]>
Commit | Line | Data |
---|---|---|
1 | /* This is the Linux kernel elf-loading code, ported into user space */ | |
2 | #include "qemu/osdep.h" | |
3 | #include <sys/param.h> | |
4 | ||
5 | #include <sys/prctl.h> | |
6 | #include <sys/resource.h> | |
7 | #include <sys/shm.h> | |
8 | ||
9 | #include "qemu.h" | |
10 | #include "user/tswap-target.h" | |
11 | #include "user/page-protection.h" | |
12 | #include "exec/page-protection.h" | |
13 | #include "exec/mmap-lock.h" | |
14 | #include "exec/translation-block.h" | |
15 | #include "exec/tswap.h" | |
16 | #include "user/guest-base.h" | |
17 | #include "user-internals.h" | |
18 | #include "signal-common.h" | |
19 | #include "loader.h" | |
20 | #include "user-mmap.h" | |
21 | #include "disas/disas.h" | |
22 | #include "qemu/bitops.h" | |
23 | #include "qemu/path.h" | |
24 | #include "qemu/queue.h" | |
25 | #include "qemu/guest-random.h" | |
26 | #include "qemu/units.h" | |
27 | #include "qemu/selfmap.h" | |
28 | #include "qemu/lockable.h" | |
29 | #include "qapi/error.h" | |
30 | #include "qemu/error-report.h" | |
31 | #include "target_signal.h" | |
32 | #include "tcg/debuginfo.h" | |
33 | ||
34 | #ifdef TARGET_ARM | |
35 | #include "target/arm/cpu-features.h" | |
36 | #endif | |
37 | ||
38 | #ifdef _ARCH_PPC64 | |
39 | #undef ARCH_DLINFO | |
40 | #undef ELF_PLATFORM | |
41 | #undef ELF_HWCAP | |
42 | #undef ELF_HWCAP2 | |
43 | #undef ELF_CLASS | |
44 | #undef ELF_DATA | |
45 | #undef ELF_ARCH | |
46 | #endif | |
47 | ||
48 | #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE | |
49 | #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0 | |
50 | #endif | |
51 | ||
52 | typedef struct { | |
53 | const uint8_t *image; | |
54 | const uint32_t *relocs; | |
55 | unsigned image_size; | |
56 | unsigned reloc_count; | |
57 | unsigned sigreturn_ofs; | |
58 | unsigned rt_sigreturn_ofs; | |
59 | } VdsoImageInfo; | |
60 | ||
61 | #define ELF_OSABI ELFOSABI_SYSV | |
62 | ||
63 | /* from personality.h */ | |
64 | ||
65 | /* | |
66 | * Flags for bug emulation. | |
67 | * | |
68 | * These occupy the top three bytes. | |
69 | */ | |
70 | enum { | |
71 | ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ | |
72 | FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to | |
73 | descriptors (signal handling) */ | |
74 | MMAP_PAGE_ZERO = 0x0100000, | |
75 | ADDR_COMPAT_LAYOUT = 0x0200000, | |
76 | READ_IMPLIES_EXEC = 0x0400000, | |
77 | ADDR_LIMIT_32BIT = 0x0800000, | |
78 | SHORT_INODE = 0x1000000, | |
79 | WHOLE_SECONDS = 0x2000000, | |
80 | STICKY_TIMEOUTS = 0x4000000, | |
81 | ADDR_LIMIT_3GB = 0x8000000, | |
82 | }; | |
83 | ||
84 | /* | |
85 | * Personality types. | |
86 | * | |
87 | * These go in the low byte. Avoid using the top bit, it will | |
88 | * conflict with error returns. | |
89 | */ | |
90 | enum { | |
91 | PER_LINUX = 0x0000, | |
92 | PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, | |
93 | PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, | |
94 | PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | |
95 | PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, | |
96 | PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, | |
97 | PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, | |
98 | PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, | |
99 | PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, | |
100 | PER_BSD = 0x0006, | |
101 | PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, | |
102 | PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, | |
103 | PER_LINUX32 = 0x0008, | |
104 | PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, | |
105 | PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ | |
106 | PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ | |
107 | PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ | |
108 | PER_RISCOS = 0x000c, | |
109 | PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, | |
110 | PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | |
111 | PER_OSF4 = 0x000f, /* OSF/1 v4 */ | |
112 | PER_HPUX = 0x0010, | |
113 | PER_MASK = 0x00ff, | |
114 | }; | |
115 | ||
116 | /* | |
117 | * Return the base personality without flags. | |
118 | */ | |
119 | #define personality(pers) (pers & PER_MASK) | |
120 | ||
121 | int info_is_fdpic(struct image_info *info) | |
122 | { | |
123 | return info->personality == PER_LINUX_FDPIC; | |
124 | } | |
125 | ||
126 | /* this flag is uneffective under linux too, should be deleted */ | |
127 | #ifndef MAP_DENYWRITE | |
128 | #define MAP_DENYWRITE 0 | |
129 | #endif | |
130 | ||
131 | /* should probably go in elf.h */ | |
132 | #ifndef ELIBBAD | |
133 | #define ELIBBAD 80 | |
134 | #endif | |
135 | ||
136 | #if TARGET_BIG_ENDIAN | |
137 | #define ELF_DATA ELFDATA2MSB | |
138 | #else | |
139 | #define ELF_DATA ELFDATA2LSB | |
140 | #endif | |
141 | ||
142 | #ifdef TARGET_ABI_MIPSN32 | |
143 | typedef abi_ullong target_elf_greg_t; | |
144 | #define tswapreg(ptr) tswap64(ptr) | |
145 | #else | |
146 | typedef abi_ulong target_elf_greg_t; | |
147 | #define tswapreg(ptr) tswapal(ptr) | |
148 | #endif | |
149 | ||
150 | #ifdef USE_UID16 | |
151 | typedef abi_ushort target_uid_t; | |
152 | typedef abi_ushort target_gid_t; | |
153 | #else | |
154 | typedef abi_uint target_uid_t; | |
155 | typedef abi_uint target_gid_t; | |
156 | #endif | |
157 | typedef abi_int target_pid_t; | |
158 | ||
159 | #ifdef TARGET_I386 | |
160 | ||
161 | #define ELF_HWCAP get_elf_hwcap() | |
162 | ||
163 | static uint32_t get_elf_hwcap(void) | |
164 | { | |
165 | X86CPU *cpu = X86_CPU(thread_cpu); | |
166 | ||
167 | return cpu->env.features[FEAT_1_EDX]; | |
168 | } | |
169 | ||
170 | #ifdef TARGET_X86_64 | |
171 | #define ELF_CLASS ELFCLASS64 | |
172 | #define ELF_ARCH EM_X86_64 | |
173 | ||
174 | #define ELF_PLATFORM "x86_64" | |
175 | ||
176 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
177 | { | |
178 | regs->rax = 0; | |
179 | regs->rsp = infop->start_stack; | |
180 | regs->rip = infop->entry; | |
181 | } | |
182 | ||
183 | #define ELF_NREG 27 | |
184 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
185 | ||
186 | /* | |
187 | * Note that ELF_NREG should be 29 as there should be place for | |
188 | * TRAPNO and ERR "registers" as well but linux doesn't dump | |
189 | * those. | |
190 | * | |
191 | * See linux kernel: arch/x86/include/asm/elf.h | |
192 | */ | |
193 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) | |
194 | { | |
195 | (*regs)[0] = tswapreg(env->regs[15]); | |
196 | (*regs)[1] = tswapreg(env->regs[14]); | |
197 | (*regs)[2] = tswapreg(env->regs[13]); | |
198 | (*regs)[3] = tswapreg(env->regs[12]); | |
199 | (*regs)[4] = tswapreg(env->regs[R_EBP]); | |
200 | (*regs)[5] = tswapreg(env->regs[R_EBX]); | |
201 | (*regs)[6] = tswapreg(env->regs[11]); | |
202 | (*regs)[7] = tswapreg(env->regs[10]); | |
203 | (*regs)[8] = tswapreg(env->regs[9]); | |
204 | (*regs)[9] = tswapreg(env->regs[8]); | |
205 | (*regs)[10] = tswapreg(env->regs[R_EAX]); | |
206 | (*regs)[11] = tswapreg(env->regs[R_ECX]); | |
207 | (*regs)[12] = tswapreg(env->regs[R_EDX]); | |
208 | (*regs)[13] = tswapreg(env->regs[R_ESI]); | |
209 | (*regs)[14] = tswapreg(env->regs[R_EDI]); | |
210 | (*regs)[15] = tswapreg(get_task_state(env_cpu_const(env))->orig_ax); | |
211 | (*regs)[16] = tswapreg(env->eip); | |
212 | (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); | |
213 | (*regs)[18] = tswapreg(env->eflags); | |
214 | (*regs)[19] = tswapreg(env->regs[R_ESP]); | |
215 | (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); | |
216 | (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); | |
217 | (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); | |
218 | (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); | |
219 | (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); | |
220 | (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); | |
221 | (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); | |
222 | } | |
223 | ||
224 | #if ULONG_MAX > UINT32_MAX | |
225 | #define INIT_GUEST_COMMPAGE | |
226 | static bool init_guest_commpage(void) | |
227 | { | |
228 | /* | |
229 | * The vsyscall page is at a high negative address aka kernel space, | |
230 | * which means that we cannot actually allocate it with target_mmap. | |
231 | * We still should be able to use page_set_flags, unless the user | |
232 | * has specified -R reserved_va, which would trigger an assert(). | |
233 | */ | |
234 | if (reserved_va != 0 && | |
235 | TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) { | |
236 | error_report("Cannot allocate vsyscall page"); | |
237 | exit(EXIT_FAILURE); | |
238 | } | |
239 | page_set_flags(TARGET_VSYSCALL_PAGE, | |
240 | TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK, | |
241 | PAGE_EXEC | PAGE_VALID); | |
242 | return true; | |
243 | } | |
244 | #endif | |
245 | #else | |
246 | ||
247 | /* | |
248 | * This is used to ensure we don't load something for the wrong architecture. | |
249 | */ | |
250 | #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) | |
251 | ||
252 | /* | |
253 | * These are used to set parameters in the core dumps. | |
254 | */ | |
255 | #define ELF_CLASS ELFCLASS32 | |
256 | #define ELF_ARCH EM_386 | |
257 | ||
258 | #define ELF_PLATFORM get_elf_platform() | |
259 | #define EXSTACK_DEFAULT true | |
260 | ||
261 | static const char *get_elf_platform(void) | |
262 | { | |
263 | static char elf_platform[] = "i386"; | |
264 | int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); | |
265 | if (family > 6) { | |
266 | family = 6; | |
267 | } | |
268 | if (family >= 3) { | |
269 | elf_platform[1] = '0' + family; | |
270 | } | |
271 | return elf_platform; | |
272 | } | |
273 | ||
274 | static inline void init_thread(struct target_pt_regs *regs, | |
275 | struct image_info *infop) | |
276 | { | |
277 | regs->esp = infop->start_stack; | |
278 | regs->eip = infop->entry; | |
279 | ||
280 | /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program | |
281 | starts %edx contains a pointer to a function which might be | |
282 | registered using `atexit'. This provides a mean for the | |
283 | dynamic linker to call DT_FINI functions for shared libraries | |
284 | that have been loaded before the code runs. | |
285 | ||
286 | A value of 0 tells we have no such handler. */ | |
287 | regs->edx = 0; | |
288 | } | |
289 | ||
290 | #define ELF_NREG 17 | |
291 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
292 | ||
293 | /* | |
294 | * Note that ELF_NREG should be 19 as there should be place for | |
295 | * TRAPNO and ERR "registers" as well but linux doesn't dump | |
296 | * those. | |
297 | * | |
298 | * See linux kernel: arch/x86/include/asm/elf.h | |
299 | */ | |
300 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) | |
301 | { | |
302 | (*regs)[0] = tswapreg(env->regs[R_EBX]); | |
303 | (*regs)[1] = tswapreg(env->regs[R_ECX]); | |
304 | (*regs)[2] = tswapreg(env->regs[R_EDX]); | |
305 | (*regs)[3] = tswapreg(env->regs[R_ESI]); | |
306 | (*regs)[4] = tswapreg(env->regs[R_EDI]); | |
307 | (*regs)[5] = tswapreg(env->regs[R_EBP]); | |
308 | (*regs)[6] = tswapreg(env->regs[R_EAX]); | |
309 | (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); | |
310 | (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); | |
311 | (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); | |
312 | (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); | |
313 | (*regs)[11] = tswapreg(get_task_state(env_cpu_const(env))->orig_ax); | |
314 | (*regs)[12] = tswapreg(env->eip); | |
315 | (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); | |
316 | (*regs)[14] = tswapreg(env->eflags); | |
317 | (*regs)[15] = tswapreg(env->regs[R_ESP]); | |
318 | (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); | |
319 | } | |
320 | ||
321 | /* | |
322 | * i386 is the only target which supplies AT_SYSINFO for the vdso. | |
323 | * All others only supply AT_SYSINFO_EHDR. | |
324 | */ | |
325 | #define DLINFO_ARCH_ITEMS (vdso_info != NULL) | |
326 | #define ARCH_DLINFO \ | |
327 | do { \ | |
328 | if (vdso_info) { \ | |
329 | NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry); \ | |
330 | } \ | |
331 | } while (0) | |
332 | ||
333 | #endif /* TARGET_X86_64 */ | |
334 | ||
335 | #define VDSO_HEADER "vdso.c.inc" | |
336 | ||
337 | #define USE_ELF_CORE_DUMP | |
338 | #define ELF_EXEC_PAGESIZE 4096 | |
339 | ||
340 | #endif /* TARGET_I386 */ | |
341 | ||
342 | #ifdef TARGET_ARM | |
343 | ||
344 | #ifndef TARGET_AARCH64 | |
345 | /* 32 bit ARM definitions */ | |
346 | ||
347 | #define ELF_ARCH EM_ARM | |
348 | #define ELF_CLASS ELFCLASS32 | |
349 | #define EXSTACK_DEFAULT true | |
350 | ||
351 | static inline void init_thread(struct target_pt_regs *regs, | |
352 | struct image_info *infop) | |
353 | { | |
354 | abi_long stack = infop->start_stack; | |
355 | memset(regs, 0, sizeof(*regs)); | |
356 | ||
357 | regs->uregs[16] = ARM_CPU_MODE_USR; | |
358 | if (infop->entry & 1) { | |
359 | regs->uregs[16] |= CPSR_T; | |
360 | } | |
361 | regs->uregs[15] = infop->entry & 0xfffffffe; | |
362 | regs->uregs[13] = infop->start_stack; | |
363 | /* FIXME - what to for failure of get_user()? */ | |
364 | get_user_ual(regs->uregs[2], stack + 8); /* envp */ | |
365 | get_user_ual(regs->uregs[1], stack + 4); /* envp */ | |
366 | /* XXX: it seems that r0 is zeroed after ! */ | |
367 | regs->uregs[0] = 0; | |
368 | /* For uClinux PIC binaries. */ | |
369 | /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ | |
370 | regs->uregs[10] = infop->start_data; | |
371 | ||
372 | /* Support ARM FDPIC. */ | |
373 | if (info_is_fdpic(infop)) { | |
374 | /* As described in the ABI document, r7 points to the loadmap info | |
375 | * prepared by the kernel. If an interpreter is needed, r8 points | |
376 | * to the interpreter loadmap and r9 points to the interpreter | |
377 | * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and | |
378 | * r9 points to the main program PT_DYNAMIC info. | |
379 | */ | |
380 | regs->uregs[7] = infop->loadmap_addr; | |
381 | if (infop->interpreter_loadmap_addr) { | |
382 | /* Executable is dynamically loaded. */ | |
383 | regs->uregs[8] = infop->interpreter_loadmap_addr; | |
384 | regs->uregs[9] = infop->interpreter_pt_dynamic_addr; | |
385 | } else { | |
386 | regs->uregs[8] = 0; | |
387 | regs->uregs[9] = infop->pt_dynamic_addr; | |
388 | } | |
389 | } | |
390 | } | |
391 | ||
392 | #define ELF_NREG 18 | |
393 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
394 | ||
395 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) | |
396 | { | |
397 | (*regs)[0] = tswapreg(env->regs[0]); | |
398 | (*regs)[1] = tswapreg(env->regs[1]); | |
399 | (*regs)[2] = tswapreg(env->regs[2]); | |
400 | (*regs)[3] = tswapreg(env->regs[3]); | |
401 | (*regs)[4] = tswapreg(env->regs[4]); | |
402 | (*regs)[5] = tswapreg(env->regs[5]); | |
403 | (*regs)[6] = tswapreg(env->regs[6]); | |
404 | (*regs)[7] = tswapreg(env->regs[7]); | |
405 | (*regs)[8] = tswapreg(env->regs[8]); | |
406 | (*regs)[9] = tswapreg(env->regs[9]); | |
407 | (*regs)[10] = tswapreg(env->regs[10]); | |
408 | (*regs)[11] = tswapreg(env->regs[11]); | |
409 | (*regs)[12] = tswapreg(env->regs[12]); | |
410 | (*regs)[13] = tswapreg(env->regs[13]); | |
411 | (*regs)[14] = tswapreg(env->regs[14]); | |
412 | (*regs)[15] = tswapreg(env->regs[15]); | |
413 | ||
414 | (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); | |
415 | (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ | |
416 | } | |
417 | ||
418 | #define USE_ELF_CORE_DUMP | |
419 | #define ELF_EXEC_PAGESIZE 4096 | |
420 | ||
421 | enum | |
422 | { | |
423 | ARM_HWCAP_ARM_SWP = 1 << 0, | |
424 | ARM_HWCAP_ARM_HALF = 1 << 1, | |
425 | ARM_HWCAP_ARM_THUMB = 1 << 2, | |
426 | ARM_HWCAP_ARM_26BIT = 1 << 3, | |
427 | ARM_HWCAP_ARM_FAST_MULT = 1 << 4, | |
428 | ARM_HWCAP_ARM_FPA = 1 << 5, | |
429 | ARM_HWCAP_ARM_VFP = 1 << 6, | |
430 | ARM_HWCAP_ARM_EDSP = 1 << 7, | |
431 | ARM_HWCAP_ARM_JAVA = 1 << 8, | |
432 | ARM_HWCAP_ARM_IWMMXT = 1 << 9, | |
433 | ARM_HWCAP_ARM_CRUNCH = 1 << 10, | |
434 | ARM_HWCAP_ARM_THUMBEE = 1 << 11, | |
435 | ARM_HWCAP_ARM_NEON = 1 << 12, | |
436 | ARM_HWCAP_ARM_VFPv3 = 1 << 13, | |
437 | ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, | |
438 | ARM_HWCAP_ARM_TLS = 1 << 15, | |
439 | ARM_HWCAP_ARM_VFPv4 = 1 << 16, | |
440 | ARM_HWCAP_ARM_IDIVA = 1 << 17, | |
441 | ARM_HWCAP_ARM_IDIVT = 1 << 18, | |
442 | ARM_HWCAP_ARM_VFPD32 = 1 << 19, | |
443 | ARM_HWCAP_ARM_LPAE = 1 << 20, | |
444 | ARM_HWCAP_ARM_EVTSTRM = 1 << 21, | |
445 | ARM_HWCAP_ARM_FPHP = 1 << 22, | |
446 | ARM_HWCAP_ARM_ASIMDHP = 1 << 23, | |
447 | ARM_HWCAP_ARM_ASIMDDP = 1 << 24, | |
448 | ARM_HWCAP_ARM_ASIMDFHM = 1 << 25, | |
449 | ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26, | |
450 | ARM_HWCAP_ARM_I8MM = 1 << 27, | |
451 | }; | |
452 | ||
453 | enum { | |
454 | ARM_HWCAP2_ARM_AES = 1 << 0, | |
455 | ARM_HWCAP2_ARM_PMULL = 1 << 1, | |
456 | ARM_HWCAP2_ARM_SHA1 = 1 << 2, | |
457 | ARM_HWCAP2_ARM_SHA2 = 1 << 3, | |
458 | ARM_HWCAP2_ARM_CRC32 = 1 << 4, | |
459 | ARM_HWCAP2_ARM_SB = 1 << 5, | |
460 | ARM_HWCAP2_ARM_SSBS = 1 << 6, | |
461 | }; | |
462 | ||
463 | /* The commpage only exists for 32 bit kernels */ | |
464 | ||
465 | #define HI_COMMPAGE (intptr_t)0xffff0f00u | |
466 | ||
467 | static bool init_guest_commpage(void) | |
468 | { | |
469 | ARMCPU *cpu = ARM_CPU(thread_cpu); | |
470 | int host_page_size = qemu_real_host_page_size(); | |
471 | abi_ptr commpage; | |
472 | void *want; | |
473 | void *addr; | |
474 | ||
475 | /* | |
476 | * M-profile allocates maximum of 2GB address space, so can never | |
477 | * allocate the commpage. Skip it. | |
478 | */ | |
479 | if (arm_feature(&cpu->env, ARM_FEATURE_M)) { | |
480 | return true; | |
481 | } | |
482 | ||
483 | commpage = HI_COMMPAGE & -host_page_size; | |
484 | want = g2h_untagged(commpage); | |
485 | addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE, | |
486 | MAP_ANONYMOUS | MAP_PRIVATE | | |
487 | (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE), | |
488 | -1, 0); | |
489 | ||
490 | if (addr == MAP_FAILED) { | |
491 | perror("Allocating guest commpage"); | |
492 | exit(EXIT_FAILURE); | |
493 | } | |
494 | if (addr != want) { | |
495 | return false; | |
496 | } | |
497 | ||
498 | /* Set kernel helper versions; rest of page is 0. */ | |
499 | __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); | |
500 | ||
501 | if (mprotect(addr, host_page_size, PROT_READ)) { | |
502 | perror("Protecting guest commpage"); | |
503 | exit(EXIT_FAILURE); | |
504 | } | |
505 | ||
506 | page_set_flags(commpage, commpage | (host_page_size - 1), | |
507 | PAGE_READ | PAGE_EXEC | PAGE_VALID); | |
508 | return true; | |
509 | } | |
510 | ||
511 | #define ELF_HWCAP get_elf_hwcap() | |
512 | #define ELF_HWCAP2 get_elf_hwcap2() | |
513 | ||
514 | uint32_t get_elf_hwcap(void) | |
515 | { | |
516 | ARMCPU *cpu = ARM_CPU(thread_cpu); | |
517 | uint32_t hwcaps = 0; | |
518 | ||
519 | hwcaps |= ARM_HWCAP_ARM_SWP; | |
520 | hwcaps |= ARM_HWCAP_ARM_HALF; | |
521 | hwcaps |= ARM_HWCAP_ARM_THUMB; | |
522 | hwcaps |= ARM_HWCAP_ARM_FAST_MULT; | |
523 | ||
524 | /* probe for the extra features */ | |
525 | #define GET_FEATURE(feat, hwcap) \ | |
526 | do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) | |
527 | ||
528 | #define GET_FEATURE_ID(feat, hwcap) \ | |
529 | do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) | |
530 | ||
531 | /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ | |
532 | GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); | |
533 | GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); | |
534 | GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); | |
535 | GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); | |
536 | GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); | |
537 | GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); | |
538 | GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); | |
539 | GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); | |
540 | GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); | |
541 | ||
542 | if (cpu_isar_feature(aa32_fpsp_v3, cpu) || | |
543 | cpu_isar_feature(aa32_fpdp_v3, cpu)) { | |
544 | hwcaps |= ARM_HWCAP_ARM_VFPv3; | |
545 | if (cpu_isar_feature(aa32_simd_r32, cpu)) { | |
546 | hwcaps |= ARM_HWCAP_ARM_VFPD32; | |
547 | } else { | |
548 | hwcaps |= ARM_HWCAP_ARM_VFPv3D16; | |
549 | } | |
550 | } | |
551 | GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); | |
552 | /* | |
553 | * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same | |
554 | * isar_feature function for both. The kernel reports them as two hwcaps. | |
555 | */ | |
556 | GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP); | |
557 | GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP); | |
558 | GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP); | |
559 | GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM); | |
560 | GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16); | |
561 | GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM); | |
562 | ||
563 | return hwcaps; | |
564 | } | |
565 | ||
566 | uint64_t get_elf_hwcap2(void) | |
567 | { | |
568 | ARMCPU *cpu = ARM_CPU(thread_cpu); | |
569 | uint64_t hwcaps = 0; | |
570 | ||
571 | GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); | |
572 | GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); | |
573 | GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); | |
574 | GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); | |
575 | GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); | |
576 | GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB); | |
577 | GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS); | |
578 | return hwcaps; | |
579 | } | |
580 | ||
581 | const char *elf_hwcap_str(uint32_t bit) | |
582 | { | |
583 | static const char *hwcap_str[] = { | |
584 | [__builtin_ctz(ARM_HWCAP_ARM_SWP )] = "swp", | |
585 | [__builtin_ctz(ARM_HWCAP_ARM_HALF )] = "half", | |
586 | [__builtin_ctz(ARM_HWCAP_ARM_THUMB )] = "thumb", | |
587 | [__builtin_ctz(ARM_HWCAP_ARM_26BIT )] = "26bit", | |
588 | [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult", | |
589 | [__builtin_ctz(ARM_HWCAP_ARM_FPA )] = "fpa", | |
590 | [__builtin_ctz(ARM_HWCAP_ARM_VFP )] = "vfp", | |
591 | [__builtin_ctz(ARM_HWCAP_ARM_EDSP )] = "edsp", | |
592 | [__builtin_ctz(ARM_HWCAP_ARM_JAVA )] = "java", | |
593 | [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT )] = "iwmmxt", | |
594 | [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH )] = "crunch", | |
595 | [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE )] = "thumbee", | |
596 | [__builtin_ctz(ARM_HWCAP_ARM_NEON )] = "neon", | |
597 | [__builtin_ctz(ARM_HWCAP_ARM_VFPv3 )] = "vfpv3", | |
598 | [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16", | |
599 | [__builtin_ctz(ARM_HWCAP_ARM_TLS )] = "tls", | |
600 | [__builtin_ctz(ARM_HWCAP_ARM_VFPv4 )] = "vfpv4", | |
601 | [__builtin_ctz(ARM_HWCAP_ARM_IDIVA )] = "idiva", | |
602 | [__builtin_ctz(ARM_HWCAP_ARM_IDIVT )] = "idivt", | |
603 | [__builtin_ctz(ARM_HWCAP_ARM_VFPD32 )] = "vfpd32", | |
604 | [__builtin_ctz(ARM_HWCAP_ARM_LPAE )] = "lpae", | |
605 | [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM )] = "evtstrm", | |
606 | [__builtin_ctz(ARM_HWCAP_ARM_FPHP )] = "fphp", | |
607 | [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP )] = "asimdhp", | |
608 | [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP )] = "asimddp", | |
609 | [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm", | |
610 | [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16", | |
611 | [__builtin_ctz(ARM_HWCAP_ARM_I8MM )] = "i8mm", | |
612 | }; | |
613 | ||
614 | return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; | |
615 | } | |
616 | ||
617 | const char *elf_hwcap2_str(uint32_t bit) | |
618 | { | |
619 | static const char *hwcap_str[] = { | |
620 | [__builtin_ctz(ARM_HWCAP2_ARM_AES )] = "aes", | |
621 | [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull", | |
622 | [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1", | |
623 | [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2", | |
624 | [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32", | |
625 | [__builtin_ctz(ARM_HWCAP2_ARM_SB )] = "sb", | |
626 | [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs", | |
627 | }; | |
628 | ||
629 | return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; | |
630 | } | |
631 | ||
632 | #undef GET_FEATURE | |
633 | #undef GET_FEATURE_ID | |
634 | ||
635 | #define ELF_PLATFORM get_elf_platform() | |
636 | ||
637 | static const char *get_elf_platform(void) | |
638 | { | |
639 | CPUARMState *env = cpu_env(thread_cpu); | |
640 | ||
641 | #if TARGET_BIG_ENDIAN | |
642 | # define END "b" | |
643 | #else | |
644 | # define END "l" | |
645 | #endif | |
646 | ||
647 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
648 | return "v8" END; | |
649 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
650 | if (arm_feature(env, ARM_FEATURE_M)) { | |
651 | return "v7m" END; | |
652 | } else { | |
653 | return "v7" END; | |
654 | } | |
655 | } else if (arm_feature(env, ARM_FEATURE_V6)) { | |
656 | return "v6" END; | |
657 | } else if (arm_feature(env, ARM_FEATURE_V5)) { | |
658 | return "v5" END; | |
659 | } else { | |
660 | return "v4" END; | |
661 | } | |
662 | ||
663 | #undef END | |
664 | } | |
665 | ||
666 | #if TARGET_BIG_ENDIAN | |
667 | #include "elf.h" | |
668 | #include "vdso-be8.c.inc" | |
669 | #include "vdso-be32.c.inc" | |
670 | ||
671 | static const VdsoImageInfo *vdso_image_info(uint32_t elf_flags) | |
672 | { | |
673 | return (EF_ARM_EABI_VERSION(elf_flags) >= EF_ARM_EABI_VER4 | |
674 | && (elf_flags & EF_ARM_BE8) | |
675 | ? &vdso_be8_image_info | |
676 | : &vdso_be32_image_info); | |
677 | } | |
678 | #define vdso_image_info vdso_image_info | |
679 | #else | |
680 | # define VDSO_HEADER "vdso-le.c.inc" | |
681 | #endif | |
682 | ||
683 | #else | |
684 | /* 64 bit ARM definitions */ | |
685 | ||
686 | #define ELF_ARCH EM_AARCH64 | |
687 | #define ELF_CLASS ELFCLASS64 | |
688 | #if TARGET_BIG_ENDIAN | |
689 | # define ELF_PLATFORM "aarch64_be" | |
690 | #else | |
691 | # define ELF_PLATFORM "aarch64" | |
692 | #endif | |
693 | ||
694 | static inline void init_thread(struct target_pt_regs *regs, | |
695 | struct image_info *infop) | |
696 | { | |
697 | abi_long stack = infop->start_stack; | |
698 | memset(regs, 0, sizeof(*regs)); | |
699 | ||
700 | regs->pc = infop->entry & ~0x3ULL; | |
701 | regs->sp = stack; | |
702 | } | |
703 | ||
704 | #define ELF_NREG 34 | |
705 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
706 | ||
707 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
708 | const CPUARMState *env) | |
709 | { | |
710 | int i; | |
711 | ||
712 | for (i = 0; i < 32; i++) { | |
713 | (*regs)[i] = tswapreg(env->xregs[i]); | |
714 | } | |
715 | (*regs)[32] = tswapreg(env->pc); | |
716 | (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); | |
717 | } | |
718 | ||
719 | #define USE_ELF_CORE_DUMP | |
720 | #define ELF_EXEC_PAGESIZE 4096 | |
721 | ||
722 | enum { | |
723 | ARM_HWCAP_A64_FP = 1 << 0, | |
724 | ARM_HWCAP_A64_ASIMD = 1 << 1, | |
725 | ARM_HWCAP_A64_EVTSTRM = 1 << 2, | |
726 | ARM_HWCAP_A64_AES = 1 << 3, | |
727 | ARM_HWCAP_A64_PMULL = 1 << 4, | |
728 | ARM_HWCAP_A64_SHA1 = 1 << 5, | |
729 | ARM_HWCAP_A64_SHA2 = 1 << 6, | |
730 | ARM_HWCAP_A64_CRC32 = 1 << 7, | |
731 | ARM_HWCAP_A64_ATOMICS = 1 << 8, | |
732 | ARM_HWCAP_A64_FPHP = 1 << 9, | |
733 | ARM_HWCAP_A64_ASIMDHP = 1 << 10, | |
734 | ARM_HWCAP_A64_CPUID = 1 << 11, | |
735 | ARM_HWCAP_A64_ASIMDRDM = 1 << 12, | |
736 | ARM_HWCAP_A64_JSCVT = 1 << 13, | |
737 | ARM_HWCAP_A64_FCMA = 1 << 14, | |
738 | ARM_HWCAP_A64_LRCPC = 1 << 15, | |
739 | ARM_HWCAP_A64_DCPOP = 1 << 16, | |
740 | ARM_HWCAP_A64_SHA3 = 1 << 17, | |
741 | ARM_HWCAP_A64_SM3 = 1 << 18, | |
742 | ARM_HWCAP_A64_SM4 = 1 << 19, | |
743 | ARM_HWCAP_A64_ASIMDDP = 1 << 20, | |
744 | ARM_HWCAP_A64_SHA512 = 1 << 21, | |
745 | ARM_HWCAP_A64_SVE = 1 << 22, | |
746 | ARM_HWCAP_A64_ASIMDFHM = 1 << 23, | |
747 | ARM_HWCAP_A64_DIT = 1 << 24, | |
748 | ARM_HWCAP_A64_USCAT = 1 << 25, | |
749 | ARM_HWCAP_A64_ILRCPC = 1 << 26, | |
750 | ARM_HWCAP_A64_FLAGM = 1 << 27, | |
751 | ARM_HWCAP_A64_SSBS = 1 << 28, | |
752 | ARM_HWCAP_A64_SB = 1 << 29, | |
753 | ARM_HWCAP_A64_PACA = 1 << 30, | |
754 | ARM_HWCAP_A64_PACG = 1ULL << 31, | |
755 | ARM_HWCAP_A64_GCS = 1ULL << 32, | |
756 | ARM_HWCAP_A64_CMPBR = 1ULL << 33, | |
757 | ARM_HWCAP_A64_FPRCVT = 1ULL << 34, | |
758 | ARM_HWCAP_A64_F8MM8 = 1ULL << 35, | |
759 | ARM_HWCAP_A64_F8MM4 = 1ULL << 36, | |
760 | ARM_HWCAP_A64_SVE_F16MM = 1ULL << 37, | |
761 | ARM_HWCAP_A64_SVE_ELTPERM = 1ULL << 38, | |
762 | ARM_HWCAP_A64_SVE_AES2 = 1ULL << 39, | |
763 | ARM_HWCAP_A64_SVE_BFSCALE = 1ULL << 40, | |
764 | ARM_HWCAP_A64_SVE2P2 = 1ULL << 41, | |
765 | ARM_HWCAP_A64_SME2P2 = 1ULL << 42, | |
766 | ARM_HWCAP_A64_SME_SBITPERM = 1ULL << 43, | |
767 | ARM_HWCAP_A64_SME_AES = 1ULL << 44, | |
768 | ARM_HWCAP_A64_SME_SFEXPA = 1ULL << 45, | |
769 | ARM_HWCAP_A64_SME_STMOP = 1ULL << 46, | |
770 | ARM_HWCAP_A64_SME_SMOP4 = 1ULL << 47, | |
771 | ||
772 | ARM_HWCAP2_A64_DCPODP = 1 << 0, | |
773 | ARM_HWCAP2_A64_SVE2 = 1 << 1, | |
774 | ARM_HWCAP2_A64_SVEAES = 1 << 2, | |
775 | ARM_HWCAP2_A64_SVEPMULL = 1 << 3, | |
776 | ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, | |
777 | ARM_HWCAP2_A64_SVESHA3 = 1 << 5, | |
778 | ARM_HWCAP2_A64_SVESM4 = 1 << 6, | |
779 | ARM_HWCAP2_A64_FLAGM2 = 1 << 7, | |
780 | ARM_HWCAP2_A64_FRINT = 1 << 8, | |
781 | ARM_HWCAP2_A64_SVEI8MM = 1 << 9, | |
782 | ARM_HWCAP2_A64_SVEF32MM = 1 << 10, | |
783 | ARM_HWCAP2_A64_SVEF64MM = 1 << 11, | |
784 | ARM_HWCAP2_A64_SVEBF16 = 1 << 12, | |
785 | ARM_HWCAP2_A64_I8MM = 1 << 13, | |
786 | ARM_HWCAP2_A64_BF16 = 1 << 14, | |
787 | ARM_HWCAP2_A64_DGH = 1 << 15, | |
788 | ARM_HWCAP2_A64_RNG = 1 << 16, | |
789 | ARM_HWCAP2_A64_BTI = 1 << 17, | |
790 | ARM_HWCAP2_A64_MTE = 1 << 18, | |
791 | ARM_HWCAP2_A64_ECV = 1 << 19, | |
792 | ARM_HWCAP2_A64_AFP = 1 << 20, | |
793 | ARM_HWCAP2_A64_RPRES = 1 << 21, | |
794 | ARM_HWCAP2_A64_MTE3 = 1 << 22, | |
795 | ARM_HWCAP2_A64_SME = 1 << 23, | |
796 | ARM_HWCAP2_A64_SME_I16I64 = 1 << 24, | |
797 | ARM_HWCAP2_A64_SME_F64F64 = 1 << 25, | |
798 | ARM_HWCAP2_A64_SME_I8I32 = 1 << 26, | |
799 | ARM_HWCAP2_A64_SME_F16F32 = 1 << 27, | |
800 | ARM_HWCAP2_A64_SME_B16F32 = 1 << 28, | |
801 | ARM_HWCAP2_A64_SME_F32F32 = 1 << 29, | |
802 | ARM_HWCAP2_A64_SME_FA64 = 1 << 30, | |
803 | ARM_HWCAP2_A64_WFXT = 1ULL << 31, | |
804 | ARM_HWCAP2_A64_EBF16 = 1ULL << 32, | |
805 | ARM_HWCAP2_A64_SVE_EBF16 = 1ULL << 33, | |
806 | ARM_HWCAP2_A64_CSSC = 1ULL << 34, | |
807 | ARM_HWCAP2_A64_RPRFM = 1ULL << 35, | |
808 | ARM_HWCAP2_A64_SVE2P1 = 1ULL << 36, | |
809 | ARM_HWCAP2_A64_SME2 = 1ULL << 37, | |
810 | ARM_HWCAP2_A64_SME2P1 = 1ULL << 38, | |
811 | ARM_HWCAP2_A64_SME_I16I32 = 1ULL << 39, | |
812 | ARM_HWCAP2_A64_SME_BI32I32 = 1ULL << 40, | |
813 | ARM_HWCAP2_A64_SME_B16B16 = 1ULL << 41, | |
814 | ARM_HWCAP2_A64_SME_F16F16 = 1ULL << 42, | |
815 | ARM_HWCAP2_A64_MOPS = 1ULL << 43, | |
816 | ARM_HWCAP2_A64_HBC = 1ULL << 44, | |
817 | ARM_HWCAP2_A64_SVE_B16B16 = 1ULL << 45, | |
818 | ARM_HWCAP2_A64_LRCPC3 = 1ULL << 46, | |
819 | ARM_HWCAP2_A64_LSE128 = 1ULL << 47, | |
820 | ARM_HWCAP2_A64_FPMR = 1ULL << 48, | |
821 | ARM_HWCAP2_A64_LUT = 1ULL << 49, | |
822 | ARM_HWCAP2_A64_FAMINMAX = 1ULL << 50, | |
823 | ARM_HWCAP2_A64_F8CVT = 1ULL << 51, | |
824 | ARM_HWCAP2_A64_F8FMA = 1ULL << 52, | |
825 | ARM_HWCAP2_A64_F8DP4 = 1ULL << 53, | |
826 | ARM_HWCAP2_A64_F8DP2 = 1ULL << 54, | |
827 | ARM_HWCAP2_A64_F8E4M3 = 1ULL << 55, | |
828 | ARM_HWCAP2_A64_F8E5M2 = 1ULL << 56, | |
829 | ARM_HWCAP2_A64_SME_LUTV2 = 1ULL << 57, | |
830 | ARM_HWCAP2_A64_SME_F8F16 = 1ULL << 58, | |
831 | ARM_HWCAP2_A64_SME_F8F32 = 1ULL << 59, | |
832 | ARM_HWCAP2_A64_SME_SF8FMA = 1ULL << 60, | |
833 | ARM_HWCAP2_A64_SME_SF8DP4 = 1ULL << 61, | |
834 | ARM_HWCAP2_A64_SME_SF8DP2 = 1ULL << 62, | |
835 | ARM_HWCAP2_A64_POE = 1ULL << 63, | |
836 | }; | |
837 | ||
838 | #define ELF_HWCAP get_elf_hwcap() | |
839 | #define ELF_HWCAP2 get_elf_hwcap2() | |
840 | ||
841 | #define GET_FEATURE_ID(feat, hwcap) \ | |
842 | do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) | |
843 | ||
844 | uint32_t get_elf_hwcap(void) | |
845 | { | |
846 | ARMCPU *cpu = ARM_CPU(thread_cpu); | |
847 | uint32_t hwcaps = 0; | |
848 | ||
849 | hwcaps |= ARM_HWCAP_A64_FP; | |
850 | hwcaps |= ARM_HWCAP_A64_ASIMD; | |
851 | hwcaps |= ARM_HWCAP_A64_CPUID; | |
852 | ||
853 | /* probe for the extra features */ | |
854 | ||
855 | GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); | |
856 | GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); | |
857 | GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); | |
858 | GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); | |
859 | GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); | |
860 | GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); | |
861 | GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); | |
862 | GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); | |
863 | GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); | |
864 | GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); | |
865 | GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); | |
866 | GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT); | |
867 | GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); | |
868 | GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); | |
869 | GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); | |
870 | GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); | |
871 | GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); | |
872 | GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); | |
873 | GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT); | |
874 | GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); | |
875 | GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); | |
876 | GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); | |
877 | GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); | |
878 | GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); | |
879 | GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); | |
880 | ||
881 | return hwcaps; | |
882 | } | |
883 | ||
884 | uint64_t get_elf_hwcap2(void) | |
885 | { | |
886 | ARMCPU *cpu = ARM_CPU(thread_cpu); | |
887 | uint64_t hwcaps = 0; | |
888 | ||
889 | GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); | |
890 | GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); | |
891 | GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); | |
892 | GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); | |
893 | GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); | |
894 | GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); | |
895 | GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); | |
896 | GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); | |
897 | GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); | |
898 | GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); | |
899 | GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); | |
900 | GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); | |
901 | GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); | |
902 | GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); | |
903 | GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); | |
904 | GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); | |
905 | GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); | |
906 | GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); | |
907 | GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3); | |
908 | GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME | | |
909 | ARM_HWCAP2_A64_SME_F32F32 | | |
910 | ARM_HWCAP2_A64_SME_B16F32 | | |
911 | ARM_HWCAP2_A64_SME_F16F32 | | |
912 | ARM_HWCAP2_A64_SME_I8I32)); | |
913 | GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64); | |
914 | GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64); | |
915 | GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64); | |
916 | GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC); | |
917 | GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS); | |
918 | ||
919 | return hwcaps; | |
920 | } | |
921 | ||
922 | const char *elf_hwcap_str(uint32_t bit) | |
923 | { | |
924 | static const char * const hwcap_str[] = { | |
925 | [__builtin_ctz(ARM_HWCAP_A64_FP )] = "fp", | |
926 | [__builtin_ctz(ARM_HWCAP_A64_ASIMD )] = "asimd", | |
927 | [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm", | |
928 | [__builtin_ctz(ARM_HWCAP_A64_AES )] = "aes", | |
929 | [__builtin_ctz(ARM_HWCAP_A64_PMULL )] = "pmull", | |
930 | [__builtin_ctz(ARM_HWCAP_A64_SHA1 )] = "sha1", | |
931 | [__builtin_ctz(ARM_HWCAP_A64_SHA2 )] = "sha2", | |
932 | [__builtin_ctz(ARM_HWCAP_A64_CRC32 )] = "crc32", | |
933 | [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics", | |
934 | [__builtin_ctz(ARM_HWCAP_A64_FPHP )] = "fphp", | |
935 | [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp", | |
936 | [__builtin_ctz(ARM_HWCAP_A64_CPUID )] = "cpuid", | |
937 | [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm", | |
938 | [__builtin_ctz(ARM_HWCAP_A64_JSCVT )] = "jscvt", | |
939 | [__builtin_ctz(ARM_HWCAP_A64_FCMA )] = "fcma", | |
940 | [__builtin_ctz(ARM_HWCAP_A64_LRCPC )] = "lrcpc", | |
941 | [__builtin_ctz(ARM_HWCAP_A64_DCPOP )] = "dcpop", | |
942 | [__builtin_ctz(ARM_HWCAP_A64_SHA3 )] = "sha3", | |
943 | [__builtin_ctz(ARM_HWCAP_A64_SM3 )] = "sm3", | |
944 | [__builtin_ctz(ARM_HWCAP_A64_SM4 )] = "sm4", | |
945 | [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp", | |
946 | [__builtin_ctz(ARM_HWCAP_A64_SHA512 )] = "sha512", | |
947 | [__builtin_ctz(ARM_HWCAP_A64_SVE )] = "sve", | |
948 | [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm", | |
949 | [__builtin_ctz(ARM_HWCAP_A64_DIT )] = "dit", | |
950 | [__builtin_ctz(ARM_HWCAP_A64_USCAT )] = "uscat", | |
951 | [__builtin_ctz(ARM_HWCAP_A64_ILRCPC )] = "ilrcpc", | |
952 | [__builtin_ctz(ARM_HWCAP_A64_FLAGM )] = "flagm", | |
953 | [__builtin_ctz(ARM_HWCAP_A64_SSBS )] = "ssbs", | |
954 | [__builtin_ctz(ARM_HWCAP_A64_SB )] = "sb", | |
955 | [__builtin_ctz(ARM_HWCAP_A64_PACA )] = "paca", | |
956 | [__builtin_ctz(ARM_HWCAP_A64_PACG )] = "pacg", | |
957 | [__builtin_ctzll(ARM_HWCAP_A64_GCS )] = "gcs", | |
958 | [__builtin_ctzll(ARM_HWCAP_A64_CMPBR )] = "cmpbr", | |
959 | [__builtin_ctzll(ARM_HWCAP_A64_FPRCVT)] = "fprcvt", | |
960 | [__builtin_ctzll(ARM_HWCAP_A64_F8MM8 )] = "f8mm8", | |
961 | [__builtin_ctzll(ARM_HWCAP_A64_F8MM4 )] = "f8mm4", | |
962 | [__builtin_ctzll(ARM_HWCAP_A64_SVE_F16MM)] = "svef16mm", | |
963 | [__builtin_ctzll(ARM_HWCAP_A64_SVE_ELTPERM)] = "sveeltperm", | |
964 | [__builtin_ctzll(ARM_HWCAP_A64_SVE_AES2)] = "sveaes2", | |
965 | [__builtin_ctzll(ARM_HWCAP_A64_SVE_BFSCALE)] = "svebfscale", | |
966 | [__builtin_ctzll(ARM_HWCAP_A64_SVE2P2)] = "sve2p2", | |
967 | [__builtin_ctzll(ARM_HWCAP_A64_SME2P2)] = "sme2p2", | |
968 | [__builtin_ctzll(ARM_HWCAP_A64_SME_SBITPERM)] = "smesbitperm", | |
969 | [__builtin_ctzll(ARM_HWCAP_A64_SME_AES)] = "smeaes", | |
970 | [__builtin_ctzll(ARM_HWCAP_A64_SME_SFEXPA)] = "smesfexpa", | |
971 | [__builtin_ctzll(ARM_HWCAP_A64_SME_STMOP)] = "smestmop", | |
972 | [__builtin_ctzll(ARM_HWCAP_A64_SME_SMOP4)] = "smesmop4", | |
973 | }; | |
974 | ||
975 | return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; | |
976 | } | |
977 | ||
978 | const char *elf_hwcap2_str(uint32_t bit) | |
979 | { | |
980 | static const char * const hwcap_str[] = { | |
981 | [__builtin_ctz(ARM_HWCAP2_A64_DCPODP )] = "dcpodp", | |
982 | [__builtin_ctz(ARM_HWCAP2_A64_SVE2 )] = "sve2", | |
983 | [__builtin_ctz(ARM_HWCAP2_A64_SVEAES )] = "sveaes", | |
984 | [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL )] = "svepmull", | |
985 | [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM )] = "svebitperm", | |
986 | [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3 )] = "svesha3", | |
987 | [__builtin_ctz(ARM_HWCAP2_A64_SVESM4 )] = "svesm4", | |
988 | [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2 )] = "flagm2", | |
989 | [__builtin_ctz(ARM_HWCAP2_A64_FRINT )] = "frint", | |
990 | [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM )] = "svei8mm", | |
991 | [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM )] = "svef32mm", | |
992 | [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM )] = "svef64mm", | |
993 | [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16 )] = "svebf16", | |
994 | [__builtin_ctz(ARM_HWCAP2_A64_I8MM )] = "i8mm", | |
995 | [__builtin_ctz(ARM_HWCAP2_A64_BF16 )] = "bf16", | |
996 | [__builtin_ctz(ARM_HWCAP2_A64_DGH )] = "dgh", | |
997 | [__builtin_ctz(ARM_HWCAP2_A64_RNG )] = "rng", | |
998 | [__builtin_ctz(ARM_HWCAP2_A64_BTI )] = "bti", | |
999 | [__builtin_ctz(ARM_HWCAP2_A64_MTE )] = "mte", | |
1000 | [__builtin_ctz(ARM_HWCAP2_A64_ECV )] = "ecv", | |
1001 | [__builtin_ctz(ARM_HWCAP2_A64_AFP )] = "afp", | |
1002 | [__builtin_ctz(ARM_HWCAP2_A64_RPRES )] = "rpres", | |
1003 | [__builtin_ctz(ARM_HWCAP2_A64_MTE3 )] = "mte3", | |
1004 | [__builtin_ctz(ARM_HWCAP2_A64_SME )] = "sme", | |
1005 | [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64 )] = "smei16i64", | |
1006 | [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64 )] = "smef64f64", | |
1007 | [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32 )] = "smei8i32", | |
1008 | [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32 )] = "smef16f32", | |
1009 | [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32 )] = "smeb16f32", | |
1010 | [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32 )] = "smef32f32", | |
1011 | [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64 )] = "smefa64", | |
1012 | [__builtin_ctz(ARM_HWCAP2_A64_WFXT )] = "wfxt", | |
1013 | [__builtin_ctzll(ARM_HWCAP2_A64_EBF16 )] = "ebf16", | |
1014 | [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16 )] = "sveebf16", | |
1015 | [__builtin_ctzll(ARM_HWCAP2_A64_CSSC )] = "cssc", | |
1016 | [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM )] = "rprfm", | |
1017 | [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1 )] = "sve2p1", | |
1018 | [__builtin_ctzll(ARM_HWCAP2_A64_SME2 )] = "sme2", | |
1019 | [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1 )] = "sme2p1", | |
1020 | [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32", | |
1021 | [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32", | |
1022 | [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16", | |
1023 | [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16", | |
1024 | [__builtin_ctzll(ARM_HWCAP2_A64_MOPS )] = "mops", | |
1025 | [__builtin_ctzll(ARM_HWCAP2_A64_HBC )] = "hbc", | |
1026 | [__builtin_ctzll(ARM_HWCAP2_A64_SVE_B16B16 )] = "sveb16b16", | |
1027 | [__builtin_ctzll(ARM_HWCAP2_A64_LRCPC3 )] = "lrcpc3", | |
1028 | [__builtin_ctzll(ARM_HWCAP2_A64_LSE128 )] = "lse128", | |
1029 | [__builtin_ctzll(ARM_HWCAP2_A64_FPMR )] = "fpmr", | |
1030 | [__builtin_ctzll(ARM_HWCAP2_A64_LUT )] = "lut", | |
1031 | [__builtin_ctzll(ARM_HWCAP2_A64_FAMINMAX )] = "faminmax", | |
1032 | [__builtin_ctzll(ARM_HWCAP2_A64_F8CVT )] = "f8cvt", | |
1033 | [__builtin_ctzll(ARM_HWCAP2_A64_F8FMA )] = "f8fma", | |
1034 | [__builtin_ctzll(ARM_HWCAP2_A64_F8DP4 )] = "f8dp4", | |
1035 | [__builtin_ctzll(ARM_HWCAP2_A64_F8DP2 )] = "f8dp2", | |
1036 | [__builtin_ctzll(ARM_HWCAP2_A64_F8E4M3 )] = "f8e4m3", | |
1037 | [__builtin_ctzll(ARM_HWCAP2_A64_F8E5M2 )] = "f8e5m2", | |
1038 | [__builtin_ctzll(ARM_HWCAP2_A64_SME_LUTV2 )] = "smelutv2", | |
1039 | [__builtin_ctzll(ARM_HWCAP2_A64_SME_F8F16 )] = "smef8f16", | |
1040 | [__builtin_ctzll(ARM_HWCAP2_A64_SME_F8F32 )] = "smef8f32", | |
1041 | [__builtin_ctzll(ARM_HWCAP2_A64_SME_SF8DP4 )] = "smesf8dp4", | |
1042 | [__builtin_ctzll(ARM_HWCAP2_A64_SME_SF8DP2 )] = "smesf8dp2", | |
1043 | [__builtin_ctzll(ARM_HWCAP2_A64_POE )] = "poe", | |
1044 | }; | |
1045 | ||
1046 | return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; | |
1047 | } | |
1048 | ||
1049 | #undef GET_FEATURE_ID | |
1050 | ||
1051 | #if TARGET_BIG_ENDIAN | |
1052 | # define VDSO_HEADER "vdso-be.c.inc" | |
1053 | #else | |
1054 | # define VDSO_HEADER "vdso-le.c.inc" | |
1055 | #endif | |
1056 | ||
1057 | #endif /* not TARGET_AARCH64 */ | |
1058 | ||
1059 | #endif /* TARGET_ARM */ | |
1060 | ||
1061 | #ifdef TARGET_SPARC | |
1062 | ||
1063 | #ifndef TARGET_SPARC64 | |
1064 | # define ELF_CLASS ELFCLASS32 | |
1065 | # define ELF_ARCH EM_SPARC | |
1066 | #elif defined(TARGET_ABI32) | |
1067 | # define ELF_CLASS ELFCLASS32 | |
1068 | # define elf_check_arch(x) ((x) == EM_SPARC32PLUS || (x) == EM_SPARC) | |
1069 | #else | |
1070 | # define ELF_CLASS ELFCLASS64 | |
1071 | # define ELF_ARCH EM_SPARCV9 | |
1072 | #endif | |
1073 | ||
1074 | #include "elf.h" | |
1075 | ||
1076 | #define ELF_HWCAP get_elf_hwcap() | |
1077 | ||
1078 | static uint32_t get_elf_hwcap(void) | |
1079 | { | |
1080 | /* There are not many sparc32 hwcap bits -- we have all of them. */ | |
1081 | uint32_t r = HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | | |
1082 | HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV; | |
1083 | ||
1084 | #ifdef TARGET_SPARC64 | |
1085 | CPUSPARCState *env = cpu_env(thread_cpu); | |
1086 | uint32_t features = env->def.features; | |
1087 | ||
1088 | r |= HWCAP_SPARC_V9 | HWCAP_SPARC_V8PLUS; | |
1089 | /* 32x32 multiply and divide are efficient. */ | |
1090 | r |= HWCAP_SPARC_MUL32 | HWCAP_SPARC_DIV32; | |
1091 | /* We don't have an internal feature bit for this. */ | |
1092 | r |= HWCAP_SPARC_POPC; | |
1093 | r |= features & CPU_FEATURE_FSMULD ? HWCAP_SPARC_FSMULD : 0; | |
1094 | r |= features & CPU_FEATURE_VIS1 ? HWCAP_SPARC_VIS : 0; | |
1095 | r |= features & CPU_FEATURE_VIS2 ? HWCAP_SPARC_VIS2 : 0; | |
1096 | r |= features & CPU_FEATURE_FMAF ? HWCAP_SPARC_FMAF : 0; | |
1097 | r |= features & CPU_FEATURE_VIS3 ? HWCAP_SPARC_VIS3 : 0; | |
1098 | r |= features & CPU_FEATURE_IMA ? HWCAP_SPARC_IMA : 0; | |
1099 | #endif | |
1100 | ||
1101 | return r; | |
1102 | } | |
1103 | ||
1104 | static inline void init_thread(struct target_pt_regs *regs, | |
1105 | struct image_info *infop) | |
1106 | { | |
1107 | /* Note that target_cpu_copy_regs does not read psr/tstate. */ | |
1108 | regs->pc = infop->entry; | |
1109 | regs->npc = regs->pc + 4; | |
1110 | regs->y = 0; | |
1111 | regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) | |
1112 | - TARGET_STACK_BIAS); | |
1113 | } | |
1114 | #endif /* TARGET_SPARC */ | |
1115 | ||
1116 | #ifdef TARGET_PPC | |
1117 | ||
1118 | #define ELF_MACHINE PPC_ELF_MACHINE | |
1119 | ||
1120 | #if defined(TARGET_PPC64) | |
1121 | ||
1122 | #define elf_check_arch(x) ( (x) == EM_PPC64 ) | |
1123 | ||
1124 | #define ELF_CLASS ELFCLASS64 | |
1125 | ||
1126 | #else | |
1127 | ||
1128 | #define ELF_CLASS ELFCLASS32 | |
1129 | #define EXSTACK_DEFAULT true | |
1130 | ||
1131 | #endif | |
1132 | ||
1133 | #define ELF_ARCH EM_PPC | |
1134 | ||
1135 | /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). | |
1136 | See arch/powerpc/include/asm/cputable.h. */ | |
1137 | enum { | |
1138 | QEMU_PPC_FEATURE_32 = 0x80000000, | |
1139 | QEMU_PPC_FEATURE_64 = 0x40000000, | |
1140 | QEMU_PPC_FEATURE_601_INSTR = 0x20000000, | |
1141 | QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, | |
1142 | QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, | |
1143 | QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, | |
1144 | QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, | |
1145 | QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, | |
1146 | QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, | |
1147 | QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, | |
1148 | QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, | |
1149 | QEMU_PPC_FEATURE_NO_TB = 0x00100000, | |
1150 | QEMU_PPC_FEATURE_POWER4 = 0x00080000, | |
1151 | QEMU_PPC_FEATURE_POWER5 = 0x00040000, | |
1152 | QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, | |
1153 | QEMU_PPC_FEATURE_CELL = 0x00010000, | |
1154 | QEMU_PPC_FEATURE_BOOKE = 0x00008000, | |
1155 | QEMU_PPC_FEATURE_SMT = 0x00004000, | |
1156 | QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, | |
1157 | QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, | |
1158 | QEMU_PPC_FEATURE_PA6T = 0x00000800, | |
1159 | QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, | |
1160 | QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, | |
1161 | QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, | |
1162 | QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, | |
1163 | QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, | |
1164 | ||
1165 | QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, | |
1166 | QEMU_PPC_FEATURE_PPC_LE = 0x00000001, | |
1167 | ||
1168 | /* Feature definitions in AT_HWCAP2. */ | |
1169 | QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ | |
1170 | QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ | |
1171 | QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ | |
1172 | QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ | |
1173 | QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ | |
1174 | QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ | |
1175 | QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, | |
1176 | QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, | |
1177 | QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ | |
1178 | QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ | |
1179 | QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ | |
1180 | QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ | |
1181 | QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ | |
1182 | QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ | |
1183 | QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ | |
1184 | }; | |
1185 | ||
1186 | #define ELF_HWCAP get_elf_hwcap() | |
1187 | ||
1188 | static uint32_t get_elf_hwcap(void) | |
1189 | { | |
1190 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); | |
1191 | uint32_t features = 0; | |
1192 | ||
1193 | /* We don't have to be terribly complete here; the high points are | |
1194 | Altivec/FP/SPE support. Anything else is just a bonus. */ | |
1195 | #define GET_FEATURE(flag, feature) \ | |
1196 | do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) | |
1197 | #define GET_FEATURE2(flags, feature) \ | |
1198 | do { \ | |
1199 | if ((cpu->env.insns_flags2 & flags) == flags) { \ | |
1200 | features |= feature; \ | |
1201 | } \ | |
1202 | } while (0) | |
1203 | GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); | |
1204 | GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); | |
1205 | GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); | |
1206 | GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); | |
1207 | GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); | |
1208 | GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); | |
1209 | GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); | |
1210 | GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); | |
1211 | GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); | |
1212 | GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); | |
1213 | GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | | |
1214 | PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), | |
1215 | QEMU_PPC_FEATURE_ARCH_2_06); | |
1216 | #undef GET_FEATURE | |
1217 | #undef GET_FEATURE2 | |
1218 | ||
1219 | return features; | |
1220 | } | |
1221 | ||
1222 | #define ELF_HWCAP2 get_elf_hwcap2() | |
1223 | ||
1224 | static uint32_t get_elf_hwcap2(void) | |
1225 | { | |
1226 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); | |
1227 | uint32_t features = 0; | |
1228 | ||
1229 | #define GET_FEATURE(flag, feature) \ | |
1230 | do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) | |
1231 | #define GET_FEATURE2(flag, feature) \ | |
1232 | do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) | |
1233 | ||
1234 | GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); | |
1235 | GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); | |
1236 | GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | | |
1237 | PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | | |
1238 | QEMU_PPC_FEATURE2_VEC_CRYPTO); | |
1239 | GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | | |
1240 | QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); | |
1241 | GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | | |
1242 | QEMU_PPC_FEATURE2_MMA); | |
1243 | ||
1244 | #undef GET_FEATURE | |
1245 | #undef GET_FEATURE2 | |
1246 | ||
1247 | return features; | |
1248 | } | |
1249 | ||
1250 | /* | |
1251 | * The requirements here are: | |
1252 | * - keep the final alignment of sp (sp & 0xf) | |
1253 | * - make sure the 32-bit value at the first 16 byte aligned position of | |
1254 | * AUXV is greater than 16 for glibc compatibility. | |
1255 | * AT_IGNOREPPC is used for that. | |
1256 | * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, | |
1257 | * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. | |
1258 | */ | |
1259 | #define DLINFO_ARCH_ITEMS 5 | |
1260 | #define ARCH_DLINFO \ | |
1261 | do { \ | |
1262 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ | |
1263 | /* \ | |
1264 | * Handle glibc compatibility: these magic entries must \ | |
1265 | * be at the lowest addresses in the final auxv. \ | |
1266 | */ \ | |
1267 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ | |
1268 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ | |
1269 | NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ | |
1270 | NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ | |
1271 | NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ | |
1272 | } while (0) | |
1273 | ||
1274 | static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) | |
1275 | { | |
1276 | _regs->gpr[1] = infop->start_stack; | |
1277 | #if defined(TARGET_PPC64) | |
1278 | if (get_ppc64_abi(infop) < 2) { | |
1279 | uint64_t val; | |
1280 | get_user_u64(val, infop->entry + 8); | |
1281 | _regs->gpr[2] = val + infop->load_bias; | |
1282 | get_user_u64(val, infop->entry); | |
1283 | infop->entry = val + infop->load_bias; | |
1284 | } else { | |
1285 | _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ | |
1286 | } | |
1287 | #endif | |
1288 | _regs->nip = infop->entry; | |
1289 | } | |
1290 | ||
1291 | /* See linux kernel: arch/powerpc/include/asm/elf.h. */ | |
1292 | #define ELF_NREG 48 | |
1293 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1294 | ||
1295 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) | |
1296 | { | |
1297 | int i; | |
1298 | target_ulong ccr = 0; | |
1299 | ||
1300 | for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { | |
1301 | (*regs)[i] = tswapreg(env->gpr[i]); | |
1302 | } | |
1303 | ||
1304 | (*regs)[32] = tswapreg(env->nip); | |
1305 | (*regs)[33] = tswapreg(env->msr); | |
1306 | (*regs)[35] = tswapreg(env->ctr); | |
1307 | (*regs)[36] = tswapreg(env->lr); | |
1308 | (*regs)[37] = tswapreg(cpu_read_xer(env)); | |
1309 | ||
1310 | ccr = ppc_get_cr(env); | |
1311 | (*regs)[38] = tswapreg(ccr); | |
1312 | } | |
1313 | ||
1314 | #define USE_ELF_CORE_DUMP | |
1315 | #define ELF_EXEC_PAGESIZE 4096 | |
1316 | ||
1317 | #ifndef TARGET_PPC64 | |
1318 | # define VDSO_HEADER "vdso-32.c.inc" | |
1319 | #elif TARGET_BIG_ENDIAN | |
1320 | # define VDSO_HEADER "vdso-64.c.inc" | |
1321 | #else | |
1322 | # define VDSO_HEADER "vdso-64le.c.inc" | |
1323 | #endif | |
1324 | ||
1325 | #endif | |
1326 | ||
1327 | #ifdef TARGET_LOONGARCH64 | |
1328 | ||
1329 | #define ELF_CLASS ELFCLASS64 | |
1330 | #define ELF_ARCH EM_LOONGARCH | |
1331 | #define EXSTACK_DEFAULT true | |
1332 | ||
1333 | #define elf_check_arch(x) ((x) == EM_LOONGARCH) | |
1334 | ||
1335 | #define VDSO_HEADER "vdso.c.inc" | |
1336 | ||
1337 | static inline void init_thread(struct target_pt_regs *regs, | |
1338 | struct image_info *infop) | |
1339 | { | |
1340 | /*Set crmd PG,DA = 1,0 */ | |
1341 | regs->csr.crmd = 2 << 3; | |
1342 | regs->csr.era = infop->entry; | |
1343 | regs->regs[3] = infop->start_stack; | |
1344 | } | |
1345 | ||
1346 | /* See linux kernel: arch/loongarch/include/asm/elf.h */ | |
1347 | #define ELF_NREG 45 | |
1348 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1349 | ||
1350 | enum { | |
1351 | TARGET_EF_R0 = 0, | |
1352 | TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, | |
1353 | TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, | |
1354 | }; | |
1355 | ||
1356 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
1357 | const CPULoongArchState *env) | |
1358 | { | |
1359 | int i; | |
1360 | ||
1361 | (*regs)[TARGET_EF_R0] = 0; | |
1362 | ||
1363 | for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { | |
1364 | (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); | |
1365 | } | |
1366 | ||
1367 | (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); | |
1368 | (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); | |
1369 | } | |
1370 | ||
1371 | #define USE_ELF_CORE_DUMP | |
1372 | #define ELF_EXEC_PAGESIZE 4096 | |
1373 | ||
1374 | #define ELF_HWCAP get_elf_hwcap() | |
1375 | ||
1376 | /* See arch/loongarch/include/uapi/asm/hwcap.h */ | |
1377 | enum { | |
1378 | HWCAP_LOONGARCH_CPUCFG = (1 << 0), | |
1379 | HWCAP_LOONGARCH_LAM = (1 << 1), | |
1380 | HWCAP_LOONGARCH_UAL = (1 << 2), | |
1381 | HWCAP_LOONGARCH_FPU = (1 << 3), | |
1382 | HWCAP_LOONGARCH_LSX = (1 << 4), | |
1383 | HWCAP_LOONGARCH_LASX = (1 << 5), | |
1384 | HWCAP_LOONGARCH_CRC32 = (1 << 6), | |
1385 | HWCAP_LOONGARCH_COMPLEX = (1 << 7), | |
1386 | HWCAP_LOONGARCH_CRYPTO = (1 << 8), | |
1387 | HWCAP_LOONGARCH_LVZ = (1 << 9), | |
1388 | HWCAP_LOONGARCH_LBT_X86 = (1 << 10), | |
1389 | HWCAP_LOONGARCH_LBT_ARM = (1 << 11), | |
1390 | HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), | |
1391 | }; | |
1392 | ||
1393 | static uint32_t get_elf_hwcap(void) | |
1394 | { | |
1395 | LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); | |
1396 | uint32_t hwcaps = 0; | |
1397 | ||
1398 | hwcaps |= HWCAP_LOONGARCH_CRC32; | |
1399 | ||
1400 | if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { | |
1401 | hwcaps |= HWCAP_LOONGARCH_UAL; | |
1402 | } | |
1403 | ||
1404 | if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { | |
1405 | hwcaps |= HWCAP_LOONGARCH_FPU; | |
1406 | } | |
1407 | ||
1408 | if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { | |
1409 | hwcaps |= HWCAP_LOONGARCH_LAM; | |
1410 | } | |
1411 | ||
1412 | if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) { | |
1413 | hwcaps |= HWCAP_LOONGARCH_LSX; | |
1414 | } | |
1415 | ||
1416 | if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) { | |
1417 | hwcaps |= HWCAP_LOONGARCH_LASX; | |
1418 | } | |
1419 | ||
1420 | return hwcaps; | |
1421 | } | |
1422 | ||
1423 | #define ELF_PLATFORM "loongarch" | |
1424 | ||
1425 | #endif /* TARGET_LOONGARCH64 */ | |
1426 | ||
1427 | #ifdef TARGET_MIPS | |
1428 | ||
1429 | #ifdef TARGET_MIPS64 | |
1430 | #define ELF_CLASS ELFCLASS64 | |
1431 | #else | |
1432 | #define ELF_CLASS ELFCLASS32 | |
1433 | #endif | |
1434 | #define ELF_ARCH EM_MIPS | |
1435 | #define EXSTACK_DEFAULT true | |
1436 | ||
1437 | #ifdef TARGET_ABI_MIPSN32 | |
1438 | #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) | |
1439 | #else | |
1440 | #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) | |
1441 | #endif | |
1442 | ||
1443 | #define ELF_BASE_PLATFORM get_elf_base_platform() | |
1444 | ||
1445 | #define MATCH_PLATFORM_INSN(_flags, _base_platform) \ | |
1446 | do { if ((cpu->env.insn_flags & (_flags)) == _flags) \ | |
1447 | { return _base_platform; } } while (0) | |
1448 | ||
1449 | static const char *get_elf_base_platform(void) | |
1450 | { | |
1451 | MIPSCPU *cpu = MIPS_CPU(thread_cpu); | |
1452 | ||
1453 | /* 64 bit ISAs goes first */ | |
1454 | MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6"); | |
1455 | MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5"); | |
1456 | MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2"); | |
1457 | MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64"); | |
1458 | MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5"); | |
1459 | MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4"); | |
1460 | MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3"); | |
1461 | ||
1462 | /* 32 bit ISAs */ | |
1463 | MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6"); | |
1464 | MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5"); | |
1465 | MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2"); | |
1466 | MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32"); | |
1467 | MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2"); | |
1468 | ||
1469 | /* Fallback */ | |
1470 | return "mips"; | |
1471 | } | |
1472 | #undef MATCH_PLATFORM_INSN | |
1473 | ||
1474 | static inline void init_thread(struct target_pt_regs *regs, | |
1475 | struct image_info *infop) | |
1476 | { | |
1477 | regs->cp0_status = 2 << CP0St_KSU; | |
1478 | regs->cp0_epc = infop->entry; | |
1479 | regs->regs[29] = infop->start_stack; | |
1480 | } | |
1481 | ||
1482 | /* See linux kernel: arch/mips/include/asm/elf.h. */ | |
1483 | #define ELF_NREG 45 | |
1484 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1485 | ||
1486 | /* See linux kernel: arch/mips/include/asm/reg.h. */ | |
1487 | enum { | |
1488 | #ifdef TARGET_MIPS64 | |
1489 | TARGET_EF_R0 = 0, | |
1490 | #else | |
1491 | TARGET_EF_R0 = 6, | |
1492 | #endif | |
1493 | TARGET_EF_R26 = TARGET_EF_R0 + 26, | |
1494 | TARGET_EF_R27 = TARGET_EF_R0 + 27, | |
1495 | TARGET_EF_LO = TARGET_EF_R0 + 32, | |
1496 | TARGET_EF_HI = TARGET_EF_R0 + 33, | |
1497 | TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, | |
1498 | TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, | |
1499 | TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, | |
1500 | TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 | |
1501 | }; | |
1502 | ||
1503 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
1504 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) | |
1505 | { | |
1506 | int i; | |
1507 | ||
1508 | for (i = 0; i < TARGET_EF_R0; i++) { | |
1509 | (*regs)[i] = 0; | |
1510 | } | |
1511 | (*regs)[TARGET_EF_R0] = 0; | |
1512 | ||
1513 | for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { | |
1514 | (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); | |
1515 | } | |
1516 | ||
1517 | (*regs)[TARGET_EF_R26] = 0; | |
1518 | (*regs)[TARGET_EF_R27] = 0; | |
1519 | (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); | |
1520 | (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); | |
1521 | (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); | |
1522 | (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); | |
1523 | (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); | |
1524 | (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); | |
1525 | } | |
1526 | ||
1527 | #define USE_ELF_CORE_DUMP | |
1528 | #define ELF_EXEC_PAGESIZE 4096 | |
1529 | ||
1530 | /* See arch/mips/include/uapi/asm/hwcap.h. */ | |
1531 | enum { | |
1532 | HWCAP_MIPS_R6 = (1 << 0), | |
1533 | HWCAP_MIPS_MSA = (1 << 1), | |
1534 | HWCAP_MIPS_CRC32 = (1 << 2), | |
1535 | HWCAP_MIPS_MIPS16 = (1 << 3), | |
1536 | HWCAP_MIPS_MDMX = (1 << 4), | |
1537 | HWCAP_MIPS_MIPS3D = (1 << 5), | |
1538 | HWCAP_MIPS_SMARTMIPS = (1 << 6), | |
1539 | HWCAP_MIPS_DSP = (1 << 7), | |
1540 | HWCAP_MIPS_DSP2 = (1 << 8), | |
1541 | HWCAP_MIPS_DSP3 = (1 << 9), | |
1542 | HWCAP_MIPS_MIPS16E2 = (1 << 10), | |
1543 | HWCAP_LOONGSON_MMI = (1 << 11), | |
1544 | HWCAP_LOONGSON_EXT = (1 << 12), | |
1545 | HWCAP_LOONGSON_EXT2 = (1 << 13), | |
1546 | HWCAP_LOONGSON_CPUCFG = (1 << 14), | |
1547 | }; | |
1548 | ||
1549 | #define ELF_HWCAP get_elf_hwcap() | |
1550 | ||
1551 | #define GET_FEATURE_INSN(_flag, _hwcap) \ | |
1552 | do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) | |
1553 | ||
1554 | #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ | |
1555 | do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) | |
1556 | ||
1557 | #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ | |
1558 | do { \ | |
1559 | if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ | |
1560 | hwcaps |= _hwcap; \ | |
1561 | } \ | |
1562 | } while (0) | |
1563 | ||
1564 | static uint32_t get_elf_hwcap(void) | |
1565 | { | |
1566 | MIPSCPU *cpu = MIPS_CPU(thread_cpu); | |
1567 | uint32_t hwcaps = 0; | |
1568 | ||
1569 | GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, | |
1570 | 2, HWCAP_MIPS_R6); | |
1571 | GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); | |
1572 | GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); | |
1573 | GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); | |
1574 | ||
1575 | return hwcaps; | |
1576 | } | |
1577 | ||
1578 | #undef GET_FEATURE_REG_EQU | |
1579 | #undef GET_FEATURE_REG_SET | |
1580 | #undef GET_FEATURE_INSN | |
1581 | ||
1582 | #endif /* TARGET_MIPS */ | |
1583 | ||
1584 | #ifdef TARGET_MICROBLAZE | |
1585 | ||
1586 | #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) | |
1587 | ||
1588 | #define ELF_CLASS ELFCLASS32 | |
1589 | #define ELF_ARCH EM_MICROBLAZE | |
1590 | ||
1591 | static inline void init_thread(struct target_pt_regs *regs, | |
1592 | struct image_info *infop) | |
1593 | { | |
1594 | regs->pc = infop->entry; | |
1595 | regs->r1 = infop->start_stack; | |
1596 | ||
1597 | } | |
1598 | ||
1599 | #define ELF_EXEC_PAGESIZE 4096 | |
1600 | ||
1601 | #define USE_ELF_CORE_DUMP | |
1602 | #define ELF_NREG 38 | |
1603 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1604 | ||
1605 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
1606 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) | |
1607 | { | |
1608 | int i, pos = 0; | |
1609 | ||
1610 | for (i = 0; i < 32; i++) { | |
1611 | (*regs)[pos++] = tswapreg(env->regs[i]); | |
1612 | } | |
1613 | ||
1614 | (*regs)[pos++] = tswapreg(env->pc); | |
1615 | (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); | |
1616 | (*regs)[pos++] = 0; | |
1617 | (*regs)[pos++] = tswapreg(env->ear); | |
1618 | (*regs)[pos++] = 0; | |
1619 | (*regs)[pos++] = tswapreg(env->esr); | |
1620 | } | |
1621 | ||
1622 | #endif /* TARGET_MICROBLAZE */ | |
1623 | ||
1624 | #ifdef TARGET_OPENRISC | |
1625 | ||
1626 | #define ELF_ARCH EM_OPENRISC | |
1627 | #define ELF_CLASS ELFCLASS32 | |
1628 | #define ELF_DATA ELFDATA2MSB | |
1629 | ||
1630 | static inline void init_thread(struct target_pt_regs *regs, | |
1631 | struct image_info *infop) | |
1632 | { | |
1633 | regs->pc = infop->entry; | |
1634 | regs->gpr[1] = infop->start_stack; | |
1635 | } | |
1636 | ||
1637 | #define USE_ELF_CORE_DUMP | |
1638 | #define ELF_EXEC_PAGESIZE 8192 | |
1639 | ||
1640 | /* See linux kernel arch/openrisc/include/asm/elf.h. */ | |
1641 | #define ELF_NREG 34 /* gprs and pc, sr */ | |
1642 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1643 | ||
1644 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
1645 | const CPUOpenRISCState *env) | |
1646 | { | |
1647 | int i; | |
1648 | ||
1649 | for (i = 0; i < 32; i++) { | |
1650 | (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); | |
1651 | } | |
1652 | (*regs)[32] = tswapreg(env->pc); | |
1653 | (*regs)[33] = tswapreg(cpu_get_sr(env)); | |
1654 | } | |
1655 | #define ELF_HWCAP 0 | |
1656 | #define ELF_PLATFORM NULL | |
1657 | ||
1658 | #endif /* TARGET_OPENRISC */ | |
1659 | ||
1660 | #ifdef TARGET_SH4 | |
1661 | ||
1662 | #define ELF_CLASS ELFCLASS32 | |
1663 | #define ELF_ARCH EM_SH | |
1664 | ||
1665 | static inline void init_thread(struct target_pt_regs *regs, | |
1666 | struct image_info *infop) | |
1667 | { | |
1668 | /* Check other registers XXXXX */ | |
1669 | regs->pc = infop->entry; | |
1670 | regs->regs[15] = infop->start_stack; | |
1671 | } | |
1672 | ||
1673 | /* See linux kernel: arch/sh/include/asm/elf.h. */ | |
1674 | #define ELF_NREG 23 | |
1675 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1676 | ||
1677 | /* See linux kernel: arch/sh/include/asm/ptrace.h. */ | |
1678 | enum { | |
1679 | TARGET_REG_PC = 16, | |
1680 | TARGET_REG_PR = 17, | |
1681 | TARGET_REG_SR = 18, | |
1682 | TARGET_REG_GBR = 19, | |
1683 | TARGET_REG_MACH = 20, | |
1684 | TARGET_REG_MACL = 21, | |
1685 | TARGET_REG_SYSCALL = 22 | |
1686 | }; | |
1687 | ||
1688 | static inline void elf_core_copy_regs(target_elf_gregset_t *regs, | |
1689 | const CPUSH4State *env) | |
1690 | { | |
1691 | int i; | |
1692 | ||
1693 | for (i = 0; i < 16; i++) { | |
1694 | (*regs)[i] = tswapreg(env->gregs[i]); | |
1695 | } | |
1696 | ||
1697 | (*regs)[TARGET_REG_PC] = tswapreg(env->pc); | |
1698 | (*regs)[TARGET_REG_PR] = tswapreg(env->pr); | |
1699 | (*regs)[TARGET_REG_SR] = tswapreg(env->sr); | |
1700 | (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); | |
1701 | (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); | |
1702 | (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); | |
1703 | (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ | |
1704 | } | |
1705 | ||
1706 | #define USE_ELF_CORE_DUMP | |
1707 | #define ELF_EXEC_PAGESIZE 4096 | |
1708 | ||
1709 | enum { | |
1710 | SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ | |
1711 | SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ | |
1712 | SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ | |
1713 | SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ | |
1714 | SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ | |
1715 | SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ | |
1716 | SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ | |
1717 | SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ | |
1718 | SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ | |
1719 | SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ | |
1720 | }; | |
1721 | ||
1722 | #define ELF_HWCAP get_elf_hwcap() | |
1723 | ||
1724 | static uint32_t get_elf_hwcap(void) | |
1725 | { | |
1726 | SuperHCPU *cpu = SUPERH_CPU(thread_cpu); | |
1727 | uint32_t hwcap = 0; | |
1728 | ||
1729 | hwcap |= SH_CPU_HAS_FPU; | |
1730 | ||
1731 | if (cpu->env.features & SH_FEATURE_SH4A) { | |
1732 | hwcap |= SH_CPU_HAS_LLSC; | |
1733 | } | |
1734 | ||
1735 | return hwcap; | |
1736 | } | |
1737 | ||
1738 | #endif | |
1739 | ||
1740 | #ifdef TARGET_M68K | |
1741 | ||
1742 | #define ELF_CLASS ELFCLASS32 | |
1743 | #define ELF_ARCH EM_68K | |
1744 | ||
1745 | /* ??? Does this need to do anything? | |
1746 | #define ELF_PLAT_INIT(_r) */ | |
1747 | ||
1748 | static inline void init_thread(struct target_pt_regs *regs, | |
1749 | struct image_info *infop) | |
1750 | { | |
1751 | regs->usp = infop->start_stack; | |
1752 | regs->sr = 0; | |
1753 | regs->pc = infop->entry; | |
1754 | } | |
1755 | ||
1756 | /* See linux kernel: arch/m68k/include/asm/elf.h. */ | |
1757 | #define ELF_NREG 20 | |
1758 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1759 | ||
1760 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) | |
1761 | { | |
1762 | (*regs)[0] = tswapreg(env->dregs[1]); | |
1763 | (*regs)[1] = tswapreg(env->dregs[2]); | |
1764 | (*regs)[2] = tswapreg(env->dregs[3]); | |
1765 | (*regs)[3] = tswapreg(env->dregs[4]); | |
1766 | (*regs)[4] = tswapreg(env->dregs[5]); | |
1767 | (*regs)[5] = tswapreg(env->dregs[6]); | |
1768 | (*regs)[6] = tswapreg(env->dregs[7]); | |
1769 | (*regs)[7] = tswapreg(env->aregs[0]); | |
1770 | (*regs)[8] = tswapreg(env->aregs[1]); | |
1771 | (*regs)[9] = tswapreg(env->aregs[2]); | |
1772 | (*regs)[10] = tswapreg(env->aregs[3]); | |
1773 | (*regs)[11] = tswapreg(env->aregs[4]); | |
1774 | (*regs)[12] = tswapreg(env->aregs[5]); | |
1775 | (*regs)[13] = tswapreg(env->aregs[6]); | |
1776 | (*regs)[14] = tswapreg(env->dregs[0]); | |
1777 | (*regs)[15] = tswapreg(env->aregs[7]); | |
1778 | (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ | |
1779 | (*regs)[17] = tswapreg(env->sr); | |
1780 | (*regs)[18] = tswapreg(env->pc); | |
1781 | (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ | |
1782 | } | |
1783 | ||
1784 | #define USE_ELF_CORE_DUMP | |
1785 | #define ELF_EXEC_PAGESIZE 8192 | |
1786 | ||
1787 | #endif | |
1788 | ||
1789 | #ifdef TARGET_ALPHA | |
1790 | ||
1791 | #define ELF_CLASS ELFCLASS64 | |
1792 | #define ELF_ARCH EM_ALPHA | |
1793 | ||
1794 | static inline void init_thread(struct target_pt_regs *regs, | |
1795 | struct image_info *infop) | |
1796 | { | |
1797 | regs->pc = infop->entry; | |
1798 | regs->ps = 8; | |
1799 | regs->usp = infop->start_stack; | |
1800 | } | |
1801 | ||
1802 | #define ELF_EXEC_PAGESIZE 8192 | |
1803 | ||
1804 | #endif /* TARGET_ALPHA */ | |
1805 | ||
1806 | #ifdef TARGET_S390X | |
1807 | ||
1808 | #define ELF_CLASS ELFCLASS64 | |
1809 | #define ELF_DATA ELFDATA2MSB | |
1810 | #define ELF_ARCH EM_S390 | |
1811 | ||
1812 | #include "elf.h" | |
1813 | ||
1814 | #define ELF_HWCAP get_elf_hwcap() | |
1815 | ||
1816 | #define GET_FEATURE(_feat, _hwcap) \ | |
1817 | do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) | |
1818 | ||
1819 | uint32_t get_elf_hwcap(void) | |
1820 | { | |
1821 | /* | |
1822 | * Let's assume we always have esan3 and zarch. | |
1823 | * 31-bit processes can use 64-bit registers (high gprs). | |
1824 | */ | |
1825 | uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; | |
1826 | ||
1827 | GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); | |
1828 | GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); | |
1829 | GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); | |
1830 | GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); | |
1831 | if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && | |
1832 | s390_has_feat(S390_FEAT_ETF3_ENH)) { | |
1833 | hwcap |= HWCAP_S390_ETF3EH; | |
1834 | } | |
1835 | GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); | |
1836 | GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); | |
1837 | GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2); | |
1838 | ||
1839 | return hwcap; | |
1840 | } | |
1841 | ||
1842 | const char *elf_hwcap_str(uint32_t bit) | |
1843 | { | |
1844 | static const char *hwcap_str[] = { | |
1845 | [HWCAP_S390_NR_ESAN3] = "esan3", | |
1846 | [HWCAP_S390_NR_ZARCH] = "zarch", | |
1847 | [HWCAP_S390_NR_STFLE] = "stfle", | |
1848 | [HWCAP_S390_NR_MSA] = "msa", | |
1849 | [HWCAP_S390_NR_LDISP] = "ldisp", | |
1850 | [HWCAP_S390_NR_EIMM] = "eimm", | |
1851 | [HWCAP_S390_NR_DFP] = "dfp", | |
1852 | [HWCAP_S390_NR_HPAGE] = "edat", | |
1853 | [HWCAP_S390_NR_ETF3EH] = "etf3eh", | |
1854 | [HWCAP_S390_NR_HIGH_GPRS] = "highgprs", | |
1855 | [HWCAP_S390_NR_TE] = "te", | |
1856 | [HWCAP_S390_NR_VXRS] = "vx", | |
1857 | [HWCAP_S390_NR_VXRS_BCD] = "vxd", | |
1858 | [HWCAP_S390_NR_VXRS_EXT] = "vxe", | |
1859 | [HWCAP_S390_NR_GS] = "gs", | |
1860 | [HWCAP_S390_NR_VXRS_EXT2] = "vxe2", | |
1861 | [HWCAP_S390_NR_VXRS_PDE] = "vxp", | |
1862 | [HWCAP_S390_NR_SORT] = "sort", | |
1863 | [HWCAP_S390_NR_DFLT] = "dflt", | |
1864 | [HWCAP_S390_NR_NNPA] = "nnpa", | |
1865 | [HWCAP_S390_NR_PCI_MIO] = "pcimio", | |
1866 | [HWCAP_S390_NR_SIE] = "sie", | |
1867 | }; | |
1868 | ||
1869 | return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; | |
1870 | } | |
1871 | ||
1872 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
1873 | { | |
1874 | regs->psw.addr = infop->entry; | |
1875 | regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \ | |
1876 | PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \ | |
1877 | PSW_MASK_32; | |
1878 | regs->gprs[15] = infop->start_stack; | |
1879 | } | |
1880 | ||
1881 | /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ | |
1882 | #define ELF_NREG 27 | |
1883 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1884 | ||
1885 | enum { | |
1886 | TARGET_REG_PSWM = 0, | |
1887 | TARGET_REG_PSWA = 1, | |
1888 | TARGET_REG_GPRS = 2, | |
1889 | TARGET_REG_ARS = 18, | |
1890 | TARGET_REG_ORIG_R2 = 26, | |
1891 | }; | |
1892 | ||
1893 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
1894 | const CPUS390XState *env) | |
1895 | { | |
1896 | int i; | |
1897 | uint32_t *aregs; | |
1898 | ||
1899 | (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); | |
1900 | (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); | |
1901 | for (i = 0; i < 16; i++) { | |
1902 | (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); | |
1903 | } | |
1904 | aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); | |
1905 | for (i = 0; i < 16; i++) { | |
1906 | aregs[i] = tswap32(env->aregs[i]); | |
1907 | } | |
1908 | (*regs)[TARGET_REG_ORIG_R2] = 0; | |
1909 | } | |
1910 | ||
1911 | #define USE_ELF_CORE_DUMP | |
1912 | #define ELF_EXEC_PAGESIZE 4096 | |
1913 | ||
1914 | #define VDSO_HEADER "vdso.c.inc" | |
1915 | ||
1916 | #endif /* TARGET_S390X */ | |
1917 | ||
1918 | #ifdef TARGET_RISCV | |
1919 | ||
1920 | #define ELF_ARCH EM_RISCV | |
1921 | ||
1922 | #ifdef TARGET_RISCV32 | |
1923 | #define ELF_CLASS ELFCLASS32 | |
1924 | #define VDSO_HEADER "vdso-32.c.inc" | |
1925 | #else | |
1926 | #define ELF_CLASS ELFCLASS64 | |
1927 | #define VDSO_HEADER "vdso-64.c.inc" | |
1928 | #endif | |
1929 | ||
1930 | #define ELF_HWCAP get_elf_hwcap() | |
1931 | ||
1932 | static uint32_t get_elf_hwcap(void) | |
1933 | { | |
1934 | #define MISA_BIT(EXT) (1 << (EXT - 'A')) | |
1935 | RISCVCPU *cpu = RISCV_CPU(thread_cpu); | |
1936 | uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') | |
1937 | | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C') | |
1938 | | MISA_BIT('V'); | |
1939 | ||
1940 | return cpu->env.misa_ext & mask; | |
1941 | #undef MISA_BIT | |
1942 | } | |
1943 | ||
1944 | static inline void init_thread(struct target_pt_regs *regs, | |
1945 | struct image_info *infop) | |
1946 | { | |
1947 | regs->sepc = infop->entry; | |
1948 | regs->sp = infop->start_stack; | |
1949 | } | |
1950 | ||
1951 | #define ELF_EXEC_PAGESIZE 4096 | |
1952 | ||
1953 | #endif /* TARGET_RISCV */ | |
1954 | ||
1955 | #ifdef TARGET_HPPA | |
1956 | ||
1957 | #define ELF_CLASS ELFCLASS32 | |
1958 | #define ELF_ARCH EM_PARISC | |
1959 | #define ELF_PLATFORM "PARISC" | |
1960 | #define STACK_GROWS_DOWN 0 | |
1961 | #define STACK_ALIGNMENT 64 | |
1962 | ||
1963 | #define VDSO_HEADER "vdso.c.inc" | |
1964 | ||
1965 | static inline void init_thread(struct target_pt_regs *regs, | |
1966 | struct image_info *infop) | |
1967 | { | |
1968 | regs->iaoq[0] = infop->entry | PRIV_USER; | |
1969 | regs->iaoq[1] = regs->iaoq[0] + 4; | |
1970 | regs->gr[23] = 0; | |
1971 | regs->gr[24] = infop->argv; | |
1972 | regs->gr[25] = infop->argc; | |
1973 | /* The top-of-stack contains a linkage buffer. */ | |
1974 | regs->gr[30] = infop->start_stack + 64; | |
1975 | regs->gr[31] = infop->entry; | |
1976 | } | |
1977 | ||
1978 | #define LO_COMMPAGE 0 | |
1979 | ||
1980 | static bool init_guest_commpage(void) | |
1981 | { | |
1982 | /* If reserved_va, then we have already mapped 0 page on the host. */ | |
1983 | if (!reserved_va) { | |
1984 | void *want, *addr; | |
1985 | ||
1986 | want = g2h_untagged(LO_COMMPAGE); | |
1987 | addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE, | |
1988 | MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0); | |
1989 | if (addr == MAP_FAILED) { | |
1990 | perror("Allocating guest commpage"); | |
1991 | exit(EXIT_FAILURE); | |
1992 | } | |
1993 | if (addr != want) { | |
1994 | return false; | |
1995 | } | |
1996 | } | |
1997 | ||
1998 | /* | |
1999 | * On Linux, page zero is normally marked execute only + gateway. | |
2000 | * Normal read or write is supposed to fail (thus PROT_NONE above), | |
2001 | * but specific offsets have kernel code mapped to raise permissions | |
2002 | * and implement syscalls. Here, simply mark the page executable. | |
2003 | * Special case the entry points during translation (see do_page_zero). | |
2004 | */ | |
2005 | page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK, | |
2006 | PAGE_EXEC | PAGE_VALID); | |
2007 | return true; | |
2008 | } | |
2009 | ||
2010 | #endif /* TARGET_HPPA */ | |
2011 | ||
2012 | #ifdef TARGET_XTENSA | |
2013 | ||
2014 | #define ELF_CLASS ELFCLASS32 | |
2015 | #define ELF_ARCH EM_XTENSA | |
2016 | ||
2017 | static inline void init_thread(struct target_pt_regs *regs, | |
2018 | struct image_info *infop) | |
2019 | { | |
2020 | regs->windowbase = 0; | |
2021 | regs->windowstart = 1; | |
2022 | regs->areg[1] = infop->start_stack; | |
2023 | regs->pc = infop->entry; | |
2024 | if (info_is_fdpic(infop)) { | |
2025 | regs->areg[4] = infop->loadmap_addr; | |
2026 | regs->areg[5] = infop->interpreter_loadmap_addr; | |
2027 | if (infop->interpreter_loadmap_addr) { | |
2028 | regs->areg[6] = infop->interpreter_pt_dynamic_addr; | |
2029 | } else { | |
2030 | regs->areg[6] = infop->pt_dynamic_addr; | |
2031 | } | |
2032 | } | |
2033 | } | |
2034 | ||
2035 | /* See linux kernel: arch/xtensa/include/asm/elf.h. */ | |
2036 | #define ELF_NREG 128 | |
2037 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
2038 | ||
2039 | enum { | |
2040 | TARGET_REG_PC, | |
2041 | TARGET_REG_PS, | |
2042 | TARGET_REG_LBEG, | |
2043 | TARGET_REG_LEND, | |
2044 | TARGET_REG_LCOUNT, | |
2045 | TARGET_REG_SAR, | |
2046 | TARGET_REG_WINDOWSTART, | |
2047 | TARGET_REG_WINDOWBASE, | |
2048 | TARGET_REG_THREADPTR, | |
2049 | TARGET_REG_AR0 = 64, | |
2050 | }; | |
2051 | ||
2052 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
2053 | const CPUXtensaState *env) | |
2054 | { | |
2055 | unsigned i; | |
2056 | ||
2057 | (*regs)[TARGET_REG_PC] = tswapreg(env->pc); | |
2058 | (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); | |
2059 | (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); | |
2060 | (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); | |
2061 | (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); | |
2062 | (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); | |
2063 | (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); | |
2064 | (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); | |
2065 | (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); | |
2066 | xtensa_sync_phys_from_window((CPUXtensaState *)env); | |
2067 | for (i = 0; i < env->config->nareg; ++i) { | |
2068 | (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); | |
2069 | } | |
2070 | } | |
2071 | ||
2072 | #define USE_ELF_CORE_DUMP | |
2073 | #define ELF_EXEC_PAGESIZE 4096 | |
2074 | ||
2075 | #endif /* TARGET_XTENSA */ | |
2076 | ||
2077 | #ifdef TARGET_HEXAGON | |
2078 | ||
2079 | #define ELF_CLASS ELFCLASS32 | |
2080 | #define ELF_ARCH EM_HEXAGON | |
2081 | ||
2082 | static inline void init_thread(struct target_pt_regs *regs, | |
2083 | struct image_info *infop) | |
2084 | { | |
2085 | regs->sepc = infop->entry; | |
2086 | regs->sp = infop->start_stack; | |
2087 | } | |
2088 | ||
2089 | #endif /* TARGET_HEXAGON */ | |
2090 | ||
2091 | #ifndef ELF_BASE_PLATFORM | |
2092 | #define ELF_BASE_PLATFORM (NULL) | |
2093 | #endif | |
2094 | ||
2095 | #ifndef ELF_PLATFORM | |
2096 | #define ELF_PLATFORM (NULL) | |
2097 | #endif | |
2098 | ||
2099 | #ifndef ELF_MACHINE | |
2100 | #define ELF_MACHINE ELF_ARCH | |
2101 | #endif | |
2102 | ||
2103 | #ifndef elf_check_arch | |
2104 | #define elf_check_arch(x) ((x) == ELF_ARCH) | |
2105 | #endif | |
2106 | ||
2107 | #ifndef elf_check_abi | |
2108 | #define elf_check_abi(x) (1) | |
2109 | #endif | |
2110 | ||
2111 | #ifndef ELF_HWCAP | |
2112 | #define ELF_HWCAP 0 | |
2113 | #endif | |
2114 | ||
2115 | #ifndef STACK_GROWS_DOWN | |
2116 | #define STACK_GROWS_DOWN 1 | |
2117 | #endif | |
2118 | ||
2119 | #ifndef STACK_ALIGNMENT | |
2120 | #define STACK_ALIGNMENT 16 | |
2121 | #endif | |
2122 | ||
2123 | #ifdef TARGET_ABI32 | |
2124 | #undef ELF_CLASS | |
2125 | #define ELF_CLASS ELFCLASS32 | |
2126 | #undef bswaptls | |
2127 | #define bswaptls(ptr) bswap32s(ptr) | |
2128 | #endif | |
2129 | ||
2130 | #ifndef EXSTACK_DEFAULT | |
2131 | #define EXSTACK_DEFAULT false | |
2132 | #endif | |
2133 | ||
2134 | #include "elf.h" | |
2135 | ||
2136 | /* We must delay the following stanzas until after "elf.h". */ | |
2137 | #if defined(TARGET_AARCH64) | |
2138 | ||
2139 | static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, | |
2140 | const uint32_t *data, | |
2141 | struct image_info *info, | |
2142 | Error **errp) | |
2143 | { | |
2144 | if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { | |
2145 | if (pr_datasz != sizeof(uint32_t)) { | |
2146 | error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); | |
2147 | return false; | |
2148 | } | |
2149 | /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ | |
2150 | info->note_flags = *data; | |
2151 | } | |
2152 | return true; | |
2153 | } | |
2154 | #define ARCH_USE_GNU_PROPERTY 1 | |
2155 | ||
2156 | #else | |
2157 | ||
2158 | static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, | |
2159 | const uint32_t *data, | |
2160 | struct image_info *info, | |
2161 | Error **errp) | |
2162 | { | |
2163 | g_assert_not_reached(); | |
2164 | } | |
2165 | #define ARCH_USE_GNU_PROPERTY 0 | |
2166 | ||
2167 | #endif | |
2168 | ||
2169 | struct exec | |
2170 | { | |
2171 | unsigned int a_info; /* Use macros N_MAGIC, etc for access */ | |
2172 | unsigned int a_text; /* length of text, in bytes */ | |
2173 | unsigned int a_data; /* length of data, in bytes */ | |
2174 | unsigned int a_bss; /* length of uninitialized data area, in bytes */ | |
2175 | unsigned int a_syms; /* length of symbol table data in file, in bytes */ | |
2176 | unsigned int a_entry; /* start address */ | |
2177 | unsigned int a_trsize; /* length of relocation info for text, in bytes */ | |
2178 | unsigned int a_drsize; /* length of relocation info for data, in bytes */ | |
2179 | }; | |
2180 | ||
2181 | ||
2182 | #define N_MAGIC(exec) ((exec).a_info & 0xffff) | |
2183 | #define OMAGIC 0407 | |
2184 | #define NMAGIC 0410 | |
2185 | #define ZMAGIC 0413 | |
2186 | #define QMAGIC 0314 | |
2187 | ||
2188 | #define DLINFO_ITEMS 16 | |
2189 | ||
2190 | static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) | |
2191 | { | |
2192 | memcpy(to, from, n); | |
2193 | } | |
2194 | ||
2195 | static void bswap_ehdr(struct elfhdr *ehdr) | |
2196 | { | |
2197 | if (!target_needs_bswap()) { | |
2198 | return; | |
2199 | } | |
2200 | ||
2201 | bswap16s(&ehdr->e_type); /* Object file type */ | |
2202 | bswap16s(&ehdr->e_machine); /* Architecture */ | |
2203 | bswap32s(&ehdr->e_version); /* Object file version */ | |
2204 | bswaptls(&ehdr->e_entry); /* Entry point virtual address */ | |
2205 | bswaptls(&ehdr->e_phoff); /* Program header table file offset */ | |
2206 | bswaptls(&ehdr->e_shoff); /* Section header table file offset */ | |
2207 | bswap32s(&ehdr->e_flags); /* Processor-specific flags */ | |
2208 | bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ | |
2209 | bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ | |
2210 | bswap16s(&ehdr->e_phnum); /* Program header table entry count */ | |
2211 | bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ | |
2212 | bswap16s(&ehdr->e_shnum); /* Section header table entry count */ | |
2213 | bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ | |
2214 | } | |
2215 | ||
2216 | static void bswap_phdr(struct elf_phdr *phdr, int phnum) | |
2217 | { | |
2218 | if (!target_needs_bswap()) { | |
2219 | return; | |
2220 | } | |
2221 | ||
2222 | for (int i = 0; i < phnum; ++i, ++phdr) { | |
2223 | bswap32s(&phdr->p_type); /* Segment type */ | |
2224 | bswap32s(&phdr->p_flags); /* Segment flags */ | |
2225 | bswaptls(&phdr->p_offset); /* Segment file offset */ | |
2226 | bswaptls(&phdr->p_vaddr); /* Segment virtual address */ | |
2227 | bswaptls(&phdr->p_paddr); /* Segment physical address */ | |
2228 | bswaptls(&phdr->p_filesz); /* Segment size in file */ | |
2229 | bswaptls(&phdr->p_memsz); /* Segment size in memory */ | |
2230 | bswaptls(&phdr->p_align); /* Segment alignment */ | |
2231 | } | |
2232 | } | |
2233 | ||
2234 | static void bswap_shdr(struct elf_shdr *shdr, int shnum) | |
2235 | { | |
2236 | if (!target_needs_bswap()) { | |
2237 | return; | |
2238 | } | |
2239 | ||
2240 | for (int i = 0; i < shnum; ++i, ++shdr) { | |
2241 | bswap32s(&shdr->sh_name); | |
2242 | bswap32s(&shdr->sh_type); | |
2243 | bswaptls(&shdr->sh_flags); | |
2244 | bswaptls(&shdr->sh_addr); | |
2245 | bswaptls(&shdr->sh_offset); | |
2246 | bswaptls(&shdr->sh_size); | |
2247 | bswap32s(&shdr->sh_link); | |
2248 | bswap32s(&shdr->sh_info); | |
2249 | bswaptls(&shdr->sh_addralign); | |
2250 | bswaptls(&shdr->sh_entsize); | |
2251 | } | |
2252 | } | |
2253 | ||
2254 | static void bswap_sym(struct elf_sym *sym) | |
2255 | { | |
2256 | if (!target_needs_bswap()) { | |
2257 | return; | |
2258 | } | |
2259 | ||
2260 | bswap32s(&sym->st_name); | |
2261 | bswaptls(&sym->st_value); | |
2262 | bswaptls(&sym->st_size); | |
2263 | bswap16s(&sym->st_shndx); | |
2264 | } | |
2265 | ||
2266 | #ifdef TARGET_MIPS | |
2267 | static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) | |
2268 | { | |
2269 | if (!target_needs_bswap()) { | |
2270 | return; | |
2271 | } | |
2272 | ||
2273 | bswap16s(&abiflags->version); | |
2274 | bswap32s(&abiflags->ases); | |
2275 | bswap32s(&abiflags->isa_ext); | |
2276 | bswap32s(&abiflags->flags1); | |
2277 | bswap32s(&abiflags->flags2); | |
2278 | } | |
2279 | #endif | |
2280 | ||
2281 | #ifdef USE_ELF_CORE_DUMP | |
2282 | static int elf_core_dump(int, const CPUArchState *); | |
2283 | #endif /* USE_ELF_CORE_DUMP */ | |
2284 | static void load_symbols(struct elfhdr *hdr, const ImageSource *src, | |
2285 | abi_ulong load_bias); | |
2286 | ||
2287 | /* Verify the portions of EHDR within E_IDENT for the target. | |
2288 | This can be performed before bswapping the entire header. */ | |
2289 | static bool elf_check_ident(struct elfhdr *ehdr) | |
2290 | { | |
2291 | return (ehdr->e_ident[EI_MAG0] == ELFMAG0 | |
2292 | && ehdr->e_ident[EI_MAG1] == ELFMAG1 | |
2293 | && ehdr->e_ident[EI_MAG2] == ELFMAG2 | |
2294 | && ehdr->e_ident[EI_MAG3] == ELFMAG3 | |
2295 | && ehdr->e_ident[EI_CLASS] == ELF_CLASS | |
2296 | && ehdr->e_ident[EI_DATA] == ELF_DATA | |
2297 | && ehdr->e_ident[EI_VERSION] == EV_CURRENT); | |
2298 | } | |
2299 | ||
2300 | /* Verify the portions of EHDR outside of E_IDENT for the target. | |
2301 | This has to wait until after bswapping the header. */ | |
2302 | static bool elf_check_ehdr(struct elfhdr *ehdr) | |
2303 | { | |
2304 | return (elf_check_arch(ehdr->e_machine) | |
2305 | && elf_check_abi(ehdr->e_flags) | |
2306 | && ehdr->e_ehsize == sizeof(struct elfhdr) | |
2307 | && ehdr->e_phentsize == sizeof(struct elf_phdr) | |
2308 | && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); | |
2309 | } | |
2310 | ||
2311 | /* | |
2312 | * 'copy_elf_strings()' copies argument/envelope strings from user | |
2313 | * memory to free pages in kernel mem. These are in a format ready | |
2314 | * to be put directly into the top of new user memory. | |
2315 | * | |
2316 | */ | |
2317 | static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, | |
2318 | abi_ulong p, abi_ulong stack_limit) | |
2319 | { | |
2320 | char *tmp; | |
2321 | int len, i; | |
2322 | abi_ulong top = p; | |
2323 | ||
2324 | if (!p) { | |
2325 | return 0; /* bullet-proofing */ | |
2326 | } | |
2327 | ||
2328 | if (STACK_GROWS_DOWN) { | |
2329 | int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; | |
2330 | for (i = argc - 1; i >= 0; --i) { | |
2331 | tmp = argv[i]; | |
2332 | if (!tmp) { | |
2333 | fprintf(stderr, "VFS: argc is wrong"); | |
2334 | exit(-1); | |
2335 | } | |
2336 | len = strlen(tmp) + 1; | |
2337 | tmp += len; | |
2338 | ||
2339 | if (len > (p - stack_limit)) { | |
2340 | return 0; | |
2341 | } | |
2342 | while (len) { | |
2343 | int bytes_to_copy = (len > offset) ? offset : len; | |
2344 | tmp -= bytes_to_copy; | |
2345 | p -= bytes_to_copy; | |
2346 | offset -= bytes_to_copy; | |
2347 | len -= bytes_to_copy; | |
2348 | ||
2349 | memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); | |
2350 | ||
2351 | if (offset == 0) { | |
2352 | memcpy_to_target(p, scratch, top - p); | |
2353 | top = p; | |
2354 | offset = TARGET_PAGE_SIZE; | |
2355 | } | |
2356 | } | |
2357 | } | |
2358 | if (p != top) { | |
2359 | memcpy_to_target(p, scratch + offset, top - p); | |
2360 | } | |
2361 | } else { | |
2362 | int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); | |
2363 | for (i = 0; i < argc; ++i) { | |
2364 | tmp = argv[i]; | |
2365 | if (!tmp) { | |
2366 | fprintf(stderr, "VFS: argc is wrong"); | |
2367 | exit(-1); | |
2368 | } | |
2369 | len = strlen(tmp) + 1; | |
2370 | if (len > (stack_limit - p)) { | |
2371 | return 0; | |
2372 | } | |
2373 | while (len) { | |
2374 | int bytes_to_copy = (len > remaining) ? remaining : len; | |
2375 | ||
2376 | memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); | |
2377 | ||
2378 | tmp += bytes_to_copy; | |
2379 | remaining -= bytes_to_copy; | |
2380 | p += bytes_to_copy; | |
2381 | len -= bytes_to_copy; | |
2382 | ||
2383 | if (remaining == 0) { | |
2384 | memcpy_to_target(top, scratch, p - top); | |
2385 | top = p; | |
2386 | remaining = TARGET_PAGE_SIZE; | |
2387 | } | |
2388 | } | |
2389 | } | |
2390 | if (p != top) { | |
2391 | memcpy_to_target(top, scratch, p - top); | |
2392 | } | |
2393 | } | |
2394 | ||
2395 | return p; | |
2396 | } | |
2397 | ||
2398 | /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of | |
2399 | * argument/environment space. Newer kernels (>2.6.33) allow more, | |
2400 | * dependent on stack size, but guarantee at least 32 pages for | |
2401 | * backwards compatibility. | |
2402 | */ | |
2403 | #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) | |
2404 | ||
2405 | static abi_ulong setup_arg_pages(struct linux_binprm *bprm, | |
2406 | struct image_info *info) | |
2407 | { | |
2408 | abi_ulong size, error, guard; | |
2409 | int prot; | |
2410 | ||
2411 | size = guest_stack_size; | |
2412 | if (size < STACK_LOWER_LIMIT) { | |
2413 | size = STACK_LOWER_LIMIT; | |
2414 | } | |
2415 | ||
2416 | if (STACK_GROWS_DOWN) { | |
2417 | guard = TARGET_PAGE_SIZE; | |
2418 | if (guard < qemu_real_host_page_size()) { | |
2419 | guard = qemu_real_host_page_size(); | |
2420 | } | |
2421 | } else { | |
2422 | /* no guard page for hppa target where stack grows upwards. */ | |
2423 | guard = 0; | |
2424 | } | |
2425 | ||
2426 | prot = PROT_READ | PROT_WRITE; | |
2427 | if (info->exec_stack) { | |
2428 | prot |= PROT_EXEC; | |
2429 | } | |
2430 | error = target_mmap(0, size + guard, prot, | |
2431 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
2432 | if (error == -1) { | |
2433 | perror("mmap stack"); | |
2434 | exit(-1); | |
2435 | } | |
2436 | ||
2437 | /* We reserve one extra page at the top of the stack as guard. */ | |
2438 | if (STACK_GROWS_DOWN) { | |
2439 | target_mprotect(error, guard, PROT_NONE); | |
2440 | info->stack_limit = error + guard; | |
2441 | return info->stack_limit + size - sizeof(void *); | |
2442 | } else { | |
2443 | info->stack_limit = error + size; | |
2444 | return error; | |
2445 | } | |
2446 | } | |
2447 | ||
2448 | /** | |
2449 | * zero_bss: | |
2450 | * | |
2451 | * Map and zero the bss. We need to explicitly zero any fractional pages | |
2452 | * after the data section (i.e. bss). Return false on mapping failure. | |
2453 | */ | |
2454 | static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, | |
2455 | int prot, Error **errp) | |
2456 | { | |
2457 | abi_ulong align_bss; | |
2458 | ||
2459 | /* We only expect writable bss; the code segment shouldn't need this. */ | |
2460 | if (!(prot & PROT_WRITE)) { | |
2461 | error_setg(errp, "PT_LOAD with non-writable bss"); | |
2462 | return false; | |
2463 | } | |
2464 | ||
2465 | align_bss = TARGET_PAGE_ALIGN(start_bss); | |
2466 | end_bss = TARGET_PAGE_ALIGN(end_bss); | |
2467 | ||
2468 | if (start_bss < align_bss) { | |
2469 | int flags = page_get_flags(start_bss); | |
2470 | ||
2471 | if (!(flags & PAGE_RWX)) { | |
2472 | /* | |
2473 | * The whole address space of the executable was reserved | |
2474 | * at the start, therefore all pages will be VALID. | |
2475 | * But assuming there are no PROT_NONE PT_LOAD segments, | |
2476 | * a PROT_NONE page means no data all bss, and we can | |
2477 | * simply extend the new anon mapping back to the start | |
2478 | * of the page of bss. | |
2479 | */ | |
2480 | align_bss -= TARGET_PAGE_SIZE; | |
2481 | } else { | |
2482 | /* | |
2483 | * The start of the bss shares a page with something. | |
2484 | * The only thing that we expect is the data section, | |
2485 | * which would already be marked writable. | |
2486 | * Overlapping the RX code segment seems malformed. | |
2487 | */ | |
2488 | if (!(flags & PAGE_WRITE)) { | |
2489 | error_setg(errp, "PT_LOAD with bss overlapping " | |
2490 | "non-writable page"); | |
2491 | return false; | |
2492 | } | |
2493 | ||
2494 | /* The page is already mapped and writable. */ | |
2495 | memset(g2h_untagged(start_bss), 0, align_bss - start_bss); | |
2496 | } | |
2497 | } | |
2498 | ||
2499 | if (align_bss < end_bss && | |
2500 | target_mmap(align_bss, end_bss - align_bss, prot, | |
2501 | MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) { | |
2502 | error_setg_errno(errp, errno, "Error mapping bss"); | |
2503 | return false; | |
2504 | } | |
2505 | return true; | |
2506 | } | |
2507 | ||
2508 | #if defined(TARGET_ARM) | |
2509 | static int elf_is_fdpic(struct elfhdr *exec) | |
2510 | { | |
2511 | return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; | |
2512 | } | |
2513 | #elif defined(TARGET_XTENSA) | |
2514 | static int elf_is_fdpic(struct elfhdr *exec) | |
2515 | { | |
2516 | return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC; | |
2517 | } | |
2518 | #else | |
2519 | /* Default implementation, always false. */ | |
2520 | static int elf_is_fdpic(struct elfhdr *exec) | |
2521 | { | |
2522 | return 0; | |
2523 | } | |
2524 | #endif | |
2525 | ||
2526 | static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) | |
2527 | { | |
2528 | uint16_t n; | |
2529 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; | |
2530 | ||
2531 | /* elf32_fdpic_loadseg */ | |
2532 | n = info->nsegs; | |
2533 | while (n--) { | |
2534 | sp -= 12; | |
2535 | put_user_u32(loadsegs[n].addr, sp+0); | |
2536 | put_user_u32(loadsegs[n].p_vaddr, sp+4); | |
2537 | put_user_u32(loadsegs[n].p_memsz, sp+8); | |
2538 | } | |
2539 | ||
2540 | /* elf32_fdpic_loadmap */ | |
2541 | sp -= 4; | |
2542 | put_user_u16(0, sp+0); /* version */ | |
2543 | put_user_u16(info->nsegs, sp+2); /* nsegs */ | |
2544 | ||
2545 | info->personality = PER_LINUX_FDPIC; | |
2546 | info->loadmap_addr = sp; | |
2547 | ||
2548 | return sp; | |
2549 | } | |
2550 | ||
2551 | static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, | |
2552 | struct elfhdr *exec, | |
2553 | struct image_info *info, | |
2554 | struct image_info *interp_info, | |
2555 | struct image_info *vdso_info) | |
2556 | { | |
2557 | abi_ulong sp; | |
2558 | abi_ulong u_argc, u_argv, u_envp, u_auxv; | |
2559 | int size; | |
2560 | int i; | |
2561 | abi_ulong u_rand_bytes; | |
2562 | uint8_t k_rand_bytes[16]; | |
2563 | abi_ulong u_platform, u_base_platform; | |
2564 | const char *k_platform, *k_base_platform; | |
2565 | const int n = sizeof(elf_addr_t); | |
2566 | ||
2567 | sp = p; | |
2568 | ||
2569 | /* Needs to be before we load the env/argc/... */ | |
2570 | if (elf_is_fdpic(exec)) { | |
2571 | /* Need 4 byte alignment for these structs */ | |
2572 | sp &= ~3; | |
2573 | sp = loader_build_fdpic_loadmap(info, sp); | |
2574 | info->other_info = interp_info; | |
2575 | if (interp_info) { | |
2576 | interp_info->other_info = info; | |
2577 | sp = loader_build_fdpic_loadmap(interp_info, sp); | |
2578 | info->interpreter_loadmap_addr = interp_info->loadmap_addr; | |
2579 | info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; | |
2580 | } else { | |
2581 | info->interpreter_loadmap_addr = 0; | |
2582 | info->interpreter_pt_dynamic_addr = 0; | |
2583 | } | |
2584 | } | |
2585 | ||
2586 | u_base_platform = 0; | |
2587 | k_base_platform = ELF_BASE_PLATFORM; | |
2588 | if (k_base_platform) { | |
2589 | size_t len = strlen(k_base_platform) + 1; | |
2590 | if (STACK_GROWS_DOWN) { | |
2591 | sp -= (len + n - 1) & ~(n - 1); | |
2592 | u_base_platform = sp; | |
2593 | /* FIXME - check return value of memcpy_to_target() for failure */ | |
2594 | memcpy_to_target(sp, k_base_platform, len); | |
2595 | } else { | |
2596 | memcpy_to_target(sp, k_base_platform, len); | |
2597 | u_base_platform = sp; | |
2598 | sp += len + 1; | |
2599 | } | |
2600 | } | |
2601 | ||
2602 | u_platform = 0; | |
2603 | k_platform = ELF_PLATFORM; | |
2604 | if (k_platform) { | |
2605 | size_t len = strlen(k_platform) + 1; | |
2606 | if (STACK_GROWS_DOWN) { | |
2607 | sp -= (len + n - 1) & ~(n - 1); | |
2608 | u_platform = sp; | |
2609 | /* FIXME - check return value of memcpy_to_target() for failure */ | |
2610 | memcpy_to_target(sp, k_platform, len); | |
2611 | } else { | |
2612 | memcpy_to_target(sp, k_platform, len); | |
2613 | u_platform = sp; | |
2614 | sp += len + 1; | |
2615 | } | |
2616 | } | |
2617 | ||
2618 | /* Provide 16 byte alignment for the PRNG, and basic alignment for | |
2619 | * the argv and envp pointers. | |
2620 | */ | |
2621 | if (STACK_GROWS_DOWN) { | |
2622 | sp = QEMU_ALIGN_DOWN(sp, 16); | |
2623 | } else { | |
2624 | sp = QEMU_ALIGN_UP(sp, 16); | |
2625 | } | |
2626 | ||
2627 | /* | |
2628 | * Generate 16 random bytes for userspace PRNG seeding. | |
2629 | */ | |
2630 | qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); | |
2631 | if (STACK_GROWS_DOWN) { | |
2632 | sp -= 16; | |
2633 | u_rand_bytes = sp; | |
2634 | /* FIXME - check return value of memcpy_to_target() for failure */ | |
2635 | memcpy_to_target(sp, k_rand_bytes, 16); | |
2636 | } else { | |
2637 | memcpy_to_target(sp, k_rand_bytes, 16); | |
2638 | u_rand_bytes = sp; | |
2639 | sp += 16; | |
2640 | } | |
2641 | ||
2642 | size = (DLINFO_ITEMS + 1) * 2; | |
2643 | if (k_base_platform) { | |
2644 | size += 2; | |
2645 | } | |
2646 | if (k_platform) { | |
2647 | size += 2; | |
2648 | } | |
2649 | if (vdso_info) { | |
2650 | size += 2; | |
2651 | } | |
2652 | #ifdef DLINFO_ARCH_ITEMS | |
2653 | size += DLINFO_ARCH_ITEMS * 2; | |
2654 | #endif | |
2655 | #ifdef ELF_HWCAP2 | |
2656 | size += 2; | |
2657 | #endif | |
2658 | info->auxv_len = size * n; | |
2659 | ||
2660 | size += envc + argc + 2; | |
2661 | size += 1; /* argc itself */ | |
2662 | size *= n; | |
2663 | ||
2664 | /* Allocate space and finalize stack alignment for entry now. */ | |
2665 | if (STACK_GROWS_DOWN) { | |
2666 | u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); | |
2667 | sp = u_argc; | |
2668 | } else { | |
2669 | u_argc = sp; | |
2670 | sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); | |
2671 | } | |
2672 | ||
2673 | u_argv = u_argc + n; | |
2674 | u_envp = u_argv + (argc + 1) * n; | |
2675 | u_auxv = u_envp + (envc + 1) * n; | |
2676 | info->saved_auxv = u_auxv; | |
2677 | info->argc = argc; | |
2678 | info->envc = envc; | |
2679 | info->argv = u_argv; | |
2680 | info->envp = u_envp; | |
2681 | ||
2682 | /* This is correct because Linux defines | |
2683 | * elf_addr_t as Elf32_Off / Elf64_Off | |
2684 | */ | |
2685 | #define NEW_AUX_ENT(id, val) do { \ | |
2686 | put_user_ual(id, u_auxv); u_auxv += n; \ | |
2687 | put_user_ual(val, u_auxv); u_auxv += n; \ | |
2688 | } while(0) | |
2689 | ||
2690 | #ifdef ARCH_DLINFO | |
2691 | /* | |
2692 | * ARCH_DLINFO must come first so platform specific code can enforce | |
2693 | * special alignment requirements on the AUXV if necessary (eg. PPC). | |
2694 | */ | |
2695 | ARCH_DLINFO; | |
2696 | #endif | |
2697 | /* There must be exactly DLINFO_ITEMS entries here, or the assert | |
2698 | * on info->auxv_len will trigger. | |
2699 | */ | |
2700 | NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); | |
2701 | NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); | |
2702 | NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); | |
2703 | NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); | |
2704 | NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); | |
2705 | NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); | |
2706 | NEW_AUX_ENT(AT_ENTRY, info->entry); | |
2707 | NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); | |
2708 | NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); | |
2709 | NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); | |
2710 | NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); | |
2711 | NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); | |
2712 | NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); | |
2713 | NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); | |
2714 | NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); | |
2715 | NEW_AUX_ENT(AT_EXECFN, info->file_string); | |
2716 | ||
2717 | #ifdef ELF_HWCAP2 | |
2718 | NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); | |
2719 | #endif | |
2720 | ||
2721 | if (u_base_platform) { | |
2722 | NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform); | |
2723 | } | |
2724 | if (u_platform) { | |
2725 | NEW_AUX_ENT(AT_PLATFORM, u_platform); | |
2726 | } | |
2727 | if (vdso_info) { | |
2728 | NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr); | |
2729 | } | |
2730 | NEW_AUX_ENT (AT_NULL, 0); | |
2731 | #undef NEW_AUX_ENT | |
2732 | ||
2733 | /* Check that our initial calculation of the auxv length matches how much | |
2734 | * we actually put into it. | |
2735 | */ | |
2736 | assert(info->auxv_len == u_auxv - info->saved_auxv); | |
2737 | ||
2738 | put_user_ual(argc, u_argc); | |
2739 | ||
2740 | p = info->arg_strings; | |
2741 | for (i = 0; i < argc; ++i) { | |
2742 | put_user_ual(p, u_argv); | |
2743 | u_argv += n; | |
2744 | p += target_strlen(p) + 1; | |
2745 | } | |
2746 | put_user_ual(0, u_argv); | |
2747 | ||
2748 | p = info->env_strings; | |
2749 | for (i = 0; i < envc; ++i) { | |
2750 | put_user_ual(p, u_envp); | |
2751 | u_envp += n; | |
2752 | p += target_strlen(p) + 1; | |
2753 | } | |
2754 | put_user_ual(0, u_envp); | |
2755 | ||
2756 | return sp; | |
2757 | } | |
2758 | ||
2759 | #if defined(HI_COMMPAGE) | |
2760 | #define LO_COMMPAGE -1 | |
2761 | #elif defined(LO_COMMPAGE) | |
2762 | #define HI_COMMPAGE 0 | |
2763 | #else | |
2764 | #define HI_COMMPAGE 0 | |
2765 | #define LO_COMMPAGE -1 | |
2766 | #ifndef INIT_GUEST_COMMPAGE | |
2767 | #define init_guest_commpage() true | |
2768 | #endif | |
2769 | #endif | |
2770 | ||
2771 | /** | |
2772 | * pgb_try_mmap: | |
2773 | * @addr: host start address | |
2774 | * @addr_last: host last address | |
2775 | * @keep: do not unmap the probe region | |
2776 | * | |
2777 | * Return 1 if [@addr, @addr_last] is not mapped in the host, | |
2778 | * return 0 if it is not available to map, and -1 on mmap error. | |
2779 | * If @keep, the region is left mapped on success, otherwise unmapped. | |
2780 | */ | |
2781 | static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep) | |
2782 | { | |
2783 | size_t size = addr_last - addr + 1; | |
2784 | void *p = mmap((void *)addr, size, PROT_NONE, | |
2785 | MAP_ANONYMOUS | MAP_PRIVATE | | |
2786 | MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0); | |
2787 | int ret; | |
2788 | ||
2789 | if (p == MAP_FAILED) { | |
2790 | return errno == EEXIST ? 0 : -1; | |
2791 | } | |
2792 | ret = p == (void *)addr; | |
2793 | if (!keep || !ret) { | |
2794 | munmap(p, size); | |
2795 | } | |
2796 | return ret; | |
2797 | } | |
2798 | ||
2799 | /** | |
2800 | * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk) | |
2801 | * @addr: host address | |
2802 | * @addr_last: host last address | |
2803 | * @brk: host brk | |
2804 | * | |
2805 | * Like pgb_try_mmap, but additionally reserve some memory following brk. | |
2806 | */ | |
2807 | static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last, | |
2808 | uintptr_t brk, bool keep) | |
2809 | { | |
2810 | uintptr_t brk_last = brk + 16 * MiB - 1; | |
2811 | ||
2812 | /* Do not map anything close to the host brk. */ | |
2813 | if (addr <= brk_last && brk <= addr_last) { | |
2814 | return 0; | |
2815 | } | |
2816 | return pgb_try_mmap(addr, addr_last, keep); | |
2817 | } | |
2818 | ||
2819 | /** | |
2820 | * pgb_try_mmap_set: | |
2821 | * @ga: set of guest addrs | |
2822 | * @base: guest_base | |
2823 | * @brk: host brk | |
2824 | * | |
2825 | * Return true if all @ga can be mapped by the host at @base. | |
2826 | * On success, retain the mapping at index 0 for reserved_va. | |
2827 | */ | |
2828 | ||
2829 | typedef struct PGBAddrs { | |
2830 | uintptr_t bounds[3][2]; /* start/last pairs */ | |
2831 | int nbounds; | |
2832 | } PGBAddrs; | |
2833 | ||
2834 | static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk) | |
2835 | { | |
2836 | for (int i = ga->nbounds - 1; i >= 0; --i) { | |
2837 | if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base, | |
2838 | ga->bounds[i][1] + base, | |
2839 | brk, i == 0 && reserved_va) <= 0) { | |
2840 | return false; | |
2841 | } | |
2842 | } | |
2843 | return true; | |
2844 | } | |
2845 | ||
2846 | /** | |
2847 | * pgb_addr_set: | |
2848 | * @ga: output set of guest addrs | |
2849 | * @guest_loaddr: guest image low address | |
2850 | * @guest_loaddr: guest image high address | |
2851 | * @identity: create for identity mapping | |
2852 | * | |
2853 | * Fill in @ga with the image, COMMPAGE and NULL page. | |
2854 | */ | |
2855 | static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr, | |
2856 | abi_ulong guest_hiaddr, bool try_identity) | |
2857 | { | |
2858 | int n; | |
2859 | ||
2860 | /* | |
2861 | * With a low commpage, or a guest mapped very low, | |
2862 | * we may not be able to use the identity map. | |
2863 | */ | |
2864 | if (try_identity) { | |
2865 | if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) { | |
2866 | return false; | |
2867 | } | |
2868 | if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) { | |
2869 | return false; | |
2870 | } | |
2871 | } | |
2872 | ||
2873 | memset(ga, 0, sizeof(*ga)); | |
2874 | n = 0; | |
2875 | ||
2876 | if (reserved_va) { | |
2877 | ga->bounds[n][0] = try_identity ? mmap_min_addr : 0; | |
2878 | ga->bounds[n][1] = reserved_va; | |
2879 | n++; | |
2880 | /* LO_COMMPAGE and NULL handled by reserving from 0. */ | |
2881 | } else { | |
2882 | /* Add any LO_COMMPAGE or NULL page. */ | |
2883 | if (LO_COMMPAGE != -1) { | |
2884 | ga->bounds[n][0] = 0; | |
2885 | ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1; | |
2886 | n++; | |
2887 | } else if (!try_identity) { | |
2888 | ga->bounds[n][0] = 0; | |
2889 | ga->bounds[n][1] = TARGET_PAGE_SIZE - 1; | |
2890 | n++; | |
2891 | } | |
2892 | ||
2893 | /* Add the guest image for ET_EXEC. */ | |
2894 | if (guest_loaddr) { | |
2895 | ga->bounds[n][0] = guest_loaddr; | |
2896 | ga->bounds[n][1] = guest_hiaddr; | |
2897 | n++; | |
2898 | } | |
2899 | } | |
2900 | ||
2901 | /* | |
2902 | * Temporarily disable | |
2903 | * "comparison is always false due to limited range of data type" | |
2904 | * due to comparison between unsigned and (possible) 0. | |
2905 | */ | |
2906 | #pragma GCC diagnostic push | |
2907 | #pragma GCC diagnostic ignored "-Wtype-limits" | |
2908 | ||
2909 | /* Add any HI_COMMPAGE not covered by reserved_va. */ | |
2910 | if (reserved_va < HI_COMMPAGE) { | |
2911 | ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask(); | |
2912 | ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1; | |
2913 | n++; | |
2914 | } | |
2915 | ||
2916 | #pragma GCC diagnostic pop | |
2917 | ||
2918 | ga->nbounds = n; | |
2919 | return true; | |
2920 | } | |
2921 | ||
2922 | static void pgb_fail_in_use(const char *image_name) | |
2923 | { | |
2924 | error_report("%s: requires virtual address space that is in use " | |
2925 | "(omit the -B option or choose a different value)", | |
2926 | image_name); | |
2927 | exit(EXIT_FAILURE); | |
2928 | } | |
2929 | ||
2930 | static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr, | |
2931 | uintptr_t guest_hiaddr, uintptr_t align) | |
2932 | { | |
2933 | PGBAddrs ga; | |
2934 | uintptr_t brk = (uintptr_t)sbrk(0); | |
2935 | ||
2936 | if (!QEMU_IS_ALIGNED(guest_base, align)) { | |
2937 | fprintf(stderr, "Requested guest base %p does not satisfy " | |
2938 | "host minimum alignment (0x%" PRIxPTR ")\n", | |
2939 | (void *)guest_base, align); | |
2940 | exit(EXIT_FAILURE); | |
2941 | } | |
2942 | ||
2943 | if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base) | |
2944 | || !pgb_try_mmap_set(&ga, guest_base, brk)) { | |
2945 | pgb_fail_in_use(image_name); | |
2946 | } | |
2947 | } | |
2948 | ||
2949 | /** | |
2950 | * pgb_find_fallback: | |
2951 | * | |
2952 | * This is a fallback method for finding holes in the host address space | |
2953 | * if we don't have the benefit of being able to access /proc/self/map. | |
2954 | * It can potentially take a very long time as we can only dumbly iterate | |
2955 | * up the host address space seeing if the allocation would work. | |
2956 | */ | |
2957 | static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align, | |
2958 | uintptr_t brk) | |
2959 | { | |
2960 | /* TODO: come up with a better estimate of how much to skip. */ | |
2961 | uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB; | |
2962 | ||
2963 | for (uintptr_t base = skip; ; base += skip) { | |
2964 | base = ROUND_UP(base, align); | |
2965 | if (pgb_try_mmap_set(ga, base, brk)) { | |
2966 | return base; | |
2967 | } | |
2968 | if (base >= -skip) { | |
2969 | return -1; | |
2970 | } | |
2971 | } | |
2972 | } | |
2973 | ||
2974 | static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base, | |
2975 | IntervalTreeRoot *root) | |
2976 | { | |
2977 | for (int i = ga->nbounds - 1; i >= 0; --i) { | |
2978 | uintptr_t s = base + ga->bounds[i][0]; | |
2979 | uintptr_t l = base + ga->bounds[i][1]; | |
2980 | IntervalTreeNode *n; | |
2981 | ||
2982 | if (l < s) { | |
2983 | /* Wraparound. Skip to advance S to mmap_min_addr. */ | |
2984 | return mmap_min_addr - s; | |
2985 | } | |
2986 | ||
2987 | n = interval_tree_iter_first(root, s, l); | |
2988 | if (n != NULL) { | |
2989 | /* Conflict. Skip to advance S to LAST + 1. */ | |
2990 | return n->last - s + 1; | |
2991 | } | |
2992 | } | |
2993 | return 0; /* success */ | |
2994 | } | |
2995 | ||
2996 | static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root, | |
2997 | uintptr_t align, uintptr_t brk) | |
2998 | { | |
2999 | uintptr_t last = sizeof(uintptr_t) == 4 ? MiB : GiB; | |
3000 | uintptr_t base, skip; | |
3001 | ||
3002 | while (true) { | |
3003 | base = ROUND_UP(last, align); | |
3004 | if (base < last) { | |
3005 | return -1; | |
3006 | } | |
3007 | ||
3008 | skip = pgb_try_itree(ga, base, root); | |
3009 | if (skip == 0) { | |
3010 | break; | |
3011 | } | |
3012 | ||
3013 | last = base + skip; | |
3014 | if (last < base) { | |
3015 | return -1; | |
3016 | } | |
3017 | } | |
3018 | ||
3019 | /* | |
3020 | * We've chosen 'base' based on holes in the interval tree, | |
3021 | * but we don't yet know if it is a valid host address. | |
3022 | * Because it is the first matching hole, if the host addresses | |
3023 | * are invalid we know there are no further matches. | |
3024 | */ | |
3025 | return pgb_try_mmap_set(ga, base, brk) ? base : -1; | |
3026 | } | |
3027 | ||
3028 | static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr, | |
3029 | uintptr_t guest_hiaddr, uintptr_t align) | |
3030 | { | |
3031 | IntervalTreeRoot *root; | |
3032 | uintptr_t brk, ret; | |
3033 | PGBAddrs ga; | |
3034 | ||
3035 | /* Try the identity map first. */ | |
3036 | if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) { | |
3037 | brk = (uintptr_t)sbrk(0); | |
3038 | if (pgb_try_mmap_set(&ga, 0, brk)) { | |
3039 | guest_base = 0; | |
3040 | return; | |
3041 | } | |
3042 | } | |
3043 | ||
3044 | /* | |
3045 | * Rebuild the address set for non-identity map. | |
3046 | * This differs in the mapping of the guest NULL page. | |
3047 | */ | |
3048 | pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false); | |
3049 | ||
3050 | root = read_self_maps(); | |
3051 | ||
3052 | /* Read brk after we've read the maps, which will malloc. */ | |
3053 | brk = (uintptr_t)sbrk(0); | |
3054 | ||
3055 | if (!root) { | |
3056 | ret = pgb_find_fallback(&ga, align, brk); | |
3057 | } else { | |
3058 | /* | |
3059 | * Reserve the area close to the host brk. | |
3060 | * This will be freed with the rest of the tree. | |
3061 | */ | |
3062 | IntervalTreeNode *b = g_new0(IntervalTreeNode, 1); | |
3063 | b->start = brk; | |
3064 | b->last = brk + 16 * MiB - 1; | |
3065 | interval_tree_insert(b, root); | |
3066 | ||
3067 | ret = pgb_find_itree(&ga, root, align, brk); | |
3068 | free_self_maps(root); | |
3069 | } | |
3070 | ||
3071 | if (ret == -1) { | |
3072 | int w = TARGET_LONG_BITS / 4; | |
3073 | ||
3074 | error_report("%s: Unable to find a guest_base to satisfy all " | |
3075 | "guest address mapping requirements", image_name); | |
3076 | ||
3077 | for (int i = 0; i < ga.nbounds; ++i) { | |
3078 | error_printf(" %0*" PRIx64 "-%0*" PRIx64 "\n", | |
3079 | w, (uint64_t)ga.bounds[i][0], | |
3080 | w, (uint64_t)ga.bounds[i][1]); | |
3081 | } | |
3082 | exit(EXIT_FAILURE); | |
3083 | } | |
3084 | guest_base = ret; | |
3085 | } | |
3086 | ||
3087 | void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, | |
3088 | abi_ulong guest_hiaddr) | |
3089 | { | |
3090 | /* In order to use host shmat, we must be able to honor SHMLBA. */ | |
3091 | uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE); | |
3092 | ||
3093 | /* Sanity check the guest binary. */ | |
3094 | if (reserved_va) { | |
3095 | if (guest_hiaddr > reserved_va) { | |
3096 | error_report("%s: requires more than reserved virtual " | |
3097 | "address space (0x%" PRIx64 " > 0x%lx)", | |
3098 | image_name, (uint64_t)guest_hiaddr, reserved_va); | |
3099 | exit(EXIT_FAILURE); | |
3100 | } | |
3101 | } else { | |
3102 | if (guest_hiaddr != (uintptr_t)guest_hiaddr) { | |
3103 | error_report("%s: requires more virtual address space " | |
3104 | "than the host can provide (0x%" PRIx64 ")", | |
3105 | image_name, (uint64_t)guest_hiaddr + 1); | |
3106 | exit(EXIT_FAILURE); | |
3107 | } | |
3108 | } | |
3109 | ||
3110 | if (have_guest_base) { | |
3111 | pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align); | |
3112 | } else { | |
3113 | pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align); | |
3114 | } | |
3115 | ||
3116 | /* Reserve and initialize the commpage. */ | |
3117 | if (!init_guest_commpage()) { | |
3118 | /* We have already probed for the commpage being free. */ | |
3119 | g_assert_not_reached(); | |
3120 | } | |
3121 | ||
3122 | assert(QEMU_IS_ALIGNED(guest_base, align)); | |
3123 | qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " | |
3124 | "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); | |
3125 | } | |
3126 | ||
3127 | enum { | |
3128 | /* The string "GNU\0" as a magic number. */ | |
3129 | GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), | |
3130 | NOTE_DATA_SZ = 1 * KiB, | |
3131 | NOTE_NAME_SZ = 4, | |
3132 | ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, | |
3133 | }; | |
3134 | ||
3135 | /* | |
3136 | * Process a single gnu_property entry. | |
3137 | * Return false for error. | |
3138 | */ | |
3139 | static bool parse_elf_property(const uint32_t *data, int *off, int datasz, | |
3140 | struct image_info *info, bool have_prev_type, | |
3141 | uint32_t *prev_type, Error **errp) | |
3142 | { | |
3143 | uint32_t pr_type, pr_datasz, step; | |
3144 | ||
3145 | if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { | |
3146 | goto error_data; | |
3147 | } | |
3148 | datasz -= *off; | |
3149 | data += *off / sizeof(uint32_t); | |
3150 | ||
3151 | if (datasz < 2 * sizeof(uint32_t)) { | |
3152 | goto error_data; | |
3153 | } | |
3154 | pr_type = data[0]; | |
3155 | pr_datasz = data[1]; | |
3156 | data += 2; | |
3157 | datasz -= 2 * sizeof(uint32_t); | |
3158 | step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); | |
3159 | if (step > datasz) { | |
3160 | goto error_data; | |
3161 | } | |
3162 | ||
3163 | /* Properties are supposed to be unique and sorted on pr_type. */ | |
3164 | if (have_prev_type && pr_type <= *prev_type) { | |
3165 | if (pr_type == *prev_type) { | |
3166 | error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); | |
3167 | } else { | |
3168 | error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); | |
3169 | } | |
3170 | return false; | |
3171 | } | |
3172 | *prev_type = pr_type; | |
3173 | ||
3174 | if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { | |
3175 | return false; | |
3176 | } | |
3177 | ||
3178 | *off += 2 * sizeof(uint32_t) + step; | |
3179 | return true; | |
3180 | ||
3181 | error_data: | |
3182 | error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); | |
3183 | return false; | |
3184 | } | |
3185 | ||
3186 | /* Process NT_GNU_PROPERTY_TYPE_0. */ | |
3187 | static bool parse_elf_properties(const ImageSource *src, | |
3188 | struct image_info *info, | |
3189 | const struct elf_phdr *phdr, | |
3190 | Error **errp) | |
3191 | { | |
3192 | union { | |
3193 | struct elf_note nhdr; | |
3194 | uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; | |
3195 | } note; | |
3196 | ||
3197 | int n, off, datasz; | |
3198 | bool have_prev_type; | |
3199 | uint32_t prev_type; | |
3200 | ||
3201 | /* Unless the arch requires properties, ignore them. */ | |
3202 | if (!ARCH_USE_GNU_PROPERTY) { | |
3203 | return true; | |
3204 | } | |
3205 | ||
3206 | /* If the properties are crazy large, that's too bad. */ | |
3207 | n = phdr->p_filesz; | |
3208 | if (n > sizeof(note)) { | |
3209 | error_setg(errp, "PT_GNU_PROPERTY too large"); | |
3210 | return false; | |
3211 | } | |
3212 | if (n < sizeof(note.nhdr)) { | |
3213 | error_setg(errp, "PT_GNU_PROPERTY too small"); | |
3214 | return false; | |
3215 | } | |
3216 | ||
3217 | if (!imgsrc_read(¬e, phdr->p_offset, n, src, errp)) { | |
3218 | return false; | |
3219 | } | |
3220 | ||
3221 | /* | |
3222 | * The contents of a valid PT_GNU_PROPERTY is a sequence of uint32_t. | |
3223 | * Swap most of them now, beyond the header and namesz. | |
3224 | */ | |
3225 | if (target_needs_bswap()) { | |
3226 | for (int i = 4; i < n / 4; i++) { | |
3227 | bswap32s(note.data + i); | |
3228 | } | |
3229 | } | |
3230 | ||
3231 | /* | |
3232 | * Note that nhdr is 3 words, and that the "name" described by namesz | |
3233 | * immediately follows nhdr and is thus at the 4th word. Further, all | |
3234 | * of the inputs to the kernel's round_up are multiples of 4. | |
3235 | */ | |
3236 | if (tswap32(note.nhdr.n_type) != NT_GNU_PROPERTY_TYPE_0 || | |
3237 | tswap32(note.nhdr.n_namesz) != NOTE_NAME_SZ || | |
3238 | note.data[3] != GNU0_MAGIC) { | |
3239 | error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); | |
3240 | return false; | |
3241 | } | |
3242 | off = sizeof(note.nhdr) + NOTE_NAME_SZ; | |
3243 | ||
3244 | datasz = tswap32(note.nhdr.n_descsz) + off; | |
3245 | if (datasz > n) { | |
3246 | error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); | |
3247 | return false; | |
3248 | } | |
3249 | ||
3250 | have_prev_type = false; | |
3251 | prev_type = 0; | |
3252 | while (1) { | |
3253 | if (off == datasz) { | |
3254 | return true; /* end, exit ok */ | |
3255 | } | |
3256 | if (!parse_elf_property(note.data, &off, datasz, info, | |
3257 | have_prev_type, &prev_type, errp)) { | |
3258 | return false; | |
3259 | } | |
3260 | have_prev_type = true; | |
3261 | } | |
3262 | } | |
3263 | ||
3264 | /** | |
3265 | * load_elf_image: Load an ELF image into the address space. | |
3266 | * @image_name: the filename of the image, to use in error messages. | |
3267 | * @src: the ImageSource from which to read. | |
3268 | * @info: info collected from the loaded image. | |
3269 | * @ehdr: the ELF header, not yet bswapped. | |
3270 | * @pinterp_name: record any PT_INTERP string found. | |
3271 | * | |
3272 | * On return: @info values will be filled in, as necessary or available. | |
3273 | */ | |
3274 | ||
3275 | static void load_elf_image(const char *image_name, const ImageSource *src, | |
3276 | struct image_info *info, struct elfhdr *ehdr, | |
3277 | char **pinterp_name) | |
3278 | { | |
3279 | g_autofree struct elf_phdr *phdr = NULL; | |
3280 | abi_ulong load_addr, load_bias, loaddr, hiaddr, error, align; | |
3281 | size_t reserve_size, align_size; | |
3282 | int i, prot_exec; | |
3283 | Error *err = NULL; | |
3284 | ||
3285 | /* | |
3286 | * First of all, some simple consistency checks. | |
3287 | * Note that we rely on the bswapped ehdr staying in bprm_buf, | |
3288 | * for later use by load_elf_binary and create_elf_tables. | |
3289 | */ | |
3290 | if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) { | |
3291 | goto exit_errmsg; | |
3292 | } | |
3293 | if (!elf_check_ident(ehdr)) { | |
3294 | error_setg(&err, "Invalid ELF image for this architecture"); | |
3295 | goto exit_errmsg; | |
3296 | } | |
3297 | bswap_ehdr(ehdr); | |
3298 | if (!elf_check_ehdr(ehdr)) { | |
3299 | error_setg(&err, "Invalid ELF image for this architecture"); | |
3300 | goto exit_errmsg; | |
3301 | } | |
3302 | ||
3303 | phdr = imgsrc_read_alloc(ehdr->e_phoff, | |
3304 | ehdr->e_phnum * sizeof(struct elf_phdr), | |
3305 | src, &err); | |
3306 | if (phdr == NULL) { | |
3307 | goto exit_errmsg; | |
3308 | } | |
3309 | bswap_phdr(phdr, ehdr->e_phnum); | |
3310 | ||
3311 | info->nsegs = 0; | |
3312 | info->pt_dynamic_addr = 0; | |
3313 | ||
3314 | mmap_lock(); | |
3315 | ||
3316 | /* | |
3317 | * Find the maximum size of the image and allocate an appropriate | |
3318 | * amount of memory to handle that. Locate the interpreter, if any. | |
3319 | */ | |
3320 | loaddr = -1, hiaddr = 0; | |
3321 | align = 0; | |
3322 | info->exec_stack = EXSTACK_DEFAULT; | |
3323 | for (i = 0; i < ehdr->e_phnum; ++i) { | |
3324 | struct elf_phdr *eppnt = phdr + i; | |
3325 | if (eppnt->p_type == PT_LOAD) { | |
3326 | abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK; | |
3327 | if (a < loaddr) { | |
3328 | loaddr = a; | |
3329 | } | |
3330 | a = eppnt->p_vaddr + eppnt->p_memsz - 1; | |
3331 | if (a > hiaddr) { | |
3332 | hiaddr = a; | |
3333 | } | |
3334 | ++info->nsegs; | |
3335 | align |= eppnt->p_align; | |
3336 | } else if (eppnt->p_type == PT_INTERP && pinterp_name) { | |
3337 | g_autofree char *interp_name = NULL; | |
3338 | ||
3339 | if (*pinterp_name) { | |
3340 | error_setg(&err, "Multiple PT_INTERP entries"); | |
3341 | goto exit_errmsg; | |
3342 | } | |
3343 | ||
3344 | interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz, | |
3345 | src, &err); | |
3346 | if (interp_name == NULL) { | |
3347 | goto exit_errmsg; | |
3348 | } | |
3349 | if (interp_name[eppnt->p_filesz - 1] != 0) { | |
3350 | error_setg(&err, "Invalid PT_INTERP entry"); | |
3351 | goto exit_errmsg; | |
3352 | } | |
3353 | *pinterp_name = g_steal_pointer(&interp_name); | |
3354 | } else if (eppnt->p_type == PT_GNU_PROPERTY) { | |
3355 | if (!parse_elf_properties(src, info, eppnt, &err)) { | |
3356 | goto exit_errmsg; | |
3357 | } | |
3358 | } else if (eppnt->p_type == PT_GNU_STACK) { | |
3359 | info->exec_stack = eppnt->p_flags & PF_X; | |
3360 | } | |
3361 | } | |
3362 | ||
3363 | load_addr = loaddr; | |
3364 | ||
3365 | align = pow2ceil(align); | |
3366 | ||
3367 | if (pinterp_name != NULL) { | |
3368 | if (ehdr->e_type == ET_EXEC) { | |
3369 | /* | |
3370 | * Make sure that the low address does not conflict with | |
3371 | * MMAP_MIN_ADDR or the QEMU application itself. | |
3372 | */ | |
3373 | probe_guest_base(image_name, loaddr, hiaddr); | |
3374 | } else { | |
3375 | /* | |
3376 | * The binary is dynamic, but we still need to | |
3377 | * select guest_base. In this case we pass a size. | |
3378 | */ | |
3379 | probe_guest_base(image_name, 0, hiaddr - loaddr); | |
3380 | ||
3381 | /* | |
3382 | * Avoid collision with the loader by providing a different | |
3383 | * default load address. | |
3384 | */ | |
3385 | load_addr += elf_et_dyn_base; | |
3386 | ||
3387 | /* | |
3388 | * TODO: Better support for mmap alignment is desirable. | |
3389 | * Since we do not have complete control over the guest | |
3390 | * address space, we prefer the kernel to choose some address | |
3391 | * rather than force the use of LOAD_ADDR via MAP_FIXED. | |
3392 | */ | |
3393 | if (align) { | |
3394 | load_addr &= -align; | |
3395 | } | |
3396 | } | |
3397 | } | |
3398 | ||
3399 | /* | |
3400 | * Reserve address space for all of this. | |
3401 | * | |
3402 | * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get | |
3403 | * exactly the address range that is required. Without reserved_va, | |
3404 | * the guest address space is not isolated. We have attempted to avoid | |
3405 | * conflict with the host program itself via probe_guest_base, but using | |
3406 | * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check. | |
3407 | * | |
3408 | * Otherwise this is ET_DYN, and we are searching for a location | |
3409 | * that can hold the memory space required. If the image is | |
3410 | * pre-linked, LOAD_ADDR will be non-zero, and the kernel should | |
3411 | * honor that address if it happens to be free. | |
3412 | * | |
3413 | * In both cases, we will overwrite pages in this range with mappings | |
3414 | * from the executable. | |
3415 | */ | |
3416 | reserve_size = (size_t)hiaddr - loaddr + 1; | |
3417 | align_size = reserve_size; | |
3418 | ||
3419 | if (ehdr->e_type != ET_EXEC && align > qemu_real_host_page_size()) { | |
3420 | align_size += align - 1; | |
3421 | } | |
3422 | ||
3423 | load_addr = target_mmap(load_addr, align_size, PROT_NONE, | |
3424 | MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | | |
3425 | (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0), | |
3426 | -1, 0); | |
3427 | if (load_addr == -1) { | |
3428 | goto exit_mmap; | |
3429 | } | |
3430 | ||
3431 | if (align_size != reserve_size) { | |
3432 | abi_ulong align_addr = ROUND_UP(load_addr, align); | |
3433 | abi_ulong align_end = TARGET_PAGE_ALIGN(align_addr + reserve_size); | |
3434 | abi_ulong load_end = TARGET_PAGE_ALIGN(load_addr + align_size); | |
3435 | ||
3436 | if (align_addr != load_addr) { | |
3437 | target_munmap(load_addr, align_addr - load_addr); | |
3438 | } | |
3439 | if (align_end != load_end) { | |
3440 | target_munmap(align_end, load_end - align_end); | |
3441 | } | |
3442 | load_addr = align_addr; | |
3443 | } | |
3444 | ||
3445 | load_bias = load_addr - loaddr; | |
3446 | ||
3447 | if (elf_is_fdpic(ehdr)) { | |
3448 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = | |
3449 | g_malloc(sizeof(*loadsegs) * info->nsegs); | |
3450 | ||
3451 | for (i = 0; i < ehdr->e_phnum; ++i) { | |
3452 | switch (phdr[i].p_type) { | |
3453 | case PT_DYNAMIC: | |
3454 | info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; | |
3455 | break; | |
3456 | case PT_LOAD: | |
3457 | loadsegs->addr = phdr[i].p_vaddr + load_bias; | |
3458 | loadsegs->p_vaddr = phdr[i].p_vaddr; | |
3459 | loadsegs->p_memsz = phdr[i].p_memsz; | |
3460 | ++loadsegs; | |
3461 | break; | |
3462 | } | |
3463 | } | |
3464 | } | |
3465 | ||
3466 | info->load_bias = load_bias; | |
3467 | info->code_offset = load_bias; | |
3468 | info->data_offset = load_bias; | |
3469 | info->load_addr = load_addr; | |
3470 | info->entry = ehdr->e_entry + load_bias; | |
3471 | info->start_code = -1; | |
3472 | info->end_code = 0; | |
3473 | info->start_data = -1; | |
3474 | info->end_data = 0; | |
3475 | /* Usual start for brk is after all sections of the main executable. */ | |
3476 | info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias); | |
3477 | info->elf_flags = ehdr->e_flags; | |
3478 | ||
3479 | prot_exec = PROT_EXEC; | |
3480 | #ifdef TARGET_AARCH64 | |
3481 | /* | |
3482 | * If the BTI feature is present, this indicates that the executable | |
3483 | * pages of the startup binary should be mapped with PROT_BTI, so that | |
3484 | * branch targets are enforced. | |
3485 | * | |
3486 | * The startup binary is either the interpreter or the static executable. | |
3487 | * The interpreter is responsible for all pages of a dynamic executable. | |
3488 | * | |
3489 | * Elf notes are backward compatible to older cpus. | |
3490 | * Do not enable BTI unless it is supported. | |
3491 | */ | |
3492 | if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) | |
3493 | && (pinterp_name == NULL || *pinterp_name == 0) | |
3494 | && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { | |
3495 | prot_exec |= TARGET_PROT_BTI; | |
3496 | } | |
3497 | #endif | |
3498 | ||
3499 | for (i = 0; i < ehdr->e_phnum; i++) { | |
3500 | struct elf_phdr *eppnt = phdr + i; | |
3501 | if (eppnt->p_type == PT_LOAD) { | |
3502 | abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; | |
3503 | int elf_prot = 0; | |
3504 | ||
3505 | if (eppnt->p_flags & PF_R) { | |
3506 | elf_prot |= PROT_READ; | |
3507 | } | |
3508 | if (eppnt->p_flags & PF_W) { | |
3509 | elf_prot |= PROT_WRITE; | |
3510 | } | |
3511 | if (eppnt->p_flags & PF_X) { | |
3512 | elf_prot |= prot_exec; | |
3513 | } | |
3514 | ||
3515 | vaddr = load_bias + eppnt->p_vaddr; | |
3516 | vaddr_po = vaddr & ~TARGET_PAGE_MASK; | |
3517 | vaddr_ps = vaddr & TARGET_PAGE_MASK; | |
3518 | ||
3519 | vaddr_ef = vaddr + eppnt->p_filesz; | |
3520 | vaddr_em = vaddr + eppnt->p_memsz; | |
3521 | ||
3522 | /* | |
3523 | * Some segments may be completely empty, with a non-zero p_memsz | |
3524 | * but no backing file segment. | |
3525 | */ | |
3526 | if (eppnt->p_filesz != 0) { | |
3527 | error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, | |
3528 | elf_prot, MAP_PRIVATE | MAP_FIXED, | |
3529 | src, eppnt->p_offset - vaddr_po); | |
3530 | if (error == -1) { | |
3531 | goto exit_mmap; | |
3532 | } | |
3533 | } | |
3534 | ||
3535 | /* If the load segment requests extra zeros (e.g. bss), map it. */ | |
3536 | if (vaddr_ef < vaddr_em && | |
3537 | !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) { | |
3538 | goto exit_errmsg; | |
3539 | } | |
3540 | ||
3541 | /* Find the full program boundaries. */ | |
3542 | if (elf_prot & PROT_EXEC) { | |
3543 | if (vaddr < info->start_code) { | |
3544 | info->start_code = vaddr; | |
3545 | } | |
3546 | if (vaddr_ef > info->end_code) { | |
3547 | info->end_code = vaddr_ef; | |
3548 | } | |
3549 | } | |
3550 | if (elf_prot & PROT_WRITE) { | |
3551 | if (vaddr < info->start_data) { | |
3552 | info->start_data = vaddr; | |
3553 | } | |
3554 | if (vaddr_ef > info->end_data) { | |
3555 | info->end_data = vaddr_ef; | |
3556 | } | |
3557 | } | |
3558 | #ifdef TARGET_MIPS | |
3559 | } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { | |
3560 | Mips_elf_abiflags_v0 abiflags; | |
3561 | ||
3562 | if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags), | |
3563 | src, &err)) { | |
3564 | goto exit_errmsg; | |
3565 | } | |
3566 | bswap_mips_abiflags(&abiflags); | |
3567 | info->fp_abi = abiflags.fp_abi; | |
3568 | #endif | |
3569 | } | |
3570 | } | |
3571 | ||
3572 | if (info->end_data == 0) { | |
3573 | info->start_data = info->end_code; | |
3574 | info->end_data = info->end_code; | |
3575 | } | |
3576 | ||
3577 | if (qemu_log_enabled()) { | |
3578 | load_symbols(ehdr, src, load_bias); | |
3579 | } | |
3580 | ||
3581 | debuginfo_report_elf(image_name, src->fd, load_bias); | |
3582 | ||
3583 | mmap_unlock(); | |
3584 | ||
3585 | close(src->fd); | |
3586 | return; | |
3587 | ||
3588 | exit_mmap: | |
3589 | error_setg_errno(&err, errno, "Error mapping file"); | |
3590 | goto exit_errmsg; | |
3591 | exit_errmsg: | |
3592 | error_reportf_err(err, "%s: ", image_name); | |
3593 | exit(-1); | |
3594 | } | |
3595 | ||
3596 | static void load_elf_interp(const char *filename, struct image_info *info, | |
3597 | char bprm_buf[BPRM_BUF_SIZE]) | |
3598 | { | |
3599 | struct elfhdr ehdr; | |
3600 | ImageSource src; | |
3601 | int fd, retval; | |
3602 | Error *err = NULL; | |
3603 | ||
3604 | fd = open(path(filename), O_RDONLY); | |
3605 | if (fd < 0) { | |
3606 | error_setg_file_open(&err, errno, filename); | |
3607 | error_report_err(err); | |
3608 | exit(-1); | |
3609 | } | |
3610 | ||
3611 | retval = read(fd, bprm_buf, BPRM_BUF_SIZE); | |
3612 | if (retval < 0) { | |
3613 | error_setg_errno(&err, errno, "Error reading file header"); | |
3614 | error_reportf_err(err, "%s: ", filename); | |
3615 | exit(-1); | |
3616 | } | |
3617 | ||
3618 | src.fd = fd; | |
3619 | src.cache = bprm_buf; | |
3620 | src.cache_size = retval; | |
3621 | ||
3622 | load_elf_image(filename, &src, info, &ehdr, NULL); | |
3623 | } | |
3624 | ||
3625 | #ifndef vdso_image_info | |
3626 | #ifdef VDSO_HEADER | |
3627 | #include VDSO_HEADER | |
3628 | #define vdso_image_info(flags) &vdso_image_info | |
3629 | #else | |
3630 | #define vdso_image_info(flags) NULL | |
3631 | #endif /* VDSO_HEADER */ | |
3632 | #endif /* vdso_image_info */ | |
3633 | ||
3634 | static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso) | |
3635 | { | |
3636 | ImageSource src; | |
3637 | struct elfhdr ehdr; | |
3638 | abi_ulong load_bias, load_addr; | |
3639 | ||
3640 | src.fd = -1; | |
3641 | src.cache = vdso->image; | |
3642 | src.cache_size = vdso->image_size; | |
3643 | ||
3644 | load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL); | |
3645 | load_addr = info->load_addr; | |
3646 | load_bias = info->load_bias; | |
3647 | ||
3648 | /* | |
3649 | * We need to relocate the VDSO image. The one built into the kernel | |
3650 | * is built for a fixed address. The one built for QEMU is not, since | |
3651 | * that requires close control of the guest address space. | |
3652 | * We pre-processed the image to locate all of the addresses that need | |
3653 | * to be updated. | |
3654 | */ | |
3655 | for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) { | |
3656 | abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]); | |
3657 | *addr = tswapal(tswapal(*addr) + load_bias); | |
3658 | } | |
3659 | ||
3660 | /* Install signal trampolines, if present. */ | |
3661 | if (vdso->sigreturn_ofs) { | |
3662 | default_sigreturn = load_addr + vdso->sigreturn_ofs; | |
3663 | } | |
3664 | if (vdso->rt_sigreturn_ofs) { | |
3665 | default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs; | |
3666 | } | |
3667 | ||
3668 | /* Remove write from VDSO segment. */ | |
3669 | target_mprotect(info->start_data, info->end_data - info->start_data, | |
3670 | PROT_READ | PROT_EXEC); | |
3671 | } | |
3672 | ||
3673 | static int symfind(const void *s0, const void *s1) | |
3674 | { | |
3675 | struct elf_sym *sym = (struct elf_sym *)s1; | |
3676 | __typeof(sym->st_value) addr = *(uint64_t *)s0; | |
3677 | int result = 0; | |
3678 | ||
3679 | if (addr < sym->st_value) { | |
3680 | result = -1; | |
3681 | } else if (addr >= sym->st_value + sym->st_size) { | |
3682 | result = 1; | |
3683 | } | |
3684 | return result; | |
3685 | } | |
3686 | ||
3687 | static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr) | |
3688 | { | |
3689 | #if ELF_CLASS == ELFCLASS32 | |
3690 | struct elf_sym *syms = s->disas_symtab.elf32; | |
3691 | #else | |
3692 | struct elf_sym *syms = s->disas_symtab.elf64; | |
3693 | #endif | |
3694 | ||
3695 | // binary search | |
3696 | struct elf_sym *sym; | |
3697 | ||
3698 | sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); | |
3699 | if (sym != NULL) { | |
3700 | return s->disas_strtab + sym->st_name; | |
3701 | } | |
3702 | ||
3703 | return ""; | |
3704 | } | |
3705 | ||
3706 | /* FIXME: This should use elf_ops.h.inc */ | |
3707 | static int symcmp(const void *s0, const void *s1) | |
3708 | { | |
3709 | struct elf_sym *sym0 = (struct elf_sym *)s0; | |
3710 | struct elf_sym *sym1 = (struct elf_sym *)s1; | |
3711 | return (sym0->st_value < sym1->st_value) | |
3712 | ? -1 | |
3713 | : ((sym0->st_value > sym1->st_value) ? 1 : 0); | |
3714 | } | |
3715 | ||
3716 | /* Best attempt to load symbols from this ELF object. */ | |
3717 | static void load_symbols(struct elfhdr *hdr, const ImageSource *src, | |
3718 | abi_ulong load_bias) | |
3719 | { | |
3720 | int i, shnum, nsyms, sym_idx = 0, str_idx = 0; | |
3721 | g_autofree struct elf_shdr *shdr = NULL; | |
3722 | char *strings = NULL; | |
3723 | struct elf_sym *syms = NULL; | |
3724 | struct elf_sym *new_syms; | |
3725 | uint64_t segsz; | |
3726 | ||
3727 | shnum = hdr->e_shnum; | |
3728 | shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr), | |
3729 | src, NULL); | |
3730 | if (shdr == NULL) { | |
3731 | return; | |
3732 | } | |
3733 | ||
3734 | bswap_shdr(shdr, shnum); | |
3735 | for (i = 0; i < shnum; ++i) { | |
3736 | if (shdr[i].sh_type == SHT_SYMTAB) { | |
3737 | sym_idx = i; | |
3738 | str_idx = shdr[i].sh_link; | |
3739 | goto found; | |
3740 | } | |
3741 | } | |
3742 | ||
3743 | /* There will be no symbol table if the file was stripped. */ | |
3744 | return; | |
3745 | ||
3746 | found: | |
3747 | /* Now know where the strtab and symtab are. Snarf them. */ | |
3748 | ||
3749 | segsz = shdr[str_idx].sh_size; | |
3750 | strings = g_try_malloc(segsz); | |
3751 | if (!strings) { | |
3752 | goto give_up; | |
3753 | } | |
3754 | if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) { | |
3755 | goto give_up; | |
3756 | } | |
3757 | ||
3758 | segsz = shdr[sym_idx].sh_size; | |
3759 | if (segsz / sizeof(struct elf_sym) > INT_MAX) { | |
3760 | /* | |
3761 | * Implausibly large symbol table: give up rather than ploughing | |
3762 | * on with the number of symbols calculation overflowing. | |
3763 | */ | |
3764 | goto give_up; | |
3765 | } | |
3766 | nsyms = segsz / sizeof(struct elf_sym); | |
3767 | syms = g_try_malloc(segsz); | |
3768 | if (!syms) { | |
3769 | goto give_up; | |
3770 | } | |
3771 | if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) { | |
3772 | goto give_up; | |
3773 | } | |
3774 | ||
3775 | for (i = 0; i < nsyms; ) { | |
3776 | bswap_sym(syms + i); | |
3777 | /* Throw away entries which we do not need. */ | |
3778 | if (syms[i].st_shndx == SHN_UNDEF | |
3779 | || syms[i].st_shndx >= SHN_LORESERVE | |
3780 | || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { | |
3781 | if (i < --nsyms) { | |
3782 | syms[i] = syms[nsyms]; | |
3783 | } | |
3784 | } else { | |
3785 | #if defined(TARGET_ARM) || defined (TARGET_MIPS) | |
3786 | /* The bottom address bit marks a Thumb or MIPS16 symbol. */ | |
3787 | syms[i].st_value &= ~(target_ulong)1; | |
3788 | #endif | |
3789 | syms[i].st_value += load_bias; | |
3790 | i++; | |
3791 | } | |
3792 | } | |
3793 | ||
3794 | /* No "useful" symbol. */ | |
3795 | if (nsyms == 0) { | |
3796 | goto give_up; | |
3797 | } | |
3798 | ||
3799 | /* | |
3800 | * Attempt to free the storage associated with the local symbols | |
3801 | * that we threw away. Whether or not this has any effect on the | |
3802 | * memory allocation depends on the malloc implementation and how | |
3803 | * many symbols we managed to discard. | |
3804 | */ | |
3805 | new_syms = g_try_renew(struct elf_sym, syms, nsyms); | |
3806 | if (new_syms == NULL) { | |
3807 | goto give_up; | |
3808 | } | |
3809 | syms = new_syms; | |
3810 | ||
3811 | qsort(syms, nsyms, sizeof(*syms), symcmp); | |
3812 | ||
3813 | { | |
3814 | struct syminfo *s = g_new(struct syminfo, 1); | |
3815 | ||
3816 | s->disas_strtab = strings; | |
3817 | s->disas_num_syms = nsyms; | |
3818 | #if ELF_CLASS == ELFCLASS32 | |
3819 | s->disas_symtab.elf32 = syms; | |
3820 | #else | |
3821 | s->disas_symtab.elf64 = syms; | |
3822 | #endif | |
3823 | s->lookup_symbol = lookup_symbolxx; | |
3824 | s->next = syminfos; | |
3825 | syminfos = s; | |
3826 | } | |
3827 | return; | |
3828 | ||
3829 | give_up: | |
3830 | g_free(strings); | |
3831 | g_free(syms); | |
3832 | } | |
3833 | ||
3834 | uint32_t get_elf_eflags(int fd) | |
3835 | { | |
3836 | struct elfhdr ehdr; | |
3837 | off_t offset; | |
3838 | int ret; | |
3839 | ||
3840 | /* Read ELF header */ | |
3841 | offset = lseek(fd, 0, SEEK_SET); | |
3842 | if (offset == (off_t) -1) { | |
3843 | return 0; | |
3844 | } | |
3845 | ret = read(fd, &ehdr, sizeof(ehdr)); | |
3846 | if (ret < sizeof(ehdr)) { | |
3847 | return 0; | |
3848 | } | |
3849 | offset = lseek(fd, offset, SEEK_SET); | |
3850 | if (offset == (off_t) -1) { | |
3851 | return 0; | |
3852 | } | |
3853 | ||
3854 | /* Check ELF signature */ | |
3855 | if (!elf_check_ident(&ehdr)) { | |
3856 | return 0; | |
3857 | } | |
3858 | ||
3859 | /* check header */ | |
3860 | bswap_ehdr(&ehdr); | |
3861 | if (!elf_check_ehdr(&ehdr)) { | |
3862 | return 0; | |
3863 | } | |
3864 | ||
3865 | /* return architecture id */ | |
3866 | return ehdr.e_flags; | |
3867 | } | |
3868 | ||
3869 | int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) | |
3870 | { | |
3871 | /* | |
3872 | * We need a copy of the elf header for passing to create_elf_tables. | |
3873 | * We will have overwritten the original when we re-use bprm->buf | |
3874 | * while loading the interpreter. Allocate the storage for this now | |
3875 | * and let elf_load_image do any swapping that may be required. | |
3876 | */ | |
3877 | struct elfhdr ehdr; | |
3878 | struct image_info interp_info, vdso_info; | |
3879 | char *elf_interpreter = NULL; | |
3880 | char *scratch; | |
3881 | ||
3882 | memset(&interp_info, 0, sizeof(interp_info)); | |
3883 | #ifdef TARGET_MIPS | |
3884 | interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; | |
3885 | #endif | |
3886 | ||
3887 | load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter); | |
3888 | ||
3889 | /* Do this so that we can load the interpreter, if need be. We will | |
3890 | change some of these later */ | |
3891 | bprm->p = setup_arg_pages(bprm, info); | |
3892 | ||
3893 | scratch = g_new0(char, TARGET_PAGE_SIZE); | |
3894 | if (STACK_GROWS_DOWN) { | |
3895 | bprm->p = copy_elf_strings(1, &bprm->filename, scratch, | |
3896 | bprm->p, info->stack_limit); | |
3897 | info->file_string = bprm->p; | |
3898 | bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, | |
3899 | bprm->p, info->stack_limit); | |
3900 | info->env_strings = bprm->p; | |
3901 | bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, | |
3902 | bprm->p, info->stack_limit); | |
3903 | info->arg_strings = bprm->p; | |
3904 | } else { | |
3905 | info->arg_strings = bprm->p; | |
3906 | bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, | |
3907 | bprm->p, info->stack_limit); | |
3908 | info->env_strings = bprm->p; | |
3909 | bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, | |
3910 | bprm->p, info->stack_limit); | |
3911 | info->file_string = bprm->p; | |
3912 | bprm->p = copy_elf_strings(1, &bprm->filename, scratch, | |
3913 | bprm->p, info->stack_limit); | |
3914 | } | |
3915 | ||
3916 | g_free(scratch); | |
3917 | ||
3918 | if (!bprm->p) { | |
3919 | fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); | |
3920 | exit(-1); | |
3921 | } | |
3922 | ||
3923 | if (elf_interpreter) { | |
3924 | load_elf_interp(elf_interpreter, &interp_info, bprm->buf); | |
3925 | ||
3926 | /* | |
3927 | * While unusual because of ELF_ET_DYN_BASE, if we are unlucky | |
3928 | * with the mappings the interpreter can be loaded above but | |
3929 | * near the main executable, which can leave very little room | |
3930 | * for the heap. | |
3931 | * If the current brk has less than 16MB, use the end of the | |
3932 | * interpreter. | |
3933 | */ | |
3934 | if (interp_info.brk > info->brk && | |
3935 | interp_info.load_bias - info->brk < 16 * MiB) { | |
3936 | info->brk = interp_info.brk; | |
3937 | } | |
3938 | ||
3939 | /* If the program interpreter is one of these two, then assume | |
3940 | an iBCS2 image. Otherwise assume a native linux image. */ | |
3941 | ||
3942 | if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 | |
3943 | || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { | |
3944 | info->personality = PER_SVR4; | |
3945 | ||
3946 | /* Why this, you ask??? Well SVr4 maps page 0 as read-only, | |
3947 | and some applications "depend" upon this behavior. Since | |
3948 | we do not have the power to recompile these, we emulate | |
3949 | the SVr4 behavior. Sigh. */ | |
3950 | target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC, | |
3951 | MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS, | |
3952 | -1, 0); | |
3953 | } | |
3954 | #ifdef TARGET_MIPS | |
3955 | info->interp_fp_abi = interp_info.fp_abi; | |
3956 | #endif | |
3957 | } | |
3958 | ||
3959 | /* | |
3960 | * Load a vdso if available, which will amongst other things contain the | |
3961 | * signal trampolines. Otherwise, allocate a separate page for them. | |
3962 | */ | |
3963 | const VdsoImageInfo *vdso = vdso_image_info(info->elf_flags); | |
3964 | if (vdso) { | |
3965 | load_elf_vdso(&vdso_info, vdso); | |
3966 | info->vdso = vdso_info.load_bias; | |
3967 | } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { | |
3968 | abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, | |
3969 | PROT_READ | PROT_WRITE, | |
3970 | MAP_PRIVATE | MAP_ANON, -1, 0); | |
3971 | if (tramp_page == -1) { | |
3972 | return -errno; | |
3973 | } | |
3974 | ||
3975 | setup_sigtramp(tramp_page); | |
3976 | target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); | |
3977 | } | |
3978 | ||
3979 | bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info, | |
3980 | elf_interpreter ? &interp_info : NULL, | |
3981 | vdso ? &vdso_info : NULL); | |
3982 | info->start_stack = bprm->p; | |
3983 | ||
3984 | /* If we have an interpreter, set that as the program's entry point. | |
3985 | Copy the load_bias as well, to help PPC64 interpret the entry | |
3986 | point as a function descriptor. Do this after creating elf tables | |
3987 | so that we copy the original program entry point into the AUXV. */ | |
3988 | if (elf_interpreter) { | |
3989 | info->load_bias = interp_info.load_bias; | |
3990 | info->entry = interp_info.entry; | |
3991 | g_free(elf_interpreter); | |
3992 | } | |
3993 | ||
3994 | #ifdef USE_ELF_CORE_DUMP | |
3995 | bprm->core_dump = &elf_core_dump; | |
3996 | #endif | |
3997 | ||
3998 | return 0; | |
3999 | } | |
4000 | ||
4001 | #ifdef USE_ELF_CORE_DUMP | |
4002 | ||
4003 | /* | |
4004 | * Definitions to generate Intel SVR4-like core files. | |
4005 | * These mostly have the same names as the SVR4 types with "target_elf_" | |
4006 | * tacked on the front to prevent clashes with linux definitions, | |
4007 | * and the typedef forms have been avoided. This is mostly like | |
4008 | * the SVR4 structure, but more Linuxy, with things that Linux does | |
4009 | * not support and which gdb doesn't really use excluded. | |
4010 | * | |
4011 | * Fields we don't dump (their contents is zero) in linux-user qemu | |
4012 | * are marked with XXX. | |
4013 | * | |
4014 | * Core dump code is copied from linux kernel (fs/binfmt_elf.c). | |
4015 | * | |
4016 | * Porting ELF coredump for target is (quite) simple process. First you | |
4017 | * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for | |
4018 | * the target resides): | |
4019 | * | |
4020 | * #define USE_ELF_CORE_DUMP | |
4021 | * | |
4022 | * Next you define type of register set used for dumping. ELF specification | |
4023 | * says that it needs to be array of elf_greg_t that has size of ELF_NREG. | |
4024 | * | |
4025 | * typedef <target_regtype> target_elf_greg_t; | |
4026 | * #define ELF_NREG <number of registers> | |
4027 | * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
4028 | * | |
4029 | * Last step is to implement target specific function that copies registers | |
4030 | * from given cpu into just specified register set. Prototype is: | |
4031 | * | |
4032 | * static void elf_core_copy_regs(taret_elf_gregset_t *regs, | |
4033 | * const CPUArchState *env); | |
4034 | * | |
4035 | * Parameters: | |
4036 | * regs - copy register values into here (allocated and zeroed by caller) | |
4037 | * env - copy registers from here | |
4038 | * | |
4039 | * Example for ARM target is provided in this file. | |
4040 | */ | |
4041 | ||
4042 | struct target_elf_siginfo { | |
4043 | abi_int si_signo; /* signal number */ | |
4044 | abi_int si_code; /* extra code */ | |
4045 | abi_int si_errno; /* errno */ | |
4046 | }; | |
4047 | ||
4048 | struct target_elf_prstatus { | |
4049 | struct target_elf_siginfo pr_info; /* Info associated with signal */ | |
4050 | abi_short pr_cursig; /* Current signal */ | |
4051 | abi_ulong pr_sigpend; /* XXX */ | |
4052 | abi_ulong pr_sighold; /* XXX */ | |
4053 | target_pid_t pr_pid; | |
4054 | target_pid_t pr_ppid; | |
4055 | target_pid_t pr_pgrp; | |
4056 | target_pid_t pr_sid; | |
4057 | struct target_timeval pr_utime; /* XXX User time */ | |
4058 | struct target_timeval pr_stime; /* XXX System time */ | |
4059 | struct target_timeval pr_cutime; /* XXX Cumulative user time */ | |
4060 | struct target_timeval pr_cstime; /* XXX Cumulative system time */ | |
4061 | target_elf_gregset_t pr_reg; /* GP registers */ | |
4062 | abi_int pr_fpvalid; /* XXX */ | |
4063 | }; | |
4064 | ||
4065 | #define ELF_PRARGSZ (80) /* Number of chars for args */ | |
4066 | ||
4067 | struct target_elf_prpsinfo { | |
4068 | char pr_state; /* numeric process state */ | |
4069 | char pr_sname; /* char for pr_state */ | |
4070 | char pr_zomb; /* zombie */ | |
4071 | char pr_nice; /* nice val */ | |
4072 | abi_ulong pr_flag; /* flags */ | |
4073 | target_uid_t pr_uid; | |
4074 | target_gid_t pr_gid; | |
4075 | target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; | |
4076 | /* Lots missing */ | |
4077 | char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ | |
4078 | char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ | |
4079 | }; | |
4080 | ||
4081 | static void bswap_prstatus(struct target_elf_prstatus *prstatus) | |
4082 | { | |
4083 | if (!target_needs_bswap()) { | |
4084 | return; | |
4085 | } | |
4086 | ||
4087 | prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); | |
4088 | prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); | |
4089 | prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); | |
4090 | prstatus->pr_cursig = tswap16(prstatus->pr_cursig); | |
4091 | prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); | |
4092 | prstatus->pr_sighold = tswapal(prstatus->pr_sighold); | |
4093 | prstatus->pr_pid = tswap32(prstatus->pr_pid); | |
4094 | prstatus->pr_ppid = tswap32(prstatus->pr_ppid); | |
4095 | prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); | |
4096 | prstatus->pr_sid = tswap32(prstatus->pr_sid); | |
4097 | /* cpu times are not filled, so we skip them */ | |
4098 | /* regs should be in correct format already */ | |
4099 | prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); | |
4100 | } | |
4101 | ||
4102 | static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) | |
4103 | { | |
4104 | if (!target_needs_bswap()) { | |
4105 | return; | |
4106 | } | |
4107 | ||
4108 | psinfo->pr_flag = tswapal(psinfo->pr_flag); | |
4109 | psinfo->pr_uid = tswap16(psinfo->pr_uid); | |
4110 | psinfo->pr_gid = tswap16(psinfo->pr_gid); | |
4111 | psinfo->pr_pid = tswap32(psinfo->pr_pid); | |
4112 | psinfo->pr_ppid = tswap32(psinfo->pr_ppid); | |
4113 | psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); | |
4114 | psinfo->pr_sid = tswap32(psinfo->pr_sid); | |
4115 | } | |
4116 | ||
4117 | static void bswap_note(struct elf_note *en) | |
4118 | { | |
4119 | if (!target_needs_bswap()) { | |
4120 | return; | |
4121 | } | |
4122 | ||
4123 | bswap32s(&en->n_namesz); | |
4124 | bswap32s(&en->n_descsz); | |
4125 | bswap32s(&en->n_type); | |
4126 | } | |
4127 | ||
4128 | /* | |
4129 | * Calculate file (dump) size of given memory region. | |
4130 | */ | |
4131 | static size_t vma_dump_size(vaddr start, vaddr end, int flags) | |
4132 | { | |
4133 | /* The area must be readable. */ | |
4134 | if (!(flags & PAGE_READ)) { | |
4135 | return 0; | |
4136 | } | |
4137 | ||
4138 | /* | |
4139 | * Usually we don't dump executable pages as they contain | |
4140 | * non-writable code that debugger can read directly from | |
4141 | * target library etc. If there is no elf header, we dump it. | |
4142 | */ | |
4143 | if (!(flags & PAGE_WRITE_ORG) && | |
4144 | (flags & PAGE_EXEC) && | |
4145 | memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) { | |
4146 | return 0; | |
4147 | } | |
4148 | ||
4149 | return end - start; | |
4150 | } | |
4151 | ||
4152 | static size_t size_note(const char *name, size_t datasz) | |
4153 | { | |
4154 | size_t namesz = strlen(name) + 1; | |
4155 | ||
4156 | namesz = ROUND_UP(namesz, 4); | |
4157 | datasz = ROUND_UP(datasz, 4); | |
4158 | ||
4159 | return sizeof(struct elf_note) + namesz + datasz; | |
4160 | } | |
4161 | ||
4162 | static void *fill_note(void **pptr, int type, const char *name, size_t datasz) | |
4163 | { | |
4164 | void *ptr = *pptr; | |
4165 | struct elf_note *n = ptr; | |
4166 | size_t namesz = strlen(name) + 1; | |
4167 | ||
4168 | n->n_namesz = namesz; | |
4169 | n->n_descsz = datasz; | |
4170 | n->n_type = type; | |
4171 | bswap_note(n); | |
4172 | ||
4173 | ptr += sizeof(*n); | |
4174 | memcpy(ptr, name, namesz); | |
4175 | ||
4176 | namesz = ROUND_UP(namesz, 4); | |
4177 | datasz = ROUND_UP(datasz, 4); | |
4178 | ||
4179 | *pptr = ptr + namesz + datasz; | |
4180 | return ptr + namesz; | |
4181 | } | |
4182 | ||
4183 | static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, | |
4184 | uint32_t flags) | |
4185 | { | |
4186 | memcpy(elf->e_ident, ELFMAG, SELFMAG); | |
4187 | ||
4188 | elf->e_ident[EI_CLASS] = ELF_CLASS; | |
4189 | elf->e_ident[EI_DATA] = ELF_DATA; | |
4190 | elf->e_ident[EI_VERSION] = EV_CURRENT; | |
4191 | elf->e_ident[EI_OSABI] = ELF_OSABI; | |
4192 | ||
4193 | elf->e_type = ET_CORE; | |
4194 | elf->e_machine = machine; | |
4195 | elf->e_version = EV_CURRENT; | |
4196 | elf->e_phoff = sizeof(struct elfhdr); | |
4197 | elf->e_flags = flags; | |
4198 | elf->e_ehsize = sizeof(struct elfhdr); | |
4199 | elf->e_phentsize = sizeof(struct elf_phdr); | |
4200 | elf->e_phnum = segs; | |
4201 | ||
4202 | bswap_ehdr(elf); | |
4203 | } | |
4204 | ||
4205 | static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset) | |
4206 | { | |
4207 | phdr->p_type = PT_NOTE; | |
4208 | phdr->p_offset = offset; | |
4209 | phdr->p_filesz = sz; | |
4210 | ||
4211 | bswap_phdr(phdr, 1); | |
4212 | } | |
4213 | ||
4214 | static void fill_prstatus_note(void *data, CPUState *cpu, int signr) | |
4215 | { | |
4216 | /* | |
4217 | * Because note memory is only aligned to 4, and target_elf_prstatus | |
4218 | * may well have higher alignment requirements, fill locally and | |
4219 | * memcpy to the destination afterward. | |
4220 | */ | |
4221 | struct target_elf_prstatus prstatus = { | |
4222 | .pr_info.si_signo = signr, | |
4223 | .pr_cursig = signr, | |
4224 | .pr_pid = get_task_state(cpu)->ts_tid, | |
4225 | .pr_ppid = getppid(), | |
4226 | .pr_pgrp = getpgrp(), | |
4227 | .pr_sid = getsid(0), | |
4228 | }; | |
4229 | ||
4230 | elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu)); | |
4231 | bswap_prstatus(&prstatus); | |
4232 | memcpy(data, &prstatus, sizeof(prstatus)); | |
4233 | } | |
4234 | ||
4235 | static void fill_prpsinfo_note(void *data, const TaskState *ts) | |
4236 | { | |
4237 | /* | |
4238 | * Because note memory is only aligned to 4, and target_elf_prpsinfo | |
4239 | * may well have higher alignment requirements, fill locally and | |
4240 | * memcpy to the destination afterward. | |
4241 | */ | |
4242 | struct target_elf_prpsinfo psinfo = { | |
4243 | .pr_pid = getpid(), | |
4244 | .pr_ppid = getppid(), | |
4245 | .pr_pgrp = getpgrp(), | |
4246 | .pr_sid = getsid(0), | |
4247 | .pr_uid = getuid(), | |
4248 | .pr_gid = getgid(), | |
4249 | }; | |
4250 | char *base_filename; | |
4251 | size_t len; | |
4252 | ||
4253 | len = ts->info->env_strings - ts->info->arg_strings; | |
4254 | len = MIN(len, ELF_PRARGSZ); | |
4255 | memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len); | |
4256 | for (size_t i = 0; i < len; i++) { | |
4257 | if (psinfo.pr_psargs[i] == 0) { | |
4258 | psinfo.pr_psargs[i] = ' '; | |
4259 | } | |
4260 | } | |
4261 | ||
4262 | base_filename = g_path_get_basename(ts->bprm->filename); | |
4263 | /* | |
4264 | * Using strncpy here is fine: at max-length, | |
4265 | * this field is not NUL-terminated. | |
4266 | */ | |
4267 | strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname)); | |
4268 | g_free(base_filename); | |
4269 | ||
4270 | bswap_psinfo(&psinfo); | |
4271 | memcpy(data, &psinfo, sizeof(psinfo)); | |
4272 | } | |
4273 | ||
4274 | static void fill_auxv_note(void *data, const TaskState *ts) | |
4275 | { | |
4276 | memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len); | |
4277 | } | |
4278 | ||
4279 | /* | |
4280 | * Constructs name of coredump file. We have following convention | |
4281 | * for the name: | |
4282 | * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core | |
4283 | * | |
4284 | * Returns the filename | |
4285 | */ | |
4286 | static char *core_dump_filename(const TaskState *ts) | |
4287 | { | |
4288 | g_autoptr(GDateTime) now = g_date_time_new_now_local(); | |
4289 | g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); | |
4290 | g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); | |
4291 | ||
4292 | return g_strdup_printf("qemu_%s_%s_%d.core", | |
4293 | base_filename, nowstr, (int)getpid()); | |
4294 | } | |
4295 | ||
4296 | static int dump_write(int fd, const void *ptr, size_t size) | |
4297 | { | |
4298 | const char *bufp = (const char *)ptr; | |
4299 | ssize_t bytes_written, bytes_left; | |
4300 | ||
4301 | bytes_written = 0; | |
4302 | bytes_left = size; | |
4303 | ||
4304 | /* | |
4305 | * In normal conditions, single write(2) should do but | |
4306 | * in case of socket etc. this mechanism is more portable. | |
4307 | */ | |
4308 | do { | |
4309 | bytes_written = write(fd, bufp, bytes_left); | |
4310 | if (bytes_written < 0) { | |
4311 | if (errno == EINTR) | |
4312 | continue; | |
4313 | return (-1); | |
4314 | } else if (bytes_written == 0) { /* eof */ | |
4315 | return (-1); | |
4316 | } | |
4317 | bufp += bytes_written; | |
4318 | bytes_left -= bytes_written; | |
4319 | } while (bytes_left > 0); | |
4320 | ||
4321 | return (0); | |
4322 | } | |
4323 | ||
4324 | static int wmr_page_unprotect_regions(void *opaque, vaddr start, | |
4325 | vaddr end, int flags) | |
4326 | { | |
4327 | if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) { | |
4328 | size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size()); | |
4329 | ||
4330 | while (1) { | |
4331 | page_unprotect(NULL, start, 0); | |
4332 | if (end - start <= step) { | |
4333 | break; | |
4334 | } | |
4335 | start += step; | |
4336 | } | |
4337 | } | |
4338 | return 0; | |
4339 | } | |
4340 | ||
4341 | typedef struct { | |
4342 | unsigned count; | |
4343 | size_t size; | |
4344 | } CountAndSizeRegions; | |
4345 | ||
4346 | static int wmr_count_and_size_regions(void *opaque, vaddr start, | |
4347 | vaddr end, int flags) | |
4348 | { | |
4349 | CountAndSizeRegions *css = opaque; | |
4350 | ||
4351 | css->count++; | |
4352 | css->size += vma_dump_size(start, end, flags); | |
4353 | return 0; | |
4354 | } | |
4355 | ||
4356 | typedef struct { | |
4357 | struct elf_phdr *phdr; | |
4358 | off_t offset; | |
4359 | } FillRegionPhdr; | |
4360 | ||
4361 | static int wmr_fill_region_phdr(void *opaque, vaddr start, | |
4362 | vaddr end, int flags) | |
4363 | { | |
4364 | FillRegionPhdr *d = opaque; | |
4365 | struct elf_phdr *phdr = d->phdr; | |
4366 | ||
4367 | phdr->p_type = PT_LOAD; | |
4368 | phdr->p_vaddr = start; | |
4369 | phdr->p_paddr = 0; | |
4370 | phdr->p_filesz = vma_dump_size(start, end, flags); | |
4371 | phdr->p_offset = d->offset; | |
4372 | d->offset += phdr->p_filesz; | |
4373 | phdr->p_memsz = end - start; | |
4374 | phdr->p_flags = (flags & PAGE_READ ? PF_R : 0) | |
4375 | | (flags & PAGE_WRITE_ORG ? PF_W : 0) | |
4376 | | (flags & PAGE_EXEC ? PF_X : 0); | |
4377 | phdr->p_align = ELF_EXEC_PAGESIZE; | |
4378 | ||
4379 | bswap_phdr(phdr, 1); | |
4380 | d->phdr = phdr + 1; | |
4381 | return 0; | |
4382 | } | |
4383 | ||
4384 | static int wmr_write_region(void *opaque, vaddr start, | |
4385 | vaddr end, int flags) | |
4386 | { | |
4387 | int fd = *(int *)opaque; | |
4388 | size_t size = vma_dump_size(start, end, flags); | |
4389 | ||
4390 | if (!size) { | |
4391 | return 0; | |
4392 | } | |
4393 | return dump_write(fd, g2h_untagged(start), size); | |
4394 | } | |
4395 | ||
4396 | /* | |
4397 | * Write out ELF coredump. | |
4398 | * | |
4399 | * See documentation of ELF object file format in: | |
4400 | * http://www.caldera.com/developers/devspecs/gabi41.pdf | |
4401 | * | |
4402 | * Coredump format in linux is following: | |
4403 | * | |
4404 | * 0 +----------------------+ \ | |
4405 | * | ELF header | ET_CORE | | |
4406 | * +----------------------+ | | |
4407 | * | ELF program headers | |--- headers | |
4408 | * | - NOTE section | | | |
4409 | * | - PT_LOAD sections | | | |
4410 | * +----------------------+ / | |
4411 | * | NOTEs: | | |
4412 | * | - NT_PRSTATUS | | |
4413 | * | - NT_PRSINFO | | |
4414 | * | - NT_AUXV | | |
4415 | * +----------------------+ <-- aligned to target page | |
4416 | * | Process memory dump | | |
4417 | * : : | |
4418 | * . . | |
4419 | * : : | |
4420 | * | | | |
4421 | * +----------------------+ | |
4422 | * | |
4423 | * NT_PRSTATUS -> struct elf_prstatus (per thread) | |
4424 | * NT_PRSINFO -> struct elf_prpsinfo | |
4425 | * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). | |
4426 | * | |
4427 | * Format follows System V format as close as possible. Current | |
4428 | * version limitations are as follows: | |
4429 | * - no floating point registers are dumped | |
4430 | * | |
4431 | * Function returns 0 in case of success, negative errno otherwise. | |
4432 | * | |
4433 | * TODO: make this work also during runtime: it should be | |
4434 | * possible to force coredump from running process and then | |
4435 | * continue processing. For example qemu could set up SIGUSR2 | |
4436 | * handler (provided that target process haven't registered | |
4437 | * handler for that) that does the dump when signal is received. | |
4438 | */ | |
4439 | static int elf_core_dump(int signr, const CPUArchState *env) | |
4440 | { | |
4441 | const CPUState *cpu = env_cpu_const(env); | |
4442 | const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu); | |
4443 | struct rlimit dumpsize; | |
4444 | CountAndSizeRegions css; | |
4445 | off_t offset, note_offset, data_offset; | |
4446 | size_t note_size; | |
4447 | int cpus, ret; | |
4448 | int fd = -1; | |
4449 | CPUState *cpu_iter; | |
4450 | ||
4451 | if (prctl(PR_GET_DUMPABLE) == 0) { | |
4452 | return 0; | |
4453 | } | |
4454 | ||
4455 | if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) { | |
4456 | return 0; | |
4457 | } | |
4458 | ||
4459 | cpu_list_lock(); | |
4460 | mmap_lock(); | |
4461 | ||
4462 | /* By unprotecting, we merge vmas that might be split. */ | |
4463 | walk_memory_regions(NULL, wmr_page_unprotect_regions); | |
4464 | ||
4465 | /* | |
4466 | * Walk through target process memory mappings and | |
4467 | * set up structure containing this information. | |
4468 | */ | |
4469 | memset(&css, 0, sizeof(css)); | |
4470 | walk_memory_regions(&css, wmr_count_and_size_regions); | |
4471 | ||
4472 | cpus = 0; | |
4473 | CPU_FOREACH(cpu_iter) { | |
4474 | cpus++; | |
4475 | } | |
4476 | ||
4477 | offset = sizeof(struct elfhdr); | |
4478 | offset += (css.count + 1) * sizeof(struct elf_phdr); | |
4479 | note_offset = offset; | |
4480 | ||
4481 | offset += size_note("CORE", ts->info->auxv_len); | |
4482 | offset += size_note("CORE", sizeof(struct target_elf_prpsinfo)); | |
4483 | offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus; | |
4484 | note_size = offset - note_offset; | |
4485 | data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE); | |
4486 | ||
4487 | /* Do not dump if the corefile size exceeds the limit. */ | |
4488 | if (dumpsize.rlim_cur != RLIM_INFINITY | |
4489 | && dumpsize.rlim_cur < data_offset + css.size) { | |
4490 | errno = 0; | |
4491 | goto out; | |
4492 | } | |
4493 | ||
4494 | { | |
4495 | g_autofree char *corefile = core_dump_filename(ts); | |
4496 | fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC, | |
4497 | S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH); | |
4498 | } | |
4499 | if (fd < 0) { | |
4500 | goto out; | |
4501 | } | |
4502 | ||
4503 | /* | |
4504 | * There is a fair amount of alignment padding within the notes | |
4505 | * as well as preceeding the process memory. Allocate a zeroed | |
4506 | * block to hold it all. Write all of the headers directly into | |
4507 | * this buffer and then write it out as a block. | |
4508 | */ | |
4509 | { | |
4510 | g_autofree void *header = g_malloc0(data_offset); | |
4511 | FillRegionPhdr frp; | |
4512 | void *hptr, *dptr; | |
4513 | ||
4514 | /* Create elf file header. */ | |
4515 | hptr = header; | |
4516 | fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0); | |
4517 | hptr += sizeof(struct elfhdr); | |
4518 | ||
4519 | /* Create elf program headers. */ | |
4520 | fill_elf_note_phdr(hptr, note_size, note_offset); | |
4521 | hptr += sizeof(struct elf_phdr); | |
4522 | ||
4523 | frp.phdr = hptr; | |
4524 | frp.offset = data_offset; | |
4525 | walk_memory_regions(&frp, wmr_fill_region_phdr); | |
4526 | hptr = frp.phdr; | |
4527 | ||
4528 | /* Create the notes. */ | |
4529 | dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len); | |
4530 | fill_auxv_note(dptr, ts); | |
4531 | ||
4532 | dptr = fill_note(&hptr, NT_PRPSINFO, "CORE", | |
4533 | sizeof(struct target_elf_prpsinfo)); | |
4534 | fill_prpsinfo_note(dptr, ts); | |
4535 | ||
4536 | CPU_FOREACH(cpu_iter) { | |
4537 | dptr = fill_note(&hptr, NT_PRSTATUS, "CORE", | |
4538 | sizeof(struct target_elf_prstatus)); | |
4539 | fill_prstatus_note(dptr, cpu_iter, cpu_iter == cpu ? signr : 0); | |
4540 | } | |
4541 | ||
4542 | if (dump_write(fd, header, data_offset) < 0) { | |
4543 | goto out; | |
4544 | } | |
4545 | } | |
4546 | ||
4547 | /* | |
4548 | * Finally write process memory into the corefile as well. | |
4549 | */ | |
4550 | if (walk_memory_regions(&fd, wmr_write_region) < 0) { | |
4551 | goto out; | |
4552 | } | |
4553 | errno = 0; | |
4554 | ||
4555 | out: | |
4556 | ret = -errno; | |
4557 | mmap_unlock(); | |
4558 | cpu_list_unlock(); | |
4559 | if (fd >= 0) { | |
4560 | close(fd); | |
4561 | } | |
4562 | return ret; | |
4563 | } | |
4564 | #endif /* USE_ELF_CORE_DUMP */ | |
4565 | ||
4566 | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
4567 | { | |
4568 | init_thread(regs, infop); | |
4569 | } |