]> git.ipfire.org Git - thirdparty/linux.git/blame_incremental - include/net/sock.h
Merge tag 'for-6.16-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[thirdparty/linux.git] / include / net / sock.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35#ifndef _SOCK_H
36#define _SOCK_H
37
38#include <linux/hardirq.h>
39#include <linux/kernel.h>
40#include <linux/list.h>
41#include <linux/list_nulls.h>
42#include <linux/timer.h>
43#include <linux/cache.h>
44#include <linux/bitops.h>
45#include <linux/lockdep.h>
46#include <linux/netdevice.h>
47#include <linux/skbuff.h> /* struct sk_buff */
48#include <linux/mm.h>
49#include <linux/security.h>
50#include <linux/slab.h>
51#include <linux/uaccess.h>
52#include <linux/page_counter.h>
53#include <linux/memcontrol.h>
54#include <linux/static_key.h>
55#include <linux/sched.h>
56#include <linux/wait.h>
57#include <linux/cgroup-defs.h>
58#include <linux/rbtree.h>
59#include <linux/rculist_nulls.h>
60#include <linux/poll.h>
61#include <linux/sockptr.h>
62#include <linux/indirect_call_wrapper.h>
63#include <linux/atomic.h>
64#include <linux/refcount.h>
65#include <linux/llist.h>
66#include <net/dst.h>
67#include <net/checksum.h>
68#include <net/tcp_states.h>
69#include <linux/net_tstamp.h>
70#include <net/l3mdev.h>
71#include <uapi/linux/socket.h>
72
73/*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79/* This is the per-socket lock. The spinlock provides a synchronization
80 * between user contexts and software interrupt processing, whereas the
81 * mini-semaphore synchronizes multiple users amongst themselves.
82 */
83typedef struct {
84 spinlock_t slock;
85 int owned;
86 wait_queue_head_t wq;
87 /*
88 * We express the mutex-alike socket_lock semantics
89 * to the lock validator by explicitly managing
90 * the slock as a lock variant (in addition to
91 * the slock itself):
92 */
93#ifdef CONFIG_DEBUG_LOCK_ALLOC
94 struct lockdep_map dep_map;
95#endif
96} socket_lock_t;
97
98struct sock;
99struct proto;
100struct net;
101
102typedef __u32 __bitwise __portpair;
103typedef __u64 __bitwise __addrpair;
104
105/**
106 * struct sock_common - minimal network layer representation of sockets
107 * @skc_daddr: Foreign IPv4 addr
108 * @skc_rcv_saddr: Bound local IPv4 addr
109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110 * @skc_hash: hash value used with various protocol lookup tables
111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
112 * @skc_dport: placeholder for inet_dport/tw_dport
113 * @skc_num: placeholder for inet_num/tw_num
114 * @skc_portpair: __u32 union of @skc_dport & @skc_num
115 * @skc_family: network address family
116 * @skc_state: Connection state
117 * @skc_reuse: %SO_REUSEADDR setting
118 * @skc_reuseport: %SO_REUSEPORT setting
119 * @skc_ipv6only: socket is IPV6 only
120 * @skc_net_refcnt: socket is using net ref counting
121 * @skc_bound_dev_if: bound device index if != 0
122 * @skc_bind_node: bind hash linkage for various protocol lookup tables
123 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124 * @skc_prot: protocol handlers inside a network family
125 * @skc_net: reference to the network namespace of this socket
126 * @skc_v6_daddr: IPV6 destination address
127 * @skc_v6_rcv_saddr: IPV6 source address
128 * @skc_cookie: socket's cookie value
129 * @skc_node: main hash linkage for various protocol lookup tables
130 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131 * @skc_tx_queue_mapping: tx queue number for this connection
132 * @skc_rx_queue_mapping: rx queue number for this connection
133 * @skc_flags: place holder for sk_flags
134 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136 * @skc_listener: connection request listener socket (aka rsk_listener)
137 * [union with @skc_flags]
138 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139 * [union with @skc_flags]
140 * @skc_incoming_cpu: record/match cpu processing incoming packets
141 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142 * [union with @skc_incoming_cpu]
143 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144 * [union with @skc_incoming_cpu]
145 * @skc_refcnt: reference count
146 *
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
149 */
150struct sock_common {
151 union {
152 __addrpair skc_addrpair;
153 struct {
154 __be32 skc_daddr;
155 __be32 skc_rcv_saddr;
156 };
157 };
158 union {
159 unsigned int skc_hash;
160 __u16 skc_u16hashes[2];
161 };
162 /* skc_dport && skc_num must be grouped as well */
163 union {
164 __portpair skc_portpair;
165 struct {
166 __be16 skc_dport;
167 __u16 skc_num;
168 };
169 };
170
171 unsigned short skc_family;
172 volatile unsigned char skc_state;
173 unsigned char skc_reuse:4;
174 unsigned char skc_reuseport:1;
175 unsigned char skc_ipv6only:1;
176 unsigned char skc_net_refcnt:1;
177 int skc_bound_dev_if;
178 union {
179 struct hlist_node skc_bind_node;
180 struct hlist_node skc_portaddr_node;
181 };
182 struct proto *skc_prot;
183 possible_net_t skc_net;
184
185#if IS_ENABLED(CONFIG_IPV6)
186 struct in6_addr skc_v6_daddr;
187 struct in6_addr skc_v6_rcv_saddr;
188#endif
189
190 atomic64_t skc_cookie;
191
192 /* following fields are padding to force
193 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194 * assuming IPV6 is enabled. We use this padding differently
195 * for different kind of 'sockets'
196 */
197 union {
198 unsigned long skc_flags;
199 struct sock *skc_listener; /* request_sock */
200 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201 };
202 /*
203 * fields between dontcopy_begin/dontcopy_end
204 * are not copied in sock_copy()
205 */
206 /* private: */
207 int skc_dontcopy_begin[0];
208 /* public: */
209 union {
210 struct hlist_node skc_node;
211 struct hlist_nulls_node skc_nulls_node;
212 };
213 unsigned short skc_tx_queue_mapping;
214#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215 unsigned short skc_rx_queue_mapping;
216#endif
217 union {
218 int skc_incoming_cpu;
219 u32 skc_rcv_wnd;
220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
221 };
222
223 refcount_t skc_refcnt;
224 /* private: */
225 int skc_dontcopy_end[0];
226 union {
227 u32 skc_rxhash;
228 u32 skc_window_clamp;
229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 };
231 /* public: */
232};
233
234struct bpf_local_storage;
235struct sk_filter;
236
237/**
238 * struct sock - network layer representation of sockets
239 * @__sk_common: shared layout with inet_timewait_sock
240 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242 * @sk_lock: synchronizer
243 * @sk_kern_sock: True if sock is using kernel lock classes
244 * @sk_rcvbuf: size of receive buffer in bytes
245 * @sk_wq: sock wait queue and async head
246 * @sk_rx_dst: receive input route used by early demux
247 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
249 * @sk_dst_cache: destination cache
250 * @sk_dst_pending_confirm: need to confirm neighbour
251 * @sk_policy: flow policy
252 * @sk_receive_queue: incoming packets
253 * @sk_wmem_alloc: transmit queue bytes committed
254 * @sk_tsq_flags: TCP Small Queues flags
255 * @sk_write_queue: Packet sending queue
256 * @sk_omem_alloc: "o" is "option" or "other"
257 * @sk_wmem_queued: persistent queue size
258 * @sk_forward_alloc: space allocated forward
259 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
260 * @sk_napi_id: id of the last napi context to receive data for sk
261 * @sk_ll_usec: usecs to busypoll when there is no data
262 * @sk_allocation: allocation mode
263 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
265 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266 * @sk_sndbuf: size of send buffer in bytes
267 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268 * @sk_no_check_rx: allow zero checksum in RX packets
269 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272 * @sk_gso_max_size: Maximum GSO segment size to build
273 * @sk_gso_max_segs: Maximum number of GSO segments
274 * @sk_pacing_shift: scaling factor for TCP Small Queues
275 * @sk_lingertime: %SO_LINGER l_linger setting
276 * @sk_backlog: always used with the per-socket spinlock held
277 * @sk_callback_lock: used with the callbacks in the end of this struct
278 * @sk_error_queue: rarely used
279 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280 * IPV6_ADDRFORM for instance)
281 * @sk_err: last error
282 * @sk_err_soft: errors that don't cause failure but are the cause of a
283 * persistent failure not just 'timed out'
284 * @sk_drops: raw/udp drops counter
285 * @sk_ack_backlog: current listen backlog
286 * @sk_max_ack_backlog: listen backlog set in listen()
287 * @sk_uid: user id of owner
288 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
289 * @sk_busy_poll_budget: napi processing budget when busypolling
290 * @sk_priority: %SO_PRIORITY setting
291 * @sk_type: socket type (%SOCK_STREAM, etc)
292 * @sk_protocol: which protocol this socket belongs in this network family
293 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
294 * @sk_peer_pid: &struct pid for this socket's peer
295 * @sk_peer_cred: %SO_PEERCRED setting
296 * @sk_rcvlowat: %SO_RCVLOWAT setting
297 * @sk_rcvtimeo: %SO_RCVTIMEO setting
298 * @sk_sndtimeo: %SO_SNDTIMEO setting
299 * @sk_txhash: computed flow hash for use on transmit
300 * @sk_txrehash: enable TX hash rethink
301 * @sk_filter: socket filtering instructions
302 * @sk_timer: sock cleanup timer
303 * @sk_stamp: time stamp of last packet received
304 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
305 * @sk_tsflags: SO_TIMESTAMPING flags
306 * @sk_bpf_cb_flags: used in bpf_setsockopt()
307 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
308 * Sockets that can be used under memory reclaim should
309 * set this to false.
310 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
311 * for timestamping
312 * @sk_tskey: counter to disambiguate concurrent tstamp requests
313 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
314 * @sk_socket: Identd and reporting IO signals
315 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
316 * @sk_frag: cached page frag
317 * @sk_peek_off: current peek_offset value
318 * @sk_send_head: front of stuff to transmit
319 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
320 * @sk_security: used by security modules
321 * @sk_mark: generic packet mark
322 * @sk_cgrp_data: cgroup data for this cgroup
323 * @sk_memcg: this socket's memory cgroup association
324 * @sk_write_pending: a write to stream socket waits to start
325 * @sk_disconnects: number of disconnect operations performed on this sock
326 * @sk_state_change: callback to indicate change in the state of the sock
327 * @sk_data_ready: callback to indicate there is data to be processed
328 * @sk_write_space: callback to indicate there is bf sending space available
329 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
330 * @sk_backlog_rcv: callback to process the backlog
331 * @sk_validate_xmit_skb: ptr to an optional validate function
332 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
333 * @sk_reuseport_cb: reuseport group container
334 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
335 * @sk_rcu: used during RCU grace period
336 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
337 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
338 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
339 * @sk_txtime_unused: unused txtime flags
340 * @sk_scm_recv_flags: all flags used by scm_recv()
341 * @sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS
342 * @sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY
343 * @sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD
344 * @sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS
345 * @sk_scm_unused: unused flags for scm_recv()
346 * @ns_tracker: tracker for netns reference
347 * @sk_user_frags: xarray of pages the user is holding a reference on.
348 * @sk_owner: reference to the real owner of the socket that calls
349 * sock_lock_init_class_and_name().
350 */
351struct sock {
352 /*
353 * Now struct inet_timewait_sock also uses sock_common, so please just
354 * don't add nothing before this first member (__sk_common) --acme
355 */
356 struct sock_common __sk_common;
357#define sk_node __sk_common.skc_node
358#define sk_nulls_node __sk_common.skc_nulls_node
359#define sk_refcnt __sk_common.skc_refcnt
360#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
361#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
362#define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
363#endif
364
365#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
366#define sk_dontcopy_end __sk_common.skc_dontcopy_end
367#define sk_hash __sk_common.skc_hash
368#define sk_portpair __sk_common.skc_portpair
369#define sk_num __sk_common.skc_num
370#define sk_dport __sk_common.skc_dport
371#define sk_addrpair __sk_common.skc_addrpair
372#define sk_daddr __sk_common.skc_daddr
373#define sk_rcv_saddr __sk_common.skc_rcv_saddr
374#define sk_family __sk_common.skc_family
375#define sk_state __sk_common.skc_state
376#define sk_reuse __sk_common.skc_reuse
377#define sk_reuseport __sk_common.skc_reuseport
378#define sk_ipv6only __sk_common.skc_ipv6only
379#define sk_net_refcnt __sk_common.skc_net_refcnt
380#define sk_bound_dev_if __sk_common.skc_bound_dev_if
381#define sk_bind_node __sk_common.skc_bind_node
382#define sk_prot __sk_common.skc_prot
383#define sk_net __sk_common.skc_net
384#define sk_v6_daddr __sk_common.skc_v6_daddr
385#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
386#define sk_cookie __sk_common.skc_cookie
387#define sk_incoming_cpu __sk_common.skc_incoming_cpu
388#define sk_flags __sk_common.skc_flags
389#define sk_rxhash __sk_common.skc_rxhash
390
391 __cacheline_group_begin(sock_write_rx);
392
393 atomic_t sk_drops;
394 __s32 sk_peek_off;
395 struct sk_buff_head sk_error_queue;
396 struct sk_buff_head sk_receive_queue;
397 /*
398 * The backlog queue is special, it is always used with
399 * the per-socket spinlock held and requires low latency
400 * access. Therefore we special case it's implementation.
401 * Note : rmem_alloc is in this structure to fill a hole
402 * on 64bit arches, not because its logically part of
403 * backlog.
404 */
405 struct {
406 atomic_t rmem_alloc;
407 int len;
408 struct sk_buff *head;
409 struct sk_buff *tail;
410 } sk_backlog;
411#define sk_rmem_alloc sk_backlog.rmem_alloc
412
413 __cacheline_group_end(sock_write_rx);
414
415 __cacheline_group_begin(sock_read_rx);
416 /* early demux fields */
417 struct dst_entry __rcu *sk_rx_dst;
418 int sk_rx_dst_ifindex;
419 u32 sk_rx_dst_cookie;
420
421#ifdef CONFIG_NET_RX_BUSY_POLL
422 unsigned int sk_ll_usec;
423 unsigned int sk_napi_id;
424 u16 sk_busy_poll_budget;
425 u8 sk_prefer_busy_poll;
426#endif
427 u8 sk_userlocks;
428 int sk_rcvbuf;
429
430 struct sk_filter __rcu *sk_filter;
431 union {
432 struct socket_wq __rcu *sk_wq;
433 /* private: */
434 struct socket_wq *sk_wq_raw;
435 /* public: */
436 };
437
438 void (*sk_data_ready)(struct sock *sk);
439 long sk_rcvtimeo;
440 int sk_rcvlowat;
441 __cacheline_group_end(sock_read_rx);
442
443 __cacheline_group_begin(sock_read_rxtx);
444 int sk_err;
445 struct socket *sk_socket;
446 struct mem_cgroup *sk_memcg;
447#ifdef CONFIG_XFRM
448 struct xfrm_policy __rcu *sk_policy[2];
449#endif
450 __cacheline_group_end(sock_read_rxtx);
451
452 __cacheline_group_begin(sock_write_rxtx);
453 socket_lock_t sk_lock;
454 u32 sk_reserved_mem;
455 int sk_forward_alloc;
456 u32 sk_tsflags;
457 __cacheline_group_end(sock_write_rxtx);
458
459 __cacheline_group_begin(sock_write_tx);
460 int sk_write_pending;
461 atomic_t sk_omem_alloc;
462 int sk_sndbuf;
463
464 int sk_wmem_queued;
465 refcount_t sk_wmem_alloc;
466 unsigned long sk_tsq_flags;
467 union {
468 struct sk_buff *sk_send_head;
469 struct rb_root tcp_rtx_queue;
470 };
471 struct sk_buff_head sk_write_queue;
472 u32 sk_dst_pending_confirm;
473 u32 sk_pacing_status; /* see enum sk_pacing */
474 struct page_frag sk_frag;
475 struct timer_list sk_timer;
476
477 unsigned long sk_pacing_rate; /* bytes per second */
478 atomic_t sk_zckey;
479 atomic_t sk_tskey;
480 __cacheline_group_end(sock_write_tx);
481
482 __cacheline_group_begin(sock_read_tx);
483 unsigned long sk_max_pacing_rate;
484 long sk_sndtimeo;
485 u32 sk_priority;
486 u32 sk_mark;
487 struct dst_entry __rcu *sk_dst_cache;
488 netdev_features_t sk_route_caps;
489#ifdef CONFIG_SOCK_VALIDATE_XMIT
490 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
491 struct net_device *dev,
492 struct sk_buff *skb);
493#endif
494 u16 sk_gso_type;
495 u16 sk_gso_max_segs;
496 unsigned int sk_gso_max_size;
497 gfp_t sk_allocation;
498 u32 sk_txhash;
499 u8 sk_pacing_shift;
500 bool sk_use_task_frag;
501 __cacheline_group_end(sock_read_tx);
502
503 /*
504 * Because of non atomicity rules, all
505 * changes are protected by socket lock.
506 */
507 u8 sk_gso_disabled : 1,
508 sk_kern_sock : 1,
509 sk_no_check_tx : 1,
510 sk_no_check_rx : 1;
511 u8 sk_shutdown;
512 u16 sk_type;
513 u16 sk_protocol;
514 unsigned long sk_lingertime;
515 struct proto *sk_prot_creator;
516 rwlock_t sk_callback_lock;
517 int sk_err_soft;
518 u32 sk_ack_backlog;
519 u32 sk_max_ack_backlog;
520 kuid_t sk_uid;
521 spinlock_t sk_peer_lock;
522 int sk_bind_phc;
523 struct pid *sk_peer_pid;
524 const struct cred *sk_peer_cred;
525
526 ktime_t sk_stamp;
527#if BITS_PER_LONG==32
528 seqlock_t sk_stamp_seq;
529#endif
530 int sk_disconnects;
531
532 union {
533 u8 sk_txrehash;
534 u8 sk_scm_recv_flags;
535 struct {
536 u8 sk_scm_credentials : 1,
537 sk_scm_security : 1,
538 sk_scm_pidfd : 1,
539 sk_scm_rights : 1,
540 sk_scm_unused : 4;
541 };
542 };
543 u8 sk_clockid;
544 u8 sk_txtime_deadline_mode : 1,
545 sk_txtime_report_errors : 1,
546 sk_txtime_unused : 6;
547#define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG))
548 u8 sk_bpf_cb_flags;
549
550 void *sk_user_data;
551#ifdef CONFIG_SECURITY
552 void *sk_security;
553#endif
554 struct sock_cgroup_data sk_cgrp_data;
555 void (*sk_state_change)(struct sock *sk);
556 void (*sk_write_space)(struct sock *sk);
557 void (*sk_error_report)(struct sock *sk);
558 int (*sk_backlog_rcv)(struct sock *sk,
559 struct sk_buff *skb);
560 void (*sk_destruct)(struct sock *sk);
561 struct sock_reuseport __rcu *sk_reuseport_cb;
562#ifdef CONFIG_BPF_SYSCALL
563 struct bpf_local_storage __rcu *sk_bpf_storage;
564#endif
565 struct rcu_head sk_rcu;
566 netns_tracker ns_tracker;
567 struct xarray sk_user_frags;
568
569#if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
570 struct module *sk_owner;
571#endif
572};
573
574struct sock_bh_locked {
575 struct sock *sock;
576 local_lock_t bh_lock;
577};
578
579enum sk_pacing {
580 SK_PACING_NONE = 0,
581 SK_PACING_NEEDED = 1,
582 SK_PACING_FQ = 2,
583};
584
585/* flag bits in sk_user_data
586 *
587 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
588 * not be suitable for copying when cloning the socket. For instance,
589 * it can point to a reference counted object. sk_user_data bottom
590 * bit is set if pointer must not be copied.
591 *
592 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
593 * managed/owned by a BPF reuseport array. This bit should be set
594 * when sk_user_data's sk is added to the bpf's reuseport_array.
595 *
596 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
597 * sk_user_data points to psock type. This bit should be set
598 * when sk_user_data is assigned to a psock object.
599 */
600#define SK_USER_DATA_NOCOPY 1UL
601#define SK_USER_DATA_BPF 2UL
602#define SK_USER_DATA_PSOCK 4UL
603#define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
604 SK_USER_DATA_PSOCK)
605
606/**
607 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
608 * @sk: socket
609 */
610static inline bool sk_user_data_is_nocopy(const struct sock *sk)
611{
612 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
613}
614
615#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
616
617/**
618 * __locked_read_sk_user_data_with_flags - return the pointer
619 * only if argument flags all has been set in sk_user_data. Otherwise
620 * return NULL
621 *
622 * @sk: socket
623 * @flags: flag bits
624 *
625 * The caller must be holding sk->sk_callback_lock.
626 */
627static inline void *
628__locked_read_sk_user_data_with_flags(const struct sock *sk,
629 uintptr_t flags)
630{
631 uintptr_t sk_user_data =
632 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
633 lockdep_is_held(&sk->sk_callback_lock));
634
635 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
636
637 if ((sk_user_data & flags) == flags)
638 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
639 return NULL;
640}
641
642/**
643 * __rcu_dereference_sk_user_data_with_flags - return the pointer
644 * only if argument flags all has been set in sk_user_data. Otherwise
645 * return NULL
646 *
647 * @sk: socket
648 * @flags: flag bits
649 */
650static inline void *
651__rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
652 uintptr_t flags)
653{
654 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
655
656 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
657
658 if ((sk_user_data & flags) == flags)
659 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
660 return NULL;
661}
662
663#define rcu_dereference_sk_user_data(sk) \
664 __rcu_dereference_sk_user_data_with_flags(sk, 0)
665#define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
666({ \
667 uintptr_t __tmp1 = (uintptr_t)(ptr), \
668 __tmp2 = (uintptr_t)(flags); \
669 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
670 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
671 rcu_assign_pointer(__sk_user_data((sk)), \
672 __tmp1 | __tmp2); \
673})
674#define rcu_assign_sk_user_data(sk, ptr) \
675 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
676
677static inline
678struct net *sock_net(const struct sock *sk)
679{
680 return read_pnet(&sk->sk_net);
681}
682
683static inline
684void sock_net_set(struct sock *sk, struct net *net)
685{
686 write_pnet(&sk->sk_net, net);
687}
688
689/*
690 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
691 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
692 * on a socket means that the socket will reuse everybody else's port
693 * without looking at the other's sk_reuse value.
694 */
695
696#define SK_NO_REUSE 0
697#define SK_CAN_REUSE 1
698#define SK_FORCE_REUSE 2
699
700int sk_set_peek_off(struct sock *sk, int val);
701
702static inline int sk_peek_offset(const struct sock *sk, int flags)
703{
704 if (unlikely(flags & MSG_PEEK)) {
705 return READ_ONCE(sk->sk_peek_off);
706 }
707
708 return 0;
709}
710
711static inline void sk_peek_offset_bwd(struct sock *sk, int val)
712{
713 s32 off = READ_ONCE(sk->sk_peek_off);
714
715 if (unlikely(off >= 0)) {
716 off = max_t(s32, off - val, 0);
717 WRITE_ONCE(sk->sk_peek_off, off);
718 }
719}
720
721static inline void sk_peek_offset_fwd(struct sock *sk, int val)
722{
723 sk_peek_offset_bwd(sk, -val);
724}
725
726/*
727 * Hashed lists helper routines
728 */
729static inline struct sock *sk_entry(const struct hlist_node *node)
730{
731 return hlist_entry(node, struct sock, sk_node);
732}
733
734static inline struct sock *__sk_head(const struct hlist_head *head)
735{
736 return hlist_entry(head->first, struct sock, sk_node);
737}
738
739static inline struct sock *sk_head(const struct hlist_head *head)
740{
741 return hlist_empty(head) ? NULL : __sk_head(head);
742}
743
744static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
745{
746 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
747}
748
749static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
750{
751 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
752}
753
754static inline struct sock *sk_next(const struct sock *sk)
755{
756 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
757}
758
759static inline struct sock *sk_nulls_next(const struct sock *sk)
760{
761 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
762 hlist_nulls_entry(sk->sk_nulls_node.next,
763 struct sock, sk_nulls_node) :
764 NULL;
765}
766
767static inline bool sk_unhashed(const struct sock *sk)
768{
769 return hlist_unhashed(&sk->sk_node);
770}
771
772static inline bool sk_hashed(const struct sock *sk)
773{
774 return !sk_unhashed(sk);
775}
776
777static inline void sk_node_init(struct hlist_node *node)
778{
779 node->pprev = NULL;
780}
781
782static inline void __sk_del_node(struct sock *sk)
783{
784 __hlist_del(&sk->sk_node);
785}
786
787/* NB: equivalent to hlist_del_init_rcu */
788static inline bool __sk_del_node_init(struct sock *sk)
789{
790 if (sk_hashed(sk)) {
791 __sk_del_node(sk);
792 sk_node_init(&sk->sk_node);
793 return true;
794 }
795 return false;
796}
797
798/* Grab socket reference count. This operation is valid only
799 when sk is ALREADY grabbed f.e. it is found in hash table
800 or a list and the lookup is made under lock preventing hash table
801 modifications.
802 */
803
804static __always_inline void sock_hold(struct sock *sk)
805{
806 refcount_inc(&sk->sk_refcnt);
807}
808
809/* Ungrab socket in the context, which assumes that socket refcnt
810 cannot hit zero, f.e. it is true in context of any socketcall.
811 */
812static __always_inline void __sock_put(struct sock *sk)
813{
814 refcount_dec(&sk->sk_refcnt);
815}
816
817static inline bool sk_del_node_init(struct sock *sk)
818{
819 bool rc = __sk_del_node_init(sk);
820
821 if (rc) {
822 /* paranoid for a while -acme */
823 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
824 __sock_put(sk);
825 }
826 return rc;
827}
828#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
829
830static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
831{
832 if (sk_hashed(sk)) {
833 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
834 return true;
835 }
836 return false;
837}
838
839static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
840{
841 bool rc = __sk_nulls_del_node_init_rcu(sk);
842
843 if (rc) {
844 /* paranoid for a while -acme */
845 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
846 __sock_put(sk);
847 }
848 return rc;
849}
850
851static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
852{
853 hlist_add_head(&sk->sk_node, list);
854}
855
856static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
857{
858 sock_hold(sk);
859 __sk_add_node(sk, list);
860}
861
862static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
863{
864 sock_hold(sk);
865 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
866 sk->sk_family == AF_INET6)
867 hlist_add_tail_rcu(&sk->sk_node, list);
868 else
869 hlist_add_head_rcu(&sk->sk_node, list);
870}
871
872static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
873{
874 sock_hold(sk);
875 hlist_add_tail_rcu(&sk->sk_node, list);
876}
877
878static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
879{
880 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
881}
882
883static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
884{
885 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
886}
887
888static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
889{
890 sock_hold(sk);
891 __sk_nulls_add_node_rcu(sk, list);
892}
893
894static inline void __sk_del_bind_node(struct sock *sk)
895{
896 __hlist_del(&sk->sk_bind_node);
897}
898
899static inline void sk_add_bind_node(struct sock *sk,
900 struct hlist_head *list)
901{
902 hlist_add_head(&sk->sk_bind_node, list);
903}
904
905#define sk_for_each(__sk, list) \
906 hlist_for_each_entry(__sk, list, sk_node)
907#define sk_for_each_rcu(__sk, list) \
908 hlist_for_each_entry_rcu(__sk, list, sk_node)
909#define sk_nulls_for_each(__sk, node, list) \
910 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
911#define sk_nulls_for_each_rcu(__sk, node, list) \
912 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
913#define sk_for_each_from(__sk) \
914 hlist_for_each_entry_from(__sk, sk_node)
915#define sk_nulls_for_each_from(__sk, node) \
916 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
917 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
918#define sk_for_each_safe(__sk, tmp, list) \
919 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
920#define sk_for_each_bound(__sk, list) \
921 hlist_for_each_entry(__sk, list, sk_bind_node)
922#define sk_for_each_bound_safe(__sk, tmp, list) \
923 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node)
924
925/**
926 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
927 * @tpos: the type * to use as a loop cursor.
928 * @pos: the &struct hlist_node to use as a loop cursor.
929 * @head: the head for your list.
930 * @offset: offset of hlist_node within the struct.
931 *
932 */
933#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
934 for (pos = rcu_dereference(hlist_first_rcu(head)); \
935 pos != NULL && \
936 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
937 pos = rcu_dereference(hlist_next_rcu(pos)))
938
939static inline struct user_namespace *sk_user_ns(const struct sock *sk)
940{
941 /* Careful only use this in a context where these parameters
942 * can not change and must all be valid, such as recvmsg from
943 * userspace.
944 */
945 return sk->sk_socket->file->f_cred->user_ns;
946}
947
948/* Sock flags */
949enum sock_flags {
950 SOCK_DEAD,
951 SOCK_DONE,
952 SOCK_URGINLINE,
953 SOCK_KEEPOPEN,
954 SOCK_LINGER,
955 SOCK_DESTROY,
956 SOCK_BROADCAST,
957 SOCK_TIMESTAMP,
958 SOCK_ZAPPED,
959 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
960 SOCK_DBG, /* %SO_DEBUG setting */
961 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
962 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
963 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
964 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
965 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
966 SOCK_FASYNC, /* fasync() active */
967 SOCK_RXQ_OVFL,
968 SOCK_ZEROCOPY, /* buffers from userspace */
969 SOCK_WIFI_STATUS, /* push wifi status to userspace */
970 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
971 * Will use last 4 bytes of packet sent from
972 * user-space instead.
973 */
974 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
975 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
976 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
977 SOCK_TXTIME,
978 SOCK_XDP, /* XDP is attached */
979 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
980 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
981 SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */
982 SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */
983};
984
985#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
986/*
987 * The highest bit of sk_tsflags is reserved for kernel-internal
988 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that
989 * SOF_TIMESTAMPING* values do not reach this reserved area
990 */
991#define SOCKCM_FLAG_TS_OPT_ID BIT(31)
992
993static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
994{
995 nsk->sk_flags = osk->sk_flags;
996}
997
998static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
999{
1000 __set_bit(flag, &sk->sk_flags);
1001}
1002
1003static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
1004{
1005 __clear_bit(flag, &sk->sk_flags);
1006}
1007
1008static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
1009 int valbool)
1010{
1011 if (valbool)
1012 sock_set_flag(sk, bit);
1013 else
1014 sock_reset_flag(sk, bit);
1015}
1016
1017static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
1018{
1019 return test_bit(flag, &sk->sk_flags);
1020}
1021
1022#ifdef CONFIG_NET
1023DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
1024static inline int sk_memalloc_socks(void)
1025{
1026 return static_branch_unlikely(&memalloc_socks_key);
1027}
1028
1029void __receive_sock(struct file *file);
1030#else
1031
1032static inline int sk_memalloc_socks(void)
1033{
1034 return 0;
1035}
1036
1037static inline void __receive_sock(struct file *file)
1038{ }
1039#endif
1040
1041static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1042{
1043 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1044}
1045
1046static inline void sk_acceptq_removed(struct sock *sk)
1047{
1048 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1049}
1050
1051static inline void sk_acceptq_added(struct sock *sk)
1052{
1053 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1054}
1055
1056/* Note: If you think the test should be:
1057 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1058 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1059 */
1060static inline bool sk_acceptq_is_full(const struct sock *sk)
1061{
1062 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1063}
1064
1065/*
1066 * Compute minimal free write space needed to queue new packets.
1067 */
1068static inline int sk_stream_min_wspace(const struct sock *sk)
1069{
1070 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1071}
1072
1073static inline int sk_stream_wspace(const struct sock *sk)
1074{
1075 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1076}
1077
1078static inline void sk_wmem_queued_add(struct sock *sk, int val)
1079{
1080 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1081}
1082
1083static inline void sk_forward_alloc_add(struct sock *sk, int val)
1084{
1085 /* Paired with lockless reads of sk->sk_forward_alloc */
1086 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1087}
1088
1089void sk_stream_write_space(struct sock *sk);
1090
1091/* OOB backlog add */
1092static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1093{
1094 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1095 skb_dst_force(skb);
1096
1097 if (!sk->sk_backlog.tail)
1098 WRITE_ONCE(sk->sk_backlog.head, skb);
1099 else
1100 sk->sk_backlog.tail->next = skb;
1101
1102 WRITE_ONCE(sk->sk_backlog.tail, skb);
1103 skb->next = NULL;
1104}
1105
1106/*
1107 * Take into account size of receive queue and backlog queue
1108 * Do not take into account this skb truesize,
1109 * to allow even a single big packet to come.
1110 */
1111static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1112{
1113 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1114
1115 return qsize > limit;
1116}
1117
1118/* The per-socket spinlock must be held here. */
1119static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1120 unsigned int limit)
1121{
1122 if (sk_rcvqueues_full(sk, limit))
1123 return -ENOBUFS;
1124
1125 /*
1126 * If the skb was allocated from pfmemalloc reserves, only
1127 * allow SOCK_MEMALLOC sockets to use it as this socket is
1128 * helping free memory
1129 */
1130 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1131 return -ENOMEM;
1132
1133 __sk_add_backlog(sk, skb);
1134 sk->sk_backlog.len += skb->truesize;
1135 return 0;
1136}
1137
1138int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1139
1140INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1141INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1142
1143static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1144{
1145 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1146 return __sk_backlog_rcv(sk, skb);
1147
1148 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1149 tcp_v6_do_rcv,
1150 tcp_v4_do_rcv,
1151 sk, skb);
1152}
1153
1154static inline void sk_incoming_cpu_update(struct sock *sk)
1155{
1156 int cpu = raw_smp_processor_id();
1157
1158 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1159 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1160}
1161
1162
1163static inline void sock_rps_save_rxhash(struct sock *sk,
1164 const struct sk_buff *skb)
1165{
1166#ifdef CONFIG_RPS
1167 /* The following WRITE_ONCE() is paired with the READ_ONCE()
1168 * here, and another one in sock_rps_record_flow().
1169 */
1170 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1171 WRITE_ONCE(sk->sk_rxhash, skb->hash);
1172#endif
1173}
1174
1175static inline void sock_rps_reset_rxhash(struct sock *sk)
1176{
1177#ifdef CONFIG_RPS
1178 /* Paired with READ_ONCE() in sock_rps_record_flow() */
1179 WRITE_ONCE(sk->sk_rxhash, 0);
1180#endif
1181}
1182
1183#define sk_wait_event(__sk, __timeo, __condition, __wait) \
1184 ({ int __rc, __dis = __sk->sk_disconnects; \
1185 release_sock(__sk); \
1186 __rc = __condition; \
1187 if (!__rc) { \
1188 *(__timeo) = wait_woken(__wait, \
1189 TASK_INTERRUPTIBLE, \
1190 *(__timeo)); \
1191 } \
1192 sched_annotate_sleep(); \
1193 lock_sock(__sk); \
1194 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1195 __rc; \
1196 })
1197
1198int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1199int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1200void sk_stream_wait_close(struct sock *sk, long timeo_p);
1201int sk_stream_error(struct sock *sk, int flags, int err);
1202void sk_stream_kill_queues(struct sock *sk);
1203void sk_set_memalloc(struct sock *sk);
1204void sk_clear_memalloc(struct sock *sk);
1205
1206void __sk_flush_backlog(struct sock *sk);
1207
1208static inline bool sk_flush_backlog(struct sock *sk)
1209{
1210 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1211 __sk_flush_backlog(sk);
1212 return true;
1213 }
1214 return false;
1215}
1216
1217int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1218
1219struct request_sock_ops;
1220struct timewait_sock_ops;
1221struct inet_hashinfo;
1222struct raw_hashinfo;
1223struct smc_hashinfo;
1224struct module;
1225struct sk_psock;
1226
1227/*
1228 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1229 * un-modified. Special care is taken when initializing object to zero.
1230 */
1231static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1232{
1233 if (offsetof(struct sock, sk_node.next) != 0)
1234 memset(sk, 0, offsetof(struct sock, sk_node.next));
1235 memset(&sk->sk_node.pprev, 0,
1236 size - offsetof(struct sock, sk_node.pprev));
1237}
1238
1239struct proto_accept_arg {
1240 int flags;
1241 int err;
1242 int is_empty;
1243 bool kern;
1244};
1245
1246/* Networking protocol blocks we attach to sockets.
1247 * socket layer -> transport layer interface
1248 */
1249struct proto {
1250 void (*close)(struct sock *sk,
1251 long timeout);
1252 int (*pre_connect)(struct sock *sk,
1253 struct sockaddr *uaddr,
1254 int addr_len);
1255 int (*connect)(struct sock *sk,
1256 struct sockaddr *uaddr,
1257 int addr_len);
1258 int (*disconnect)(struct sock *sk, int flags);
1259
1260 struct sock * (*accept)(struct sock *sk,
1261 struct proto_accept_arg *arg);
1262
1263 int (*ioctl)(struct sock *sk, int cmd,
1264 int *karg);
1265 int (*init)(struct sock *sk);
1266 void (*destroy)(struct sock *sk);
1267 void (*shutdown)(struct sock *sk, int how);
1268 int (*setsockopt)(struct sock *sk, int level,
1269 int optname, sockptr_t optval,
1270 unsigned int optlen);
1271 int (*getsockopt)(struct sock *sk, int level,
1272 int optname, char __user *optval,
1273 int __user *option);
1274 void (*keepalive)(struct sock *sk, int valbool);
1275#ifdef CONFIG_COMPAT
1276 int (*compat_ioctl)(struct sock *sk,
1277 unsigned int cmd, unsigned long arg);
1278#endif
1279 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1280 size_t len);
1281 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1282 size_t len, int flags, int *addr_len);
1283 void (*splice_eof)(struct socket *sock);
1284 int (*bind)(struct sock *sk,
1285 struct sockaddr *addr, int addr_len);
1286 int (*bind_add)(struct sock *sk,
1287 struct sockaddr *addr, int addr_len);
1288
1289 int (*backlog_rcv) (struct sock *sk,
1290 struct sk_buff *skb);
1291 bool (*bpf_bypass_getsockopt)(int level,
1292 int optname);
1293
1294 void (*release_cb)(struct sock *sk);
1295
1296 /* Keeping track of sk's, looking them up, and port selection methods. */
1297 int (*hash)(struct sock *sk);
1298 void (*unhash)(struct sock *sk);
1299 void (*rehash)(struct sock *sk);
1300 int (*get_port)(struct sock *sk, unsigned short snum);
1301 void (*put_port)(struct sock *sk);
1302#ifdef CONFIG_BPF_SYSCALL
1303 int (*psock_update_sk_prot)(struct sock *sk,
1304 struct sk_psock *psock,
1305 bool restore);
1306#endif
1307
1308 /* Keeping track of sockets in use */
1309#ifdef CONFIG_PROC_FS
1310 unsigned int inuse_idx;
1311#endif
1312
1313 bool (*stream_memory_free)(const struct sock *sk, int wake);
1314 bool (*sock_is_readable)(struct sock *sk);
1315 /* Memory pressure */
1316 void (*enter_memory_pressure)(struct sock *sk);
1317 void (*leave_memory_pressure)(struct sock *sk);
1318 atomic_long_t *memory_allocated; /* Current allocated memory. */
1319 int __percpu *per_cpu_fw_alloc;
1320 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1321
1322 /*
1323 * Pressure flag: try to collapse.
1324 * Technical note: it is used by multiple contexts non atomically.
1325 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1326 * All the __sk_mem_schedule() is of this nature: accounting
1327 * is strict, actions are advisory and have some latency.
1328 */
1329 unsigned long *memory_pressure;
1330 long *sysctl_mem;
1331
1332 int *sysctl_wmem;
1333 int *sysctl_rmem;
1334 u32 sysctl_wmem_offset;
1335 u32 sysctl_rmem_offset;
1336
1337 int max_header;
1338 bool no_autobind;
1339
1340 struct kmem_cache *slab;
1341 unsigned int obj_size;
1342 unsigned int ipv6_pinfo_offset;
1343 slab_flags_t slab_flags;
1344 unsigned int useroffset; /* Usercopy region offset */
1345 unsigned int usersize; /* Usercopy region size */
1346
1347 unsigned int __percpu *orphan_count;
1348
1349 struct request_sock_ops *rsk_prot;
1350 struct timewait_sock_ops *twsk_prot;
1351
1352 union {
1353 struct inet_hashinfo *hashinfo;
1354 struct udp_table *udp_table;
1355 struct raw_hashinfo *raw_hash;
1356 struct smc_hashinfo *smc_hash;
1357 } h;
1358
1359 struct module *owner;
1360
1361 char name[32];
1362
1363 struct list_head node;
1364 int (*diag_destroy)(struct sock *sk, int err);
1365} __randomize_layout;
1366
1367int proto_register(struct proto *prot, int alloc_slab);
1368void proto_unregister(struct proto *prot);
1369int sock_load_diag_module(int family, int protocol);
1370
1371INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1372
1373static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1374{
1375 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1376 return false;
1377
1378 return sk->sk_prot->stream_memory_free ?
1379 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1380 tcp_stream_memory_free, sk, wake) : true;
1381}
1382
1383static inline bool sk_stream_memory_free(const struct sock *sk)
1384{
1385 return __sk_stream_memory_free(sk, 0);
1386}
1387
1388static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1389{
1390 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1391 __sk_stream_memory_free(sk, wake);
1392}
1393
1394static inline bool sk_stream_is_writeable(const struct sock *sk)
1395{
1396 return __sk_stream_is_writeable(sk, 0);
1397}
1398
1399static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1400 struct cgroup *ancestor)
1401{
1402#ifdef CONFIG_SOCK_CGROUP_DATA
1403 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1404 ancestor);
1405#else
1406 return -ENOTSUPP;
1407#endif
1408}
1409
1410#define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1411
1412static inline void sk_sockets_allocated_dec(struct sock *sk)
1413{
1414 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1415 SK_ALLOC_PERCPU_COUNTER_BATCH);
1416}
1417
1418static inline void sk_sockets_allocated_inc(struct sock *sk)
1419{
1420 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1421 SK_ALLOC_PERCPU_COUNTER_BATCH);
1422}
1423
1424static inline u64
1425sk_sockets_allocated_read_positive(struct sock *sk)
1426{
1427 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1428}
1429
1430static inline int
1431proto_sockets_allocated_sum_positive(struct proto *prot)
1432{
1433 return percpu_counter_sum_positive(prot->sockets_allocated);
1434}
1435
1436#ifdef CONFIG_PROC_FS
1437#define PROTO_INUSE_NR 64 /* should be enough for the first time */
1438struct prot_inuse {
1439 int all;
1440 int val[PROTO_INUSE_NR];
1441};
1442
1443static inline void sock_prot_inuse_add(const struct net *net,
1444 const struct proto *prot, int val)
1445{
1446 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1447}
1448
1449static inline void sock_inuse_add(const struct net *net, int val)
1450{
1451 this_cpu_add(net->core.prot_inuse->all, val);
1452}
1453
1454int sock_prot_inuse_get(struct net *net, struct proto *proto);
1455int sock_inuse_get(struct net *net);
1456#else
1457static inline void sock_prot_inuse_add(const struct net *net,
1458 const struct proto *prot, int val)
1459{
1460}
1461
1462static inline void sock_inuse_add(const struct net *net, int val)
1463{
1464}
1465#endif
1466
1467
1468/* With per-bucket locks this operation is not-atomic, so that
1469 * this version is not worse.
1470 */
1471static inline int __sk_prot_rehash(struct sock *sk)
1472{
1473 sk->sk_prot->unhash(sk);
1474 return sk->sk_prot->hash(sk);
1475}
1476
1477/* About 10 seconds */
1478#define SOCK_DESTROY_TIME (10*HZ)
1479
1480/* Sockets 0-1023 can't be bound to unless you are superuser */
1481#define PROT_SOCK 1024
1482
1483#define SHUTDOWN_MASK 3
1484#define RCV_SHUTDOWN 1
1485#define SEND_SHUTDOWN 2
1486
1487#define SOCK_BINDADDR_LOCK 4
1488#define SOCK_BINDPORT_LOCK 8
1489
1490struct socket_alloc {
1491 struct socket socket;
1492 struct inode vfs_inode;
1493};
1494
1495static inline struct socket *SOCKET_I(struct inode *inode)
1496{
1497 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1498}
1499
1500static inline struct inode *SOCK_INODE(struct socket *socket)
1501{
1502 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1503}
1504
1505/*
1506 * Functions for memory accounting
1507 */
1508int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1509int __sk_mem_schedule(struct sock *sk, int size, int kind);
1510void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1511void __sk_mem_reclaim(struct sock *sk, int amount);
1512
1513#define SK_MEM_SEND 0
1514#define SK_MEM_RECV 1
1515
1516/* sysctl_mem values are in pages */
1517static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1518{
1519 return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1520}
1521
1522static inline int sk_mem_pages(int amt)
1523{
1524 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1525}
1526
1527static inline bool sk_has_account(struct sock *sk)
1528{
1529 /* return true if protocol supports memory accounting */
1530 return !!sk->sk_prot->memory_allocated;
1531}
1532
1533static inline bool sk_wmem_schedule(struct sock *sk, int size)
1534{
1535 int delta;
1536
1537 if (!sk_has_account(sk))
1538 return true;
1539 delta = size - sk->sk_forward_alloc;
1540 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1541}
1542
1543static inline bool
1544__sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc)
1545{
1546 int delta;
1547
1548 if (!sk_has_account(sk))
1549 return true;
1550 delta = size - sk->sk_forward_alloc;
1551 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1552 pfmemalloc;
1553}
1554
1555static inline bool
1556sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1557{
1558 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb));
1559}
1560
1561static inline int sk_unused_reserved_mem(const struct sock *sk)
1562{
1563 int unused_mem;
1564
1565 if (likely(!sk->sk_reserved_mem))
1566 return 0;
1567
1568 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1569 atomic_read(&sk->sk_rmem_alloc);
1570
1571 return unused_mem > 0 ? unused_mem : 0;
1572}
1573
1574static inline void sk_mem_reclaim(struct sock *sk)
1575{
1576 int reclaimable;
1577
1578 if (!sk_has_account(sk))
1579 return;
1580
1581 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1582
1583 if (reclaimable >= (int)PAGE_SIZE)
1584 __sk_mem_reclaim(sk, reclaimable);
1585}
1586
1587static inline void sk_mem_reclaim_final(struct sock *sk)
1588{
1589 sk->sk_reserved_mem = 0;
1590 sk_mem_reclaim(sk);
1591}
1592
1593static inline void sk_mem_charge(struct sock *sk, int size)
1594{
1595 if (!sk_has_account(sk))
1596 return;
1597 sk_forward_alloc_add(sk, -size);
1598}
1599
1600static inline void sk_mem_uncharge(struct sock *sk, int size)
1601{
1602 if (!sk_has_account(sk))
1603 return;
1604 sk_forward_alloc_add(sk, size);
1605 sk_mem_reclaim(sk);
1606}
1607
1608#if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
1609static inline void sk_owner_set(struct sock *sk, struct module *owner)
1610{
1611 __module_get(owner);
1612 sk->sk_owner = owner;
1613}
1614
1615static inline void sk_owner_clear(struct sock *sk)
1616{
1617 sk->sk_owner = NULL;
1618}
1619
1620static inline void sk_owner_put(struct sock *sk)
1621{
1622 module_put(sk->sk_owner);
1623}
1624#else
1625static inline void sk_owner_set(struct sock *sk, struct module *owner)
1626{
1627}
1628
1629static inline void sk_owner_clear(struct sock *sk)
1630{
1631}
1632
1633static inline void sk_owner_put(struct sock *sk)
1634{
1635}
1636#endif
1637/*
1638 * Macro so as to not evaluate some arguments when
1639 * lockdep is not enabled.
1640 *
1641 * Mark both the sk_lock and the sk_lock.slock as a
1642 * per-address-family lock class.
1643 */
1644#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1645do { \
1646 sk_owner_set(sk, THIS_MODULE); \
1647 sk->sk_lock.owned = 0; \
1648 init_waitqueue_head(&sk->sk_lock.wq); \
1649 spin_lock_init(&(sk)->sk_lock.slock); \
1650 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1651 sizeof((sk)->sk_lock)); \
1652 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1653 (skey), (sname)); \
1654 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1655} while (0)
1656
1657static inline bool lockdep_sock_is_held(const struct sock *sk)
1658{
1659 return lockdep_is_held(&sk->sk_lock) ||
1660 lockdep_is_held(&sk->sk_lock.slock);
1661}
1662
1663void lock_sock_nested(struct sock *sk, int subclass);
1664
1665static inline void lock_sock(struct sock *sk)
1666{
1667 lock_sock_nested(sk, 0);
1668}
1669
1670void __lock_sock(struct sock *sk);
1671void __release_sock(struct sock *sk);
1672void release_sock(struct sock *sk);
1673
1674/* BH context may only use the following locking interface. */
1675#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1676#define bh_lock_sock_nested(__sk) \
1677 spin_lock_nested(&((__sk)->sk_lock.slock), \
1678 SINGLE_DEPTH_NESTING)
1679#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1680
1681bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1682
1683/**
1684 * lock_sock_fast - fast version of lock_sock
1685 * @sk: socket
1686 *
1687 * This version should be used for very small section, where process won't block
1688 * return false if fast path is taken:
1689 *
1690 * sk_lock.slock locked, owned = 0, BH disabled
1691 *
1692 * return true if slow path is taken:
1693 *
1694 * sk_lock.slock unlocked, owned = 1, BH enabled
1695 */
1696static inline bool lock_sock_fast(struct sock *sk)
1697{
1698 /* The sk_lock has mutex_lock() semantics here. */
1699 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1700
1701 return __lock_sock_fast(sk);
1702}
1703
1704/* fast socket lock variant for caller already holding a [different] socket lock */
1705static inline bool lock_sock_fast_nested(struct sock *sk)
1706{
1707 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1708
1709 return __lock_sock_fast(sk);
1710}
1711
1712/**
1713 * unlock_sock_fast - complement of lock_sock_fast
1714 * @sk: socket
1715 * @slow: slow mode
1716 *
1717 * fast unlock socket for user context.
1718 * If slow mode is on, we call regular release_sock()
1719 */
1720static inline void unlock_sock_fast(struct sock *sk, bool slow)
1721 __releases(&sk->sk_lock.slock)
1722{
1723 if (slow) {
1724 release_sock(sk);
1725 __release(&sk->sk_lock.slock);
1726 } else {
1727 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1728 spin_unlock_bh(&sk->sk_lock.slock);
1729 }
1730}
1731
1732void sockopt_lock_sock(struct sock *sk);
1733void sockopt_release_sock(struct sock *sk);
1734bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1735bool sockopt_capable(int cap);
1736
1737/* Used by processes to "lock" a socket state, so that
1738 * interrupts and bottom half handlers won't change it
1739 * from under us. It essentially blocks any incoming
1740 * packets, so that we won't get any new data or any
1741 * packets that change the state of the socket.
1742 *
1743 * While locked, BH processing will add new packets to
1744 * the backlog queue. This queue is processed by the
1745 * owner of the socket lock right before it is released.
1746 *
1747 * Since ~2.3.5 it is also exclusive sleep lock serializing
1748 * accesses from user process context.
1749 */
1750
1751static inline void sock_owned_by_me(const struct sock *sk)
1752{
1753#ifdef CONFIG_LOCKDEP
1754 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1755#endif
1756}
1757
1758static inline void sock_not_owned_by_me(const struct sock *sk)
1759{
1760#ifdef CONFIG_LOCKDEP
1761 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1762#endif
1763}
1764
1765static inline bool sock_owned_by_user(const struct sock *sk)
1766{
1767 sock_owned_by_me(sk);
1768 return sk->sk_lock.owned;
1769}
1770
1771static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1772{
1773 return sk->sk_lock.owned;
1774}
1775
1776static inline void sock_release_ownership(struct sock *sk)
1777{
1778 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1779 sk->sk_lock.owned = 0;
1780
1781 /* The sk_lock has mutex_unlock() semantics: */
1782 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1783}
1784
1785/* no reclassification while locks are held */
1786static inline bool sock_allow_reclassification(const struct sock *csk)
1787{
1788 struct sock *sk = (struct sock *)csk;
1789
1790 return !sock_owned_by_user_nocheck(sk) &&
1791 !spin_is_locked(&sk->sk_lock.slock);
1792}
1793
1794struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1795 struct proto *prot, int kern);
1796void sk_free(struct sock *sk);
1797void sk_net_refcnt_upgrade(struct sock *sk);
1798void sk_destruct(struct sock *sk);
1799struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1800
1801struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1802 gfp_t priority);
1803void __sock_wfree(struct sk_buff *skb);
1804void sock_wfree(struct sk_buff *skb);
1805struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1806 gfp_t priority);
1807void skb_orphan_partial(struct sk_buff *skb);
1808void sock_rfree(struct sk_buff *skb);
1809void sock_efree(struct sk_buff *skb);
1810#ifdef CONFIG_INET
1811void sock_edemux(struct sk_buff *skb);
1812void sock_pfree(struct sk_buff *skb);
1813
1814static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk)
1815{
1816 skb_orphan(skb);
1817 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1818 skb->sk = sk;
1819 skb->destructor = sock_edemux;
1820 }
1821}
1822#else
1823#define sock_edemux sock_efree
1824#endif
1825
1826int sk_setsockopt(struct sock *sk, int level, int optname,
1827 sockptr_t optval, unsigned int optlen);
1828int sock_setsockopt(struct socket *sock, int level, int op,
1829 sockptr_t optval, unsigned int optlen);
1830int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1831 int optname, sockptr_t optval, int optlen);
1832int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1833 int optname, sockptr_t optval, sockptr_t optlen);
1834
1835int sk_getsockopt(struct sock *sk, int level, int optname,
1836 sockptr_t optval, sockptr_t optlen);
1837int sock_gettstamp(struct socket *sock, void __user *userstamp,
1838 bool timeval, bool time32);
1839struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1840 unsigned long data_len, int noblock,
1841 int *errcode, int max_page_order);
1842
1843static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1844 unsigned long size,
1845 int noblock, int *errcode)
1846{
1847 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1848}
1849
1850void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1851void *sock_kmemdup(struct sock *sk, const void *src,
1852 int size, gfp_t priority);
1853void sock_kfree_s(struct sock *sk, void *mem, int size);
1854void sock_kzfree_s(struct sock *sk, void *mem, int size);
1855void sk_send_sigurg(struct sock *sk);
1856
1857static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1858{
1859 if (sk->sk_socket)
1860 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1861 WRITE_ONCE(sk->sk_prot, proto);
1862}
1863
1864struct sockcm_cookie {
1865 u64 transmit_time;
1866 u32 mark;
1867 u32 tsflags;
1868 u32 ts_opt_id;
1869 u32 priority;
1870 u32 dmabuf_id;
1871};
1872
1873static inline void sockcm_init(struct sockcm_cookie *sockc,
1874 const struct sock *sk)
1875{
1876 *sockc = (struct sockcm_cookie) {
1877 .mark = READ_ONCE(sk->sk_mark),
1878 .tsflags = READ_ONCE(sk->sk_tsflags),
1879 .priority = READ_ONCE(sk->sk_priority),
1880 };
1881}
1882
1883int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1884 struct sockcm_cookie *sockc);
1885int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1886 struct sockcm_cookie *sockc);
1887
1888/*
1889 * Functions to fill in entries in struct proto_ops when a protocol
1890 * does not implement a particular function.
1891 */
1892int sock_no_bind(struct socket *, struct sockaddr *, int);
1893int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1894int sock_no_socketpair(struct socket *, struct socket *);
1895int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
1896int sock_no_getname(struct socket *, struct sockaddr *, int);
1897int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1898int sock_no_listen(struct socket *, int);
1899int sock_no_shutdown(struct socket *, int);
1900int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1901int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1902int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1903int sock_no_mmap(struct file *file, struct socket *sock,
1904 struct vm_area_struct *vma);
1905
1906/*
1907 * Functions to fill in entries in struct proto_ops when a protocol
1908 * uses the inet style.
1909 */
1910int sock_common_getsockopt(struct socket *sock, int level, int optname,
1911 char __user *optval, int __user *optlen);
1912int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1913 int flags);
1914int sock_common_setsockopt(struct socket *sock, int level, int optname,
1915 sockptr_t optval, unsigned int optlen);
1916
1917void sk_common_release(struct sock *sk);
1918
1919/*
1920 * Default socket callbacks and setup code
1921 */
1922
1923/* Initialise core socket variables using an explicit uid. */
1924void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1925
1926/* Initialise core socket variables.
1927 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1928 */
1929void sock_init_data(struct socket *sock, struct sock *sk);
1930
1931/*
1932 * Socket reference counting postulates.
1933 *
1934 * * Each user of socket SHOULD hold a reference count.
1935 * * Each access point to socket (an hash table bucket, reference from a list,
1936 * running timer, skb in flight MUST hold a reference count.
1937 * * When reference count hits 0, it means it will never increase back.
1938 * * When reference count hits 0, it means that no references from
1939 * outside exist to this socket and current process on current CPU
1940 * is last user and may/should destroy this socket.
1941 * * sk_free is called from any context: process, BH, IRQ. When
1942 * it is called, socket has no references from outside -> sk_free
1943 * may release descendant resources allocated by the socket, but
1944 * to the time when it is called, socket is NOT referenced by any
1945 * hash tables, lists etc.
1946 * * Packets, delivered from outside (from network or from another process)
1947 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1948 * when they sit in queue. Otherwise, packets will leak to hole, when
1949 * socket is looked up by one cpu and unhasing is made by another CPU.
1950 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1951 * (leak to backlog). Packet socket does all the processing inside
1952 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1953 * use separate SMP lock, so that they are prone too.
1954 */
1955
1956/* Ungrab socket and destroy it, if it was the last reference. */
1957static inline void sock_put(struct sock *sk)
1958{
1959 if (refcount_dec_and_test(&sk->sk_refcnt))
1960 sk_free(sk);
1961}
1962/* Generic version of sock_put(), dealing with all sockets
1963 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1964 */
1965void sock_gen_put(struct sock *sk);
1966
1967int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1968 unsigned int trim_cap, bool refcounted);
1969static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1970 const int nested)
1971{
1972 return __sk_receive_skb(sk, skb, nested, 1, true);
1973}
1974
1975static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1976{
1977 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1978 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1979 return;
1980 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1981 * other WRITE_ONCE() because socket lock might be not held.
1982 */
1983 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1984}
1985
1986#define NO_QUEUE_MAPPING USHRT_MAX
1987
1988static inline void sk_tx_queue_clear(struct sock *sk)
1989{
1990 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1991 * other WRITE_ONCE() because socket lock might be not held.
1992 */
1993 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1994}
1995
1996static inline int sk_tx_queue_get(const struct sock *sk)
1997{
1998 if (sk) {
1999 /* Paired with WRITE_ONCE() in sk_tx_queue_clear()
2000 * and sk_tx_queue_set().
2001 */
2002 int val = READ_ONCE(sk->sk_tx_queue_mapping);
2003
2004 if (val != NO_QUEUE_MAPPING)
2005 return val;
2006 }
2007 return -1;
2008}
2009
2010static inline void __sk_rx_queue_set(struct sock *sk,
2011 const struct sk_buff *skb,
2012 bool force_set)
2013{
2014#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2015 if (skb_rx_queue_recorded(skb)) {
2016 u16 rx_queue = skb_get_rx_queue(skb);
2017
2018 if (force_set ||
2019 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2020 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2021 }
2022#endif
2023}
2024
2025static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2026{
2027 __sk_rx_queue_set(sk, skb, true);
2028}
2029
2030static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2031{
2032 __sk_rx_queue_set(sk, skb, false);
2033}
2034
2035static inline void sk_rx_queue_clear(struct sock *sk)
2036{
2037#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2038 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2039#endif
2040}
2041
2042static inline int sk_rx_queue_get(const struct sock *sk)
2043{
2044#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2045 if (sk) {
2046 int res = READ_ONCE(sk->sk_rx_queue_mapping);
2047
2048 if (res != NO_QUEUE_MAPPING)
2049 return res;
2050 }
2051#endif
2052
2053 return -1;
2054}
2055
2056static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2057{
2058 sk->sk_socket = sock;
2059}
2060
2061static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2062{
2063 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2064 return &rcu_dereference_raw(sk->sk_wq)->wait;
2065}
2066/* Detach socket from process context.
2067 * Announce socket dead, detach it from wait queue and inode.
2068 * Note that parent inode held reference count on this struct sock,
2069 * we do not release it in this function, because protocol
2070 * probably wants some additional cleanups or even continuing
2071 * to work with this socket (TCP).
2072 */
2073static inline void sock_orphan(struct sock *sk)
2074{
2075 write_lock_bh(&sk->sk_callback_lock);
2076 sock_set_flag(sk, SOCK_DEAD);
2077 sk_set_socket(sk, NULL);
2078 sk->sk_wq = NULL;
2079 write_unlock_bh(&sk->sk_callback_lock);
2080}
2081
2082static inline void sock_graft(struct sock *sk, struct socket *parent)
2083{
2084 WARN_ON(parent->sk);
2085 write_lock_bh(&sk->sk_callback_lock);
2086 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2087 parent->sk = sk;
2088 sk_set_socket(sk, parent);
2089 sk->sk_uid = SOCK_INODE(parent)->i_uid;
2090 security_sock_graft(sk, parent);
2091 write_unlock_bh(&sk->sk_callback_lock);
2092}
2093
2094kuid_t sock_i_uid(struct sock *sk);
2095unsigned long __sock_i_ino(struct sock *sk);
2096unsigned long sock_i_ino(struct sock *sk);
2097
2098static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2099{
2100 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2101}
2102
2103static inline u32 net_tx_rndhash(void)
2104{
2105 u32 v = get_random_u32();
2106
2107 return v ?: 1;
2108}
2109
2110static inline void sk_set_txhash(struct sock *sk)
2111{
2112 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2113 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2114}
2115
2116static inline bool sk_rethink_txhash(struct sock *sk)
2117{
2118 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2119 sk_set_txhash(sk);
2120 return true;
2121 }
2122 return false;
2123}
2124
2125static inline struct dst_entry *
2126__sk_dst_get(const struct sock *sk)
2127{
2128 return rcu_dereference_check(sk->sk_dst_cache,
2129 lockdep_sock_is_held(sk));
2130}
2131
2132static inline struct dst_entry *
2133sk_dst_get(const struct sock *sk)
2134{
2135 struct dst_entry *dst;
2136
2137 rcu_read_lock();
2138 dst = rcu_dereference(sk->sk_dst_cache);
2139 if (dst && !rcuref_get(&dst->__rcuref))
2140 dst = NULL;
2141 rcu_read_unlock();
2142 return dst;
2143}
2144
2145static inline void __dst_negative_advice(struct sock *sk)
2146{
2147 struct dst_entry *dst = __sk_dst_get(sk);
2148
2149 if (dst && dst->ops->negative_advice)
2150 dst->ops->negative_advice(sk, dst);
2151}
2152
2153static inline void dst_negative_advice(struct sock *sk)
2154{
2155 sk_rethink_txhash(sk);
2156 __dst_negative_advice(sk);
2157}
2158
2159static inline void
2160__sk_dst_set(struct sock *sk, struct dst_entry *dst)
2161{
2162 struct dst_entry *old_dst;
2163
2164 sk_tx_queue_clear(sk);
2165 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2166 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2167 lockdep_sock_is_held(sk));
2168 rcu_assign_pointer(sk->sk_dst_cache, dst);
2169 dst_release(old_dst);
2170}
2171
2172static inline void
2173sk_dst_set(struct sock *sk, struct dst_entry *dst)
2174{
2175 struct dst_entry *old_dst;
2176
2177 sk_tx_queue_clear(sk);
2178 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2179 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst)));
2180 dst_release(old_dst);
2181}
2182
2183static inline void
2184__sk_dst_reset(struct sock *sk)
2185{
2186 __sk_dst_set(sk, NULL);
2187}
2188
2189static inline void
2190sk_dst_reset(struct sock *sk)
2191{
2192 sk_dst_set(sk, NULL);
2193}
2194
2195struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2196
2197struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2198
2199static inline void sk_dst_confirm(struct sock *sk)
2200{
2201 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2202 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2203}
2204
2205static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2206{
2207 if (skb_get_dst_pending_confirm(skb)) {
2208 struct sock *sk = skb->sk;
2209
2210 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2211 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2212 neigh_confirm(n);
2213 }
2214}
2215
2216bool sk_mc_loop(const struct sock *sk);
2217
2218static inline bool sk_can_gso(const struct sock *sk)
2219{
2220 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2221}
2222
2223void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2224
2225static inline void sk_gso_disable(struct sock *sk)
2226{
2227 sk->sk_gso_disabled = 1;
2228 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2229}
2230
2231static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2232 struct iov_iter *from, char *to,
2233 int copy, int offset)
2234{
2235 if (skb->ip_summed == CHECKSUM_NONE) {
2236 __wsum csum = 0;
2237 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2238 return -EFAULT;
2239 skb->csum = csum_block_add(skb->csum, csum, offset);
2240 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2241 if (!copy_from_iter_full_nocache(to, copy, from))
2242 return -EFAULT;
2243 } else if (!copy_from_iter_full(to, copy, from))
2244 return -EFAULT;
2245
2246 return 0;
2247}
2248
2249static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2250 struct iov_iter *from, int copy)
2251{
2252 int err, offset = skb->len;
2253
2254 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2255 copy, offset);
2256 if (err)
2257 __skb_trim(skb, offset);
2258
2259 return err;
2260}
2261
2262static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2263 struct sk_buff *skb,
2264 struct page *page,
2265 int off, int copy)
2266{
2267 int err;
2268
2269 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2270 copy, skb->len);
2271 if (err)
2272 return err;
2273
2274 skb_len_add(skb, copy);
2275 sk_wmem_queued_add(sk, copy);
2276 sk_mem_charge(sk, copy);
2277 return 0;
2278}
2279
2280/**
2281 * sk_wmem_alloc_get - returns write allocations
2282 * @sk: socket
2283 *
2284 * Return: sk_wmem_alloc minus initial offset of one
2285 */
2286static inline int sk_wmem_alloc_get(const struct sock *sk)
2287{
2288 return refcount_read(&sk->sk_wmem_alloc) - 1;
2289}
2290
2291/**
2292 * sk_rmem_alloc_get - returns read allocations
2293 * @sk: socket
2294 *
2295 * Return: sk_rmem_alloc
2296 */
2297static inline int sk_rmem_alloc_get(const struct sock *sk)
2298{
2299 return atomic_read(&sk->sk_rmem_alloc);
2300}
2301
2302/**
2303 * sk_has_allocations - check if allocations are outstanding
2304 * @sk: socket
2305 *
2306 * Return: true if socket has write or read allocations
2307 */
2308static inline bool sk_has_allocations(const struct sock *sk)
2309{
2310 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2311}
2312
2313/**
2314 * skwq_has_sleeper - check if there are any waiting processes
2315 * @wq: struct socket_wq
2316 *
2317 * Return: true if socket_wq has waiting processes
2318 *
2319 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2320 * barrier call. They were added due to the race found within the tcp code.
2321 *
2322 * Consider following tcp code paths::
2323 *
2324 * CPU1 CPU2
2325 * sys_select receive packet
2326 * ... ...
2327 * __add_wait_queue update tp->rcv_nxt
2328 * ... ...
2329 * tp->rcv_nxt check sock_def_readable
2330 * ... {
2331 * schedule rcu_read_lock();
2332 * wq = rcu_dereference(sk->sk_wq);
2333 * if (wq && waitqueue_active(&wq->wait))
2334 * wake_up_interruptible(&wq->wait)
2335 * ...
2336 * }
2337 *
2338 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2339 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2340 * could then endup calling schedule and sleep forever if there are no more
2341 * data on the socket.
2342 *
2343 */
2344static inline bool skwq_has_sleeper(struct socket_wq *wq)
2345{
2346 return wq && wq_has_sleeper(&wq->wait);
2347}
2348
2349/**
2350 * sock_poll_wait - wrapper for the poll_wait call.
2351 * @filp: file
2352 * @sock: socket to wait on
2353 * @p: poll_table
2354 *
2355 * See the comments in the wq_has_sleeper function.
2356 */
2357static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2358 poll_table *p)
2359{
2360 /* Provides a barrier we need to be sure we are in sync
2361 * with the socket flags modification.
2362 *
2363 * This memory barrier is paired in the wq_has_sleeper.
2364 */
2365 poll_wait(filp, &sock->wq.wait, p);
2366}
2367
2368static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2369{
2370 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2371 u32 txhash = READ_ONCE(sk->sk_txhash);
2372
2373 if (txhash) {
2374 skb->l4_hash = 1;
2375 skb->hash = txhash;
2376 }
2377}
2378
2379void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2380
2381/*
2382 * Queue a received datagram if it will fit. Stream and sequenced
2383 * protocols can't normally use this as they need to fit buffers in
2384 * and play with them.
2385 *
2386 * Inlined as it's very short and called for pretty much every
2387 * packet ever received.
2388 */
2389static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2390{
2391 skb_orphan(skb);
2392 skb->sk = sk;
2393 skb->destructor = sock_rfree;
2394 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2395 sk_mem_charge(sk, skb->truesize);
2396}
2397
2398static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2399{
2400 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2401 skb_orphan(skb);
2402 skb->destructor = sock_efree;
2403 skb->sk = sk;
2404 return true;
2405 }
2406 return false;
2407}
2408
2409static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2410{
2411 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2412 if (skb) {
2413 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2414 skb_set_owner_r(skb, sk);
2415 return skb;
2416 }
2417 __kfree_skb(skb);
2418 }
2419 return NULL;
2420}
2421
2422static inline void skb_prepare_for_gro(struct sk_buff *skb)
2423{
2424 if (skb->destructor != sock_wfree) {
2425 skb_orphan(skb);
2426 return;
2427 }
2428 skb->slow_gro = 1;
2429}
2430
2431void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2432 unsigned long expires);
2433
2434void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2435
2436void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2437
2438int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2439 struct sk_buff *skb, unsigned int flags,
2440 void (*destructor)(struct sock *sk,
2441 struct sk_buff *skb));
2442int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2443
2444int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2445 enum skb_drop_reason *reason);
2446
2447static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2448{
2449 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2450}
2451
2452int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2453struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2454
2455/*
2456 * Recover an error report and clear atomically
2457 */
2458
2459static inline int sock_error(struct sock *sk)
2460{
2461 int err;
2462
2463 /* Avoid an atomic operation for the common case.
2464 * This is racy since another cpu/thread can change sk_err under us.
2465 */
2466 if (likely(data_race(!sk->sk_err)))
2467 return 0;
2468
2469 err = xchg(&sk->sk_err, 0);
2470 return -err;
2471}
2472
2473void sk_error_report(struct sock *sk);
2474
2475static inline unsigned long sock_wspace(struct sock *sk)
2476{
2477 int amt = 0;
2478
2479 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2480 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2481 if (amt < 0)
2482 amt = 0;
2483 }
2484 return amt;
2485}
2486
2487/* Note:
2488 * We use sk->sk_wq_raw, from contexts knowing this
2489 * pointer is not NULL and cannot disappear/change.
2490 */
2491static inline void sk_set_bit(int nr, struct sock *sk)
2492{
2493 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2494 !sock_flag(sk, SOCK_FASYNC))
2495 return;
2496
2497 set_bit(nr, &sk->sk_wq_raw->flags);
2498}
2499
2500static inline void sk_clear_bit(int nr, struct sock *sk)
2501{
2502 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2503 !sock_flag(sk, SOCK_FASYNC))
2504 return;
2505
2506 clear_bit(nr, &sk->sk_wq_raw->flags);
2507}
2508
2509static inline void sk_wake_async(const struct sock *sk, int how, int band)
2510{
2511 if (sock_flag(sk, SOCK_FASYNC)) {
2512 rcu_read_lock();
2513 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2514 rcu_read_unlock();
2515 }
2516}
2517
2518static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
2519{
2520 if (unlikely(sock_flag(sk, SOCK_FASYNC)))
2521 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2522}
2523
2524/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2525 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2526 * Note: for send buffers, TCP works better if we can build two skbs at
2527 * minimum.
2528 */
2529#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2530
2531#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2532#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2533
2534static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2535{
2536 u32 val;
2537
2538 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2539 return;
2540
2541 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2542 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2543
2544 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2545}
2546
2547/**
2548 * sk_page_frag - return an appropriate page_frag
2549 * @sk: socket
2550 *
2551 * Use the per task page_frag instead of the per socket one for
2552 * optimization when we know that we're in process context and own
2553 * everything that's associated with %current.
2554 *
2555 * Both direct reclaim and page faults can nest inside other
2556 * socket operations and end up recursing into sk_page_frag()
2557 * while it's already in use: explicitly avoid task page_frag
2558 * when users disable sk_use_task_frag.
2559 *
2560 * Return: a per task page_frag if context allows that,
2561 * otherwise a per socket one.
2562 */
2563static inline struct page_frag *sk_page_frag(struct sock *sk)
2564{
2565 if (sk->sk_use_task_frag)
2566 return &current->task_frag;
2567
2568 return &sk->sk_frag;
2569}
2570
2571bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2572
2573/*
2574 * Default write policy as shown to user space via poll/select/SIGIO
2575 */
2576static inline bool sock_writeable(const struct sock *sk)
2577{
2578 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2579}
2580
2581static inline gfp_t gfp_any(void)
2582{
2583 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2584}
2585
2586static inline gfp_t gfp_memcg_charge(void)
2587{
2588 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2589}
2590
2591static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2592{
2593 return noblock ? 0 : sk->sk_rcvtimeo;
2594}
2595
2596static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2597{
2598 return noblock ? 0 : sk->sk_sndtimeo;
2599}
2600
2601static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2602{
2603 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2604
2605 return v ?: 1;
2606}
2607
2608/* Alas, with timeout socket operations are not restartable.
2609 * Compare this to poll().
2610 */
2611static inline int sock_intr_errno(long timeo)
2612{
2613 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2614}
2615
2616struct sock_skb_cb {
2617 u32 dropcount;
2618};
2619
2620/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2621 * using skb->cb[] would keep using it directly and utilize its
2622 * alignment guarantee.
2623 */
2624#define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \
2625 sizeof(struct sock_skb_cb))
2626
2627#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2628 SOCK_SKB_CB_OFFSET))
2629
2630#define sock_skb_cb_check_size(size) \
2631 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2632
2633static inline void
2634sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2635{
2636 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2637 atomic_read(&sk->sk_drops) : 0;
2638}
2639
2640static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2641{
2642 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2643
2644 atomic_add(segs, &sk->sk_drops);
2645}
2646
2647static inline ktime_t sock_read_timestamp(struct sock *sk)
2648{
2649#if BITS_PER_LONG==32
2650 unsigned int seq;
2651 ktime_t kt;
2652
2653 do {
2654 seq = read_seqbegin(&sk->sk_stamp_seq);
2655 kt = sk->sk_stamp;
2656 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2657
2658 return kt;
2659#else
2660 return READ_ONCE(sk->sk_stamp);
2661#endif
2662}
2663
2664static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2665{
2666#if BITS_PER_LONG==32
2667 write_seqlock(&sk->sk_stamp_seq);
2668 sk->sk_stamp = kt;
2669 write_sequnlock(&sk->sk_stamp_seq);
2670#else
2671 WRITE_ONCE(sk->sk_stamp, kt);
2672#endif
2673}
2674
2675void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2676 struct sk_buff *skb);
2677void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2678 struct sk_buff *skb);
2679
2680static inline void
2681sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2682{
2683 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2684 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2685 ktime_t kt = skb->tstamp;
2686 /*
2687 * generate control messages if
2688 * - receive time stamping in software requested
2689 * - software time stamp available and wanted
2690 * - hardware time stamps available and wanted
2691 */
2692 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2693 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2694 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2695 (hwtstamps->hwtstamp &&
2696 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2697 __sock_recv_timestamp(msg, sk, skb);
2698 else
2699 sock_write_timestamp(sk, kt);
2700
2701 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2702 __sock_recv_wifi_status(msg, sk, skb);
2703}
2704
2705void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2706 struct sk_buff *skb);
2707
2708#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2709static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2710 struct sk_buff *skb)
2711{
2712#define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2713 (1UL << SOCK_RCVTSTAMP) | \
2714 (1UL << SOCK_RCVMARK) | \
2715 (1UL << SOCK_RCVPRIORITY) | \
2716 (1UL << SOCK_TIMESTAMPING_ANY))
2717#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2718 SOF_TIMESTAMPING_RAW_HARDWARE)
2719
2720 if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS)
2721 __sock_recv_cmsgs(msg, sk, skb);
2722 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2723 sock_write_timestamp(sk, skb->tstamp);
2724 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2725 sock_write_timestamp(sk, 0);
2726}
2727
2728void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags);
2729
2730/**
2731 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2732 * @sk: socket sending this packet
2733 * @sockc: pointer to socket cmsg cookie to get timestamping info
2734 * @tx_flags: completed with instructions for time stamping
2735 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2736 *
2737 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2738 */
2739static inline void _sock_tx_timestamp(struct sock *sk,
2740 const struct sockcm_cookie *sockc,
2741 __u8 *tx_flags, __u32 *tskey)
2742{
2743 __u32 tsflags = sockc->tsflags;
2744
2745 if (unlikely(tsflags)) {
2746 __sock_tx_timestamp(tsflags, tx_flags);
2747 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2748 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) {
2749 if (tsflags & SOCKCM_FLAG_TS_OPT_ID)
2750 *tskey = sockc->ts_opt_id;
2751 else
2752 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2753 }
2754 }
2755}
2756
2757static inline void sock_tx_timestamp(struct sock *sk,
2758 const struct sockcm_cookie *sockc,
2759 __u8 *tx_flags)
2760{
2761 _sock_tx_timestamp(sk, sockc, tx_flags, NULL);
2762}
2763
2764static inline void skb_setup_tx_timestamp(struct sk_buff *skb,
2765 const struct sockcm_cookie *sockc)
2766{
2767 _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags,
2768 &skb_shinfo(skb)->tskey);
2769}
2770
2771static inline bool sk_is_inet(const struct sock *sk)
2772{
2773 int family = READ_ONCE(sk->sk_family);
2774
2775 return family == AF_INET || family == AF_INET6;
2776}
2777
2778static inline bool sk_is_tcp(const struct sock *sk)
2779{
2780 return sk_is_inet(sk) &&
2781 sk->sk_type == SOCK_STREAM &&
2782 sk->sk_protocol == IPPROTO_TCP;
2783}
2784
2785static inline bool sk_is_udp(const struct sock *sk)
2786{
2787 return sk_is_inet(sk) &&
2788 sk->sk_type == SOCK_DGRAM &&
2789 sk->sk_protocol == IPPROTO_UDP;
2790}
2791
2792static inline bool sk_is_unix(const struct sock *sk)
2793{
2794 return sk->sk_family == AF_UNIX;
2795}
2796
2797static inline bool sk_is_stream_unix(const struct sock *sk)
2798{
2799 return sk_is_unix(sk) && sk->sk_type == SOCK_STREAM;
2800}
2801
2802static inline bool sk_is_vsock(const struct sock *sk)
2803{
2804 return sk->sk_family == AF_VSOCK;
2805}
2806
2807static inline bool sk_may_scm_recv(const struct sock *sk)
2808{
2809 return (IS_ENABLED(CONFIG_UNIX) && sk->sk_family == AF_UNIX) ||
2810 sk->sk_family == AF_NETLINK ||
2811 (IS_ENABLED(CONFIG_BT) && sk->sk_family == AF_BLUETOOTH);
2812}
2813
2814/**
2815 * sk_eat_skb - Release a skb if it is no longer needed
2816 * @sk: socket to eat this skb from
2817 * @skb: socket buffer to eat
2818 *
2819 * This routine must be called with interrupts disabled or with the socket
2820 * locked so that the sk_buff queue operation is ok.
2821*/
2822static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2823{
2824 __skb_unlink(skb, &sk->sk_receive_queue);
2825 __kfree_skb(skb);
2826}
2827
2828static inline bool
2829skb_sk_is_prefetched(struct sk_buff *skb)
2830{
2831#ifdef CONFIG_INET
2832 return skb->destructor == sock_pfree;
2833#else
2834 return false;
2835#endif /* CONFIG_INET */
2836}
2837
2838/* This helper checks if a socket is a full socket,
2839 * ie _not_ a timewait or request socket.
2840 */
2841static inline bool sk_fullsock(const struct sock *sk)
2842{
2843 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2844}
2845
2846static inline bool
2847sk_is_refcounted(struct sock *sk)
2848{
2849 /* Only full sockets have sk->sk_flags. */
2850 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2851}
2852
2853static inline bool
2854sk_requests_wifi_status(struct sock *sk)
2855{
2856 return sk && sk_fullsock(sk) && sock_flag(sk, SOCK_WIFI_STATUS);
2857}
2858
2859/* Checks if this SKB belongs to an HW offloaded socket
2860 * and whether any SW fallbacks are required based on dev.
2861 * Check decrypted mark in case skb_orphan() cleared socket.
2862 */
2863static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2864 struct net_device *dev)
2865{
2866#ifdef CONFIG_SOCK_VALIDATE_XMIT
2867 struct sock *sk = skb->sk;
2868
2869 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2870 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2871 } else if (unlikely(skb_is_decrypted(skb))) {
2872 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2873 kfree_skb(skb);
2874 skb = NULL;
2875 }
2876#endif
2877
2878 return skb;
2879}
2880
2881/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2882 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2883 */
2884static inline bool sk_listener(const struct sock *sk)
2885{
2886 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2887}
2888
2889/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT
2890 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE)
2891 * TCP RST and ACK can be attached to TIME_WAIT.
2892 */
2893static inline bool sk_listener_or_tw(const struct sock *sk)
2894{
2895 return (1 << READ_ONCE(sk->sk_state)) &
2896 (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT);
2897}
2898
2899void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2900int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2901 int type);
2902
2903bool sk_ns_capable(const struct sock *sk,
2904 struct user_namespace *user_ns, int cap);
2905bool sk_capable(const struct sock *sk, int cap);
2906bool sk_net_capable(const struct sock *sk, int cap);
2907
2908void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2909
2910/* Take into consideration the size of the struct sk_buff overhead in the
2911 * determination of these values, since that is non-constant across
2912 * platforms. This makes socket queueing behavior and performance
2913 * not depend upon such differences.
2914 */
2915#define _SK_MEM_PACKETS 256
2916#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2917#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2918#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2919
2920extern __u32 sysctl_wmem_max;
2921extern __u32 sysctl_rmem_max;
2922
2923extern __u32 sysctl_wmem_default;
2924extern __u32 sysctl_rmem_default;
2925
2926#define SKB_FRAG_PAGE_ORDER get_order(32768)
2927DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2928
2929static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2930{
2931 /* Does this proto have per netns sysctl_wmem ? */
2932 if (proto->sysctl_wmem_offset)
2933 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2934
2935 return READ_ONCE(*proto->sysctl_wmem);
2936}
2937
2938static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2939{
2940 /* Does this proto have per netns sysctl_rmem ? */
2941 if (proto->sysctl_rmem_offset)
2942 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2943
2944 return READ_ONCE(*proto->sysctl_rmem);
2945}
2946
2947/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2948 * Some wifi drivers need to tweak it to get more chunks.
2949 * They can use this helper from their ndo_start_xmit()
2950 */
2951static inline void sk_pacing_shift_update(struct sock *sk, int val)
2952{
2953 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2954 return;
2955 WRITE_ONCE(sk->sk_pacing_shift, val);
2956}
2957
2958/* if a socket is bound to a device, check that the given device
2959 * index is either the same or that the socket is bound to an L3
2960 * master device and the given device index is also enslaved to
2961 * that L3 master
2962 */
2963static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2964{
2965 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2966 int mdif;
2967
2968 if (!bound_dev_if || bound_dev_if == dif)
2969 return true;
2970
2971 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2972 if (mdif && mdif == bound_dev_if)
2973 return true;
2974
2975 return false;
2976}
2977
2978void sock_def_readable(struct sock *sk);
2979
2980int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2981void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2982int sock_set_timestamping(struct sock *sk, int optname,
2983 struct so_timestamping timestamping);
2984
2985void sock_enable_timestamps(struct sock *sk);
2986#if defined(CONFIG_CGROUP_BPF)
2987void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op);
2988#else
2989static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op)
2990{
2991}
2992#endif
2993void sock_no_linger(struct sock *sk);
2994void sock_set_keepalive(struct sock *sk);
2995void sock_set_priority(struct sock *sk, u32 priority);
2996void sock_set_rcvbuf(struct sock *sk, int val);
2997void sock_set_mark(struct sock *sk, u32 val);
2998void sock_set_reuseaddr(struct sock *sk);
2999void sock_set_reuseport(struct sock *sk);
3000void sock_set_sndtimeo(struct sock *sk, s64 secs);
3001
3002int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
3003
3004int sock_get_timeout(long timeo, void *optval, bool old_timeval);
3005int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
3006 sockptr_t optval, int optlen, bool old_timeval);
3007
3008int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
3009 void __user *arg, void *karg, size_t size);
3010int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
3011static inline bool sk_is_readable(struct sock *sk)
3012{
3013 const struct proto *prot = READ_ONCE(sk->sk_prot);
3014
3015 if (prot->sock_is_readable)
3016 return prot->sock_is_readable(sk);
3017
3018 return false;
3019}
3020#endif /* _SOCK_H */