]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame_incremental - include/net/tcp.h
Merge tag 'mmc-v6.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[thirdparty/kernel/linux.git] / include / net / tcp.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14#ifndef _TCP_H
15#define _TCP_H
16
17#define FASTRETRANS_DEBUG 1
18
19#include <linux/list.h>
20#include <linux/tcp.h>
21#include <linux/bug.h>
22#include <linux/slab.h>
23#include <linux/cache.h>
24#include <linux/percpu.h>
25#include <linux/skbuff.h>
26#include <linux/kref.h>
27#include <linux/ktime.h>
28#include <linux/indirect_call_wrapper.h>
29#include <linux/bits.h>
30
31#include <net/inet_connection_sock.h>
32#include <net/inet_timewait_sock.h>
33#include <net/inet_hashtables.h>
34#include <net/checksum.h>
35#include <net/request_sock.h>
36#include <net/sock_reuseport.h>
37#include <net/sock.h>
38#include <net/snmp.h>
39#include <net/ip.h>
40#include <net/tcp_states.h>
41#include <net/tcp_ao.h>
42#include <net/inet_ecn.h>
43#include <net/dst.h>
44#include <net/mptcp.h>
45#include <net/xfrm.h>
46
47#include <linux/seq_file.h>
48#include <linux/memcontrol.h>
49#include <linux/bpf-cgroup.h>
50#include <linux/siphash.h>
51
52extern struct inet_hashinfo tcp_hashinfo;
53
54DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
55int tcp_orphan_count_sum(void);
56
57DECLARE_PER_CPU(u32, tcp_tw_isn);
58
59void tcp_time_wait(struct sock *sk, int state, int timeo);
60
61#define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
62#define MAX_TCP_OPTION_SPACE 40
63#define TCP_MIN_SND_MSS 48
64#define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
65
66/*
67 * Never offer a window over 32767 without using window scaling. Some
68 * poor stacks do signed 16bit maths!
69 */
70#define MAX_TCP_WINDOW 32767U
71
72/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
73#define TCP_MIN_MSS 88U
74
75/* The initial MTU to use for probing */
76#define TCP_BASE_MSS 1024
77
78/* probing interval, default to 10 minutes as per RFC4821 */
79#define TCP_PROBE_INTERVAL 600
80
81/* Specify interval when tcp mtu probing will stop */
82#define TCP_PROBE_THRESHOLD 8
83
84/* After receiving this amount of duplicate ACKs fast retransmit starts. */
85#define TCP_FASTRETRANS_THRESH 3
86
87/* Maximal number of ACKs sent quickly to accelerate slow-start. */
88#define TCP_MAX_QUICKACKS 16U
89
90/* Maximal number of window scale according to RFC1323 */
91#define TCP_MAX_WSCALE 14U
92
93/* urg_data states */
94#define TCP_URG_VALID 0x0100
95#define TCP_URG_NOTYET 0x0200
96#define TCP_URG_READ 0x0400
97
98#define TCP_RETR1 3 /*
99 * This is how many retries it does before it
100 * tries to figure out if the gateway is
101 * down. Minimal RFC value is 3; it corresponds
102 * to ~3sec-8min depending on RTO.
103 */
104
105#define TCP_RETR2 15 /*
106 * This should take at least
107 * 90 minutes to time out.
108 * RFC1122 says that the limit is 100 sec.
109 * 15 is ~13-30min depending on RTO.
110 */
111
112#define TCP_SYN_RETRIES 6 /* This is how many retries are done
113 * when active opening a connection.
114 * RFC1122 says the minimum retry MUST
115 * be at least 180secs. Nevertheless
116 * this value is corresponding to
117 * 63secs of retransmission with the
118 * current initial RTO.
119 */
120
121#define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
122 * when passive opening a connection.
123 * This is corresponding to 31secs of
124 * retransmission with the current
125 * initial RTO.
126 */
127
128#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
129 * state, about 60 seconds */
130#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
131 /* BSD style FIN_WAIT2 deadlock breaker.
132 * It used to be 3min, new value is 60sec,
133 * to combine FIN-WAIT-2 timeout with
134 * TIME-WAIT timer.
135 */
136#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
137
138#define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
139static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
140
141#if HZ >= 100
142#define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
143#define TCP_ATO_MIN ((unsigned)(HZ/25))
144#else
145#define TCP_DELACK_MIN 4U
146#define TCP_ATO_MIN 4U
147#endif
148#define TCP_RTO_MAX_SEC 120
149#define TCP_RTO_MAX ((unsigned)(TCP_RTO_MAX_SEC * HZ))
150#define TCP_RTO_MIN ((unsigned)(HZ / 5))
151#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
152
153#define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
154
155#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
156#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
157 * used as a fallback RTO for the
158 * initial data transmission if no
159 * valid RTT sample has been acquired,
160 * most likely due to retrans in 3WHS.
161 */
162
163#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
164 * for local resources.
165 */
166#define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
167#define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
168#define TCP_KEEPALIVE_INTVL (75*HZ)
169
170#define MAX_TCP_KEEPIDLE 32767
171#define MAX_TCP_KEEPINTVL 32767
172#define MAX_TCP_KEEPCNT 127
173#define MAX_TCP_SYNCNT 127
174
175/* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
176 * to avoid overflows. This assumes a clock smaller than 1 Mhz.
177 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
178 */
179#define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
180
181#define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
182 * after this time. It should be equal
183 * (or greater than) TCP_TIMEWAIT_LEN
184 * to provide reliability equal to one
185 * provided by timewait state.
186 */
187#define TCP_PAWS_WINDOW 1 /* Replay window for per-host
188 * timestamps. It must be less than
189 * minimal timewait lifetime.
190 */
191/*
192 * TCP option
193 */
194
195#define TCPOPT_NOP 1 /* Padding */
196#define TCPOPT_EOL 0 /* End of options */
197#define TCPOPT_MSS 2 /* Segment size negotiating */
198#define TCPOPT_WINDOW 3 /* Window scaling */
199#define TCPOPT_SACK_PERM 4 /* SACK Permitted */
200#define TCPOPT_SACK 5 /* SACK Block */
201#define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
202#define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
203#define TCPOPT_AO 29 /* Authentication Option (RFC5925) */
204#define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
205#define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
206#define TCPOPT_EXP 254 /* Experimental */
207/* Magic number to be after the option value for sharing TCP
208 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
209 */
210#define TCPOPT_FASTOPEN_MAGIC 0xF989
211#define TCPOPT_SMC_MAGIC 0xE2D4C3D9
212
213/*
214 * TCP option lengths
215 */
216
217#define TCPOLEN_MSS 4
218#define TCPOLEN_WINDOW 3
219#define TCPOLEN_SACK_PERM 2
220#define TCPOLEN_TIMESTAMP 10
221#define TCPOLEN_MD5SIG 18
222#define TCPOLEN_FASTOPEN_BASE 2
223#define TCPOLEN_EXP_FASTOPEN_BASE 4
224#define TCPOLEN_EXP_SMC_BASE 6
225
226/* But this is what stacks really send out. */
227#define TCPOLEN_TSTAMP_ALIGNED 12
228#define TCPOLEN_WSCALE_ALIGNED 4
229#define TCPOLEN_SACKPERM_ALIGNED 4
230#define TCPOLEN_SACK_BASE 2
231#define TCPOLEN_SACK_BASE_ALIGNED 4
232#define TCPOLEN_SACK_PERBLOCK 8
233#define TCPOLEN_MD5SIG_ALIGNED 20
234#define TCPOLEN_MSS_ALIGNED 4
235#define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
236
237/* Flags in tp->nonagle */
238#define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
239#define TCP_NAGLE_CORK 2 /* Socket is corked */
240#define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
241
242/* TCP thin-stream limits */
243#define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
244
245/* TCP initial congestion window as per rfc6928 */
246#define TCP_INIT_CWND 10
247
248/* Bit Flags for sysctl_tcp_fastopen */
249#define TFO_CLIENT_ENABLE 1
250#define TFO_SERVER_ENABLE 2
251#define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
252
253/* Accept SYN data w/o any cookie option */
254#define TFO_SERVER_COOKIE_NOT_REQD 0x200
255
256/* Force enable TFO on all listeners, i.e., not requiring the
257 * TCP_FASTOPEN socket option.
258 */
259#define TFO_SERVER_WO_SOCKOPT1 0x400
260
261
262/* sysctl variables for tcp */
263extern int sysctl_tcp_max_orphans;
264extern long sysctl_tcp_mem[3];
265
266#define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
267#define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
268#define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
269
270extern atomic_long_t tcp_memory_allocated;
271DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
272
273extern struct percpu_counter tcp_sockets_allocated;
274extern unsigned long tcp_memory_pressure;
275
276/* optimized version of sk_under_memory_pressure() for TCP sockets */
277static inline bool tcp_under_memory_pressure(const struct sock *sk)
278{
279 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
280 mem_cgroup_under_socket_pressure(sk->sk_memcg))
281 return true;
282
283 return READ_ONCE(tcp_memory_pressure);
284}
285/*
286 * The next routines deal with comparing 32 bit unsigned ints
287 * and worry about wraparound (automatic with unsigned arithmetic).
288 */
289
290static inline bool before(__u32 seq1, __u32 seq2)
291{
292 return (__s32)(seq1-seq2) < 0;
293}
294#define after(seq2, seq1) before(seq1, seq2)
295
296/* is s2<=s1<=s3 ? */
297static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
298{
299 return seq3 - seq2 >= seq1 - seq2;
300}
301
302static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
303{
304 sk_wmem_queued_add(sk, -skb->truesize);
305 if (!skb_zcopy_pure(skb))
306 sk_mem_uncharge(sk, skb->truesize);
307 else
308 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
309 __kfree_skb(skb);
310}
311
312void sk_forced_mem_schedule(struct sock *sk, int size);
313
314bool tcp_check_oom(const struct sock *sk, int shift);
315
316
317extern struct proto tcp_prot;
318
319#define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
320#define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
321#define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
322#define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
323
324void tcp_tasklet_init(void);
325
326int tcp_v4_err(struct sk_buff *skb, u32);
327
328void tcp_shutdown(struct sock *sk, int how);
329
330int tcp_v4_early_demux(struct sk_buff *skb);
331int tcp_v4_rcv(struct sk_buff *skb);
332
333void tcp_remove_empty_skb(struct sock *sk);
334int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
335int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
336int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
337 size_t size, struct ubuf_info *uarg);
338void tcp_splice_eof(struct socket *sock);
339int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
340int tcp_wmem_schedule(struct sock *sk, int copy);
341void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
342 int size_goal);
343void tcp_release_cb(struct sock *sk);
344void tcp_wfree(struct sk_buff *skb);
345void tcp_write_timer_handler(struct sock *sk);
346void tcp_delack_timer_handler(struct sock *sk);
347int tcp_ioctl(struct sock *sk, int cmd, int *karg);
348enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
349void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
350void tcp_rcv_space_adjust(struct sock *sk);
351int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
352void tcp_twsk_destructor(struct sock *sk);
353void tcp_twsk_purge(struct list_head *net_exit_list);
354ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
355 struct pipe_inode_info *pipe, size_t len,
356 unsigned int flags);
357struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
358 bool force_schedule);
359
360static inline void tcp_dec_quickack_mode(struct sock *sk)
361{
362 struct inet_connection_sock *icsk = inet_csk(sk);
363
364 if (icsk->icsk_ack.quick) {
365 /* How many ACKs S/ACKing new data have we sent? */
366 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
367
368 if (pkts >= icsk->icsk_ack.quick) {
369 icsk->icsk_ack.quick = 0;
370 /* Leaving quickack mode we deflate ATO. */
371 icsk->icsk_ack.ato = TCP_ATO_MIN;
372 } else
373 icsk->icsk_ack.quick -= pkts;
374 }
375}
376
377#define TCP_ECN_MODE_RFC3168 BIT(0)
378#define TCP_ECN_QUEUE_CWR BIT(1)
379#define TCP_ECN_DEMAND_CWR BIT(2)
380#define TCP_ECN_SEEN BIT(3)
381#define TCP_ECN_MODE_ACCECN BIT(4)
382
383#define TCP_ECN_DISABLED 0
384#define TCP_ECN_MODE_PENDING (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
385#define TCP_ECN_MODE_ANY (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
386
387static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp)
388{
389 return tp->ecn_flags & TCP_ECN_MODE_ANY;
390}
391
392static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp)
393{
394 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168;
395}
396
397static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp)
398{
399 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN;
400}
401
402static inline bool tcp_ecn_disabled(const struct tcp_sock *tp)
403{
404 return !tcp_ecn_mode_any(tp);
405}
406
407static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp)
408{
409 return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING;
410}
411
412static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode)
413{
414 tp->ecn_flags &= ~TCP_ECN_MODE_ANY;
415 tp->ecn_flags |= mode;
416}
417
418enum tcp_tw_status {
419 TCP_TW_SUCCESS = 0,
420 TCP_TW_RST = 1,
421 TCP_TW_ACK = 2,
422 TCP_TW_SYN = 3,
423 TCP_TW_ACK_OOW = 4
424};
425
426
427enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
428 struct sk_buff *skb,
429 const struct tcphdr *th,
430 u32 *tw_isn,
431 enum skb_drop_reason *drop_reason);
432struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
433 struct request_sock *req, bool fastopen,
434 bool *lost_race, enum skb_drop_reason *drop_reason);
435enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
436 struct sk_buff *skb);
437void tcp_enter_loss(struct sock *sk);
438void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
439void tcp_clear_retrans(struct tcp_sock *tp);
440void tcp_update_metrics(struct sock *sk);
441void tcp_init_metrics(struct sock *sk);
442void tcp_metrics_init(void);
443bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
444void __tcp_close(struct sock *sk, long timeout);
445void tcp_close(struct sock *sk, long timeout);
446void tcp_init_sock(struct sock *sk);
447void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
448__poll_t tcp_poll(struct file *file, struct socket *sock,
449 struct poll_table_struct *wait);
450int do_tcp_getsockopt(struct sock *sk, int level,
451 int optname, sockptr_t optval, sockptr_t optlen);
452int tcp_getsockopt(struct sock *sk, int level, int optname,
453 char __user *optval, int __user *optlen);
454bool tcp_bpf_bypass_getsockopt(int level, int optname);
455int do_tcp_setsockopt(struct sock *sk, int level, int optname,
456 sockptr_t optval, unsigned int optlen);
457int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
458 unsigned int optlen);
459void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout);
460void tcp_set_keepalive(struct sock *sk, int val);
461void tcp_syn_ack_timeout(const struct request_sock *req);
462int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
463 int flags, int *addr_len);
464int tcp_set_rcvlowat(struct sock *sk, int val);
465int tcp_set_window_clamp(struct sock *sk, int val);
466void tcp_update_recv_tstamps(struct sk_buff *skb,
467 struct scm_timestamping_internal *tss);
468void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
469 struct scm_timestamping_internal *tss);
470void tcp_data_ready(struct sock *sk);
471#ifdef CONFIG_MMU
472int tcp_mmap(struct file *file, struct socket *sock,
473 struct vm_area_struct *vma);
474#endif
475void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
476 struct tcp_options_received *opt_rx,
477 int estab, struct tcp_fastopen_cookie *foc);
478
479/*
480 * BPF SKB-less helpers
481 */
482u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
483 struct tcphdr *th, u32 *cookie);
484u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
485 struct tcphdr *th, u32 *cookie);
486u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
487u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
488 const struct tcp_request_sock_ops *af_ops,
489 struct sock *sk, struct tcphdr *th);
490/*
491 * TCP v4 functions exported for the inet6 API
492 */
493
494void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
495void tcp_v4_mtu_reduced(struct sock *sk);
496void tcp_req_err(struct sock *sk, u32 seq, bool abort);
497void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
498int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
499struct sock *tcp_create_openreq_child(const struct sock *sk,
500 struct request_sock *req,
501 struct sk_buff *skb);
502void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
503struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
504 struct request_sock *req,
505 struct dst_entry *dst,
506 struct request_sock *req_unhash,
507 bool *own_req);
508int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
509int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
510int tcp_connect(struct sock *sk);
511enum tcp_synack_type {
512 TCP_SYNACK_NORMAL,
513 TCP_SYNACK_FASTOPEN,
514 TCP_SYNACK_COOKIE,
515};
516struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
517 struct request_sock *req,
518 struct tcp_fastopen_cookie *foc,
519 enum tcp_synack_type synack_type,
520 struct sk_buff *syn_skb);
521int tcp_disconnect(struct sock *sk, int flags);
522
523void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
524int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
525void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
526
527/* From syncookies.c */
528struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
529 struct request_sock *req,
530 struct dst_entry *dst);
531int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
532struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
533struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
534 struct sock *sk, struct sk_buff *skb,
535 struct tcp_options_received *tcp_opt,
536 int mss, u32 tsoff);
537
538#if IS_ENABLED(CONFIG_BPF)
539struct bpf_tcp_req_attrs {
540 u32 rcv_tsval;
541 u32 rcv_tsecr;
542 u16 mss;
543 u8 rcv_wscale;
544 u8 snd_wscale;
545 u8 ecn_ok;
546 u8 wscale_ok;
547 u8 sack_ok;
548 u8 tstamp_ok;
549 u8 usec_ts_ok;
550 u8 reserved[3];
551};
552#endif
553
554#ifdef CONFIG_SYN_COOKIES
555
556/* Syncookies use a monotonic timer which increments every 60 seconds.
557 * This counter is used both as a hash input and partially encoded into
558 * the cookie value. A cookie is only validated further if the delta
559 * between the current counter value and the encoded one is less than this,
560 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
561 * the counter advances immediately after a cookie is generated).
562 */
563#define MAX_SYNCOOKIE_AGE 2
564#define TCP_SYNCOOKIE_PERIOD (60 * HZ)
565#define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
566
567/* syncookies: remember time of last synqueue overflow
568 * But do not dirty this field too often (once per second is enough)
569 * It is racy as we do not hold a lock, but race is very minor.
570 */
571static inline void tcp_synq_overflow(const struct sock *sk)
572{
573 unsigned int last_overflow;
574 unsigned int now = jiffies;
575
576 if (sk->sk_reuseport) {
577 struct sock_reuseport *reuse;
578
579 reuse = rcu_dereference(sk->sk_reuseport_cb);
580 if (likely(reuse)) {
581 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
582 if (!time_between32(now, last_overflow,
583 last_overflow + HZ))
584 WRITE_ONCE(reuse->synq_overflow_ts, now);
585 return;
586 }
587 }
588
589 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
590 if (!time_between32(now, last_overflow, last_overflow + HZ))
591 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
592}
593
594/* syncookies: no recent synqueue overflow on this listening socket? */
595static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
596{
597 unsigned int last_overflow;
598 unsigned int now = jiffies;
599
600 if (sk->sk_reuseport) {
601 struct sock_reuseport *reuse;
602
603 reuse = rcu_dereference(sk->sk_reuseport_cb);
604 if (likely(reuse)) {
605 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
606 return !time_between32(now, last_overflow - HZ,
607 last_overflow +
608 TCP_SYNCOOKIE_VALID);
609 }
610 }
611
612 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
613
614 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
615 * then we're under synflood. However, we have to use
616 * 'last_overflow - HZ' as lower bound. That's because a concurrent
617 * tcp_synq_overflow() could update .ts_recent_stamp after we read
618 * jiffies but before we store .ts_recent_stamp into last_overflow,
619 * which could lead to rejecting a valid syncookie.
620 */
621 return !time_between32(now, last_overflow - HZ,
622 last_overflow + TCP_SYNCOOKIE_VALID);
623}
624
625static inline u32 tcp_cookie_time(void)
626{
627 u64 val = get_jiffies_64();
628
629 do_div(val, TCP_SYNCOOKIE_PERIOD);
630 return val;
631}
632
633/* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
634static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
635{
636 if (usec_ts)
637 return div_u64(val, NSEC_PER_USEC);
638
639 return div_u64(val, NSEC_PER_MSEC);
640}
641
642u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
643 u16 *mssp);
644__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
645u64 cookie_init_timestamp(struct request_sock *req, u64 now);
646bool cookie_timestamp_decode(const struct net *net,
647 struct tcp_options_received *opt);
648
649static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
650{
651 return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
652 dst_feature(dst, RTAX_FEATURE_ECN);
653}
654
655#if IS_ENABLED(CONFIG_BPF)
656static inline bool cookie_bpf_ok(struct sk_buff *skb)
657{
658 return skb->sk;
659}
660
661struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
662#else
663static inline bool cookie_bpf_ok(struct sk_buff *skb)
664{
665 return false;
666}
667
668static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
669 struct sk_buff *skb)
670{
671 return NULL;
672}
673#endif
674
675/* From net/ipv6/syncookies.c */
676int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
677struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
678
679u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
680 const struct tcphdr *th, u16 *mssp);
681__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
682#endif
683/* tcp_output.c */
684
685void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
686void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
687void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
688 int nonagle);
689int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
690int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
691void tcp_retransmit_timer(struct sock *sk);
692void tcp_xmit_retransmit_queue(struct sock *);
693void tcp_simple_retransmit(struct sock *);
694void tcp_enter_recovery(struct sock *sk, bool ece_ack);
695int tcp_trim_head(struct sock *, struct sk_buff *, u32);
696enum tcp_queue {
697 TCP_FRAG_IN_WRITE_QUEUE,
698 TCP_FRAG_IN_RTX_QUEUE,
699};
700int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
701 struct sk_buff *skb, u32 len,
702 unsigned int mss_now, gfp_t gfp);
703
704void tcp_send_probe0(struct sock *);
705int tcp_write_wakeup(struct sock *, int mib);
706void tcp_send_fin(struct sock *sk);
707void tcp_send_active_reset(struct sock *sk, gfp_t priority,
708 enum sk_rst_reason reason);
709int tcp_send_synack(struct sock *);
710void tcp_push_one(struct sock *, unsigned int mss_now);
711void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags);
712void tcp_send_ack(struct sock *sk);
713void tcp_send_delayed_ack(struct sock *sk);
714void tcp_send_loss_probe(struct sock *sk);
715bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
716void tcp_skb_collapse_tstamp(struct sk_buff *skb,
717 const struct sk_buff *next_skb);
718
719/* tcp_input.c */
720void tcp_rearm_rto(struct sock *sk);
721void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
722void tcp_done_with_error(struct sock *sk, int err);
723void tcp_reset(struct sock *sk, struct sk_buff *skb);
724void tcp_fin(struct sock *sk);
725void tcp_check_space(struct sock *sk);
726void tcp_sack_compress_send_ack(struct sock *sk);
727
728static inline void tcp_cleanup_skb(struct sk_buff *skb)
729{
730 skb_dst_drop(skb);
731 secpath_reset(skb);
732}
733
734static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
735{
736 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
737 DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
738 __skb_queue_tail(&sk->sk_receive_queue, skb);
739}
740
741/* tcp_timer.c */
742void tcp_init_xmit_timers(struct sock *);
743static inline void tcp_clear_xmit_timers(struct sock *sk)
744{
745 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
746 __sock_put(sk);
747
748 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
749 __sock_put(sk);
750
751 inet_csk_clear_xmit_timers(sk);
752}
753
754unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
755unsigned int tcp_current_mss(struct sock *sk);
756u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
757
758/* Bound MSS / TSO packet size with the half of the window */
759static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
760{
761 int cutoff;
762
763 /* When peer uses tiny windows, there is no use in packetizing
764 * to sub-MSS pieces for the sake of SWS or making sure there
765 * are enough packets in the pipe for fast recovery.
766 *
767 * On the other hand, for extremely large MSS devices, handling
768 * smaller than MSS windows in this way does make sense.
769 */
770 if (tp->max_window > TCP_MSS_DEFAULT)
771 cutoff = (tp->max_window >> 1);
772 else
773 cutoff = tp->max_window;
774
775 if (cutoff && pktsize > cutoff)
776 return max_t(int, cutoff, 68U - tp->tcp_header_len);
777 else
778 return pktsize;
779}
780
781/* tcp.c */
782void tcp_get_info(struct sock *, struct tcp_info *);
783
784/* Read 'sendfile()'-style from a TCP socket */
785int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
786 sk_read_actor_t recv_actor);
787int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
788 sk_read_actor_t recv_actor, bool noack,
789 u32 *copied_seq);
790int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
791struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
792void tcp_read_done(struct sock *sk, size_t len);
793
794void tcp_initialize_rcv_mss(struct sock *sk);
795
796int tcp_mtu_to_mss(struct sock *sk, int pmtu);
797int tcp_mss_to_mtu(struct sock *sk, int mss);
798void tcp_mtup_init(struct sock *sk);
799
800static inline unsigned int tcp_rto_max(const struct sock *sk)
801{
802 return READ_ONCE(inet_csk(sk)->icsk_rto_max);
803}
804
805static inline void tcp_bound_rto(struct sock *sk)
806{
807 inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk));
808}
809
810static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
811{
812 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
813}
814
815static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
816{
817 /* mptcp hooks are only on the slow path */
818 if (sk_is_mptcp((struct sock *)tp))
819 return;
820
821 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
822 ntohl(TCP_FLAG_ACK) |
823 snd_wnd);
824}
825
826static inline void tcp_fast_path_on(struct tcp_sock *tp)
827{
828 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
829}
830
831static inline void tcp_fast_path_check(struct sock *sk)
832{
833 struct tcp_sock *tp = tcp_sk(sk);
834
835 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
836 tp->rcv_wnd &&
837 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
838 !tp->urg_data)
839 tcp_fast_path_on(tp);
840}
841
842u32 tcp_delack_max(const struct sock *sk);
843
844/* Compute the actual rto_min value */
845static inline u32 tcp_rto_min(const struct sock *sk)
846{
847 const struct dst_entry *dst = __sk_dst_get(sk);
848 u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min);
849
850 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
851 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
852 return rto_min;
853}
854
855static inline u32 tcp_rto_min_us(const struct sock *sk)
856{
857 return jiffies_to_usecs(tcp_rto_min(sk));
858}
859
860static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
861{
862 return dst_metric_locked(dst, RTAX_CC_ALGO);
863}
864
865/* Minimum RTT in usec. ~0 means not available. */
866static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
867{
868 return minmax_get(&tp->rtt_min);
869}
870
871/* Compute the actual receive window we are currently advertising.
872 * Rcv_nxt can be after the window if our peer push more data
873 * than the offered window.
874 */
875static inline u32 tcp_receive_window(const struct tcp_sock *tp)
876{
877 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
878
879 if (win < 0)
880 win = 0;
881 return (u32) win;
882}
883
884/* Choose a new window, without checks for shrinking, and without
885 * scaling applied to the result. The caller does these things
886 * if necessary. This is a "raw" window selection.
887 */
888u32 __tcp_select_window(struct sock *sk);
889
890void tcp_send_window_probe(struct sock *sk);
891
892/* TCP uses 32bit jiffies to save some space.
893 * Note that this is different from tcp_time_stamp, which
894 * historically has been the same until linux-4.13.
895 */
896#define tcp_jiffies32 ((u32)jiffies)
897
898/*
899 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
900 * It is no longer tied to jiffies, but to 1 ms clock.
901 * Note: double check if you want to use tcp_jiffies32 instead of this.
902 */
903#define TCP_TS_HZ 1000
904
905static inline u64 tcp_clock_ns(void)
906{
907 return ktime_get_ns();
908}
909
910static inline u64 tcp_clock_us(void)
911{
912 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
913}
914
915static inline u64 tcp_clock_ms(void)
916{
917 return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
918}
919
920/* TCP Timestamp included in TS option (RFC 1323) can either use ms
921 * or usec resolution. Each socket carries a flag to select one or other
922 * resolution, as the route attribute could change anytime.
923 * Each flow must stick to initial resolution.
924 */
925static inline u32 tcp_clock_ts(bool usec_ts)
926{
927 return usec_ts ? tcp_clock_us() : tcp_clock_ms();
928}
929
930static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
931{
932 return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
933}
934
935static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
936{
937 if (tp->tcp_usec_ts)
938 return tp->tcp_mstamp;
939 return tcp_time_stamp_ms(tp);
940}
941
942void tcp_mstamp_refresh(struct tcp_sock *tp);
943
944static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
945{
946 return max_t(s64, t1 - t0, 0);
947}
948
949/* provide the departure time in us unit */
950static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
951{
952 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
953}
954
955/* Provide skb TSval in usec or ms unit */
956static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
957{
958 if (usec_ts)
959 return tcp_skb_timestamp_us(skb);
960
961 return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
962}
963
964static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
965{
966 return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
967}
968
969static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
970{
971 return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
972}
973
974#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
975
976#define TCPHDR_FIN BIT(0)
977#define TCPHDR_SYN BIT(1)
978#define TCPHDR_RST BIT(2)
979#define TCPHDR_PSH BIT(3)
980#define TCPHDR_ACK BIT(4)
981#define TCPHDR_URG BIT(5)
982#define TCPHDR_ECE BIT(6)
983#define TCPHDR_CWR BIT(7)
984#define TCPHDR_AE BIT(8)
985#define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
986 TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \
987 TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
988#define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \
989 TCPHDR_FLAGS_MASK)
990
991#define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
992#define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
993
994/* State flags for sacked in struct tcp_skb_cb */
995enum tcp_skb_cb_sacked_flags {
996 TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */
997 TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */
998 TCPCB_LOST = (1 << 2), /* SKB is lost */
999 TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
1000 TCPCB_LOST), /* All tag bits */
1001 TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */
1002 TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */
1003 TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
1004 TCPCB_REPAIRED),
1005};
1006
1007/* This is what the send packet queuing engine uses to pass
1008 * TCP per-packet control information to the transmission code.
1009 * We also store the host-order sequence numbers in here too.
1010 * This is 44 bytes if IPV6 is enabled.
1011 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
1012 */
1013struct tcp_skb_cb {
1014 __u32 seq; /* Starting sequence number */
1015 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
1016 union {
1017 /* Note :
1018 * tcp_gso_segs/size are used in write queue only,
1019 * cf tcp_skb_pcount()/tcp_skb_mss()
1020 */
1021 struct {
1022 u16 tcp_gso_segs;
1023 u16 tcp_gso_size;
1024 };
1025 };
1026 __u16 tcp_flags; /* TCP header flags (tcp[12-13])*/
1027
1028 __u8 sacked; /* State flags for SACK. */
1029 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
1030#define TSTAMP_ACK_SK 0x1
1031#define TSTAMP_ACK_BPF 0x2
1032 __u8 txstamp_ack:2, /* Record TX timestamp for ack? */
1033 eor:1, /* Is skb MSG_EOR marked? */
1034 has_rxtstamp:1, /* SKB has a RX timestamp */
1035 unused:4;
1036 __u32 ack_seq; /* Sequence number ACK'd */
1037 union {
1038 struct {
1039#define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
1040 /* There is space for up to 24 bytes */
1041 __u32 is_app_limited:1, /* cwnd not fully used? */
1042 delivered_ce:20,
1043 unused:11;
1044 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
1045 __u32 delivered;
1046 /* start of send pipeline phase */
1047 u64 first_tx_mstamp;
1048 /* when we reached the "delivered" count */
1049 u64 delivered_mstamp;
1050 } tx; /* only used for outgoing skbs */
1051 union {
1052 struct inet_skb_parm h4;
1053#if IS_ENABLED(CONFIG_IPV6)
1054 struct inet6_skb_parm h6;
1055#endif
1056 } header; /* For incoming skbs */
1057 };
1058};
1059
1060#define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
1061
1062extern const struct inet_connection_sock_af_ops ipv4_specific;
1063
1064#if IS_ENABLED(CONFIG_IPV6)
1065/* This is the variant of inet6_iif() that must be used by TCP,
1066 * as TCP moves IP6CB into a different location in skb->cb[]
1067 */
1068static inline int tcp_v6_iif(const struct sk_buff *skb)
1069{
1070 return TCP_SKB_CB(skb)->header.h6.iif;
1071}
1072
1073static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1074{
1075 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1076
1077 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1078}
1079
1080/* TCP_SKB_CB reference means this can not be used from early demux */
1081static inline int tcp_v6_sdif(const struct sk_buff *skb)
1082{
1083#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1084 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1085 return TCP_SKB_CB(skb)->header.h6.iif;
1086#endif
1087 return 0;
1088}
1089
1090extern const struct inet_connection_sock_af_ops ipv6_specific;
1091
1092INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1093INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1094void tcp_v6_early_demux(struct sk_buff *skb);
1095
1096#endif
1097
1098/* TCP_SKB_CB reference means this can not be used from early demux */
1099static inline int tcp_v4_sdif(struct sk_buff *skb)
1100{
1101#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1102 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1103 return TCP_SKB_CB(skb)->header.h4.iif;
1104#endif
1105 return 0;
1106}
1107
1108/* Due to TSO, an SKB can be composed of multiple actual
1109 * packets. To keep these tracked properly, we use this.
1110 */
1111static inline int tcp_skb_pcount(const struct sk_buff *skb)
1112{
1113 return TCP_SKB_CB(skb)->tcp_gso_segs;
1114}
1115
1116static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1117{
1118 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1119}
1120
1121static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1122{
1123 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1124}
1125
1126/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1127static inline int tcp_skb_mss(const struct sk_buff *skb)
1128{
1129 return TCP_SKB_CB(skb)->tcp_gso_size;
1130}
1131
1132static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1133{
1134 return likely(!TCP_SKB_CB(skb)->eor);
1135}
1136
1137static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1138 const struct sk_buff *from)
1139{
1140 /* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1141 return likely(tcp_skb_can_collapse_to(to) &&
1142 mptcp_skb_can_collapse(to, from) &&
1143 skb_pure_zcopy_same(to, from) &&
1144 skb_frags_readable(to) == skb_frags_readable(from));
1145}
1146
1147static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1148 const struct sk_buff *from)
1149{
1150 return likely(mptcp_skb_can_collapse(to, from) &&
1151 !skb_cmp_decrypted(to, from));
1152}
1153
1154/* Events passed to congestion control interface */
1155enum tcp_ca_event {
1156 CA_EVENT_TX_START, /* first transmit when no packets in flight */
1157 CA_EVENT_CWND_RESTART, /* congestion window restart */
1158 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
1159 CA_EVENT_LOSS, /* loss timeout */
1160 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
1161 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
1162};
1163
1164/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1165enum tcp_ca_ack_event_flags {
1166 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
1167 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
1168 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
1169};
1170
1171/*
1172 * Interface for adding new TCP congestion control handlers
1173 */
1174#define TCP_CA_NAME_MAX 16
1175#define TCP_CA_MAX 128
1176#define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1177
1178#define TCP_CA_UNSPEC 0
1179
1180/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1181#define TCP_CONG_NON_RESTRICTED BIT(0)
1182/* Requires ECN/ECT set on all packets */
1183#define TCP_CONG_NEEDS_ECN BIT(1)
1184#define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1185
1186union tcp_cc_info;
1187
1188struct ack_sample {
1189 u32 pkts_acked;
1190 s32 rtt_us;
1191 u32 in_flight;
1192};
1193
1194/* A rate sample measures the number of (original/retransmitted) data
1195 * packets delivered "delivered" over an interval of time "interval_us".
1196 * The tcp_rate.c code fills in the rate sample, and congestion
1197 * control modules that define a cong_control function to run at the end
1198 * of ACK processing can optionally chose to consult this sample when
1199 * setting cwnd and pacing rate.
1200 * A sample is invalid if "delivered" or "interval_us" is negative.
1201 */
1202struct rate_sample {
1203 u64 prior_mstamp; /* starting timestamp for interval */
1204 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1205 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1206 s32 delivered; /* number of packets delivered over interval */
1207 s32 delivered_ce; /* number of packets delivered w/ CE marks*/
1208 long interval_us; /* time for tp->delivered to incr "delivered" */
1209 u32 snd_interval_us; /* snd interval for delivered packets */
1210 u32 rcv_interval_us; /* rcv interval for delivered packets */
1211 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1212 int losses; /* number of packets marked lost upon ACK */
1213 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1214 u32 prior_in_flight; /* in flight before this ACK */
1215 u32 last_end_seq; /* end_seq of most recently ACKed packet */
1216 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1217 bool is_retrans; /* is sample from retransmission? */
1218 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1219};
1220
1221struct tcp_congestion_ops {
1222/* fast path fields are put first to fill one cache line */
1223
1224 /* return slow start threshold (required) */
1225 u32 (*ssthresh)(struct sock *sk);
1226
1227 /* do new cwnd calculation (required) */
1228 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1229
1230 /* call before changing ca_state (optional) */
1231 void (*set_state)(struct sock *sk, u8 new_state);
1232
1233 /* call when cwnd event occurs (optional) */
1234 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1235
1236 /* call when ack arrives (optional) */
1237 void (*in_ack_event)(struct sock *sk, u32 flags);
1238
1239 /* hook for packet ack accounting (optional) */
1240 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1241
1242 /* override sysctl_tcp_min_tso_segs */
1243 u32 (*min_tso_segs)(struct sock *sk);
1244
1245 /* call when packets are delivered to update cwnd and pacing rate,
1246 * after all the ca_state processing. (optional)
1247 */
1248 void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1249
1250
1251 /* new value of cwnd after loss (required) */
1252 u32 (*undo_cwnd)(struct sock *sk);
1253 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1254 u32 (*sndbuf_expand)(struct sock *sk);
1255
1256/* control/slow paths put last */
1257 /* get info for inet_diag (optional) */
1258 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1259 union tcp_cc_info *info);
1260
1261 char name[TCP_CA_NAME_MAX];
1262 struct module *owner;
1263 struct list_head list;
1264 u32 key;
1265 u32 flags;
1266
1267 /* initialize private data (optional) */
1268 void (*init)(struct sock *sk);
1269 /* cleanup private data (optional) */
1270 void (*release)(struct sock *sk);
1271} ____cacheline_aligned_in_smp;
1272
1273int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1274void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1275int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1276 struct tcp_congestion_ops *old_type);
1277int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1278
1279void tcp_assign_congestion_control(struct sock *sk);
1280void tcp_init_congestion_control(struct sock *sk);
1281void tcp_cleanup_congestion_control(struct sock *sk);
1282int tcp_set_default_congestion_control(struct net *net, const char *name);
1283void tcp_get_default_congestion_control(struct net *net, char *name);
1284void tcp_get_available_congestion_control(char *buf, size_t len);
1285void tcp_get_allowed_congestion_control(char *buf, size_t len);
1286int tcp_set_allowed_congestion_control(char *allowed);
1287int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1288 bool cap_net_admin);
1289u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1290void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1291
1292u32 tcp_reno_ssthresh(struct sock *sk);
1293u32 tcp_reno_undo_cwnd(struct sock *sk);
1294void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1295extern struct tcp_congestion_ops tcp_reno;
1296
1297struct tcp_congestion_ops *tcp_ca_find(const char *name);
1298struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1299u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1300#ifdef CONFIG_INET
1301char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1302#else
1303static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1304{
1305 return NULL;
1306}
1307#endif
1308
1309static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1310{
1311 const struct inet_connection_sock *icsk = inet_csk(sk);
1312
1313 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1314}
1315
1316static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1317{
1318 const struct inet_connection_sock *icsk = inet_csk(sk);
1319
1320 if (icsk->icsk_ca_ops->cwnd_event)
1321 icsk->icsk_ca_ops->cwnd_event(sk, event);
1322}
1323
1324/* From tcp_cong.c */
1325void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1326
1327/* From tcp_rate.c */
1328void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1329void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1330 struct rate_sample *rs);
1331void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1332 bool is_sack_reneg, struct rate_sample *rs);
1333void tcp_rate_check_app_limited(struct sock *sk);
1334
1335static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1336{
1337 return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1338}
1339
1340/* These functions determine how the current flow behaves in respect of SACK
1341 * handling. SACK is negotiated with the peer, and therefore it can vary
1342 * between different flows.
1343 *
1344 * tcp_is_sack - SACK enabled
1345 * tcp_is_reno - No SACK
1346 */
1347static inline int tcp_is_sack(const struct tcp_sock *tp)
1348{
1349 return likely(tp->rx_opt.sack_ok);
1350}
1351
1352static inline bool tcp_is_reno(const struct tcp_sock *tp)
1353{
1354 return !tcp_is_sack(tp);
1355}
1356
1357static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1358{
1359 return tp->sacked_out + tp->lost_out;
1360}
1361
1362/* This determines how many packets are "in the network" to the best
1363 * of our knowledge. In many cases it is conservative, but where
1364 * detailed information is available from the receiver (via SACK
1365 * blocks etc.) we can make more aggressive calculations.
1366 *
1367 * Use this for decisions involving congestion control, use just
1368 * tp->packets_out to determine if the send queue is empty or not.
1369 *
1370 * Read this equation as:
1371 *
1372 * "Packets sent once on transmission queue" MINUS
1373 * "Packets left network, but not honestly ACKed yet" PLUS
1374 * "Packets fast retransmitted"
1375 */
1376static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1377{
1378 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1379}
1380
1381#define TCP_INFINITE_SSTHRESH 0x7fffffff
1382
1383static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1384{
1385 return tp->snd_cwnd;
1386}
1387
1388static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1389{
1390 WARN_ON_ONCE((int)val <= 0);
1391 tp->snd_cwnd = val;
1392}
1393
1394static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1395{
1396 return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1397}
1398
1399static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1400{
1401 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1402}
1403
1404static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1405{
1406 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1407 (1 << inet_csk(sk)->icsk_ca_state);
1408}
1409
1410/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1411 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1412 * ssthresh.
1413 */
1414static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1415{
1416 const struct tcp_sock *tp = tcp_sk(sk);
1417
1418 if (tcp_in_cwnd_reduction(sk))
1419 return tp->snd_ssthresh;
1420 else
1421 return max(tp->snd_ssthresh,
1422 ((tcp_snd_cwnd(tp) >> 1) +
1423 (tcp_snd_cwnd(tp) >> 2)));
1424}
1425
1426/* Use define here intentionally to get WARN_ON location shown at the caller */
1427#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1428
1429void tcp_enter_cwr(struct sock *sk);
1430__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1431
1432/* The maximum number of MSS of available cwnd for which TSO defers
1433 * sending if not using sysctl_tcp_tso_win_divisor.
1434 */
1435static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1436{
1437 return 3;
1438}
1439
1440/* Returns end sequence number of the receiver's advertised window */
1441static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1442{
1443 return tp->snd_una + tp->snd_wnd;
1444}
1445
1446/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1447 * flexible approach. The RFC suggests cwnd should not be raised unless
1448 * it was fully used previously. And that's exactly what we do in
1449 * congestion avoidance mode. But in slow start we allow cwnd to grow
1450 * as long as the application has used half the cwnd.
1451 * Example :
1452 * cwnd is 10 (IW10), but application sends 9 frames.
1453 * We allow cwnd to reach 18 when all frames are ACKed.
1454 * This check is safe because it's as aggressive as slow start which already
1455 * risks 100% overshoot. The advantage is that we discourage application to
1456 * either send more filler packets or data to artificially blow up the cwnd
1457 * usage, and allow application-limited process to probe bw more aggressively.
1458 */
1459static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1460{
1461 const struct tcp_sock *tp = tcp_sk(sk);
1462
1463 if (tp->is_cwnd_limited)
1464 return true;
1465
1466 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1467 if (tcp_in_slow_start(tp))
1468 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1469
1470 return false;
1471}
1472
1473/* BBR congestion control needs pacing.
1474 * Same remark for SO_MAX_PACING_RATE.
1475 * sch_fq packet scheduler is efficiently handling pacing,
1476 * but is not always installed/used.
1477 * Return true if TCP stack should pace packets itself.
1478 */
1479static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1480{
1481 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1482}
1483
1484/* Estimates in how many jiffies next packet for this flow can be sent.
1485 * Scheduling a retransmit timer too early would be silly.
1486 */
1487static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1488{
1489 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1490
1491 return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1492}
1493
1494static inline void tcp_reset_xmit_timer(struct sock *sk,
1495 const int what,
1496 unsigned long when,
1497 bool pace_delay)
1498{
1499 if (pace_delay)
1500 when += tcp_pacing_delay(sk);
1501 inet_csk_reset_xmit_timer(sk, what, when,
1502 tcp_rto_max(sk));
1503}
1504
1505/* Something is really bad, we could not queue an additional packet,
1506 * because qdisc is full or receiver sent a 0 window, or we are paced.
1507 * We do not want to add fuel to the fire, or abort too early,
1508 * so make sure the timer we arm now is at least 200ms in the future,
1509 * regardless of current icsk_rto value (as it could be ~2ms)
1510 */
1511static inline unsigned long tcp_probe0_base(const struct sock *sk)
1512{
1513 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1514}
1515
1516/* Variant of inet_csk_rto_backoff() used for zero window probes */
1517static inline unsigned long tcp_probe0_when(const struct sock *sk,
1518 unsigned long max_when)
1519{
1520 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1521 inet_csk(sk)->icsk_backoff);
1522 u64 when = (u64)tcp_probe0_base(sk) << backoff;
1523
1524 return (unsigned long)min_t(u64, when, max_when);
1525}
1526
1527static inline void tcp_check_probe_timer(struct sock *sk)
1528{
1529 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1530 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1531 tcp_probe0_base(sk), true);
1532}
1533
1534static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1535{
1536 tp->snd_wl1 = seq;
1537}
1538
1539static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1540{
1541 tp->snd_wl1 = seq;
1542}
1543
1544/*
1545 * Calculate(/check) TCP checksum
1546 */
1547static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1548 __be32 daddr, __wsum base)
1549{
1550 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1551}
1552
1553static inline bool tcp_checksum_complete(struct sk_buff *skb)
1554{
1555 return !skb_csum_unnecessary(skb) &&
1556 __skb_checksum_complete(skb);
1557}
1558
1559bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1560 enum skb_drop_reason *reason);
1561
1562
1563int tcp_filter(struct sock *sk, struct sk_buff *skb);
1564void tcp_set_state(struct sock *sk, int state);
1565void tcp_done(struct sock *sk);
1566int tcp_abort(struct sock *sk, int err);
1567
1568static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1569{
1570 rx_opt->dsack = 0;
1571 rx_opt->num_sacks = 0;
1572}
1573
1574void tcp_cwnd_restart(struct sock *sk, s32 delta);
1575
1576static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1577{
1578 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1579 struct tcp_sock *tp = tcp_sk(sk);
1580 s32 delta;
1581
1582 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1583 tp->packets_out || ca_ops->cong_control)
1584 return;
1585 delta = tcp_jiffies32 - tp->lsndtime;
1586 if (delta > inet_csk(sk)->icsk_rto)
1587 tcp_cwnd_restart(sk, delta);
1588}
1589
1590/* Determine a window scaling and initial window to offer. */
1591void tcp_select_initial_window(const struct sock *sk, int __space,
1592 __u32 mss, __u32 *rcv_wnd,
1593 __u32 *window_clamp, int wscale_ok,
1594 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1595
1596static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1597{
1598 s64 scaled_space = (s64)space * scaling_ratio;
1599
1600 return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1601}
1602
1603static inline int tcp_win_from_space(const struct sock *sk, int space)
1604{
1605 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1606}
1607
1608/* inverse of __tcp_win_from_space() */
1609static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1610{
1611 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1612
1613 do_div(val, scaling_ratio);
1614 return val;
1615}
1616
1617static inline int tcp_space_from_win(const struct sock *sk, int win)
1618{
1619 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1620}
1621
1622/* Assume a 50% default for skb->len/skb->truesize ratio.
1623 * This may be adjusted later in tcp_measure_rcv_mss().
1624 */
1625#define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1626
1627static inline void tcp_scaling_ratio_init(struct sock *sk)
1628{
1629 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1630}
1631
1632/* Note: caller must be prepared to deal with negative returns */
1633static inline int tcp_space(const struct sock *sk)
1634{
1635 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1636 READ_ONCE(sk->sk_backlog.len) -
1637 atomic_read(&sk->sk_rmem_alloc));
1638}
1639
1640static inline int tcp_full_space(const struct sock *sk)
1641{
1642 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1643}
1644
1645static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1646{
1647 int unused_mem = sk_unused_reserved_mem(sk);
1648 struct tcp_sock *tp = tcp_sk(sk);
1649
1650 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1651 if (unused_mem)
1652 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1653 tcp_win_from_space(sk, unused_mem));
1654}
1655
1656static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1657{
1658 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1659}
1660
1661void tcp_cleanup_rbuf(struct sock *sk, int copied);
1662void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1663
1664
1665/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1666 * If 87.5 % (7/8) of the space has been consumed, we want to override
1667 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1668 * len/truesize ratio.
1669 */
1670static inline bool tcp_rmem_pressure(const struct sock *sk)
1671{
1672 int rcvbuf, threshold;
1673
1674 if (tcp_under_memory_pressure(sk))
1675 return true;
1676
1677 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1678 threshold = rcvbuf - (rcvbuf >> 3);
1679
1680 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1681}
1682
1683static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1684{
1685 const struct tcp_sock *tp = tcp_sk(sk);
1686 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1687
1688 if (avail <= 0)
1689 return false;
1690
1691 return (avail >= target) || tcp_rmem_pressure(sk) ||
1692 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1693}
1694
1695extern void tcp_openreq_init_rwin(struct request_sock *req,
1696 const struct sock *sk_listener,
1697 const struct dst_entry *dst);
1698
1699void tcp_enter_memory_pressure(struct sock *sk);
1700void tcp_leave_memory_pressure(struct sock *sk);
1701
1702static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1703{
1704 struct net *net = sock_net((struct sock *)tp);
1705 int val;
1706
1707 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1708 * and do_tcp_setsockopt().
1709 */
1710 val = READ_ONCE(tp->keepalive_intvl);
1711
1712 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1713}
1714
1715static inline int keepalive_time_when(const struct tcp_sock *tp)
1716{
1717 struct net *net = sock_net((struct sock *)tp);
1718 int val;
1719
1720 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1721 val = READ_ONCE(tp->keepalive_time);
1722
1723 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1724}
1725
1726static inline int keepalive_probes(const struct tcp_sock *tp)
1727{
1728 struct net *net = sock_net((struct sock *)tp);
1729 int val;
1730
1731 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1732 * and do_tcp_setsockopt().
1733 */
1734 val = READ_ONCE(tp->keepalive_probes);
1735
1736 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1737}
1738
1739static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1740{
1741 const struct inet_connection_sock *icsk = &tp->inet_conn;
1742
1743 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1744 tcp_jiffies32 - tp->rcv_tstamp);
1745}
1746
1747static inline int tcp_fin_time(const struct sock *sk)
1748{
1749 int fin_timeout = tcp_sk(sk)->linger2 ? :
1750 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1751 const int rto = inet_csk(sk)->icsk_rto;
1752
1753 if (fin_timeout < (rto << 2) - (rto >> 1))
1754 fin_timeout = (rto << 2) - (rto >> 1);
1755
1756 return fin_timeout;
1757}
1758
1759static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1760 int paws_win)
1761{
1762 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1763 return true;
1764 if (unlikely(!time_before32(ktime_get_seconds(),
1765 rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1766 return true;
1767 /*
1768 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1769 * then following tcp messages have valid values. Ignore 0 value,
1770 * or else 'negative' tsval might forbid us to accept their packets.
1771 */
1772 if (!rx_opt->ts_recent)
1773 return true;
1774 return false;
1775}
1776
1777static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1778 int rst)
1779{
1780 if (tcp_paws_check(rx_opt, 0))
1781 return false;
1782
1783 /* RST segments are not recommended to carry timestamp,
1784 and, if they do, it is recommended to ignore PAWS because
1785 "their cleanup function should take precedence over timestamps."
1786 Certainly, it is mistake. It is necessary to understand the reasons
1787 of this constraint to relax it: if peer reboots, clock may go
1788 out-of-sync and half-open connections will not be reset.
1789 Actually, the problem would be not existing if all
1790 the implementations followed draft about maintaining clock
1791 via reboots. Linux-2.2 DOES NOT!
1792
1793 However, we can relax time bounds for RST segments to MSL.
1794 */
1795 if (rst && !time_before32(ktime_get_seconds(),
1796 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1797 return false;
1798 return true;
1799}
1800
1801bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1802 int mib_idx, u32 *last_oow_ack_time);
1803
1804static inline void tcp_mib_init(struct net *net)
1805{
1806 /* See RFC 2012 */
1807 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1808 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1809 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1810 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1811}
1812
1813/* from STCP */
1814static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1815{
1816 tp->lost_skb_hint = NULL;
1817}
1818
1819static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1820{
1821 tcp_clear_retrans_hints_partial(tp);
1822 tp->retransmit_skb_hint = NULL;
1823}
1824
1825#define tcp_md5_addr tcp_ao_addr
1826
1827/* - key database */
1828struct tcp_md5sig_key {
1829 struct hlist_node node;
1830 u8 keylen;
1831 u8 family; /* AF_INET or AF_INET6 */
1832 u8 prefixlen;
1833 u8 flags;
1834 union tcp_md5_addr addr;
1835 int l3index; /* set if key added with L3 scope */
1836 u8 key[TCP_MD5SIG_MAXKEYLEN];
1837 struct rcu_head rcu;
1838};
1839
1840/* - sock block */
1841struct tcp_md5sig_info {
1842 struct hlist_head head;
1843 struct rcu_head rcu;
1844};
1845
1846/* - pseudo header */
1847struct tcp4_pseudohdr {
1848 __be32 saddr;
1849 __be32 daddr;
1850 __u8 pad;
1851 __u8 protocol;
1852 __be16 len;
1853};
1854
1855struct tcp6_pseudohdr {
1856 struct in6_addr saddr;
1857 struct in6_addr daddr;
1858 __be32 len;
1859 __be32 protocol; /* including padding */
1860};
1861
1862union tcp_md5sum_block {
1863 struct tcp4_pseudohdr ip4;
1864#if IS_ENABLED(CONFIG_IPV6)
1865 struct tcp6_pseudohdr ip6;
1866#endif
1867};
1868
1869/*
1870 * struct tcp_sigpool - per-CPU pool of ahash_requests
1871 * @scratch: per-CPU temporary area, that can be used between
1872 * tcp_sigpool_start() and tcp_sigpool_end() to perform
1873 * crypto request
1874 * @req: pre-allocated ahash request
1875 */
1876struct tcp_sigpool {
1877 void *scratch;
1878 struct ahash_request *req;
1879};
1880
1881int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1882void tcp_sigpool_get(unsigned int id);
1883void tcp_sigpool_release(unsigned int id);
1884int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1885 const struct sk_buff *skb,
1886 unsigned int header_len);
1887
1888/**
1889 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1890 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1891 * @c: returned tcp_sigpool for usage (uninitialized on failure)
1892 *
1893 * Returns: 0 on success, error otherwise.
1894 */
1895int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1896/**
1897 * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1898 * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1899 */
1900void tcp_sigpool_end(struct tcp_sigpool *c);
1901size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1902/* - functions */
1903int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1904 const struct sock *sk, const struct sk_buff *skb);
1905int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1906 int family, u8 prefixlen, int l3index, u8 flags,
1907 const u8 *newkey, u8 newkeylen);
1908int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1909 int family, u8 prefixlen, int l3index,
1910 struct tcp_md5sig_key *key);
1911
1912int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1913 int family, u8 prefixlen, int l3index, u8 flags);
1914void tcp_clear_md5_list(struct sock *sk);
1915struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1916 const struct sock *addr_sk);
1917
1918#ifdef CONFIG_TCP_MD5SIG
1919struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1920 const union tcp_md5_addr *addr,
1921 int family, bool any_l3index);
1922static inline struct tcp_md5sig_key *
1923tcp_md5_do_lookup(const struct sock *sk, int l3index,
1924 const union tcp_md5_addr *addr, int family)
1925{
1926 if (!static_branch_unlikely(&tcp_md5_needed.key))
1927 return NULL;
1928 return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1929}
1930
1931static inline struct tcp_md5sig_key *
1932tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1933 const union tcp_md5_addr *addr, int family)
1934{
1935 if (!static_branch_unlikely(&tcp_md5_needed.key))
1936 return NULL;
1937 return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1938}
1939
1940#define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1941#else
1942static inline struct tcp_md5sig_key *
1943tcp_md5_do_lookup(const struct sock *sk, int l3index,
1944 const union tcp_md5_addr *addr, int family)
1945{
1946 return NULL;
1947}
1948
1949static inline struct tcp_md5sig_key *
1950tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1951 const union tcp_md5_addr *addr, int family)
1952{
1953 return NULL;
1954}
1955
1956#define tcp_twsk_md5_key(twsk) NULL
1957#endif
1958
1959int tcp_md5_alloc_sigpool(void);
1960void tcp_md5_release_sigpool(void);
1961void tcp_md5_add_sigpool(void);
1962extern int tcp_md5_sigpool_id;
1963
1964int tcp_md5_hash_key(struct tcp_sigpool *hp,
1965 const struct tcp_md5sig_key *key);
1966
1967/* From tcp_fastopen.c */
1968void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1969 struct tcp_fastopen_cookie *cookie);
1970void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1971 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1972 u16 try_exp);
1973struct tcp_fastopen_request {
1974 /* Fast Open cookie. Size 0 means a cookie request */
1975 struct tcp_fastopen_cookie cookie;
1976 struct msghdr *data; /* data in MSG_FASTOPEN */
1977 size_t size;
1978 int copied; /* queued in tcp_connect() */
1979 struct ubuf_info *uarg;
1980};
1981void tcp_free_fastopen_req(struct tcp_sock *tp);
1982void tcp_fastopen_destroy_cipher(struct sock *sk);
1983void tcp_fastopen_ctx_destroy(struct net *net);
1984int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1985 void *primary_key, void *backup_key);
1986int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1987 u64 *key);
1988void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1989struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1990 struct request_sock *req,
1991 struct tcp_fastopen_cookie *foc,
1992 const struct dst_entry *dst);
1993void tcp_fastopen_init_key_once(struct net *net);
1994bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1995 struct tcp_fastopen_cookie *cookie);
1996bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1997#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1998#define TCP_FASTOPEN_KEY_MAX 2
1999#define TCP_FASTOPEN_KEY_BUF_LENGTH \
2000 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
2001
2002/* Fastopen key context */
2003struct tcp_fastopen_context {
2004 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
2005 int num;
2006 struct rcu_head rcu;
2007};
2008
2009void tcp_fastopen_active_disable(struct sock *sk);
2010bool tcp_fastopen_active_should_disable(struct sock *sk);
2011void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
2012void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
2013
2014/* Caller needs to wrap with rcu_read_(un)lock() */
2015static inline
2016struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
2017{
2018 struct tcp_fastopen_context *ctx;
2019
2020 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
2021 if (!ctx)
2022 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
2023 return ctx;
2024}
2025
2026static inline
2027bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
2028 const struct tcp_fastopen_cookie *orig)
2029{
2030 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
2031 orig->len == foc->len &&
2032 !memcmp(orig->val, foc->val, foc->len))
2033 return true;
2034 return false;
2035}
2036
2037static inline
2038int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
2039{
2040 return ctx->num;
2041}
2042
2043/* Latencies incurred by various limits for a sender. They are
2044 * chronograph-like stats that are mutually exclusive.
2045 */
2046enum tcp_chrono {
2047 TCP_CHRONO_UNSPEC,
2048 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
2049 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
2050 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
2051 __TCP_CHRONO_MAX,
2052};
2053
2054void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
2055void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
2056
2057/* This helper is needed, because skb->tcp_tsorted_anchor uses
2058 * the same memory storage than skb->destructor/_skb_refdst
2059 */
2060static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
2061{
2062 skb->destructor = NULL;
2063 skb->_skb_refdst = 0UL;
2064}
2065
2066#define tcp_skb_tsorted_save(skb) { \
2067 unsigned long _save = skb->_skb_refdst; \
2068 skb->_skb_refdst = 0UL;
2069
2070#define tcp_skb_tsorted_restore(skb) \
2071 skb->_skb_refdst = _save; \
2072}
2073
2074void tcp_write_queue_purge(struct sock *sk);
2075
2076static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2077{
2078 return skb_rb_first(&sk->tcp_rtx_queue);
2079}
2080
2081static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2082{
2083 return skb_rb_last(&sk->tcp_rtx_queue);
2084}
2085
2086static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2087{
2088 return skb_peek_tail(&sk->sk_write_queue);
2089}
2090
2091#define tcp_for_write_queue_from_safe(skb, tmp, sk) \
2092 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2093
2094static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2095{
2096 return skb_peek(&sk->sk_write_queue);
2097}
2098
2099static inline bool tcp_skb_is_last(const struct sock *sk,
2100 const struct sk_buff *skb)
2101{
2102 return skb_queue_is_last(&sk->sk_write_queue, skb);
2103}
2104
2105/**
2106 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2107 * @sk: socket
2108 *
2109 * Since the write queue can have a temporary empty skb in it,
2110 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2111 */
2112static inline bool tcp_write_queue_empty(const struct sock *sk)
2113{
2114 const struct tcp_sock *tp = tcp_sk(sk);
2115
2116 return tp->write_seq == tp->snd_nxt;
2117}
2118
2119static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2120{
2121 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2122}
2123
2124static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2125{
2126 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2127}
2128
2129static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2130{
2131 __skb_queue_tail(&sk->sk_write_queue, skb);
2132
2133 /* Queue it, remembering where we must start sending. */
2134 if (sk->sk_write_queue.next == skb)
2135 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2136}
2137
2138/* Insert new before skb on the write queue of sk. */
2139static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2140 struct sk_buff *skb,
2141 struct sock *sk)
2142{
2143 __skb_queue_before(&sk->sk_write_queue, skb, new);
2144}
2145
2146static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2147{
2148 tcp_skb_tsorted_anchor_cleanup(skb);
2149 __skb_unlink(skb, &sk->sk_write_queue);
2150}
2151
2152void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2153
2154static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2155{
2156 tcp_skb_tsorted_anchor_cleanup(skb);
2157 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2158}
2159
2160static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2161{
2162 list_del(&skb->tcp_tsorted_anchor);
2163 tcp_rtx_queue_unlink(skb, sk);
2164 tcp_wmem_free_skb(sk, skb);
2165}
2166
2167static inline void tcp_write_collapse_fence(struct sock *sk)
2168{
2169 struct sk_buff *skb = tcp_write_queue_tail(sk);
2170
2171 if (skb)
2172 TCP_SKB_CB(skb)->eor = 1;
2173}
2174
2175static inline void tcp_push_pending_frames(struct sock *sk)
2176{
2177 if (tcp_send_head(sk)) {
2178 struct tcp_sock *tp = tcp_sk(sk);
2179
2180 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2181 }
2182}
2183
2184/* Start sequence of the skb just after the highest skb with SACKed
2185 * bit, valid only if sacked_out > 0 or when the caller has ensured
2186 * validity by itself.
2187 */
2188static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2189{
2190 if (!tp->sacked_out)
2191 return tp->snd_una;
2192
2193 if (tp->highest_sack == NULL)
2194 return tp->snd_nxt;
2195
2196 return TCP_SKB_CB(tp->highest_sack)->seq;
2197}
2198
2199static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2200{
2201 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2202}
2203
2204static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2205{
2206 return tcp_sk(sk)->highest_sack;
2207}
2208
2209static inline void tcp_highest_sack_reset(struct sock *sk)
2210{
2211 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2212}
2213
2214/* Called when old skb is about to be deleted and replaced by new skb */
2215static inline void tcp_highest_sack_replace(struct sock *sk,
2216 struct sk_buff *old,
2217 struct sk_buff *new)
2218{
2219 if (old == tcp_highest_sack(sk))
2220 tcp_sk(sk)->highest_sack = new;
2221}
2222
2223/* This helper checks if socket has IP_TRANSPARENT set */
2224static inline bool inet_sk_transparent(const struct sock *sk)
2225{
2226 switch (sk->sk_state) {
2227 case TCP_TIME_WAIT:
2228 return inet_twsk(sk)->tw_transparent;
2229 case TCP_NEW_SYN_RECV:
2230 return inet_rsk(inet_reqsk(sk))->no_srccheck;
2231 }
2232 return inet_test_bit(TRANSPARENT, sk);
2233}
2234
2235/* Determines whether this is a thin stream (which may suffer from
2236 * increased latency). Used to trigger latency-reducing mechanisms.
2237 */
2238static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2239{
2240 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2241}
2242
2243/* /proc */
2244enum tcp_seq_states {
2245 TCP_SEQ_STATE_LISTENING,
2246 TCP_SEQ_STATE_ESTABLISHED,
2247};
2248
2249void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2250void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2251void tcp_seq_stop(struct seq_file *seq, void *v);
2252
2253struct tcp_seq_afinfo {
2254 sa_family_t family;
2255};
2256
2257struct tcp_iter_state {
2258 struct seq_net_private p;
2259 enum tcp_seq_states state;
2260 struct sock *syn_wait_sk;
2261 int bucket, offset, sbucket, num;
2262 loff_t last_pos;
2263};
2264
2265extern struct request_sock_ops tcp_request_sock_ops;
2266extern struct request_sock_ops tcp6_request_sock_ops;
2267
2268void tcp_v4_destroy_sock(struct sock *sk);
2269
2270struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2271 netdev_features_t features);
2272struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb);
2273struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2274struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2275 struct tcphdr *th);
2276INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2277INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2278INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2279INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2280#ifdef CONFIG_INET
2281void tcp_gro_complete(struct sk_buff *skb);
2282#else
2283static inline void tcp_gro_complete(struct sk_buff *skb) { }
2284#endif
2285
2286void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2287
2288static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2289{
2290 struct net *net = sock_net((struct sock *)tp);
2291 u32 val;
2292
2293 val = READ_ONCE(tp->notsent_lowat);
2294
2295 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2296}
2297
2298bool tcp_stream_memory_free(const struct sock *sk, int wake);
2299
2300#ifdef CONFIG_PROC_FS
2301int tcp4_proc_init(void);
2302void tcp4_proc_exit(void);
2303#endif
2304
2305int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2306int tcp_conn_request(struct request_sock_ops *rsk_ops,
2307 const struct tcp_request_sock_ops *af_ops,
2308 struct sock *sk, struct sk_buff *skb);
2309
2310/* TCP af-specific functions */
2311struct tcp_sock_af_ops {
2312#ifdef CONFIG_TCP_MD5SIG
2313 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
2314 const struct sock *addr_sk);
2315 int (*calc_md5_hash)(char *location,
2316 const struct tcp_md5sig_key *md5,
2317 const struct sock *sk,
2318 const struct sk_buff *skb);
2319 int (*md5_parse)(struct sock *sk,
2320 int optname,
2321 sockptr_t optval,
2322 int optlen);
2323#endif
2324#ifdef CONFIG_TCP_AO
2325 int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2326 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2327 struct sock *addr_sk,
2328 int sndid, int rcvid);
2329 int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2330 const struct sock *sk,
2331 __be32 sisn, __be32 disn, bool send);
2332 int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2333 const struct sock *sk, const struct sk_buff *skb,
2334 const u8 *tkey, int hash_offset, u32 sne);
2335#endif
2336};
2337
2338struct tcp_request_sock_ops {
2339 u16 mss_clamp;
2340#ifdef CONFIG_TCP_MD5SIG
2341 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2342 const struct sock *addr_sk);
2343 int (*calc_md5_hash) (char *location,
2344 const struct tcp_md5sig_key *md5,
2345 const struct sock *sk,
2346 const struct sk_buff *skb);
2347#endif
2348#ifdef CONFIG_TCP_AO
2349 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2350 struct request_sock *req,
2351 int sndid, int rcvid);
2352 int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2353 int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2354 struct request_sock *req, const struct sk_buff *skb,
2355 int hash_offset, u32 sne);
2356#endif
2357#ifdef CONFIG_SYN_COOKIES
2358 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2359 __u16 *mss);
2360#endif
2361 struct dst_entry *(*route_req)(const struct sock *sk,
2362 struct sk_buff *skb,
2363 struct flowi *fl,
2364 struct request_sock *req,
2365 u32 tw_isn);
2366 u32 (*init_seq)(const struct sk_buff *skb);
2367 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2368 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2369 struct flowi *fl, struct request_sock *req,
2370 struct tcp_fastopen_cookie *foc,
2371 enum tcp_synack_type synack_type,
2372 struct sk_buff *syn_skb);
2373};
2374
2375extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2376#if IS_ENABLED(CONFIG_IPV6)
2377extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2378#endif
2379
2380#ifdef CONFIG_SYN_COOKIES
2381static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2382 const struct sock *sk, struct sk_buff *skb,
2383 __u16 *mss)
2384{
2385 tcp_synq_overflow(sk);
2386 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2387 return ops->cookie_init_seq(skb, mss);
2388}
2389#else
2390static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2391 const struct sock *sk, struct sk_buff *skb,
2392 __u16 *mss)
2393{
2394 return 0;
2395}
2396#endif
2397
2398struct tcp_key {
2399 union {
2400 struct {
2401 struct tcp_ao_key *ao_key;
2402 char *traffic_key;
2403 u32 sne;
2404 u8 rcv_next;
2405 };
2406 struct tcp_md5sig_key *md5_key;
2407 };
2408 enum {
2409 TCP_KEY_NONE = 0,
2410 TCP_KEY_MD5,
2411 TCP_KEY_AO,
2412 } type;
2413};
2414
2415static inline void tcp_get_current_key(const struct sock *sk,
2416 struct tcp_key *out)
2417{
2418#if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2419 const struct tcp_sock *tp = tcp_sk(sk);
2420#endif
2421
2422#ifdef CONFIG_TCP_AO
2423 if (static_branch_unlikely(&tcp_ao_needed.key)) {
2424 struct tcp_ao_info *ao;
2425
2426 ao = rcu_dereference_protected(tp->ao_info,
2427 lockdep_sock_is_held(sk));
2428 if (ao) {
2429 out->ao_key = READ_ONCE(ao->current_key);
2430 out->type = TCP_KEY_AO;
2431 return;
2432 }
2433 }
2434#endif
2435#ifdef CONFIG_TCP_MD5SIG
2436 if (static_branch_unlikely(&tcp_md5_needed.key) &&
2437 rcu_access_pointer(tp->md5sig_info)) {
2438 out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2439 if (out->md5_key) {
2440 out->type = TCP_KEY_MD5;
2441 return;
2442 }
2443 }
2444#endif
2445 out->type = TCP_KEY_NONE;
2446}
2447
2448static inline bool tcp_key_is_md5(const struct tcp_key *key)
2449{
2450 if (static_branch_tcp_md5())
2451 return key->type == TCP_KEY_MD5;
2452 return false;
2453}
2454
2455static inline bool tcp_key_is_ao(const struct tcp_key *key)
2456{
2457 if (static_branch_tcp_ao())
2458 return key->type == TCP_KEY_AO;
2459 return false;
2460}
2461
2462int tcpv4_offload_init(void);
2463
2464void tcp_v4_init(void);
2465void tcp_init(void);
2466
2467/* tcp_recovery.c */
2468void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2469void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2470extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2471 u32 reo_wnd);
2472extern bool tcp_rack_mark_lost(struct sock *sk);
2473extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2474 u64 xmit_time);
2475extern void tcp_rack_reo_timeout(struct sock *sk);
2476extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2477
2478/* tcp_plb.c */
2479
2480/*
2481 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2482 * expects cong_ratio which represents fraction of traffic that experienced
2483 * congestion over a single RTT. In order to avoid floating point operations,
2484 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2485 */
2486#define TCP_PLB_SCALE 8
2487
2488/* State for PLB (Protective Load Balancing) for a single TCP connection. */
2489struct tcp_plb_state {
2490 u8 consec_cong_rounds:5, /* consecutive congested rounds */
2491 unused:3;
2492 u32 pause_until; /* jiffies32 when PLB can resume rerouting */
2493};
2494
2495static inline void tcp_plb_init(const struct sock *sk,
2496 struct tcp_plb_state *plb)
2497{
2498 plb->consec_cong_rounds = 0;
2499 plb->pause_until = 0;
2500}
2501void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2502 const int cong_ratio);
2503void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2504void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2505
2506static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
2507{
2508 WARN_ONCE(cond,
2509 "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
2510 str,
2511 tcp_snd_cwnd(tcp_sk(sk)),
2512 tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2513 tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2514 tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2515 inet_csk(sk)->icsk_ca_state,
2516 tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2517 inet_csk(sk)->icsk_pmtu_cookie);
2518}
2519
2520/* At how many usecs into the future should the RTO fire? */
2521static inline s64 tcp_rto_delta_us(const struct sock *sk)
2522{
2523 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2524 u32 rto = inet_csk(sk)->icsk_rto;
2525
2526 if (likely(skb)) {
2527 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2528
2529 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2530 } else {
2531 tcp_warn_once(sk, 1, "rtx queue empty: ");
2532 return jiffies_to_usecs(rto);
2533 }
2534
2535}
2536
2537/*
2538 * Save and compile IPv4 options, return a pointer to it
2539 */
2540static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2541 struct sk_buff *skb)
2542{
2543 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2544 struct ip_options_rcu *dopt = NULL;
2545
2546 if (opt->optlen) {
2547 int opt_size = sizeof(*dopt) + opt->optlen;
2548
2549 dopt = kmalloc(opt_size, GFP_ATOMIC);
2550 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2551 kfree(dopt);
2552 dopt = NULL;
2553 }
2554 }
2555 return dopt;
2556}
2557
2558/* locally generated TCP pure ACKs have skb->truesize == 2
2559 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2560 * This is much faster than dissecting the packet to find out.
2561 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2562 */
2563static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2564{
2565 return skb->truesize == 2;
2566}
2567
2568static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2569{
2570 skb->truesize = 2;
2571}
2572
2573static inline int tcp_inq(struct sock *sk)
2574{
2575 struct tcp_sock *tp = tcp_sk(sk);
2576 int answ;
2577
2578 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2579 answ = 0;
2580 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2581 !tp->urg_data ||
2582 before(tp->urg_seq, tp->copied_seq) ||
2583 !before(tp->urg_seq, tp->rcv_nxt)) {
2584
2585 answ = tp->rcv_nxt - tp->copied_seq;
2586
2587 /* Subtract 1, if FIN was received */
2588 if (answ && sock_flag(sk, SOCK_DONE))
2589 answ--;
2590 } else {
2591 answ = tp->urg_seq - tp->copied_seq;
2592 }
2593
2594 return answ;
2595}
2596
2597int tcp_peek_len(struct socket *sock);
2598
2599static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2600{
2601 u16 segs_in;
2602
2603 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2604
2605 /* We update these fields while other threads might
2606 * read them from tcp_get_info()
2607 */
2608 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2609 if (skb->len > tcp_hdrlen(skb))
2610 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2611}
2612
2613/*
2614 * TCP listen path runs lockless.
2615 * We forced "struct sock" to be const qualified to make sure
2616 * we don't modify one of its field by mistake.
2617 * Here, we increment sk_drops which is an atomic_t, so we can safely
2618 * make sock writable again.
2619 */
2620static inline void tcp_listendrop(const struct sock *sk)
2621{
2622 atomic_inc(&((struct sock *)sk)->sk_drops);
2623 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2624}
2625
2626enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2627
2628/*
2629 * Interface for adding Upper Level Protocols over TCP
2630 */
2631
2632#define TCP_ULP_NAME_MAX 16
2633#define TCP_ULP_MAX 128
2634#define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2635
2636struct tcp_ulp_ops {
2637 struct list_head list;
2638
2639 /* initialize ulp */
2640 int (*init)(struct sock *sk);
2641 /* update ulp */
2642 void (*update)(struct sock *sk, struct proto *p,
2643 void (*write_space)(struct sock *sk));
2644 /* cleanup ulp */
2645 void (*release)(struct sock *sk);
2646 /* diagnostic */
2647 int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin);
2648 size_t (*get_info_size)(const struct sock *sk, bool net_admin);
2649 /* clone ulp */
2650 void (*clone)(const struct request_sock *req, struct sock *newsk,
2651 const gfp_t priority);
2652
2653 char name[TCP_ULP_NAME_MAX];
2654 struct module *owner;
2655};
2656int tcp_register_ulp(struct tcp_ulp_ops *type);
2657void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2658int tcp_set_ulp(struct sock *sk, const char *name);
2659void tcp_get_available_ulp(char *buf, size_t len);
2660void tcp_cleanup_ulp(struct sock *sk);
2661void tcp_update_ulp(struct sock *sk, struct proto *p,
2662 void (*write_space)(struct sock *sk));
2663
2664#define MODULE_ALIAS_TCP_ULP(name) \
2665 __MODULE_INFO(alias, alias_userspace, name); \
2666 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2667
2668#ifdef CONFIG_NET_SOCK_MSG
2669struct sk_msg;
2670struct sk_psock;
2671
2672#ifdef CONFIG_BPF_SYSCALL
2673int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2674void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2675#ifdef CONFIG_BPF_STREAM_PARSER
2676struct strparser;
2677int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc,
2678 sk_read_actor_t recv_actor);
2679#endif /* CONFIG_BPF_STREAM_PARSER */
2680#endif /* CONFIG_BPF_SYSCALL */
2681
2682#ifdef CONFIG_INET
2683void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2684#else
2685static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2686{
2687}
2688#endif
2689
2690int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2691 struct sk_msg *msg, u32 bytes, int flags);
2692#endif /* CONFIG_NET_SOCK_MSG */
2693
2694#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2695static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2696{
2697}
2698#endif
2699
2700#ifdef CONFIG_CGROUP_BPF
2701static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2702 struct sk_buff *skb,
2703 unsigned int end_offset)
2704{
2705 skops->skb = skb;
2706 skops->skb_data_end = skb->data + end_offset;
2707}
2708#else
2709static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2710 struct sk_buff *skb,
2711 unsigned int end_offset)
2712{
2713}
2714#endif
2715
2716/* Call BPF_SOCK_OPS program that returns an int. If the return value
2717 * is < 0, then the BPF op failed (for example if the loaded BPF
2718 * program does not support the chosen operation or there is no BPF
2719 * program loaded).
2720 */
2721#ifdef CONFIG_BPF
2722static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2723{
2724 struct bpf_sock_ops_kern sock_ops;
2725 int ret;
2726
2727 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2728 if (sk_fullsock(sk)) {
2729 sock_ops.is_fullsock = 1;
2730 sock_ops.is_locked_tcp_sock = 1;
2731 sock_owned_by_me(sk);
2732 }
2733
2734 sock_ops.sk = sk;
2735 sock_ops.op = op;
2736 if (nargs > 0)
2737 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2738
2739 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2740 if (ret == 0)
2741 ret = sock_ops.reply;
2742 else
2743 ret = -1;
2744 return ret;
2745}
2746
2747static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2748{
2749 u32 args[2] = {arg1, arg2};
2750
2751 return tcp_call_bpf(sk, op, 2, args);
2752}
2753
2754static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2755 u32 arg3)
2756{
2757 u32 args[3] = {arg1, arg2, arg3};
2758
2759 return tcp_call_bpf(sk, op, 3, args);
2760}
2761
2762#else
2763static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2764{
2765 return -EPERM;
2766}
2767
2768static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2769{
2770 return -EPERM;
2771}
2772
2773static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2774 u32 arg3)
2775{
2776 return -EPERM;
2777}
2778
2779#endif
2780
2781static inline u32 tcp_timeout_init(struct sock *sk)
2782{
2783 int timeout;
2784
2785 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2786
2787 if (timeout <= 0)
2788 timeout = TCP_TIMEOUT_INIT;
2789 return min_t(int, timeout, TCP_RTO_MAX);
2790}
2791
2792static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2793{
2794 int rwnd;
2795
2796 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2797
2798 if (rwnd < 0)
2799 rwnd = 0;
2800 return rwnd;
2801}
2802
2803static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2804{
2805 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2806}
2807
2808static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2809{
2810 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2811 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2812}
2813
2814#if IS_ENABLED(CONFIG_SMC)
2815extern struct static_key_false tcp_have_smc;
2816#endif
2817
2818#if IS_ENABLED(CONFIG_TLS_DEVICE)
2819void clean_acked_data_enable(struct tcp_sock *tp,
2820 void (*cad)(struct sock *sk, u32 ack_seq));
2821void clean_acked_data_disable(struct tcp_sock *tp);
2822void clean_acked_data_flush(void);
2823#endif
2824
2825DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2826static inline void tcp_add_tx_delay(struct sk_buff *skb,
2827 const struct tcp_sock *tp)
2828{
2829 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2830 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2831}
2832
2833/* Compute Earliest Departure Time for some control packets
2834 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2835 */
2836static inline u64 tcp_transmit_time(const struct sock *sk)
2837{
2838 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2839 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2840 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2841
2842 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2843 }
2844 return 0;
2845}
2846
2847static inline int tcp_parse_auth_options(const struct tcphdr *th,
2848 const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2849{
2850 const u8 *md5_tmp, *ao_tmp;
2851 int ret;
2852
2853 ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2854 if (ret)
2855 return ret;
2856
2857 if (md5_hash)
2858 *md5_hash = md5_tmp;
2859
2860 if (aoh) {
2861 if (!ao_tmp)
2862 *aoh = NULL;
2863 else
2864 *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2865 }
2866
2867 return 0;
2868}
2869
2870static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2871 int family, int l3index, bool stat_inc)
2872{
2873#ifdef CONFIG_TCP_AO
2874 struct tcp_ao_info *ao_info;
2875 struct tcp_ao_key *ao_key;
2876
2877 if (!static_branch_unlikely(&tcp_ao_needed.key))
2878 return false;
2879
2880 ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2881 lockdep_sock_is_held(sk));
2882 if (!ao_info)
2883 return false;
2884
2885 ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2886 if (ao_info->ao_required || ao_key) {
2887 if (stat_inc) {
2888 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2889 atomic64_inc(&ao_info->counters.ao_required);
2890 }
2891 return true;
2892 }
2893#endif
2894 return false;
2895}
2896
2897enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2898 const struct request_sock *req, const struct sk_buff *skb,
2899 const void *saddr, const void *daddr,
2900 int family, int dif, int sdif);
2901
2902#endif /* _TCP_H */