __mnt_drop_write(struct vfsmount *mnt)
453{
454 preempt_disable();
455 mnt_dec_writers(real_mount(mnt));
456 preempt_enable();
457}
458
459/**
460 * mnt_drop_write - give up write access to a mount
461 * @mnt: the mount on which to give up write access
462 *
463 * Tells the low-level filesystem that we are done performing writes to it and
464 * also allows filesystem to be frozen again. Must be matched with
465 * mnt_want_write() call above.
466 */
467void mnt_drop_write(struct vfsmount *mnt)
468{
469 __mnt_drop_write(mnt);
470 sb_end_write(mnt->mnt_sb);
471}
472EXPORT_SYMBOL_GPL(mnt_drop_write);
473
474void __mnt_drop_write_file(struct file *file)
475{
476 __mnt_drop_write(file->f_path.mnt);
477}
478
479void mnt_drop_write_file(struct file *file)
480{
481 mnt_drop_write(file->f_path.mnt);
482}
483EXPORT_SYMBOL(mnt_drop_write_file);
484
485static int mnt_make_readonly(struct mount *mnt)
486{
487 int ret = 0;
488
489 lock_mount_hash();
490 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
491 /*
492 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
493 * should be visible before we do.
494 */
495 smp_mb();
496
497 /*
498 * With writers on hold, if this value is zero, then there are
499 * definitely no active writers (although held writers may subsequently
500 * increment the count, they'll have to wait, and decrement it after
501 * seeing MNT_READONLY).
502 *
503 * It is OK to have counter incremented on one CPU and decremented on
504 * another: the sum will add up correctly. The danger would be when we
505 * sum up each counter, if we read a counter before it is incremented,
506 * but then read another CPU's count which it has been subsequently
507 * decremented from -- we would see more decrements than we should.
508 * MNT_WRITE_HOLD protects against this scenario, because
509 * mnt_want_write first increments count, then smp_mb, then spins on
510 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
511 * we're counting up here.
512 */
513 if (mnt_get_writers(mnt) > 0)
514 ret = -EBUSY;
515 else
516 mnt->mnt.mnt_flags |= MNT_READONLY;
517 /*
518 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
519 * that become unheld will see MNT_READONLY.
520 */
521 smp_wmb();
522 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
523 unlock_mount_hash();
524 return ret;
525}
526
527static void __mnt_unmake_readonly(struct mount *mnt)
528{
529 lock_mount_hash();
530 mnt->mnt.mnt_flags &= ~MNT_READONLY;
531 unlock_mount_hash();
532}
533
534int sb_prepare_remount_readonly(struct super_block *sb)
535{
536 struct mount *mnt;
537 int err = 0;
538
539 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
540 if (atomic_long_read(&sb->s_remove_count))
541 return -EBUSY;
542
543 lock_mount_hash();
544 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
545 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
546 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
547 smp_mb();
548 if (mnt_get_writers(mnt) > 0) {
549 err = -EBUSY;
550 break;
551 }
552 }
553 }
554 if (!err && atomic_long_read(&sb->s_remove_count))
555 err = -EBUSY;
556
557 if (!err) {
558 sb->s_readonly_remount = 1;
559 smp_wmb();
560 }
561 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
562 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
563 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
564 }
565 unlock_mount_hash();
566
567 return err;
568}
569
570static void free_vfsmnt(struct mount *mnt)
571{
572 kfree(mnt->mnt_devname);
573 mnt_free_id(mnt);
574#ifdef CONFIG_SMP
575 free_percpu(mnt->mnt_pcp);
576#endif
577 kmem_cache_free(mnt_cache, mnt);
578}
579
580/* call under rcu_read_lock */
581bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
582{
583 struct mount *mnt;
584 if (read_seqretry(&mount_lock, seq))
585 return false;
586 if (bastard == NULL)
587 return true;
588 mnt = real_mount(bastard);
589 mnt_add_count(mnt, 1);
590 if (likely(!read_seqretry(&mount_lock, seq)))
591 return true;
592 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
593 mnt_add_count(mnt, -1);
594 return false;
595 }
596 rcu_read_unlock();
597 mntput(bastard);
598 rcu_read_lock();
599 return false;
600}
601
602/*
603 * find the first mount at @dentry on vfsmount @mnt.
604 * call under rcu_read_lock()
605 */
606struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
607{
608 struct list_head *head = m_hash(mnt, dentry);
609 struct mount *p;
610
611 list_for_each_entry_rcu(p, head, mnt_hash)
612 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
613 return p;
614 return NULL;
615}
616
617/*
618 * find the last mount at @dentry on vfsmount @mnt.
619 * mount_lock must be held.
620 */
621struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
622{
623 struct list_head *head = m_hash(mnt, dentry);
624 struct mount *p;
625
626 list_for_each_entry_reverse(p, head, mnt_hash)
627 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
628 return p;
629 return NULL;
630}
631
632/*
633 * lookup_mnt - Return the first child mount mounted at path
634 *
635 * "First" means first mounted chronologically. If you create the
636 * following mounts:
637 *
638 * mount /dev/sda1 /mnt
639 * mount /dev/sda2 /mnt
640 * mount /dev/sda3 /mnt
641 *
642 * Then lookup_mnt() on the base /mnt dentry in the root mount will
643 * return successively the root dentry and vfsmount of /dev/sda1, then
644 * /dev/sda2, then /dev/sda3, then NULL.
645 *
646 * lookup_mnt takes a reference to the found vfsmount.
647 */
648struct vfsmount *lookup_mnt(struct path *path)
649{
650 struct mount *child_mnt;
651 struct vfsmount *m;
652 unsigned seq;
653
654 rcu_read_lock();
655 do {
656 seq = read_seqbegin(&mount_lock);
657 child_mnt = __lookup_mnt(path->mnt, path->dentry);
658 m = child_mnt ? &child_mnt->mnt : NULL;
659 } while (!legitimize_mnt(m, seq));
660 rcu_read_unlock();
661 return m;
662}
663
664static struct mountpoint *new_mountpoint(struct dentry *dentry)
665{
666 struct hlist_head *chain = mp_hash(dentry);
667 struct mountpoint *mp;
668 int ret;
669
670 hlist_for_each_entry(mp, chain, m_hash) {
671 if (mp->m_dentry == dentry) {
672 /* might be worth a WARN_ON() */
673 if (d_unlinked(dentry))
674 return ERR_PTR(-ENOENT);
675 mp->m_count++;
676 return mp;
677 }
678 }
679
680 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
681 if (!mp)
682 return ERR_PTR(-ENOMEM);
683
684 ret = d_set_mounted(dentry);
685 if (ret) {
686 kfree(mp);
687 return ERR_PTR(ret);
688 }
689
690 mp->m_dentry = dentry;
691 mp->m_count = 1;
692 hlist_add_head(&mp->m_hash, chain);
693 return mp;
694}
695
696static void put_mountpoint(struct mountpoint *mp)
697{
698 if (!--mp->m_count) {
699 struct dentry *dentry = mp->m_dentry;
700 spin_lock(&dentry->d_lock);
701 dentry->d_flags &= ~DCACHE_MOUNTED;
702 spin_unlock(&dentry->d_lock);
703 hlist_del(&mp->m_hash);
704 kfree(mp);
705 }
706}
707
708static inline int check_mnt(struct mount *mnt)
709{
710 return mnt->mnt_ns == current->nsproxy->mnt_ns;
711}
712
713/*
714 * vfsmount lock must be held for write
715 */
716static void touch_mnt_namespace(struct mnt_namespace *ns)
717{
718 if (ns) {
719 ns->event = ++event;
720 wake_up_interruptible(&ns->poll);
721 }
722}
723
724/*
725 * vfsmount lock must be held for write
726 */
727static void __touch_mnt_namespace(struct mnt_namespace *ns)
728{
729 if (ns && ns->event != event) {
730 ns->event = event;
731 wake_up_interruptible(&ns->poll);
732 }
733}
734
735/*
736 * vfsmount lock must be held for write
737 */
738static void detach_mnt(struct mount *mnt, struct path *old_path)
739{
740 old_path->dentry = mnt->mnt_mountpoint;
741 old_path->mnt = &mnt->mnt_parent->mnt;
742 mnt->mnt_parent = mnt;
743 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
744 list_del_init(&mnt->mnt_child);
745 list_del_init(&mnt->mnt_hash);
746 put_mountpoint(mnt->mnt_mp);
747 mnt->mnt_mp = NULL;
748}
749
750/*
751 * vfsmount lock must be held for write
752 */
753void mnt_set_mountpoint(struct mount *mnt,
754 struct mountpoint *mp,
755 struct mount *child_mnt)
756{
757 mp->m_count++;
758 mnt_add_count(mnt, 1); /* essentially, that's mntget */
759 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
760 child_mnt->mnt_parent = mnt;
761 child_mnt->mnt_mp = mp;
762}
763
764/*
765 * vfsmount lock must be held for write
766 */
767static void attach_mnt(struct mount *mnt,
768 struct mount *parent,
769 struct mountpoint *mp)
770{
771 mnt_set_mountpoint(parent, mp, mnt);
772 list_add_tail(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
773 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
774}
775
776/*
777 * vfsmount lock must be held for write
778 */
779static void commit_tree(struct mount *mnt)
780{
781 struct mount *parent = mnt->mnt_parent;
782 struct mount *m;
783 LIST_HEAD(head);
784 struct mnt_namespace *n = parent->mnt_ns;
785
786 BUG_ON(parent == mnt);
787
788 list_add_tail(&head, &mnt->mnt_list);
789 list_for_each_entry(m, &head, mnt_list)
790 m->mnt_ns = n;
791
792 list_splice(&head, n->list.prev);
793
794 list_add_tail(&mnt->mnt_hash,
795 m_hash(&parent->mnt, mnt->mnt_mountpoint));
796 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
797 touch_mnt_namespace(n);
798}
799
800static struct mount *next_mnt(struct mount *p, struct mount *root)
801{
802 struct list_head *next = p->mnt_mounts.next;
803 if (next == &p->mnt_mounts) {
804 while (1) {
805 if (p == root)
806 return NULL;
807 next = p->mnt_child.next;
808 if (next != &p->mnt_parent->mnt_mounts)
809 break;
810 p = p->mnt_parent;
811 }
812 }
813 return list_entry(next, struct mount, mnt_child);
814}
815
816static struct mount *skip_mnt_tree(struct mount *p)
817{
818 struct list_head *prev = p->mnt_mounts.prev;
819 while (prev != &p->mnt_mounts) {
820 p = list_entry(prev, struct mount, mnt_child);
821 prev = p->mnt_mounts.prev;
822 }
823 return p;
824}
825
826struct vfsmount *
827vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
828{
829 struct mount *mnt;
830 struct dentry *root;
831
832 if (!type)
833 return ERR_PTR(-ENODEV);
834
835 mnt = alloc_vfsmnt(name);
836 if (!mnt)
837 return ERR_PTR(-ENOMEM);
838
839 if (flags & MS_KERNMOUNT)
840 mnt->mnt.mnt_flags = MNT_INTERNAL;
841
842 root = mount_fs(type, flags, name, data);
843 if (IS_ERR(root)) {
844 free_vfsmnt(mnt);
845 return ERR_CAST(root);
846 }
847
848 mnt->mnt.mnt_root = root;
849 mnt->mnt.mnt_sb = root->d_sb;
850 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
851 mnt->mnt_parent = mnt;
852 lock_mount_hash();
853 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
854 unlock_mount_hash();
855 return &mnt->mnt;
856}
857EXPORT_SYMBOL_GPL(vfs_kern_mount);
858
859static struct mount *clone_mnt(struct mount *old, struct dentry *root,
860 int flag)
861{
862 struct super_block *sb = old->mnt.mnt_sb;
863 struct mount *mnt;
864 int err;
865
866 mnt = alloc_vfsmnt(old->mnt_devname);
867 if (!mnt)
868 return ERR_PTR(-ENOMEM);
869
870 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
871 mnt->mnt_group_id = 0; /* not a peer of original */
872 else
873 mnt->mnt_group_id = old->mnt_group_id;
874
875 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
876 err = mnt_alloc_group_id(mnt);
877 if (err)
878 goto out_free;
879 }
880
881 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
882 /* Don't allow unprivileged users to change mount flags */
883 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
884 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
885
886 /* Don't allow unprivileged users to reveal what is under a mount */
887 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
888 mnt->mnt.mnt_flags |= MNT_LOCKED;
889
890 atomic_inc(&sb->s_active);
891 mnt->mnt.mnt_sb = sb;
892 mnt->mnt.mnt_root = dget(root);
893 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
894 mnt->mnt_parent = mnt;
895 lock_mount_hash();
896 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
897 unlock_mount_hash();
898
899 if ((flag & CL_SLAVE) ||
900 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
901 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
902 mnt->mnt_master = old;
903 CLEAR_MNT_SHARED(mnt);
904 } else if (!(flag & CL_PRIVATE)) {
905 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
906 list_add(&mnt->mnt_share, &old->mnt_share);
907 if (IS_MNT_SLAVE(old))
908 list_add(&mnt->mnt_slave, &old->mnt_slave);
909 mnt->mnt_master = old->mnt_master;
910 }
911 if (flag & CL_MAKE_SHARED)
912 set_mnt_shared(mnt);
913
914 /* stick the duplicate mount on the same expiry list
915 * as the original if that was on one */
916 if (flag & CL_EXPIRE) {
917 if (!list_empty(&old->mnt_expire))
918 list_add(&mnt->mnt_expire, &old->mnt_expire);
919 }
920
921 return mnt;
922
923 out_free:
924 free_vfsmnt(mnt);
925 return ERR_PTR(err);
926}
927
928static void delayed_free(struct rcu_head *head)
929{
930 struct mount *mnt = container_of(head, struct mount, mnt_rcu);
931 kfree(mnt->mnt_devname);
932#ifdef CONFIG_SMP
933 free_percpu(mnt->mnt_pcp);
934#endif
935 kmem_cache_free(mnt_cache, mnt);
936}
937
938static void mntput_no_expire(struct mount *mnt)
939{
940put_again:
941 rcu_read_lock();
942 mnt_add_count(mnt, -1);
943 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
944 rcu_read_unlock();
945 return;
946 }
947 lock_mount_hash();
948 if (mnt_get_count(mnt)) {
949 rcu_read_unlock();
950 unlock_mount_hash();
951 return;
952 }
953 if (unlikely(mnt->mnt_pinned)) {
954 mnt_add_count(mnt, mnt->mnt_pinned + 1);
955 mnt->mnt_pinned = 0;
956 rcu_read_unlock();
957 unlock_mount_hash();
958 acct_auto_close_mnt(&mnt->mnt);
959 goto put_again;
960 }
961 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
962 rcu_read_unlock();
963 unlock_mount_hash();
964 return;
965 }
966 mnt->mnt.mnt_flags |= MNT_DOOMED;
967 rcu_read_unlock();
968
969 list_del(&mnt->mnt_instance);
970 unlock_mount_hash();
971
972 /*
973 * This probably indicates that somebody messed
974 * up a mnt_want/drop_write() pair. If this
975 * happens, the filesystem was probably unable
976 * to make r/w->r/o transitions.
977 */
978 /*
979 * The locking used to deal with mnt_count decrement provides barriers,
980 * so mnt_get_writers() below is safe.
981 */
982 WARN_ON(mnt_get_writers(mnt));
983 fsnotify_vfsmount_delete(&mnt->mnt);
984 dput(mnt->mnt.mnt_root);
985 deactivate_super(mnt->mnt.mnt_sb);
986 mnt_free_id(mnt);
987 call_rcu(&mnt->mnt_rcu, delayed_free);
988}
989
990void mntput(struct vfsmount *mnt)
991{
992 if (mnt) {
993 struct mount *m = real_mount(mnt);
994 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
995 if (unlikely(m->mnt_expiry_mark))
996 m->mnt_expiry_mark = 0;
997 mntput_no_expire(m);
998 }
999}
1000EXPORT_SYMBOL(mntput);
1001
1002struct vfsmount *mntget(struct vfsmount *mnt)
1003{
1004 if (mnt)
1005 mnt_add_count(real_mount(mnt), 1);
1006 return mnt;
1007}
1008EXPORT_SYMBOL(mntget);
1009
1010void mnt_pin(struct vfsmount *mnt)
1011{
1012 lock_mount_hash();
1013 real_mount(mnt)->mnt_pinned++;
1014 unlock_mount_hash();
1015}
1016EXPORT_SYMBOL(mnt_pin);
1017
1018void mnt_unpin(struct vfsmount *m)
1019{
1020 struct mount *mnt = real_mount(m);
1021 lock_mount_hash();
1022 if (mnt->mnt_pinned) {
1023 mnt_add_count(mnt, 1);
1024 mnt->mnt_pinned--;
1025 }
1026 unlock_mount_hash();
1027}
1028EXPORT_SYMBOL(mnt_unpin);
1029
1030static inline void mangle(struct seq_file *m, const char *s)
1031{
1032 seq_escape(m, s, " \t\n\\");
1033}
1034
1035/*
1036 * Simple .show_options callback for filesystems which don't want to
1037 * implement more complex mount option showing.
1038 *
1039 * See also save_mount_options().
1040 */
1041int generic_show_options(struct seq_file *m, struct dentry *root)
1042{
1043 const char *options;
1044
1045 rcu_read_lock();
1046 options = rcu_dereference(root->d_sb->s_options);
1047
1048 if (options != NULL && options[0]) {
1049 seq_putc(m, ',');
1050 mangle(m, options);
1051 }
1052 rcu_read_unlock();
1053
1054 return 0;
1055}
1056EXPORT_SYMBOL(generic_show_options);
1057
1058/*
1059 * If filesystem uses generic_show_options(), this function should be
1060 * called from the fill_super() callback.
1061 *
1062 * The .remount_fs callback usually needs to be handled in a special
1063 * way, to make sure, that previous options are not overwritten if the
1064 * remount fails.
1065 *
1066 * Also note, that if the filesystem's .remount_fs function doesn't
1067 * reset all options to their default value, but changes only newly
1068 * given options, then the displayed options will not reflect reality
1069 * any more.
1070 */
1071void save_mount_options(struct super_block *sb, char *options)
1072{
1073 BUG_ON(sb->s_options);
1074 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1075}
1076EXPORT_SYMBOL(save_mount_options);
1077
1078void replace_mount_options(struct super_block *sb, char *options)
1079{
1080 char *old = sb->s_options;
1081 rcu_assign_pointer(sb->s_options, options);
1082 if (old) {
1083 synchronize_rcu();
1084 kfree(old);
1085 }
1086}
1087EXPORT_SYMBOL(replace_mount_options);
1088
1089#ifdef CONFIG_PROC_FS
1090/* iterator; we want it to have access to namespace_sem, thus here... */
1091static void *m_start(struct seq_file *m, loff_t *pos)
1092{
1093 struct proc_mounts *p = proc_mounts(m);
1094
1095 down_read(&namespace_sem);
1096 return seq_list_start(&p->ns->list, *pos);
1097}
1098
1099static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1100{
1101 struct proc_mounts *p = proc_mounts(m);
1102
1103 return seq_list_next(v, &p->ns->list, pos);
1104}
1105
1106static void m_stop(struct seq_file *m, void *v)
1107{
1108 up_read(&namespace_sem);
1109}
1110
1111static int m_show(struct seq_file *m, void *v)
1112{
1113 struct proc_mounts *p = proc_mounts(m);
1114 struct mount *r = list_entry(v, struct mount, mnt_list);
1115 return p->show(m, &r->mnt);
1116}
1117
1118const struct seq_operations mounts_op = {
1119 .start = m_start,
1120 .next = m_next,
1121 .stop = m_stop,
1122 .show = m_show,
1123};
1124#endif /* CONFIG_PROC_FS */
1125
1126/**
1127 * may_umount_tree - check if a mount tree is busy
1128 * @mnt: root of mount tree
1129 *
1130 * This is called to check if a tree of mounts has any
1131 * open files, pwds, chroots or sub mounts that are
1132 * busy.
1133 */
1134int may_umount_tree(struct vfsmount *m)
1135{
1136 struct mount *mnt = real_mount(m);
1137 int actual_refs = 0;
1138 int minimum_refs = 0;
1139 struct mount *p;
1140 BUG_ON(!m);
1141
1142 /* write lock needed for mnt_get_count */
1143 lock_mount_hash();
1144 for (p = mnt; p; p = next_mnt(p, mnt)) {
1145 actual_refs += mnt_get_count(p);
1146 minimum_refs += 2;
1147 }
1148 unlock_mount_hash();
1149
1150 if (actual_refs > minimum_refs)
1151 return 0;
1152
1153 return 1;
1154}
1155
1156EXPORT_SYMBOL(may_umount_tree);
1157
1158/**
1159 * may_umount - check if a mount point is busy
1160 * @mnt: root of mount
1161 *
1162 * This is called to check if a mount point has any
1163 * open files, pwds, chroots or sub mounts. If the
1164 * mount has sub mounts this will return busy
1165 * regardless of whether the sub mounts are busy.
1166 *
1167 * Doesn't take quota and stuff into account. IOW, in some cases it will
1168 * give false negatives. The main reason why it's here is that we need
1169 * a non-destructive way to look for easily umountable filesystems.
1170 */
1171int may_umount(struct vfsmount *mnt)
1172{
1173 int ret = 1;
1174 down_read(&namespace_sem);
1175 lock_mount_hash();
1176 if (propagate_mount_busy(real_mount(mnt), 2))
1177 ret = 0;
1178 unlock_mount_hash();
1179 up_read(&namespace_sem);
1180 return ret;
1181}
1182
1183EXPORT_SYMBOL(may_umount);
1184
1185static LIST_HEAD(unmounted); /* protected by namespace_sem */
1186
1187static void namespace_unlock(void)
1188{
1189 struct mount *mnt;
1190 LIST_HEAD(head);
1191
1192 if (likely(list_empty(&unmounted))) {
1193 up_write(&namespace_sem);
1194 return;
1195 }
1196
1197 list_splice_init(&unmounted, &head);
1198 up_write(&namespace_sem);
1199
1200 synchronize_rcu();
1201
1202 while (!list_empty(&head)) {
1203 mnt = list_first_entry(&head, struct mount, mnt_hash);
1204 list_del_init(&mnt->mnt_hash);
1205 if (mnt->mnt_ex_mountpoint.mnt)
1206 path_put(&mnt->mnt_ex_mountpoint);
1207 mntput(&mnt->mnt);
1208 }
1209}
1210
1211static inline void namespace_lock(void)
1212{
1213 down_write(&namespace_sem);
1214}
1215
1216/*
1217 * mount_lock must be held
1218 * namespace_sem must be held for write
1219 * how = 0 => just this tree, don't propagate
1220 * how = 1 => propagate; we know that nobody else has reference to any victims
1221 * how = 2 => lazy umount
1222 */
1223void umount_tree(struct mount *mnt, int how)
1224{
1225 LIST_HEAD(tmp_list);
1226 struct mount *p;
1227
1228 for (p = mnt; p; p = next_mnt(p, mnt))
1229 list_move(&p->mnt_hash, &tmp_list);
1230
1231 if (how)
1232 propagate_umount(&tmp_list);
1233
1234 list_for_each_entry(p, &tmp_list, mnt_hash) {
1235 list_del_init(&p->mnt_expire);
1236 list_del_init(&p->mnt_list);
1237 __touch_mnt_namespace(p->mnt_ns);
1238 p->mnt_ns = NULL;
1239 if (how < 2)
1240 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1241 list_del_init(&p->mnt_child);
1242 if (mnt_has_parent(p)) {
1243 put_mountpoint(p->mnt_mp);
1244 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1245 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1246 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1247 p->mnt_mountpoint = p->mnt.mnt_root;
1248 p->mnt_parent = p;
1249 p->mnt_mp = NULL;
1250 }
1251 change_mnt_propagation(p, MS_PRIVATE);
1252 }
1253 list_splice(&tmp_list, &unmounted);
1254}
1255
1256static void shrink_submounts(struct mount *mnt);
1257
1258static int do_umount(struct mount *mnt, int flags)
1259{
1260 struct super_block *sb = mnt->mnt.mnt_sb;
1261 int retval;
1262
1263 retval = security_sb_umount(&mnt->mnt, flags);
1264 if (retval)
1265 return retval;
1266
1267 /*
1268 * Allow userspace to request a mountpoint be expired rather than
1269 * unmounting unconditionally. Unmount only happens if:
1270 * (1) the mark is already set (the mark is cleared by mntput())
1271 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1272 */
1273 if (flags & MNT_EXPIRE) {
1274 if (&mnt->mnt == current->fs->root.mnt ||
1275 flags & (MNT_FORCE | MNT_DETACH))
1276 return -EINVAL;
1277
1278 /*
1279 * probably don't strictly need the lock here if we examined
1280 * all race cases, but it's a slowpath.
1281 */
1282 lock_mount_hash();
1283 if (mnt_get_count(mnt) != 2) {
1284 unlock_mount_hash();
1285 return -EBUSY;
1286 }
1287 unlock_mount_hash();
1288
1289 if (!xchg(&mnt->mnt_expiry_mark, 1))
1290 return -EAGAIN;
1291 }
1292
1293 /*
1294 * If we may have to abort operations to get out of this
1295 * mount, and they will themselves hold resources we must
1296 * allow the fs to do things. In the Unix tradition of
1297 * 'Gee thats tricky lets do it in userspace' the umount_begin
1298 * might fail to complete on the first run through as other tasks
1299 * must return, and the like. Thats for the mount program to worry
1300 * about for the moment.
1301 */
1302
1303 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1304 sb->s_op->umount_begin(sb);
1305 }
1306
1307 /*
1308 * No sense to grab the lock for this test, but test itself looks
1309 * somewhat bogus. Suggestions for better replacement?
1310 * Ho-hum... In principle, we might treat that as umount + switch
1311 * to rootfs. GC would eventually take care of the old vfsmount.
1312 * Actually it makes sense, especially if rootfs would contain a
1313 * /reboot - static binary that would close all descriptors and
1314 * call reboot(9). Then init(8) could umount root and exec /reboot.
1315 */
1316 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1317 /*
1318 * Special case for "unmounting" root ...
1319 * we just try to remount it readonly.
1320 */
1321 down_write(&sb->s_umount);
1322 if (!(sb->s_flags & MS_RDONLY))
1323 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1324 up_write(&sb->s_umount);
1325 return retval;
1326 }
1327
1328 namespace_lock();
1329 lock_mount_hash();
1330 event++;
1331
1332 if (flags & MNT_DETACH) {
1333 if (!list_empty(&mnt->mnt_list))
1334 umount_tree(mnt, 2);
1335 retval = 0;
1336 } else {
1337 shrink_submounts(mnt);
1338 retval = -EBUSY;
1339 if (!propagate_mount_busy(mnt, 2)) {
1340 if (!list_empty(&mnt->mnt_list))
1341 umount_tree(mnt, 1);
1342 retval = 0;
1343 }
1344 }
1345 unlock_mount_hash();
1346 namespace_unlock();
1347 return retval;
1348}
1349
1350/*
1351 * Is the caller allowed to modify his namespace?
1352 */
1353static inline bool may_mount(void)
1354{
1355 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1356}
1357
1358/*
1359 * Now umount can handle mount points as well as block devices.
1360 * This is important for filesystems which use unnamed block devices.
1361 *
1362 * We now support a flag for forced unmount like the other 'big iron'
1363 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1364 */
1365
1366SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1367{
1368 struct path path;
1369 struct mount *mnt;
1370 int retval;
1371 int lookup_flags = 0;
1372
1373 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1374 return -EINVAL;
1375
1376 if (!may_mount())
1377 return -EPERM;
1378
1379 if (!(flags & UMOUNT_NOFOLLOW))
1380 lookup_flags |= LOOKUP_FOLLOW;
1381
1382 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1383 if (retval)
1384 goto out;
1385 mnt = real_mount(path.mnt);
1386 retval = -EINVAL;
1387 if (path.dentry != path.mnt->mnt_root)
1388 goto dput_and_out;
1389 if (!check_mnt(mnt))
1390 goto dput_and_out;
1391 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1392 goto dput_and_out;
1393
1394 retval = do_umount(mnt, flags);
1395dput_and_out:
1396 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1397 dput(path.dentry);
1398 mntput_no_expire(mnt);
1399out:
1400 return retval;
1401}
1402
1403#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1404
1405/*
1406 * The 2.0 compatible umount. No flags.
1407 */
1408SYSCALL_DEFINE1(oldumount, char __user *, name)
1409{
1410 return sys_umount(name, 0);
1411}
1412
1413#endif
1414
1415static bool is_mnt_ns_file(struct dentry *dentry)
1416{
1417 /* Is this a proxy for a mount namespace? */
1418 struct inode *inode = dentry->d_inode;
1419 struct proc_ns *ei;
1420
1421 if (!proc_ns_inode(inode))
1422 return false;
1423
1424 ei = get_proc_ns(inode);
1425 if (ei->ns_ops != &mntns_operations)
1426 return false;
1427
1428 return true;
1429}
1430
1431static bool mnt_ns_loop(struct dentry *dentry)
1432{
1433 /* Could bind mounting the mount namespace inode cause a
1434 * mount namespace loop?
1435 */
1436 struct mnt_namespace *mnt_ns;
1437 if (!is_mnt_ns_file(dentry))
1438 return false;
1439
1440 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1441 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1442}
1443
1444struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1445 int flag)
1446{
1447 struct mount *res, *p, *q, *r, *parent;
1448
1449 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1450 return ERR_PTR(-EINVAL);
1451
1452 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1453 return ERR_PTR(-EINVAL);
1454
1455 res = q = clone_mnt(mnt, dentry, flag);
1456 if (IS_ERR(q))
1457 return q;
1458
1459 q->mnt.mnt_flags &= ~MNT_LOCKED;
1460 q->mnt_mountpoint = mnt->mnt_mountpoint;
1461
1462 p = mnt;
1463 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1464 struct mount *s;
1465 if (!is_subdir(r->mnt_mountpoint, dentry))
1466 continue;
1467
1468 for (s = r; s; s = next_mnt(s, r)) {
1469 if (!(flag & CL_COPY_UNBINDABLE) &&
1470 IS_MNT_UNBINDABLE(s)) {
1471 s = skip_mnt_tree(s);
1472 continue;
1473 }
1474 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1475 is_mnt_ns_file(s->mnt.mnt_root)) {
1476 s = skip_mnt_tree(s);
1477 continue;
1478 }
1479 while (p != s->mnt_parent) {
1480 p = p->mnt_parent;
1481 q = q->mnt_parent;
1482 }
1483 p = s;
1484 parent = q;
1485 q = clone_mnt(p, p->mnt.mnt_root, flag);
1486 if (IS_ERR(q))
1487 goto out;
1488 lock_mount_hash();
1489 list_add_tail(&q->mnt_list, &res->mnt_list);
1490 attach_mnt(q, parent, p->mnt_mp);
1491 unlock_mount_hash();
1492 }
1493 }
1494 return res;
1495out:
1496 if (res) {
1497 lock_mount_hash();
1498 umount_tree(res, 0);
1499 unlock_mount_hash();
1500 }
1501 return q;
1502}
1503
1504/* Caller should check returned pointer for errors */
1505
1506struct vfsmount *collect_mounts(struct path *path)
1507{
1508 struct mount *tree;
1509 namespace_lock();
1510 tree = copy_tree(real_mount(path->mnt), path->dentry,
1511 CL_COPY_ALL | CL_PRIVATE);
1512 namespace_unlock();
1513 if (IS_ERR(tree))
1514 return ERR_CAST(tree);
1515 return &tree->mnt;
1516}
1517
1518void drop_collected_mounts(struct vfsmount *mnt)
1519{
1520 namespace_lock();
1521 lock_mount_hash();
1522 umount_tree(real_mount(mnt), 0);
1523 unlock_mount_hash();
1524 namespace_unlock();
1525}
1526
1527int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1528 struct vfsmount *root)
1529{
1530 struct mount *mnt;
1531 int res = f(root, arg);
1532 if (res)
1533 return res;
1534 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1535 res = f(&mnt->mnt, arg);
1536 if (res)
1537 return res;
1538 }
1539 return 0;
1540}
1541
1542static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1543{
1544 struct mount *p;
1545
1546 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1547 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1548 mnt_release_group_id(p);
1549 }
1550}
1551
1552static int invent_group_ids(struct mount *mnt, bool recurse)
1553{
1554 struct mount *p;
1555
1556 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1557 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1558 int err = mnt_alloc_group_id(p);
1559 if (err) {
1560 cleanup_group_ids(mnt, p);
1561 return err;
1562 }
1563 }
1564 }
1565
1566 return 0;
1567}
1568
1569/*
1570 * @source_mnt : mount tree to be attached
1571 * @nd : place the mount tree @source_mnt is attached
1572 * @parent_nd : if non-null, detach the source_mnt from its parent and
1573 * store the parent mount and mountpoint dentry.
1574 * (done when source_mnt is moved)
1575 *
1576 * NOTE: in the table below explains the semantics when a source mount
1577 * of a given type is attached to a destination mount of a given type.
1578 * ---------------------------------------------------------------------------
1579 * | BIND MOUNT OPERATION |
1580 * |**************************************************************************
1581 * | source-->| shared | private | slave | unbindable |
1582 * | dest | | | | |
1583 * | | | | | | |
1584 * | v | | | | |
1585 * |**************************************************************************
1586 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1587 * | | | | | |
1588 * |non-shared| shared (+) | private | slave (*) | invalid |
1589 * ***************************************************************************
1590 * A bind operation clones the source mount and mounts the clone on the
1591 * destination mount.
1592 *
1593 * (++) the cloned mount is propagated to all the mounts in the propagation
1594 * tree of the destination mount and the cloned mount is added to
1595 * the peer group of the source mount.
1596 * (+) the cloned mount is created under the destination mount and is marked
1597 * as shared. The cloned mount is added to the peer group of the source
1598 * mount.
1599 * (+++) the mount is propagated to all the mounts in the propagation tree
1600 * of the destination mount and the cloned mount is made slave
1601 * of the same master as that of the source mount. The cloned mount
1602 * is marked as 'shared and slave'.
1603 * (*) the cloned mount is made a slave of the same master as that of the
1604 * source mount.
1605 *
1606 * ---------------------------------------------------------------------------
1607 * | MOVE MOUNT OPERATION |
1608 * |**************************************************************************
1609 * | source-->| shared | private | slave | unbindable |
1610 * | dest | | | | |
1611 * | | | | | | |
1612 * | v | | | | |
1613 * |**************************************************************************
1614 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1615 * | | | | | |
1616 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1617 * ***************************************************************************
1618 *
1619 * (+) the mount is moved to the destination. And is then propagated to
1620 * all the mounts in the propagation tree of the destination mount.
1621 * (+*) the mount is moved to the destination.
1622 * (+++) the mount is moved to the destination and is then propagated to
1623 * all the mounts belonging to the destination mount's propagation tree.
1624 * the mount is marked as 'shared and slave'.
1625 * (*) the mount continues to be a slave at the new location.
1626 *
1627 * if the source mount is a tree, the operations explained above is
1628 * applied to each mount in the tree.
1629 * Must be called without spinlocks held, since this function can sleep
1630 * in allocations.
1631 */
1632static int attach_recursive_mnt(struct mount *source_mnt,
1633 struct mount *dest_mnt,
1634 struct mountpoint *dest_mp,
1635 struct path *parent_path)
1636{
1637 LIST_HEAD(tree_list);
1638 struct mount *child, *p;
1639 int err;
1640
1641 if (IS_MNT_SHARED(dest_mnt)) {
1642 err = invent_group_ids(source_mnt, true);
1643 if (err)
1644 goto out;
1645 }
1646 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1647 if (err)
1648 goto out_cleanup_ids;
1649
1650 lock_mount_hash();
1651
1652 if (IS_MNT_SHARED(dest_mnt)) {
1653 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1654 set_mnt_shared(p);
1655 }
1656 if (parent_path) {
1657 detach_mnt(source_mnt, parent_path);
1658 attach_mnt(source_mnt, dest_mnt, dest_mp);
1659 touch_mnt_namespace(source_mnt->mnt_ns);
1660 } else {
1661 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1662 commit_tree(source_mnt);
1663 }
1664
1665 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1666 list_del_init(&child->mnt_hash);
1667 commit_tree(child);
1668 }
1669 unlock_mount_hash();
1670
1671 return 0;
1672
1673 out_cleanup_ids:
1674 if (IS_MNT_SHARED(dest_mnt))
1675 cleanup_group_ids(source_mnt, NULL);
1676 out:
1677 return err;
1678}
1679
1680static struct mountpoint *lock_mount(struct path *path)
1681{
1682 struct vfsmount *mnt;
1683 struct dentry *dentry = path->dentry;
1684retry:
1685 mutex_lock(&dentry->d_inode->i_mutex);
1686 if (unlikely(cant_mount(dentry))) {
1687 mutex_unlock(&dentry->d_inode->i_mutex);
1688 return ERR_PTR(-ENOENT);
1689 }
1690 namespace_lock();
1691 mnt = lookup_mnt(path);
1692 if (likely(!mnt)) {
1693 struct mountpoint *mp = new_mountpoint(dentry);
1694 if (IS_ERR(mp)) {
1695 namespace_unlock();
1696 mutex_unlock(&dentry->d_inode->i_mutex);
1697 return mp;
1698 }
1699 return mp;
1700 }
1701 namespace_unlock();
1702 mutex_unlock(&path->dentry->d_inode->i_mutex);
1703 path_put(path);
1704 path->mnt = mnt;
1705 dentry = path->dentry = dget(mnt->mnt_root);
1706 goto retry;
1707}
1708
1709static void unlock_mount(struct mountpoint *where)
1710{
1711 struct dentry *dentry = where->m_dentry;
1712 put_mountpoint(where);
1713 namespace_unlock();
1714 mutex_unlock(&dentry->d_inode->i_mutex);
1715}
1716
1717static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1718{
1719 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1720 return -EINVAL;
1721
1722 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1723 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1724 return -ENOTDIR;
1725
1726 return attach_recursive_mnt(mnt, p, mp, NULL);
1727}
1728
1729/*
1730 * Sanity check the flags to change_mnt_propagation.
1731 */
1732
1733static int flags_to_propagation_type(int flags)
1734{
1735 int type = flags & ~(MS_REC | MS_SILENT);
1736
1737 /* Fail if any non-propagation flags are set */
1738 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1739 return 0;
1740 /* Only one propagation flag should be set */
1741 if (!is_power_of_2(type))
1742 return 0;
1743 return type;
1744}
1745
1746/*
1747 * recursively change the type of the mountpoint.
1748 */
1749static int do_change_type(struct path *path, int flag)
1750{
1751 struct mount *m;
1752 struct mount *mnt = real_mount(path->mnt);
1753 int recurse = flag & MS_REC;
1754 int type;
1755 int err = 0;
1756
1757 if (path->dentry != path->mnt->mnt_root)
1758 return -EINVAL;
1759
1760 type = flags_to_propagation_type(flag);
1761 if (!type)
1762 return -EINVAL;
1763
1764 namespace_lock();
1765 if (type == MS_SHARED) {
1766 err = invent_group_ids(mnt, recurse);
1767 if (err)
1768 goto out_unlock;
1769 }
1770
1771 lock_mount_hash();
1772 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1773 change_mnt_propagation(m, type);
1774 unlock_mount_hash();
1775
1776 out_unlock:
1777 namespace_unlock();
1778 return err;
1779}
1780
1781static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1782{
1783 struct mount *child;
1784 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1785 if (!is_subdir(child->mnt_mountpoint, dentry))
1786 continue;
1787
1788 if (child->mnt.mnt_flags & MNT_LOCKED)
1789 return true;
1790 }
1791 return false;
1792}
1793
1794/*
1795 * do loopback mount.
1796 */
1797static int do_loopback(struct path *path, const char *old_name,
1798 int recurse)
1799{
1800 struct path old_path;
1801 struct mount *mnt = NULL, *old, *parent;
1802 struct mountpoint *mp;
1803 int err;
1804 if (!old_name || !*old_name)
1805 return -EINVAL;
1806 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1807 if (err)
1808 return err;
1809
1810 err = -EINVAL;
1811 if (mnt_ns_loop(old_path.dentry))
1812 goto out;
1813
1814 mp = lock_mount(path);
1815 err = PTR_ERR(mp);
1816 if (IS_ERR(mp))
1817 goto out;
1818
1819 old = real_mount(old_path.mnt);
1820 parent = real_mount(path->mnt);
1821
1822 err = -EINVAL;
1823 if (IS_MNT_UNBINDABLE(old))
1824 goto out2;
1825
1826 if (!check_mnt(parent) || !check_mnt(old))
1827 goto out2;
1828
1829 if (!recurse && has_locked_children(old, old_path.dentry))
1830 goto out2;
1831
1832 if (recurse)
1833 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1834 else
1835 mnt = clone_mnt(old, old_path.dentry, 0);
1836
1837 if (IS_ERR(mnt)) {
1838 err = PTR_ERR(mnt);
1839 goto out2;
1840 }
1841
1842 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1843
1844 err = graft_tree(mnt, parent, mp);
1845 if (err) {
1846 lock_mount_hash();
1847 umount_tree(mnt, 0);
1848 unlock_mount_hash();
1849 }
1850out2:
1851 unlock_mount(mp);
1852out:
1853 path_put(&old_path);
1854 return err;
1855}
1856
1857static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1858{
1859 int error = 0;
1860 int readonly_request = 0;
1861
1862 if (ms_flags & MS_RDONLY)
1863 readonly_request = 1;
1864 if (readonly_request == __mnt_is_readonly(mnt))
1865 return 0;
1866
1867 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1868 return -EPERM;
1869
1870 if (readonly_request)
1871 error = mnt_make_readonly(real_mount(mnt));
1872 else
1873 __mnt_unmake_readonly(real_mount(mnt));
1874 return error;
1875}
1876
1877/*
1878 * change filesystem flags. dir should be a physical root of filesystem.
1879 * If you've mounted a non-root directory somewhere and want to do remount
1880 * on it - tough luck.
1881 */
1882static int do_remount(struct path *path, int flags, int mnt_flags,
1883 void *data)
1884{
1885 int err;
1886 struct super_block *sb = path->mnt->mnt_sb;
1887 struct mount *mnt = real_mount(path->mnt);
1888
1889 if (!check_mnt(mnt))
1890 return -EINVAL;
1891
1892 if (path->dentry != path->mnt->mnt_root)
1893 return -EINVAL;
1894
1895 err = security_sb_remount(sb, data);
1896 if (err)
1897 return err;
1898
1899 down_write(&sb->s_umount);
1900 if (flags & MS_BIND)
1901 err = change_mount_flags(path->mnt, flags);
1902 else if (!capable(CAP_SYS_ADMIN))
1903 err = -EPERM;
1904 else
1905 err = do_remount_sb(sb, flags, data, 0);
1906 if (!err) {
1907 lock_mount_hash();
1908 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1909 mnt->mnt.mnt_flags = mnt_flags;
1910 touch_mnt_namespace(mnt->mnt_ns);
1911 unlock_mount_hash();
1912 }
1913 up_write(&sb->s_umount);
1914 return err;
1915}
1916
1917static inline int tree_contains_unbindable(struct mount *mnt)
1918{
1919 struct mount *p;
1920 for (p = mnt; p; p = next_mnt(p, mnt)) {
1921 if (IS_MNT_UNBINDABLE(p))
1922 return 1;
1923 }
1924 return 0;
1925}
1926
1927static int do_move_mount(struct path *path, const char *old_name)
1928{
1929 struct path old_path, parent_path;
1930 struct mount *p;
1931 struct mount *old;
1932 struct mountpoint *mp;
1933 int err;
1934 if (!old_name || !*old_name)
1935 return -EINVAL;
1936 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1937 if (err)
1938 return err;
1939
1940 mp = lock_mount(path);
1941 err = PTR_ERR(mp);
1942 if (IS_ERR(mp))
1943 goto out;
1944
1945 old = real_mount(old_path.mnt);
1946 p = real_mount(path->mnt);
1947
1948 err = -EINVAL;
1949 if (!check_mnt(p) || !check_mnt(old))
1950 goto out1;
1951
1952 if (old->mnt.mnt_flags & MNT_LOCKED)
1953 goto out1;
1954
1955 err = -EINVAL;
1956 if (old_path.dentry != old_path.mnt->mnt_root)
1957 goto out1;
1958
1959 if (!mnt_has_parent(old))
1960 goto out1;
1961
1962 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1963 S_ISDIR(old_path.dentry->d_inode->i_mode))
1964 goto out1;
1965 /*
1966 * Don't move a mount residing in a shared parent.
1967 */
1968 if (IS_MNT_SHARED(old->mnt_parent))
1969 goto out1;
1970 /*
1971 * Don't move a mount tree containing unbindable mounts to a destination
1972 * mount which is shared.
1973 */
1974 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1975 goto out1;
1976 err = -ELOOP;
1977 for (; mnt_has_parent(p); p = p->mnt_parent)
1978 if (p == old)
1979 goto out1;
1980
1981 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
1982 if (err)
1983 goto out1;
1984
1985 /* if the mount is moved, it should no longer be expire
1986 * automatically */
1987 list_del_init(&old->mnt_expire);
1988out1:
1989 unlock_mount(mp);
1990out:
1991 if (!err)
1992 path_put(&parent_path);
1993 path_put(&old_path);
1994 return err;
1995}
1996
1997static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1998{
1999 int err;
2000 const char *subtype = strchr(fstype, '.');
2001 if (subtype) {
2002 subtype++;
2003 err = -EINVAL;
2004 if (!subtype[0])
2005 goto err;
2006 } else
2007 subtype = "";
2008
2009 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2010 err = -ENOMEM;
2011 if (!mnt->mnt_sb->s_subtype)
2012 goto err;
2013 return mnt;
2014
2015 err:
2016 mntput(mnt);
2017 return ERR_PTR(err);
2018}
2019
2020/*
2021 * add a mount into a namespace's mount tree
2022 */
2023static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2024{
2025 struct mountpoint *mp;
2026 struct mount *parent;
2027 int err;
2028
2029 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL | MNT_DOOMED | MNT_SYNC_UMOUNT);
2030
2031 mp = lock_mount(path);
2032 if (IS_ERR(mp))
2033 return PTR_ERR(mp);
2034
2035 parent = real_mount(path->mnt);
2036 err = -EINVAL;
2037 if (unlikely(!check_mnt(parent))) {
2038 /* that's acceptable only for automounts done in private ns */
2039 if (!(mnt_flags & MNT_SHRINKABLE))
2040 goto unlock;
2041 /* ... and for those we'd better have mountpoint still alive */
2042 if (!parent->mnt_ns)
2043 goto unlock;
2044 }
2045
2046 /* Refuse the same filesystem on the same mount point */
2047 err = -EBUSY;
2048 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2049 path->mnt->mnt_root == path->dentry)
2050 goto unlock;
2051
2052 err = -EINVAL;
2053 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2054 goto unlock;
2055
2056 newmnt->mnt.mnt_flags = mnt_flags;
2057 err = graft_tree(newmnt, parent, mp);
2058
2059unlock:
2060 unlock_mount(mp);
2061 return err;
2062}
2063
2064/*
2065 * create a new mount for userspace and request it to be added into the
2066 * namespace's tree
2067 */
2068static int do_new_mount(struct path *path, const char *fstype, int flags,
2069 int mnt_flags, const char *name, void *data)
2070{
2071 struct file_system_type *type;
2072 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2073 struct vfsmount *mnt;
2074 int err;
2075
2076 if (!fstype)
2077 return -EINVAL;
2078
2079 type = get_fs_type(fstype);
2080 if (!type)
2081 return -ENODEV;
2082
2083 if (user_ns != &init_user_ns) {
2084 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2085 put_filesystem(type);
2086 return -EPERM;
2087 }
2088 /* Only in special cases allow devices from mounts
2089 * created outside the initial user namespace.
2090 */
2091 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2092 flags |= MS_NODEV;
2093 mnt_flags |= MNT_NODEV;
2094 }
2095 }
2096
2097 mnt = vfs_kern_mount(type, flags, name, data);
2098 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2099 !mnt->mnt_sb->s_subtype)
2100 mnt = fs_set_subtype(mnt, fstype);
2101
2102 put_filesystem(type);
2103 if (IS_ERR(mnt))
2104 return PTR_ERR(mnt);
2105
2106 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2107 if (err)
2108 mntput(mnt);
2109 return err;
2110}
2111
2112int finish_automount(struct vfsmount *m, struct path *path)
2113{
2114 struct mount *mnt = real_mount(m);
2115 int err;
2116 /* The new mount record should have at least 2 refs to prevent it being
2117 * expired before we get a chance to add it
2118 */
2119 BUG_ON(mnt_get_count(mnt) < 2);
2120
2121 if (m->mnt_sb == path->mnt->mnt_sb &&
2122 m->mnt_root == path->dentry) {
2123 err = -ELOOP;
2124 goto fail;
2125 }
2126
2127 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2128 if (!err)
2129 return 0;
2130fail:
2131 /* remove m from any expiration list it may be on */
2132 if (!list_empty(&mnt->mnt_expire)) {
2133 namespace_lock();
2134 list_del_init(&mnt->mnt_expire);
2135 namespace_unlock();
2136 }
2137 mntput(m);
2138 mntput(m);
2139 return err;
2140}
2141
2142/**
2143 * mnt_set_expiry - Put a mount on an expiration list
2144 * @mnt: The mount to list.
2145 * @expiry_list: The list to add the mount to.
2146 */
2147void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2148{
2149 namespace_lock();
2150
2151 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2152
2153 namespace_unlock();
2154}
2155EXPORT_SYMBOL(mnt_set_expiry);
2156
2157/*
2158 * process a list of expirable mountpoints with the intent of discarding any
2159 * mountpoints that aren't in use and haven't been touched since last we came
2160 * here
2161 */
2162void mark_mounts_for_expiry(struct list_head *mounts)
2163{
2164 struct mount *mnt, *next;
2165 LIST_HEAD(graveyard);
2166
2167 if (list_empty(mounts))
2168 return;
2169
2170 namespace_lock();
2171 lock_mount_hash();
2172
2173 /* extract from the expiration list every vfsmount that matches the
2174 * following criteria:
2175 * - only referenced by its parent vfsmount
2176 * - still marked for expiry (marked on the last call here; marks are
2177 * cleared by mntput())
2178 */
2179 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2180 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2181 propagate_mount_busy(mnt, 1))
2182 continue;
2183 list_move(&mnt->mnt_expire, &graveyard);
2184 }
2185 while (!list_empty(&graveyard)) {
2186 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2187 touch_mnt_namespace(mnt->mnt_ns);
2188 umount_tree(mnt, 1);
2189 }
2190 unlock_mount_hash();
2191 namespace_unlock();
2192}
2193
2194EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2195
2196/*
2197 * Ripoff of 'select_parent()'
2198 *
2199 * search the list of submounts for a given mountpoint, and move any
2200 * shrinkable submounts to the 'graveyard' list.
2201 */
2202static int select_submounts(struct mount *parent, struct list_head *graveyard)
2203{
2204 struct mount *this_parent = parent;
2205 struct list_head *next;
2206 int found = 0;
2207
2208repeat:
2209 next = this_parent->mnt_mounts.next;
2210resume:
2211 while (next != &this_parent->mnt_mounts) {
2212 struct list_head *tmp = next;
2213 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2214
2215 next = tmp->next;
2216 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2217 continue;
2218 /*
2219 * Descend a level if the d_mounts list is non-empty.
2220 */
2221 if (!list_empty(&mnt->mnt_mounts)) {
2222 this_parent = mnt;
2223 goto repeat;
2224 }
2225
2226 if (!propagate_mount_busy(mnt, 1)) {
2227 list_move_tail(&mnt->mnt_expire, graveyard);
2228 found++;
2229 }
2230 }
2231 /*
2232 * All done at this level ... ascend and resume the search
2233 */
2234 if (this_parent != parent) {
2235 next = this_parent->mnt_child.next;
2236 this_parent = this_parent->mnt_parent;
2237 goto resume;
2238 }
2239 return found;
2240}
2241
2242/*
2243 * process a list of expirable mountpoints with the intent of discarding any
2244 * submounts of a specific parent mountpoint
2245 *
2246 * mount_lock must be held for write
2247 */
2248static void shrink_submounts(struct mount *mnt)
2249{
2250 LIST_HEAD(graveyard);
2251 struct mount *m;
2252
2253 /* extract submounts of 'mountpoint' from the expiration list */
2254 while (select_submounts(mnt, &graveyard)) {
2255 while (!list_empty(&graveyard)) {
2256 m = list_first_entry(&graveyard, struct mount,
2257 mnt_expire);
2258 touch_mnt_namespace(m->mnt_ns);
2259 umount_tree(m, 1);
2260 }
2261 }
2262}
2263
2264/*
2265 * Some copy_from_user() implementations do not return the exact number of
2266 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2267 * Note that this function differs from copy_from_user() in that it will oops
2268 * on bad values of `to', rather than returning a short copy.
2269 */
2270static long exact_copy_from_user(void *to, const void __user * from,
2271 unsigned long n)
2272{
2273 char *t = to;
2274 const char __user *f = from;
2275 char c;
2276
2277 if (!access_ok(VERIFY_READ, from, n))
2278 return n;
2279
2280 while (n) {
2281 if (__get_user(c, f)) {
2282 memset(t, 0, n);
2283 break;
2284 }
2285 *t++ = c;
2286 f++;
2287 n--;
2288 }
2289 return n;
2290}
2291
2292int copy_mount_options(const void __user * data, unsigned long *where)
2293{
2294 int i;
2295 unsigned long page;
2296 unsigned long size;
2297
2298 *where = 0;
2299 if (!data)
2300 return 0;
2301
2302 if (!(page = __get_free_page(GFP_KERNEL)))
2303 return -ENOMEM;
2304
2305 /* We only care that *some* data at the address the user
2306 * gave us is valid. Just in case, we'll zero
2307 * the remainder of the page.
2308 */
2309 /* copy_from_user cannot cross TASK_SIZE ! */
2310 size = TASK_SIZE - (unsigned long)data;
2311 if (size > PAGE_SIZE)
2312 size = PAGE_SIZE;
2313
2314 i = size - exact_copy_from_user((void *)page, data, size);
2315 if (!i) {
2316 free_page(page);
2317 return -EFAULT;
2318 }
2319 if (i != PAGE_SIZE)
2320 memset((char *)page + i, 0, PAGE_SIZE - i);
2321 *where = page;
2322 return 0;
2323}
2324
2325int copy_mount_string(const void __user *data, char **where)
2326{
2327 char *tmp;
2328
2329 if (!data) {
2330 *where = NULL;
2331 return 0;
2332 }
2333
2334 tmp = strndup_user(data, PAGE_SIZE);
2335 if (IS_ERR(tmp))
2336 return PTR_ERR(tmp);
2337
2338 *where = tmp;
2339 return 0;
2340}
2341
2342/*
2343 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2344 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2345 *
2346 * data is a (void *) that can point to any structure up to
2347 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2348 * information (or be NULL).
2349 *
2350 * Pre-0.97 versions of mount() didn't have a flags word.
2351 * When the flags word was introduced its top half was required
2352 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2353 * Therefore, if this magic number is present, it carries no information
2354 * and must be discarded.
2355 */
2356long do_mount(const char *dev_name, const char *dir_name,
2357 const char *type_page, unsigned long flags, void *data_page)
2358{
2359 struct path path;
2360 int retval = 0;
2361 int mnt_flags = 0;
2362
2363 /* Discard magic */
2364 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2365 flags &= ~MS_MGC_MSK;
2366
2367 /* Basic sanity checks */
2368
2369 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2370 return -EINVAL;
2371
2372 if (data_page)
2373 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2374
2375 /* ... and get the mountpoint */
2376 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2377 if (retval)
2378 return retval;
2379
2380 retval = security_sb_mount(dev_name, &path,
2381 type_page, flags, data_page);
2382 if (!retval && !may_mount())
2383 retval = -EPERM;
2384 if (retval)
2385 goto dput_out;
2386
2387 /* Default to relatime unless overriden */
2388 if (!(flags & MS_NOATIME))
2389 mnt_flags |= MNT_RELATIME;
2390
2391 /* Separate the per-mountpoint flags */
2392 if (flags & MS_NOSUID)
2393 mnt_flags |= MNT_NOSUID;
2394 if (flags & MS_NODEV)
2395 mnt_flags |= MNT_NODEV;
2396 if (flags & MS_NOEXEC)
2397 mnt_flags |= MNT_NOEXEC;
2398 if (flags & MS_NOATIME)
2399 mnt_flags |= MNT_NOATIME;
2400 if (flags & MS_NODIRATIME)
2401 mnt_flags |= MNT_NODIRATIME;
2402 if (flags & MS_STRICTATIME)
2403 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2404 if (flags & MS_RDONLY)
2405 mnt_flags |= MNT_READONLY;
2406
2407 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2408 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2409 MS_STRICTATIME);
2410
2411 if (flags & MS_REMOUNT)
2412 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2413 data_page);
2414 else if (flags & MS_BIND)
2415 retval = do_loopback(&path, dev_name, flags & MS_REC);
2416 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2417 retval = do_change_type(&path, flags);
2418 else if (flags & MS_MOVE)
2419 retval = do_move_mount(&path, dev_name);
2420 else
2421 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2422 dev_name, data_page);
2423dput_out:
2424 path_put(&path);
2425 return retval;
2426}
2427
2428static void free_mnt_ns(struct mnt_namespace *ns)
2429{
2430 proc_free_inum(ns->proc_inum);
2431 put_user_ns(ns->user_ns);
2432 kfree(ns);
2433}
2434
2435/*
2436 * Assign a sequence number so we can detect when we attempt to bind
2437 * mount a reference to an older mount namespace into the current
2438 * mount namespace, preventing reference counting loops. A 64bit
2439 * number incrementing at 10Ghz will take 12,427 years to wrap which
2440 * is effectively never, so we can ignore the possibility.
2441 */
2442static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2443
2444static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2445{
2446 struct mnt_namespace *new_ns;
2447 int ret;
2448
2449 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2450 if (!new_ns)
2451 return ERR_PTR(-ENOMEM);
2452 ret = proc_alloc_inum(&new_ns->proc_inum);
2453 if (ret) {
2454 kfree(new_ns);
2455 return ERR_PTR(ret);
2456 }
2457 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2458 atomic_set(&new_ns->count, 1);
2459 new_ns->root = NULL;
2460 INIT_LIST_HEAD(&new_ns->list);
2461 init_waitqueue_head(&new_ns->poll);
2462 new_ns->event = 0;
2463 new_ns->user_ns = get_user_ns(user_ns);
2464 return new_ns;
2465}
2466
2467struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2468 struct user_namespace *user_ns, struct fs_struct *new_fs)
2469{
2470 struct mnt_namespace *new_ns;
2471 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2472 struct mount *p, *q;
2473 struct mount *old;
2474 struct mount *new;
2475 int copy_flags;
2476
2477 BUG_ON(!ns);
2478
2479 if (likely(!(flags & CLONE_NEWNS))) {
2480 get_mnt_ns(ns);
2481 return ns;
2482 }
2483
2484 old = ns->root;
2485
2486 new_ns = alloc_mnt_ns(user_ns);
2487 if (IS_ERR(new_ns))
2488 return new_ns;
2489
2490 namespace_lock();
2491 /* First pass: copy the tree topology */
2492 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2493 if (user_ns != ns->user_ns)
2494 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2495 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2496 if (IS_ERR(new)) {
2497 namespace_unlock();
2498 free_mnt_ns(new_ns);
2499 return ERR_CAST(new);
2500 }
2501 new_ns->root = new;
2502 list_add_tail(&new_ns->list, &new->mnt_list);
2503
2504 /*
2505 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2506 * as belonging to new namespace. We have already acquired a private
2507 * fs_struct, so tsk->fs->lock is not needed.
2508 */
2509 p = old;
2510 q = new;
2511 while (p) {
2512 q->mnt_ns = new_ns;
2513 if (new_fs) {
2514 if (&p->mnt == new_fs->root.mnt) {
2515 new_fs->root.mnt = mntget(&q->mnt);
2516 rootmnt = &p->mnt;
2517 }
2518 if (&p->mnt == new_fs->pwd.mnt) {
2519 new_fs->pwd.mnt = mntget(&q->mnt);
2520 pwdmnt = &p->mnt;
2521 }
2522 }
2523 p = next_mnt(p, old);
2524 q = next_mnt(q, new);
2525 if (!q)
2526 break;
2527 while (p->mnt.mnt_root != q->mnt.mnt_root)
2528 p = next_mnt(p, old);
2529 }
2530 namespace_unlock();
2531
2532 if (rootmnt)
2533 mntput(rootmnt);
2534 if (pwdmnt)
2535 mntput(pwdmnt);
2536
2537 return new_ns;
2538}
2539
2540/**
2541 * create_mnt_ns - creates a private namespace and adds a root filesystem
2542 * @mnt: pointer to the new root filesystem mountpoint
2543 */
2544static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2545{
2546 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2547 if (!IS_ERR(new_ns)) {
2548 struct mount *mnt = real_mount(m);
2549 mnt->mnt_ns = new_ns;
2550 new_ns->root = mnt;
2551 list_add(&mnt->mnt_list, &new_ns->list);
2552 } else {
2553 mntput(m);
2554 }
2555 return new_ns;
2556}
2557
2558struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2559{
2560 struct mnt_namespace *ns;
2561 struct super_block *s;
2562 struct path path;
2563 int err;
2564
2565 ns = create_mnt_ns(mnt);
2566 if (IS_ERR(ns))
2567 return ERR_CAST(ns);
2568
2569 err = vfs_path_lookup(mnt->mnt_root, mnt,
2570 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2571
2572 put_mnt_ns(ns);
2573
2574 if (err)
2575 return ERR_PTR(err);
2576
2577 /* trade a vfsmount reference for active sb one */
2578 s = path.mnt->mnt_sb;
2579 atomic_inc(&s->s_active);
2580 mntput(path.mnt);
2581 /* lock the sucker */
2582 down_write(&s->s_umount);
2583 /* ... and return the root of (sub)tree on it */
2584 return path.dentry;
2585}
2586EXPORT_SYMBOL(mount_subtree);
2587
2588SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2589 char __user *, type, unsigned long, flags, void __user *, data)
2590{
2591 int ret;
2592 char *kernel_type;
2593 struct filename *kernel_dir;
2594 char *kernel_dev;
2595 unsigned long data_page;
2596
2597 ret = copy_mount_string(type, &kernel_type);
2598 if (ret < 0)
2599 goto out_type;
2600
2601 kernel_dir = getname(dir_name);
2602 if (IS_ERR(kernel_dir)) {
2603 ret = PTR_ERR(kernel_dir);
2604 goto out_dir;
2605 }
2606
2607 ret = copy_mount_string(dev_name, &kernel_dev);
2608 if (ret < 0)
2609 goto out_dev;
2610
2611 ret = copy_mount_options(data, &data_page);
2612 if (ret < 0)
2613 goto out_data;
2614
2615 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2616 (void *) data_page);
2617
2618 free_page(data_page);
2619out_data:
2620 kfree(kernel_dev);
2621out_dev:
2622 putname(kernel_dir);
2623out_dir:
2624 kfree(kernel_type);
2625out_type:
2626 return ret;
2627}
2628
2629/*
2630 * Return true if path is reachable from root
2631 *
2632 * namespace_sem or mount_lock is held
2633 */
2634bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2635 const struct path *root)
2636{
2637 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2638 dentry = mnt->mnt_mountpoint;
2639 mnt = mnt->mnt_parent;
2640 }
2641 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2642}
2643
2644int path_is_under(struct path *path1, struct path *path2)
2645{
2646 int res;
2647 read_seqlock_excl(&mount_lock);
2648 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2649 read_sequnlock_excl(&mount_lock);
2650 return res;
2651}
2652EXPORT_SYMBOL(path_is_under);
2653
2654/*
2655 * pivot_root Semantics:
2656 * Moves the root file system of the current process to the directory put_old,
2657 * makes new_root as the new root file system of the current process, and sets
2658 * root/cwd of all processes which had them on the current root to new_root.
2659 *
2660 * Restrictions:
2661 * The new_root and put_old must be directories, and must not be on the
2662 * same file system as the current process root. The put_old must be
2663 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2664 * pointed to by put_old must yield the same directory as new_root. No other
2665 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2666 *
2667 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2668 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2669 * in this situation.
2670 *
2671 * Notes:
2672 * - we don't move root/cwd if they are not at the root (reason: if something
2673 * cared enough to change them, it's probably wrong to force them elsewhere)
2674 * - it's okay to pick a root that isn't the root of a file system, e.g.
2675 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2676 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2677 * first.
2678 */
2679SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2680 const char __user *, put_old)
2681{
2682 struct path new, old, parent_path, root_parent, root;
2683 struct mount *new_mnt, *root_mnt, *old_mnt;
2684 struct mountpoint *old_mp, *root_mp;
2685 int error;
2686
2687 if (!may_mount())
2688 return -EPERM;
2689
2690 error = user_path_dir(new_root, &new);
2691 if (error)
2692 goto out0;
2693
2694 error = user_path_dir(put_old, &old);
2695 if (error)
2696 goto out1;
2697
2698 error = security_sb_pivotroot(&old, &new);
2699 if (error)
2700 goto out2;
2701
2702 get_fs_root(current->fs, &root);
2703 old_mp = lock_mount(&old);
2704 error = PTR_ERR(old_mp);
2705 if (IS_ERR(old_mp))
2706 goto out3;
2707
2708 error = -EINVAL;
2709 new_mnt = real_mount(new.mnt);
2710 root_mnt = real_mount(root.mnt);
2711 old_mnt = real_mount(old.mnt);
2712 if (IS_MNT_SHARED(old_mnt) ||
2713 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2714 IS_MNT_SHARED(root_mnt->mnt_parent))
2715 goto out4;
2716 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2717 goto out4;
2718 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2719 goto out4;
2720 error = -ENOENT;
2721 if (d_unlinked(new.dentry))
2722 goto out4;
2723 error = -EBUSY;
2724 if (new_mnt == root_mnt || old_mnt == root_mnt)
2725 goto out4; /* loop, on the same file system */
2726 error = -EINVAL;
2727 if (root.mnt->mnt_root != root.dentry)
2728 goto out4; /* not a mountpoint */
2729 if (!mnt_has_parent(root_mnt))
2730 goto out4; /* not attached */
2731 root_mp = root_mnt->mnt_mp;
2732 if (new.mnt->mnt_root != new.dentry)
2733 goto out4; /* not a mountpoint */
2734 if (!mnt_has_parent(new_mnt))
2735 goto out4; /* not attached */
2736 /* make sure we can reach put_old from new_root */
2737 if (!is_path_reachable(old_mnt, old.dentry, &new))
2738 goto out4;
2739 root_mp->m_count++; /* pin it so it won't go away */
2740 lock_mount_hash();
2741 detach_mnt(new_mnt, &parent_path);
2742 detach_mnt(root_mnt, &root_parent);
2743 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2744 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2745 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2746 }
2747 /* mount old root on put_old */
2748 attach_mnt(root_mnt, old_mnt, old_mp);
2749 /* mount new_root on / */
2750 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2751 touch_mnt_namespace(current->nsproxy->mnt_ns);
2752 unlock_mount_hash();
2753 chroot_fs_refs(&root, &new);
2754 put_mountpoint(root_mp);
2755 error = 0;
2756out4:
2757 unlock_mount(old_mp);
2758 if (!error) {
2759 path_put(&root_parent);
2760 path_put(&parent_path);
2761 }
2762out3:
2763 path_put(&root);
2764out2:
2765 path_put(&old);
2766out1:
2767 path_put(&new);
2768out0:
2769 return error;
2770}
2771
2772static void __init init_mount_tree(void)
2773{
2774 struct vfsmount *mnt;
2775 struct mnt_namespace *ns;
2776 struct path root;
2777 struct file_system_type *type;
2778
2779 type = get_fs_type("rootfs");
2780 if (!type)
2781 panic("Can't find rootfs type");
2782 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2783 put_filesystem(type);
2784 if (IS_ERR(mnt))
2785 panic("Can't create rootfs");
2786
2787 ns = create_mnt_ns(mnt);
2788 if (IS_ERR(ns))
2789 panic("Can't allocate initial namespace");
2790
2791 init_task.nsproxy->mnt_ns = ns;
2792 get_mnt_ns(ns);
2793
2794 root.mnt = mnt;
2795 root.dentry = mnt->mnt_root;
2796
2797 set_fs_pwd(current->fs, &root);
2798 set_fs_root(current->fs, &root);
2799}
2800
2801void __init mnt_init(void)
2802{
2803 unsigned u;
2804 int err;
2805
2806 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2807 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2808
2809 mount_hashtable = alloc_large_system_hash("Mount-cache",
2810 sizeof(struct list_head),
2811 mhash_entries, 19,
2812 0,
2813 &m_hash_shift, &m_hash_mask, 0, 0);
2814 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2815 sizeof(struct hlist_head),
2816 mphash_entries, 19,
2817 0,
2818 &mp_hash_shift, &mp_hash_mask, 0, 0);
2819
2820 if (!mount_hashtable || !mountpoint_hashtable)
2821 panic("Failed to allocate mount hash table\n");
2822
2823 for (u = 0; u <= m_hash_mask; u++)
2824 INIT_LIST_HEAD(&mount_hashtable[u]);
2825 for (u = 0; u <= mp_hash_mask; u++)
2826 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
2827
2828 kernfs_init();
2829
2830 err = sysfs_init();
2831 if (err)
2832 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2833 __func__, err);
2834 fs_kobj = kobject_create_and_add("fs", NULL);
2835 if (!fs_kobj)
2836 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2837 init_rootfs();
2838 init_mount_tree();
2839}
2840
2841void put_mnt_ns(struct mnt_namespace *ns)
2842{
2843 if (!atomic_dec_and_test(&ns->count))
2844 return;
2845 drop_collected_mounts(&ns->root->mnt);
2846 free_mnt_ns(ns);
2847}
2848
2849struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2850{
2851 struct vfsmount *mnt;
2852 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2853 if (!IS_ERR(mnt)) {
2854 /*
2855 * it is a longterm mount, don't release mnt until
2856 * we unmount before file sys is unregistered
2857 */
2858 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2859 }
2860 return mnt;
2861}
2862EXPORT_SYMBOL_GPL(kern_mount_data);
2863
2864void kern_unmount(struct vfsmount *mnt)
2865{
2866 /* release long term mount so mount point can be released */
2867 if (!IS_ERR_OR_NULL(mnt)) {
2868 real_mount(mnt)->mnt_ns = NULL;
2869 synchronize_rcu(); /* yecchhh... */
2870 mntput(mnt);
2871 }
2872}
2873EXPORT_SYMBOL(kern_unmount);
2874
2875bool our_mnt(struct vfsmount *mnt)
2876{
2877 return check_mnt(real_mount(mnt));
2878}
2879
2880bool current_chrooted(void)
2881{
2882 /* Does the current process have a non-standard root */
2883 struct path ns_root;
2884 struct path fs_root;
2885 bool chrooted;
2886
2887 /* Find the namespace root */
2888 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2889 ns_root.dentry = ns_root.mnt->mnt_root;
2890 path_get(&ns_root);
2891 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2892 ;
2893
2894 get_fs_root(current->fs, &fs_root);
2895
2896 chrooted = !path_equal(&fs_root, &ns_root);
2897
2898 path_put(&fs_root);
2899 path_put(&ns_root);
2900
2901 return chrooted;
2902}
2903
2904bool fs_fully_visible(struct file_system_type *type)
2905{
2906 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2907 struct mount *mnt;
2908 bool visible = false;
2909
2910 if (unlikely(!ns))
2911 return false;
2912
2913 down_read(&namespace_sem);
2914 list_for_each_entry(mnt, &ns->list, mnt_list) {
2915 struct mount *child;
2916 if (mnt->mnt.mnt_sb->s_type != type)
2917 continue;
2918
2919 /* This mount is not fully visible if there are any child mounts
2920 * that cover anything except for empty directories.
2921 */
2922 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2923 struct inode *inode = child->mnt_mountpoint->d_inode;
2924 if (!S_ISDIR(inode->i_mode))
2925 goto next;
2926 if (inode->i_nlink > 2)
2927 goto next;
2928 }
2929 visible = true;
2930 goto found;
2931 next: ;
2932 }
2933found:
2934 up_read(&namespace_sem);
2935 return visible;
2936}
2937
2938static void *mntns_get(struct task_struct *task)
2939{
2940 struct mnt_namespace *ns = NULL;
2941 struct nsproxy *nsproxy;
2942
2943 rcu_read_lock();
2944 nsproxy = task_nsproxy(task);
2945 if (nsproxy) {
2946 ns = nsproxy->mnt_ns;
2947 get_mnt_ns(ns);
2948 }
2949 rcu_read_unlock();
2950
2951 return ns;
2952}
2953
2954static void mntns_put(void *ns)
2955{
2956 put_mnt_ns(ns);
2957}
2958
2959static int mntns_install(struct nsproxy *nsproxy, void *ns)
2960{
2961 struct fs_struct *fs = current->fs;
2962 struct mnt_namespace *mnt_ns = ns;
2963 struct path root;
2964
2965 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2966 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
2967 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
2968 return -EPERM;
2969
2970 if (fs->users != 1)
2971 return -EINVAL;
2972
2973 get_mnt_ns(mnt_ns);
2974 put_mnt_ns(nsproxy->mnt_ns);
2975 nsproxy->mnt_ns = mnt_ns;
2976
2977 /* Find the root */
2978 root.mnt = &mnt_ns->root->mnt;
2979 root.dentry = mnt_ns->root->mnt.mnt_root;
2980 path_get(&root);
2981 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2982 ;
2983
2984 /* Update the pwd and root */
2985 set_fs_pwd(fs, &root);
2986 set_fs_root(fs, &root);
2987
2988 path_put(&root);
2989 return 0;
2990}
2991
2992static unsigned int mntns_inum(void *ns)
2993{
2994 struct mnt_namespace *mnt_ns = ns;
2995 return mnt_ns->proc_inum;
2996}
2997
2998const struct proc_ns_operations mntns_operations = {
2999 .name = "mnt",
3000 .type = CLONE_NEWNS,
3001 .get = mntns_get,
3002 .put = mntns_put,
3003 .install = mntns_install,
3004 .inum = mntns_inum,
3005};