]>
Commit | Line | Data |
---|---|---|
1 | #ifndef HASHMAP_H | |
2 | #define HASHMAP_H | |
3 | ||
4 | /* | |
5 | * Generic implementation of hash-based key-value mappings. | |
6 | * | |
7 | * An example that maps long to a string: | |
8 | * For the sake of the example this allows to lookup exact values, too | |
9 | * (i.e. it is operated as a set, the value is part of the key) | |
10 | * ------------------------------------- | |
11 | * | |
12 | * struct hashmap map; | |
13 | * struct long2string { | |
14 | * struct hashmap_entry ent; | |
15 | * long key; | |
16 | * char value[FLEX_ARRAY]; // be careful with allocating on stack! | |
17 | * }; | |
18 | * | |
19 | * #define COMPARE_VALUE 1 | |
20 | * | |
21 | * static int long2string_cmp(const void *hashmap_cmp_fn_data, | |
22 | * const struct hashmap_entry *eptr, | |
23 | * const struct hashmap_entry *entry_or_key, | |
24 | * const void *keydata) | |
25 | * { | |
26 | * const char *string = keydata; | |
27 | * unsigned flags = *(unsigned *)hashmap_cmp_fn_data; | |
28 | * const struct long2string *e1, *e2; | |
29 | * | |
30 | * e1 = container_of(eptr, const struct long2string, ent); | |
31 | * e2 = container_of(entry_or_key, const struct long2string, ent); | |
32 | * | |
33 | * if (flags & COMPARE_VALUE) | |
34 | * return e1->key != e2->key || | |
35 | * strcmp(e1->value, string ? string : e2->value); | |
36 | * else | |
37 | * return e1->key != e2->key; | |
38 | * } | |
39 | * | |
40 | * int main(int argc, char **argv) | |
41 | * { | |
42 | * long key; | |
43 | * char value[255], action[32]; | |
44 | * unsigned flags = 0; | |
45 | * | |
46 | * hashmap_init(&map, long2string_cmp, &flags, 0); | |
47 | * | |
48 | * while (scanf("%s %ld %s", action, &key, value)) { | |
49 | * | |
50 | * if (!strcmp("add", action)) { | |
51 | * struct long2string *e; | |
52 | * FLEX_ALLOC_STR(e, value, value); | |
53 | * hashmap_entry_init(&e->ent, memhash(&key, sizeof(long))); | |
54 | * e->key = key; | |
55 | * hashmap_add(&map, &e->ent); | |
56 | * } | |
57 | * | |
58 | * if (!strcmp("print_all_by_key", action)) { | |
59 | * struct long2string k, *e; | |
60 | * hashmap_entry_init(&k.ent, memhash(&key, sizeof(long))); | |
61 | * k.key = key; | |
62 | * | |
63 | * flags &= ~COMPARE_VALUE; | |
64 | * e = hashmap_get_entry(&map, &k, ent, NULL); | |
65 | * if (e) { | |
66 | * printf("first: %ld %s\n", e->key, e->value); | |
67 | * while ((e = hashmap_get_next_entry(&map, e, | |
68 | * struct long2string, ent))) { | |
69 | * printf("found more: %ld %s\n", e->key, e->value); | |
70 | * } | |
71 | * } | |
72 | * } | |
73 | * | |
74 | * if (!strcmp("has_exact_match", action)) { | |
75 | * struct long2string *e; | |
76 | * FLEX_ALLOC_STR(e, value, value); | |
77 | * hashmap_entry_init(&e->ent, memhash(&key, sizeof(long))); | |
78 | * e->key = key; | |
79 | * | |
80 | * flags |= COMPARE_VALUE; | |
81 | * printf("%sfound\n", | |
82 | * hashmap_get(&map, &e->ent, NULL) ? "" : "not "); | |
83 | * free(e); | |
84 | * } | |
85 | * | |
86 | * if (!strcmp("has_exact_match_no_heap_alloc", action)) { | |
87 | * struct long2string k; | |
88 | * hashmap_entry_init(&k.ent, memhash(&key, sizeof(long))); | |
89 | * k.key = key; | |
90 | * | |
91 | * flags |= COMPARE_VALUE; | |
92 | * printf("%sfound\n", | |
93 | * hashmap_get(&map, &k.ent, value) ? "" : "not "); | |
94 | * } | |
95 | * | |
96 | * if (!strcmp("end", action)) { | |
97 | * hashmap_clear_and_free(&map, struct long2string, ent); | |
98 | * break; | |
99 | * } | |
100 | * } | |
101 | * | |
102 | * return 0; | |
103 | * } | |
104 | */ | |
105 | ||
106 | /* | |
107 | * Ready-to-use hash functions for strings, using the FNV-1 algorithm (see | |
108 | * http://www.isthe.com/chongo/tech/comp/fnv). | |
109 | * `strhash` and `strihash` take 0-terminated strings, while `memhash` and | |
110 | * `memihash` operate on arbitrary-length memory. | |
111 | * `strihash` and `memihash` are case insensitive versions. | |
112 | * `memihash_cont` is a variant of `memihash` that allows a computation to be | |
113 | * continued with another chunk of data. | |
114 | */ | |
115 | unsigned int strhash(const char *buf); | |
116 | unsigned int strihash(const char *buf); | |
117 | unsigned int memhash(const void *buf, size_t len); | |
118 | unsigned int memihash(const void *buf, size_t len); | |
119 | unsigned int memihash_cont(unsigned int hash_seed, const void *buf, size_t len); | |
120 | ||
121 | /* | |
122 | * struct hashmap_entry is an opaque structure representing an entry in the | |
123 | * hash table. | |
124 | * Ideally it should be followed by an int-sized member to prevent unused | |
125 | * memory on 64-bit systems due to alignment. | |
126 | */ | |
127 | struct hashmap_entry { | |
128 | /* | |
129 | * next points to the next entry in case of collisions (i.e. if | |
130 | * multiple entries map to the same bucket) | |
131 | */ | |
132 | struct hashmap_entry *next; | |
133 | ||
134 | /* entry's hash code */ | |
135 | unsigned int hash; | |
136 | }; | |
137 | ||
138 | /* | |
139 | * User-supplied function to test two hashmap entries for equality. Shall | |
140 | * return 0 if the entries are equal. | |
141 | * | |
142 | * This function is always called with non-NULL `entry` and `entry_or_key` | |
143 | * parameters that have the same hash code. | |
144 | * | |
145 | * When looking up an entry, the `key` and `keydata` parameters to hashmap_get | |
146 | * and hashmap_remove are always passed as second `entry_or_key` and third | |
147 | * argument `keydata`, respectively. Otherwise, `keydata` is NULL. | |
148 | * | |
149 | * When it is too expensive to allocate a user entry (either because it is | |
150 | * large or variable sized, such that it is not on the stack), then the | |
151 | * relevant data to check for equality should be passed via `keydata`. | |
152 | * In this case `key` can be a stripped down version of the user key data | |
153 | * or even just a hashmap_entry having the correct hash. | |
154 | * | |
155 | * The `hashmap_cmp_fn_data` entry is the pointer given in the init function. | |
156 | */ | |
157 | typedef int (*hashmap_cmp_fn)(const void *hashmap_cmp_fn_data, | |
158 | const struct hashmap_entry *entry, | |
159 | const struct hashmap_entry *entry_or_key, | |
160 | const void *keydata); | |
161 | ||
162 | /* | |
163 | * struct hashmap is the hash table structure. Members can be used as follows, | |
164 | * but should not be modified directly. | |
165 | */ | |
166 | struct hashmap { | |
167 | struct hashmap_entry **table; | |
168 | ||
169 | /* Stores the comparison function specified in `hashmap_init()`. */ | |
170 | hashmap_cmp_fn cmpfn; | |
171 | const void *cmpfn_data; | |
172 | ||
173 | /* total number of entries (0 means the hashmap is empty) */ | |
174 | unsigned int private_size; /* use hashmap_get_size() */ | |
175 | ||
176 | /* | |
177 | * tablesize is the allocated size of the hash table. A non-0 value | |
178 | * indicates that the hashmap is initialized. It may also be useful | |
179 | * for statistical purposes (i.e. `size / tablesize` is the current | |
180 | * load factor). | |
181 | */ | |
182 | unsigned int tablesize; | |
183 | ||
184 | unsigned int grow_at; | |
185 | unsigned int shrink_at; | |
186 | ||
187 | unsigned int do_count_items : 1; | |
188 | }; | |
189 | ||
190 | /* hashmap functions */ | |
191 | ||
192 | #define HASHMAP_INIT(fn, data) { .cmpfn = fn, .cmpfn_data = data, \ | |
193 | .do_count_items = 1 } | |
194 | ||
195 | /* | |
196 | * Initializes a hashmap structure. | |
197 | * | |
198 | * `map` is the hashmap to initialize. | |
199 | * | |
200 | * The `equals_function` can be specified to compare two entries for equality. | |
201 | * If NULL, entries are considered equal if their hash codes are equal. | |
202 | * | |
203 | * The `equals_function_data` parameter can be used to provide additional data | |
204 | * (a callback cookie) that will be passed to `equals_function` each time it | |
205 | * is called. This allows a single `equals_function` to implement multiple | |
206 | * comparison functions. | |
207 | * | |
208 | * If the total number of entries is known in advance, the `initial_size` | |
209 | * parameter may be used to preallocate a sufficiently large table and thus | |
210 | * prevent expensive resizing. If 0, the table is dynamically resized. | |
211 | */ | |
212 | void hashmap_init(struct hashmap *map, | |
213 | hashmap_cmp_fn equals_function, | |
214 | const void *equals_function_data, | |
215 | size_t initial_size); | |
216 | ||
217 | /* internal functions for clearing or freeing hashmap */ | |
218 | void hashmap_partial_clear_(struct hashmap *map, ssize_t offset); | |
219 | void hashmap_clear_(struct hashmap *map, ssize_t offset); | |
220 | ||
221 | /* | |
222 | * Frees a hashmap structure and allocated memory for the table, but does not | |
223 | * free the entries nor anything they point to. | |
224 | * | |
225 | * Usage note: | |
226 | * | |
227 | * Many callers will need to iterate over all entries and free the data each | |
228 | * entry points to; in such a case, they can free the entry itself while at it. | |
229 | * Thus, you might see: | |
230 | * | |
231 | * hashmap_for_each_entry(map, hashmap_iter, e, hashmap_entry_name) { | |
232 | * free(e->somefield); | |
233 | * free(e); | |
234 | * } | |
235 | * hashmap_clear(map); | |
236 | * | |
237 | * instead of | |
238 | * | |
239 | * hashmap_for_each_entry(map, hashmap_iter, e, hashmap_entry_name) { | |
240 | * free(e->somefield); | |
241 | * } | |
242 | * hashmap_clear_and_free(map, struct my_entry_struct, hashmap_entry_name); | |
243 | * | |
244 | * to avoid the implicit extra loop over the entries. However, if there are | |
245 | * no special fields in your entry that need to be freed beyond the entry | |
246 | * itself, it is probably simpler to avoid the explicit loop and just call | |
247 | * hashmap_clear_and_free(). | |
248 | */ | |
249 | #define hashmap_clear(map) hashmap_clear_(map, -1) | |
250 | ||
251 | /* | |
252 | * Similar to hashmap_clear(), except that the table is not deallocated; it | |
253 | * is merely zeroed out but left the same size as before. If the hashmap | |
254 | * will be reused, this avoids the overhead of deallocating and | |
255 | * reallocating map->table. As with hashmap_clear(), you may need to free | |
256 | * the entries yourself before calling this function. | |
257 | */ | |
258 | #define hashmap_partial_clear(map) hashmap_partial_clear_(map, -1) | |
259 | ||
260 | /* | |
261 | * Similar to hashmap_clear() but also frees all entries. @type is the | |
262 | * struct type of the entry where @member is the hashmap_entry struct used | |
263 | * to associate with @map. | |
264 | * | |
265 | * See usage note above hashmap_clear(). | |
266 | */ | |
267 | #define hashmap_clear_and_free(map, type, member) \ | |
268 | hashmap_clear_(map, offsetof(type, member)) | |
269 | ||
270 | /* | |
271 | * Similar to hashmap_partial_clear() but also frees all entries. @type is | |
272 | * the struct type of the entry where @member is the hashmap_entry struct | |
273 | * used to associate with @map. | |
274 | * | |
275 | * See usage note above hashmap_clear(). | |
276 | */ | |
277 | #define hashmap_partial_clear_and_free(map, type, member) \ | |
278 | hashmap_partial_clear_(map, offsetof(type, member)) | |
279 | ||
280 | /* hashmap_entry functions */ | |
281 | ||
282 | /* | |
283 | * Initializes a hashmap_entry structure. | |
284 | * | |
285 | * `entry` points to the entry to initialize. | |
286 | * `hash` is the hash code of the entry. | |
287 | * | |
288 | * The hashmap_entry structure does not hold references to external resources, | |
289 | * and it is safe to just discard it once you are done with it (i.e. if | |
290 | * your structure was allocated with xmalloc(), you can just free(3) it, | |
291 | * and if it is on stack, you can just let it go out of scope). | |
292 | */ | |
293 | static inline void hashmap_entry_init(struct hashmap_entry *e, | |
294 | unsigned int hash) | |
295 | { | |
296 | e->hash = hash; | |
297 | e->next = NULL; | |
298 | } | |
299 | ||
300 | /* | |
301 | * Return the number of items in the map. | |
302 | */ | |
303 | static inline unsigned int hashmap_get_size(struct hashmap *map) | |
304 | { | |
305 | if (map->do_count_items) | |
306 | return map->private_size; | |
307 | ||
308 | BUG("hashmap_get_size: size not set"); | |
309 | return 0; | |
310 | } | |
311 | ||
312 | /* | |
313 | * Returns the hashmap entry for the specified key, or NULL if not found. | |
314 | * | |
315 | * `map` is the hashmap structure. | |
316 | * | |
317 | * `key` is a user data structure that starts with hashmap_entry that has at | |
318 | * least been initialized with the proper hash code (via `hashmap_entry_init`). | |
319 | * | |
320 | * `keydata` is a data structure that holds just enough information to check | |
321 | * for equality to a given entry. | |
322 | * | |
323 | * If the key data is variable-sized (e.g. a FLEX_ARRAY string) or quite large, | |
324 | * it is undesirable to create a full-fledged entry structure on the heap and | |
325 | * copy all the key data into the structure. | |
326 | * | |
327 | * In this case, the `keydata` parameter can be used to pass | |
328 | * variable-sized key data directly to the comparison function, and the `key` | |
329 | * parameter can be a stripped-down, fixed size entry structure allocated on the | |
330 | * stack. | |
331 | * | |
332 | * If an entry with matching hash code is found, `key` and `keydata` are passed | |
333 | * to `hashmap_cmp_fn` to decide whether the entry matches the key. | |
334 | */ | |
335 | struct hashmap_entry *hashmap_get(const struct hashmap *map, | |
336 | const struct hashmap_entry *key, | |
337 | const void *keydata); | |
338 | ||
339 | /* | |
340 | * Returns the hashmap entry for the specified hash code and key data, | |
341 | * or NULL if not found. | |
342 | * | |
343 | * `map` is the hashmap structure. | |
344 | * `hash` is the hash code of the entry to look up. | |
345 | * | |
346 | * If an entry with matching hash code is found, `keydata` is passed to | |
347 | * `hashmap_cmp_fn` to decide whether the entry matches the key. The | |
348 | * `entry_or_key` parameter of `hashmap_cmp_fn` points to a hashmap_entry | |
349 | * structure that should not be used in the comparison. | |
350 | */ | |
351 | static inline struct hashmap_entry *hashmap_get_from_hash( | |
352 | const struct hashmap *map, | |
353 | unsigned int hash, | |
354 | const void *keydata) | |
355 | { | |
356 | struct hashmap_entry key; | |
357 | hashmap_entry_init(&key, hash); | |
358 | return hashmap_get(map, &key, keydata); | |
359 | } | |
360 | ||
361 | /* | |
362 | * Returns the next equal hashmap entry, or NULL if not found. This can be | |
363 | * used to iterate over duplicate entries (see `hashmap_add`). | |
364 | * | |
365 | * `map` is the hashmap structure. | |
366 | * `entry` is the hashmap_entry to start the search from, obtained via a previous | |
367 | * call to `hashmap_get` or `hashmap_get_next`. | |
368 | */ | |
369 | struct hashmap_entry *hashmap_get_next(const struct hashmap *map, | |
370 | const struct hashmap_entry *entry); | |
371 | ||
372 | /* | |
373 | * Adds a hashmap entry. This allows to add duplicate entries (i.e. | |
374 | * separate values with the same key according to hashmap_cmp_fn). | |
375 | * | |
376 | * `map` is the hashmap structure. | |
377 | * `entry` is the entry to add. | |
378 | */ | |
379 | void hashmap_add(struct hashmap *map, struct hashmap_entry *entry); | |
380 | ||
381 | /* | |
382 | * Adds or replaces a hashmap entry. If the hashmap contains duplicate | |
383 | * entries equal to the specified entry, only one of them will be replaced. | |
384 | * | |
385 | * `map` is the hashmap structure. | |
386 | * `entry` is the entry to add or replace. | |
387 | * Returns the replaced entry, or NULL if not found (i.e. the entry was added). | |
388 | */ | |
389 | struct hashmap_entry *hashmap_put(struct hashmap *map, | |
390 | struct hashmap_entry *entry); | |
391 | ||
392 | /* | |
393 | * Adds or replaces a hashmap entry contained within @keyvar, | |
394 | * where @keyvar is a pointer to a struct containing a | |
395 | * "struct hashmap_entry" @member. | |
396 | * | |
397 | * Returns the replaced pointer which is of the same type as @keyvar, | |
398 | * or NULL if not found. | |
399 | */ | |
400 | #define hashmap_put_entry(map, keyvar, member) \ | |
401 | container_of_or_null_offset(hashmap_put(map, &(keyvar)->member), \ | |
402 | OFFSETOF_VAR(keyvar, member)) | |
403 | ||
404 | /* | |
405 | * Removes a hashmap entry matching the specified key. If the hashmap contains | |
406 | * duplicate entries equal to the specified key, only one of them will be | |
407 | * removed. Returns the removed entry, or NULL if not found. | |
408 | * | |
409 | * Argument explanation is the same as in `hashmap_get`. | |
410 | */ | |
411 | struct hashmap_entry *hashmap_remove(struct hashmap *map, | |
412 | const struct hashmap_entry *key, | |
413 | const void *keydata); | |
414 | ||
415 | /* | |
416 | * Removes a hashmap entry contained within @keyvar, | |
417 | * where @keyvar is a pointer to a struct containing a | |
418 | * "struct hashmap_entry" @member. | |
419 | * | |
420 | * See `hashmap_get` for an explanation of @keydata | |
421 | * | |
422 | * Returns the replaced pointer which is of the same type as @keyvar, | |
423 | * or NULL if not found. | |
424 | */ | |
425 | #define hashmap_remove_entry(map, keyvar, member, keydata) \ | |
426 | container_of_or_null_offset( \ | |
427 | hashmap_remove(map, &(keyvar)->member, keydata), \ | |
428 | OFFSETOF_VAR(keyvar, member)) | |
429 | ||
430 | /* | |
431 | * Returns the `bucket` an entry is stored in. | |
432 | * Useful for multithreaded read access. | |
433 | */ | |
434 | int hashmap_bucket(const struct hashmap *map, unsigned int hash); | |
435 | ||
436 | /* | |
437 | * Used to iterate over all entries of a hashmap. Note that it is | |
438 | * not safe to add or remove entries to the hashmap while | |
439 | * iterating. | |
440 | */ | |
441 | struct hashmap_iter { | |
442 | struct hashmap *map; | |
443 | struct hashmap_entry *next; | |
444 | unsigned int tablepos; | |
445 | }; | |
446 | ||
447 | /* Initializes a `hashmap_iter` structure. */ | |
448 | void hashmap_iter_init(struct hashmap *map, struct hashmap_iter *iter); | |
449 | ||
450 | /* Returns the next hashmap_entry, or NULL if there are no more entries. */ | |
451 | struct hashmap_entry *hashmap_iter_next(struct hashmap_iter *iter); | |
452 | ||
453 | /* Initializes the iterator and returns the first entry, if any. */ | |
454 | static inline struct hashmap_entry *hashmap_iter_first(struct hashmap *map, | |
455 | struct hashmap_iter *iter) | |
456 | { | |
457 | hashmap_iter_init(map, iter); | |
458 | return hashmap_iter_next(iter); | |
459 | } | |
460 | ||
461 | /* | |
462 | * returns the first entry in @map using @iter, where the entry is of | |
463 | * @type (e.g. "struct foo") and @member is the name of the | |
464 | * "struct hashmap_entry" in @type | |
465 | */ | |
466 | #define hashmap_iter_first_entry(map, iter, type, member) \ | |
467 | container_of_or_null(hashmap_iter_first(map, iter), type, member) | |
468 | ||
469 | /* internal macro for hashmap_for_each_entry */ | |
470 | #define hashmap_iter_next_entry_offset(iter, offset) \ | |
471 | container_of_or_null_offset(hashmap_iter_next(iter), offset) | |
472 | ||
473 | /* internal macro for hashmap_for_each_entry */ | |
474 | #define hashmap_iter_first_entry_offset(map, iter, offset) \ | |
475 | container_of_or_null_offset(hashmap_iter_first(map, iter), offset) | |
476 | ||
477 | /* | |
478 | * iterate through @map using @iter, @var is a pointer to a type | |
479 | * containing a @member which is a "struct hashmap_entry" | |
480 | */ | |
481 | #define hashmap_for_each_entry(map, iter, var, member) \ | |
482 | for (var = NULL, /* for systems without typeof */ \ | |
483 | var = hashmap_iter_first_entry_offset(map, iter, \ | |
484 | OFFSETOF_VAR(var, member)); \ | |
485 | var; \ | |
486 | var = hashmap_iter_next_entry_offset(iter, \ | |
487 | OFFSETOF_VAR(var, member))) | |
488 | ||
489 | /* | |
490 | * returns a pointer of type matching @keyvar, or NULL if nothing found. | |
491 | * @keyvar is a pointer to a struct containing a | |
492 | * "struct hashmap_entry" @member. | |
493 | */ | |
494 | #define hashmap_get_entry(map, keyvar, member, keydata) \ | |
495 | container_of_or_null_offset( \ | |
496 | hashmap_get(map, &(keyvar)->member, keydata), \ | |
497 | OFFSETOF_VAR(keyvar, member)) | |
498 | ||
499 | #define hashmap_get_entry_from_hash(map, hash, keydata, type, member) \ | |
500 | container_of_or_null(hashmap_get_from_hash(map, hash, keydata), \ | |
501 | type, member) | |
502 | /* | |
503 | * returns the next equal pointer to @var, or NULL if not found. | |
504 | * @var is a pointer of any type containing "struct hashmap_entry" | |
505 | * @member is the name of the "struct hashmap_entry" field | |
506 | */ | |
507 | #define hashmap_get_next_entry(map, var, member) \ | |
508 | container_of_or_null_offset(hashmap_get_next(map, &(var)->member), \ | |
509 | OFFSETOF_VAR(var, member)) | |
510 | ||
511 | /* | |
512 | * iterate @map starting from @var, where @var is a pointer of @type | |
513 | * and @member is the name of the "struct hashmap_entry" field in @type | |
514 | */ | |
515 | #define hashmap_for_each_entry_from(map, var, member) \ | |
516 | for (; \ | |
517 | var; \ | |
518 | var = hashmap_get_next_entry(map, var, member)) | |
519 | ||
520 | /* | |
521 | * Disable item counting and automatic rehashing when adding/removing items. | |
522 | * | |
523 | * Normally, the hashmap keeps track of the number of items in the map | |
524 | * and uses it to dynamically resize it. This (both the counting and | |
525 | * the resizing) can cause problems when the map is being used by | |
526 | * threaded callers (because the hashmap code does not know about the | |
527 | * locking strategy used by the threaded callers and therefore, does | |
528 | * not know how to protect the "private_size" counter). | |
529 | */ | |
530 | static inline void hashmap_disable_item_counting(struct hashmap *map) | |
531 | { | |
532 | map->do_count_items = 0; | |
533 | } | |
534 | ||
535 | /* | |
536 | * Re-enable item counting when adding/removing items. | |
537 | * If counting is currently disabled, it will force count them. | |
538 | * It WILL NOT automatically rehash them. | |
539 | */ | |
540 | static inline void hashmap_enable_item_counting(struct hashmap *map) | |
541 | { | |
542 | unsigned int n = 0; | |
543 | struct hashmap_iter iter; | |
544 | ||
545 | if (map->do_count_items) | |
546 | return; | |
547 | ||
548 | hashmap_iter_init(map, &iter); | |
549 | while (hashmap_iter_next(&iter)) | |
550 | n++; | |
551 | ||
552 | map->do_count_items = 1; | |
553 | map->private_size = n; | |
554 | } | |
555 | ||
556 | /* String interning */ | |
557 | ||
558 | /* | |
559 | * Returns the unique, interned version of the specified string or data, | |
560 | * similar to the `String.intern` API in Java and .NET, respectively. | |
561 | * Interned strings remain valid for the entire lifetime of the process. | |
562 | * | |
563 | * Can be used as `[x]strdup()` or `xmemdupz` replacement, except that interned | |
564 | * strings / data must not be modified or freed. | |
565 | * | |
566 | * Interned strings are best used for short strings with high probability of | |
567 | * duplicates. | |
568 | * | |
569 | * Uses a hashmap to store the pool of interned strings. | |
570 | */ | |
571 | const void *memintern(const void *data, size_t len); | |
572 | static inline const char *strintern(const char *string) | |
573 | { | |
574 | return memintern(string, strlen(string)); | |
575 | } | |
576 | ||
577 | #endif |