]> git.ipfire.org Git - thirdparty/qemu.git/blame_incremental - gdbstub.c
gdbstub: Implement write all registers (G pkt) with new infra
[thirdparty/qemu.git] / gdbstub.c
... / ...
CommitLineData
1/*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
21#include "qemu-common.h"
22#include "qapi/error.h"
23#include "qemu/error-report.h"
24#include "qemu/ctype.h"
25#include "qemu/cutils.h"
26#include "qemu/module.h"
27#include "trace-root.h"
28#ifdef CONFIG_USER_ONLY
29#include "qemu.h"
30#else
31#include "monitor/monitor.h"
32#include "chardev/char.h"
33#include "chardev/char-fe.h"
34#include "sysemu/sysemu.h"
35#include "exec/gdbstub.h"
36#include "hw/cpu/cluster.h"
37#endif
38
39#define MAX_PACKET_LENGTH 4096
40
41#include "qemu/sockets.h"
42#include "sysemu/hw_accel.h"
43#include "sysemu/kvm.h"
44#include "hw/semihosting/semihost.h"
45#include "exec/exec-all.h"
46
47#ifdef CONFIG_USER_ONLY
48#define GDB_ATTACHED "0"
49#else
50#define GDB_ATTACHED "1"
51#endif
52
53static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
54 uint8_t *buf, int len, bool is_write)
55{
56 CPUClass *cc = CPU_GET_CLASS(cpu);
57
58 if (cc->memory_rw_debug) {
59 return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
60 }
61 return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
62}
63
64/* Return the GDB index for a given vCPU state.
65 *
66 * For user mode this is simply the thread id. In system mode GDB
67 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
68 */
69static inline int cpu_gdb_index(CPUState *cpu)
70{
71#if defined(CONFIG_USER_ONLY)
72 TaskState *ts = (TaskState *) cpu->opaque;
73 return ts->ts_tid;
74#else
75 return cpu->cpu_index + 1;
76#endif
77}
78
79enum {
80 GDB_SIGNAL_0 = 0,
81 GDB_SIGNAL_INT = 2,
82 GDB_SIGNAL_QUIT = 3,
83 GDB_SIGNAL_TRAP = 5,
84 GDB_SIGNAL_ABRT = 6,
85 GDB_SIGNAL_ALRM = 14,
86 GDB_SIGNAL_IO = 23,
87 GDB_SIGNAL_XCPU = 24,
88 GDB_SIGNAL_UNKNOWN = 143
89};
90
91#ifdef CONFIG_USER_ONLY
92
93/* Map target signal numbers to GDB protocol signal numbers and vice
94 * versa. For user emulation's currently supported systems, we can
95 * assume most signals are defined.
96 */
97
98static int gdb_signal_table[] = {
99 0,
100 TARGET_SIGHUP,
101 TARGET_SIGINT,
102 TARGET_SIGQUIT,
103 TARGET_SIGILL,
104 TARGET_SIGTRAP,
105 TARGET_SIGABRT,
106 -1, /* SIGEMT */
107 TARGET_SIGFPE,
108 TARGET_SIGKILL,
109 TARGET_SIGBUS,
110 TARGET_SIGSEGV,
111 TARGET_SIGSYS,
112 TARGET_SIGPIPE,
113 TARGET_SIGALRM,
114 TARGET_SIGTERM,
115 TARGET_SIGURG,
116 TARGET_SIGSTOP,
117 TARGET_SIGTSTP,
118 TARGET_SIGCONT,
119 TARGET_SIGCHLD,
120 TARGET_SIGTTIN,
121 TARGET_SIGTTOU,
122 TARGET_SIGIO,
123 TARGET_SIGXCPU,
124 TARGET_SIGXFSZ,
125 TARGET_SIGVTALRM,
126 TARGET_SIGPROF,
127 TARGET_SIGWINCH,
128 -1, /* SIGLOST */
129 TARGET_SIGUSR1,
130 TARGET_SIGUSR2,
131#ifdef TARGET_SIGPWR
132 TARGET_SIGPWR,
133#else
134 -1,
135#endif
136 -1, /* SIGPOLL */
137 -1,
138 -1,
139 -1,
140 -1,
141 -1,
142 -1,
143 -1,
144 -1,
145 -1,
146 -1,
147 -1,
148#ifdef __SIGRTMIN
149 __SIGRTMIN + 1,
150 __SIGRTMIN + 2,
151 __SIGRTMIN + 3,
152 __SIGRTMIN + 4,
153 __SIGRTMIN + 5,
154 __SIGRTMIN + 6,
155 __SIGRTMIN + 7,
156 __SIGRTMIN + 8,
157 __SIGRTMIN + 9,
158 __SIGRTMIN + 10,
159 __SIGRTMIN + 11,
160 __SIGRTMIN + 12,
161 __SIGRTMIN + 13,
162 __SIGRTMIN + 14,
163 __SIGRTMIN + 15,
164 __SIGRTMIN + 16,
165 __SIGRTMIN + 17,
166 __SIGRTMIN + 18,
167 __SIGRTMIN + 19,
168 __SIGRTMIN + 20,
169 __SIGRTMIN + 21,
170 __SIGRTMIN + 22,
171 __SIGRTMIN + 23,
172 __SIGRTMIN + 24,
173 __SIGRTMIN + 25,
174 __SIGRTMIN + 26,
175 __SIGRTMIN + 27,
176 __SIGRTMIN + 28,
177 __SIGRTMIN + 29,
178 __SIGRTMIN + 30,
179 __SIGRTMIN + 31,
180 -1, /* SIGCANCEL */
181 __SIGRTMIN,
182 __SIGRTMIN + 32,
183 __SIGRTMIN + 33,
184 __SIGRTMIN + 34,
185 __SIGRTMIN + 35,
186 __SIGRTMIN + 36,
187 __SIGRTMIN + 37,
188 __SIGRTMIN + 38,
189 __SIGRTMIN + 39,
190 __SIGRTMIN + 40,
191 __SIGRTMIN + 41,
192 __SIGRTMIN + 42,
193 __SIGRTMIN + 43,
194 __SIGRTMIN + 44,
195 __SIGRTMIN + 45,
196 __SIGRTMIN + 46,
197 __SIGRTMIN + 47,
198 __SIGRTMIN + 48,
199 __SIGRTMIN + 49,
200 __SIGRTMIN + 50,
201 __SIGRTMIN + 51,
202 __SIGRTMIN + 52,
203 __SIGRTMIN + 53,
204 __SIGRTMIN + 54,
205 __SIGRTMIN + 55,
206 __SIGRTMIN + 56,
207 __SIGRTMIN + 57,
208 __SIGRTMIN + 58,
209 __SIGRTMIN + 59,
210 __SIGRTMIN + 60,
211 __SIGRTMIN + 61,
212 __SIGRTMIN + 62,
213 __SIGRTMIN + 63,
214 __SIGRTMIN + 64,
215 __SIGRTMIN + 65,
216 __SIGRTMIN + 66,
217 __SIGRTMIN + 67,
218 __SIGRTMIN + 68,
219 __SIGRTMIN + 69,
220 __SIGRTMIN + 70,
221 __SIGRTMIN + 71,
222 __SIGRTMIN + 72,
223 __SIGRTMIN + 73,
224 __SIGRTMIN + 74,
225 __SIGRTMIN + 75,
226 __SIGRTMIN + 76,
227 __SIGRTMIN + 77,
228 __SIGRTMIN + 78,
229 __SIGRTMIN + 79,
230 __SIGRTMIN + 80,
231 __SIGRTMIN + 81,
232 __SIGRTMIN + 82,
233 __SIGRTMIN + 83,
234 __SIGRTMIN + 84,
235 __SIGRTMIN + 85,
236 __SIGRTMIN + 86,
237 __SIGRTMIN + 87,
238 __SIGRTMIN + 88,
239 __SIGRTMIN + 89,
240 __SIGRTMIN + 90,
241 __SIGRTMIN + 91,
242 __SIGRTMIN + 92,
243 __SIGRTMIN + 93,
244 __SIGRTMIN + 94,
245 __SIGRTMIN + 95,
246 -1, /* SIGINFO */
247 -1, /* UNKNOWN */
248 -1, /* DEFAULT */
249 -1,
250 -1,
251 -1,
252 -1,
253 -1,
254 -1
255#endif
256};
257#else
258/* In system mode we only need SIGINT and SIGTRAP; other signals
259 are not yet supported. */
260
261enum {
262 TARGET_SIGINT = 2,
263 TARGET_SIGTRAP = 5
264};
265
266static int gdb_signal_table[] = {
267 -1,
268 -1,
269 TARGET_SIGINT,
270 -1,
271 -1,
272 TARGET_SIGTRAP
273};
274#endif
275
276#ifdef CONFIG_USER_ONLY
277static int target_signal_to_gdb (int sig)
278{
279 int i;
280 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
281 if (gdb_signal_table[i] == sig)
282 return i;
283 return GDB_SIGNAL_UNKNOWN;
284}
285#endif
286
287static int gdb_signal_to_target (int sig)
288{
289 if (sig < ARRAY_SIZE (gdb_signal_table))
290 return gdb_signal_table[sig];
291 else
292 return -1;
293}
294
295typedef struct GDBRegisterState {
296 int base_reg;
297 int num_regs;
298 gdb_reg_cb get_reg;
299 gdb_reg_cb set_reg;
300 const char *xml;
301 struct GDBRegisterState *next;
302} GDBRegisterState;
303
304typedef struct GDBProcess {
305 uint32_t pid;
306 bool attached;
307
308 char target_xml[1024];
309} GDBProcess;
310
311enum RSState {
312 RS_INACTIVE,
313 RS_IDLE,
314 RS_GETLINE,
315 RS_GETLINE_ESC,
316 RS_GETLINE_RLE,
317 RS_CHKSUM1,
318 RS_CHKSUM2,
319};
320typedef struct GDBState {
321 CPUState *c_cpu; /* current CPU for step/continue ops */
322 CPUState *g_cpu; /* current CPU for other ops */
323 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
324 enum RSState state; /* parsing state */
325 char line_buf[MAX_PACKET_LENGTH];
326 int line_buf_index;
327 int line_sum; /* running checksum */
328 int line_csum; /* checksum at the end of the packet */
329 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
330 int last_packet_len;
331 int signal;
332#ifdef CONFIG_USER_ONLY
333 int fd;
334 int running_state;
335#else
336 CharBackend chr;
337 Chardev *mon_chr;
338#endif
339 bool multiprocess;
340 GDBProcess *processes;
341 int process_num;
342 char syscall_buf[256];
343 gdb_syscall_complete_cb current_syscall_cb;
344} GDBState;
345
346/* By default use no IRQs and no timers while single stepping so as to
347 * make single stepping like an ICE HW step.
348 */
349static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
350
351static GDBState *gdbserver_state;
352
353bool gdb_has_xml;
354
355#ifdef CONFIG_USER_ONLY
356/* XXX: This is not thread safe. Do we care? */
357static int gdbserver_fd = -1;
358
359static int get_char(GDBState *s)
360{
361 uint8_t ch;
362 int ret;
363
364 for(;;) {
365 ret = qemu_recv(s->fd, &ch, 1, 0);
366 if (ret < 0) {
367 if (errno == ECONNRESET)
368 s->fd = -1;
369 if (errno != EINTR)
370 return -1;
371 } else if (ret == 0) {
372 close(s->fd);
373 s->fd = -1;
374 return -1;
375 } else {
376 break;
377 }
378 }
379 return ch;
380}
381#endif
382
383static enum {
384 GDB_SYS_UNKNOWN,
385 GDB_SYS_ENABLED,
386 GDB_SYS_DISABLED,
387} gdb_syscall_mode;
388
389/* Decide if either remote gdb syscalls or native file IO should be used. */
390int use_gdb_syscalls(void)
391{
392 SemihostingTarget target = semihosting_get_target();
393 if (target == SEMIHOSTING_TARGET_NATIVE) {
394 /* -semihosting-config target=native */
395 return false;
396 } else if (target == SEMIHOSTING_TARGET_GDB) {
397 /* -semihosting-config target=gdb */
398 return true;
399 }
400
401 /* -semihosting-config target=auto */
402 /* On the first call check if gdb is connected and remember. */
403 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
404 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
405 : GDB_SYS_DISABLED);
406 }
407 return gdb_syscall_mode == GDB_SYS_ENABLED;
408}
409
410/* Resume execution. */
411static inline void gdb_continue(GDBState *s)
412{
413
414#ifdef CONFIG_USER_ONLY
415 s->running_state = 1;
416 trace_gdbstub_op_continue();
417#else
418 if (!runstate_needs_reset()) {
419 trace_gdbstub_op_continue();
420 vm_start();
421 }
422#endif
423}
424
425/*
426 * Resume execution, per CPU actions. For user-mode emulation it's
427 * equivalent to gdb_continue.
428 */
429static int gdb_continue_partial(GDBState *s, char *newstates)
430{
431 CPUState *cpu;
432 int res = 0;
433#ifdef CONFIG_USER_ONLY
434 /*
435 * This is not exactly accurate, but it's an improvement compared to the
436 * previous situation, where only one CPU would be single-stepped.
437 */
438 CPU_FOREACH(cpu) {
439 if (newstates[cpu->cpu_index] == 's') {
440 trace_gdbstub_op_stepping(cpu->cpu_index);
441 cpu_single_step(cpu, sstep_flags);
442 }
443 }
444 s->running_state = 1;
445#else
446 int flag = 0;
447
448 if (!runstate_needs_reset()) {
449 if (vm_prepare_start()) {
450 return 0;
451 }
452
453 CPU_FOREACH(cpu) {
454 switch (newstates[cpu->cpu_index]) {
455 case 0:
456 case 1:
457 break; /* nothing to do here */
458 case 's':
459 trace_gdbstub_op_stepping(cpu->cpu_index);
460 cpu_single_step(cpu, sstep_flags);
461 cpu_resume(cpu);
462 flag = 1;
463 break;
464 case 'c':
465 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
466 cpu_resume(cpu);
467 flag = 1;
468 break;
469 default:
470 res = -1;
471 break;
472 }
473 }
474 }
475 if (flag) {
476 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
477 }
478#endif
479 return res;
480}
481
482static void put_buffer(GDBState *s, const uint8_t *buf, int len)
483{
484#ifdef CONFIG_USER_ONLY
485 int ret;
486
487 while (len > 0) {
488 ret = send(s->fd, buf, len, 0);
489 if (ret < 0) {
490 if (errno != EINTR)
491 return;
492 } else {
493 buf += ret;
494 len -= ret;
495 }
496 }
497#else
498 /* XXX this blocks entire thread. Rewrite to use
499 * qemu_chr_fe_write and background I/O callbacks */
500 qemu_chr_fe_write_all(&s->chr, buf, len);
501#endif
502}
503
504static inline int fromhex(int v)
505{
506 if (v >= '0' && v <= '9')
507 return v - '0';
508 else if (v >= 'A' && v <= 'F')
509 return v - 'A' + 10;
510 else if (v >= 'a' && v <= 'f')
511 return v - 'a' + 10;
512 else
513 return 0;
514}
515
516static inline int tohex(int v)
517{
518 if (v < 10)
519 return v + '0';
520 else
521 return v - 10 + 'a';
522}
523
524/* writes 2*len+1 bytes in buf */
525static void memtohex(char *buf, const uint8_t *mem, int len)
526{
527 int i, c;
528 char *q;
529 q = buf;
530 for(i = 0; i < len; i++) {
531 c = mem[i];
532 *q++ = tohex(c >> 4);
533 *q++ = tohex(c & 0xf);
534 }
535 *q = '\0';
536}
537
538static void hextomem(uint8_t *mem, const char *buf, int len)
539{
540 int i;
541
542 for(i = 0; i < len; i++) {
543 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
544 buf += 2;
545 }
546}
547
548static void hexdump(const char *buf, int len,
549 void (*trace_fn)(size_t ofs, char const *text))
550{
551 char line_buffer[3 * 16 + 4 + 16 + 1];
552
553 size_t i;
554 for (i = 0; i < len || (i & 0xF); ++i) {
555 size_t byte_ofs = i & 15;
556
557 if (byte_ofs == 0) {
558 memset(line_buffer, ' ', 3 * 16 + 4 + 16);
559 line_buffer[3 * 16 + 4 + 16] = 0;
560 }
561
562 size_t col_group = (i >> 2) & 3;
563 size_t hex_col = byte_ofs * 3 + col_group;
564 size_t txt_col = 3 * 16 + 4 + byte_ofs;
565
566 if (i < len) {
567 char value = buf[i];
568
569 line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
570 line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
571 line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
572 ? value
573 : '.';
574 }
575
576 if (byte_ofs == 0xF)
577 trace_fn(i & -16, line_buffer);
578 }
579}
580
581/* return -1 if error, 0 if OK */
582static int put_packet_binary(GDBState *s, const char *buf, int len, bool dump)
583{
584 int csum, i;
585 uint8_t *p;
586
587 if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
588 hexdump(buf, len, trace_gdbstub_io_binaryreply);
589 }
590
591 for(;;) {
592 p = s->last_packet;
593 *(p++) = '$';
594 memcpy(p, buf, len);
595 p += len;
596 csum = 0;
597 for(i = 0; i < len; i++) {
598 csum += buf[i];
599 }
600 *(p++) = '#';
601 *(p++) = tohex((csum >> 4) & 0xf);
602 *(p++) = tohex((csum) & 0xf);
603
604 s->last_packet_len = p - s->last_packet;
605 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
606
607#ifdef CONFIG_USER_ONLY
608 i = get_char(s);
609 if (i < 0)
610 return -1;
611 if (i == '+')
612 break;
613#else
614 break;
615#endif
616 }
617 return 0;
618}
619
620/* return -1 if error, 0 if OK */
621static int put_packet(GDBState *s, const char *buf)
622{
623 trace_gdbstub_io_reply(buf);
624
625 return put_packet_binary(s, buf, strlen(buf), false);
626}
627
628/* Encode data using the encoding for 'x' packets. */
629static int memtox(char *buf, const char *mem, int len)
630{
631 char *p = buf;
632 char c;
633
634 while (len--) {
635 c = *(mem++);
636 switch (c) {
637 case '#': case '$': case '*': case '}':
638 *(p++) = '}';
639 *(p++) = c ^ 0x20;
640 break;
641 default:
642 *(p++) = c;
643 break;
644 }
645 }
646 return p - buf;
647}
648
649static uint32_t gdb_get_cpu_pid(const GDBState *s, CPUState *cpu)
650{
651 /* TODO: In user mode, we should use the task state PID */
652 if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) {
653 /* Return the default process' PID */
654 return s->processes[s->process_num - 1].pid;
655 }
656 return cpu->cluster_index + 1;
657}
658
659static GDBProcess *gdb_get_process(const GDBState *s, uint32_t pid)
660{
661 int i;
662
663 if (!pid) {
664 /* 0 means any process, we take the first one */
665 return &s->processes[0];
666 }
667
668 for (i = 0; i < s->process_num; i++) {
669 if (s->processes[i].pid == pid) {
670 return &s->processes[i];
671 }
672 }
673
674 return NULL;
675}
676
677static GDBProcess *gdb_get_cpu_process(const GDBState *s, CPUState *cpu)
678{
679 return gdb_get_process(s, gdb_get_cpu_pid(s, cpu));
680}
681
682static CPUState *find_cpu(uint32_t thread_id)
683{
684 CPUState *cpu;
685
686 CPU_FOREACH(cpu) {
687 if (cpu_gdb_index(cpu) == thread_id) {
688 return cpu;
689 }
690 }
691
692 return NULL;
693}
694
695static CPUState *get_first_cpu_in_process(const GDBState *s,
696 GDBProcess *process)
697{
698 CPUState *cpu;
699
700 CPU_FOREACH(cpu) {
701 if (gdb_get_cpu_pid(s, cpu) == process->pid) {
702 return cpu;
703 }
704 }
705
706 return NULL;
707}
708
709static CPUState *gdb_next_cpu_in_process(const GDBState *s, CPUState *cpu)
710{
711 uint32_t pid = gdb_get_cpu_pid(s, cpu);
712 cpu = CPU_NEXT(cpu);
713
714 while (cpu) {
715 if (gdb_get_cpu_pid(s, cpu) == pid) {
716 break;
717 }
718
719 cpu = CPU_NEXT(cpu);
720 }
721
722 return cpu;
723}
724
725/* Return the cpu following @cpu, while ignoring unattached processes. */
726static CPUState *gdb_next_attached_cpu(const GDBState *s, CPUState *cpu)
727{
728 cpu = CPU_NEXT(cpu);
729
730 while (cpu) {
731 if (gdb_get_cpu_process(s, cpu)->attached) {
732 break;
733 }
734
735 cpu = CPU_NEXT(cpu);
736 }
737
738 return cpu;
739}
740
741/* Return the first attached cpu */
742static CPUState *gdb_first_attached_cpu(const GDBState *s)
743{
744 CPUState *cpu = first_cpu;
745 GDBProcess *process = gdb_get_cpu_process(s, cpu);
746
747 if (!process->attached) {
748 return gdb_next_attached_cpu(s, cpu);
749 }
750
751 return cpu;
752}
753
754static CPUState *gdb_get_cpu(const GDBState *s, uint32_t pid, uint32_t tid)
755{
756 GDBProcess *process;
757 CPUState *cpu;
758
759 if (!pid && !tid) {
760 /* 0 means any process/thread, we take the first attached one */
761 return gdb_first_attached_cpu(s);
762 } else if (pid && !tid) {
763 /* any thread in a specific process */
764 process = gdb_get_process(s, pid);
765
766 if (process == NULL) {
767 return NULL;
768 }
769
770 if (!process->attached) {
771 return NULL;
772 }
773
774 return get_first_cpu_in_process(s, process);
775 } else {
776 /* a specific thread */
777 cpu = find_cpu(tid);
778
779 if (cpu == NULL) {
780 return NULL;
781 }
782
783 process = gdb_get_cpu_process(s, cpu);
784
785 if (pid && process->pid != pid) {
786 return NULL;
787 }
788
789 if (!process->attached) {
790 return NULL;
791 }
792
793 return cpu;
794 }
795}
796
797static const char *get_feature_xml(const GDBState *s, const char *p,
798 const char **newp, GDBProcess *process)
799{
800 size_t len;
801 int i;
802 const char *name;
803 CPUState *cpu = get_first_cpu_in_process(s, process);
804 CPUClass *cc = CPU_GET_CLASS(cpu);
805
806 len = 0;
807 while (p[len] && p[len] != ':')
808 len++;
809 *newp = p + len;
810
811 name = NULL;
812 if (strncmp(p, "target.xml", len) == 0) {
813 char *buf = process->target_xml;
814 const size_t buf_sz = sizeof(process->target_xml);
815
816 /* Generate the XML description for this CPU. */
817 if (!buf[0]) {
818 GDBRegisterState *r;
819
820 pstrcat(buf, buf_sz,
821 "<?xml version=\"1.0\"?>"
822 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
823 "<target>");
824 if (cc->gdb_arch_name) {
825 gchar *arch = cc->gdb_arch_name(cpu);
826 pstrcat(buf, buf_sz, "<architecture>");
827 pstrcat(buf, buf_sz, arch);
828 pstrcat(buf, buf_sz, "</architecture>");
829 g_free(arch);
830 }
831 pstrcat(buf, buf_sz, "<xi:include href=\"");
832 pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
833 pstrcat(buf, buf_sz, "\"/>");
834 for (r = cpu->gdb_regs; r; r = r->next) {
835 pstrcat(buf, buf_sz, "<xi:include href=\"");
836 pstrcat(buf, buf_sz, r->xml);
837 pstrcat(buf, buf_sz, "\"/>");
838 }
839 pstrcat(buf, buf_sz, "</target>");
840 }
841 return buf;
842 }
843 if (cc->gdb_get_dynamic_xml) {
844 char *xmlname = g_strndup(p, len);
845 const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
846
847 g_free(xmlname);
848 if (xml) {
849 return xml;
850 }
851 }
852 for (i = 0; ; i++) {
853 name = xml_builtin[i][0];
854 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
855 break;
856 }
857 return name ? xml_builtin[i][1] : NULL;
858}
859
860static int gdb_read_register(CPUState *cpu, uint8_t *mem_buf, int reg)
861{
862 CPUClass *cc = CPU_GET_CLASS(cpu);
863 CPUArchState *env = cpu->env_ptr;
864 GDBRegisterState *r;
865
866 if (reg < cc->gdb_num_core_regs) {
867 return cc->gdb_read_register(cpu, mem_buf, reg);
868 }
869
870 for (r = cpu->gdb_regs; r; r = r->next) {
871 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
872 return r->get_reg(env, mem_buf, reg - r->base_reg);
873 }
874 }
875 return 0;
876}
877
878static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
879{
880 CPUClass *cc = CPU_GET_CLASS(cpu);
881 CPUArchState *env = cpu->env_ptr;
882 GDBRegisterState *r;
883
884 if (reg < cc->gdb_num_core_regs) {
885 return cc->gdb_write_register(cpu, mem_buf, reg);
886 }
887
888 for (r = cpu->gdb_regs; r; r = r->next) {
889 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
890 return r->set_reg(env, mem_buf, reg - r->base_reg);
891 }
892 }
893 return 0;
894}
895
896/* Register a supplemental set of CPU registers. If g_pos is nonzero it
897 specifies the first register number and these registers are included in
898 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
899 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
900 */
901
902void gdb_register_coprocessor(CPUState *cpu,
903 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
904 int num_regs, const char *xml, int g_pos)
905{
906 GDBRegisterState *s;
907 GDBRegisterState **p;
908
909 p = &cpu->gdb_regs;
910 while (*p) {
911 /* Check for duplicates. */
912 if (strcmp((*p)->xml, xml) == 0)
913 return;
914 p = &(*p)->next;
915 }
916
917 s = g_new0(GDBRegisterState, 1);
918 s->base_reg = cpu->gdb_num_regs;
919 s->num_regs = num_regs;
920 s->get_reg = get_reg;
921 s->set_reg = set_reg;
922 s->xml = xml;
923
924 /* Add to end of list. */
925 cpu->gdb_num_regs += num_regs;
926 *p = s;
927 if (g_pos) {
928 if (g_pos != s->base_reg) {
929 error_report("Error: Bad gdb register numbering for '%s', "
930 "expected %d got %d", xml, g_pos, s->base_reg);
931 } else {
932 cpu->gdb_num_g_regs = cpu->gdb_num_regs;
933 }
934 }
935}
936
937#ifndef CONFIG_USER_ONLY
938/* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
939static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
940{
941 static const int xlat[] = {
942 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
943 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
944 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
945 };
946
947 CPUClass *cc = CPU_GET_CLASS(cpu);
948 int cputype = xlat[gdbtype];
949
950 if (cc->gdb_stop_before_watchpoint) {
951 cputype |= BP_STOP_BEFORE_ACCESS;
952 }
953 return cputype;
954}
955#endif
956
957static int gdb_breakpoint_insert(int type, target_ulong addr, target_ulong len)
958{
959 CPUState *cpu;
960 int err = 0;
961
962 if (kvm_enabled()) {
963 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
964 }
965
966 switch (type) {
967 case GDB_BREAKPOINT_SW:
968 case GDB_BREAKPOINT_HW:
969 CPU_FOREACH(cpu) {
970 err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
971 if (err) {
972 break;
973 }
974 }
975 return err;
976#ifndef CONFIG_USER_ONLY
977 case GDB_WATCHPOINT_WRITE:
978 case GDB_WATCHPOINT_READ:
979 case GDB_WATCHPOINT_ACCESS:
980 CPU_FOREACH(cpu) {
981 err = cpu_watchpoint_insert(cpu, addr, len,
982 xlat_gdb_type(cpu, type), NULL);
983 if (err) {
984 break;
985 }
986 }
987 return err;
988#endif
989 default:
990 return -ENOSYS;
991 }
992}
993
994static int gdb_breakpoint_remove(int type, target_ulong addr, target_ulong len)
995{
996 CPUState *cpu;
997 int err = 0;
998
999 if (kvm_enabled()) {
1000 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1001 }
1002
1003 switch (type) {
1004 case GDB_BREAKPOINT_SW:
1005 case GDB_BREAKPOINT_HW:
1006 CPU_FOREACH(cpu) {
1007 err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
1008 if (err) {
1009 break;
1010 }
1011 }
1012 return err;
1013#ifndef CONFIG_USER_ONLY
1014 case GDB_WATCHPOINT_WRITE:
1015 case GDB_WATCHPOINT_READ:
1016 case GDB_WATCHPOINT_ACCESS:
1017 CPU_FOREACH(cpu) {
1018 err = cpu_watchpoint_remove(cpu, addr, len,
1019 xlat_gdb_type(cpu, type));
1020 if (err)
1021 break;
1022 }
1023 return err;
1024#endif
1025 default:
1026 return -ENOSYS;
1027 }
1028}
1029
1030static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
1031{
1032 cpu_breakpoint_remove_all(cpu, BP_GDB);
1033#ifndef CONFIG_USER_ONLY
1034 cpu_watchpoint_remove_all(cpu, BP_GDB);
1035#endif
1036}
1037
1038static void gdb_process_breakpoint_remove_all(const GDBState *s, GDBProcess *p)
1039{
1040 CPUState *cpu = get_first_cpu_in_process(s, p);
1041
1042 while (cpu) {
1043 gdb_cpu_breakpoint_remove_all(cpu);
1044 cpu = gdb_next_cpu_in_process(s, cpu);
1045 }
1046}
1047
1048static void gdb_breakpoint_remove_all(void)
1049{
1050 CPUState *cpu;
1051
1052 if (kvm_enabled()) {
1053 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1054 return;
1055 }
1056
1057 CPU_FOREACH(cpu) {
1058 gdb_cpu_breakpoint_remove_all(cpu);
1059 }
1060}
1061
1062static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1063{
1064 CPUState *cpu = s->c_cpu;
1065
1066 cpu_synchronize_state(cpu);
1067 cpu_set_pc(cpu, pc);
1068}
1069
1070static char *gdb_fmt_thread_id(const GDBState *s, CPUState *cpu,
1071 char *buf, size_t buf_size)
1072{
1073 if (s->multiprocess) {
1074 snprintf(buf, buf_size, "p%02x.%02x",
1075 gdb_get_cpu_pid(s, cpu), cpu_gdb_index(cpu));
1076 } else {
1077 snprintf(buf, buf_size, "%02x", cpu_gdb_index(cpu));
1078 }
1079
1080 return buf;
1081}
1082
1083typedef enum GDBThreadIdKind {
1084 GDB_ONE_THREAD = 0,
1085 GDB_ALL_THREADS, /* One process, all threads */
1086 GDB_ALL_PROCESSES,
1087 GDB_READ_THREAD_ERR
1088} GDBThreadIdKind;
1089
1090static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
1091 uint32_t *pid, uint32_t *tid)
1092{
1093 unsigned long p, t;
1094 int ret;
1095
1096 if (*buf == 'p') {
1097 buf++;
1098 ret = qemu_strtoul(buf, &buf, 16, &p);
1099
1100 if (ret) {
1101 return GDB_READ_THREAD_ERR;
1102 }
1103
1104 /* Skip '.' */
1105 buf++;
1106 } else {
1107 p = 1;
1108 }
1109
1110 ret = qemu_strtoul(buf, &buf, 16, &t);
1111
1112 if (ret) {
1113 return GDB_READ_THREAD_ERR;
1114 }
1115
1116 *end_buf = buf;
1117
1118 if (p == -1) {
1119 return GDB_ALL_PROCESSES;
1120 }
1121
1122 if (pid) {
1123 *pid = p;
1124 }
1125
1126 if (t == -1) {
1127 return GDB_ALL_THREADS;
1128 }
1129
1130 if (tid) {
1131 *tid = t;
1132 }
1133
1134 return GDB_ONE_THREAD;
1135}
1136
1137static int is_query_packet(const char *p, const char *query, char separator)
1138{
1139 unsigned int query_len = strlen(query);
1140
1141 return strncmp(p, query, query_len) == 0 &&
1142 (p[query_len] == '\0' || p[query_len] == separator);
1143}
1144
1145/**
1146 * gdb_handle_vcont - Parses and handles a vCont packet.
1147 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1148 * a format error, 0 on success.
1149 */
1150static int gdb_handle_vcont(GDBState *s, const char *p)
1151{
1152 int res, signal = 0;
1153 char cur_action;
1154 char *newstates;
1155 unsigned long tmp;
1156 uint32_t pid, tid;
1157 GDBProcess *process;
1158 CPUState *cpu;
1159 GDBThreadIdKind kind;
1160#ifdef CONFIG_USER_ONLY
1161 int max_cpus = 1; /* global variable max_cpus exists only in system mode */
1162
1163 CPU_FOREACH(cpu) {
1164 max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
1165 }
1166#endif
1167 /* uninitialised CPUs stay 0 */
1168 newstates = g_new0(char, max_cpus);
1169
1170 /* mark valid CPUs with 1 */
1171 CPU_FOREACH(cpu) {
1172 newstates[cpu->cpu_index] = 1;
1173 }
1174
1175 /*
1176 * res keeps track of what error we are returning, with -ENOTSUP meaning
1177 * that the command is unknown or unsupported, thus returning an empty
1178 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1179 * or incorrect parameters passed.
1180 */
1181 res = 0;
1182 while (*p) {
1183 if (*p++ != ';') {
1184 res = -ENOTSUP;
1185 goto out;
1186 }
1187
1188 cur_action = *p++;
1189 if (cur_action == 'C' || cur_action == 'S') {
1190 cur_action = qemu_tolower(cur_action);
1191 res = qemu_strtoul(p + 1, &p, 16, &tmp);
1192 if (res) {
1193 goto out;
1194 }
1195 signal = gdb_signal_to_target(tmp);
1196 } else if (cur_action != 'c' && cur_action != 's') {
1197 /* unknown/invalid/unsupported command */
1198 res = -ENOTSUP;
1199 goto out;
1200 }
1201
1202 if (*p == '\0' || *p == ';') {
1203 /*
1204 * No thread specifier, action is on "all threads". The
1205 * specification is unclear regarding the process to act on. We
1206 * choose all processes.
1207 */
1208 kind = GDB_ALL_PROCESSES;
1209 } else if (*p++ == ':') {
1210 kind = read_thread_id(p, &p, &pid, &tid);
1211 } else {
1212 res = -ENOTSUP;
1213 goto out;
1214 }
1215
1216 switch (kind) {
1217 case GDB_READ_THREAD_ERR:
1218 res = -EINVAL;
1219 goto out;
1220
1221 case GDB_ALL_PROCESSES:
1222 cpu = gdb_first_attached_cpu(s);
1223 while (cpu) {
1224 if (newstates[cpu->cpu_index] == 1) {
1225 newstates[cpu->cpu_index] = cur_action;
1226 }
1227
1228 cpu = gdb_next_attached_cpu(s, cpu);
1229 }
1230 break;
1231
1232 case GDB_ALL_THREADS:
1233 process = gdb_get_process(s, pid);
1234
1235 if (!process->attached) {
1236 res = -EINVAL;
1237 goto out;
1238 }
1239
1240 cpu = get_first_cpu_in_process(s, process);
1241 while (cpu) {
1242 if (newstates[cpu->cpu_index] == 1) {
1243 newstates[cpu->cpu_index] = cur_action;
1244 }
1245
1246 cpu = gdb_next_cpu_in_process(s, cpu);
1247 }
1248 break;
1249
1250 case GDB_ONE_THREAD:
1251 cpu = gdb_get_cpu(s, pid, tid);
1252
1253 /* invalid CPU/thread specified */
1254 if (!cpu) {
1255 res = -EINVAL;
1256 goto out;
1257 }
1258
1259 /* only use if no previous match occourred */
1260 if (newstates[cpu->cpu_index] == 1) {
1261 newstates[cpu->cpu_index] = cur_action;
1262 }
1263 break;
1264 }
1265 }
1266 s->signal = signal;
1267 gdb_continue_partial(s, newstates);
1268
1269out:
1270 g_free(newstates);
1271
1272 return res;
1273}
1274
1275typedef union GdbCmdVariant {
1276 const char *data;
1277 uint8_t opcode;
1278 unsigned long val_ul;
1279 unsigned long long val_ull;
1280 struct {
1281 GDBThreadIdKind kind;
1282 uint32_t pid;
1283 uint32_t tid;
1284 } thread_id;
1285} GdbCmdVariant;
1286
1287static const char *cmd_next_param(const char *param, const char delimiter)
1288{
1289 static const char all_delimiters[] = ",;:=";
1290 char curr_delimiters[2] = {0};
1291 const char *delimiters;
1292
1293 if (delimiter == '?') {
1294 delimiters = all_delimiters;
1295 } else if (delimiter == '0') {
1296 return strchr(param, '\0');
1297 } else if (delimiter == '.' && *param) {
1298 return param + 1;
1299 } else {
1300 curr_delimiters[0] = delimiter;
1301 delimiters = curr_delimiters;
1302 }
1303
1304 param += strcspn(param, delimiters);
1305 if (*param) {
1306 param++;
1307 }
1308 return param;
1309}
1310
1311static int cmd_parse_params(const char *data, const char *schema,
1312 GdbCmdVariant *params, int *num_params)
1313{
1314 int curr_param;
1315 const char *curr_schema, *curr_data;
1316
1317 *num_params = 0;
1318
1319 if (!schema) {
1320 return 0;
1321 }
1322
1323 curr_schema = schema;
1324 curr_param = 0;
1325 curr_data = data;
1326 while (curr_schema[0] && curr_schema[1] && *curr_data) {
1327 switch (curr_schema[0]) {
1328 case 'l':
1329 if (qemu_strtoul(curr_data, &curr_data, 16,
1330 &params[curr_param].val_ul)) {
1331 return -EINVAL;
1332 }
1333 curr_param++;
1334 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1335 break;
1336 case 'L':
1337 if (qemu_strtou64(curr_data, &curr_data, 16,
1338 (uint64_t *)&params[curr_param].val_ull)) {
1339 return -EINVAL;
1340 }
1341 curr_param++;
1342 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1343 break;
1344 case 's':
1345 params[curr_param].data = curr_data;
1346 curr_param++;
1347 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1348 break;
1349 case 'o':
1350 params[curr_param].opcode = *(uint8_t *)curr_data;
1351 curr_param++;
1352 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1353 break;
1354 case 't':
1355 params[curr_param].thread_id.kind =
1356 read_thread_id(curr_data, &curr_data,
1357 &params[curr_param].thread_id.pid,
1358 &params[curr_param].thread_id.tid);
1359 curr_param++;
1360 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1361 break;
1362 case '?':
1363 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1364 break;
1365 default:
1366 return -EINVAL;
1367 }
1368 curr_schema += 2;
1369 }
1370
1371 *num_params = curr_param;
1372 return 0;
1373}
1374
1375typedef struct GdbCmdContext {
1376 GDBState *s;
1377 GdbCmdVariant *params;
1378 int num_params;
1379 uint8_t mem_buf[MAX_PACKET_LENGTH];
1380 char str_buf[MAX_PACKET_LENGTH + 1];
1381} GdbCmdContext;
1382
1383typedef void (*GdbCmdHandler)(GdbCmdContext *gdb_ctx, void *user_ctx);
1384
1385/*
1386 * cmd_startswith -> cmd is compared using startswith
1387 *
1388 *
1389 * schema definitions:
1390 * Each schema parameter entry consists of 2 chars,
1391 * the first char represents the parameter type handling
1392 * the second char represents the delimiter for the next parameter
1393 *
1394 * Currently supported schema types:
1395 * 'l' -> unsigned long (stored in .val_ul)
1396 * 'L' -> unsigned long long (stored in .val_ull)
1397 * 's' -> string (stored in .data)
1398 * 'o' -> single char (stored in .opcode)
1399 * 't' -> thread id (stored in .thread_id)
1400 * '?' -> skip according to delimiter
1401 *
1402 * Currently supported delimiters:
1403 * '?' -> Stop at any delimiter (",;:=\0")
1404 * '0' -> Stop at "\0"
1405 * '.' -> Skip 1 char unless reached "\0"
1406 * Any other value is treated as the delimiter value itself
1407 */
1408typedef struct GdbCmdParseEntry {
1409 GdbCmdHandler handler;
1410 const char *cmd;
1411 bool cmd_startswith;
1412 const char *schema;
1413} GdbCmdParseEntry;
1414
1415static inline int startswith(const char *string, const char *pattern)
1416{
1417 return !strncmp(string, pattern, strlen(pattern));
1418}
1419
1420static int process_string_cmd(GDBState *s, void *user_ctx, const char *data,
1421 const GdbCmdParseEntry *cmds, int num_cmds)
1422{
1423 int i, schema_len, max_num_params = 0;
1424 GdbCmdContext gdb_ctx;
1425
1426 if (!cmds) {
1427 return -1;
1428 }
1429
1430 for (i = 0; i < num_cmds; i++) {
1431 const GdbCmdParseEntry *cmd = &cmds[i];
1432 g_assert(cmd->handler && cmd->cmd);
1433
1434 if ((cmd->cmd_startswith && !startswith(data, cmd->cmd)) ||
1435 (!cmd->cmd_startswith && strcmp(cmd->cmd, data))) {
1436 continue;
1437 }
1438
1439 if (cmd->schema) {
1440 schema_len = strlen(cmd->schema);
1441 if (schema_len % 2) {
1442 return -2;
1443 }
1444
1445 max_num_params = schema_len / 2;
1446 }
1447
1448 gdb_ctx.params =
1449 (GdbCmdVariant *)alloca(sizeof(*gdb_ctx.params) * max_num_params);
1450 memset(gdb_ctx.params, 0, sizeof(*gdb_ctx.params) * max_num_params);
1451
1452 if (cmd_parse_params(&data[strlen(cmd->cmd)], cmd->schema,
1453 gdb_ctx.params, &gdb_ctx.num_params)) {
1454 return -1;
1455 }
1456
1457 gdb_ctx.s = s;
1458 cmd->handler(&gdb_ctx, user_ctx);
1459 return 0;
1460 }
1461
1462 return -1;
1463}
1464
1465static void run_cmd_parser(GDBState *s, const char *data,
1466 const GdbCmdParseEntry *cmd)
1467{
1468 if (!data) {
1469 return;
1470 }
1471
1472 /* In case there was an error during the command parsing we must
1473 * send a NULL packet to indicate the command is not supported */
1474 if (process_string_cmd(s, NULL, data, cmd, 1)) {
1475 put_packet(s, "");
1476 }
1477}
1478
1479static void handle_detach(GdbCmdContext *gdb_ctx, void *user_ctx)
1480{
1481 GDBProcess *process;
1482 GDBState *s = gdb_ctx->s;
1483 uint32_t pid = 1;
1484
1485 if (s->multiprocess) {
1486 if (!gdb_ctx->num_params) {
1487 put_packet(s, "E22");
1488 return;
1489 }
1490
1491 pid = gdb_ctx->params[0].val_ul;
1492 }
1493
1494 process = gdb_get_process(s, pid);
1495 gdb_process_breakpoint_remove_all(s, process);
1496 process->attached = false;
1497
1498 if (pid == gdb_get_cpu_pid(s, s->c_cpu)) {
1499 s->c_cpu = gdb_first_attached_cpu(s);
1500 }
1501
1502 if (pid == gdb_get_cpu_pid(s, s->g_cpu)) {
1503 s->g_cpu = gdb_first_attached_cpu(s);
1504 }
1505
1506 if (!s->c_cpu) {
1507 /* No more process attached */
1508 gdb_syscall_mode = GDB_SYS_DISABLED;
1509 gdb_continue(s);
1510 }
1511 put_packet(s, "OK");
1512}
1513
1514static void handle_thread_alive(GdbCmdContext *gdb_ctx, void *user_ctx)
1515{
1516 CPUState *cpu;
1517
1518 if (!gdb_ctx->num_params) {
1519 put_packet(gdb_ctx->s, "E22");
1520 return;
1521 }
1522
1523 if (gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
1524 put_packet(gdb_ctx->s, "E22");
1525 return;
1526 }
1527
1528 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[0].thread_id.pid,
1529 gdb_ctx->params[0].thread_id.tid);
1530 if (!cpu) {
1531 put_packet(gdb_ctx->s, "E22");
1532 return;
1533 }
1534
1535 put_packet(gdb_ctx->s, "OK");
1536}
1537
1538static void handle_continue(GdbCmdContext *gdb_ctx, void *user_ctx)
1539{
1540 if (gdb_ctx->num_params) {
1541 gdb_set_cpu_pc(gdb_ctx->s, gdb_ctx->params[0].val_ull);
1542 }
1543
1544 gdb_ctx->s->signal = 0;
1545 gdb_continue(gdb_ctx->s);
1546}
1547
1548static void handle_cont_with_sig(GdbCmdContext *gdb_ctx, void *user_ctx)
1549{
1550 unsigned long signal = 0;
1551
1552 /*
1553 * Note: C sig;[addr] is currently unsupported and we simply
1554 * omit the addr parameter
1555 */
1556 if (gdb_ctx->num_params) {
1557 signal = gdb_ctx->params[0].val_ul;
1558 }
1559
1560 gdb_ctx->s->signal = gdb_signal_to_target(signal);
1561 if (gdb_ctx->s->signal == -1) {
1562 gdb_ctx->s->signal = 0;
1563 }
1564 gdb_continue(gdb_ctx->s);
1565}
1566
1567static void handle_set_thread(GdbCmdContext *gdb_ctx, void *user_ctx)
1568{
1569 CPUState *cpu;
1570
1571 if (gdb_ctx->num_params != 2) {
1572 put_packet(gdb_ctx->s, "E22");
1573 return;
1574 }
1575
1576 if (gdb_ctx->params[1].thread_id.kind == GDB_READ_THREAD_ERR) {
1577 put_packet(gdb_ctx->s, "E22");
1578 return;
1579 }
1580
1581 if (gdb_ctx->params[1].thread_id.kind != GDB_ONE_THREAD) {
1582 put_packet(gdb_ctx->s, "OK");
1583 return;
1584 }
1585
1586 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[1].thread_id.pid,
1587 gdb_ctx->params[1].thread_id.tid);
1588 if (!cpu) {
1589 put_packet(gdb_ctx->s, "E22");
1590 return;
1591 }
1592
1593 /*
1594 * Note: This command is deprecated and modern gdb's will be using the
1595 * vCont command instead.
1596 */
1597 switch (gdb_ctx->params[0].opcode) {
1598 case 'c':
1599 gdb_ctx->s->c_cpu = cpu;
1600 put_packet(gdb_ctx->s, "OK");
1601 break;
1602 case 'g':
1603 gdb_ctx->s->g_cpu = cpu;
1604 put_packet(gdb_ctx->s, "OK");
1605 break;
1606 default:
1607 put_packet(gdb_ctx->s, "E22");
1608 break;
1609 }
1610}
1611
1612static void handle_insert_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1613{
1614 int res;
1615
1616 if (gdb_ctx->num_params != 3) {
1617 put_packet(gdb_ctx->s, "E22");
1618 return;
1619 }
1620
1621 res = gdb_breakpoint_insert(gdb_ctx->params[0].val_ul,
1622 gdb_ctx->params[1].val_ull,
1623 gdb_ctx->params[2].val_ull);
1624 if (res >= 0) {
1625 put_packet(gdb_ctx->s, "OK");
1626 return;
1627 } else if (res == -ENOSYS) {
1628 put_packet(gdb_ctx->s, "");
1629 return;
1630 }
1631
1632 put_packet(gdb_ctx->s, "E22");
1633}
1634
1635static void handle_remove_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1636{
1637 int res;
1638
1639 if (gdb_ctx->num_params != 3) {
1640 put_packet(gdb_ctx->s, "E22");
1641 return;
1642 }
1643
1644 res = gdb_breakpoint_remove(gdb_ctx->params[0].val_ul,
1645 gdb_ctx->params[1].val_ull,
1646 gdb_ctx->params[2].val_ull);
1647 if (res >= 0) {
1648 put_packet(gdb_ctx->s, "OK");
1649 return;
1650 } else if (res == -ENOSYS) {
1651 put_packet(gdb_ctx->s, "");
1652 return;
1653 }
1654
1655 put_packet(gdb_ctx->s, "E22");
1656}
1657
1658static void handle_set_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1659{
1660 int reg_size;
1661
1662 if (!gdb_has_xml) {
1663 put_packet(gdb_ctx->s, "E00");
1664 return;
1665 }
1666
1667 if (gdb_ctx->num_params != 2) {
1668 put_packet(gdb_ctx->s, "E22");
1669 return;
1670 }
1671
1672 reg_size = strlen(gdb_ctx->params[1].data) / 2;
1673 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[1].data, reg_size);
1674 gdb_write_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf,
1675 gdb_ctx->params[0].val_ull);
1676 put_packet(gdb_ctx->s, "OK");
1677}
1678
1679static void handle_get_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1680{
1681 int reg_size;
1682
1683 /*
1684 * Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1685 * This works, but can be very slow. Anything new enough to
1686 * understand XML also knows how to use this properly.
1687 */
1688 if (!gdb_has_xml) {
1689 put_packet(gdb_ctx->s, "");
1690 return;
1691 }
1692
1693 if (!gdb_ctx->num_params) {
1694 put_packet(gdb_ctx->s, "E14");
1695 return;
1696 }
1697
1698 reg_size = gdb_read_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf,
1699 gdb_ctx->params[0].val_ull);
1700 if (!reg_size) {
1701 put_packet(gdb_ctx->s, "E14");
1702 return;
1703 }
1704
1705 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, reg_size);
1706 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1707}
1708
1709static void handle_write_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1710{
1711 if (gdb_ctx->num_params != 3) {
1712 put_packet(gdb_ctx->s, "E22");
1713 return;
1714 }
1715
1716 /* hextomem() reads 2*len bytes */
1717 if (gdb_ctx->params[1].val_ull > strlen(gdb_ctx->params[2].data) / 2) {
1718 put_packet(gdb_ctx->s, "E22");
1719 return;
1720 }
1721
1722 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[2].data,
1723 gdb_ctx->params[1].val_ull);
1724 if (target_memory_rw_debug(gdb_ctx->s->g_cpu, gdb_ctx->params[0].val_ull,
1725 gdb_ctx->mem_buf,
1726 gdb_ctx->params[1].val_ull, true)) {
1727 put_packet(gdb_ctx->s, "E14");
1728 return;
1729 }
1730
1731 put_packet(gdb_ctx->s, "OK");
1732}
1733
1734static void handle_read_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1735{
1736 if (gdb_ctx->num_params != 2) {
1737 put_packet(gdb_ctx->s, "E22");
1738 return;
1739 }
1740
1741 /* memtohex() doubles the required space */
1742 if (gdb_ctx->params[1].val_ull > MAX_PACKET_LENGTH / 2) {
1743 put_packet(gdb_ctx->s, "E22");
1744 return;
1745 }
1746
1747 if (target_memory_rw_debug(gdb_ctx->s->g_cpu, gdb_ctx->params[0].val_ull,
1748 gdb_ctx->mem_buf,
1749 gdb_ctx->params[1].val_ull, false)) {
1750 put_packet(gdb_ctx->s, "E14");
1751 return;
1752 }
1753
1754 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, gdb_ctx->params[1].val_ull);
1755 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1756}
1757
1758static void handle_write_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1759{
1760 target_ulong addr, len;
1761 uint8_t *registers;
1762 int reg_size;
1763
1764 if (!gdb_ctx->num_params) {
1765 return;
1766 }
1767
1768 cpu_synchronize_state(gdb_ctx->s->g_cpu);
1769 registers = gdb_ctx->mem_buf;
1770 len = strlen(gdb_ctx->params[0].data) / 2;
1771 hextomem(registers, gdb_ctx->params[0].data, len);
1772 for (addr = 0; addr < gdb_ctx->s->g_cpu->gdb_num_g_regs && len > 0;
1773 addr++) {
1774 reg_size = gdb_write_register(gdb_ctx->s->g_cpu, registers, addr);
1775 len -= reg_size;
1776 registers += reg_size;
1777 }
1778 put_packet(gdb_ctx->s, "OK");
1779}
1780
1781static int gdb_handle_packet(GDBState *s, const char *line_buf)
1782{
1783 CPUState *cpu;
1784 GDBProcess *process;
1785 CPUClass *cc;
1786 const char *p;
1787 uint32_t pid, tid;
1788 int ch, reg_size, type, res;
1789 uint8_t mem_buf[MAX_PACKET_LENGTH];
1790 char buf[sizeof(mem_buf) + 1 /* trailing NUL */];
1791 char thread_id[16];
1792 target_ulong addr, len;
1793 const GdbCmdParseEntry *cmd_parser = NULL;
1794
1795 trace_gdbstub_io_command(line_buf);
1796
1797 p = line_buf;
1798 ch = *p++;
1799 switch(ch) {
1800 case '!':
1801 put_packet(s, "OK");
1802 break;
1803 case '?':
1804 /* TODO: Make this return the correct value for user-mode. */
1805 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1806 gdb_fmt_thread_id(s, s->c_cpu, thread_id, sizeof(thread_id)));
1807 put_packet(s, buf);
1808 /* Remove all the breakpoints when this query is issued,
1809 * because gdb is doing and initial connect and the state
1810 * should be cleaned up.
1811 */
1812 gdb_breakpoint_remove_all();
1813 break;
1814 case 'c':
1815 {
1816 static const GdbCmdParseEntry continue_cmd_desc = {
1817 .handler = handle_continue,
1818 .cmd = "c",
1819 .cmd_startswith = 1,
1820 .schema = "L0"
1821 };
1822 cmd_parser = &continue_cmd_desc;
1823 }
1824 break;
1825 case 'C':
1826 {
1827 static const GdbCmdParseEntry cont_with_sig_cmd_desc = {
1828 .handler = handle_cont_with_sig,
1829 .cmd = "C",
1830 .cmd_startswith = 1,
1831 .schema = "l0"
1832 };
1833 cmd_parser = &cont_with_sig_cmd_desc;
1834 }
1835 break;
1836 case 'v':
1837 if (strncmp(p, "Cont", 4) == 0) {
1838 p += 4;
1839 if (*p == '?') {
1840 put_packet(s, "vCont;c;C;s;S");
1841 break;
1842 }
1843
1844 res = gdb_handle_vcont(s, p);
1845
1846 if (res) {
1847 if ((res == -EINVAL) || (res == -ERANGE)) {
1848 put_packet(s, "E22");
1849 break;
1850 }
1851 goto unknown_command;
1852 }
1853 break;
1854 } else if (strncmp(p, "Attach;", 7) == 0) {
1855 unsigned long pid;
1856
1857 p += 7;
1858
1859 if (qemu_strtoul(p, &p, 16, &pid)) {
1860 put_packet(s, "E22");
1861 break;
1862 }
1863
1864 process = gdb_get_process(s, pid);
1865
1866 if (process == NULL) {
1867 put_packet(s, "E22");
1868 break;
1869 }
1870
1871 cpu = get_first_cpu_in_process(s, process);
1872
1873 if (cpu == NULL) {
1874 /* Refuse to attach an empty process */
1875 put_packet(s, "E22");
1876 break;
1877 }
1878
1879 process->attached = true;
1880
1881 s->g_cpu = cpu;
1882 s->c_cpu = cpu;
1883
1884 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1885 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
1886
1887 put_packet(s, buf);
1888 break;
1889 } else if (strncmp(p, "Kill;", 5) == 0) {
1890 /* Kill the target */
1891 put_packet(s, "OK");
1892 error_report("QEMU: Terminated via GDBstub");
1893 exit(0);
1894 } else {
1895 goto unknown_command;
1896 }
1897 case 'k':
1898 /* Kill the target */
1899 error_report("QEMU: Terminated via GDBstub");
1900 exit(0);
1901 case 'D':
1902 {
1903 static const GdbCmdParseEntry detach_cmd_desc = {
1904 .handler = handle_detach,
1905 .cmd = "D",
1906 .cmd_startswith = 1,
1907 .schema = "?.l0"
1908 };
1909 cmd_parser = &detach_cmd_desc;
1910 }
1911 break;
1912 case 's':
1913 if (*p != '\0') {
1914 addr = strtoull(p, (char **)&p, 16);
1915 gdb_set_cpu_pc(s, addr);
1916 }
1917 cpu_single_step(s->c_cpu, sstep_flags);
1918 gdb_continue(s);
1919 return RS_IDLE;
1920 case 'F':
1921 {
1922 target_ulong ret;
1923 target_ulong err;
1924
1925 ret = strtoull(p, (char **)&p, 16);
1926 if (*p == ',') {
1927 p++;
1928 err = strtoull(p, (char **)&p, 16);
1929 } else {
1930 err = 0;
1931 }
1932 if (*p == ',')
1933 p++;
1934 type = *p;
1935 if (s->current_syscall_cb) {
1936 s->current_syscall_cb(s->c_cpu, ret, err);
1937 s->current_syscall_cb = NULL;
1938 }
1939 if (type == 'C') {
1940 put_packet(s, "T02");
1941 } else {
1942 gdb_continue(s);
1943 }
1944 }
1945 break;
1946 case 'g':
1947 cpu_synchronize_state(s->g_cpu);
1948 len = 0;
1949 for (addr = 0; addr < s->g_cpu->gdb_num_g_regs; addr++) {
1950 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1951 len += reg_size;
1952 }
1953 memtohex(buf, mem_buf, len);
1954 put_packet(s, buf);
1955 break;
1956 case 'G':
1957 {
1958 static const GdbCmdParseEntry write_all_regs_cmd_desc = {
1959 .handler = handle_write_all_regs,
1960 .cmd = "G",
1961 .cmd_startswith = 1,
1962 .schema = "s0"
1963 };
1964 cmd_parser = &write_all_regs_cmd_desc;
1965 }
1966 break;
1967 case 'm':
1968 {
1969 static const GdbCmdParseEntry read_mem_cmd_desc = {
1970 .handler = handle_read_mem,
1971 .cmd = "m",
1972 .cmd_startswith = 1,
1973 .schema = "L,L0"
1974 };
1975 cmd_parser = &read_mem_cmd_desc;
1976 }
1977 break;
1978 case 'M':
1979 {
1980 static const GdbCmdParseEntry write_mem_cmd_desc = {
1981 .handler = handle_write_mem,
1982 .cmd = "M",
1983 .cmd_startswith = 1,
1984 .schema = "L,L:s0"
1985 };
1986 cmd_parser = &write_mem_cmd_desc;
1987 }
1988 break;
1989 case 'p':
1990 {
1991 static const GdbCmdParseEntry get_reg_cmd_desc = {
1992 .handler = handle_get_reg,
1993 .cmd = "p",
1994 .cmd_startswith = 1,
1995 .schema = "L0"
1996 };
1997 cmd_parser = &get_reg_cmd_desc;
1998 }
1999 break;
2000 case 'P':
2001 {
2002 static const GdbCmdParseEntry set_reg_cmd_desc = {
2003 .handler = handle_set_reg,
2004 .cmd = "P",
2005 .cmd_startswith = 1,
2006 .schema = "L?s0"
2007 };
2008 cmd_parser = &set_reg_cmd_desc;
2009 }
2010 break;
2011 case 'Z':
2012 {
2013 static const GdbCmdParseEntry insert_bp_cmd_desc = {
2014 .handler = handle_insert_bp,
2015 .cmd = "Z",
2016 .cmd_startswith = 1,
2017 .schema = "l?L?L0"
2018 };
2019 cmd_parser = &insert_bp_cmd_desc;
2020 }
2021 break;
2022 case 'z':
2023 {
2024 static const GdbCmdParseEntry remove_bp_cmd_desc = {
2025 .handler = handle_remove_bp,
2026 .cmd = "z",
2027 .cmd_startswith = 1,
2028 .schema = "l?L?L0"
2029 };
2030 cmd_parser = &remove_bp_cmd_desc;
2031 }
2032 break;
2033 case 'H':
2034 {
2035 static const GdbCmdParseEntry set_thread_cmd_desc = {
2036 .handler = handle_set_thread,
2037 .cmd = "H",
2038 .cmd_startswith = 1,
2039 .schema = "o.t0"
2040 };
2041 cmd_parser = &set_thread_cmd_desc;
2042 }
2043 break;
2044 case 'T':
2045 {
2046 static const GdbCmdParseEntry thread_alive_cmd_desc = {
2047 .handler = handle_thread_alive,
2048 .cmd = "T",
2049 .cmd_startswith = 1,
2050 .schema = "t0"
2051 };
2052 cmd_parser = &thread_alive_cmd_desc;
2053 }
2054 break;
2055 case 'q':
2056 case 'Q':
2057 /* parse any 'q' packets here */
2058 if (!strcmp(p,"qemu.sstepbits")) {
2059 /* Query Breakpoint bit definitions */
2060 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2061 SSTEP_ENABLE,
2062 SSTEP_NOIRQ,
2063 SSTEP_NOTIMER);
2064 put_packet(s, buf);
2065 break;
2066 } else if (is_query_packet(p, "qemu.sstep", '=')) {
2067 /* Display or change the sstep_flags */
2068 p += 10;
2069 if (*p != '=') {
2070 /* Display current setting */
2071 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2072 put_packet(s, buf);
2073 break;
2074 }
2075 p++;
2076 type = strtoul(p, (char **)&p, 16);
2077 sstep_flags = type;
2078 put_packet(s, "OK");
2079 break;
2080 } else if (strcmp(p,"C") == 0) {
2081 /*
2082 * "Current thread" remains vague in the spec, so always return
2083 * the first thread of the current process (gdb returns the
2084 * first thread).
2085 */
2086 cpu = get_first_cpu_in_process(s, gdb_get_cpu_process(s, s->g_cpu));
2087 snprintf(buf, sizeof(buf), "QC%s",
2088 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
2089 put_packet(s, buf);
2090 break;
2091 } else if (strcmp(p,"fThreadInfo") == 0) {
2092 s->query_cpu = gdb_first_attached_cpu(s);
2093 goto report_cpuinfo;
2094 } else if (strcmp(p,"sThreadInfo") == 0) {
2095 report_cpuinfo:
2096 if (s->query_cpu) {
2097 snprintf(buf, sizeof(buf), "m%s",
2098 gdb_fmt_thread_id(s, s->query_cpu,
2099 thread_id, sizeof(thread_id)));
2100 put_packet(s, buf);
2101 s->query_cpu = gdb_next_attached_cpu(s, s->query_cpu);
2102 } else
2103 put_packet(s, "l");
2104 break;
2105 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2106 if (read_thread_id(p + 16, &p, &pid, &tid) == GDB_READ_THREAD_ERR) {
2107 put_packet(s, "E22");
2108 break;
2109 }
2110 cpu = gdb_get_cpu(s, pid, tid);
2111 if (cpu != NULL) {
2112 cpu_synchronize_state(cpu);
2113
2114 if (s->multiprocess && (s->process_num > 1)) {
2115 /* Print the CPU model and name in multiprocess mode */
2116 ObjectClass *oc = object_get_class(OBJECT(cpu));
2117 const char *cpu_model = object_class_get_name(oc);
2118 char *cpu_name =
2119 object_get_canonical_path_component(OBJECT(cpu));
2120 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
2121 "%s %s [%s]", cpu_model, cpu_name,
2122 cpu->halted ? "halted " : "running");
2123 g_free(cpu_name);
2124 } else {
2125 /* memtohex() doubles the required space */
2126 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
2127 "CPU#%d [%s]", cpu->cpu_index,
2128 cpu->halted ? "halted " : "running");
2129 }
2130 trace_gdbstub_op_extra_info((char *)mem_buf);
2131 memtohex(buf, mem_buf, len);
2132 put_packet(s, buf);
2133 }
2134 break;
2135 }
2136#ifdef CONFIG_USER_ONLY
2137 else if (strcmp(p, "Offsets") == 0) {
2138 TaskState *ts = s->c_cpu->opaque;
2139
2140 snprintf(buf, sizeof(buf),
2141 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2142 ";Bss=" TARGET_ABI_FMT_lx,
2143 ts->info->code_offset,
2144 ts->info->data_offset,
2145 ts->info->data_offset);
2146 put_packet(s, buf);
2147 break;
2148 }
2149#else /* !CONFIG_USER_ONLY */
2150 else if (strncmp(p, "Rcmd,", 5) == 0) {
2151 int len = strlen(p + 5);
2152
2153 if ((len % 2) != 0) {
2154 put_packet(s, "E01");
2155 break;
2156 }
2157 len = len / 2;
2158 hextomem(mem_buf, p + 5, len);
2159 mem_buf[len++] = 0;
2160 qemu_chr_be_write(s->mon_chr, mem_buf, len);
2161 put_packet(s, "OK");
2162 break;
2163 }
2164#endif /* !CONFIG_USER_ONLY */
2165 if (is_query_packet(p, "Supported", ':')) {
2166 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2167 cc = CPU_GET_CLASS(first_cpu);
2168 if (cc->gdb_core_xml_file != NULL) {
2169 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2170 }
2171
2172 if (strstr(p, "multiprocess+")) {
2173 s->multiprocess = true;
2174 }
2175 pstrcat(buf, sizeof(buf), ";multiprocess+");
2176
2177 put_packet(s, buf);
2178 break;
2179 }
2180 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2181 const char *xml;
2182 target_ulong total_len;
2183
2184 process = gdb_get_cpu_process(s, s->g_cpu);
2185 cc = CPU_GET_CLASS(s->g_cpu);
2186 if (cc->gdb_core_xml_file == NULL) {
2187 goto unknown_command;
2188 }
2189
2190 gdb_has_xml = true;
2191 p += 19;
2192 xml = get_feature_xml(s, p, &p, process);
2193 if (!xml) {
2194 snprintf(buf, sizeof(buf), "E00");
2195 put_packet(s, buf);
2196 break;
2197 }
2198
2199 if (*p == ':')
2200 p++;
2201 addr = strtoul(p, (char **)&p, 16);
2202 if (*p == ',')
2203 p++;
2204 len = strtoul(p, (char **)&p, 16);
2205
2206 total_len = strlen(xml);
2207 if (addr > total_len) {
2208 snprintf(buf, sizeof(buf), "E00");
2209 put_packet(s, buf);
2210 break;
2211 }
2212 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2213 len = (MAX_PACKET_LENGTH - 5) / 2;
2214 if (len < total_len - addr) {
2215 buf[0] = 'm';
2216 len = memtox(buf + 1, xml + addr, len);
2217 } else {
2218 buf[0] = 'l';
2219 len = memtox(buf + 1, xml + addr, total_len - addr);
2220 }
2221 put_packet_binary(s, buf, len + 1, true);
2222 break;
2223 }
2224 if (is_query_packet(p, "Attached", ':')) {
2225 put_packet(s, GDB_ATTACHED);
2226 break;
2227 }
2228 /* Unrecognised 'q' command. */
2229 goto unknown_command;
2230
2231 default:
2232 unknown_command:
2233 /* put empty packet */
2234 buf[0] = '\0';
2235 put_packet(s, buf);
2236 break;
2237 }
2238
2239 run_cmd_parser(s, line_buf, cmd_parser);
2240
2241 return RS_IDLE;
2242}
2243
2244void gdb_set_stop_cpu(CPUState *cpu)
2245{
2246 GDBProcess *p = gdb_get_cpu_process(gdbserver_state, cpu);
2247
2248 if (!p->attached) {
2249 /*
2250 * Having a stop CPU corresponding to a process that is not attached
2251 * confuses GDB. So we ignore the request.
2252 */
2253 return;
2254 }
2255
2256 gdbserver_state->c_cpu = cpu;
2257 gdbserver_state->g_cpu = cpu;
2258}
2259
2260#ifndef CONFIG_USER_ONLY
2261static void gdb_vm_state_change(void *opaque, int running, RunState state)
2262{
2263 GDBState *s = gdbserver_state;
2264 CPUState *cpu = s->c_cpu;
2265 char buf[256];
2266 char thread_id[16];
2267 const char *type;
2268 int ret;
2269
2270 if (running || s->state == RS_INACTIVE) {
2271 return;
2272 }
2273 /* Is there a GDB syscall waiting to be sent? */
2274 if (s->current_syscall_cb) {
2275 put_packet(s, s->syscall_buf);
2276 return;
2277 }
2278
2279 if (cpu == NULL) {
2280 /* No process attached */
2281 return;
2282 }
2283
2284 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id));
2285
2286 switch (state) {
2287 case RUN_STATE_DEBUG:
2288 if (cpu->watchpoint_hit) {
2289 switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
2290 case BP_MEM_READ:
2291 type = "r";
2292 break;
2293 case BP_MEM_ACCESS:
2294 type = "a";
2295 break;
2296 default:
2297 type = "";
2298 break;
2299 }
2300 trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
2301 (target_ulong)cpu->watchpoint_hit->vaddr);
2302 snprintf(buf, sizeof(buf),
2303 "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
2304 GDB_SIGNAL_TRAP, thread_id, type,
2305 (target_ulong)cpu->watchpoint_hit->vaddr);
2306 cpu->watchpoint_hit = NULL;
2307 goto send_packet;
2308 } else {
2309 trace_gdbstub_hit_break();
2310 }
2311 tb_flush(cpu);
2312 ret = GDB_SIGNAL_TRAP;
2313 break;
2314 case RUN_STATE_PAUSED:
2315 trace_gdbstub_hit_paused();
2316 ret = GDB_SIGNAL_INT;
2317 break;
2318 case RUN_STATE_SHUTDOWN:
2319 trace_gdbstub_hit_shutdown();
2320 ret = GDB_SIGNAL_QUIT;
2321 break;
2322 case RUN_STATE_IO_ERROR:
2323 trace_gdbstub_hit_io_error();
2324 ret = GDB_SIGNAL_IO;
2325 break;
2326 case RUN_STATE_WATCHDOG:
2327 trace_gdbstub_hit_watchdog();
2328 ret = GDB_SIGNAL_ALRM;
2329 break;
2330 case RUN_STATE_INTERNAL_ERROR:
2331 trace_gdbstub_hit_internal_error();
2332 ret = GDB_SIGNAL_ABRT;
2333 break;
2334 case RUN_STATE_SAVE_VM:
2335 case RUN_STATE_RESTORE_VM:
2336 return;
2337 case RUN_STATE_FINISH_MIGRATE:
2338 ret = GDB_SIGNAL_XCPU;
2339 break;
2340 default:
2341 trace_gdbstub_hit_unknown(state);
2342 ret = GDB_SIGNAL_UNKNOWN;
2343 break;
2344 }
2345 gdb_set_stop_cpu(cpu);
2346 snprintf(buf, sizeof(buf), "T%02xthread:%s;", ret, thread_id);
2347
2348send_packet:
2349 put_packet(s, buf);
2350
2351 /* disable single step if it was enabled */
2352 cpu_single_step(cpu, 0);
2353}
2354#endif
2355
2356/* Send a gdb syscall request.
2357 This accepts limited printf-style format specifiers, specifically:
2358 %x - target_ulong argument printed in hex.
2359 %lx - 64-bit argument printed in hex.
2360 %s - string pointer (target_ulong) and length (int) pair. */
2361void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
2362{
2363 char *p;
2364 char *p_end;
2365 target_ulong addr;
2366 uint64_t i64;
2367 GDBState *s;
2368
2369 s = gdbserver_state;
2370 if (!s)
2371 return;
2372 s->current_syscall_cb = cb;
2373#ifndef CONFIG_USER_ONLY
2374 vm_stop(RUN_STATE_DEBUG);
2375#endif
2376 p = s->syscall_buf;
2377 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
2378 *(p++) = 'F';
2379 while (*fmt) {
2380 if (*fmt == '%') {
2381 fmt++;
2382 switch (*fmt++) {
2383 case 'x':
2384 addr = va_arg(va, target_ulong);
2385 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2386 break;
2387 case 'l':
2388 if (*(fmt++) != 'x')
2389 goto bad_format;
2390 i64 = va_arg(va, uint64_t);
2391 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2392 break;
2393 case 's':
2394 addr = va_arg(va, target_ulong);
2395 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2396 addr, va_arg(va, int));
2397 break;
2398 default:
2399 bad_format:
2400 error_report("gdbstub: Bad syscall format string '%s'",
2401 fmt - 1);
2402 break;
2403 }
2404 } else {
2405 *(p++) = *(fmt++);
2406 }
2407 }
2408 *p = 0;
2409#ifdef CONFIG_USER_ONLY
2410 put_packet(s, s->syscall_buf);
2411 /* Return control to gdb for it to process the syscall request.
2412 * Since the protocol requires that gdb hands control back to us
2413 * using a "here are the results" F packet, we don't need to check
2414 * gdb_handlesig's return value (which is the signal to deliver if
2415 * execution was resumed via a continue packet).
2416 */
2417 gdb_handlesig(s->c_cpu, 0);
2418#else
2419 /* In this case wait to send the syscall packet until notification that
2420 the CPU has stopped. This must be done because if the packet is sent
2421 now the reply from the syscall request could be received while the CPU
2422 is still in the running state, which can cause packets to be dropped
2423 and state transition 'T' packets to be sent while the syscall is still
2424 being processed. */
2425 qemu_cpu_kick(s->c_cpu);
2426#endif
2427}
2428
2429void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2430{
2431 va_list va;
2432
2433 va_start(va, fmt);
2434 gdb_do_syscallv(cb, fmt, va);
2435 va_end(va);
2436}
2437
2438static void gdb_read_byte(GDBState *s, uint8_t ch)
2439{
2440 uint8_t reply;
2441
2442#ifndef CONFIG_USER_ONLY
2443 if (s->last_packet_len) {
2444 /* Waiting for a response to the last packet. If we see the start
2445 of a new command then abandon the previous response. */
2446 if (ch == '-') {
2447 trace_gdbstub_err_got_nack();
2448 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2449 } else if (ch == '+') {
2450 trace_gdbstub_io_got_ack();
2451 } else {
2452 trace_gdbstub_io_got_unexpected(ch);
2453 }
2454
2455 if (ch == '+' || ch == '$')
2456 s->last_packet_len = 0;
2457 if (ch != '$')
2458 return;
2459 }
2460 if (runstate_is_running()) {
2461 /* when the CPU is running, we cannot do anything except stop
2462 it when receiving a char */
2463 vm_stop(RUN_STATE_PAUSED);
2464 } else
2465#endif
2466 {
2467 switch(s->state) {
2468 case RS_IDLE:
2469 if (ch == '$') {
2470 /* start of command packet */
2471 s->line_buf_index = 0;
2472 s->line_sum = 0;
2473 s->state = RS_GETLINE;
2474 } else {
2475 trace_gdbstub_err_garbage(ch);
2476 }
2477 break;
2478 case RS_GETLINE:
2479 if (ch == '}') {
2480 /* start escape sequence */
2481 s->state = RS_GETLINE_ESC;
2482 s->line_sum += ch;
2483 } else if (ch == '*') {
2484 /* start run length encoding sequence */
2485 s->state = RS_GETLINE_RLE;
2486 s->line_sum += ch;
2487 } else if (ch == '#') {
2488 /* end of command, start of checksum*/
2489 s->state = RS_CHKSUM1;
2490 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2491 trace_gdbstub_err_overrun();
2492 s->state = RS_IDLE;
2493 } else {
2494 /* unescaped command character */
2495 s->line_buf[s->line_buf_index++] = ch;
2496 s->line_sum += ch;
2497 }
2498 break;
2499 case RS_GETLINE_ESC:
2500 if (ch == '#') {
2501 /* unexpected end of command in escape sequence */
2502 s->state = RS_CHKSUM1;
2503 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2504 /* command buffer overrun */
2505 trace_gdbstub_err_overrun();
2506 s->state = RS_IDLE;
2507 } else {
2508 /* parse escaped character and leave escape state */
2509 s->line_buf[s->line_buf_index++] = ch ^ 0x20;
2510 s->line_sum += ch;
2511 s->state = RS_GETLINE;
2512 }
2513 break;
2514 case RS_GETLINE_RLE:
2515 /*
2516 * Run-length encoding is explained in "Debugging with GDB /
2517 * Appendix E GDB Remote Serial Protocol / Overview".
2518 */
2519 if (ch < ' ' || ch == '#' || ch == '$' || ch > 126) {
2520 /* invalid RLE count encoding */
2521 trace_gdbstub_err_invalid_repeat(ch);
2522 s->state = RS_GETLINE;
2523 } else {
2524 /* decode repeat length */
2525 int repeat = ch - ' ' + 3;
2526 if (s->line_buf_index + repeat >= sizeof(s->line_buf) - 1) {
2527 /* that many repeats would overrun the command buffer */
2528 trace_gdbstub_err_overrun();
2529 s->state = RS_IDLE;
2530 } else if (s->line_buf_index < 1) {
2531 /* got a repeat but we have nothing to repeat */
2532 trace_gdbstub_err_invalid_rle();
2533 s->state = RS_GETLINE;
2534 } else {
2535 /* repeat the last character */
2536 memset(s->line_buf + s->line_buf_index,
2537 s->line_buf[s->line_buf_index - 1], repeat);
2538 s->line_buf_index += repeat;
2539 s->line_sum += ch;
2540 s->state = RS_GETLINE;
2541 }
2542 }
2543 break;
2544 case RS_CHKSUM1:
2545 /* get high hex digit of checksum */
2546 if (!isxdigit(ch)) {
2547 trace_gdbstub_err_checksum_invalid(ch);
2548 s->state = RS_GETLINE;
2549 break;
2550 }
2551 s->line_buf[s->line_buf_index] = '\0';
2552 s->line_csum = fromhex(ch) << 4;
2553 s->state = RS_CHKSUM2;
2554 break;
2555 case RS_CHKSUM2:
2556 /* get low hex digit of checksum */
2557 if (!isxdigit(ch)) {
2558 trace_gdbstub_err_checksum_invalid(ch);
2559 s->state = RS_GETLINE;
2560 break;
2561 }
2562 s->line_csum |= fromhex(ch);
2563
2564 if (s->line_csum != (s->line_sum & 0xff)) {
2565 trace_gdbstub_err_checksum_incorrect(s->line_sum, s->line_csum);
2566 /* send NAK reply */
2567 reply = '-';
2568 put_buffer(s, &reply, 1);
2569 s->state = RS_IDLE;
2570 } else {
2571 /* send ACK reply */
2572 reply = '+';
2573 put_buffer(s, &reply, 1);
2574 s->state = gdb_handle_packet(s, s->line_buf);
2575 }
2576 break;
2577 default:
2578 abort();
2579 }
2580 }
2581}
2582
2583/* Tell the remote gdb that the process has exited. */
2584void gdb_exit(CPUArchState *env, int code)
2585{
2586 GDBState *s;
2587 char buf[4];
2588
2589 s = gdbserver_state;
2590 if (!s) {
2591 return;
2592 }
2593#ifdef CONFIG_USER_ONLY
2594 if (gdbserver_fd < 0 || s->fd < 0) {
2595 return;
2596 }
2597#endif
2598
2599 trace_gdbstub_op_exiting((uint8_t)code);
2600
2601 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2602 put_packet(s, buf);
2603
2604#ifndef CONFIG_USER_ONLY
2605 qemu_chr_fe_deinit(&s->chr, true);
2606#endif
2607}
2608
2609/*
2610 * Create the process that will contain all the "orphan" CPUs (that are not
2611 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
2612 * be attachable and thus will be invisible to the user.
2613 */
2614static void create_default_process(GDBState *s)
2615{
2616 GDBProcess *process;
2617 int max_pid = 0;
2618
2619 if (s->process_num) {
2620 max_pid = s->processes[s->process_num - 1].pid;
2621 }
2622
2623 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2624 process = &s->processes[s->process_num - 1];
2625
2626 /* We need an available PID slot for this process */
2627 assert(max_pid < UINT32_MAX);
2628
2629 process->pid = max_pid + 1;
2630 process->attached = false;
2631 process->target_xml[0] = '\0';
2632}
2633
2634#ifdef CONFIG_USER_ONLY
2635int
2636gdb_handlesig(CPUState *cpu, int sig)
2637{
2638 GDBState *s;
2639 char buf[256];
2640 int n;
2641
2642 s = gdbserver_state;
2643 if (gdbserver_fd < 0 || s->fd < 0) {
2644 return sig;
2645 }
2646
2647 /* disable single step if it was enabled */
2648 cpu_single_step(cpu, 0);
2649 tb_flush(cpu);
2650
2651 if (sig != 0) {
2652 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
2653 put_packet(s, buf);
2654 }
2655 /* put_packet() might have detected that the peer terminated the
2656 connection. */
2657 if (s->fd < 0) {
2658 return sig;
2659 }
2660
2661 sig = 0;
2662 s->state = RS_IDLE;
2663 s->running_state = 0;
2664 while (s->running_state == 0) {
2665 n = read(s->fd, buf, 256);
2666 if (n > 0) {
2667 int i;
2668
2669 for (i = 0; i < n; i++) {
2670 gdb_read_byte(s, buf[i]);
2671 }
2672 } else {
2673 /* XXX: Connection closed. Should probably wait for another
2674 connection before continuing. */
2675 if (n == 0) {
2676 close(s->fd);
2677 }
2678 s->fd = -1;
2679 return sig;
2680 }
2681 }
2682 sig = s->signal;
2683 s->signal = 0;
2684 return sig;
2685}
2686
2687/* Tell the remote gdb that the process has exited due to SIG. */
2688void gdb_signalled(CPUArchState *env, int sig)
2689{
2690 GDBState *s;
2691 char buf[4];
2692
2693 s = gdbserver_state;
2694 if (gdbserver_fd < 0 || s->fd < 0) {
2695 return;
2696 }
2697
2698 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
2699 put_packet(s, buf);
2700}
2701
2702static bool gdb_accept(void)
2703{
2704 GDBState *s;
2705 struct sockaddr_in sockaddr;
2706 socklen_t len;
2707 int fd;
2708
2709 for(;;) {
2710 len = sizeof(sockaddr);
2711 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2712 if (fd < 0 && errno != EINTR) {
2713 perror("accept");
2714 return false;
2715 } else if (fd >= 0) {
2716 qemu_set_cloexec(fd);
2717 break;
2718 }
2719 }
2720
2721 /* set short latency */
2722 if (socket_set_nodelay(fd)) {
2723 perror("setsockopt");
2724 close(fd);
2725 return false;
2726 }
2727
2728 s = g_malloc0(sizeof(GDBState));
2729 create_default_process(s);
2730 s->processes[0].attached = true;
2731 s->c_cpu = gdb_first_attached_cpu(s);
2732 s->g_cpu = s->c_cpu;
2733 s->fd = fd;
2734 gdb_has_xml = false;
2735
2736 gdbserver_state = s;
2737 return true;
2738}
2739
2740static int gdbserver_open(int port)
2741{
2742 struct sockaddr_in sockaddr;
2743 int fd, ret;
2744
2745 fd = socket(PF_INET, SOCK_STREAM, 0);
2746 if (fd < 0) {
2747 perror("socket");
2748 return -1;
2749 }
2750 qemu_set_cloexec(fd);
2751
2752 socket_set_fast_reuse(fd);
2753
2754 sockaddr.sin_family = AF_INET;
2755 sockaddr.sin_port = htons(port);
2756 sockaddr.sin_addr.s_addr = 0;
2757 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2758 if (ret < 0) {
2759 perror("bind");
2760 close(fd);
2761 return -1;
2762 }
2763 ret = listen(fd, 1);
2764 if (ret < 0) {
2765 perror("listen");
2766 close(fd);
2767 return -1;
2768 }
2769 return fd;
2770}
2771
2772int gdbserver_start(int port)
2773{
2774 gdbserver_fd = gdbserver_open(port);
2775 if (gdbserver_fd < 0)
2776 return -1;
2777 /* accept connections */
2778 if (!gdb_accept()) {
2779 close(gdbserver_fd);
2780 gdbserver_fd = -1;
2781 return -1;
2782 }
2783 return 0;
2784}
2785
2786/* Disable gdb stub for child processes. */
2787void gdbserver_fork(CPUState *cpu)
2788{
2789 GDBState *s = gdbserver_state;
2790
2791 if (gdbserver_fd < 0 || s->fd < 0) {
2792 return;
2793 }
2794 close(s->fd);
2795 s->fd = -1;
2796 cpu_breakpoint_remove_all(cpu, BP_GDB);
2797 cpu_watchpoint_remove_all(cpu, BP_GDB);
2798}
2799#else
2800static int gdb_chr_can_receive(void *opaque)
2801{
2802 /* We can handle an arbitrarily large amount of data.
2803 Pick the maximum packet size, which is as good as anything. */
2804 return MAX_PACKET_LENGTH;
2805}
2806
2807static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2808{
2809 int i;
2810
2811 for (i = 0; i < size; i++) {
2812 gdb_read_byte(gdbserver_state, buf[i]);
2813 }
2814}
2815
2816static void gdb_chr_event(void *opaque, int event)
2817{
2818 int i;
2819 GDBState *s = (GDBState *) opaque;
2820
2821 switch (event) {
2822 case CHR_EVENT_OPENED:
2823 /* Start with first process attached, others detached */
2824 for (i = 0; i < s->process_num; i++) {
2825 s->processes[i].attached = !i;
2826 }
2827
2828 s->c_cpu = gdb_first_attached_cpu(s);
2829 s->g_cpu = s->c_cpu;
2830
2831 vm_stop(RUN_STATE_PAUSED);
2832 gdb_has_xml = false;
2833 break;
2834 default:
2835 break;
2836 }
2837}
2838
2839static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2840{
2841 char buf[MAX_PACKET_LENGTH];
2842
2843 buf[0] = 'O';
2844 if (len > (MAX_PACKET_LENGTH/2) - 1)
2845 len = (MAX_PACKET_LENGTH/2) - 1;
2846 memtohex(buf + 1, (uint8_t *)msg, len);
2847 put_packet(s, buf);
2848}
2849
2850static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
2851{
2852 const char *p = (const char *)buf;
2853 int max_sz;
2854
2855 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2856 for (;;) {
2857 if (len <= max_sz) {
2858 gdb_monitor_output(gdbserver_state, p, len);
2859 break;
2860 }
2861 gdb_monitor_output(gdbserver_state, p, max_sz);
2862 p += max_sz;
2863 len -= max_sz;
2864 }
2865 return len;
2866}
2867
2868#ifndef _WIN32
2869static void gdb_sigterm_handler(int signal)
2870{
2871 if (runstate_is_running()) {
2872 vm_stop(RUN_STATE_PAUSED);
2873 }
2874}
2875#endif
2876
2877static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
2878 bool *be_opened, Error **errp)
2879{
2880 *be_opened = false;
2881}
2882
2883static void char_gdb_class_init(ObjectClass *oc, void *data)
2884{
2885 ChardevClass *cc = CHARDEV_CLASS(oc);
2886
2887 cc->internal = true;
2888 cc->open = gdb_monitor_open;
2889 cc->chr_write = gdb_monitor_write;
2890}
2891
2892#define TYPE_CHARDEV_GDB "chardev-gdb"
2893
2894static const TypeInfo char_gdb_type_info = {
2895 .name = TYPE_CHARDEV_GDB,
2896 .parent = TYPE_CHARDEV,
2897 .class_init = char_gdb_class_init,
2898};
2899
2900static int find_cpu_clusters(Object *child, void *opaque)
2901{
2902 if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
2903 GDBState *s = (GDBState *) opaque;
2904 CPUClusterState *cluster = CPU_CLUSTER(child);
2905 GDBProcess *process;
2906
2907 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2908
2909 process = &s->processes[s->process_num - 1];
2910
2911 /*
2912 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
2913 * runtime, we enforce here that the machine does not use a cluster ID
2914 * that would lead to PID 0.
2915 */
2916 assert(cluster->cluster_id != UINT32_MAX);
2917 process->pid = cluster->cluster_id + 1;
2918 process->attached = false;
2919 process->target_xml[0] = '\0';
2920
2921 return 0;
2922 }
2923
2924 return object_child_foreach(child, find_cpu_clusters, opaque);
2925}
2926
2927static int pid_order(const void *a, const void *b)
2928{
2929 GDBProcess *pa = (GDBProcess *) a;
2930 GDBProcess *pb = (GDBProcess *) b;
2931
2932 if (pa->pid < pb->pid) {
2933 return -1;
2934 } else if (pa->pid > pb->pid) {
2935 return 1;
2936 } else {
2937 return 0;
2938 }
2939}
2940
2941static void create_processes(GDBState *s)
2942{
2943 object_child_foreach(object_get_root(), find_cpu_clusters, s);
2944
2945 if (s->processes) {
2946 /* Sort by PID */
2947 qsort(s->processes, s->process_num, sizeof(s->processes[0]), pid_order);
2948 }
2949
2950 create_default_process(s);
2951}
2952
2953static void cleanup_processes(GDBState *s)
2954{
2955 g_free(s->processes);
2956 s->process_num = 0;
2957 s->processes = NULL;
2958}
2959
2960int gdbserver_start(const char *device)
2961{
2962 trace_gdbstub_op_start(device);
2963
2964 GDBState *s;
2965 char gdbstub_device_name[128];
2966 Chardev *chr = NULL;
2967 Chardev *mon_chr;
2968
2969 if (!first_cpu) {
2970 error_report("gdbstub: meaningless to attach gdb to a "
2971 "machine without any CPU.");
2972 return -1;
2973 }
2974
2975 if (!device)
2976 return -1;
2977 if (strcmp(device, "none") != 0) {
2978 if (strstart(device, "tcp:", NULL)) {
2979 /* enforce required TCP attributes */
2980 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2981 "%s,nowait,nodelay,server", device);
2982 device = gdbstub_device_name;
2983 }
2984#ifndef _WIN32
2985 else if (strcmp(device, "stdio") == 0) {
2986 struct sigaction act;
2987
2988 memset(&act, 0, sizeof(act));
2989 act.sa_handler = gdb_sigterm_handler;
2990 sigaction(SIGINT, &act, NULL);
2991 }
2992#endif
2993 /*
2994 * FIXME: it's a bit weird to allow using a mux chardev here
2995 * and implicitly setup a monitor. We may want to break this.
2996 */
2997 chr = qemu_chr_new_noreplay("gdb", device, true, NULL);
2998 if (!chr)
2999 return -1;
3000 }
3001
3002 s = gdbserver_state;
3003 if (!s) {
3004 s = g_malloc0(sizeof(GDBState));
3005 gdbserver_state = s;
3006
3007 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
3008
3009 /* Initialize a monitor terminal for gdb */
3010 mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
3011 NULL, NULL, &error_abort);
3012 monitor_init(mon_chr, 0);
3013 } else {
3014 qemu_chr_fe_deinit(&s->chr, true);
3015 mon_chr = s->mon_chr;
3016 cleanup_processes(s);
3017 memset(s, 0, sizeof(GDBState));
3018 s->mon_chr = mon_chr;
3019 }
3020
3021 create_processes(s);
3022
3023 if (chr) {
3024 qemu_chr_fe_init(&s->chr, chr, &error_abort);
3025 qemu_chr_fe_set_handlers(&s->chr, gdb_chr_can_receive, gdb_chr_receive,
3026 gdb_chr_event, NULL, s, NULL, true);
3027 }
3028 s->state = chr ? RS_IDLE : RS_INACTIVE;
3029 s->mon_chr = mon_chr;
3030 s->current_syscall_cb = NULL;
3031
3032 return 0;
3033}
3034
3035void gdbserver_cleanup(void)
3036{
3037 if (gdbserver_state) {
3038 put_packet(gdbserver_state, "W00");
3039 }
3040}
3041
3042static void register_types(void)
3043{
3044 type_register_static(&char_gdb_type_info);
3045}
3046
3047type_init(register_types);
3048#endif