]> git.ipfire.org Git - people/ms/linux.git/blame_incremental - fs/namespace.c
drivers/nfc/pn544.c: fix min_t warnings
[people/ms/linux.git] / fs / namespace.c
... / ...
CommitLineData
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
14#include <linux/spinlock.h>
15#include <linux/percpu.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
18#include <linux/acct.h>
19#include <linux/capability.h>
20#include <linux/cpumask.h>
21#include <linux/module.h>
22#include <linux/sysfs.h>
23#include <linux/seq_file.h>
24#include <linux/mnt_namespace.h>
25#include <linux/namei.h>
26#include <linux/nsproxy.h>
27#include <linux/security.h>
28#include <linux/mount.h>
29#include <linux/ramfs.h>
30#include <linux/log2.h>
31#include <linux/idr.h>
32#include <linux/fs_struct.h>
33#include <linux/fsnotify.h>
34#include <asm/uaccess.h>
35#include <asm/unistd.h>
36#include "pnode.h"
37#include "internal.h"
38
39#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40#define HASH_SIZE (1UL << HASH_SHIFT)
41
42static int event;
43static DEFINE_IDA(mnt_id_ida);
44static DEFINE_IDA(mnt_group_ida);
45static DEFINE_SPINLOCK(mnt_id_lock);
46static int mnt_id_start = 0;
47static int mnt_group_start = 1;
48
49static struct list_head *mount_hashtable __read_mostly;
50static struct kmem_cache *mnt_cache __read_mostly;
51static struct rw_semaphore namespace_sem;
52
53/* /sys/fs */
54struct kobject *fs_kobj;
55EXPORT_SYMBOL_GPL(fs_kobj);
56
57/*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65DEFINE_BRLOCK(vfsmount_lock);
66
67static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68{
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
73}
74
75#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
77/*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
81static int mnt_alloc_id(struct vfsmount *mnt)
82{
83 int res;
84
85retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
87 spin_lock(&mnt_id_lock);
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt_id + 1;
91 spin_unlock(&mnt_id_lock);
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96}
97
98static void mnt_free_id(struct vfsmount *mnt)
99{
100 int id = mnt->mnt_id;
101 spin_lock(&mnt_id_lock);
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
105 spin_unlock(&mnt_id_lock);
106}
107
108/*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
113static int mnt_alloc_group_id(struct vfsmount *mnt)
114{
115 int res;
116
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt_group_id + 1;
125
126 return res;
127}
128
129/*
130 * Release a peer group ID
131 */
132void mnt_release_group_id(struct vfsmount *mnt)
133{
134 int id = mnt->mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
138 mnt->mnt_group_id = 0;
139}
140
141/*
142 * vfsmount lock must be held for read
143 */
144static inline void mnt_add_count(struct vfsmount *mnt, int n)
145{
146#ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148#else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152#endif
153}
154
155static inline void mnt_set_count(struct vfsmount *mnt, int n)
156{
157#ifdef CONFIG_SMP
158 this_cpu_write(mnt->mnt_pcp->mnt_count, n);
159#else
160 mnt->mnt_count = n;
161#endif
162}
163
164/*
165 * vfsmount lock must be held for read
166 */
167static inline void mnt_inc_count(struct vfsmount *mnt)
168{
169 mnt_add_count(mnt, 1);
170}
171
172/*
173 * vfsmount lock must be held for read
174 */
175static inline void mnt_dec_count(struct vfsmount *mnt)
176{
177 mnt_add_count(mnt, -1);
178}
179
180/*
181 * vfsmount lock must be held for write
182 */
183unsigned int mnt_get_count(struct vfsmount *mnt)
184{
185#ifdef CONFIG_SMP
186 unsigned int count = 0;
187 int cpu;
188
189 for_each_possible_cpu(cpu) {
190 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
191 }
192
193 return count;
194#else
195 return mnt->mnt_count;
196#endif
197}
198
199struct vfsmount *alloc_vfsmnt(const char *name)
200{
201 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
202 if (mnt) {
203 int err;
204
205 err = mnt_alloc_id(mnt);
206 if (err)
207 goto out_free_cache;
208
209 if (name) {
210 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
211 if (!mnt->mnt_devname)
212 goto out_free_id;
213 }
214
215#ifdef CONFIG_SMP
216 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
217 if (!mnt->mnt_pcp)
218 goto out_free_devname;
219
220 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
221#else
222 mnt->mnt_count = 1;
223 mnt->mnt_writers = 0;
224#endif
225
226 INIT_LIST_HEAD(&mnt->mnt_hash);
227 INIT_LIST_HEAD(&mnt->mnt_child);
228 INIT_LIST_HEAD(&mnt->mnt_mounts);
229 INIT_LIST_HEAD(&mnt->mnt_list);
230 INIT_LIST_HEAD(&mnt->mnt_expire);
231 INIT_LIST_HEAD(&mnt->mnt_share);
232 INIT_LIST_HEAD(&mnt->mnt_slave_list);
233 INIT_LIST_HEAD(&mnt->mnt_slave);
234#ifdef CONFIG_FSNOTIFY
235 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
236#endif
237 }
238 return mnt;
239
240#ifdef CONFIG_SMP
241out_free_devname:
242 kfree(mnt->mnt_devname);
243#endif
244out_free_id:
245 mnt_free_id(mnt);
246out_free_cache:
247 kmem_cache_free(mnt_cache, mnt);
248 return NULL;
249}
250
251/*
252 * Most r/o checks on a fs are for operations that take
253 * discrete amounts of time, like a write() or unlink().
254 * We must keep track of when those operations start
255 * (for permission checks) and when they end, so that
256 * we can determine when writes are able to occur to
257 * a filesystem.
258 */
259/*
260 * __mnt_is_readonly: check whether a mount is read-only
261 * @mnt: the mount to check for its write status
262 *
263 * This shouldn't be used directly ouside of the VFS.
264 * It does not guarantee that the filesystem will stay
265 * r/w, just that it is right *now*. This can not and
266 * should not be used in place of IS_RDONLY(inode).
267 * mnt_want/drop_write() will _keep_ the filesystem
268 * r/w.
269 */
270int __mnt_is_readonly(struct vfsmount *mnt)
271{
272 if (mnt->mnt_flags & MNT_READONLY)
273 return 1;
274 if (mnt->mnt_sb->s_flags & MS_RDONLY)
275 return 1;
276 return 0;
277}
278EXPORT_SYMBOL_GPL(__mnt_is_readonly);
279
280static inline void mnt_inc_writers(struct vfsmount *mnt)
281{
282#ifdef CONFIG_SMP
283 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
284#else
285 mnt->mnt_writers++;
286#endif
287}
288
289static inline void mnt_dec_writers(struct vfsmount *mnt)
290{
291#ifdef CONFIG_SMP
292 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
293#else
294 mnt->mnt_writers--;
295#endif
296}
297
298static unsigned int mnt_get_writers(struct vfsmount *mnt)
299{
300#ifdef CONFIG_SMP
301 unsigned int count = 0;
302 int cpu;
303
304 for_each_possible_cpu(cpu) {
305 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
306 }
307
308 return count;
309#else
310 return mnt->mnt_writers;
311#endif
312}
313
314/*
315 * Most r/o checks on a fs are for operations that take
316 * discrete amounts of time, like a write() or unlink().
317 * We must keep track of when those operations start
318 * (for permission checks) and when they end, so that
319 * we can determine when writes are able to occur to
320 * a filesystem.
321 */
322/**
323 * mnt_want_write - get write access to a mount
324 * @mnt: the mount on which to take a write
325 *
326 * This tells the low-level filesystem that a write is
327 * about to be performed to it, and makes sure that
328 * writes are allowed before returning success. When
329 * the write operation is finished, mnt_drop_write()
330 * must be called. This is effectively a refcount.
331 */
332int mnt_want_write(struct vfsmount *mnt)
333{
334 int ret = 0;
335
336 preempt_disable();
337 mnt_inc_writers(mnt);
338 /*
339 * The store to mnt_inc_writers must be visible before we pass
340 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
341 * incremented count after it has set MNT_WRITE_HOLD.
342 */
343 smp_mb();
344 while (mnt->mnt_flags & MNT_WRITE_HOLD)
345 cpu_relax();
346 /*
347 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
348 * be set to match its requirements. So we must not load that until
349 * MNT_WRITE_HOLD is cleared.
350 */
351 smp_rmb();
352 if (__mnt_is_readonly(mnt)) {
353 mnt_dec_writers(mnt);
354 ret = -EROFS;
355 goto out;
356 }
357out:
358 preempt_enable();
359 return ret;
360}
361EXPORT_SYMBOL_GPL(mnt_want_write);
362
363/**
364 * mnt_clone_write - get write access to a mount
365 * @mnt: the mount on which to take a write
366 *
367 * This is effectively like mnt_want_write, except
368 * it must only be used to take an extra write reference
369 * on a mountpoint that we already know has a write reference
370 * on it. This allows some optimisation.
371 *
372 * After finished, mnt_drop_write must be called as usual to
373 * drop the reference.
374 */
375int mnt_clone_write(struct vfsmount *mnt)
376{
377 /* superblock may be r/o */
378 if (__mnt_is_readonly(mnt))
379 return -EROFS;
380 preempt_disable();
381 mnt_inc_writers(mnt);
382 preempt_enable();
383 return 0;
384}
385EXPORT_SYMBOL_GPL(mnt_clone_write);
386
387/**
388 * mnt_want_write_file - get write access to a file's mount
389 * @file: the file who's mount on which to take a write
390 *
391 * This is like mnt_want_write, but it takes a file and can
392 * do some optimisations if the file is open for write already
393 */
394int mnt_want_write_file(struct file *file)
395{
396 struct inode *inode = file->f_dentry->d_inode;
397 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
398 return mnt_want_write(file->f_path.mnt);
399 else
400 return mnt_clone_write(file->f_path.mnt);
401}
402EXPORT_SYMBOL_GPL(mnt_want_write_file);
403
404/**
405 * mnt_drop_write - give up write access to a mount
406 * @mnt: the mount on which to give up write access
407 *
408 * Tells the low-level filesystem that we are done
409 * performing writes to it. Must be matched with
410 * mnt_want_write() call above.
411 */
412void mnt_drop_write(struct vfsmount *mnt)
413{
414 preempt_disable();
415 mnt_dec_writers(mnt);
416 preempt_enable();
417}
418EXPORT_SYMBOL_GPL(mnt_drop_write);
419
420static int mnt_make_readonly(struct vfsmount *mnt)
421{
422 int ret = 0;
423
424 br_write_lock(vfsmount_lock);
425 mnt->mnt_flags |= MNT_WRITE_HOLD;
426 /*
427 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
428 * should be visible before we do.
429 */
430 smp_mb();
431
432 /*
433 * With writers on hold, if this value is zero, then there are
434 * definitely no active writers (although held writers may subsequently
435 * increment the count, they'll have to wait, and decrement it after
436 * seeing MNT_READONLY).
437 *
438 * It is OK to have counter incremented on one CPU and decremented on
439 * another: the sum will add up correctly. The danger would be when we
440 * sum up each counter, if we read a counter before it is incremented,
441 * but then read another CPU's count which it has been subsequently
442 * decremented from -- we would see more decrements than we should.
443 * MNT_WRITE_HOLD protects against this scenario, because
444 * mnt_want_write first increments count, then smp_mb, then spins on
445 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
446 * we're counting up here.
447 */
448 if (mnt_get_writers(mnt) > 0)
449 ret = -EBUSY;
450 else
451 mnt->mnt_flags |= MNT_READONLY;
452 /*
453 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
454 * that become unheld will see MNT_READONLY.
455 */
456 smp_wmb();
457 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
458 br_write_unlock(vfsmount_lock);
459 return ret;
460}
461
462static void __mnt_unmake_readonly(struct vfsmount *mnt)
463{
464 br_write_lock(vfsmount_lock);
465 mnt->mnt_flags &= ~MNT_READONLY;
466 br_write_unlock(vfsmount_lock);
467}
468
469void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
470{
471 mnt->mnt_sb = sb;
472 mnt->mnt_root = dget(sb->s_root);
473}
474
475EXPORT_SYMBOL(simple_set_mnt);
476
477void free_vfsmnt(struct vfsmount *mnt)
478{
479 kfree(mnt->mnt_devname);
480 mnt_free_id(mnt);
481#ifdef CONFIG_SMP
482 free_percpu(mnt->mnt_pcp);
483#endif
484 kmem_cache_free(mnt_cache, mnt);
485}
486
487/*
488 * find the first or last mount at @dentry on vfsmount @mnt depending on
489 * @dir. If @dir is set return the first mount else return the last mount.
490 * vfsmount_lock must be held for read or write.
491 */
492struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
493 int dir)
494{
495 struct list_head *head = mount_hashtable + hash(mnt, dentry);
496 struct list_head *tmp = head;
497 struct vfsmount *p, *found = NULL;
498
499 for (;;) {
500 tmp = dir ? tmp->next : tmp->prev;
501 p = NULL;
502 if (tmp == head)
503 break;
504 p = list_entry(tmp, struct vfsmount, mnt_hash);
505 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
506 found = p;
507 break;
508 }
509 }
510 return found;
511}
512
513/*
514 * lookup_mnt increments the ref count before returning
515 * the vfsmount struct.
516 */
517struct vfsmount *lookup_mnt(struct path *path)
518{
519 struct vfsmount *child_mnt;
520
521 br_read_lock(vfsmount_lock);
522 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
523 mntget(child_mnt);
524 br_read_unlock(vfsmount_lock);
525 return child_mnt;
526}
527
528static inline int check_mnt(struct vfsmount *mnt)
529{
530 return mnt->mnt_ns == current->nsproxy->mnt_ns;
531}
532
533/*
534 * vfsmount lock must be held for write
535 */
536static void touch_mnt_namespace(struct mnt_namespace *ns)
537{
538 if (ns) {
539 ns->event = ++event;
540 wake_up_interruptible(&ns->poll);
541 }
542}
543
544/*
545 * vfsmount lock must be held for write
546 */
547static void __touch_mnt_namespace(struct mnt_namespace *ns)
548{
549 if (ns && ns->event != event) {
550 ns->event = event;
551 wake_up_interruptible(&ns->poll);
552 }
553}
554
555/*
556 * Clear dentry's mounted state if it has no remaining mounts.
557 * vfsmount_lock must be held for write.
558 */
559static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
560{
561 unsigned u;
562
563 for (u = 0; u < HASH_SIZE; u++) {
564 struct vfsmount *p;
565
566 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
567 if (p->mnt_mountpoint == dentry)
568 return;
569 }
570 }
571 spin_lock(&dentry->d_lock);
572 dentry->d_flags &= ~DCACHE_MOUNTED;
573 spin_unlock(&dentry->d_lock);
574}
575
576/*
577 * vfsmount lock must be held for write
578 */
579static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
580{
581 old_path->dentry = mnt->mnt_mountpoint;
582 old_path->mnt = mnt->mnt_parent;
583 mnt->mnt_parent = mnt;
584 mnt->mnt_mountpoint = mnt->mnt_root;
585 list_del_init(&mnt->mnt_child);
586 list_del_init(&mnt->mnt_hash);
587 dentry_reset_mounted(old_path->mnt, old_path->dentry);
588}
589
590/*
591 * vfsmount lock must be held for write
592 */
593void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
594 struct vfsmount *child_mnt)
595{
596 child_mnt->mnt_parent = mntget(mnt);
597 child_mnt->mnt_mountpoint = dget(dentry);
598 spin_lock(&dentry->d_lock);
599 dentry->d_flags |= DCACHE_MOUNTED;
600 spin_unlock(&dentry->d_lock);
601}
602
603/*
604 * vfsmount lock must be held for write
605 */
606static void attach_mnt(struct vfsmount *mnt, struct path *path)
607{
608 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
609 list_add_tail(&mnt->mnt_hash, mount_hashtable +
610 hash(path->mnt, path->dentry));
611 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
612}
613
614static inline void __mnt_make_longterm(struct vfsmount *mnt)
615{
616#ifdef CONFIG_SMP
617 atomic_inc(&mnt->mnt_longterm);
618#endif
619}
620
621/* needs vfsmount lock for write */
622static inline void __mnt_make_shortterm(struct vfsmount *mnt)
623{
624#ifdef CONFIG_SMP
625 atomic_dec(&mnt->mnt_longterm);
626#endif
627}
628
629/*
630 * vfsmount lock must be held for write
631 */
632static void commit_tree(struct vfsmount *mnt)
633{
634 struct vfsmount *parent = mnt->mnt_parent;
635 struct vfsmount *m;
636 LIST_HEAD(head);
637 struct mnt_namespace *n = parent->mnt_ns;
638
639 BUG_ON(parent == mnt);
640
641 list_add_tail(&head, &mnt->mnt_list);
642 list_for_each_entry(m, &head, mnt_list) {
643 m->mnt_ns = n;
644 __mnt_make_longterm(m);
645 }
646
647 list_splice(&head, n->list.prev);
648
649 list_add_tail(&mnt->mnt_hash, mount_hashtable +
650 hash(parent, mnt->mnt_mountpoint));
651 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
652 touch_mnt_namespace(n);
653}
654
655static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
656{
657 struct list_head *next = p->mnt_mounts.next;
658 if (next == &p->mnt_mounts) {
659 while (1) {
660 if (p == root)
661 return NULL;
662 next = p->mnt_child.next;
663 if (next != &p->mnt_parent->mnt_mounts)
664 break;
665 p = p->mnt_parent;
666 }
667 }
668 return list_entry(next, struct vfsmount, mnt_child);
669}
670
671static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
672{
673 struct list_head *prev = p->mnt_mounts.prev;
674 while (prev != &p->mnt_mounts) {
675 p = list_entry(prev, struct vfsmount, mnt_child);
676 prev = p->mnt_mounts.prev;
677 }
678 return p;
679}
680
681static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
682 int flag)
683{
684 struct super_block *sb = old->mnt_sb;
685 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
686
687 if (mnt) {
688 if (flag & (CL_SLAVE | CL_PRIVATE))
689 mnt->mnt_group_id = 0; /* not a peer of original */
690 else
691 mnt->mnt_group_id = old->mnt_group_id;
692
693 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
694 int err = mnt_alloc_group_id(mnt);
695 if (err)
696 goto out_free;
697 }
698
699 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
700 atomic_inc(&sb->s_active);
701 mnt->mnt_sb = sb;
702 mnt->mnt_root = dget(root);
703 mnt->mnt_mountpoint = mnt->mnt_root;
704 mnt->mnt_parent = mnt;
705
706 if (flag & CL_SLAVE) {
707 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
708 mnt->mnt_master = old;
709 CLEAR_MNT_SHARED(mnt);
710 } else if (!(flag & CL_PRIVATE)) {
711 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
712 list_add(&mnt->mnt_share, &old->mnt_share);
713 if (IS_MNT_SLAVE(old))
714 list_add(&mnt->mnt_slave, &old->mnt_slave);
715 mnt->mnt_master = old->mnt_master;
716 }
717 if (flag & CL_MAKE_SHARED)
718 set_mnt_shared(mnt);
719
720 /* stick the duplicate mount on the same expiry list
721 * as the original if that was on one */
722 if (flag & CL_EXPIRE) {
723 if (!list_empty(&old->mnt_expire))
724 list_add(&mnt->mnt_expire, &old->mnt_expire);
725 }
726 }
727 return mnt;
728
729 out_free:
730 free_vfsmnt(mnt);
731 return NULL;
732}
733
734static inline void mntfree(struct vfsmount *mnt)
735{
736 struct super_block *sb = mnt->mnt_sb;
737
738 /*
739 * This probably indicates that somebody messed
740 * up a mnt_want/drop_write() pair. If this
741 * happens, the filesystem was probably unable
742 * to make r/w->r/o transitions.
743 */
744 /*
745 * The locking used to deal with mnt_count decrement provides barriers,
746 * so mnt_get_writers() below is safe.
747 */
748 WARN_ON(mnt_get_writers(mnt));
749 fsnotify_vfsmount_delete(mnt);
750 dput(mnt->mnt_root);
751 free_vfsmnt(mnt);
752 deactivate_super(sb);
753}
754
755static void mntput_no_expire(struct vfsmount *mnt)
756{
757put_again:
758#ifdef CONFIG_SMP
759 br_read_lock(vfsmount_lock);
760 if (likely(atomic_read(&mnt->mnt_longterm))) {
761 mnt_dec_count(mnt);
762 br_read_unlock(vfsmount_lock);
763 return;
764 }
765 br_read_unlock(vfsmount_lock);
766
767 br_write_lock(vfsmount_lock);
768 mnt_dec_count(mnt);
769 if (mnt_get_count(mnt)) {
770 br_write_unlock(vfsmount_lock);
771 return;
772 }
773#else
774 mnt_dec_count(mnt);
775 if (likely(mnt_get_count(mnt)))
776 return;
777 br_write_lock(vfsmount_lock);
778#endif
779 if (unlikely(mnt->mnt_pinned)) {
780 mnt_add_count(mnt, mnt->mnt_pinned + 1);
781 mnt->mnt_pinned = 0;
782 br_write_unlock(vfsmount_lock);
783 acct_auto_close_mnt(mnt);
784 goto put_again;
785 }
786 br_write_unlock(vfsmount_lock);
787 mntfree(mnt);
788}
789
790void mntput(struct vfsmount *mnt)
791{
792 if (mnt) {
793 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
794 if (unlikely(mnt->mnt_expiry_mark))
795 mnt->mnt_expiry_mark = 0;
796 mntput_no_expire(mnt);
797 }
798}
799EXPORT_SYMBOL(mntput);
800
801struct vfsmount *mntget(struct vfsmount *mnt)
802{
803 if (mnt)
804 mnt_inc_count(mnt);
805 return mnt;
806}
807EXPORT_SYMBOL(mntget);
808
809void mnt_pin(struct vfsmount *mnt)
810{
811 br_write_lock(vfsmount_lock);
812 mnt->mnt_pinned++;
813 br_write_unlock(vfsmount_lock);
814}
815EXPORT_SYMBOL(mnt_pin);
816
817void mnt_unpin(struct vfsmount *mnt)
818{
819 br_write_lock(vfsmount_lock);
820 if (mnt->mnt_pinned) {
821 mnt_inc_count(mnt);
822 mnt->mnt_pinned--;
823 }
824 br_write_unlock(vfsmount_lock);
825}
826EXPORT_SYMBOL(mnt_unpin);
827
828static inline void mangle(struct seq_file *m, const char *s)
829{
830 seq_escape(m, s, " \t\n\\");
831}
832
833/*
834 * Simple .show_options callback for filesystems which don't want to
835 * implement more complex mount option showing.
836 *
837 * See also save_mount_options().
838 */
839int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
840{
841 const char *options;
842
843 rcu_read_lock();
844 options = rcu_dereference(mnt->mnt_sb->s_options);
845
846 if (options != NULL && options[0]) {
847 seq_putc(m, ',');
848 mangle(m, options);
849 }
850 rcu_read_unlock();
851
852 return 0;
853}
854EXPORT_SYMBOL(generic_show_options);
855
856/*
857 * If filesystem uses generic_show_options(), this function should be
858 * called from the fill_super() callback.
859 *
860 * The .remount_fs callback usually needs to be handled in a special
861 * way, to make sure, that previous options are not overwritten if the
862 * remount fails.
863 *
864 * Also note, that if the filesystem's .remount_fs function doesn't
865 * reset all options to their default value, but changes only newly
866 * given options, then the displayed options will not reflect reality
867 * any more.
868 */
869void save_mount_options(struct super_block *sb, char *options)
870{
871 BUG_ON(sb->s_options);
872 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
873}
874EXPORT_SYMBOL(save_mount_options);
875
876void replace_mount_options(struct super_block *sb, char *options)
877{
878 char *old = sb->s_options;
879 rcu_assign_pointer(sb->s_options, options);
880 if (old) {
881 synchronize_rcu();
882 kfree(old);
883 }
884}
885EXPORT_SYMBOL(replace_mount_options);
886
887#ifdef CONFIG_PROC_FS
888/* iterator */
889static void *m_start(struct seq_file *m, loff_t *pos)
890{
891 struct proc_mounts *p = m->private;
892
893 down_read(&namespace_sem);
894 return seq_list_start(&p->ns->list, *pos);
895}
896
897static void *m_next(struct seq_file *m, void *v, loff_t *pos)
898{
899 struct proc_mounts *p = m->private;
900
901 return seq_list_next(v, &p->ns->list, pos);
902}
903
904static void m_stop(struct seq_file *m, void *v)
905{
906 up_read(&namespace_sem);
907}
908
909int mnt_had_events(struct proc_mounts *p)
910{
911 struct mnt_namespace *ns = p->ns;
912 int res = 0;
913
914 br_read_lock(vfsmount_lock);
915 if (p->event != ns->event) {
916 p->event = ns->event;
917 res = 1;
918 }
919 br_read_unlock(vfsmount_lock);
920
921 return res;
922}
923
924struct proc_fs_info {
925 int flag;
926 const char *str;
927};
928
929static int show_sb_opts(struct seq_file *m, struct super_block *sb)
930{
931 static const struct proc_fs_info fs_info[] = {
932 { MS_SYNCHRONOUS, ",sync" },
933 { MS_DIRSYNC, ",dirsync" },
934 { MS_MANDLOCK, ",mand" },
935 { 0, NULL }
936 };
937 const struct proc_fs_info *fs_infop;
938
939 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
940 if (sb->s_flags & fs_infop->flag)
941 seq_puts(m, fs_infop->str);
942 }
943
944 return security_sb_show_options(m, sb);
945}
946
947static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
948{
949 static const struct proc_fs_info mnt_info[] = {
950 { MNT_NOSUID, ",nosuid" },
951 { MNT_NODEV, ",nodev" },
952 { MNT_NOEXEC, ",noexec" },
953 { MNT_NOATIME, ",noatime" },
954 { MNT_NODIRATIME, ",nodiratime" },
955 { MNT_RELATIME, ",relatime" },
956 { 0, NULL }
957 };
958 const struct proc_fs_info *fs_infop;
959
960 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
961 if (mnt->mnt_flags & fs_infop->flag)
962 seq_puts(m, fs_infop->str);
963 }
964}
965
966static void show_type(struct seq_file *m, struct super_block *sb)
967{
968 mangle(m, sb->s_type->name);
969 if (sb->s_subtype && sb->s_subtype[0]) {
970 seq_putc(m, '.');
971 mangle(m, sb->s_subtype);
972 }
973}
974
975static int show_vfsmnt(struct seq_file *m, void *v)
976{
977 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
978 int err = 0;
979 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
980
981 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
982 seq_putc(m, ' ');
983 seq_path(m, &mnt_path, " \t\n\\");
984 seq_putc(m, ' ');
985 show_type(m, mnt->mnt_sb);
986 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
987 err = show_sb_opts(m, mnt->mnt_sb);
988 if (err)
989 goto out;
990 show_mnt_opts(m, mnt);
991 if (mnt->mnt_sb->s_op->show_options)
992 err = mnt->mnt_sb->s_op->show_options(m, mnt);
993 seq_puts(m, " 0 0\n");
994out:
995 return err;
996}
997
998const struct seq_operations mounts_op = {
999 .start = m_start,
1000 .next = m_next,
1001 .stop = m_stop,
1002 .show = show_vfsmnt
1003};
1004
1005static int show_mountinfo(struct seq_file *m, void *v)
1006{
1007 struct proc_mounts *p = m->private;
1008 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1009 struct super_block *sb = mnt->mnt_sb;
1010 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1011 struct path root = p->root;
1012 int err = 0;
1013
1014 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1015 MAJOR(sb->s_dev), MINOR(sb->s_dev));
1016 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1017 seq_putc(m, ' ');
1018 seq_path_root(m, &mnt_path, &root, " \t\n\\");
1019 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
1020 /*
1021 * Mountpoint is outside root, discard that one. Ugly,
1022 * but less so than trying to do that in iterator in a
1023 * race-free way (due to renames).
1024 */
1025 return SEQ_SKIP;
1026 }
1027 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1028 show_mnt_opts(m, mnt);
1029
1030 /* Tagged fields ("foo:X" or "bar") */
1031 if (IS_MNT_SHARED(mnt))
1032 seq_printf(m, " shared:%i", mnt->mnt_group_id);
1033 if (IS_MNT_SLAVE(mnt)) {
1034 int master = mnt->mnt_master->mnt_group_id;
1035 int dom = get_dominating_id(mnt, &p->root);
1036 seq_printf(m, " master:%i", master);
1037 if (dom && dom != master)
1038 seq_printf(m, " propagate_from:%i", dom);
1039 }
1040 if (IS_MNT_UNBINDABLE(mnt))
1041 seq_puts(m, " unbindable");
1042
1043 /* Filesystem specific data */
1044 seq_puts(m, " - ");
1045 show_type(m, sb);
1046 seq_putc(m, ' ');
1047 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1048 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
1049 err = show_sb_opts(m, sb);
1050 if (err)
1051 goto out;
1052 if (sb->s_op->show_options)
1053 err = sb->s_op->show_options(m, mnt);
1054 seq_putc(m, '\n');
1055out:
1056 return err;
1057}
1058
1059const struct seq_operations mountinfo_op = {
1060 .start = m_start,
1061 .next = m_next,
1062 .stop = m_stop,
1063 .show = show_mountinfo,
1064};
1065
1066static int show_vfsstat(struct seq_file *m, void *v)
1067{
1068 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1069 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1070 int err = 0;
1071
1072 /* device */
1073 if (mnt->mnt_devname) {
1074 seq_puts(m, "device ");
1075 mangle(m, mnt->mnt_devname);
1076 } else
1077 seq_puts(m, "no device");
1078
1079 /* mount point */
1080 seq_puts(m, " mounted on ");
1081 seq_path(m, &mnt_path, " \t\n\\");
1082 seq_putc(m, ' ');
1083
1084 /* file system type */
1085 seq_puts(m, "with fstype ");
1086 show_type(m, mnt->mnt_sb);
1087
1088 /* optional statistics */
1089 if (mnt->mnt_sb->s_op->show_stats) {
1090 seq_putc(m, ' ');
1091 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
1092 }
1093
1094 seq_putc(m, '\n');
1095 return err;
1096}
1097
1098const struct seq_operations mountstats_op = {
1099 .start = m_start,
1100 .next = m_next,
1101 .stop = m_stop,
1102 .show = show_vfsstat,
1103};
1104#endif /* CONFIG_PROC_FS */
1105
1106/**
1107 * may_umount_tree - check if a mount tree is busy
1108 * @mnt: root of mount tree
1109 *
1110 * This is called to check if a tree of mounts has any
1111 * open files, pwds, chroots or sub mounts that are
1112 * busy.
1113 */
1114int may_umount_tree(struct vfsmount *mnt)
1115{
1116 int actual_refs = 0;
1117 int minimum_refs = 0;
1118 struct vfsmount *p;
1119
1120 /* write lock needed for mnt_get_count */
1121 br_write_lock(vfsmount_lock);
1122 for (p = mnt; p; p = next_mnt(p, mnt)) {
1123 actual_refs += mnt_get_count(p);
1124 minimum_refs += 2;
1125 }
1126 br_write_unlock(vfsmount_lock);
1127
1128 if (actual_refs > minimum_refs)
1129 return 0;
1130
1131 return 1;
1132}
1133
1134EXPORT_SYMBOL(may_umount_tree);
1135
1136/**
1137 * may_umount - check if a mount point is busy
1138 * @mnt: root of mount
1139 *
1140 * This is called to check if a mount point has any
1141 * open files, pwds, chroots or sub mounts. If the
1142 * mount has sub mounts this will return busy
1143 * regardless of whether the sub mounts are busy.
1144 *
1145 * Doesn't take quota and stuff into account. IOW, in some cases it will
1146 * give false negatives. The main reason why it's here is that we need
1147 * a non-destructive way to look for easily umountable filesystems.
1148 */
1149int may_umount(struct vfsmount *mnt)
1150{
1151 int ret = 1;
1152 down_read(&namespace_sem);
1153 br_write_lock(vfsmount_lock);
1154 if (propagate_mount_busy(mnt, 2))
1155 ret = 0;
1156 br_write_unlock(vfsmount_lock);
1157 up_read(&namespace_sem);
1158 return ret;
1159}
1160
1161EXPORT_SYMBOL(may_umount);
1162
1163void release_mounts(struct list_head *head)
1164{
1165 struct vfsmount *mnt;
1166 while (!list_empty(head)) {
1167 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1168 list_del_init(&mnt->mnt_hash);
1169 if (mnt->mnt_parent != mnt) {
1170 struct dentry *dentry;
1171 struct vfsmount *m;
1172
1173 br_write_lock(vfsmount_lock);
1174 dentry = mnt->mnt_mountpoint;
1175 m = mnt->mnt_parent;
1176 mnt->mnt_mountpoint = mnt->mnt_root;
1177 mnt->mnt_parent = mnt;
1178 m->mnt_ghosts--;
1179 br_write_unlock(vfsmount_lock);
1180 dput(dentry);
1181 mntput(m);
1182 }
1183 mntput(mnt);
1184 }
1185}
1186
1187/*
1188 * vfsmount lock must be held for write
1189 * namespace_sem must be held for write
1190 */
1191void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1192{
1193 LIST_HEAD(tmp_list);
1194 struct vfsmount *p;
1195
1196 for (p = mnt; p; p = next_mnt(p, mnt))
1197 list_move(&p->mnt_hash, &tmp_list);
1198
1199 if (propagate)
1200 propagate_umount(&tmp_list);
1201
1202 list_for_each_entry(p, &tmp_list, mnt_hash) {
1203 list_del_init(&p->mnt_expire);
1204 list_del_init(&p->mnt_list);
1205 __touch_mnt_namespace(p->mnt_ns);
1206 p->mnt_ns = NULL;
1207 __mnt_make_shortterm(p);
1208 list_del_init(&p->mnt_child);
1209 if (p->mnt_parent != p) {
1210 p->mnt_parent->mnt_ghosts++;
1211 dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
1212 }
1213 change_mnt_propagation(p, MS_PRIVATE);
1214 }
1215 list_splice(&tmp_list, kill);
1216}
1217
1218static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1219
1220static int do_umount(struct vfsmount *mnt, int flags)
1221{
1222 struct super_block *sb = mnt->mnt_sb;
1223 int retval;
1224 LIST_HEAD(umount_list);
1225
1226 retval = security_sb_umount(mnt, flags);
1227 if (retval)
1228 return retval;
1229
1230 /*
1231 * Allow userspace to request a mountpoint be expired rather than
1232 * unmounting unconditionally. Unmount only happens if:
1233 * (1) the mark is already set (the mark is cleared by mntput())
1234 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1235 */
1236 if (flags & MNT_EXPIRE) {
1237 if (mnt == current->fs->root.mnt ||
1238 flags & (MNT_FORCE | MNT_DETACH))
1239 return -EINVAL;
1240
1241 /*
1242 * probably don't strictly need the lock here if we examined
1243 * all race cases, but it's a slowpath.
1244 */
1245 br_write_lock(vfsmount_lock);
1246 if (mnt_get_count(mnt) != 2) {
1247 br_write_lock(vfsmount_lock);
1248 return -EBUSY;
1249 }
1250 br_write_unlock(vfsmount_lock);
1251
1252 if (!xchg(&mnt->mnt_expiry_mark, 1))
1253 return -EAGAIN;
1254 }
1255
1256 /*
1257 * If we may have to abort operations to get out of this
1258 * mount, and they will themselves hold resources we must
1259 * allow the fs to do things. In the Unix tradition of
1260 * 'Gee thats tricky lets do it in userspace' the umount_begin
1261 * might fail to complete on the first run through as other tasks
1262 * must return, and the like. Thats for the mount program to worry
1263 * about for the moment.
1264 */
1265
1266 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1267 sb->s_op->umount_begin(sb);
1268 }
1269
1270 /*
1271 * No sense to grab the lock for this test, but test itself looks
1272 * somewhat bogus. Suggestions for better replacement?
1273 * Ho-hum... In principle, we might treat that as umount + switch
1274 * to rootfs. GC would eventually take care of the old vfsmount.
1275 * Actually it makes sense, especially if rootfs would contain a
1276 * /reboot - static binary that would close all descriptors and
1277 * call reboot(9). Then init(8) could umount root and exec /reboot.
1278 */
1279 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1280 /*
1281 * Special case for "unmounting" root ...
1282 * we just try to remount it readonly.
1283 */
1284 down_write(&sb->s_umount);
1285 if (!(sb->s_flags & MS_RDONLY))
1286 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1287 up_write(&sb->s_umount);
1288 return retval;
1289 }
1290
1291 down_write(&namespace_sem);
1292 br_write_lock(vfsmount_lock);
1293 event++;
1294
1295 if (!(flags & MNT_DETACH))
1296 shrink_submounts(mnt, &umount_list);
1297
1298 retval = -EBUSY;
1299 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1300 if (!list_empty(&mnt->mnt_list))
1301 umount_tree(mnt, 1, &umount_list);
1302 retval = 0;
1303 }
1304 br_write_unlock(vfsmount_lock);
1305 up_write(&namespace_sem);
1306 release_mounts(&umount_list);
1307 return retval;
1308}
1309
1310/*
1311 * Now umount can handle mount points as well as block devices.
1312 * This is important for filesystems which use unnamed block devices.
1313 *
1314 * We now support a flag for forced unmount like the other 'big iron'
1315 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1316 */
1317
1318SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1319{
1320 struct path path;
1321 int retval;
1322 int lookup_flags = 0;
1323
1324 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1325 return -EINVAL;
1326
1327 if (!(flags & UMOUNT_NOFOLLOW))
1328 lookup_flags |= LOOKUP_FOLLOW;
1329
1330 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1331 if (retval)
1332 goto out;
1333 retval = -EINVAL;
1334 if (path.dentry != path.mnt->mnt_root)
1335 goto dput_and_out;
1336 if (!check_mnt(path.mnt))
1337 goto dput_and_out;
1338
1339 retval = -EPERM;
1340 if (!capable(CAP_SYS_ADMIN))
1341 goto dput_and_out;
1342
1343 retval = do_umount(path.mnt, flags);
1344dput_and_out:
1345 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1346 dput(path.dentry);
1347 mntput_no_expire(path.mnt);
1348out:
1349 return retval;
1350}
1351
1352#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1353
1354/*
1355 * The 2.0 compatible umount. No flags.
1356 */
1357SYSCALL_DEFINE1(oldumount, char __user *, name)
1358{
1359 return sys_umount(name, 0);
1360}
1361
1362#endif
1363
1364static int mount_is_safe(struct path *path)
1365{
1366 if (capable(CAP_SYS_ADMIN))
1367 return 0;
1368 return -EPERM;
1369#ifdef notyet
1370 if (S_ISLNK(path->dentry->d_inode->i_mode))
1371 return -EPERM;
1372 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1373 if (current_uid() != path->dentry->d_inode->i_uid)
1374 return -EPERM;
1375 }
1376 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1377 return -EPERM;
1378 return 0;
1379#endif
1380}
1381
1382struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1383 int flag)
1384{
1385 struct vfsmount *res, *p, *q, *r, *s;
1386 struct path path;
1387
1388 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1389 return NULL;
1390
1391 res = q = clone_mnt(mnt, dentry, flag);
1392 if (!q)
1393 goto Enomem;
1394 q->mnt_mountpoint = mnt->mnt_mountpoint;
1395
1396 p = mnt;
1397 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1398 if (!is_subdir(r->mnt_mountpoint, dentry))
1399 continue;
1400
1401 for (s = r; s; s = next_mnt(s, r)) {
1402 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1403 s = skip_mnt_tree(s);
1404 continue;
1405 }
1406 while (p != s->mnt_parent) {
1407 p = p->mnt_parent;
1408 q = q->mnt_parent;
1409 }
1410 p = s;
1411 path.mnt = q;
1412 path.dentry = p->mnt_mountpoint;
1413 q = clone_mnt(p, p->mnt_root, flag);
1414 if (!q)
1415 goto Enomem;
1416 br_write_lock(vfsmount_lock);
1417 list_add_tail(&q->mnt_list, &res->mnt_list);
1418 attach_mnt(q, &path);
1419 br_write_unlock(vfsmount_lock);
1420 }
1421 }
1422 return res;
1423Enomem:
1424 if (res) {
1425 LIST_HEAD(umount_list);
1426 br_write_lock(vfsmount_lock);
1427 umount_tree(res, 0, &umount_list);
1428 br_write_unlock(vfsmount_lock);
1429 release_mounts(&umount_list);
1430 }
1431 return NULL;
1432}
1433
1434struct vfsmount *collect_mounts(struct path *path)
1435{
1436 struct vfsmount *tree;
1437 down_write(&namespace_sem);
1438 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1439 up_write(&namespace_sem);
1440 return tree;
1441}
1442
1443void drop_collected_mounts(struct vfsmount *mnt)
1444{
1445 LIST_HEAD(umount_list);
1446 down_write(&namespace_sem);
1447 br_write_lock(vfsmount_lock);
1448 umount_tree(mnt, 0, &umount_list);
1449 br_write_unlock(vfsmount_lock);
1450 up_write(&namespace_sem);
1451 release_mounts(&umount_list);
1452}
1453
1454int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1455 struct vfsmount *root)
1456{
1457 struct vfsmount *mnt;
1458 int res = f(root, arg);
1459 if (res)
1460 return res;
1461 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1462 res = f(mnt, arg);
1463 if (res)
1464 return res;
1465 }
1466 return 0;
1467}
1468
1469static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1470{
1471 struct vfsmount *p;
1472
1473 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1474 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1475 mnt_release_group_id(p);
1476 }
1477}
1478
1479static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1480{
1481 struct vfsmount *p;
1482
1483 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1484 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1485 int err = mnt_alloc_group_id(p);
1486 if (err) {
1487 cleanup_group_ids(mnt, p);
1488 return err;
1489 }
1490 }
1491 }
1492
1493 return 0;
1494}
1495
1496/*
1497 * @source_mnt : mount tree to be attached
1498 * @nd : place the mount tree @source_mnt is attached
1499 * @parent_nd : if non-null, detach the source_mnt from its parent and
1500 * store the parent mount and mountpoint dentry.
1501 * (done when source_mnt is moved)
1502 *
1503 * NOTE: in the table below explains the semantics when a source mount
1504 * of a given type is attached to a destination mount of a given type.
1505 * ---------------------------------------------------------------------------
1506 * | BIND MOUNT OPERATION |
1507 * |**************************************************************************
1508 * | source-->| shared | private | slave | unbindable |
1509 * | dest | | | | |
1510 * | | | | | | |
1511 * | v | | | | |
1512 * |**************************************************************************
1513 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1514 * | | | | | |
1515 * |non-shared| shared (+) | private | slave (*) | invalid |
1516 * ***************************************************************************
1517 * A bind operation clones the source mount and mounts the clone on the
1518 * destination mount.
1519 *
1520 * (++) the cloned mount is propagated to all the mounts in the propagation
1521 * tree of the destination mount and the cloned mount is added to
1522 * the peer group of the source mount.
1523 * (+) the cloned mount is created under the destination mount and is marked
1524 * as shared. The cloned mount is added to the peer group of the source
1525 * mount.
1526 * (+++) the mount is propagated to all the mounts in the propagation tree
1527 * of the destination mount and the cloned mount is made slave
1528 * of the same master as that of the source mount. The cloned mount
1529 * is marked as 'shared and slave'.
1530 * (*) the cloned mount is made a slave of the same master as that of the
1531 * source mount.
1532 *
1533 * ---------------------------------------------------------------------------
1534 * | MOVE MOUNT OPERATION |
1535 * |**************************************************************************
1536 * | source-->| shared | private | slave | unbindable |
1537 * | dest | | | | |
1538 * | | | | | | |
1539 * | v | | | | |
1540 * |**************************************************************************
1541 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1542 * | | | | | |
1543 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1544 * ***************************************************************************
1545 *
1546 * (+) the mount is moved to the destination. And is then propagated to
1547 * all the mounts in the propagation tree of the destination mount.
1548 * (+*) the mount is moved to the destination.
1549 * (+++) the mount is moved to the destination and is then propagated to
1550 * all the mounts belonging to the destination mount's propagation tree.
1551 * the mount is marked as 'shared and slave'.
1552 * (*) the mount continues to be a slave at the new location.
1553 *
1554 * if the source mount is a tree, the operations explained above is
1555 * applied to each mount in the tree.
1556 * Must be called without spinlocks held, since this function can sleep
1557 * in allocations.
1558 */
1559static int attach_recursive_mnt(struct vfsmount *source_mnt,
1560 struct path *path, struct path *parent_path)
1561{
1562 LIST_HEAD(tree_list);
1563 struct vfsmount *dest_mnt = path->mnt;
1564 struct dentry *dest_dentry = path->dentry;
1565 struct vfsmount *child, *p;
1566 int err;
1567
1568 if (IS_MNT_SHARED(dest_mnt)) {
1569 err = invent_group_ids(source_mnt, true);
1570 if (err)
1571 goto out;
1572 }
1573 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1574 if (err)
1575 goto out_cleanup_ids;
1576
1577 br_write_lock(vfsmount_lock);
1578
1579 if (IS_MNT_SHARED(dest_mnt)) {
1580 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1581 set_mnt_shared(p);
1582 }
1583 if (parent_path) {
1584 detach_mnt(source_mnt, parent_path);
1585 attach_mnt(source_mnt, path);
1586 touch_mnt_namespace(parent_path->mnt->mnt_ns);
1587 } else {
1588 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1589 commit_tree(source_mnt);
1590 }
1591
1592 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1593 list_del_init(&child->mnt_hash);
1594 commit_tree(child);
1595 }
1596 br_write_unlock(vfsmount_lock);
1597
1598 return 0;
1599
1600 out_cleanup_ids:
1601 if (IS_MNT_SHARED(dest_mnt))
1602 cleanup_group_ids(source_mnt, NULL);
1603 out:
1604 return err;
1605}
1606
1607static int graft_tree(struct vfsmount *mnt, struct path *path)
1608{
1609 int err;
1610 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1611 return -EINVAL;
1612
1613 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1614 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1615 return -ENOTDIR;
1616
1617 err = -ENOENT;
1618 mutex_lock(&path->dentry->d_inode->i_mutex);
1619 if (cant_mount(path->dentry))
1620 goto out_unlock;
1621
1622 if (!d_unlinked(path->dentry))
1623 err = attach_recursive_mnt(mnt, path, NULL);
1624out_unlock:
1625 mutex_unlock(&path->dentry->d_inode->i_mutex);
1626 return err;
1627}
1628
1629/*
1630 * Sanity check the flags to change_mnt_propagation.
1631 */
1632
1633static int flags_to_propagation_type(int flags)
1634{
1635 int type = flags & ~MS_REC;
1636
1637 /* Fail if any non-propagation flags are set */
1638 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1639 return 0;
1640 /* Only one propagation flag should be set */
1641 if (!is_power_of_2(type))
1642 return 0;
1643 return type;
1644}
1645
1646/*
1647 * recursively change the type of the mountpoint.
1648 */
1649static int do_change_type(struct path *path, int flag)
1650{
1651 struct vfsmount *m, *mnt = path->mnt;
1652 int recurse = flag & MS_REC;
1653 int type;
1654 int err = 0;
1655
1656 if (!capable(CAP_SYS_ADMIN))
1657 return -EPERM;
1658
1659 if (path->dentry != path->mnt->mnt_root)
1660 return -EINVAL;
1661
1662 type = flags_to_propagation_type(flag);
1663 if (!type)
1664 return -EINVAL;
1665
1666 down_write(&namespace_sem);
1667 if (type == MS_SHARED) {
1668 err = invent_group_ids(mnt, recurse);
1669 if (err)
1670 goto out_unlock;
1671 }
1672
1673 br_write_lock(vfsmount_lock);
1674 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1675 change_mnt_propagation(m, type);
1676 br_write_unlock(vfsmount_lock);
1677
1678 out_unlock:
1679 up_write(&namespace_sem);
1680 return err;
1681}
1682
1683/*
1684 * do loopback mount.
1685 */
1686static int do_loopback(struct path *path, char *old_name,
1687 int recurse)
1688{
1689 struct path old_path;
1690 struct vfsmount *mnt = NULL;
1691 int err = mount_is_safe(path);
1692 if (err)
1693 return err;
1694 if (!old_name || !*old_name)
1695 return -EINVAL;
1696 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1697 if (err)
1698 return err;
1699
1700 down_write(&namespace_sem);
1701 err = -EINVAL;
1702 if (IS_MNT_UNBINDABLE(old_path.mnt))
1703 goto out;
1704
1705 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1706 goto out;
1707
1708 err = -ENOMEM;
1709 if (recurse)
1710 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1711 else
1712 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1713
1714 if (!mnt)
1715 goto out;
1716
1717 err = graft_tree(mnt, path);
1718 if (err) {
1719 LIST_HEAD(umount_list);
1720
1721 br_write_lock(vfsmount_lock);
1722 umount_tree(mnt, 0, &umount_list);
1723 br_write_unlock(vfsmount_lock);
1724 release_mounts(&umount_list);
1725 }
1726
1727out:
1728 up_write(&namespace_sem);
1729 path_put(&old_path);
1730 return err;
1731}
1732
1733static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1734{
1735 int error = 0;
1736 int readonly_request = 0;
1737
1738 if (ms_flags & MS_RDONLY)
1739 readonly_request = 1;
1740 if (readonly_request == __mnt_is_readonly(mnt))
1741 return 0;
1742
1743 if (readonly_request)
1744 error = mnt_make_readonly(mnt);
1745 else
1746 __mnt_unmake_readonly(mnt);
1747 return error;
1748}
1749
1750/*
1751 * change filesystem flags. dir should be a physical root of filesystem.
1752 * If you've mounted a non-root directory somewhere and want to do remount
1753 * on it - tough luck.
1754 */
1755static int do_remount(struct path *path, int flags, int mnt_flags,
1756 void *data)
1757{
1758 int err;
1759 struct super_block *sb = path->mnt->mnt_sb;
1760
1761 if (!capable(CAP_SYS_ADMIN))
1762 return -EPERM;
1763
1764 if (!check_mnt(path->mnt))
1765 return -EINVAL;
1766
1767 if (path->dentry != path->mnt->mnt_root)
1768 return -EINVAL;
1769
1770 down_write(&sb->s_umount);
1771 if (flags & MS_BIND)
1772 err = change_mount_flags(path->mnt, flags);
1773 else
1774 err = do_remount_sb(sb, flags, data, 0);
1775 if (!err) {
1776 br_write_lock(vfsmount_lock);
1777 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1778 path->mnt->mnt_flags = mnt_flags;
1779 br_write_unlock(vfsmount_lock);
1780 }
1781 up_write(&sb->s_umount);
1782 if (!err) {
1783 br_write_lock(vfsmount_lock);
1784 touch_mnt_namespace(path->mnt->mnt_ns);
1785 br_write_unlock(vfsmount_lock);
1786 }
1787 return err;
1788}
1789
1790static inline int tree_contains_unbindable(struct vfsmount *mnt)
1791{
1792 struct vfsmount *p;
1793 for (p = mnt; p; p = next_mnt(p, mnt)) {
1794 if (IS_MNT_UNBINDABLE(p))
1795 return 1;
1796 }
1797 return 0;
1798}
1799
1800static int do_move_mount(struct path *path, char *old_name)
1801{
1802 struct path old_path, parent_path;
1803 struct vfsmount *p;
1804 int err = 0;
1805 if (!capable(CAP_SYS_ADMIN))
1806 return -EPERM;
1807 if (!old_name || !*old_name)
1808 return -EINVAL;
1809 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1810 if (err)
1811 return err;
1812
1813 down_write(&namespace_sem);
1814 err = follow_down(path, true);
1815 if (err < 0)
1816 goto out;
1817
1818 err = -EINVAL;
1819 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1820 goto out;
1821
1822 err = -ENOENT;
1823 mutex_lock(&path->dentry->d_inode->i_mutex);
1824 if (cant_mount(path->dentry))
1825 goto out1;
1826
1827 if (d_unlinked(path->dentry))
1828 goto out1;
1829
1830 err = -EINVAL;
1831 if (old_path.dentry != old_path.mnt->mnt_root)
1832 goto out1;
1833
1834 if (old_path.mnt == old_path.mnt->mnt_parent)
1835 goto out1;
1836
1837 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1838 S_ISDIR(old_path.dentry->d_inode->i_mode))
1839 goto out1;
1840 /*
1841 * Don't move a mount residing in a shared parent.
1842 */
1843 if (old_path.mnt->mnt_parent &&
1844 IS_MNT_SHARED(old_path.mnt->mnt_parent))
1845 goto out1;
1846 /*
1847 * Don't move a mount tree containing unbindable mounts to a destination
1848 * mount which is shared.
1849 */
1850 if (IS_MNT_SHARED(path->mnt) &&
1851 tree_contains_unbindable(old_path.mnt))
1852 goto out1;
1853 err = -ELOOP;
1854 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1855 if (p == old_path.mnt)
1856 goto out1;
1857
1858 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1859 if (err)
1860 goto out1;
1861
1862 /* if the mount is moved, it should no longer be expire
1863 * automatically */
1864 list_del_init(&old_path.mnt->mnt_expire);
1865out1:
1866 mutex_unlock(&path->dentry->d_inode->i_mutex);
1867out:
1868 up_write(&namespace_sem);
1869 if (!err)
1870 path_put(&parent_path);
1871 path_put(&old_path);
1872 return err;
1873}
1874
1875/*
1876 * create a new mount for userspace and request it to be added into the
1877 * namespace's tree
1878 */
1879static int do_new_mount(struct path *path, char *type, int flags,
1880 int mnt_flags, char *name, void *data)
1881{
1882 struct vfsmount *mnt;
1883
1884 if (!type)
1885 return -EINVAL;
1886
1887 /* we need capabilities... */
1888 if (!capable(CAP_SYS_ADMIN))
1889 return -EPERM;
1890
1891 mnt = do_kern_mount(type, flags, name, data);
1892 if (IS_ERR(mnt))
1893 return PTR_ERR(mnt);
1894
1895 return do_add_mount(mnt, path, mnt_flags);
1896}
1897
1898/*
1899 * add a mount into a namespace's mount tree
1900 * - this unconditionally eats one of the caller's references to newmnt.
1901 */
1902int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1903{
1904 int err;
1905
1906 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1907
1908 down_write(&namespace_sem);
1909 /* Something was mounted here while we slept */
1910 err = follow_down(path, true);
1911 if (err < 0)
1912 goto unlock;
1913
1914 err = -EINVAL;
1915 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1916 goto unlock;
1917
1918 /* Refuse the same filesystem on the same mount point */
1919 err = -EBUSY;
1920 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1921 path->mnt->mnt_root == path->dentry)
1922 goto unlock;
1923
1924 err = -EINVAL;
1925 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1926 goto unlock;
1927
1928 newmnt->mnt_flags = mnt_flags;
1929 if ((err = graft_tree(newmnt, path)))
1930 goto unlock;
1931
1932 up_write(&namespace_sem);
1933 return 0;
1934
1935unlock:
1936 up_write(&namespace_sem);
1937 mntput(newmnt);
1938 return err;
1939}
1940
1941/**
1942 * mnt_set_expiry - Put a mount on an expiration list
1943 * @mnt: The mount to list.
1944 * @expiry_list: The list to add the mount to.
1945 */
1946void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1947{
1948 down_write(&namespace_sem);
1949 br_write_lock(vfsmount_lock);
1950
1951 list_add_tail(&mnt->mnt_expire, expiry_list);
1952
1953 br_write_unlock(vfsmount_lock);
1954 up_write(&namespace_sem);
1955}
1956EXPORT_SYMBOL(mnt_set_expiry);
1957
1958/*
1959 * Remove a vfsmount from any expiration list it may be on
1960 */
1961void mnt_clear_expiry(struct vfsmount *mnt)
1962{
1963 if (!list_empty(&mnt->mnt_expire)) {
1964 down_write(&namespace_sem);
1965 br_write_lock(vfsmount_lock);
1966 list_del_init(&mnt->mnt_expire);
1967 br_write_unlock(vfsmount_lock);
1968 up_write(&namespace_sem);
1969 }
1970}
1971
1972/*
1973 * process a list of expirable mountpoints with the intent of discarding any
1974 * mountpoints that aren't in use and haven't been touched since last we came
1975 * here
1976 */
1977void mark_mounts_for_expiry(struct list_head *mounts)
1978{
1979 struct vfsmount *mnt, *next;
1980 LIST_HEAD(graveyard);
1981 LIST_HEAD(umounts);
1982
1983 if (list_empty(mounts))
1984 return;
1985
1986 down_write(&namespace_sem);
1987 br_write_lock(vfsmount_lock);
1988
1989 /* extract from the expiration list every vfsmount that matches the
1990 * following criteria:
1991 * - only referenced by its parent vfsmount
1992 * - still marked for expiry (marked on the last call here; marks are
1993 * cleared by mntput())
1994 */
1995 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1996 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1997 propagate_mount_busy(mnt, 1))
1998 continue;
1999 list_move(&mnt->mnt_expire, &graveyard);
2000 }
2001 while (!list_empty(&graveyard)) {
2002 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2003 touch_mnt_namespace(mnt->mnt_ns);
2004 umount_tree(mnt, 1, &umounts);
2005 }
2006 br_write_unlock(vfsmount_lock);
2007 up_write(&namespace_sem);
2008
2009 release_mounts(&umounts);
2010}
2011
2012EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2013
2014/*
2015 * Ripoff of 'select_parent()'
2016 *
2017 * search the list of submounts for a given mountpoint, and move any
2018 * shrinkable submounts to the 'graveyard' list.
2019 */
2020static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2021{
2022 struct vfsmount *this_parent = parent;
2023 struct list_head *next;
2024 int found = 0;
2025
2026repeat:
2027 next = this_parent->mnt_mounts.next;
2028resume:
2029 while (next != &this_parent->mnt_mounts) {
2030 struct list_head *tmp = next;
2031 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2032
2033 next = tmp->next;
2034 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
2035 continue;
2036 /*
2037 * Descend a level if the d_mounts list is non-empty.
2038 */
2039 if (!list_empty(&mnt->mnt_mounts)) {
2040 this_parent = mnt;
2041 goto repeat;
2042 }
2043
2044 if (!propagate_mount_busy(mnt, 1)) {
2045 list_move_tail(&mnt->mnt_expire, graveyard);
2046 found++;
2047 }
2048 }
2049 /*
2050 * All done at this level ... ascend and resume the search
2051 */
2052 if (this_parent != parent) {
2053 next = this_parent->mnt_child.next;
2054 this_parent = this_parent->mnt_parent;
2055 goto resume;
2056 }
2057 return found;
2058}
2059
2060/*
2061 * process a list of expirable mountpoints with the intent of discarding any
2062 * submounts of a specific parent mountpoint
2063 *
2064 * vfsmount_lock must be held for write
2065 */
2066static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
2067{
2068 LIST_HEAD(graveyard);
2069 struct vfsmount *m;
2070
2071 /* extract submounts of 'mountpoint' from the expiration list */
2072 while (select_submounts(mnt, &graveyard)) {
2073 while (!list_empty(&graveyard)) {
2074 m = list_first_entry(&graveyard, struct vfsmount,
2075 mnt_expire);
2076 touch_mnt_namespace(m->mnt_ns);
2077 umount_tree(m, 1, umounts);
2078 }
2079 }
2080}
2081
2082/*
2083 * Some copy_from_user() implementations do not return the exact number of
2084 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2085 * Note that this function differs from copy_from_user() in that it will oops
2086 * on bad values of `to', rather than returning a short copy.
2087 */
2088static long exact_copy_from_user(void *to, const void __user * from,
2089 unsigned long n)
2090{
2091 char *t = to;
2092 const char __user *f = from;
2093 char c;
2094
2095 if (!access_ok(VERIFY_READ, from, n))
2096 return n;
2097
2098 while (n) {
2099 if (__get_user(c, f)) {
2100 memset(t, 0, n);
2101 break;
2102 }
2103 *t++ = c;
2104 f++;
2105 n--;
2106 }
2107 return n;
2108}
2109
2110int copy_mount_options(const void __user * data, unsigned long *where)
2111{
2112 int i;
2113 unsigned long page;
2114 unsigned long size;
2115
2116 *where = 0;
2117 if (!data)
2118 return 0;
2119
2120 if (!(page = __get_free_page(GFP_KERNEL)))
2121 return -ENOMEM;
2122
2123 /* We only care that *some* data at the address the user
2124 * gave us is valid. Just in case, we'll zero
2125 * the remainder of the page.
2126 */
2127 /* copy_from_user cannot cross TASK_SIZE ! */
2128 size = TASK_SIZE - (unsigned long)data;
2129 if (size > PAGE_SIZE)
2130 size = PAGE_SIZE;
2131
2132 i = size - exact_copy_from_user((void *)page, data, size);
2133 if (!i) {
2134 free_page(page);
2135 return -EFAULT;
2136 }
2137 if (i != PAGE_SIZE)
2138 memset((char *)page + i, 0, PAGE_SIZE - i);
2139 *where = page;
2140 return 0;
2141}
2142
2143int copy_mount_string(const void __user *data, char **where)
2144{
2145 char *tmp;
2146
2147 if (!data) {
2148 *where = NULL;
2149 return 0;
2150 }
2151
2152 tmp = strndup_user(data, PAGE_SIZE);
2153 if (IS_ERR(tmp))
2154 return PTR_ERR(tmp);
2155
2156 *where = tmp;
2157 return 0;
2158}
2159
2160/*
2161 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2162 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2163 *
2164 * data is a (void *) that can point to any structure up to
2165 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2166 * information (or be NULL).
2167 *
2168 * Pre-0.97 versions of mount() didn't have a flags word.
2169 * When the flags word was introduced its top half was required
2170 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2171 * Therefore, if this magic number is present, it carries no information
2172 * and must be discarded.
2173 */
2174long do_mount(char *dev_name, char *dir_name, char *type_page,
2175 unsigned long flags, void *data_page)
2176{
2177 struct path path;
2178 int retval = 0;
2179 int mnt_flags = 0;
2180
2181 /* Discard magic */
2182 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2183 flags &= ~MS_MGC_MSK;
2184
2185 /* Basic sanity checks */
2186
2187 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2188 return -EINVAL;
2189
2190 if (data_page)
2191 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2192
2193 /* ... and get the mountpoint */
2194 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2195 if (retval)
2196 return retval;
2197
2198 retval = security_sb_mount(dev_name, &path,
2199 type_page, flags, data_page);
2200 if (retval)
2201 goto dput_out;
2202
2203 /* Default to relatime unless overriden */
2204 if (!(flags & MS_NOATIME))
2205 mnt_flags |= MNT_RELATIME;
2206
2207 /* Separate the per-mountpoint flags */
2208 if (flags & MS_NOSUID)
2209 mnt_flags |= MNT_NOSUID;
2210 if (flags & MS_NODEV)
2211 mnt_flags |= MNT_NODEV;
2212 if (flags & MS_NOEXEC)
2213 mnt_flags |= MNT_NOEXEC;
2214 if (flags & MS_NOATIME)
2215 mnt_flags |= MNT_NOATIME;
2216 if (flags & MS_NODIRATIME)
2217 mnt_flags |= MNT_NODIRATIME;
2218 if (flags & MS_STRICTATIME)
2219 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2220 if (flags & MS_RDONLY)
2221 mnt_flags |= MNT_READONLY;
2222
2223 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2224 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2225 MS_STRICTATIME);
2226
2227 if (flags & MS_REMOUNT)
2228 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2229 data_page);
2230 else if (flags & MS_BIND)
2231 retval = do_loopback(&path, dev_name, flags & MS_REC);
2232 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2233 retval = do_change_type(&path, flags);
2234 else if (flags & MS_MOVE)
2235 retval = do_move_mount(&path, dev_name);
2236 else
2237 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2238 dev_name, data_page);
2239dput_out:
2240 path_put(&path);
2241 return retval;
2242}
2243
2244static struct mnt_namespace *alloc_mnt_ns(void)
2245{
2246 struct mnt_namespace *new_ns;
2247
2248 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2249 if (!new_ns)
2250 return ERR_PTR(-ENOMEM);
2251 atomic_set(&new_ns->count, 1);
2252 new_ns->root = NULL;
2253 INIT_LIST_HEAD(&new_ns->list);
2254 init_waitqueue_head(&new_ns->poll);
2255 new_ns->event = 0;
2256 return new_ns;
2257}
2258
2259void mnt_make_longterm(struct vfsmount *mnt)
2260{
2261 __mnt_make_longterm(mnt);
2262}
2263
2264void mnt_make_shortterm(struct vfsmount *mnt)
2265{
2266#ifdef CONFIG_SMP
2267 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2268 return;
2269 br_write_lock(vfsmount_lock);
2270 atomic_dec(&mnt->mnt_longterm);
2271 br_write_unlock(vfsmount_lock);
2272#endif
2273}
2274
2275/*
2276 * Allocate a new namespace structure and populate it with contents
2277 * copied from the namespace of the passed in task structure.
2278 */
2279static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2280 struct fs_struct *fs)
2281{
2282 struct mnt_namespace *new_ns;
2283 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2284 struct vfsmount *p, *q;
2285
2286 new_ns = alloc_mnt_ns();
2287 if (IS_ERR(new_ns))
2288 return new_ns;
2289
2290 down_write(&namespace_sem);
2291 /* First pass: copy the tree topology */
2292 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2293 CL_COPY_ALL | CL_EXPIRE);
2294 if (!new_ns->root) {
2295 up_write(&namespace_sem);
2296 kfree(new_ns);
2297 return ERR_PTR(-ENOMEM);
2298 }
2299 br_write_lock(vfsmount_lock);
2300 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2301 br_write_unlock(vfsmount_lock);
2302
2303 /*
2304 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2305 * as belonging to new namespace. We have already acquired a private
2306 * fs_struct, so tsk->fs->lock is not needed.
2307 */
2308 p = mnt_ns->root;
2309 q = new_ns->root;
2310 while (p) {
2311 q->mnt_ns = new_ns;
2312 __mnt_make_longterm(q);
2313 if (fs) {
2314 if (p == fs->root.mnt) {
2315 fs->root.mnt = mntget(q);
2316 __mnt_make_longterm(q);
2317 mnt_make_shortterm(p);
2318 rootmnt = p;
2319 }
2320 if (p == fs->pwd.mnt) {
2321 fs->pwd.mnt = mntget(q);
2322 __mnt_make_longterm(q);
2323 mnt_make_shortterm(p);
2324 pwdmnt = p;
2325 }
2326 }
2327 p = next_mnt(p, mnt_ns->root);
2328 q = next_mnt(q, new_ns->root);
2329 }
2330 up_write(&namespace_sem);
2331
2332 if (rootmnt)
2333 mntput(rootmnt);
2334 if (pwdmnt)
2335 mntput(pwdmnt);
2336
2337 return new_ns;
2338}
2339
2340struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2341 struct fs_struct *new_fs)
2342{
2343 struct mnt_namespace *new_ns;
2344
2345 BUG_ON(!ns);
2346 get_mnt_ns(ns);
2347
2348 if (!(flags & CLONE_NEWNS))
2349 return ns;
2350
2351 new_ns = dup_mnt_ns(ns, new_fs);
2352
2353 put_mnt_ns(ns);
2354 return new_ns;
2355}
2356
2357/**
2358 * create_mnt_ns - creates a private namespace and adds a root filesystem
2359 * @mnt: pointer to the new root filesystem mountpoint
2360 */
2361struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2362{
2363 struct mnt_namespace *new_ns;
2364
2365 new_ns = alloc_mnt_ns();
2366 if (!IS_ERR(new_ns)) {
2367 mnt->mnt_ns = new_ns;
2368 __mnt_make_longterm(mnt);
2369 new_ns->root = mnt;
2370 list_add(&new_ns->list, &new_ns->root->mnt_list);
2371 }
2372 return new_ns;
2373}
2374EXPORT_SYMBOL(create_mnt_ns);
2375
2376SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2377 char __user *, type, unsigned long, flags, void __user *, data)
2378{
2379 int ret;
2380 char *kernel_type;
2381 char *kernel_dir;
2382 char *kernel_dev;
2383 unsigned long data_page;
2384
2385 ret = copy_mount_string(type, &kernel_type);
2386 if (ret < 0)
2387 goto out_type;
2388
2389 kernel_dir = getname(dir_name);
2390 if (IS_ERR(kernel_dir)) {
2391 ret = PTR_ERR(kernel_dir);
2392 goto out_dir;
2393 }
2394
2395 ret = copy_mount_string(dev_name, &kernel_dev);
2396 if (ret < 0)
2397 goto out_dev;
2398
2399 ret = copy_mount_options(data, &data_page);
2400 if (ret < 0)
2401 goto out_data;
2402
2403 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2404 (void *) data_page);
2405
2406 free_page(data_page);
2407out_data:
2408 kfree(kernel_dev);
2409out_dev:
2410 putname(kernel_dir);
2411out_dir:
2412 kfree(kernel_type);
2413out_type:
2414 return ret;
2415}
2416
2417/*
2418 * pivot_root Semantics:
2419 * Moves the root file system of the current process to the directory put_old,
2420 * makes new_root as the new root file system of the current process, and sets
2421 * root/cwd of all processes which had them on the current root to new_root.
2422 *
2423 * Restrictions:
2424 * The new_root and put_old must be directories, and must not be on the
2425 * same file system as the current process root. The put_old must be
2426 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2427 * pointed to by put_old must yield the same directory as new_root. No other
2428 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2429 *
2430 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2431 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2432 * in this situation.
2433 *
2434 * Notes:
2435 * - we don't move root/cwd if they are not at the root (reason: if something
2436 * cared enough to change them, it's probably wrong to force them elsewhere)
2437 * - it's okay to pick a root that isn't the root of a file system, e.g.
2438 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2439 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2440 * first.
2441 */
2442SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2443 const char __user *, put_old)
2444{
2445 struct vfsmount *tmp;
2446 struct path new, old, parent_path, root_parent, root;
2447 int error;
2448
2449 if (!capable(CAP_SYS_ADMIN))
2450 return -EPERM;
2451
2452 error = user_path_dir(new_root, &new);
2453 if (error)
2454 goto out0;
2455 error = -EINVAL;
2456 if (!check_mnt(new.mnt))
2457 goto out1;
2458
2459 error = user_path_dir(put_old, &old);
2460 if (error)
2461 goto out1;
2462
2463 error = security_sb_pivotroot(&old, &new);
2464 if (error) {
2465 path_put(&old);
2466 goto out1;
2467 }
2468
2469 get_fs_root(current->fs, &root);
2470 down_write(&namespace_sem);
2471 mutex_lock(&old.dentry->d_inode->i_mutex);
2472 error = -EINVAL;
2473 if (IS_MNT_SHARED(old.mnt) ||
2474 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2475 IS_MNT_SHARED(root.mnt->mnt_parent))
2476 goto out2;
2477 if (!check_mnt(root.mnt))
2478 goto out2;
2479 error = -ENOENT;
2480 if (cant_mount(old.dentry))
2481 goto out2;
2482 if (d_unlinked(new.dentry))
2483 goto out2;
2484 if (d_unlinked(old.dentry))
2485 goto out2;
2486 error = -EBUSY;
2487 if (new.mnt == root.mnt ||
2488 old.mnt == root.mnt)
2489 goto out2; /* loop, on the same file system */
2490 error = -EINVAL;
2491 if (root.mnt->mnt_root != root.dentry)
2492 goto out2; /* not a mountpoint */
2493 if (root.mnt->mnt_parent == root.mnt)
2494 goto out2; /* not attached */
2495 if (new.mnt->mnt_root != new.dentry)
2496 goto out2; /* not a mountpoint */
2497 if (new.mnt->mnt_parent == new.mnt)
2498 goto out2; /* not attached */
2499 /* make sure we can reach put_old from new_root */
2500 tmp = old.mnt;
2501 br_write_lock(vfsmount_lock);
2502 if (tmp != new.mnt) {
2503 for (;;) {
2504 if (tmp->mnt_parent == tmp)
2505 goto out3; /* already mounted on put_old */
2506 if (tmp->mnt_parent == new.mnt)
2507 break;
2508 tmp = tmp->mnt_parent;
2509 }
2510 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2511 goto out3;
2512 } else if (!is_subdir(old.dentry, new.dentry))
2513 goto out3;
2514 detach_mnt(new.mnt, &parent_path);
2515 detach_mnt(root.mnt, &root_parent);
2516 /* mount old root on put_old */
2517 attach_mnt(root.mnt, &old);
2518 /* mount new_root on / */
2519 attach_mnt(new.mnt, &root_parent);
2520 touch_mnt_namespace(current->nsproxy->mnt_ns);
2521 br_write_unlock(vfsmount_lock);
2522 chroot_fs_refs(&root, &new);
2523
2524 error = 0;
2525 path_put(&root_parent);
2526 path_put(&parent_path);
2527out2:
2528 mutex_unlock(&old.dentry->d_inode->i_mutex);
2529 up_write(&namespace_sem);
2530 path_put(&root);
2531 path_put(&old);
2532out1:
2533 path_put(&new);
2534out0:
2535 return error;
2536out3:
2537 br_write_unlock(vfsmount_lock);
2538 goto out2;
2539}
2540
2541static void __init init_mount_tree(void)
2542{
2543 struct vfsmount *mnt;
2544 struct mnt_namespace *ns;
2545 struct path root;
2546
2547 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2548 if (IS_ERR(mnt))
2549 panic("Can't create rootfs");
2550
2551 ns = create_mnt_ns(mnt);
2552 if (IS_ERR(ns))
2553 panic("Can't allocate initial namespace");
2554
2555 init_task.nsproxy->mnt_ns = ns;
2556 get_mnt_ns(ns);
2557
2558 root.mnt = ns->root;
2559 root.dentry = ns->root->mnt_root;
2560
2561 set_fs_pwd(current->fs, &root);
2562 set_fs_root(current->fs, &root);
2563}
2564
2565void __init mnt_init(void)
2566{
2567 unsigned u;
2568 int err;
2569
2570 init_rwsem(&namespace_sem);
2571
2572 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2573 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2574
2575 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2576
2577 if (!mount_hashtable)
2578 panic("Failed to allocate mount hash table\n");
2579
2580 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2581
2582 for (u = 0; u < HASH_SIZE; u++)
2583 INIT_LIST_HEAD(&mount_hashtable[u]);
2584
2585 br_lock_init(vfsmount_lock);
2586
2587 err = sysfs_init();
2588 if (err)
2589 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2590 __func__, err);
2591 fs_kobj = kobject_create_and_add("fs", NULL);
2592 if (!fs_kobj)
2593 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2594 init_rootfs();
2595 init_mount_tree();
2596}
2597
2598void put_mnt_ns(struct mnt_namespace *ns)
2599{
2600 LIST_HEAD(umount_list);
2601
2602 if (!atomic_dec_and_test(&ns->count))
2603 return;
2604 down_write(&namespace_sem);
2605 br_write_lock(vfsmount_lock);
2606 umount_tree(ns->root, 0, &umount_list);
2607 br_write_unlock(vfsmount_lock);
2608 up_write(&namespace_sem);
2609 release_mounts(&umount_list);
2610 kfree(ns);
2611}
2612EXPORT_SYMBOL(put_mnt_ns);