]> git.ipfire.org Git - thirdparty/linux.git/blame_incremental - kernel/time/timekeeping.c
timekeeping: Add CLOCK_TAI clockid
[thirdparty/linux.git] / kernel / time / timekeeping.c
... / ...
CommitLineData
1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11#include <linux/timekeeper_internal.h>
12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/syscore_ops.h>
19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
23#include <linux/stop_machine.h>
24#include <linux/pvclock_gtod.h>
25
26
27static struct timekeeper timekeeper;
28
29/* flag for if timekeeping is suspended */
30int __read_mostly timekeeping_suspended;
31
32/* Flag for if there is a persistent clock on this platform */
33bool __read_mostly persistent_clock_exist = false;
34
35static inline void tk_normalize_xtime(struct timekeeper *tk)
36{
37 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
38 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
39 tk->xtime_sec++;
40 }
41}
42
43static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
44{
45 tk->xtime_sec = ts->tv_sec;
46 tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
47}
48
49static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
50{
51 tk->xtime_sec += ts->tv_sec;
52 tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
53 tk_normalize_xtime(tk);
54}
55
56static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
57{
58 struct timespec tmp;
59
60 /*
61 * Verify consistency of: offset_real = -wall_to_monotonic
62 * before modifying anything
63 */
64 set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
65 -tk->wall_to_monotonic.tv_nsec);
66 WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
67 tk->wall_to_monotonic = wtm;
68 set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
69 tk->offs_real = timespec_to_ktime(tmp);
70}
71
72static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
73{
74 /* Verify consistency before modifying */
75 WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);
76
77 tk->total_sleep_time = t;
78 tk->offs_boot = timespec_to_ktime(t);
79}
80
81/**
82 * timekeeper_setup_internals - Set up internals to use clocksource clock.
83 *
84 * @clock: Pointer to clocksource.
85 *
86 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
87 * pair and interval request.
88 *
89 * Unless you're the timekeeping code, you should not be using this!
90 */
91static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
92{
93 cycle_t interval;
94 u64 tmp, ntpinterval;
95 struct clocksource *old_clock;
96
97 old_clock = tk->clock;
98 tk->clock = clock;
99 clock->cycle_last = clock->read(clock);
100
101 /* Do the ns -> cycle conversion first, using original mult */
102 tmp = NTP_INTERVAL_LENGTH;
103 tmp <<= clock->shift;
104 ntpinterval = tmp;
105 tmp += clock->mult/2;
106 do_div(tmp, clock->mult);
107 if (tmp == 0)
108 tmp = 1;
109
110 interval = (cycle_t) tmp;
111 tk->cycle_interval = interval;
112
113 /* Go back from cycles -> shifted ns */
114 tk->xtime_interval = (u64) interval * clock->mult;
115 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
116 tk->raw_interval =
117 ((u64) interval * clock->mult) >> clock->shift;
118
119 /* if changing clocks, convert xtime_nsec shift units */
120 if (old_clock) {
121 int shift_change = clock->shift - old_clock->shift;
122 if (shift_change < 0)
123 tk->xtime_nsec >>= -shift_change;
124 else
125 tk->xtime_nsec <<= shift_change;
126 }
127 tk->shift = clock->shift;
128
129 tk->ntp_error = 0;
130 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
131
132 /*
133 * The timekeeper keeps its own mult values for the currently
134 * active clocksource. These value will be adjusted via NTP
135 * to counteract clock drifting.
136 */
137 tk->mult = clock->mult;
138}
139
140/* Timekeeper helper functions. */
141
142#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
143u32 (*arch_gettimeoffset)(void);
144
145u32 get_arch_timeoffset(void)
146{
147 if (likely(arch_gettimeoffset))
148 return arch_gettimeoffset();
149 return 0;
150}
151#else
152static inline u32 get_arch_timeoffset(void) { return 0; }
153#endif
154
155static inline s64 timekeeping_get_ns(struct timekeeper *tk)
156{
157 cycle_t cycle_now, cycle_delta;
158 struct clocksource *clock;
159 s64 nsec;
160
161 /* read clocksource: */
162 clock = tk->clock;
163 cycle_now = clock->read(clock);
164
165 /* calculate the delta since the last update_wall_time: */
166 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
167
168 nsec = cycle_delta * tk->mult + tk->xtime_nsec;
169 nsec >>= tk->shift;
170
171 /* If arch requires, add in get_arch_timeoffset() */
172 return nsec + get_arch_timeoffset();
173}
174
175static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
176{
177 cycle_t cycle_now, cycle_delta;
178 struct clocksource *clock;
179 s64 nsec;
180
181 /* read clocksource: */
182 clock = tk->clock;
183 cycle_now = clock->read(clock);
184
185 /* calculate the delta since the last update_wall_time: */
186 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
187
188 /* convert delta to nanoseconds. */
189 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
190
191 /* If arch requires, add in get_arch_timeoffset() */
192 return nsec + get_arch_timeoffset();
193}
194
195static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
196
197static void update_pvclock_gtod(struct timekeeper *tk)
198{
199 raw_notifier_call_chain(&pvclock_gtod_chain, 0, tk);
200}
201
202/**
203 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
204 *
205 * Must hold write on timekeeper.lock
206 */
207int pvclock_gtod_register_notifier(struct notifier_block *nb)
208{
209 struct timekeeper *tk = &timekeeper;
210 unsigned long flags;
211 int ret;
212
213 write_seqlock_irqsave(&tk->lock, flags);
214 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
215 /* update timekeeping data */
216 update_pvclock_gtod(tk);
217 write_sequnlock_irqrestore(&tk->lock, flags);
218
219 return ret;
220}
221EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
222
223/**
224 * pvclock_gtod_unregister_notifier - unregister a pvclock
225 * timedata update listener
226 *
227 * Must hold write on timekeeper.lock
228 */
229int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
230{
231 struct timekeeper *tk = &timekeeper;
232 unsigned long flags;
233 int ret;
234
235 write_seqlock_irqsave(&tk->lock, flags);
236 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
237 write_sequnlock_irqrestore(&tk->lock, flags);
238
239 return ret;
240}
241EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
242
243/* must hold write on timekeeper.lock */
244static void timekeeping_update(struct timekeeper *tk, bool clearntp)
245{
246 if (clearntp) {
247 tk->ntp_error = 0;
248 ntp_clear();
249 }
250 update_vsyscall(tk);
251 update_pvclock_gtod(tk);
252}
253
254/**
255 * timekeeping_forward_now - update clock to the current time
256 *
257 * Forward the current clock to update its state since the last call to
258 * update_wall_time(). This is useful before significant clock changes,
259 * as it avoids having to deal with this time offset explicitly.
260 */
261static void timekeeping_forward_now(struct timekeeper *tk)
262{
263 cycle_t cycle_now, cycle_delta;
264 struct clocksource *clock;
265 s64 nsec;
266
267 clock = tk->clock;
268 cycle_now = clock->read(clock);
269 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
270 clock->cycle_last = cycle_now;
271
272 tk->xtime_nsec += cycle_delta * tk->mult;
273
274 /* If arch requires, add in get_arch_timeoffset() */
275 tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift;
276
277 tk_normalize_xtime(tk);
278
279 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
280 timespec_add_ns(&tk->raw_time, nsec);
281}
282
283/**
284 * __getnstimeofday - Returns the time of day in a timespec.
285 * @ts: pointer to the timespec to be set
286 *
287 * Updates the time of day in the timespec.
288 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
289 */
290int __getnstimeofday(struct timespec *ts)
291{
292 struct timekeeper *tk = &timekeeper;
293 unsigned long seq;
294 s64 nsecs = 0;
295
296 do {
297 seq = read_seqbegin(&tk->lock);
298
299 ts->tv_sec = tk->xtime_sec;
300 nsecs = timekeeping_get_ns(tk);
301
302 } while (read_seqretry(&tk->lock, seq));
303
304 ts->tv_nsec = 0;
305 timespec_add_ns(ts, nsecs);
306
307 /*
308 * Do not bail out early, in case there were callers still using
309 * the value, even in the face of the WARN_ON.
310 */
311 if (unlikely(timekeeping_suspended))
312 return -EAGAIN;
313 return 0;
314}
315EXPORT_SYMBOL(__getnstimeofday);
316
317/**
318 * getnstimeofday - Returns the time of day in a timespec.
319 * @ts: pointer to the timespec to be set
320 *
321 * Returns the time of day in a timespec (WARN if suspended).
322 */
323void getnstimeofday(struct timespec *ts)
324{
325 WARN_ON(__getnstimeofday(ts));
326}
327EXPORT_SYMBOL(getnstimeofday);
328
329ktime_t ktime_get(void)
330{
331 struct timekeeper *tk = &timekeeper;
332 unsigned int seq;
333 s64 secs, nsecs;
334
335 WARN_ON(timekeeping_suspended);
336
337 do {
338 seq = read_seqbegin(&tk->lock);
339 secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
340 nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
341
342 } while (read_seqretry(&tk->lock, seq));
343 /*
344 * Use ktime_set/ktime_add_ns to create a proper ktime on
345 * 32-bit architectures without CONFIG_KTIME_SCALAR.
346 */
347 return ktime_add_ns(ktime_set(secs, 0), nsecs);
348}
349EXPORT_SYMBOL_GPL(ktime_get);
350
351/**
352 * ktime_get_ts - get the monotonic clock in timespec format
353 * @ts: pointer to timespec variable
354 *
355 * The function calculates the monotonic clock from the realtime
356 * clock and the wall_to_monotonic offset and stores the result
357 * in normalized timespec format in the variable pointed to by @ts.
358 */
359void ktime_get_ts(struct timespec *ts)
360{
361 struct timekeeper *tk = &timekeeper;
362 struct timespec tomono;
363 s64 nsec;
364 unsigned int seq;
365
366 WARN_ON(timekeeping_suspended);
367
368 do {
369 seq = read_seqbegin(&tk->lock);
370 ts->tv_sec = tk->xtime_sec;
371 nsec = timekeeping_get_ns(tk);
372 tomono = tk->wall_to_monotonic;
373
374 } while (read_seqretry(&tk->lock, seq));
375
376 ts->tv_sec += tomono.tv_sec;
377 ts->tv_nsec = 0;
378 timespec_add_ns(ts, nsec + tomono.tv_nsec);
379}
380EXPORT_SYMBOL_GPL(ktime_get_ts);
381
382
383/**
384 * timekeeping_clocktai - Returns the TAI time of day in a timespec
385 * @ts: pointer to the timespec to be set
386 *
387 * Returns the time of day in a timespec.
388 */
389void timekeeping_clocktai(struct timespec *ts)
390{
391 struct timekeeper *tk = &timekeeper;
392 unsigned long seq;
393 u64 nsecs;
394
395 WARN_ON(timekeeping_suspended);
396
397 do {
398 seq = read_seqbegin(&tk->lock);
399
400 ts->tv_sec = tk->xtime_sec + tk->tai_offset;
401 nsecs = timekeeping_get_ns(tk);
402
403 } while (read_seqretry(&tk->lock, seq));
404
405 ts->tv_nsec = 0;
406 timespec_add_ns(ts, nsecs);
407
408}
409EXPORT_SYMBOL(timekeeping_clocktai);
410
411
412#ifdef CONFIG_NTP_PPS
413
414/**
415 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
416 * @ts_raw: pointer to the timespec to be set to raw monotonic time
417 * @ts_real: pointer to the timespec to be set to the time of day
418 *
419 * This function reads both the time of day and raw monotonic time at the
420 * same time atomically and stores the resulting timestamps in timespec
421 * format.
422 */
423void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
424{
425 struct timekeeper *tk = &timekeeper;
426 unsigned long seq;
427 s64 nsecs_raw, nsecs_real;
428
429 WARN_ON_ONCE(timekeeping_suspended);
430
431 do {
432 seq = read_seqbegin(&tk->lock);
433
434 *ts_raw = tk->raw_time;
435 ts_real->tv_sec = tk->xtime_sec;
436 ts_real->tv_nsec = 0;
437
438 nsecs_raw = timekeeping_get_ns_raw(tk);
439 nsecs_real = timekeeping_get_ns(tk);
440
441 } while (read_seqretry(&tk->lock, seq));
442
443 timespec_add_ns(ts_raw, nsecs_raw);
444 timespec_add_ns(ts_real, nsecs_real);
445}
446EXPORT_SYMBOL(getnstime_raw_and_real);
447
448#endif /* CONFIG_NTP_PPS */
449
450/**
451 * do_gettimeofday - Returns the time of day in a timeval
452 * @tv: pointer to the timeval to be set
453 *
454 * NOTE: Users should be converted to using getnstimeofday()
455 */
456void do_gettimeofday(struct timeval *tv)
457{
458 struct timespec now;
459
460 getnstimeofday(&now);
461 tv->tv_sec = now.tv_sec;
462 tv->tv_usec = now.tv_nsec/1000;
463}
464EXPORT_SYMBOL(do_gettimeofday);
465
466/**
467 * do_settimeofday - Sets the time of day
468 * @tv: pointer to the timespec variable containing the new time
469 *
470 * Sets the time of day to the new time and update NTP and notify hrtimers
471 */
472int do_settimeofday(const struct timespec *tv)
473{
474 struct timekeeper *tk = &timekeeper;
475 struct timespec ts_delta, xt;
476 unsigned long flags;
477
478 if (!timespec_valid_strict(tv))
479 return -EINVAL;
480
481 write_seqlock_irqsave(&tk->lock, flags);
482
483 timekeeping_forward_now(tk);
484
485 xt = tk_xtime(tk);
486 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
487 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
488
489 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
490
491 tk_set_xtime(tk, tv);
492
493 timekeeping_update(tk, true);
494
495 write_sequnlock_irqrestore(&tk->lock, flags);
496
497 /* signal hrtimers about time change */
498 clock_was_set();
499
500 return 0;
501}
502EXPORT_SYMBOL(do_settimeofday);
503
504/**
505 * timekeeping_inject_offset - Adds or subtracts from the current time.
506 * @tv: pointer to the timespec variable containing the offset
507 *
508 * Adds or subtracts an offset value from the current time.
509 */
510int timekeeping_inject_offset(struct timespec *ts)
511{
512 struct timekeeper *tk = &timekeeper;
513 unsigned long flags;
514 struct timespec tmp;
515 int ret = 0;
516
517 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
518 return -EINVAL;
519
520 write_seqlock_irqsave(&tk->lock, flags);
521
522 timekeeping_forward_now(tk);
523
524 /* Make sure the proposed value is valid */
525 tmp = timespec_add(tk_xtime(tk), *ts);
526 if (!timespec_valid_strict(&tmp)) {
527 ret = -EINVAL;
528 goto error;
529 }
530
531 tk_xtime_add(tk, ts);
532 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
533
534error: /* even if we error out, we forwarded the time, so call update */
535 timekeeping_update(tk, true);
536
537 write_sequnlock_irqrestore(&tk->lock, flags);
538
539 /* signal hrtimers about time change */
540 clock_was_set();
541
542 return ret;
543}
544EXPORT_SYMBOL(timekeeping_inject_offset);
545
546
547/**
548 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
549 *
550 */
551s32 timekeeping_get_tai_offset(void)
552{
553 struct timekeeper *tk = &timekeeper;
554 unsigned int seq;
555 s32 ret;
556
557 do {
558 seq = read_seqbegin(&tk->lock);
559 ret = tk->tai_offset;
560 } while (read_seqretry(&tk->lock, seq));
561
562 return ret;
563}
564
565/**
566 * __timekeeping_set_tai_offset - Lock free worker function
567 *
568 */
569void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
570{
571 tk->tai_offset = tai_offset;
572}
573
574/**
575 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
576 *
577 */
578void timekeeping_set_tai_offset(s32 tai_offset)
579{
580 struct timekeeper *tk = &timekeeper;
581 unsigned long flags;
582
583 write_seqlock_irqsave(&tk->lock, flags);
584 __timekeeping_set_tai_offset(tk, tai_offset);
585 write_sequnlock_irqrestore(&tk->lock, flags);
586}
587
588/**
589 * change_clocksource - Swaps clocksources if a new one is available
590 *
591 * Accumulates current time interval and initializes new clocksource
592 */
593static int change_clocksource(void *data)
594{
595 struct timekeeper *tk = &timekeeper;
596 struct clocksource *new, *old;
597 unsigned long flags;
598
599 new = (struct clocksource *) data;
600
601 write_seqlock_irqsave(&tk->lock, flags);
602
603 timekeeping_forward_now(tk);
604 if (!new->enable || new->enable(new) == 0) {
605 old = tk->clock;
606 tk_setup_internals(tk, new);
607 if (old->disable)
608 old->disable(old);
609 }
610 timekeeping_update(tk, true);
611
612 write_sequnlock_irqrestore(&tk->lock, flags);
613
614 return 0;
615}
616
617/**
618 * timekeeping_notify - Install a new clock source
619 * @clock: pointer to the clock source
620 *
621 * This function is called from clocksource.c after a new, better clock
622 * source has been registered. The caller holds the clocksource_mutex.
623 */
624void timekeeping_notify(struct clocksource *clock)
625{
626 struct timekeeper *tk = &timekeeper;
627
628 if (tk->clock == clock)
629 return;
630 stop_machine(change_clocksource, clock, NULL);
631 tick_clock_notify();
632}
633
634/**
635 * ktime_get_real - get the real (wall-) time in ktime_t format
636 *
637 * returns the time in ktime_t format
638 */
639ktime_t ktime_get_real(void)
640{
641 struct timespec now;
642
643 getnstimeofday(&now);
644
645 return timespec_to_ktime(now);
646}
647EXPORT_SYMBOL_GPL(ktime_get_real);
648
649/**
650 * getrawmonotonic - Returns the raw monotonic time in a timespec
651 * @ts: pointer to the timespec to be set
652 *
653 * Returns the raw monotonic time (completely un-modified by ntp)
654 */
655void getrawmonotonic(struct timespec *ts)
656{
657 struct timekeeper *tk = &timekeeper;
658 unsigned long seq;
659 s64 nsecs;
660
661 do {
662 seq = read_seqbegin(&tk->lock);
663 nsecs = timekeeping_get_ns_raw(tk);
664 *ts = tk->raw_time;
665
666 } while (read_seqretry(&tk->lock, seq));
667
668 timespec_add_ns(ts, nsecs);
669}
670EXPORT_SYMBOL(getrawmonotonic);
671
672/**
673 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
674 */
675int timekeeping_valid_for_hres(void)
676{
677 struct timekeeper *tk = &timekeeper;
678 unsigned long seq;
679 int ret;
680
681 do {
682 seq = read_seqbegin(&tk->lock);
683
684 ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
685
686 } while (read_seqretry(&tk->lock, seq));
687
688 return ret;
689}
690
691/**
692 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
693 */
694u64 timekeeping_max_deferment(void)
695{
696 struct timekeeper *tk = &timekeeper;
697 unsigned long seq;
698 u64 ret;
699
700 do {
701 seq = read_seqbegin(&tk->lock);
702
703 ret = tk->clock->max_idle_ns;
704
705 } while (read_seqretry(&tk->lock, seq));
706
707 return ret;
708}
709
710/**
711 * read_persistent_clock - Return time from the persistent clock.
712 *
713 * Weak dummy function for arches that do not yet support it.
714 * Reads the time from the battery backed persistent clock.
715 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
716 *
717 * XXX - Do be sure to remove it once all arches implement it.
718 */
719void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
720{
721 ts->tv_sec = 0;
722 ts->tv_nsec = 0;
723}
724
725/**
726 * read_boot_clock - Return time of the system start.
727 *
728 * Weak dummy function for arches that do not yet support it.
729 * Function to read the exact time the system has been started.
730 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
731 *
732 * XXX - Do be sure to remove it once all arches implement it.
733 */
734void __attribute__((weak)) read_boot_clock(struct timespec *ts)
735{
736 ts->tv_sec = 0;
737 ts->tv_nsec = 0;
738}
739
740/*
741 * timekeeping_init - Initializes the clocksource and common timekeeping values
742 */
743void __init timekeeping_init(void)
744{
745 struct timekeeper *tk = &timekeeper;
746 struct clocksource *clock;
747 unsigned long flags;
748 struct timespec now, boot, tmp;
749
750 read_persistent_clock(&now);
751
752 if (!timespec_valid_strict(&now)) {
753 pr_warn("WARNING: Persistent clock returned invalid value!\n"
754 " Check your CMOS/BIOS settings.\n");
755 now.tv_sec = 0;
756 now.tv_nsec = 0;
757 } else if (now.tv_sec || now.tv_nsec)
758 persistent_clock_exist = true;
759
760 read_boot_clock(&boot);
761 if (!timespec_valid_strict(&boot)) {
762 pr_warn("WARNING: Boot clock returned invalid value!\n"
763 " Check your CMOS/BIOS settings.\n");
764 boot.tv_sec = 0;
765 boot.tv_nsec = 0;
766 }
767
768 seqlock_init(&tk->lock);
769
770 ntp_init();
771
772 write_seqlock_irqsave(&tk->lock, flags);
773 clock = clocksource_default_clock();
774 if (clock->enable)
775 clock->enable(clock);
776 tk_setup_internals(tk, clock);
777
778 tk_set_xtime(tk, &now);
779 tk->raw_time.tv_sec = 0;
780 tk->raw_time.tv_nsec = 0;
781 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
782 boot = tk_xtime(tk);
783
784 set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
785 tk_set_wall_to_mono(tk, tmp);
786
787 tmp.tv_sec = 0;
788 tmp.tv_nsec = 0;
789 tk_set_sleep_time(tk, tmp);
790
791 write_sequnlock_irqrestore(&tk->lock, flags);
792}
793
794/* time in seconds when suspend began */
795static struct timespec timekeeping_suspend_time;
796
797/**
798 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
799 * @delta: pointer to a timespec delta value
800 *
801 * Takes a timespec offset measuring a suspend interval and properly
802 * adds the sleep offset to the timekeeping variables.
803 */
804static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
805 struct timespec *delta)
806{
807 if (!timespec_valid_strict(delta)) {
808 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
809 "sleep delta value!\n");
810 return;
811 }
812 tk_xtime_add(tk, delta);
813 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
814 tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
815}
816
817/**
818 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
819 * @delta: pointer to a timespec delta value
820 *
821 * This hook is for architectures that cannot support read_persistent_clock
822 * because their RTC/persistent clock is only accessible when irqs are enabled.
823 *
824 * This function should only be called by rtc_resume(), and allows
825 * a suspend offset to be injected into the timekeeping values.
826 */
827void timekeeping_inject_sleeptime(struct timespec *delta)
828{
829 struct timekeeper *tk = &timekeeper;
830 unsigned long flags;
831
832 /*
833 * Make sure we don't set the clock twice, as timekeeping_resume()
834 * already did it
835 */
836 if (has_persistent_clock())
837 return;
838
839 write_seqlock_irqsave(&tk->lock, flags);
840
841 timekeeping_forward_now(tk);
842
843 __timekeeping_inject_sleeptime(tk, delta);
844
845 timekeeping_update(tk, true);
846
847 write_sequnlock_irqrestore(&tk->lock, flags);
848
849 /* signal hrtimers about time change */
850 clock_was_set();
851}
852
853/**
854 * timekeeping_resume - Resumes the generic timekeeping subsystem.
855 *
856 * This is for the generic clocksource timekeeping.
857 * xtime/wall_to_monotonic/jiffies/etc are
858 * still managed by arch specific suspend/resume code.
859 */
860static void timekeeping_resume(void)
861{
862 struct timekeeper *tk = &timekeeper;
863 struct clocksource *clock = tk->clock;
864 unsigned long flags;
865 struct timespec ts_new, ts_delta;
866 cycle_t cycle_now, cycle_delta;
867 bool suspendtime_found = false;
868
869 read_persistent_clock(&ts_new);
870
871 clockevents_resume();
872 clocksource_resume();
873
874 write_seqlock_irqsave(&tk->lock, flags);
875
876 /*
877 * After system resumes, we need to calculate the suspended time and
878 * compensate it for the OS time. There are 3 sources that could be
879 * used: Nonstop clocksource during suspend, persistent clock and rtc
880 * device.
881 *
882 * One specific platform may have 1 or 2 or all of them, and the
883 * preference will be:
884 * suspend-nonstop clocksource -> persistent clock -> rtc
885 * The less preferred source will only be tried if there is no better
886 * usable source. The rtc part is handled separately in rtc core code.
887 */
888 cycle_now = clock->read(clock);
889 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
890 cycle_now > clock->cycle_last) {
891 u64 num, max = ULLONG_MAX;
892 u32 mult = clock->mult;
893 u32 shift = clock->shift;
894 s64 nsec = 0;
895
896 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
897
898 /*
899 * "cycle_delta * mutl" may cause 64 bits overflow, if the
900 * suspended time is too long. In that case we need do the
901 * 64 bits math carefully
902 */
903 do_div(max, mult);
904 if (cycle_delta > max) {
905 num = div64_u64(cycle_delta, max);
906 nsec = (((u64) max * mult) >> shift) * num;
907 cycle_delta -= num * max;
908 }
909 nsec += ((u64) cycle_delta * mult) >> shift;
910
911 ts_delta = ns_to_timespec(nsec);
912 suspendtime_found = true;
913 } else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) {
914 ts_delta = timespec_sub(ts_new, timekeeping_suspend_time);
915 suspendtime_found = true;
916 }
917
918 if (suspendtime_found)
919 __timekeeping_inject_sleeptime(tk, &ts_delta);
920
921 /* Re-base the last cycle value */
922 clock->cycle_last = cycle_now;
923 tk->ntp_error = 0;
924 timekeeping_suspended = 0;
925 timekeeping_update(tk, false);
926 write_sequnlock_irqrestore(&tk->lock, flags);
927
928 touch_softlockup_watchdog();
929
930 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
931
932 /* Resume hrtimers */
933 hrtimers_resume();
934}
935
936static int timekeeping_suspend(void)
937{
938 struct timekeeper *tk = &timekeeper;
939 unsigned long flags;
940 struct timespec delta, delta_delta;
941 static struct timespec old_delta;
942
943 read_persistent_clock(&timekeeping_suspend_time);
944
945 write_seqlock_irqsave(&tk->lock, flags);
946 timekeeping_forward_now(tk);
947 timekeeping_suspended = 1;
948
949 /*
950 * To avoid drift caused by repeated suspend/resumes,
951 * which each can add ~1 second drift error,
952 * try to compensate so the difference in system time
953 * and persistent_clock time stays close to constant.
954 */
955 delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
956 delta_delta = timespec_sub(delta, old_delta);
957 if (abs(delta_delta.tv_sec) >= 2) {
958 /*
959 * if delta_delta is too large, assume time correction
960 * has occured and set old_delta to the current delta.
961 */
962 old_delta = delta;
963 } else {
964 /* Otherwise try to adjust old_system to compensate */
965 timekeeping_suspend_time =
966 timespec_add(timekeeping_suspend_time, delta_delta);
967 }
968 write_sequnlock_irqrestore(&tk->lock, flags);
969
970 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
971 clocksource_suspend();
972 clockevents_suspend();
973
974 return 0;
975}
976
977/* sysfs resume/suspend bits for timekeeping */
978static struct syscore_ops timekeeping_syscore_ops = {
979 .resume = timekeeping_resume,
980 .suspend = timekeeping_suspend,
981};
982
983static int __init timekeeping_init_ops(void)
984{
985 register_syscore_ops(&timekeeping_syscore_ops);
986 return 0;
987}
988
989device_initcall(timekeeping_init_ops);
990
991/*
992 * If the error is already larger, we look ahead even further
993 * to compensate for late or lost adjustments.
994 */
995static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
996 s64 error, s64 *interval,
997 s64 *offset)
998{
999 s64 tick_error, i;
1000 u32 look_ahead, adj;
1001 s32 error2, mult;
1002
1003 /*
1004 * Use the current error value to determine how much to look ahead.
1005 * The larger the error the slower we adjust for it to avoid problems
1006 * with losing too many ticks, otherwise we would overadjust and
1007 * produce an even larger error. The smaller the adjustment the
1008 * faster we try to adjust for it, as lost ticks can do less harm
1009 * here. This is tuned so that an error of about 1 msec is adjusted
1010 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1011 */
1012 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1013 error2 = abs(error2);
1014 for (look_ahead = 0; error2 > 0; look_ahead++)
1015 error2 >>= 2;
1016
1017 /*
1018 * Now calculate the error in (1 << look_ahead) ticks, but first
1019 * remove the single look ahead already included in the error.
1020 */
1021 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
1022 tick_error -= tk->xtime_interval >> 1;
1023 error = ((error - tick_error) >> look_ahead) + tick_error;
1024
1025 /* Finally calculate the adjustment shift value. */
1026 i = *interval;
1027 mult = 1;
1028 if (error < 0) {
1029 error = -error;
1030 *interval = -*interval;
1031 *offset = -*offset;
1032 mult = -1;
1033 }
1034 for (adj = 0; error > i; adj++)
1035 error >>= 1;
1036
1037 *interval <<= adj;
1038 *offset <<= adj;
1039 return mult << adj;
1040}
1041
1042/*
1043 * Adjust the multiplier to reduce the error value,
1044 * this is optimized for the most common adjustments of -1,0,1,
1045 * for other values we can do a bit more work.
1046 */
1047static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1048{
1049 s64 error, interval = tk->cycle_interval;
1050 int adj;
1051
1052 /*
1053 * The point of this is to check if the error is greater than half
1054 * an interval.
1055 *
1056 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
1057 *
1058 * Note we subtract one in the shift, so that error is really error*2.
1059 * This "saves" dividing(shifting) interval twice, but keeps the
1060 * (error > interval) comparison as still measuring if error is
1061 * larger than half an interval.
1062 *
1063 * Note: It does not "save" on aggravation when reading the code.
1064 */
1065 error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1066 if (error > interval) {
1067 /*
1068 * We now divide error by 4(via shift), which checks if
1069 * the error is greater than twice the interval.
1070 * If it is greater, we need a bigadjust, if its smaller,
1071 * we can adjust by 1.
1072 */
1073 error >>= 2;
1074 /*
1075 * XXX - In update_wall_time, we round up to the next
1076 * nanosecond, and store the amount rounded up into
1077 * the error. This causes the likely below to be unlikely.
1078 *
1079 * The proper fix is to avoid rounding up by using
1080 * the high precision tk->xtime_nsec instead of
1081 * xtime.tv_nsec everywhere. Fixing this will take some
1082 * time.
1083 */
1084 if (likely(error <= interval))
1085 adj = 1;
1086 else
1087 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1088 } else {
1089 if (error < -interval) {
1090 /* See comment above, this is just switched for the negative */
1091 error >>= 2;
1092 if (likely(error >= -interval)) {
1093 adj = -1;
1094 interval = -interval;
1095 offset = -offset;
1096 } else {
1097 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1098 }
1099 } else {
1100 goto out_adjust;
1101 }
1102 }
1103
1104 if (unlikely(tk->clock->maxadj &&
1105 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1106 printk_once(KERN_WARNING
1107 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1108 tk->clock->name, (long)tk->mult + adj,
1109 (long)tk->clock->mult + tk->clock->maxadj);
1110 }
1111 /*
1112 * So the following can be confusing.
1113 *
1114 * To keep things simple, lets assume adj == 1 for now.
1115 *
1116 * When adj != 1, remember that the interval and offset values
1117 * have been appropriately scaled so the math is the same.
1118 *
1119 * The basic idea here is that we're increasing the multiplier
1120 * by one, this causes the xtime_interval to be incremented by
1121 * one cycle_interval. This is because:
1122 * xtime_interval = cycle_interval * mult
1123 * So if mult is being incremented by one:
1124 * xtime_interval = cycle_interval * (mult + 1)
1125 * Its the same as:
1126 * xtime_interval = (cycle_interval * mult) + cycle_interval
1127 * Which can be shortened to:
1128 * xtime_interval += cycle_interval
1129 *
1130 * So offset stores the non-accumulated cycles. Thus the current
1131 * time (in shifted nanoseconds) is:
1132 * now = (offset * adj) + xtime_nsec
1133 * Now, even though we're adjusting the clock frequency, we have
1134 * to keep time consistent. In other words, we can't jump back
1135 * in time, and we also want to avoid jumping forward in time.
1136 *
1137 * So given the same offset value, we need the time to be the same
1138 * both before and after the freq adjustment.
1139 * now = (offset * adj_1) + xtime_nsec_1
1140 * now = (offset * adj_2) + xtime_nsec_2
1141 * So:
1142 * (offset * adj_1) + xtime_nsec_1 =
1143 * (offset * adj_2) + xtime_nsec_2
1144 * And we know:
1145 * adj_2 = adj_1 + 1
1146 * So:
1147 * (offset * adj_1) + xtime_nsec_1 =
1148 * (offset * (adj_1+1)) + xtime_nsec_2
1149 * (offset * adj_1) + xtime_nsec_1 =
1150 * (offset * adj_1) + offset + xtime_nsec_2
1151 * Canceling the sides:
1152 * xtime_nsec_1 = offset + xtime_nsec_2
1153 * Which gives us:
1154 * xtime_nsec_2 = xtime_nsec_1 - offset
1155 * Which simplfies to:
1156 * xtime_nsec -= offset
1157 *
1158 * XXX - TODO: Doc ntp_error calculation.
1159 */
1160 tk->mult += adj;
1161 tk->xtime_interval += interval;
1162 tk->xtime_nsec -= offset;
1163 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1164
1165out_adjust:
1166 /*
1167 * It may be possible that when we entered this function, xtime_nsec
1168 * was very small. Further, if we're slightly speeding the clocksource
1169 * in the code above, its possible the required corrective factor to
1170 * xtime_nsec could cause it to underflow.
1171 *
1172 * Now, since we already accumulated the second, cannot simply roll
1173 * the accumulated second back, since the NTP subsystem has been
1174 * notified via second_overflow. So instead we push xtime_nsec forward
1175 * by the amount we underflowed, and add that amount into the error.
1176 *
1177 * We'll correct this error next time through this function, when
1178 * xtime_nsec is not as small.
1179 */
1180 if (unlikely((s64)tk->xtime_nsec < 0)) {
1181 s64 neg = -(s64)tk->xtime_nsec;
1182 tk->xtime_nsec = 0;
1183 tk->ntp_error += neg << tk->ntp_error_shift;
1184 }
1185
1186}
1187
1188/**
1189 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1190 *
1191 * Helper function that accumulates a the nsecs greater then a second
1192 * from the xtime_nsec field to the xtime_secs field.
1193 * It also calls into the NTP code to handle leapsecond processing.
1194 *
1195 */
1196static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
1197{
1198 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1199
1200 while (tk->xtime_nsec >= nsecps) {
1201 int leap;
1202
1203 tk->xtime_nsec -= nsecps;
1204 tk->xtime_sec++;
1205
1206 /* Figure out if its a leap sec and apply if needed */
1207 leap = second_overflow(tk->xtime_sec);
1208 if (unlikely(leap)) {
1209 struct timespec ts;
1210
1211 tk->xtime_sec += leap;
1212
1213 ts.tv_sec = leap;
1214 ts.tv_nsec = 0;
1215 tk_set_wall_to_mono(tk,
1216 timespec_sub(tk->wall_to_monotonic, ts));
1217
1218 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1219
1220 clock_was_set_delayed();
1221 }
1222 }
1223}
1224
1225/**
1226 * logarithmic_accumulation - shifted accumulation of cycles
1227 *
1228 * This functions accumulates a shifted interval of cycles into
1229 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1230 * loop.
1231 *
1232 * Returns the unconsumed cycles.
1233 */
1234static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1235 u32 shift)
1236{
1237 u64 raw_nsecs;
1238
1239 /* If the offset is smaller then a shifted interval, do nothing */
1240 if (offset < tk->cycle_interval<<shift)
1241 return offset;
1242
1243 /* Accumulate one shifted interval */
1244 offset -= tk->cycle_interval << shift;
1245 tk->clock->cycle_last += tk->cycle_interval << shift;
1246
1247 tk->xtime_nsec += tk->xtime_interval << shift;
1248 accumulate_nsecs_to_secs(tk);
1249
1250 /* Accumulate raw time */
1251 raw_nsecs = (u64)tk->raw_interval << shift;
1252 raw_nsecs += tk->raw_time.tv_nsec;
1253 if (raw_nsecs >= NSEC_PER_SEC) {
1254 u64 raw_secs = raw_nsecs;
1255 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1256 tk->raw_time.tv_sec += raw_secs;
1257 }
1258 tk->raw_time.tv_nsec = raw_nsecs;
1259
1260 /* Accumulate error between NTP and clock interval */
1261 tk->ntp_error += ntp_tick_length() << shift;
1262 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1263 (tk->ntp_error_shift + shift);
1264
1265 return offset;
1266}
1267
1268#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
1269static inline void old_vsyscall_fixup(struct timekeeper *tk)
1270{
1271 s64 remainder;
1272
1273 /*
1274 * Store only full nanoseconds into xtime_nsec after rounding
1275 * it up and add the remainder to the error difference.
1276 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
1277 * by truncating the remainder in vsyscalls. However, it causes
1278 * additional work to be done in timekeeping_adjust(). Once
1279 * the vsyscall implementations are converted to use xtime_nsec
1280 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
1281 * users are removed, this can be killed.
1282 */
1283 remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
1284 tk->xtime_nsec -= remainder;
1285 tk->xtime_nsec += 1ULL << tk->shift;
1286 tk->ntp_error += remainder << tk->ntp_error_shift;
1287
1288}
1289#else
1290#define old_vsyscall_fixup(tk)
1291#endif
1292
1293
1294
1295/**
1296 * update_wall_time - Uses the current clocksource to increment the wall time
1297 *
1298 */
1299static void update_wall_time(void)
1300{
1301 struct clocksource *clock;
1302 struct timekeeper *tk = &timekeeper;
1303 cycle_t offset;
1304 int shift = 0, maxshift;
1305 unsigned long flags;
1306
1307 write_seqlock_irqsave(&tk->lock, flags);
1308
1309 /* Make sure we're fully resumed: */
1310 if (unlikely(timekeeping_suspended))
1311 goto out;
1312
1313 clock = tk->clock;
1314
1315#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1316 offset = tk->cycle_interval;
1317#else
1318 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1319#endif
1320
1321 /* Check if there's really nothing to do */
1322 if (offset < tk->cycle_interval)
1323 goto out;
1324
1325 /*
1326 * With NO_HZ we may have to accumulate many cycle_intervals
1327 * (think "ticks") worth of time at once. To do this efficiently,
1328 * we calculate the largest doubling multiple of cycle_intervals
1329 * that is smaller than the offset. We then accumulate that
1330 * chunk in one go, and then try to consume the next smaller
1331 * doubled multiple.
1332 */
1333 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1334 shift = max(0, shift);
1335 /* Bound shift to one less than what overflows tick_length */
1336 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1337 shift = min(shift, maxshift);
1338 while (offset >= tk->cycle_interval) {
1339 offset = logarithmic_accumulation(tk, offset, shift);
1340 if (offset < tk->cycle_interval<<shift)
1341 shift--;
1342 }
1343
1344 /* correct the clock when NTP error is too big */
1345 timekeeping_adjust(tk, offset);
1346
1347 /*
1348 * XXX This can be killed once everyone converts
1349 * to the new update_vsyscall.
1350 */
1351 old_vsyscall_fixup(tk);
1352
1353 /*
1354 * Finally, make sure that after the rounding
1355 * xtime_nsec isn't larger than NSEC_PER_SEC
1356 */
1357 accumulate_nsecs_to_secs(tk);
1358
1359 timekeeping_update(tk, false);
1360
1361out:
1362 write_sequnlock_irqrestore(&tk->lock, flags);
1363
1364}
1365
1366/**
1367 * getboottime - Return the real time of system boot.
1368 * @ts: pointer to the timespec to be set
1369 *
1370 * Returns the wall-time of boot in a timespec.
1371 *
1372 * This is based on the wall_to_monotonic offset and the total suspend
1373 * time. Calls to settimeofday will affect the value returned (which
1374 * basically means that however wrong your real time clock is at boot time,
1375 * you get the right time here).
1376 */
1377void getboottime(struct timespec *ts)
1378{
1379 struct timekeeper *tk = &timekeeper;
1380 struct timespec boottime = {
1381 .tv_sec = tk->wall_to_monotonic.tv_sec +
1382 tk->total_sleep_time.tv_sec,
1383 .tv_nsec = tk->wall_to_monotonic.tv_nsec +
1384 tk->total_sleep_time.tv_nsec
1385 };
1386
1387 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1388}
1389EXPORT_SYMBOL_GPL(getboottime);
1390
1391/**
1392 * get_monotonic_boottime - Returns monotonic time since boot
1393 * @ts: pointer to the timespec to be set
1394 *
1395 * Returns the monotonic time since boot in a timespec.
1396 *
1397 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1398 * includes the time spent in suspend.
1399 */
1400void get_monotonic_boottime(struct timespec *ts)
1401{
1402 struct timekeeper *tk = &timekeeper;
1403 struct timespec tomono, sleep;
1404 s64 nsec;
1405 unsigned int seq;
1406
1407 WARN_ON(timekeeping_suspended);
1408
1409 do {
1410 seq = read_seqbegin(&tk->lock);
1411 ts->tv_sec = tk->xtime_sec;
1412 nsec = timekeeping_get_ns(tk);
1413 tomono = tk->wall_to_monotonic;
1414 sleep = tk->total_sleep_time;
1415
1416 } while (read_seqretry(&tk->lock, seq));
1417
1418 ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
1419 ts->tv_nsec = 0;
1420 timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1421}
1422EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1423
1424/**
1425 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1426 *
1427 * Returns the monotonic time since boot in a ktime
1428 *
1429 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1430 * includes the time spent in suspend.
1431 */
1432ktime_t ktime_get_boottime(void)
1433{
1434 struct timespec ts;
1435
1436 get_monotonic_boottime(&ts);
1437 return timespec_to_ktime(ts);
1438}
1439EXPORT_SYMBOL_GPL(ktime_get_boottime);
1440
1441/**
1442 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1443 * @ts: pointer to the timespec to be converted
1444 */
1445void monotonic_to_bootbased(struct timespec *ts)
1446{
1447 struct timekeeper *tk = &timekeeper;
1448
1449 *ts = timespec_add(*ts, tk->total_sleep_time);
1450}
1451EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1452
1453unsigned long get_seconds(void)
1454{
1455 struct timekeeper *tk = &timekeeper;
1456
1457 return tk->xtime_sec;
1458}
1459EXPORT_SYMBOL(get_seconds);
1460
1461struct timespec __current_kernel_time(void)
1462{
1463 struct timekeeper *tk = &timekeeper;
1464
1465 return tk_xtime(tk);
1466}
1467
1468struct timespec current_kernel_time(void)
1469{
1470 struct timekeeper *tk = &timekeeper;
1471 struct timespec now;
1472 unsigned long seq;
1473
1474 do {
1475 seq = read_seqbegin(&tk->lock);
1476
1477 now = tk_xtime(tk);
1478 } while (read_seqretry(&tk->lock, seq));
1479
1480 return now;
1481}
1482EXPORT_SYMBOL(current_kernel_time);
1483
1484struct timespec get_monotonic_coarse(void)
1485{
1486 struct timekeeper *tk = &timekeeper;
1487 struct timespec now, mono;
1488 unsigned long seq;
1489
1490 do {
1491 seq = read_seqbegin(&tk->lock);
1492
1493 now = tk_xtime(tk);
1494 mono = tk->wall_to_monotonic;
1495 } while (read_seqretry(&tk->lock, seq));
1496
1497 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1498 now.tv_nsec + mono.tv_nsec);
1499 return now;
1500}
1501
1502/*
1503 * Must hold jiffies_lock
1504 */
1505void do_timer(unsigned long ticks)
1506{
1507 jiffies_64 += ticks;
1508 update_wall_time();
1509 calc_global_load(ticks);
1510}
1511
1512/**
1513 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1514 * and sleep offsets.
1515 * @xtim: pointer to timespec to be set with xtime
1516 * @wtom: pointer to timespec to be set with wall_to_monotonic
1517 * @sleep: pointer to timespec to be set with time in suspend
1518 */
1519void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1520 struct timespec *wtom, struct timespec *sleep)
1521{
1522 struct timekeeper *tk = &timekeeper;
1523 unsigned long seq;
1524
1525 do {
1526 seq = read_seqbegin(&tk->lock);
1527 *xtim = tk_xtime(tk);
1528 *wtom = tk->wall_to_monotonic;
1529 *sleep = tk->total_sleep_time;
1530 } while (read_seqretry(&tk->lock, seq));
1531}
1532
1533#ifdef CONFIG_HIGH_RES_TIMERS
1534/**
1535 * ktime_get_update_offsets - hrtimer helper
1536 * @offs_real: pointer to storage for monotonic -> realtime offset
1537 * @offs_boot: pointer to storage for monotonic -> boottime offset
1538 *
1539 * Returns current monotonic time and updates the offsets
1540 * Called from hrtimer_interupt() or retrigger_next_event()
1541 */
1542ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1543{
1544 struct timekeeper *tk = &timekeeper;
1545 ktime_t now;
1546 unsigned int seq;
1547 u64 secs, nsecs;
1548
1549 do {
1550 seq = read_seqbegin(&tk->lock);
1551
1552 secs = tk->xtime_sec;
1553 nsecs = timekeeping_get_ns(tk);
1554
1555 *offs_real = tk->offs_real;
1556 *offs_boot = tk->offs_boot;
1557 } while (read_seqretry(&tk->lock, seq));
1558
1559 now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1560 now = ktime_sub(now, *offs_real);
1561 return now;
1562}
1563#endif
1564
1565/**
1566 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1567 */
1568ktime_t ktime_get_monotonic_offset(void)
1569{
1570 struct timekeeper *tk = &timekeeper;
1571 unsigned long seq;
1572 struct timespec wtom;
1573
1574 do {
1575 seq = read_seqbegin(&tk->lock);
1576 wtom = tk->wall_to_monotonic;
1577 } while (read_seqretry(&tk->lock, seq));
1578
1579 return timespec_to_ktime(wtom);
1580}
1581EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1582
1583/**
1584 * xtime_update() - advances the timekeeping infrastructure
1585 * @ticks: number of ticks, that have elapsed since the last call.
1586 *
1587 * Must be called with interrupts disabled.
1588 */
1589void xtime_update(unsigned long ticks)
1590{
1591 write_seqlock(&jiffies_lock);
1592 do_timer(ticks);
1593 write_sequnlock(&jiffies_lock);
1594}