]> git.ipfire.org Git - people/ms/linux.git/blame_incremental - mm/memcontrol.c
memcg: convert to use cgroup id
[people/ms/linux.git] / mm / memcontrol.c
... / ...
CommitLineData
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/mm.h>
32#include <linux/hugetlb.h>
33#include <linux/pagemap.h>
34#include <linux/smp.h>
35#include <linux/page-flags.h>
36#include <linux/backing-dev.h>
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
39#include <linux/limits.h>
40#include <linux/export.h>
41#include <linux/mutex.h>
42#include <linux/slab.h>
43#include <linux/swap.h>
44#include <linux/swapops.h>
45#include <linux/spinlock.h>
46#include <linux/eventfd.h>
47#include <linux/sort.h>
48#include <linux/fs.h>
49#include <linux/seq_file.h>
50#include <linux/vmalloc.h>
51#include <linux/vmpressure.h>
52#include <linux/mm_inline.h>
53#include <linux/page_cgroup.h>
54#include <linux/cpu.h>
55#include <linux/oom.h>
56#include "internal.h"
57#include <net/sock.h>
58#include <net/ip.h>
59#include <net/tcp_memcontrol.h>
60
61#include <asm/uaccess.h>
62
63#include <trace/events/vmscan.h>
64
65struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66EXPORT_SYMBOL(mem_cgroup_subsys);
67
68#define MEM_CGROUP_RECLAIM_RETRIES 5
69static struct mem_cgroup *root_mem_cgroup __read_mostly;
70
71#ifdef CONFIG_MEMCG_SWAP
72/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73int do_swap_account __read_mostly;
74
75/* for remember boot option*/
76#ifdef CONFIG_MEMCG_SWAP_ENABLED
77static int really_do_swap_account __initdata = 1;
78#else
79static int really_do_swap_account __initdata = 0;
80#endif
81
82#else
83#define do_swap_account 0
84#endif
85
86
87static const char * const mem_cgroup_stat_names[] = {
88 "cache",
89 "rss",
90 "rss_huge",
91 "mapped_file",
92 "writeback",
93 "swap",
94};
95
96enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
101 MEM_CGROUP_EVENTS_NSTATS,
102};
103
104static const char * const mem_cgroup_events_names[] = {
105 "pgpgin",
106 "pgpgout",
107 "pgfault",
108 "pgmajfault",
109};
110
111static const char * const mem_cgroup_lru_names[] = {
112 "inactive_anon",
113 "active_anon",
114 "inactive_file",
115 "active_file",
116 "unevictable",
117};
118
119/*
120 * Per memcg event counter is incremented at every pagein/pageout. With THP,
121 * it will be incremated by the number of pages. This counter is used for
122 * for trigger some periodic events. This is straightforward and better
123 * than using jiffies etc. to handle periodic memcg event.
124 */
125enum mem_cgroup_events_target {
126 MEM_CGROUP_TARGET_THRESH,
127 MEM_CGROUP_TARGET_SOFTLIMIT,
128 MEM_CGROUP_TARGET_NUMAINFO,
129 MEM_CGROUP_NTARGETS,
130};
131#define THRESHOLDS_EVENTS_TARGET 128
132#define SOFTLIMIT_EVENTS_TARGET 1024
133#define NUMAINFO_EVENTS_TARGET 1024
134
135struct mem_cgroup_stat_cpu {
136 long count[MEM_CGROUP_STAT_NSTATS];
137 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
138 unsigned long nr_page_events;
139 unsigned long targets[MEM_CGROUP_NTARGETS];
140};
141
142struct mem_cgroup_reclaim_iter {
143 /*
144 * last scanned hierarchy member. Valid only if last_dead_count
145 * matches memcg->dead_count of the hierarchy root group.
146 */
147 struct mem_cgroup *last_visited;
148 unsigned long last_dead_count;
149
150 /* scan generation, increased every round-trip */
151 unsigned int generation;
152};
153
154/*
155 * per-zone information in memory controller.
156 */
157struct mem_cgroup_per_zone {
158 struct lruvec lruvec;
159 unsigned long lru_size[NR_LRU_LISTS];
160
161 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
162
163 struct mem_cgroup *memcg; /* Back pointer, we cannot */
164 /* use container_of */
165};
166
167struct mem_cgroup_per_node {
168 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
169};
170
171struct mem_cgroup_threshold {
172 struct eventfd_ctx *eventfd;
173 u64 threshold;
174};
175
176/* For threshold */
177struct mem_cgroup_threshold_ary {
178 /* An array index points to threshold just below or equal to usage. */
179 int current_threshold;
180 /* Size of entries[] */
181 unsigned int size;
182 /* Array of thresholds */
183 struct mem_cgroup_threshold entries[0];
184};
185
186struct mem_cgroup_thresholds {
187 /* Primary thresholds array */
188 struct mem_cgroup_threshold_ary *primary;
189 /*
190 * Spare threshold array.
191 * This is needed to make mem_cgroup_unregister_event() "never fail".
192 * It must be able to store at least primary->size - 1 entries.
193 */
194 struct mem_cgroup_threshold_ary *spare;
195};
196
197/* for OOM */
198struct mem_cgroup_eventfd_list {
199 struct list_head list;
200 struct eventfd_ctx *eventfd;
201};
202
203static void mem_cgroup_threshold(struct mem_cgroup *memcg);
204static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
205
206/*
207 * The memory controller data structure. The memory controller controls both
208 * page cache and RSS per cgroup. We would eventually like to provide
209 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
210 * to help the administrator determine what knobs to tune.
211 *
212 * TODO: Add a water mark for the memory controller. Reclaim will begin when
213 * we hit the water mark. May be even add a low water mark, such that
214 * no reclaim occurs from a cgroup at it's low water mark, this is
215 * a feature that will be implemented much later in the future.
216 */
217struct mem_cgroup {
218 struct cgroup_subsys_state css;
219 /*
220 * the counter to account for memory usage
221 */
222 struct res_counter res;
223
224 /* vmpressure notifications */
225 struct vmpressure vmpressure;
226
227 /*
228 * the counter to account for mem+swap usage.
229 */
230 struct res_counter memsw;
231
232 /*
233 * the counter to account for kernel memory usage.
234 */
235 struct res_counter kmem;
236 /*
237 * Should the accounting and control be hierarchical, per subtree?
238 */
239 bool use_hierarchy;
240 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
241
242 bool oom_lock;
243 atomic_t under_oom;
244 atomic_t oom_wakeups;
245
246 int swappiness;
247 /* OOM-Killer disable */
248 int oom_kill_disable;
249
250 /* set when res.limit == memsw.limit */
251 bool memsw_is_minimum;
252
253 /* protect arrays of thresholds */
254 struct mutex thresholds_lock;
255
256 /* thresholds for memory usage. RCU-protected */
257 struct mem_cgroup_thresholds thresholds;
258
259 /* thresholds for mem+swap usage. RCU-protected */
260 struct mem_cgroup_thresholds memsw_thresholds;
261
262 /* For oom notifier event fd */
263 struct list_head oom_notify;
264
265 /*
266 * Should we move charges of a task when a task is moved into this
267 * mem_cgroup ? And what type of charges should we move ?
268 */
269 unsigned long move_charge_at_immigrate;
270 /*
271 * set > 0 if pages under this cgroup are moving to other cgroup.
272 */
273 atomic_t moving_account;
274 /* taken only while moving_account > 0 */
275 spinlock_t move_lock;
276 /*
277 * percpu counter.
278 */
279 struct mem_cgroup_stat_cpu __percpu *stat;
280 /*
281 * used when a cpu is offlined or other synchronizations
282 * See mem_cgroup_read_stat().
283 */
284 struct mem_cgroup_stat_cpu nocpu_base;
285 spinlock_t pcp_counter_lock;
286
287 atomic_t dead_count;
288#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
289 struct tcp_memcontrol tcp_mem;
290#endif
291#if defined(CONFIG_MEMCG_KMEM)
292 /* analogous to slab_common's slab_caches list. per-memcg */
293 struct list_head memcg_slab_caches;
294 /* Not a spinlock, we can take a lot of time walking the list */
295 struct mutex slab_caches_mutex;
296 /* Index in the kmem_cache->memcg_params->memcg_caches array */
297 int kmemcg_id;
298#endif
299
300 int last_scanned_node;
301#if MAX_NUMNODES > 1
302 nodemask_t scan_nodes;
303 atomic_t numainfo_events;
304 atomic_t numainfo_updating;
305#endif
306 /*
307 * Protects soft_contributed transitions.
308 * See mem_cgroup_update_soft_limit
309 */
310 spinlock_t soft_lock;
311
312 /*
313 * If true then this group has increased parents' children_in_excess
314 * when it got over the soft limit.
315 * When a group falls bellow the soft limit, parents' children_in_excess
316 * is decreased and soft_contributed changed to false.
317 */
318 bool soft_contributed;
319
320 /* Number of children that are in soft limit excess */
321 atomic_t children_in_excess;
322
323 struct mem_cgroup_per_node *nodeinfo[0];
324 /* WARNING: nodeinfo must be the last member here */
325};
326
327static size_t memcg_size(void)
328{
329 return sizeof(struct mem_cgroup) +
330 nr_node_ids * sizeof(struct mem_cgroup_per_node);
331}
332
333/* internal only representation about the status of kmem accounting. */
334enum {
335 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
336 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
337 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
338};
339
340/* We account when limit is on, but only after call sites are patched */
341#define KMEM_ACCOUNTED_MASK \
342 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
343
344#ifdef CONFIG_MEMCG_KMEM
345static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
346{
347 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
348}
349
350static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
351{
352 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
353}
354
355static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
356{
357 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
358}
359
360static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
361{
362 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
363}
364
365static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
366{
367 /*
368 * Our caller must use css_get() first, because memcg_uncharge_kmem()
369 * will call css_put() if it sees the memcg is dead.
370 */
371 smp_wmb();
372 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
373 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
374}
375
376static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
377{
378 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
379 &memcg->kmem_account_flags);
380}
381#endif
382
383/* Stuffs for move charges at task migration. */
384/*
385 * Types of charges to be moved. "move_charge_at_immitgrate" and
386 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
387 */
388enum move_type {
389 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
390 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
391 NR_MOVE_TYPE,
392};
393
394/* "mc" and its members are protected by cgroup_mutex */
395static struct move_charge_struct {
396 spinlock_t lock; /* for from, to */
397 struct mem_cgroup *from;
398 struct mem_cgroup *to;
399 unsigned long immigrate_flags;
400 unsigned long precharge;
401 unsigned long moved_charge;
402 unsigned long moved_swap;
403 struct task_struct *moving_task; /* a task moving charges */
404 wait_queue_head_t waitq; /* a waitq for other context */
405} mc = {
406 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
407 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
408};
409
410static bool move_anon(void)
411{
412 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
413}
414
415static bool move_file(void)
416{
417 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
418}
419
420/*
421 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
422 * limit reclaim to prevent infinite loops, if they ever occur.
423 */
424#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
425
426enum charge_type {
427 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
428 MEM_CGROUP_CHARGE_TYPE_ANON,
429 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
430 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
431 NR_CHARGE_TYPE,
432};
433
434/* for encoding cft->private value on file */
435enum res_type {
436 _MEM,
437 _MEMSWAP,
438 _OOM_TYPE,
439 _KMEM,
440};
441
442#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
443#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
444#define MEMFILE_ATTR(val) ((val) & 0xffff)
445/* Used for OOM nofiier */
446#define OOM_CONTROL (0)
447
448/*
449 * Reclaim flags for mem_cgroup_hierarchical_reclaim
450 */
451#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
452#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
453#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
454#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
455
456/*
457 * The memcg_create_mutex will be held whenever a new cgroup is created.
458 * As a consequence, any change that needs to protect against new child cgroups
459 * appearing has to hold it as well.
460 */
461static DEFINE_MUTEX(memcg_create_mutex);
462
463struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
464{
465 return s ? container_of(s, struct mem_cgroup, css) : NULL;
466}
467
468/* Some nice accessors for the vmpressure. */
469struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
470{
471 if (!memcg)
472 memcg = root_mem_cgroup;
473 return &memcg->vmpressure;
474}
475
476struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
477{
478 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
479}
480
481struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
482{
483 return &mem_cgroup_from_css(css)->vmpressure;
484}
485
486static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
487{
488 return (memcg == root_mem_cgroup);
489}
490
491static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
492{
493 /*
494 * The ID of the root cgroup is 0, but memcg treat 0 as an
495 * invalid ID, so we return (cgroup_id + 1).
496 */
497 return memcg->css.cgroup->id + 1;
498}
499
500static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
501{
502 struct cgroup_subsys_state *css;
503
504 css = css_from_id(id - 1, &mem_cgroup_subsys);
505 return mem_cgroup_from_css(css);
506}
507
508/* Writing them here to avoid exposing memcg's inner layout */
509#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
510
511void sock_update_memcg(struct sock *sk)
512{
513 if (mem_cgroup_sockets_enabled) {
514 struct mem_cgroup *memcg;
515 struct cg_proto *cg_proto;
516
517 BUG_ON(!sk->sk_prot->proto_cgroup);
518
519 /* Socket cloning can throw us here with sk_cgrp already
520 * filled. It won't however, necessarily happen from
521 * process context. So the test for root memcg given
522 * the current task's memcg won't help us in this case.
523 *
524 * Respecting the original socket's memcg is a better
525 * decision in this case.
526 */
527 if (sk->sk_cgrp) {
528 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
529 css_get(&sk->sk_cgrp->memcg->css);
530 return;
531 }
532
533 rcu_read_lock();
534 memcg = mem_cgroup_from_task(current);
535 cg_proto = sk->sk_prot->proto_cgroup(memcg);
536 if (!mem_cgroup_is_root(memcg) &&
537 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
538 sk->sk_cgrp = cg_proto;
539 }
540 rcu_read_unlock();
541 }
542}
543EXPORT_SYMBOL(sock_update_memcg);
544
545void sock_release_memcg(struct sock *sk)
546{
547 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
548 struct mem_cgroup *memcg;
549 WARN_ON(!sk->sk_cgrp->memcg);
550 memcg = sk->sk_cgrp->memcg;
551 css_put(&sk->sk_cgrp->memcg->css);
552 }
553}
554
555struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
556{
557 if (!memcg || mem_cgroup_is_root(memcg))
558 return NULL;
559
560 return &memcg->tcp_mem.cg_proto;
561}
562EXPORT_SYMBOL(tcp_proto_cgroup);
563
564static void disarm_sock_keys(struct mem_cgroup *memcg)
565{
566 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
567 return;
568 static_key_slow_dec(&memcg_socket_limit_enabled);
569}
570#else
571static void disarm_sock_keys(struct mem_cgroup *memcg)
572{
573}
574#endif
575
576#ifdef CONFIG_MEMCG_KMEM
577/*
578 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
579 * There are two main reasons for not using the css_id for this:
580 * 1) this works better in sparse environments, where we have a lot of memcgs,
581 * but only a few kmem-limited. Or also, if we have, for instance, 200
582 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
583 * 200 entry array for that.
584 *
585 * 2) In order not to violate the cgroup API, we would like to do all memory
586 * allocation in ->create(). At that point, we haven't yet allocated the
587 * css_id. Having a separate index prevents us from messing with the cgroup
588 * core for this
589 *
590 * The current size of the caches array is stored in
591 * memcg_limited_groups_array_size. It will double each time we have to
592 * increase it.
593 */
594static DEFINE_IDA(kmem_limited_groups);
595int memcg_limited_groups_array_size;
596
597/*
598 * MIN_SIZE is different than 1, because we would like to avoid going through
599 * the alloc/free process all the time. In a small machine, 4 kmem-limited
600 * cgroups is a reasonable guess. In the future, it could be a parameter or
601 * tunable, but that is strictly not necessary.
602 *
603 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
604 * this constant directly from cgroup, but it is understandable that this is
605 * better kept as an internal representation in cgroup.c. In any case, the
606 * css_id space is not getting any smaller, and we don't have to necessarily
607 * increase ours as well if it increases.
608 */
609#define MEMCG_CACHES_MIN_SIZE 4
610#define MEMCG_CACHES_MAX_SIZE 65535
611
612/*
613 * A lot of the calls to the cache allocation functions are expected to be
614 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
615 * conditional to this static branch, we'll have to allow modules that does
616 * kmem_cache_alloc and the such to see this symbol as well
617 */
618struct static_key memcg_kmem_enabled_key;
619EXPORT_SYMBOL(memcg_kmem_enabled_key);
620
621static void disarm_kmem_keys(struct mem_cgroup *memcg)
622{
623 if (memcg_kmem_is_active(memcg)) {
624 static_key_slow_dec(&memcg_kmem_enabled_key);
625 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
626 }
627 /*
628 * This check can't live in kmem destruction function,
629 * since the charges will outlive the cgroup
630 */
631 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
632}
633#else
634static void disarm_kmem_keys(struct mem_cgroup *memcg)
635{
636}
637#endif /* CONFIG_MEMCG_KMEM */
638
639static void disarm_static_keys(struct mem_cgroup *memcg)
640{
641 disarm_sock_keys(memcg);
642 disarm_kmem_keys(memcg);
643}
644
645static void drain_all_stock_async(struct mem_cgroup *memcg);
646
647static struct mem_cgroup_per_zone *
648mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
649{
650 VM_BUG_ON((unsigned)nid >= nr_node_ids);
651 return &memcg->nodeinfo[nid]->zoneinfo[zid];
652}
653
654struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
655{
656 return &memcg->css;
657}
658
659static struct mem_cgroup_per_zone *
660page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
661{
662 int nid = page_to_nid(page);
663 int zid = page_zonenum(page);
664
665 return mem_cgroup_zoneinfo(memcg, nid, zid);
666}
667
668/*
669 * Implementation Note: reading percpu statistics for memcg.
670 *
671 * Both of vmstat[] and percpu_counter has threshold and do periodic
672 * synchronization to implement "quick" read. There are trade-off between
673 * reading cost and precision of value. Then, we may have a chance to implement
674 * a periodic synchronizion of counter in memcg's counter.
675 *
676 * But this _read() function is used for user interface now. The user accounts
677 * memory usage by memory cgroup and he _always_ requires exact value because
678 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
679 * have to visit all online cpus and make sum. So, for now, unnecessary
680 * synchronization is not implemented. (just implemented for cpu hotplug)
681 *
682 * If there are kernel internal actions which can make use of some not-exact
683 * value, and reading all cpu value can be performance bottleneck in some
684 * common workload, threashold and synchonization as vmstat[] should be
685 * implemented.
686 */
687static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
688 enum mem_cgroup_stat_index idx)
689{
690 long val = 0;
691 int cpu;
692
693 get_online_cpus();
694 for_each_online_cpu(cpu)
695 val += per_cpu(memcg->stat->count[idx], cpu);
696#ifdef CONFIG_HOTPLUG_CPU
697 spin_lock(&memcg->pcp_counter_lock);
698 val += memcg->nocpu_base.count[idx];
699 spin_unlock(&memcg->pcp_counter_lock);
700#endif
701 put_online_cpus();
702 return val;
703}
704
705static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
706 bool charge)
707{
708 int val = (charge) ? 1 : -1;
709 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
710}
711
712static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
713 enum mem_cgroup_events_index idx)
714{
715 unsigned long val = 0;
716 int cpu;
717
718 for_each_online_cpu(cpu)
719 val += per_cpu(memcg->stat->events[idx], cpu);
720#ifdef CONFIG_HOTPLUG_CPU
721 spin_lock(&memcg->pcp_counter_lock);
722 val += memcg->nocpu_base.events[idx];
723 spin_unlock(&memcg->pcp_counter_lock);
724#endif
725 return val;
726}
727
728static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
729 struct page *page,
730 bool anon, int nr_pages)
731{
732 preempt_disable();
733
734 /*
735 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
736 * counted as CACHE even if it's on ANON LRU.
737 */
738 if (anon)
739 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
740 nr_pages);
741 else
742 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
743 nr_pages);
744
745 if (PageTransHuge(page))
746 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
747 nr_pages);
748
749 /* pagein of a big page is an event. So, ignore page size */
750 if (nr_pages > 0)
751 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
752 else {
753 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
754 nr_pages = -nr_pages; /* for event */
755 }
756
757 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
758
759 preempt_enable();
760}
761
762unsigned long
763mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
764{
765 struct mem_cgroup_per_zone *mz;
766
767 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
768 return mz->lru_size[lru];
769}
770
771static unsigned long
772mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
773 unsigned int lru_mask)
774{
775 struct mem_cgroup_per_zone *mz;
776 enum lru_list lru;
777 unsigned long ret = 0;
778
779 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
780
781 for_each_lru(lru) {
782 if (BIT(lru) & lru_mask)
783 ret += mz->lru_size[lru];
784 }
785 return ret;
786}
787
788static unsigned long
789mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
790 int nid, unsigned int lru_mask)
791{
792 u64 total = 0;
793 int zid;
794
795 for (zid = 0; zid < MAX_NR_ZONES; zid++)
796 total += mem_cgroup_zone_nr_lru_pages(memcg,
797 nid, zid, lru_mask);
798
799 return total;
800}
801
802static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
803 unsigned int lru_mask)
804{
805 int nid;
806 u64 total = 0;
807
808 for_each_node_state(nid, N_MEMORY)
809 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
810 return total;
811}
812
813static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
814 enum mem_cgroup_events_target target)
815{
816 unsigned long val, next;
817
818 val = __this_cpu_read(memcg->stat->nr_page_events);
819 next = __this_cpu_read(memcg->stat->targets[target]);
820 /* from time_after() in jiffies.h */
821 if ((long)next - (long)val < 0) {
822 switch (target) {
823 case MEM_CGROUP_TARGET_THRESH:
824 next = val + THRESHOLDS_EVENTS_TARGET;
825 break;
826 case MEM_CGROUP_TARGET_SOFTLIMIT:
827 next = val + SOFTLIMIT_EVENTS_TARGET;
828 break;
829 case MEM_CGROUP_TARGET_NUMAINFO:
830 next = val + NUMAINFO_EVENTS_TARGET;
831 break;
832 default:
833 break;
834 }
835 __this_cpu_write(memcg->stat->targets[target], next);
836 return true;
837 }
838 return false;
839}
840
841/*
842 * Called from rate-limited memcg_check_events when enough
843 * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure
844 * that all the parents up the hierarchy will be notified that this group
845 * is in excess or that it is not in excess anymore. mmecg->soft_contributed
846 * makes the transition a single action whenever the state flips from one to
847 * the other.
848 */
849static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg)
850{
851 unsigned long long excess = res_counter_soft_limit_excess(&memcg->res);
852 struct mem_cgroup *parent = memcg;
853 int delta = 0;
854
855 spin_lock(&memcg->soft_lock);
856 if (excess) {
857 if (!memcg->soft_contributed) {
858 delta = 1;
859 memcg->soft_contributed = true;
860 }
861 } else {
862 if (memcg->soft_contributed) {
863 delta = -1;
864 memcg->soft_contributed = false;
865 }
866 }
867
868 /*
869 * Necessary to update all ancestors when hierarchy is used
870 * because their event counter is not touched.
871 * We track children even outside the hierarchy for the root
872 * cgroup because tree walk starting at root should visit
873 * all cgroups and we want to prevent from pointless tree
874 * walk if no children is below the limit.
875 */
876 while (delta && (parent = parent_mem_cgroup(parent)))
877 atomic_add(delta, &parent->children_in_excess);
878 if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
879 atomic_add(delta, &root_mem_cgroup->children_in_excess);
880 spin_unlock(&memcg->soft_lock);
881}
882
883/*
884 * Check events in order.
885 *
886 */
887static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
888{
889 preempt_disable();
890 /* threshold event is triggered in finer grain than soft limit */
891 if (unlikely(mem_cgroup_event_ratelimit(memcg,
892 MEM_CGROUP_TARGET_THRESH))) {
893 bool do_softlimit;
894 bool do_numainfo __maybe_unused;
895
896 do_softlimit = mem_cgroup_event_ratelimit(memcg,
897 MEM_CGROUP_TARGET_SOFTLIMIT);
898#if MAX_NUMNODES > 1
899 do_numainfo = mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_NUMAINFO);
901#endif
902 preempt_enable();
903
904 mem_cgroup_threshold(memcg);
905 if (unlikely(do_softlimit))
906 mem_cgroup_update_soft_limit(memcg);
907#if MAX_NUMNODES > 1
908 if (unlikely(do_numainfo))
909 atomic_inc(&memcg->numainfo_events);
910#endif
911 } else
912 preempt_enable();
913}
914
915struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
916{
917 /*
918 * mm_update_next_owner() may clear mm->owner to NULL
919 * if it races with swapoff, page migration, etc.
920 * So this can be called with p == NULL.
921 */
922 if (unlikely(!p))
923 return NULL;
924
925 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
926}
927
928struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
929{
930 struct mem_cgroup *memcg = NULL;
931
932 if (!mm)
933 return NULL;
934 /*
935 * Because we have no locks, mm->owner's may be being moved to other
936 * cgroup. We use css_tryget() here even if this looks
937 * pessimistic (rather than adding locks here).
938 */
939 rcu_read_lock();
940 do {
941 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
942 if (unlikely(!memcg))
943 break;
944 } while (!css_tryget(&memcg->css));
945 rcu_read_unlock();
946 return memcg;
947}
948
949static enum mem_cgroup_filter_t
950mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
951 mem_cgroup_iter_filter cond)
952{
953 if (!cond)
954 return VISIT;
955 return cond(memcg, root);
956}
957
958/*
959 * Returns a next (in a pre-order walk) alive memcg (with elevated css
960 * ref. count) or NULL if the whole root's subtree has been visited.
961 *
962 * helper function to be used by mem_cgroup_iter
963 */
964static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
965 struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
966{
967 struct cgroup_subsys_state *prev_css, *next_css;
968
969 prev_css = last_visited ? &last_visited->css : NULL;
970skip_node:
971 next_css = css_next_descendant_pre(prev_css, &root->css);
972
973 /*
974 * Even if we found a group we have to make sure it is
975 * alive. css && !memcg means that the groups should be
976 * skipped and we should continue the tree walk.
977 * last_visited css is safe to use because it is
978 * protected by css_get and the tree walk is rcu safe.
979 */
980 if (next_css) {
981 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
982
983 switch (mem_cgroup_filter(mem, root, cond)) {
984 case SKIP:
985 prev_css = next_css;
986 goto skip_node;
987 case SKIP_TREE:
988 if (mem == root)
989 return NULL;
990 /*
991 * css_rightmost_descendant is not an optimal way to
992 * skip through a subtree (especially for imbalanced
993 * trees leaning to right) but that's what we have right
994 * now. More effective solution would be traversing
995 * right-up for first non-NULL without calling
996 * css_next_descendant_pre afterwards.
997 */
998 prev_css = css_rightmost_descendant(next_css);
999 goto skip_node;
1000 case VISIT:
1001 if (css_tryget(&mem->css))
1002 return mem;
1003 else {
1004 prev_css = next_css;
1005 goto skip_node;
1006 }
1007 break;
1008 }
1009 }
1010
1011 return NULL;
1012}
1013
1014static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1015{
1016 /*
1017 * When a group in the hierarchy below root is destroyed, the
1018 * hierarchy iterator can no longer be trusted since it might
1019 * have pointed to the destroyed group. Invalidate it.
1020 */
1021 atomic_inc(&root->dead_count);
1022}
1023
1024static struct mem_cgroup *
1025mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1026 struct mem_cgroup *root,
1027 int *sequence)
1028{
1029 struct mem_cgroup *position = NULL;
1030 /*
1031 * A cgroup destruction happens in two stages: offlining and
1032 * release. They are separated by a RCU grace period.
1033 *
1034 * If the iterator is valid, we may still race with an
1035 * offlining. The RCU lock ensures the object won't be
1036 * released, tryget will fail if we lost the race.
1037 */
1038 *sequence = atomic_read(&root->dead_count);
1039 if (iter->last_dead_count == *sequence) {
1040 smp_rmb();
1041 position = iter->last_visited;
1042 if (position && !css_tryget(&position->css))
1043 position = NULL;
1044 }
1045 return position;
1046}
1047
1048static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1049 struct mem_cgroup *last_visited,
1050 struct mem_cgroup *new_position,
1051 int sequence)
1052{
1053 if (last_visited)
1054 css_put(&last_visited->css);
1055 /*
1056 * We store the sequence count from the time @last_visited was
1057 * loaded successfully instead of rereading it here so that we
1058 * don't lose destruction events in between. We could have
1059 * raced with the destruction of @new_position after all.
1060 */
1061 iter->last_visited = new_position;
1062 smp_wmb();
1063 iter->last_dead_count = sequence;
1064}
1065
1066/**
1067 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1068 * @root: hierarchy root
1069 * @prev: previously returned memcg, NULL on first invocation
1070 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1071 * @cond: filter for visited nodes, NULL for no filter
1072 *
1073 * Returns references to children of the hierarchy below @root, or
1074 * @root itself, or %NULL after a full round-trip.
1075 *
1076 * Caller must pass the return value in @prev on subsequent
1077 * invocations for reference counting, or use mem_cgroup_iter_break()
1078 * to cancel a hierarchy walk before the round-trip is complete.
1079 *
1080 * Reclaimers can specify a zone and a priority level in @reclaim to
1081 * divide up the memcgs in the hierarchy among all concurrent
1082 * reclaimers operating on the same zone and priority.
1083 */
1084struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
1085 struct mem_cgroup *prev,
1086 struct mem_cgroup_reclaim_cookie *reclaim,
1087 mem_cgroup_iter_filter cond)
1088{
1089 struct mem_cgroup *memcg = NULL;
1090 struct mem_cgroup *last_visited = NULL;
1091
1092 if (mem_cgroup_disabled()) {
1093 /* first call must return non-NULL, second return NULL */
1094 return (struct mem_cgroup *)(unsigned long)!prev;
1095 }
1096
1097 if (!root)
1098 root = root_mem_cgroup;
1099
1100 if (prev && !reclaim)
1101 last_visited = prev;
1102
1103 if (!root->use_hierarchy && root != root_mem_cgroup) {
1104 if (prev)
1105 goto out_css_put;
1106 if (mem_cgroup_filter(root, root, cond) == VISIT)
1107 return root;
1108 return NULL;
1109 }
1110
1111 rcu_read_lock();
1112 while (!memcg) {
1113 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1114 int uninitialized_var(seq);
1115
1116 if (reclaim) {
1117 int nid = zone_to_nid(reclaim->zone);
1118 int zid = zone_idx(reclaim->zone);
1119 struct mem_cgroup_per_zone *mz;
1120
1121 mz = mem_cgroup_zoneinfo(root, nid, zid);
1122 iter = &mz->reclaim_iter[reclaim->priority];
1123 if (prev && reclaim->generation != iter->generation) {
1124 iter->last_visited = NULL;
1125 goto out_unlock;
1126 }
1127
1128 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1129 }
1130
1131 memcg = __mem_cgroup_iter_next(root, last_visited, cond);
1132
1133 if (reclaim) {
1134 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1135
1136 if (!memcg)
1137 iter->generation++;
1138 else if (!prev && memcg)
1139 reclaim->generation = iter->generation;
1140 }
1141
1142 /*
1143 * We have finished the whole tree walk or no group has been
1144 * visited because filter told us to skip the root node.
1145 */
1146 if (!memcg && (prev || (cond && !last_visited)))
1147 goto out_unlock;
1148 }
1149out_unlock:
1150 rcu_read_unlock();
1151out_css_put:
1152 if (prev && prev != root)
1153 css_put(&prev->css);
1154
1155 return memcg;
1156}
1157
1158/**
1159 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1160 * @root: hierarchy root
1161 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1162 */
1163void mem_cgroup_iter_break(struct mem_cgroup *root,
1164 struct mem_cgroup *prev)
1165{
1166 if (!root)
1167 root = root_mem_cgroup;
1168 if (prev && prev != root)
1169 css_put(&prev->css);
1170}
1171
1172/*
1173 * Iteration constructs for visiting all cgroups (under a tree). If
1174 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1175 * be used for reference counting.
1176 */
1177#define for_each_mem_cgroup_tree(iter, root) \
1178 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1179 iter != NULL; \
1180 iter = mem_cgroup_iter(root, iter, NULL))
1181
1182#define for_each_mem_cgroup(iter) \
1183 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1184 iter != NULL; \
1185 iter = mem_cgroup_iter(NULL, iter, NULL))
1186
1187void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1188{
1189 struct mem_cgroup *memcg;
1190
1191 rcu_read_lock();
1192 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1193 if (unlikely(!memcg))
1194 goto out;
1195
1196 switch (idx) {
1197 case PGFAULT:
1198 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1199 break;
1200 case PGMAJFAULT:
1201 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1202 break;
1203 default:
1204 BUG();
1205 }
1206out:
1207 rcu_read_unlock();
1208}
1209EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1210
1211/**
1212 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1213 * @zone: zone of the wanted lruvec
1214 * @memcg: memcg of the wanted lruvec
1215 *
1216 * Returns the lru list vector holding pages for the given @zone and
1217 * @mem. This can be the global zone lruvec, if the memory controller
1218 * is disabled.
1219 */
1220struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1221 struct mem_cgroup *memcg)
1222{
1223 struct mem_cgroup_per_zone *mz;
1224 struct lruvec *lruvec;
1225
1226 if (mem_cgroup_disabled()) {
1227 lruvec = &zone->lruvec;
1228 goto out;
1229 }
1230
1231 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1232 lruvec = &mz->lruvec;
1233out:
1234 /*
1235 * Since a node can be onlined after the mem_cgroup was created,
1236 * we have to be prepared to initialize lruvec->zone here;
1237 * and if offlined then reonlined, we need to reinitialize it.
1238 */
1239 if (unlikely(lruvec->zone != zone))
1240 lruvec->zone = zone;
1241 return lruvec;
1242}
1243
1244/*
1245 * Following LRU functions are allowed to be used without PCG_LOCK.
1246 * Operations are called by routine of global LRU independently from memcg.
1247 * What we have to take care of here is validness of pc->mem_cgroup.
1248 *
1249 * Changes to pc->mem_cgroup happens when
1250 * 1. charge
1251 * 2. moving account
1252 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1253 * It is added to LRU before charge.
1254 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1255 * When moving account, the page is not on LRU. It's isolated.
1256 */
1257
1258/**
1259 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1260 * @page: the page
1261 * @zone: zone of the page
1262 */
1263struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1264{
1265 struct mem_cgroup_per_zone *mz;
1266 struct mem_cgroup *memcg;
1267 struct page_cgroup *pc;
1268 struct lruvec *lruvec;
1269
1270 if (mem_cgroup_disabled()) {
1271 lruvec = &zone->lruvec;
1272 goto out;
1273 }
1274
1275 pc = lookup_page_cgroup(page);
1276 memcg = pc->mem_cgroup;
1277
1278 /*
1279 * Surreptitiously switch any uncharged offlist page to root:
1280 * an uncharged page off lru does nothing to secure
1281 * its former mem_cgroup from sudden removal.
1282 *
1283 * Our caller holds lru_lock, and PageCgroupUsed is updated
1284 * under page_cgroup lock: between them, they make all uses
1285 * of pc->mem_cgroup safe.
1286 */
1287 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1288 pc->mem_cgroup = memcg = root_mem_cgroup;
1289
1290 mz = page_cgroup_zoneinfo(memcg, page);
1291 lruvec = &mz->lruvec;
1292out:
1293 /*
1294 * Since a node can be onlined after the mem_cgroup was created,
1295 * we have to be prepared to initialize lruvec->zone here;
1296 * and if offlined then reonlined, we need to reinitialize it.
1297 */
1298 if (unlikely(lruvec->zone != zone))
1299 lruvec->zone = zone;
1300 return lruvec;
1301}
1302
1303/**
1304 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1305 * @lruvec: mem_cgroup per zone lru vector
1306 * @lru: index of lru list the page is sitting on
1307 * @nr_pages: positive when adding or negative when removing
1308 *
1309 * This function must be called when a page is added to or removed from an
1310 * lru list.
1311 */
1312void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1313 int nr_pages)
1314{
1315 struct mem_cgroup_per_zone *mz;
1316 unsigned long *lru_size;
1317
1318 if (mem_cgroup_disabled())
1319 return;
1320
1321 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1322 lru_size = mz->lru_size + lru;
1323 *lru_size += nr_pages;
1324 VM_BUG_ON((long)(*lru_size) < 0);
1325}
1326
1327/*
1328 * Checks whether given mem is same or in the root_mem_cgroup's
1329 * hierarchy subtree
1330 */
1331bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1332 struct mem_cgroup *memcg)
1333{
1334 if (root_memcg == memcg)
1335 return true;
1336 if (!root_memcg->use_hierarchy || !memcg)
1337 return false;
1338 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1339}
1340
1341static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1342 struct mem_cgroup *memcg)
1343{
1344 bool ret;
1345
1346 rcu_read_lock();
1347 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1348 rcu_read_unlock();
1349 return ret;
1350}
1351
1352bool task_in_mem_cgroup(struct task_struct *task,
1353 const struct mem_cgroup *memcg)
1354{
1355 struct mem_cgroup *curr = NULL;
1356 struct task_struct *p;
1357 bool ret;
1358
1359 p = find_lock_task_mm(task);
1360 if (p) {
1361 curr = try_get_mem_cgroup_from_mm(p->mm);
1362 task_unlock(p);
1363 } else {
1364 /*
1365 * All threads may have already detached their mm's, but the oom
1366 * killer still needs to detect if they have already been oom
1367 * killed to prevent needlessly killing additional tasks.
1368 */
1369 rcu_read_lock();
1370 curr = mem_cgroup_from_task(task);
1371 if (curr)
1372 css_get(&curr->css);
1373 rcu_read_unlock();
1374 }
1375 if (!curr)
1376 return false;
1377 /*
1378 * We should check use_hierarchy of "memcg" not "curr". Because checking
1379 * use_hierarchy of "curr" here make this function true if hierarchy is
1380 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1381 * hierarchy(even if use_hierarchy is disabled in "memcg").
1382 */
1383 ret = mem_cgroup_same_or_subtree(memcg, curr);
1384 css_put(&curr->css);
1385 return ret;
1386}
1387
1388int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1389{
1390 unsigned long inactive_ratio;
1391 unsigned long inactive;
1392 unsigned long active;
1393 unsigned long gb;
1394
1395 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1396 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1397
1398 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1399 if (gb)
1400 inactive_ratio = int_sqrt(10 * gb);
1401 else
1402 inactive_ratio = 1;
1403
1404 return inactive * inactive_ratio < active;
1405}
1406
1407#define mem_cgroup_from_res_counter(counter, member) \
1408 container_of(counter, struct mem_cgroup, member)
1409
1410/**
1411 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1412 * @memcg: the memory cgroup
1413 *
1414 * Returns the maximum amount of memory @mem can be charged with, in
1415 * pages.
1416 */
1417static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1418{
1419 unsigned long long margin;
1420
1421 margin = res_counter_margin(&memcg->res);
1422 if (do_swap_account)
1423 margin = min(margin, res_counter_margin(&memcg->memsw));
1424 return margin >> PAGE_SHIFT;
1425}
1426
1427int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1428{
1429 /* root ? */
1430 if (!css_parent(&memcg->css))
1431 return vm_swappiness;
1432
1433 return memcg->swappiness;
1434}
1435
1436/*
1437 * memcg->moving_account is used for checking possibility that some thread is
1438 * calling move_account(). When a thread on CPU-A starts moving pages under
1439 * a memcg, other threads should check memcg->moving_account under
1440 * rcu_read_lock(), like this:
1441 *
1442 * CPU-A CPU-B
1443 * rcu_read_lock()
1444 * memcg->moving_account+1 if (memcg->mocing_account)
1445 * take heavy locks.
1446 * synchronize_rcu() update something.
1447 * rcu_read_unlock()
1448 * start move here.
1449 */
1450
1451/* for quick checking without looking up memcg */
1452atomic_t memcg_moving __read_mostly;
1453
1454static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1455{
1456 atomic_inc(&memcg_moving);
1457 atomic_inc(&memcg->moving_account);
1458 synchronize_rcu();
1459}
1460
1461static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1462{
1463 /*
1464 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1465 * We check NULL in callee rather than caller.
1466 */
1467 if (memcg) {
1468 atomic_dec(&memcg_moving);
1469 atomic_dec(&memcg->moving_account);
1470 }
1471}
1472
1473/*
1474 * 2 routines for checking "mem" is under move_account() or not.
1475 *
1476 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1477 * is used for avoiding races in accounting. If true,
1478 * pc->mem_cgroup may be overwritten.
1479 *
1480 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1481 * under hierarchy of moving cgroups. This is for
1482 * waiting at hith-memory prressure caused by "move".
1483 */
1484
1485static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1486{
1487 VM_BUG_ON(!rcu_read_lock_held());
1488 return atomic_read(&memcg->moving_account) > 0;
1489}
1490
1491static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1492{
1493 struct mem_cgroup *from;
1494 struct mem_cgroup *to;
1495 bool ret = false;
1496 /*
1497 * Unlike task_move routines, we access mc.to, mc.from not under
1498 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1499 */
1500 spin_lock(&mc.lock);
1501 from = mc.from;
1502 to = mc.to;
1503 if (!from)
1504 goto unlock;
1505
1506 ret = mem_cgroup_same_or_subtree(memcg, from)
1507 || mem_cgroup_same_or_subtree(memcg, to);
1508unlock:
1509 spin_unlock(&mc.lock);
1510 return ret;
1511}
1512
1513static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1514{
1515 if (mc.moving_task && current != mc.moving_task) {
1516 if (mem_cgroup_under_move(memcg)) {
1517 DEFINE_WAIT(wait);
1518 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1519 /* moving charge context might have finished. */
1520 if (mc.moving_task)
1521 schedule();
1522 finish_wait(&mc.waitq, &wait);
1523 return true;
1524 }
1525 }
1526 return false;
1527}
1528
1529/*
1530 * Take this lock when
1531 * - a code tries to modify page's memcg while it's USED.
1532 * - a code tries to modify page state accounting in a memcg.
1533 * see mem_cgroup_stolen(), too.
1534 */
1535static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1536 unsigned long *flags)
1537{
1538 spin_lock_irqsave(&memcg->move_lock, *flags);
1539}
1540
1541static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1542 unsigned long *flags)
1543{
1544 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1545}
1546
1547#define K(x) ((x) << (PAGE_SHIFT-10))
1548/**
1549 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1550 * @memcg: The memory cgroup that went over limit
1551 * @p: Task that is going to be killed
1552 *
1553 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1554 * enabled
1555 */
1556void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1557{
1558 struct cgroup *task_cgrp;
1559 struct cgroup *mem_cgrp;
1560 /*
1561 * Need a buffer in BSS, can't rely on allocations. The code relies
1562 * on the assumption that OOM is serialized for memory controller.
1563 * If this assumption is broken, revisit this code.
1564 */
1565 static char memcg_name[PATH_MAX];
1566 int ret;
1567 struct mem_cgroup *iter;
1568 unsigned int i;
1569
1570 if (!p)
1571 return;
1572
1573 rcu_read_lock();
1574
1575 mem_cgrp = memcg->css.cgroup;
1576 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1577
1578 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1579 if (ret < 0) {
1580 /*
1581 * Unfortunately, we are unable to convert to a useful name
1582 * But we'll still print out the usage information
1583 */
1584 rcu_read_unlock();
1585 goto done;
1586 }
1587 rcu_read_unlock();
1588
1589 pr_info("Task in %s killed", memcg_name);
1590
1591 rcu_read_lock();
1592 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1593 if (ret < 0) {
1594 rcu_read_unlock();
1595 goto done;
1596 }
1597 rcu_read_unlock();
1598
1599 /*
1600 * Continues from above, so we don't need an KERN_ level
1601 */
1602 pr_cont(" as a result of limit of %s\n", memcg_name);
1603done:
1604
1605 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1606 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1607 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1608 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1609 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1610 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1611 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1612 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1613 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1614 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1615 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1616 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1617
1618 for_each_mem_cgroup_tree(iter, memcg) {
1619 pr_info("Memory cgroup stats");
1620
1621 rcu_read_lock();
1622 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1623 if (!ret)
1624 pr_cont(" for %s", memcg_name);
1625 rcu_read_unlock();
1626 pr_cont(":");
1627
1628 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1629 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1630 continue;
1631 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1632 K(mem_cgroup_read_stat(iter, i)));
1633 }
1634
1635 for (i = 0; i < NR_LRU_LISTS; i++)
1636 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1637 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1638
1639 pr_cont("\n");
1640 }
1641}
1642
1643/*
1644 * This function returns the number of memcg under hierarchy tree. Returns
1645 * 1(self count) if no children.
1646 */
1647static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1648{
1649 int num = 0;
1650 struct mem_cgroup *iter;
1651
1652 for_each_mem_cgroup_tree(iter, memcg)
1653 num++;
1654 return num;
1655}
1656
1657/*
1658 * Return the memory (and swap, if configured) limit for a memcg.
1659 */
1660static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1661{
1662 u64 limit;
1663
1664 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1665
1666 /*
1667 * Do not consider swap space if we cannot swap due to swappiness
1668 */
1669 if (mem_cgroup_swappiness(memcg)) {
1670 u64 memsw;
1671
1672 limit += total_swap_pages << PAGE_SHIFT;
1673 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1674
1675 /*
1676 * If memsw is finite and limits the amount of swap space
1677 * available to this memcg, return that limit.
1678 */
1679 limit = min(limit, memsw);
1680 }
1681
1682 return limit;
1683}
1684
1685static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1686 int order)
1687{
1688 struct mem_cgroup *iter;
1689 unsigned long chosen_points = 0;
1690 unsigned long totalpages;
1691 unsigned int points = 0;
1692 struct task_struct *chosen = NULL;
1693
1694 /*
1695 * If current has a pending SIGKILL or is exiting, then automatically
1696 * select it. The goal is to allow it to allocate so that it may
1697 * quickly exit and free its memory.
1698 */
1699 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1700 set_thread_flag(TIF_MEMDIE);
1701 return;
1702 }
1703
1704 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1705 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1706 for_each_mem_cgroup_tree(iter, memcg) {
1707 struct css_task_iter it;
1708 struct task_struct *task;
1709
1710 css_task_iter_start(&iter->css, &it);
1711 while ((task = css_task_iter_next(&it))) {
1712 switch (oom_scan_process_thread(task, totalpages, NULL,
1713 false)) {
1714 case OOM_SCAN_SELECT:
1715 if (chosen)
1716 put_task_struct(chosen);
1717 chosen = task;
1718 chosen_points = ULONG_MAX;
1719 get_task_struct(chosen);
1720 /* fall through */
1721 case OOM_SCAN_CONTINUE:
1722 continue;
1723 case OOM_SCAN_ABORT:
1724 css_task_iter_end(&it);
1725 mem_cgroup_iter_break(memcg, iter);
1726 if (chosen)
1727 put_task_struct(chosen);
1728 return;
1729 case OOM_SCAN_OK:
1730 break;
1731 };
1732 points = oom_badness(task, memcg, NULL, totalpages);
1733 if (points > chosen_points) {
1734 if (chosen)
1735 put_task_struct(chosen);
1736 chosen = task;
1737 chosen_points = points;
1738 get_task_struct(chosen);
1739 }
1740 }
1741 css_task_iter_end(&it);
1742 }
1743
1744 if (!chosen)
1745 return;
1746 points = chosen_points * 1000 / totalpages;
1747 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1748 NULL, "Memory cgroup out of memory");
1749}
1750
1751static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1752 gfp_t gfp_mask,
1753 unsigned long flags)
1754{
1755 unsigned long total = 0;
1756 bool noswap = false;
1757 int loop;
1758
1759 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1760 noswap = true;
1761 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1762 noswap = true;
1763
1764 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1765 if (loop)
1766 drain_all_stock_async(memcg);
1767 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1768 /*
1769 * Allow limit shrinkers, which are triggered directly
1770 * by userspace, to catch signals and stop reclaim
1771 * after minimal progress, regardless of the margin.
1772 */
1773 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1774 break;
1775 if (mem_cgroup_margin(memcg))
1776 break;
1777 /*
1778 * If nothing was reclaimed after two attempts, there
1779 * may be no reclaimable pages in this hierarchy.
1780 */
1781 if (loop && !total)
1782 break;
1783 }
1784 return total;
1785}
1786
1787#if MAX_NUMNODES > 1
1788/**
1789 * test_mem_cgroup_node_reclaimable
1790 * @memcg: the target memcg
1791 * @nid: the node ID to be checked.
1792 * @noswap : specify true here if the user wants flle only information.
1793 *
1794 * This function returns whether the specified memcg contains any
1795 * reclaimable pages on a node. Returns true if there are any reclaimable
1796 * pages in the node.
1797 */
1798static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1799 int nid, bool noswap)
1800{
1801 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1802 return true;
1803 if (noswap || !total_swap_pages)
1804 return false;
1805 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1806 return true;
1807 return false;
1808
1809}
1810
1811/*
1812 * Always updating the nodemask is not very good - even if we have an empty
1813 * list or the wrong list here, we can start from some node and traverse all
1814 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1815 *
1816 */
1817static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1818{
1819 int nid;
1820 /*
1821 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1822 * pagein/pageout changes since the last update.
1823 */
1824 if (!atomic_read(&memcg->numainfo_events))
1825 return;
1826 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1827 return;
1828
1829 /* make a nodemask where this memcg uses memory from */
1830 memcg->scan_nodes = node_states[N_MEMORY];
1831
1832 for_each_node_mask(nid, node_states[N_MEMORY]) {
1833
1834 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1835 node_clear(nid, memcg->scan_nodes);
1836 }
1837
1838 atomic_set(&memcg->numainfo_events, 0);
1839 atomic_set(&memcg->numainfo_updating, 0);
1840}
1841
1842/*
1843 * Selecting a node where we start reclaim from. Because what we need is just
1844 * reducing usage counter, start from anywhere is O,K. Considering
1845 * memory reclaim from current node, there are pros. and cons.
1846 *
1847 * Freeing memory from current node means freeing memory from a node which
1848 * we'll use or we've used. So, it may make LRU bad. And if several threads
1849 * hit limits, it will see a contention on a node. But freeing from remote
1850 * node means more costs for memory reclaim because of memory latency.
1851 *
1852 * Now, we use round-robin. Better algorithm is welcomed.
1853 */
1854int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1855{
1856 int node;
1857
1858 mem_cgroup_may_update_nodemask(memcg);
1859 node = memcg->last_scanned_node;
1860
1861 node = next_node(node, memcg->scan_nodes);
1862 if (node == MAX_NUMNODES)
1863 node = first_node(memcg->scan_nodes);
1864 /*
1865 * We call this when we hit limit, not when pages are added to LRU.
1866 * No LRU may hold pages because all pages are UNEVICTABLE or
1867 * memcg is too small and all pages are not on LRU. In that case,
1868 * we use curret node.
1869 */
1870 if (unlikely(node == MAX_NUMNODES))
1871 node = numa_node_id();
1872
1873 memcg->last_scanned_node = node;
1874 return node;
1875}
1876
1877#else
1878int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1879{
1880 return 0;
1881}
1882
1883#endif
1884
1885/*
1886 * A group is eligible for the soft limit reclaim under the given root
1887 * hierarchy if
1888 * a) it is over its soft limit
1889 * b) any parent up the hierarchy is over its soft limit
1890 *
1891 * If the given group doesn't have any children over the limit then it
1892 * doesn't make any sense to iterate its subtree.
1893 */
1894enum mem_cgroup_filter_t
1895mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
1896 struct mem_cgroup *root)
1897{
1898 struct mem_cgroup *parent;
1899
1900 if (!memcg)
1901 memcg = root_mem_cgroup;
1902 parent = memcg;
1903
1904 if (res_counter_soft_limit_excess(&memcg->res))
1905 return VISIT;
1906
1907 /*
1908 * If any parent up to the root in the hierarchy is over its soft limit
1909 * then we have to obey and reclaim from this group as well.
1910 */
1911 while ((parent = parent_mem_cgroup(parent))) {
1912 if (res_counter_soft_limit_excess(&parent->res))
1913 return VISIT;
1914 if (parent == root)
1915 break;
1916 }
1917
1918 if (!atomic_read(&memcg->children_in_excess))
1919 return SKIP_TREE;
1920 return SKIP;
1921}
1922
1923static DEFINE_SPINLOCK(memcg_oom_lock);
1924
1925/*
1926 * Check OOM-Killer is already running under our hierarchy.
1927 * If someone is running, return false.
1928 */
1929static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1930{
1931 struct mem_cgroup *iter, *failed = NULL;
1932
1933 spin_lock(&memcg_oom_lock);
1934
1935 for_each_mem_cgroup_tree(iter, memcg) {
1936 if (iter->oom_lock) {
1937 /*
1938 * this subtree of our hierarchy is already locked
1939 * so we cannot give a lock.
1940 */
1941 failed = iter;
1942 mem_cgroup_iter_break(memcg, iter);
1943 break;
1944 } else
1945 iter->oom_lock = true;
1946 }
1947
1948 if (failed) {
1949 /*
1950 * OK, we failed to lock the whole subtree so we have
1951 * to clean up what we set up to the failing subtree
1952 */
1953 for_each_mem_cgroup_tree(iter, memcg) {
1954 if (iter == failed) {
1955 mem_cgroup_iter_break(memcg, iter);
1956 break;
1957 }
1958 iter->oom_lock = false;
1959 }
1960 }
1961
1962 spin_unlock(&memcg_oom_lock);
1963
1964 return !failed;
1965}
1966
1967static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1968{
1969 struct mem_cgroup *iter;
1970
1971 spin_lock(&memcg_oom_lock);
1972 for_each_mem_cgroup_tree(iter, memcg)
1973 iter->oom_lock = false;
1974 spin_unlock(&memcg_oom_lock);
1975}
1976
1977static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1978{
1979 struct mem_cgroup *iter;
1980
1981 for_each_mem_cgroup_tree(iter, memcg)
1982 atomic_inc(&iter->under_oom);
1983}
1984
1985static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1986{
1987 struct mem_cgroup *iter;
1988
1989 /*
1990 * When a new child is created while the hierarchy is under oom,
1991 * mem_cgroup_oom_lock() may not be called. We have to use
1992 * atomic_add_unless() here.
1993 */
1994 for_each_mem_cgroup_tree(iter, memcg)
1995 atomic_add_unless(&iter->under_oom, -1, 0);
1996}
1997
1998static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1999
2000struct oom_wait_info {
2001 struct mem_cgroup *memcg;
2002 wait_queue_t wait;
2003};
2004
2005static int memcg_oom_wake_function(wait_queue_t *wait,
2006 unsigned mode, int sync, void *arg)
2007{
2008 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2009 struct mem_cgroup *oom_wait_memcg;
2010 struct oom_wait_info *oom_wait_info;
2011
2012 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2013 oom_wait_memcg = oom_wait_info->memcg;
2014
2015 /*
2016 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2017 * Then we can use css_is_ancestor without taking care of RCU.
2018 */
2019 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2020 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2021 return 0;
2022 return autoremove_wake_function(wait, mode, sync, arg);
2023}
2024
2025static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2026{
2027 atomic_inc(&memcg->oom_wakeups);
2028 /* for filtering, pass "memcg" as argument. */
2029 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2030}
2031
2032static void memcg_oom_recover(struct mem_cgroup *memcg)
2033{
2034 if (memcg && atomic_read(&memcg->under_oom))
2035 memcg_wakeup_oom(memcg);
2036}
2037
2038/*
2039 * try to call OOM killer
2040 */
2041static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2042{
2043 bool locked;
2044 int wakeups;
2045
2046 if (!current->memcg_oom.may_oom)
2047 return;
2048
2049 current->memcg_oom.in_memcg_oom = 1;
2050
2051 /*
2052 * As with any blocking lock, a contender needs to start
2053 * listening for wakeups before attempting the trylock,
2054 * otherwise it can miss the wakeup from the unlock and sleep
2055 * indefinitely. This is just open-coded because our locking
2056 * is so particular to memcg hierarchies.
2057 */
2058 wakeups = atomic_read(&memcg->oom_wakeups);
2059 mem_cgroup_mark_under_oom(memcg);
2060
2061 locked = mem_cgroup_oom_trylock(memcg);
2062
2063 if (locked)
2064 mem_cgroup_oom_notify(memcg);
2065
2066 if (locked && !memcg->oom_kill_disable) {
2067 mem_cgroup_unmark_under_oom(memcg);
2068 mem_cgroup_out_of_memory(memcg, mask, order);
2069 mem_cgroup_oom_unlock(memcg);
2070 /*
2071 * There is no guarantee that an OOM-lock contender
2072 * sees the wakeups triggered by the OOM kill
2073 * uncharges. Wake any sleepers explicitely.
2074 */
2075 memcg_oom_recover(memcg);
2076 } else {
2077 /*
2078 * A system call can just return -ENOMEM, but if this
2079 * is a page fault and somebody else is handling the
2080 * OOM already, we need to sleep on the OOM waitqueue
2081 * for this memcg until the situation is resolved.
2082 * Which can take some time because it might be
2083 * handled by a userspace task.
2084 *
2085 * However, this is the charge context, which means
2086 * that we may sit on a large call stack and hold
2087 * various filesystem locks, the mmap_sem etc. and we
2088 * don't want the OOM handler to deadlock on them
2089 * while we sit here and wait. Store the current OOM
2090 * context in the task_struct, then return -ENOMEM.
2091 * At the end of the page fault handler, with the
2092 * stack unwound, pagefault_out_of_memory() will check
2093 * back with us by calling
2094 * mem_cgroup_oom_synchronize(), possibly putting the
2095 * task to sleep.
2096 */
2097 current->memcg_oom.oom_locked = locked;
2098 current->memcg_oom.wakeups = wakeups;
2099 css_get(&memcg->css);
2100 current->memcg_oom.wait_on_memcg = memcg;
2101 }
2102}
2103
2104/**
2105 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2106 *
2107 * This has to be called at the end of a page fault if the the memcg
2108 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
2109 *
2110 * Memcg supports userspace OOM handling, so failed allocations must
2111 * sleep on a waitqueue until the userspace task resolves the
2112 * situation. Sleeping directly in the charge context with all kinds
2113 * of locks held is not a good idea, instead we remember an OOM state
2114 * in the task and mem_cgroup_oom_synchronize() has to be called at
2115 * the end of the page fault to put the task to sleep and clean up the
2116 * OOM state.
2117 *
2118 * Returns %true if an ongoing memcg OOM situation was detected and
2119 * finalized, %false otherwise.
2120 */
2121bool mem_cgroup_oom_synchronize(void)
2122{
2123 struct oom_wait_info owait;
2124 struct mem_cgroup *memcg;
2125
2126 /* OOM is global, do not handle */
2127 if (!current->memcg_oom.in_memcg_oom)
2128 return false;
2129
2130 /*
2131 * We invoked the OOM killer but there is a chance that a kill
2132 * did not free up any charges. Everybody else might already
2133 * be sleeping, so restart the fault and keep the rampage
2134 * going until some charges are released.
2135 */
2136 memcg = current->memcg_oom.wait_on_memcg;
2137 if (!memcg)
2138 goto out;
2139
2140 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2141 goto out_memcg;
2142
2143 owait.memcg = memcg;
2144 owait.wait.flags = 0;
2145 owait.wait.func = memcg_oom_wake_function;
2146 owait.wait.private = current;
2147 INIT_LIST_HEAD(&owait.wait.task_list);
2148
2149 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2150 /* Only sleep if we didn't miss any wakeups since OOM */
2151 if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
2152 schedule();
2153 finish_wait(&memcg_oom_waitq, &owait.wait);
2154out_memcg:
2155 mem_cgroup_unmark_under_oom(memcg);
2156 if (current->memcg_oom.oom_locked) {
2157 mem_cgroup_oom_unlock(memcg);
2158 /*
2159 * There is no guarantee that an OOM-lock contender
2160 * sees the wakeups triggered by the OOM kill
2161 * uncharges. Wake any sleepers explicitely.
2162 */
2163 memcg_oom_recover(memcg);
2164 }
2165 css_put(&memcg->css);
2166 current->memcg_oom.wait_on_memcg = NULL;
2167out:
2168 current->memcg_oom.in_memcg_oom = 0;
2169 return true;
2170}
2171
2172/*
2173 * Currently used to update mapped file statistics, but the routine can be
2174 * generalized to update other statistics as well.
2175 *
2176 * Notes: Race condition
2177 *
2178 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2179 * it tends to be costly. But considering some conditions, we doesn't need
2180 * to do so _always_.
2181 *
2182 * Considering "charge", lock_page_cgroup() is not required because all
2183 * file-stat operations happen after a page is attached to radix-tree. There
2184 * are no race with "charge".
2185 *
2186 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2187 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2188 * if there are race with "uncharge". Statistics itself is properly handled
2189 * by flags.
2190 *
2191 * Considering "move", this is an only case we see a race. To make the race
2192 * small, we check mm->moving_account and detect there are possibility of race
2193 * If there is, we take a lock.
2194 */
2195
2196void __mem_cgroup_begin_update_page_stat(struct page *page,
2197 bool *locked, unsigned long *flags)
2198{
2199 struct mem_cgroup *memcg;
2200 struct page_cgroup *pc;
2201
2202 pc = lookup_page_cgroup(page);
2203again:
2204 memcg = pc->mem_cgroup;
2205 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2206 return;
2207 /*
2208 * If this memory cgroup is not under account moving, we don't
2209 * need to take move_lock_mem_cgroup(). Because we already hold
2210 * rcu_read_lock(), any calls to move_account will be delayed until
2211 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2212 */
2213 if (!mem_cgroup_stolen(memcg))
2214 return;
2215
2216 move_lock_mem_cgroup(memcg, flags);
2217 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2218 move_unlock_mem_cgroup(memcg, flags);
2219 goto again;
2220 }
2221 *locked = true;
2222}
2223
2224void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2225{
2226 struct page_cgroup *pc = lookup_page_cgroup(page);
2227
2228 /*
2229 * It's guaranteed that pc->mem_cgroup never changes while
2230 * lock is held because a routine modifies pc->mem_cgroup
2231 * should take move_lock_mem_cgroup().
2232 */
2233 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2234}
2235
2236void mem_cgroup_update_page_stat(struct page *page,
2237 enum mem_cgroup_stat_index idx, int val)
2238{
2239 struct mem_cgroup *memcg;
2240 struct page_cgroup *pc = lookup_page_cgroup(page);
2241 unsigned long uninitialized_var(flags);
2242
2243 if (mem_cgroup_disabled())
2244 return;
2245
2246 VM_BUG_ON(!rcu_read_lock_held());
2247 memcg = pc->mem_cgroup;
2248 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2249 return;
2250
2251 this_cpu_add(memcg->stat->count[idx], val);
2252}
2253
2254/*
2255 * size of first charge trial. "32" comes from vmscan.c's magic value.
2256 * TODO: maybe necessary to use big numbers in big irons.
2257 */
2258#define CHARGE_BATCH 32U
2259struct memcg_stock_pcp {
2260 struct mem_cgroup *cached; /* this never be root cgroup */
2261 unsigned int nr_pages;
2262 struct work_struct work;
2263 unsigned long flags;
2264#define FLUSHING_CACHED_CHARGE 0
2265};
2266static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2267static DEFINE_MUTEX(percpu_charge_mutex);
2268
2269/**
2270 * consume_stock: Try to consume stocked charge on this cpu.
2271 * @memcg: memcg to consume from.
2272 * @nr_pages: how many pages to charge.
2273 *
2274 * The charges will only happen if @memcg matches the current cpu's memcg
2275 * stock, and at least @nr_pages are available in that stock. Failure to
2276 * service an allocation will refill the stock.
2277 *
2278 * returns true if successful, false otherwise.
2279 */
2280static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2281{
2282 struct memcg_stock_pcp *stock;
2283 bool ret = true;
2284
2285 if (nr_pages > CHARGE_BATCH)
2286 return false;
2287
2288 stock = &get_cpu_var(memcg_stock);
2289 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2290 stock->nr_pages -= nr_pages;
2291 else /* need to call res_counter_charge */
2292 ret = false;
2293 put_cpu_var(memcg_stock);
2294 return ret;
2295}
2296
2297/*
2298 * Returns stocks cached in percpu to res_counter and reset cached information.
2299 */
2300static void drain_stock(struct memcg_stock_pcp *stock)
2301{
2302 struct mem_cgroup *old = stock->cached;
2303
2304 if (stock->nr_pages) {
2305 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2306
2307 res_counter_uncharge(&old->res, bytes);
2308 if (do_swap_account)
2309 res_counter_uncharge(&old->memsw, bytes);
2310 stock->nr_pages = 0;
2311 }
2312 stock->cached = NULL;
2313}
2314
2315/*
2316 * This must be called under preempt disabled or must be called by
2317 * a thread which is pinned to local cpu.
2318 */
2319static void drain_local_stock(struct work_struct *dummy)
2320{
2321 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2322 drain_stock(stock);
2323 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2324}
2325
2326static void __init memcg_stock_init(void)
2327{
2328 int cpu;
2329
2330 for_each_possible_cpu(cpu) {
2331 struct memcg_stock_pcp *stock =
2332 &per_cpu(memcg_stock, cpu);
2333 INIT_WORK(&stock->work, drain_local_stock);
2334 }
2335}
2336
2337/*
2338 * Cache charges(val) which is from res_counter, to local per_cpu area.
2339 * This will be consumed by consume_stock() function, later.
2340 */
2341static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2342{
2343 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2344
2345 if (stock->cached != memcg) { /* reset if necessary */
2346 drain_stock(stock);
2347 stock->cached = memcg;
2348 }
2349 stock->nr_pages += nr_pages;
2350 put_cpu_var(memcg_stock);
2351}
2352
2353/*
2354 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2355 * of the hierarchy under it. sync flag says whether we should block
2356 * until the work is done.
2357 */
2358static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2359{
2360 int cpu, curcpu;
2361
2362 /* Notify other cpus that system-wide "drain" is running */
2363 get_online_cpus();
2364 curcpu = get_cpu();
2365 for_each_online_cpu(cpu) {
2366 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2367 struct mem_cgroup *memcg;
2368
2369 memcg = stock->cached;
2370 if (!memcg || !stock->nr_pages)
2371 continue;
2372 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2373 continue;
2374 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2375 if (cpu == curcpu)
2376 drain_local_stock(&stock->work);
2377 else
2378 schedule_work_on(cpu, &stock->work);
2379 }
2380 }
2381 put_cpu();
2382
2383 if (!sync)
2384 goto out;
2385
2386 for_each_online_cpu(cpu) {
2387 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2388 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2389 flush_work(&stock->work);
2390 }
2391out:
2392 put_online_cpus();
2393}
2394
2395/*
2396 * Tries to drain stocked charges in other cpus. This function is asynchronous
2397 * and just put a work per cpu for draining localy on each cpu. Caller can
2398 * expects some charges will be back to res_counter later but cannot wait for
2399 * it.
2400 */
2401static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2402{
2403 /*
2404 * If someone calls draining, avoid adding more kworker runs.
2405 */
2406 if (!mutex_trylock(&percpu_charge_mutex))
2407 return;
2408 drain_all_stock(root_memcg, false);
2409 mutex_unlock(&percpu_charge_mutex);
2410}
2411
2412/* This is a synchronous drain interface. */
2413static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2414{
2415 /* called when force_empty is called */
2416 mutex_lock(&percpu_charge_mutex);
2417 drain_all_stock(root_memcg, true);
2418 mutex_unlock(&percpu_charge_mutex);
2419}
2420
2421/*
2422 * This function drains percpu counter value from DEAD cpu and
2423 * move it to local cpu. Note that this function can be preempted.
2424 */
2425static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2426{
2427 int i;
2428
2429 spin_lock(&memcg->pcp_counter_lock);
2430 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2431 long x = per_cpu(memcg->stat->count[i], cpu);
2432
2433 per_cpu(memcg->stat->count[i], cpu) = 0;
2434 memcg->nocpu_base.count[i] += x;
2435 }
2436 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2437 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2438
2439 per_cpu(memcg->stat->events[i], cpu) = 0;
2440 memcg->nocpu_base.events[i] += x;
2441 }
2442 spin_unlock(&memcg->pcp_counter_lock);
2443}
2444
2445static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2446 unsigned long action,
2447 void *hcpu)
2448{
2449 int cpu = (unsigned long)hcpu;
2450 struct memcg_stock_pcp *stock;
2451 struct mem_cgroup *iter;
2452
2453 if (action == CPU_ONLINE)
2454 return NOTIFY_OK;
2455
2456 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2457 return NOTIFY_OK;
2458
2459 for_each_mem_cgroup(iter)
2460 mem_cgroup_drain_pcp_counter(iter, cpu);
2461
2462 stock = &per_cpu(memcg_stock, cpu);
2463 drain_stock(stock);
2464 return NOTIFY_OK;
2465}
2466
2467
2468/* See __mem_cgroup_try_charge() for details */
2469enum {
2470 CHARGE_OK, /* success */
2471 CHARGE_RETRY, /* need to retry but retry is not bad */
2472 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2473 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2474};
2475
2476static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2477 unsigned int nr_pages, unsigned int min_pages,
2478 bool invoke_oom)
2479{
2480 unsigned long csize = nr_pages * PAGE_SIZE;
2481 struct mem_cgroup *mem_over_limit;
2482 struct res_counter *fail_res;
2483 unsigned long flags = 0;
2484 int ret;
2485
2486 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2487
2488 if (likely(!ret)) {
2489 if (!do_swap_account)
2490 return CHARGE_OK;
2491 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2492 if (likely(!ret))
2493 return CHARGE_OK;
2494
2495 res_counter_uncharge(&memcg->res, csize);
2496 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2497 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2498 } else
2499 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2500 /*
2501 * Never reclaim on behalf of optional batching, retry with a
2502 * single page instead.
2503 */
2504 if (nr_pages > min_pages)
2505 return CHARGE_RETRY;
2506
2507 if (!(gfp_mask & __GFP_WAIT))
2508 return CHARGE_WOULDBLOCK;
2509
2510 if (gfp_mask & __GFP_NORETRY)
2511 return CHARGE_NOMEM;
2512
2513 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2514 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2515 return CHARGE_RETRY;
2516 /*
2517 * Even though the limit is exceeded at this point, reclaim
2518 * may have been able to free some pages. Retry the charge
2519 * before killing the task.
2520 *
2521 * Only for regular pages, though: huge pages are rather
2522 * unlikely to succeed so close to the limit, and we fall back
2523 * to regular pages anyway in case of failure.
2524 */
2525 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2526 return CHARGE_RETRY;
2527
2528 /*
2529 * At task move, charge accounts can be doubly counted. So, it's
2530 * better to wait until the end of task_move if something is going on.
2531 */
2532 if (mem_cgroup_wait_acct_move(mem_over_limit))
2533 return CHARGE_RETRY;
2534
2535 if (invoke_oom)
2536 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2537
2538 return CHARGE_NOMEM;
2539}
2540
2541/*
2542 * __mem_cgroup_try_charge() does
2543 * 1. detect memcg to be charged against from passed *mm and *ptr,
2544 * 2. update res_counter
2545 * 3. call memory reclaim if necessary.
2546 *
2547 * In some special case, if the task is fatal, fatal_signal_pending() or
2548 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2549 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2550 * as possible without any hazards. 2: all pages should have a valid
2551 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2552 * pointer, that is treated as a charge to root_mem_cgroup.
2553 *
2554 * So __mem_cgroup_try_charge() will return
2555 * 0 ... on success, filling *ptr with a valid memcg pointer.
2556 * -ENOMEM ... charge failure because of resource limits.
2557 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2558 *
2559 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2560 * the oom-killer can be invoked.
2561 */
2562static int __mem_cgroup_try_charge(struct mm_struct *mm,
2563 gfp_t gfp_mask,
2564 unsigned int nr_pages,
2565 struct mem_cgroup **ptr,
2566 bool oom)
2567{
2568 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2569 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2570 struct mem_cgroup *memcg = NULL;
2571 int ret;
2572
2573 /*
2574 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2575 * in system level. So, allow to go ahead dying process in addition to
2576 * MEMDIE process.
2577 */
2578 if (unlikely(test_thread_flag(TIF_MEMDIE)
2579 || fatal_signal_pending(current)))
2580 goto bypass;
2581
2582 /*
2583 * We always charge the cgroup the mm_struct belongs to.
2584 * The mm_struct's mem_cgroup changes on task migration if the
2585 * thread group leader migrates. It's possible that mm is not
2586 * set, if so charge the root memcg (happens for pagecache usage).
2587 */
2588 if (!*ptr && !mm)
2589 *ptr = root_mem_cgroup;
2590again:
2591 if (*ptr) { /* css should be a valid one */
2592 memcg = *ptr;
2593 if (mem_cgroup_is_root(memcg))
2594 goto done;
2595 if (consume_stock(memcg, nr_pages))
2596 goto done;
2597 css_get(&memcg->css);
2598 } else {
2599 struct task_struct *p;
2600
2601 rcu_read_lock();
2602 p = rcu_dereference(mm->owner);
2603 /*
2604 * Because we don't have task_lock(), "p" can exit.
2605 * In that case, "memcg" can point to root or p can be NULL with
2606 * race with swapoff. Then, we have small risk of mis-accouning.
2607 * But such kind of mis-account by race always happens because
2608 * we don't have cgroup_mutex(). It's overkill and we allo that
2609 * small race, here.
2610 * (*) swapoff at el will charge against mm-struct not against
2611 * task-struct. So, mm->owner can be NULL.
2612 */
2613 memcg = mem_cgroup_from_task(p);
2614 if (!memcg)
2615 memcg = root_mem_cgroup;
2616 if (mem_cgroup_is_root(memcg)) {
2617 rcu_read_unlock();
2618 goto done;
2619 }
2620 if (consume_stock(memcg, nr_pages)) {
2621 /*
2622 * It seems dagerous to access memcg without css_get().
2623 * But considering how consume_stok works, it's not
2624 * necessary. If consume_stock success, some charges
2625 * from this memcg are cached on this cpu. So, we
2626 * don't need to call css_get()/css_tryget() before
2627 * calling consume_stock().
2628 */
2629 rcu_read_unlock();
2630 goto done;
2631 }
2632 /* after here, we may be blocked. we need to get refcnt */
2633 if (!css_tryget(&memcg->css)) {
2634 rcu_read_unlock();
2635 goto again;
2636 }
2637 rcu_read_unlock();
2638 }
2639
2640 do {
2641 bool invoke_oom = oom && !nr_oom_retries;
2642
2643 /* If killed, bypass charge */
2644 if (fatal_signal_pending(current)) {
2645 css_put(&memcg->css);
2646 goto bypass;
2647 }
2648
2649 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2650 nr_pages, invoke_oom);
2651 switch (ret) {
2652 case CHARGE_OK:
2653 break;
2654 case CHARGE_RETRY: /* not in OOM situation but retry */
2655 batch = nr_pages;
2656 css_put(&memcg->css);
2657 memcg = NULL;
2658 goto again;
2659 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2660 css_put(&memcg->css);
2661 goto nomem;
2662 case CHARGE_NOMEM: /* OOM routine works */
2663 if (!oom || invoke_oom) {
2664 css_put(&memcg->css);
2665 goto nomem;
2666 }
2667 nr_oom_retries--;
2668 break;
2669 }
2670 } while (ret != CHARGE_OK);
2671
2672 if (batch > nr_pages)
2673 refill_stock(memcg, batch - nr_pages);
2674 css_put(&memcg->css);
2675done:
2676 *ptr = memcg;
2677 return 0;
2678nomem:
2679 *ptr = NULL;
2680 return -ENOMEM;
2681bypass:
2682 *ptr = root_mem_cgroup;
2683 return -EINTR;
2684}
2685
2686/*
2687 * Somemtimes we have to undo a charge we got by try_charge().
2688 * This function is for that and do uncharge, put css's refcnt.
2689 * gotten by try_charge().
2690 */
2691static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2692 unsigned int nr_pages)
2693{
2694 if (!mem_cgroup_is_root(memcg)) {
2695 unsigned long bytes = nr_pages * PAGE_SIZE;
2696
2697 res_counter_uncharge(&memcg->res, bytes);
2698 if (do_swap_account)
2699 res_counter_uncharge(&memcg->memsw, bytes);
2700 }
2701}
2702
2703/*
2704 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2705 * This is useful when moving usage to parent cgroup.
2706 */
2707static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2708 unsigned int nr_pages)
2709{
2710 unsigned long bytes = nr_pages * PAGE_SIZE;
2711
2712 if (mem_cgroup_is_root(memcg))
2713 return;
2714
2715 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2716 if (do_swap_account)
2717 res_counter_uncharge_until(&memcg->memsw,
2718 memcg->memsw.parent, bytes);
2719}
2720
2721/*
2722 * A helper function to get mem_cgroup from ID. must be called under
2723 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2724 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2725 * called against removed memcg.)
2726 */
2727static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2728{
2729 /* ID 0 is unused ID */
2730 if (!id)
2731 return NULL;
2732 return mem_cgroup_from_id(id);
2733}
2734
2735struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2736{
2737 struct mem_cgroup *memcg = NULL;
2738 struct page_cgroup *pc;
2739 unsigned short id;
2740 swp_entry_t ent;
2741
2742 VM_BUG_ON(!PageLocked(page));
2743
2744 pc = lookup_page_cgroup(page);
2745 lock_page_cgroup(pc);
2746 if (PageCgroupUsed(pc)) {
2747 memcg = pc->mem_cgroup;
2748 if (memcg && !css_tryget(&memcg->css))
2749 memcg = NULL;
2750 } else if (PageSwapCache(page)) {
2751 ent.val = page_private(page);
2752 id = lookup_swap_cgroup_id(ent);
2753 rcu_read_lock();
2754 memcg = mem_cgroup_lookup(id);
2755 if (memcg && !css_tryget(&memcg->css))
2756 memcg = NULL;
2757 rcu_read_unlock();
2758 }
2759 unlock_page_cgroup(pc);
2760 return memcg;
2761}
2762
2763static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2764 struct page *page,
2765 unsigned int nr_pages,
2766 enum charge_type ctype,
2767 bool lrucare)
2768{
2769 struct page_cgroup *pc = lookup_page_cgroup(page);
2770 struct zone *uninitialized_var(zone);
2771 struct lruvec *lruvec;
2772 bool was_on_lru = false;
2773 bool anon;
2774
2775 lock_page_cgroup(pc);
2776 VM_BUG_ON(PageCgroupUsed(pc));
2777 /*
2778 * we don't need page_cgroup_lock about tail pages, becase they are not
2779 * accessed by any other context at this point.
2780 */
2781
2782 /*
2783 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2784 * may already be on some other mem_cgroup's LRU. Take care of it.
2785 */
2786 if (lrucare) {
2787 zone = page_zone(page);
2788 spin_lock_irq(&zone->lru_lock);
2789 if (PageLRU(page)) {
2790 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2791 ClearPageLRU(page);
2792 del_page_from_lru_list(page, lruvec, page_lru(page));
2793 was_on_lru = true;
2794 }
2795 }
2796
2797 pc->mem_cgroup = memcg;
2798 /*
2799 * We access a page_cgroup asynchronously without lock_page_cgroup().
2800 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2801 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2802 * before USED bit, we need memory barrier here.
2803 * See mem_cgroup_add_lru_list(), etc.
2804 */
2805 smp_wmb();
2806 SetPageCgroupUsed(pc);
2807
2808 if (lrucare) {
2809 if (was_on_lru) {
2810 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2811 VM_BUG_ON(PageLRU(page));
2812 SetPageLRU(page);
2813 add_page_to_lru_list(page, lruvec, page_lru(page));
2814 }
2815 spin_unlock_irq(&zone->lru_lock);
2816 }
2817
2818 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2819 anon = true;
2820 else
2821 anon = false;
2822
2823 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2824 unlock_page_cgroup(pc);
2825
2826 /*
2827 * "charge_statistics" updated event counter.
2828 */
2829 memcg_check_events(memcg, page);
2830}
2831
2832static DEFINE_MUTEX(set_limit_mutex);
2833
2834#ifdef CONFIG_MEMCG_KMEM
2835static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2836{
2837 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2838 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2839}
2840
2841/*
2842 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2843 * in the memcg_cache_params struct.
2844 */
2845static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2846{
2847 struct kmem_cache *cachep;
2848
2849 VM_BUG_ON(p->is_root_cache);
2850 cachep = p->root_cache;
2851 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2852}
2853
2854#ifdef CONFIG_SLABINFO
2855static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2856 struct cftype *cft, struct seq_file *m)
2857{
2858 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2859 struct memcg_cache_params *params;
2860
2861 if (!memcg_can_account_kmem(memcg))
2862 return -EIO;
2863
2864 print_slabinfo_header(m);
2865
2866 mutex_lock(&memcg->slab_caches_mutex);
2867 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2868 cache_show(memcg_params_to_cache(params), m);
2869 mutex_unlock(&memcg->slab_caches_mutex);
2870
2871 return 0;
2872}
2873#endif
2874
2875static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2876{
2877 struct res_counter *fail_res;
2878 struct mem_cgroup *_memcg;
2879 int ret = 0;
2880 bool may_oom;
2881
2882 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2883 if (ret)
2884 return ret;
2885
2886 /*
2887 * Conditions under which we can wait for the oom_killer. Those are
2888 * the same conditions tested by the core page allocator
2889 */
2890 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2891
2892 _memcg = memcg;
2893 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2894 &_memcg, may_oom);
2895
2896 if (ret == -EINTR) {
2897 /*
2898 * __mem_cgroup_try_charge() chosed to bypass to root due to
2899 * OOM kill or fatal signal. Since our only options are to
2900 * either fail the allocation or charge it to this cgroup, do
2901 * it as a temporary condition. But we can't fail. From a
2902 * kmem/slab perspective, the cache has already been selected,
2903 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2904 * our minds.
2905 *
2906 * This condition will only trigger if the task entered
2907 * memcg_charge_kmem in a sane state, but was OOM-killed during
2908 * __mem_cgroup_try_charge() above. Tasks that were already
2909 * dying when the allocation triggers should have been already
2910 * directed to the root cgroup in memcontrol.h
2911 */
2912 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2913 if (do_swap_account)
2914 res_counter_charge_nofail(&memcg->memsw, size,
2915 &fail_res);
2916 ret = 0;
2917 } else if (ret)
2918 res_counter_uncharge(&memcg->kmem, size);
2919
2920 return ret;
2921}
2922
2923static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2924{
2925 res_counter_uncharge(&memcg->res, size);
2926 if (do_swap_account)
2927 res_counter_uncharge(&memcg->memsw, size);
2928
2929 /* Not down to 0 */
2930 if (res_counter_uncharge(&memcg->kmem, size))
2931 return;
2932
2933 /*
2934 * Releases a reference taken in kmem_cgroup_css_offline in case
2935 * this last uncharge is racing with the offlining code or it is
2936 * outliving the memcg existence.
2937 *
2938 * The memory barrier imposed by test&clear is paired with the
2939 * explicit one in memcg_kmem_mark_dead().
2940 */
2941 if (memcg_kmem_test_and_clear_dead(memcg))
2942 css_put(&memcg->css);
2943}
2944
2945void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2946{
2947 if (!memcg)
2948 return;
2949
2950 mutex_lock(&memcg->slab_caches_mutex);
2951 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2952 mutex_unlock(&memcg->slab_caches_mutex);
2953}
2954
2955/*
2956 * helper for acessing a memcg's index. It will be used as an index in the
2957 * child cache array in kmem_cache, and also to derive its name. This function
2958 * will return -1 when this is not a kmem-limited memcg.
2959 */
2960int memcg_cache_id(struct mem_cgroup *memcg)
2961{
2962 return memcg ? memcg->kmemcg_id : -1;
2963}
2964
2965/*
2966 * This ends up being protected by the set_limit mutex, during normal
2967 * operation, because that is its main call site.
2968 *
2969 * But when we create a new cache, we can call this as well if its parent
2970 * is kmem-limited. That will have to hold set_limit_mutex as well.
2971 */
2972int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2973{
2974 int num, ret;
2975
2976 num = ida_simple_get(&kmem_limited_groups,
2977 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2978 if (num < 0)
2979 return num;
2980 /*
2981 * After this point, kmem_accounted (that we test atomically in
2982 * the beginning of this conditional), is no longer 0. This
2983 * guarantees only one process will set the following boolean
2984 * to true. We don't need test_and_set because we're protected
2985 * by the set_limit_mutex anyway.
2986 */
2987 memcg_kmem_set_activated(memcg);
2988
2989 ret = memcg_update_all_caches(num+1);
2990 if (ret) {
2991 ida_simple_remove(&kmem_limited_groups, num);
2992 memcg_kmem_clear_activated(memcg);
2993 return ret;
2994 }
2995
2996 memcg->kmemcg_id = num;
2997 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2998 mutex_init(&memcg->slab_caches_mutex);
2999 return 0;
3000}
3001
3002static size_t memcg_caches_array_size(int num_groups)
3003{
3004 ssize_t size;
3005 if (num_groups <= 0)
3006 return 0;
3007
3008 size = 2 * num_groups;
3009 if (size < MEMCG_CACHES_MIN_SIZE)
3010 size = MEMCG_CACHES_MIN_SIZE;
3011 else if (size > MEMCG_CACHES_MAX_SIZE)
3012 size = MEMCG_CACHES_MAX_SIZE;
3013
3014 return size;
3015}
3016
3017/*
3018 * We should update the current array size iff all caches updates succeed. This
3019 * can only be done from the slab side. The slab mutex needs to be held when
3020 * calling this.
3021 */
3022void memcg_update_array_size(int num)
3023{
3024 if (num > memcg_limited_groups_array_size)
3025 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3026}
3027
3028static void kmem_cache_destroy_work_func(struct work_struct *w);
3029
3030int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3031{
3032 struct memcg_cache_params *cur_params = s->memcg_params;
3033
3034 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3035
3036 if (num_groups > memcg_limited_groups_array_size) {
3037 int i;
3038 ssize_t size = memcg_caches_array_size(num_groups);
3039
3040 size *= sizeof(void *);
3041 size += offsetof(struct memcg_cache_params, memcg_caches);
3042
3043 s->memcg_params = kzalloc(size, GFP_KERNEL);
3044 if (!s->memcg_params) {
3045 s->memcg_params = cur_params;
3046 return -ENOMEM;
3047 }
3048
3049 s->memcg_params->is_root_cache = true;
3050
3051 /*
3052 * There is the chance it will be bigger than
3053 * memcg_limited_groups_array_size, if we failed an allocation
3054 * in a cache, in which case all caches updated before it, will
3055 * have a bigger array.
3056 *
3057 * But if that is the case, the data after
3058 * memcg_limited_groups_array_size is certainly unused
3059 */
3060 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3061 if (!cur_params->memcg_caches[i])
3062 continue;
3063 s->memcg_params->memcg_caches[i] =
3064 cur_params->memcg_caches[i];
3065 }
3066
3067 /*
3068 * Ideally, we would wait until all caches succeed, and only
3069 * then free the old one. But this is not worth the extra
3070 * pointer per-cache we'd have to have for this.
3071 *
3072 * It is not a big deal if some caches are left with a size
3073 * bigger than the others. And all updates will reset this
3074 * anyway.
3075 */
3076 kfree(cur_params);
3077 }
3078 return 0;
3079}
3080
3081int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3082 struct kmem_cache *root_cache)
3083{
3084 size_t size;
3085
3086 if (!memcg_kmem_enabled())
3087 return 0;
3088
3089 if (!memcg) {
3090 size = offsetof(struct memcg_cache_params, memcg_caches);
3091 size += memcg_limited_groups_array_size * sizeof(void *);
3092 } else
3093 size = sizeof(struct memcg_cache_params);
3094
3095 s->memcg_params = kzalloc(size, GFP_KERNEL);
3096 if (!s->memcg_params)
3097 return -ENOMEM;
3098
3099 if (memcg) {
3100 s->memcg_params->memcg = memcg;
3101 s->memcg_params->root_cache = root_cache;
3102 INIT_WORK(&s->memcg_params->destroy,
3103 kmem_cache_destroy_work_func);
3104 } else
3105 s->memcg_params->is_root_cache = true;
3106
3107 return 0;
3108}
3109
3110void memcg_release_cache(struct kmem_cache *s)
3111{
3112 struct kmem_cache *root;
3113 struct mem_cgroup *memcg;
3114 int id;
3115
3116 /*
3117 * This happens, for instance, when a root cache goes away before we
3118 * add any memcg.
3119 */
3120 if (!s->memcg_params)
3121 return;
3122
3123 if (s->memcg_params->is_root_cache)
3124 goto out;
3125
3126 memcg = s->memcg_params->memcg;
3127 id = memcg_cache_id(memcg);
3128
3129 root = s->memcg_params->root_cache;
3130 root->memcg_params->memcg_caches[id] = NULL;
3131
3132 mutex_lock(&memcg->slab_caches_mutex);
3133 list_del(&s->memcg_params->list);
3134 mutex_unlock(&memcg->slab_caches_mutex);
3135
3136 css_put(&memcg->css);
3137out:
3138 kfree(s->memcg_params);
3139}
3140
3141/*
3142 * During the creation a new cache, we need to disable our accounting mechanism
3143 * altogether. This is true even if we are not creating, but rather just
3144 * enqueing new caches to be created.
3145 *
3146 * This is because that process will trigger allocations; some visible, like
3147 * explicit kmallocs to auxiliary data structures, name strings and internal
3148 * cache structures; some well concealed, like INIT_WORK() that can allocate
3149 * objects during debug.
3150 *
3151 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3152 * to it. This may not be a bounded recursion: since the first cache creation
3153 * failed to complete (waiting on the allocation), we'll just try to create the
3154 * cache again, failing at the same point.
3155 *
3156 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3157 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3158 * inside the following two functions.
3159 */
3160static inline void memcg_stop_kmem_account(void)
3161{
3162 VM_BUG_ON(!current->mm);
3163 current->memcg_kmem_skip_account++;
3164}
3165
3166static inline void memcg_resume_kmem_account(void)
3167{
3168 VM_BUG_ON(!current->mm);
3169 current->memcg_kmem_skip_account--;
3170}
3171
3172static void kmem_cache_destroy_work_func(struct work_struct *w)
3173{
3174 struct kmem_cache *cachep;
3175 struct memcg_cache_params *p;
3176
3177 p = container_of(w, struct memcg_cache_params, destroy);
3178
3179 cachep = memcg_params_to_cache(p);
3180
3181 /*
3182 * If we get down to 0 after shrink, we could delete right away.
3183 * However, memcg_release_pages() already puts us back in the workqueue
3184 * in that case. If we proceed deleting, we'll get a dangling
3185 * reference, and removing the object from the workqueue in that case
3186 * is unnecessary complication. We are not a fast path.
3187 *
3188 * Note that this case is fundamentally different from racing with
3189 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3190 * kmem_cache_shrink, not only we would be reinserting a dead cache
3191 * into the queue, but doing so from inside the worker racing to
3192 * destroy it.
3193 *
3194 * So if we aren't down to zero, we'll just schedule a worker and try
3195 * again
3196 */
3197 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3198 kmem_cache_shrink(cachep);
3199 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3200 return;
3201 } else
3202 kmem_cache_destroy(cachep);
3203}
3204
3205void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3206{
3207 if (!cachep->memcg_params->dead)
3208 return;
3209
3210 /*
3211 * There are many ways in which we can get here.
3212 *
3213 * We can get to a memory-pressure situation while the delayed work is
3214 * still pending to run. The vmscan shrinkers can then release all
3215 * cache memory and get us to destruction. If this is the case, we'll
3216 * be executed twice, which is a bug (the second time will execute over
3217 * bogus data). In this case, cancelling the work should be fine.
3218 *
3219 * But we can also get here from the worker itself, if
3220 * kmem_cache_shrink is enough to shake all the remaining objects and
3221 * get the page count to 0. In this case, we'll deadlock if we try to
3222 * cancel the work (the worker runs with an internal lock held, which
3223 * is the same lock we would hold for cancel_work_sync().)
3224 *
3225 * Since we can't possibly know who got us here, just refrain from
3226 * running if there is already work pending
3227 */
3228 if (work_pending(&cachep->memcg_params->destroy))
3229 return;
3230 /*
3231 * We have to defer the actual destroying to a workqueue, because
3232 * we might currently be in a context that cannot sleep.
3233 */
3234 schedule_work(&cachep->memcg_params->destroy);
3235}
3236
3237/*
3238 * This lock protects updaters, not readers. We want readers to be as fast as
3239 * they can, and they will either see NULL or a valid cache value. Our model
3240 * allow them to see NULL, in which case the root memcg will be selected.
3241 *
3242 * We need this lock because multiple allocations to the same cache from a non
3243 * will span more than one worker. Only one of them can create the cache.
3244 */
3245static DEFINE_MUTEX(memcg_cache_mutex);
3246
3247/*
3248 * Called with memcg_cache_mutex held
3249 */
3250static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3251 struct kmem_cache *s)
3252{
3253 struct kmem_cache *new;
3254 static char *tmp_name = NULL;
3255
3256 lockdep_assert_held(&memcg_cache_mutex);
3257
3258 /*
3259 * kmem_cache_create_memcg duplicates the given name and
3260 * cgroup_name for this name requires RCU context.
3261 * This static temporary buffer is used to prevent from
3262 * pointless shortliving allocation.
3263 */
3264 if (!tmp_name) {
3265 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3266 if (!tmp_name)
3267 return NULL;
3268 }
3269
3270 rcu_read_lock();
3271 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3272 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3273 rcu_read_unlock();
3274
3275 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3276 (s->flags & ~SLAB_PANIC), s->ctor, s);
3277
3278 if (new)
3279 new->allocflags |= __GFP_KMEMCG;
3280
3281 return new;
3282}
3283
3284static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3285 struct kmem_cache *cachep)
3286{
3287 struct kmem_cache *new_cachep;
3288 int idx;
3289
3290 BUG_ON(!memcg_can_account_kmem(memcg));
3291
3292 idx = memcg_cache_id(memcg);
3293
3294 mutex_lock(&memcg_cache_mutex);
3295 new_cachep = cachep->memcg_params->memcg_caches[idx];
3296 if (new_cachep) {
3297 css_put(&memcg->css);
3298 goto out;
3299 }
3300
3301 new_cachep = kmem_cache_dup(memcg, cachep);
3302 if (new_cachep == NULL) {
3303 new_cachep = cachep;
3304 css_put(&memcg->css);
3305 goto out;
3306 }
3307
3308 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3309
3310 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3311 /*
3312 * the readers won't lock, make sure everybody sees the updated value,
3313 * so they won't put stuff in the queue again for no reason
3314 */
3315 wmb();
3316out:
3317 mutex_unlock(&memcg_cache_mutex);
3318 return new_cachep;
3319}
3320
3321void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3322{
3323 struct kmem_cache *c;
3324 int i;
3325
3326 if (!s->memcg_params)
3327 return;
3328 if (!s->memcg_params->is_root_cache)
3329 return;
3330
3331 /*
3332 * If the cache is being destroyed, we trust that there is no one else
3333 * requesting objects from it. Even if there are, the sanity checks in
3334 * kmem_cache_destroy should caught this ill-case.
3335 *
3336 * Still, we don't want anyone else freeing memcg_caches under our
3337 * noses, which can happen if a new memcg comes to life. As usual,
3338 * we'll take the set_limit_mutex to protect ourselves against this.
3339 */
3340 mutex_lock(&set_limit_mutex);
3341 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3342 c = s->memcg_params->memcg_caches[i];
3343 if (!c)
3344 continue;
3345
3346 /*
3347 * We will now manually delete the caches, so to avoid races
3348 * we need to cancel all pending destruction workers and
3349 * proceed with destruction ourselves.
3350 *
3351 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3352 * and that could spawn the workers again: it is likely that
3353 * the cache still have active pages until this very moment.
3354 * This would lead us back to mem_cgroup_destroy_cache.
3355 *
3356 * But that will not execute at all if the "dead" flag is not
3357 * set, so flip it down to guarantee we are in control.
3358 */
3359 c->memcg_params->dead = false;
3360 cancel_work_sync(&c->memcg_params->destroy);
3361 kmem_cache_destroy(c);
3362 }
3363 mutex_unlock(&set_limit_mutex);
3364}
3365
3366struct create_work {
3367 struct mem_cgroup *memcg;
3368 struct kmem_cache *cachep;
3369 struct work_struct work;
3370};
3371
3372static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3373{
3374 struct kmem_cache *cachep;
3375 struct memcg_cache_params *params;
3376
3377 if (!memcg_kmem_is_active(memcg))
3378 return;
3379
3380 mutex_lock(&memcg->slab_caches_mutex);
3381 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3382 cachep = memcg_params_to_cache(params);
3383 cachep->memcg_params->dead = true;
3384 schedule_work(&cachep->memcg_params->destroy);
3385 }
3386 mutex_unlock(&memcg->slab_caches_mutex);
3387}
3388
3389static void memcg_create_cache_work_func(struct work_struct *w)
3390{
3391 struct create_work *cw;
3392
3393 cw = container_of(w, struct create_work, work);
3394 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3395 kfree(cw);
3396}
3397
3398/*
3399 * Enqueue the creation of a per-memcg kmem_cache.
3400 */
3401static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3402 struct kmem_cache *cachep)
3403{
3404 struct create_work *cw;
3405
3406 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3407 if (cw == NULL) {
3408 css_put(&memcg->css);
3409 return;
3410 }
3411
3412 cw->memcg = memcg;
3413 cw->cachep = cachep;
3414
3415 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3416 schedule_work(&cw->work);
3417}
3418
3419static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3420 struct kmem_cache *cachep)
3421{
3422 /*
3423 * We need to stop accounting when we kmalloc, because if the
3424 * corresponding kmalloc cache is not yet created, the first allocation
3425 * in __memcg_create_cache_enqueue will recurse.
3426 *
3427 * However, it is better to enclose the whole function. Depending on
3428 * the debugging options enabled, INIT_WORK(), for instance, can
3429 * trigger an allocation. This too, will make us recurse. Because at
3430 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3431 * the safest choice is to do it like this, wrapping the whole function.
3432 */
3433 memcg_stop_kmem_account();
3434 __memcg_create_cache_enqueue(memcg, cachep);
3435 memcg_resume_kmem_account();
3436}
3437/*
3438 * Return the kmem_cache we're supposed to use for a slab allocation.
3439 * We try to use the current memcg's version of the cache.
3440 *
3441 * If the cache does not exist yet, if we are the first user of it,
3442 * we either create it immediately, if possible, or create it asynchronously
3443 * in a workqueue.
3444 * In the latter case, we will let the current allocation go through with
3445 * the original cache.
3446 *
3447 * Can't be called in interrupt context or from kernel threads.
3448 * This function needs to be called with rcu_read_lock() held.
3449 */
3450struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3451 gfp_t gfp)
3452{
3453 struct mem_cgroup *memcg;
3454 int idx;
3455
3456 VM_BUG_ON(!cachep->memcg_params);
3457 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3458
3459 if (!current->mm || current->memcg_kmem_skip_account)
3460 return cachep;
3461
3462 rcu_read_lock();
3463 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3464
3465 if (!memcg_can_account_kmem(memcg))
3466 goto out;
3467
3468 idx = memcg_cache_id(memcg);
3469
3470 /*
3471 * barrier to mare sure we're always seeing the up to date value. The
3472 * code updating memcg_caches will issue a write barrier to match this.
3473 */
3474 read_barrier_depends();
3475 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3476 cachep = cachep->memcg_params->memcg_caches[idx];
3477 goto out;
3478 }
3479
3480 /* The corresponding put will be done in the workqueue. */
3481 if (!css_tryget(&memcg->css))
3482 goto out;
3483 rcu_read_unlock();
3484
3485 /*
3486 * If we are in a safe context (can wait, and not in interrupt
3487 * context), we could be be predictable and return right away.
3488 * This would guarantee that the allocation being performed
3489 * already belongs in the new cache.
3490 *
3491 * However, there are some clashes that can arrive from locking.
3492 * For instance, because we acquire the slab_mutex while doing
3493 * kmem_cache_dup, this means no further allocation could happen
3494 * with the slab_mutex held.
3495 *
3496 * Also, because cache creation issue get_online_cpus(), this
3497 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3498 * that ends up reversed during cpu hotplug. (cpuset allocates
3499 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3500 * better to defer everything.
3501 */
3502 memcg_create_cache_enqueue(memcg, cachep);
3503 return cachep;
3504out:
3505 rcu_read_unlock();
3506 return cachep;
3507}
3508EXPORT_SYMBOL(__memcg_kmem_get_cache);
3509
3510/*
3511 * We need to verify if the allocation against current->mm->owner's memcg is
3512 * possible for the given order. But the page is not allocated yet, so we'll
3513 * need a further commit step to do the final arrangements.
3514 *
3515 * It is possible for the task to switch cgroups in this mean time, so at
3516 * commit time, we can't rely on task conversion any longer. We'll then use
3517 * the handle argument to return to the caller which cgroup we should commit
3518 * against. We could also return the memcg directly and avoid the pointer
3519 * passing, but a boolean return value gives better semantics considering
3520 * the compiled-out case as well.
3521 *
3522 * Returning true means the allocation is possible.
3523 */
3524bool
3525__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3526{
3527 struct mem_cgroup *memcg;
3528 int ret;
3529
3530 *_memcg = NULL;
3531
3532 /*
3533 * Disabling accounting is only relevant for some specific memcg
3534 * internal allocations. Therefore we would initially not have such
3535 * check here, since direct calls to the page allocator that are marked
3536 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3537 * concerned with cache allocations, and by having this test at
3538 * memcg_kmem_get_cache, we are already able to relay the allocation to
3539 * the root cache and bypass the memcg cache altogether.
3540 *
3541 * There is one exception, though: the SLUB allocator does not create
3542 * large order caches, but rather service large kmallocs directly from
3543 * the page allocator. Therefore, the following sequence when backed by
3544 * the SLUB allocator:
3545 *
3546 * memcg_stop_kmem_account();
3547 * kmalloc(<large_number>)
3548 * memcg_resume_kmem_account();
3549 *
3550 * would effectively ignore the fact that we should skip accounting,
3551 * since it will drive us directly to this function without passing
3552 * through the cache selector memcg_kmem_get_cache. Such large
3553 * allocations are extremely rare but can happen, for instance, for the
3554 * cache arrays. We bring this test here.
3555 */
3556 if (!current->mm || current->memcg_kmem_skip_account)
3557 return true;
3558
3559 memcg = try_get_mem_cgroup_from_mm(current->mm);
3560
3561 /*
3562 * very rare case described in mem_cgroup_from_task. Unfortunately there
3563 * isn't much we can do without complicating this too much, and it would
3564 * be gfp-dependent anyway. Just let it go
3565 */
3566 if (unlikely(!memcg))
3567 return true;
3568
3569 if (!memcg_can_account_kmem(memcg)) {
3570 css_put(&memcg->css);
3571 return true;
3572 }
3573
3574 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3575 if (!ret)
3576 *_memcg = memcg;
3577
3578 css_put(&memcg->css);
3579 return (ret == 0);
3580}
3581
3582void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3583 int order)
3584{
3585 struct page_cgroup *pc;
3586
3587 VM_BUG_ON(mem_cgroup_is_root(memcg));
3588
3589 /* The page allocation failed. Revert */
3590 if (!page) {
3591 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3592 return;
3593 }
3594
3595 pc = lookup_page_cgroup(page);
3596 lock_page_cgroup(pc);
3597 pc->mem_cgroup = memcg;
3598 SetPageCgroupUsed(pc);
3599 unlock_page_cgroup(pc);
3600}
3601
3602void __memcg_kmem_uncharge_pages(struct page *page, int order)
3603{
3604 struct mem_cgroup *memcg = NULL;
3605 struct page_cgroup *pc;
3606
3607
3608 pc = lookup_page_cgroup(page);
3609 /*
3610 * Fast unlocked return. Theoretically might have changed, have to
3611 * check again after locking.
3612 */
3613 if (!PageCgroupUsed(pc))
3614 return;
3615
3616 lock_page_cgroup(pc);
3617 if (PageCgroupUsed(pc)) {
3618 memcg = pc->mem_cgroup;
3619 ClearPageCgroupUsed(pc);
3620 }
3621 unlock_page_cgroup(pc);
3622
3623 /*
3624 * We trust that only if there is a memcg associated with the page, it
3625 * is a valid allocation
3626 */
3627 if (!memcg)
3628 return;
3629
3630 VM_BUG_ON(mem_cgroup_is_root(memcg));
3631 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3632}
3633#else
3634static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3635{
3636}
3637#endif /* CONFIG_MEMCG_KMEM */
3638
3639#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3640
3641#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3642/*
3643 * Because tail pages are not marked as "used", set it. We're under
3644 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3645 * charge/uncharge will be never happen and move_account() is done under
3646 * compound_lock(), so we don't have to take care of races.
3647 */
3648void mem_cgroup_split_huge_fixup(struct page *head)
3649{
3650 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3651 struct page_cgroup *pc;
3652 struct mem_cgroup *memcg;
3653 int i;
3654
3655 if (mem_cgroup_disabled())
3656 return;
3657
3658 memcg = head_pc->mem_cgroup;
3659 for (i = 1; i < HPAGE_PMD_NR; i++) {
3660 pc = head_pc + i;
3661 pc->mem_cgroup = memcg;
3662 smp_wmb();/* see __commit_charge() */
3663 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3664 }
3665 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3666 HPAGE_PMD_NR);
3667}
3668#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3669
3670static inline
3671void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3672 struct mem_cgroup *to,
3673 unsigned int nr_pages,
3674 enum mem_cgroup_stat_index idx)
3675{
3676 /* Update stat data for mem_cgroup */
3677 preempt_disable();
3678 WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
3679 __this_cpu_add(from->stat->count[idx], -nr_pages);
3680 __this_cpu_add(to->stat->count[idx], nr_pages);
3681 preempt_enable();
3682}
3683
3684/**
3685 * mem_cgroup_move_account - move account of the page
3686 * @page: the page
3687 * @nr_pages: number of regular pages (>1 for huge pages)
3688 * @pc: page_cgroup of the page.
3689 * @from: mem_cgroup which the page is moved from.
3690 * @to: mem_cgroup which the page is moved to. @from != @to.
3691 *
3692 * The caller must confirm following.
3693 * - page is not on LRU (isolate_page() is useful.)
3694 * - compound_lock is held when nr_pages > 1
3695 *
3696 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3697 * from old cgroup.
3698 */
3699static int mem_cgroup_move_account(struct page *page,
3700 unsigned int nr_pages,
3701 struct page_cgroup *pc,
3702 struct mem_cgroup *from,
3703 struct mem_cgroup *to)
3704{
3705 unsigned long flags;
3706 int ret;
3707 bool anon = PageAnon(page);
3708
3709 VM_BUG_ON(from == to);
3710 VM_BUG_ON(PageLRU(page));
3711 /*
3712 * The page is isolated from LRU. So, collapse function
3713 * will not handle this page. But page splitting can happen.
3714 * Do this check under compound_page_lock(). The caller should
3715 * hold it.
3716 */
3717 ret = -EBUSY;
3718 if (nr_pages > 1 && !PageTransHuge(page))
3719 goto out;
3720
3721 lock_page_cgroup(pc);
3722
3723 ret = -EINVAL;
3724 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3725 goto unlock;
3726
3727 move_lock_mem_cgroup(from, &flags);
3728
3729 if (!anon && page_mapped(page))
3730 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3731 MEM_CGROUP_STAT_FILE_MAPPED);
3732
3733 if (PageWriteback(page))
3734 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3735 MEM_CGROUP_STAT_WRITEBACK);
3736
3737 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3738
3739 /* caller should have done css_get */
3740 pc->mem_cgroup = to;
3741 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3742 move_unlock_mem_cgroup(from, &flags);
3743 ret = 0;
3744unlock:
3745 unlock_page_cgroup(pc);
3746 /*
3747 * check events
3748 */
3749 memcg_check_events(to, page);
3750 memcg_check_events(from, page);
3751out:
3752 return ret;
3753}
3754
3755/**
3756 * mem_cgroup_move_parent - moves page to the parent group
3757 * @page: the page to move
3758 * @pc: page_cgroup of the page
3759 * @child: page's cgroup
3760 *
3761 * move charges to its parent or the root cgroup if the group has no
3762 * parent (aka use_hierarchy==0).
3763 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3764 * mem_cgroup_move_account fails) the failure is always temporary and
3765 * it signals a race with a page removal/uncharge or migration. In the
3766 * first case the page is on the way out and it will vanish from the LRU
3767 * on the next attempt and the call should be retried later.
3768 * Isolation from the LRU fails only if page has been isolated from
3769 * the LRU since we looked at it and that usually means either global
3770 * reclaim or migration going on. The page will either get back to the
3771 * LRU or vanish.
3772 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3773 * (!PageCgroupUsed) or moved to a different group. The page will
3774 * disappear in the next attempt.
3775 */
3776static int mem_cgroup_move_parent(struct page *page,
3777 struct page_cgroup *pc,
3778 struct mem_cgroup *child)
3779{
3780 struct mem_cgroup *parent;
3781 unsigned int nr_pages;
3782 unsigned long uninitialized_var(flags);
3783 int ret;
3784
3785 VM_BUG_ON(mem_cgroup_is_root(child));
3786
3787 ret = -EBUSY;
3788 if (!get_page_unless_zero(page))
3789 goto out;
3790 if (isolate_lru_page(page))
3791 goto put;
3792
3793 nr_pages = hpage_nr_pages(page);
3794
3795 parent = parent_mem_cgroup(child);
3796 /*
3797 * If no parent, move charges to root cgroup.
3798 */
3799 if (!parent)
3800 parent = root_mem_cgroup;
3801
3802 if (nr_pages > 1) {
3803 VM_BUG_ON(!PageTransHuge(page));
3804 flags = compound_lock_irqsave(page);
3805 }
3806
3807 ret = mem_cgroup_move_account(page, nr_pages,
3808 pc, child, parent);
3809 if (!ret)
3810 __mem_cgroup_cancel_local_charge(child, nr_pages);
3811
3812 if (nr_pages > 1)
3813 compound_unlock_irqrestore(page, flags);
3814 putback_lru_page(page);
3815put:
3816 put_page(page);
3817out:
3818 return ret;
3819}
3820
3821/*
3822 * Charge the memory controller for page usage.
3823 * Return
3824 * 0 if the charge was successful
3825 * < 0 if the cgroup is over its limit
3826 */
3827static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3828 gfp_t gfp_mask, enum charge_type ctype)
3829{
3830 struct mem_cgroup *memcg = NULL;
3831 unsigned int nr_pages = 1;
3832 bool oom = true;
3833 int ret;
3834
3835 if (PageTransHuge(page)) {
3836 nr_pages <<= compound_order(page);
3837 VM_BUG_ON(!PageTransHuge(page));
3838 /*
3839 * Never OOM-kill a process for a huge page. The
3840 * fault handler will fall back to regular pages.
3841 */
3842 oom = false;
3843 }
3844
3845 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3846 if (ret == -ENOMEM)
3847 return ret;
3848 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3849 return 0;
3850}
3851
3852int mem_cgroup_newpage_charge(struct page *page,
3853 struct mm_struct *mm, gfp_t gfp_mask)
3854{
3855 if (mem_cgroup_disabled())
3856 return 0;
3857 VM_BUG_ON(page_mapped(page));
3858 VM_BUG_ON(page->mapping && !PageAnon(page));
3859 VM_BUG_ON(!mm);
3860 return mem_cgroup_charge_common(page, mm, gfp_mask,
3861 MEM_CGROUP_CHARGE_TYPE_ANON);
3862}
3863
3864/*
3865 * While swap-in, try_charge -> commit or cancel, the page is locked.
3866 * And when try_charge() successfully returns, one refcnt to memcg without
3867 * struct page_cgroup is acquired. This refcnt will be consumed by
3868 * "commit()" or removed by "cancel()"
3869 */
3870static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3871 struct page *page,
3872 gfp_t mask,
3873 struct mem_cgroup **memcgp)
3874{
3875 struct mem_cgroup *memcg;
3876 struct page_cgroup *pc;
3877 int ret;
3878
3879 pc = lookup_page_cgroup(page);
3880 /*
3881 * Every swap fault against a single page tries to charge the
3882 * page, bail as early as possible. shmem_unuse() encounters
3883 * already charged pages, too. The USED bit is protected by
3884 * the page lock, which serializes swap cache removal, which
3885 * in turn serializes uncharging.
3886 */
3887 if (PageCgroupUsed(pc))
3888 return 0;
3889 if (!do_swap_account)
3890 goto charge_cur_mm;
3891 memcg = try_get_mem_cgroup_from_page(page);
3892 if (!memcg)
3893 goto charge_cur_mm;
3894 *memcgp = memcg;
3895 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3896 css_put(&memcg->css);
3897 if (ret == -EINTR)
3898 ret = 0;
3899 return ret;
3900charge_cur_mm:
3901 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3902 if (ret == -EINTR)
3903 ret = 0;
3904 return ret;
3905}
3906
3907int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3908 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3909{
3910 *memcgp = NULL;
3911 if (mem_cgroup_disabled())
3912 return 0;
3913 /*
3914 * A racing thread's fault, or swapoff, may have already
3915 * updated the pte, and even removed page from swap cache: in
3916 * those cases unuse_pte()'s pte_same() test will fail; but
3917 * there's also a KSM case which does need to charge the page.
3918 */
3919 if (!PageSwapCache(page)) {
3920 int ret;
3921
3922 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3923 if (ret == -EINTR)
3924 ret = 0;
3925 return ret;
3926 }
3927 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3928}
3929
3930void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3931{
3932 if (mem_cgroup_disabled())
3933 return;
3934 if (!memcg)
3935 return;
3936 __mem_cgroup_cancel_charge(memcg, 1);
3937}
3938
3939static void
3940__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3941 enum charge_type ctype)
3942{
3943 if (mem_cgroup_disabled())
3944 return;
3945 if (!memcg)
3946 return;
3947
3948 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3949 /*
3950 * Now swap is on-memory. This means this page may be
3951 * counted both as mem and swap....double count.
3952 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3953 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3954 * may call delete_from_swap_cache() before reach here.
3955 */
3956 if (do_swap_account && PageSwapCache(page)) {
3957 swp_entry_t ent = {.val = page_private(page)};
3958 mem_cgroup_uncharge_swap(ent);
3959 }
3960}
3961
3962void mem_cgroup_commit_charge_swapin(struct page *page,
3963 struct mem_cgroup *memcg)
3964{
3965 __mem_cgroup_commit_charge_swapin(page, memcg,
3966 MEM_CGROUP_CHARGE_TYPE_ANON);
3967}
3968
3969int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3970 gfp_t gfp_mask)
3971{
3972 struct mem_cgroup *memcg = NULL;
3973 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3974 int ret;
3975
3976 if (mem_cgroup_disabled())
3977 return 0;
3978 if (PageCompound(page))
3979 return 0;
3980
3981 if (!PageSwapCache(page))
3982 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3983 else { /* page is swapcache/shmem */
3984 ret = __mem_cgroup_try_charge_swapin(mm, page,
3985 gfp_mask, &memcg);
3986 if (!ret)
3987 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3988 }
3989 return ret;
3990}
3991
3992static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3993 unsigned int nr_pages,
3994 const enum charge_type ctype)
3995{
3996 struct memcg_batch_info *batch = NULL;
3997 bool uncharge_memsw = true;
3998
3999 /* If swapout, usage of swap doesn't decrease */
4000 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4001 uncharge_memsw = false;
4002
4003 batch = &current->memcg_batch;
4004 /*
4005 * In usual, we do css_get() when we remember memcg pointer.
4006 * But in this case, we keep res->usage until end of a series of
4007 * uncharges. Then, it's ok to ignore memcg's refcnt.
4008 */
4009 if (!batch->memcg)
4010 batch->memcg = memcg;
4011 /*
4012 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4013 * In those cases, all pages freed continuously can be expected to be in
4014 * the same cgroup and we have chance to coalesce uncharges.
4015 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4016 * because we want to do uncharge as soon as possible.
4017 */
4018
4019 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4020 goto direct_uncharge;
4021
4022 if (nr_pages > 1)
4023 goto direct_uncharge;
4024
4025 /*
4026 * In typical case, batch->memcg == mem. This means we can
4027 * merge a series of uncharges to an uncharge of res_counter.
4028 * If not, we uncharge res_counter ony by one.
4029 */
4030 if (batch->memcg != memcg)
4031 goto direct_uncharge;
4032 /* remember freed charge and uncharge it later */
4033 batch->nr_pages++;
4034 if (uncharge_memsw)
4035 batch->memsw_nr_pages++;
4036 return;
4037direct_uncharge:
4038 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4039 if (uncharge_memsw)
4040 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4041 if (unlikely(batch->memcg != memcg))
4042 memcg_oom_recover(memcg);
4043}
4044
4045/*
4046 * uncharge if !page_mapped(page)
4047 */
4048static struct mem_cgroup *
4049__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4050 bool end_migration)
4051{
4052 struct mem_cgroup *memcg = NULL;
4053 unsigned int nr_pages = 1;
4054 struct page_cgroup *pc;
4055 bool anon;
4056
4057 if (mem_cgroup_disabled())
4058 return NULL;
4059
4060 if (PageTransHuge(page)) {
4061 nr_pages <<= compound_order(page);
4062 VM_BUG_ON(!PageTransHuge(page));
4063 }
4064 /*
4065 * Check if our page_cgroup is valid
4066 */
4067 pc = lookup_page_cgroup(page);
4068 if (unlikely(!PageCgroupUsed(pc)))
4069 return NULL;
4070
4071 lock_page_cgroup(pc);
4072
4073 memcg = pc->mem_cgroup;
4074
4075 if (!PageCgroupUsed(pc))
4076 goto unlock_out;
4077
4078 anon = PageAnon(page);
4079
4080 switch (ctype) {
4081 case MEM_CGROUP_CHARGE_TYPE_ANON:
4082 /*
4083 * Generally PageAnon tells if it's the anon statistics to be
4084 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4085 * used before page reached the stage of being marked PageAnon.
4086 */
4087 anon = true;
4088 /* fallthrough */
4089 case MEM_CGROUP_CHARGE_TYPE_DROP:
4090 /* See mem_cgroup_prepare_migration() */
4091 if (page_mapped(page))
4092 goto unlock_out;
4093 /*
4094 * Pages under migration may not be uncharged. But
4095 * end_migration() /must/ be the one uncharging the
4096 * unused post-migration page and so it has to call
4097 * here with the migration bit still set. See the
4098 * res_counter handling below.
4099 */
4100 if (!end_migration && PageCgroupMigration(pc))
4101 goto unlock_out;
4102 break;
4103 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4104 if (!PageAnon(page)) { /* Shared memory */
4105 if (page->mapping && !page_is_file_cache(page))
4106 goto unlock_out;
4107 } else if (page_mapped(page)) /* Anon */
4108 goto unlock_out;
4109 break;
4110 default:
4111 break;
4112 }
4113
4114 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4115
4116 ClearPageCgroupUsed(pc);
4117 /*
4118 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4119 * freed from LRU. This is safe because uncharged page is expected not
4120 * to be reused (freed soon). Exception is SwapCache, it's handled by
4121 * special functions.
4122 */
4123
4124 unlock_page_cgroup(pc);
4125 /*
4126 * even after unlock, we have memcg->res.usage here and this memcg
4127 * will never be freed, so it's safe to call css_get().
4128 */
4129 memcg_check_events(memcg, page);
4130 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4131 mem_cgroup_swap_statistics(memcg, true);
4132 css_get(&memcg->css);
4133 }
4134 /*
4135 * Migration does not charge the res_counter for the
4136 * replacement page, so leave it alone when phasing out the
4137 * page that is unused after the migration.
4138 */
4139 if (!end_migration && !mem_cgroup_is_root(memcg))
4140 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4141
4142 return memcg;
4143
4144unlock_out:
4145 unlock_page_cgroup(pc);
4146 return NULL;
4147}
4148
4149void mem_cgroup_uncharge_page(struct page *page)
4150{
4151 /* early check. */
4152 if (page_mapped(page))
4153 return;
4154 VM_BUG_ON(page->mapping && !PageAnon(page));
4155 /*
4156 * If the page is in swap cache, uncharge should be deferred
4157 * to the swap path, which also properly accounts swap usage
4158 * and handles memcg lifetime.
4159 *
4160 * Note that this check is not stable and reclaim may add the
4161 * page to swap cache at any time after this. However, if the
4162 * page is not in swap cache by the time page->mapcount hits
4163 * 0, there won't be any page table references to the swap
4164 * slot, and reclaim will free it and not actually write the
4165 * page to disk.
4166 */
4167 if (PageSwapCache(page))
4168 return;
4169 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4170}
4171
4172void mem_cgroup_uncharge_cache_page(struct page *page)
4173{
4174 VM_BUG_ON(page_mapped(page));
4175 VM_BUG_ON(page->mapping);
4176 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4177}
4178
4179/*
4180 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4181 * In that cases, pages are freed continuously and we can expect pages
4182 * are in the same memcg. All these calls itself limits the number of
4183 * pages freed at once, then uncharge_start/end() is called properly.
4184 * This may be called prural(2) times in a context,
4185 */
4186
4187void mem_cgroup_uncharge_start(void)
4188{
4189 current->memcg_batch.do_batch++;
4190 /* We can do nest. */
4191 if (current->memcg_batch.do_batch == 1) {
4192 current->memcg_batch.memcg = NULL;
4193 current->memcg_batch.nr_pages = 0;
4194 current->memcg_batch.memsw_nr_pages = 0;
4195 }
4196}
4197
4198void mem_cgroup_uncharge_end(void)
4199{
4200 struct memcg_batch_info *batch = &current->memcg_batch;
4201
4202 if (!batch->do_batch)
4203 return;
4204
4205 batch->do_batch--;
4206 if (batch->do_batch) /* If stacked, do nothing. */
4207 return;
4208
4209 if (!batch->memcg)
4210 return;
4211 /*
4212 * This "batch->memcg" is valid without any css_get/put etc...
4213 * bacause we hide charges behind us.
4214 */
4215 if (batch->nr_pages)
4216 res_counter_uncharge(&batch->memcg->res,
4217 batch->nr_pages * PAGE_SIZE);
4218 if (batch->memsw_nr_pages)
4219 res_counter_uncharge(&batch->memcg->memsw,
4220 batch->memsw_nr_pages * PAGE_SIZE);
4221 memcg_oom_recover(batch->memcg);
4222 /* forget this pointer (for sanity check) */
4223 batch->memcg = NULL;
4224}
4225
4226#ifdef CONFIG_SWAP
4227/*
4228 * called after __delete_from_swap_cache() and drop "page" account.
4229 * memcg information is recorded to swap_cgroup of "ent"
4230 */
4231void
4232mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4233{
4234 struct mem_cgroup *memcg;
4235 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4236
4237 if (!swapout) /* this was a swap cache but the swap is unused ! */
4238 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4239
4240 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4241
4242 /*
4243 * record memcg information, if swapout && memcg != NULL,
4244 * css_get() was called in uncharge().
4245 */
4246 if (do_swap_account && swapout && memcg)
4247 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4248}
4249#endif
4250
4251#ifdef CONFIG_MEMCG_SWAP
4252/*
4253 * called from swap_entry_free(). remove record in swap_cgroup and
4254 * uncharge "memsw" account.
4255 */
4256void mem_cgroup_uncharge_swap(swp_entry_t ent)
4257{
4258 struct mem_cgroup *memcg;
4259 unsigned short id;
4260
4261 if (!do_swap_account)
4262 return;
4263
4264 id = swap_cgroup_record(ent, 0);
4265 rcu_read_lock();
4266 memcg = mem_cgroup_lookup(id);
4267 if (memcg) {
4268 /*
4269 * We uncharge this because swap is freed.
4270 * This memcg can be obsolete one. We avoid calling css_tryget
4271 */
4272 if (!mem_cgroup_is_root(memcg))
4273 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4274 mem_cgroup_swap_statistics(memcg, false);
4275 css_put(&memcg->css);
4276 }
4277 rcu_read_unlock();
4278}
4279
4280/**
4281 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4282 * @entry: swap entry to be moved
4283 * @from: mem_cgroup which the entry is moved from
4284 * @to: mem_cgroup which the entry is moved to
4285 *
4286 * It succeeds only when the swap_cgroup's record for this entry is the same
4287 * as the mem_cgroup's id of @from.
4288 *
4289 * Returns 0 on success, -EINVAL on failure.
4290 *
4291 * The caller must have charged to @to, IOW, called res_counter_charge() about
4292 * both res and memsw, and called css_get().
4293 */
4294static int mem_cgroup_move_swap_account(swp_entry_t entry,
4295 struct mem_cgroup *from, struct mem_cgroup *to)
4296{
4297 unsigned short old_id, new_id;
4298
4299 old_id = mem_cgroup_id(from);
4300 new_id = mem_cgroup_id(to);
4301
4302 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4303 mem_cgroup_swap_statistics(from, false);
4304 mem_cgroup_swap_statistics(to, true);
4305 /*
4306 * This function is only called from task migration context now.
4307 * It postpones res_counter and refcount handling till the end
4308 * of task migration(mem_cgroup_clear_mc()) for performance
4309 * improvement. But we cannot postpone css_get(to) because if
4310 * the process that has been moved to @to does swap-in, the
4311 * refcount of @to might be decreased to 0.
4312 *
4313 * We are in attach() phase, so the cgroup is guaranteed to be
4314 * alive, so we can just call css_get().
4315 */
4316 css_get(&to->css);
4317 return 0;
4318 }
4319 return -EINVAL;
4320}
4321#else
4322static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4323 struct mem_cgroup *from, struct mem_cgroup *to)
4324{
4325 return -EINVAL;
4326}
4327#endif
4328
4329/*
4330 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4331 * page belongs to.
4332 */
4333void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4334 struct mem_cgroup **memcgp)
4335{
4336 struct mem_cgroup *memcg = NULL;
4337 unsigned int nr_pages = 1;
4338 struct page_cgroup *pc;
4339 enum charge_type ctype;
4340
4341 *memcgp = NULL;
4342
4343 if (mem_cgroup_disabled())
4344 return;
4345
4346 if (PageTransHuge(page))
4347 nr_pages <<= compound_order(page);
4348
4349 pc = lookup_page_cgroup(page);
4350 lock_page_cgroup(pc);
4351 if (PageCgroupUsed(pc)) {
4352 memcg = pc->mem_cgroup;
4353 css_get(&memcg->css);
4354 /*
4355 * At migrating an anonymous page, its mapcount goes down
4356 * to 0 and uncharge() will be called. But, even if it's fully
4357 * unmapped, migration may fail and this page has to be
4358 * charged again. We set MIGRATION flag here and delay uncharge
4359 * until end_migration() is called
4360 *
4361 * Corner Case Thinking
4362 * A)
4363 * When the old page was mapped as Anon and it's unmap-and-freed
4364 * while migration was ongoing.
4365 * If unmap finds the old page, uncharge() of it will be delayed
4366 * until end_migration(). If unmap finds a new page, it's
4367 * uncharged when it make mapcount to be 1->0. If unmap code
4368 * finds swap_migration_entry, the new page will not be mapped
4369 * and end_migration() will find it(mapcount==0).
4370 *
4371 * B)
4372 * When the old page was mapped but migraion fails, the kernel
4373 * remaps it. A charge for it is kept by MIGRATION flag even
4374 * if mapcount goes down to 0. We can do remap successfully
4375 * without charging it again.
4376 *
4377 * C)
4378 * The "old" page is under lock_page() until the end of
4379 * migration, so, the old page itself will not be swapped-out.
4380 * If the new page is swapped out before end_migraton, our
4381 * hook to usual swap-out path will catch the event.
4382 */
4383 if (PageAnon(page))
4384 SetPageCgroupMigration(pc);
4385 }
4386 unlock_page_cgroup(pc);
4387 /*
4388 * If the page is not charged at this point,
4389 * we return here.
4390 */
4391 if (!memcg)
4392 return;
4393
4394 *memcgp = memcg;
4395 /*
4396 * We charge new page before it's used/mapped. So, even if unlock_page()
4397 * is called before end_migration, we can catch all events on this new
4398 * page. In the case new page is migrated but not remapped, new page's
4399 * mapcount will be finally 0 and we call uncharge in end_migration().
4400 */
4401 if (PageAnon(page))
4402 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4403 else
4404 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4405 /*
4406 * The page is committed to the memcg, but it's not actually
4407 * charged to the res_counter since we plan on replacing the
4408 * old one and only one page is going to be left afterwards.
4409 */
4410 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4411}
4412
4413/* remove redundant charge if migration failed*/
4414void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4415 struct page *oldpage, struct page *newpage, bool migration_ok)
4416{
4417 struct page *used, *unused;
4418 struct page_cgroup *pc;
4419 bool anon;
4420
4421 if (!memcg)
4422 return;
4423
4424 if (!migration_ok) {
4425 used = oldpage;
4426 unused = newpage;
4427 } else {
4428 used = newpage;
4429 unused = oldpage;
4430 }
4431 anon = PageAnon(used);
4432 __mem_cgroup_uncharge_common(unused,
4433 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4434 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4435 true);
4436 css_put(&memcg->css);
4437 /*
4438 * We disallowed uncharge of pages under migration because mapcount
4439 * of the page goes down to zero, temporarly.
4440 * Clear the flag and check the page should be charged.
4441 */
4442 pc = lookup_page_cgroup(oldpage);
4443 lock_page_cgroup(pc);
4444 ClearPageCgroupMigration(pc);
4445 unlock_page_cgroup(pc);
4446
4447 /*
4448 * If a page is a file cache, radix-tree replacement is very atomic
4449 * and we can skip this check. When it was an Anon page, its mapcount
4450 * goes down to 0. But because we added MIGRATION flage, it's not
4451 * uncharged yet. There are several case but page->mapcount check
4452 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4453 * check. (see prepare_charge() also)
4454 */
4455 if (anon)
4456 mem_cgroup_uncharge_page(used);
4457}
4458
4459/*
4460 * At replace page cache, newpage is not under any memcg but it's on
4461 * LRU. So, this function doesn't touch res_counter but handles LRU
4462 * in correct way. Both pages are locked so we cannot race with uncharge.
4463 */
4464void mem_cgroup_replace_page_cache(struct page *oldpage,
4465 struct page *newpage)
4466{
4467 struct mem_cgroup *memcg = NULL;
4468 struct page_cgroup *pc;
4469 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4470
4471 if (mem_cgroup_disabled())
4472 return;
4473
4474 pc = lookup_page_cgroup(oldpage);
4475 /* fix accounting on old pages */
4476 lock_page_cgroup(pc);
4477 if (PageCgroupUsed(pc)) {
4478 memcg = pc->mem_cgroup;
4479 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4480 ClearPageCgroupUsed(pc);
4481 }
4482 unlock_page_cgroup(pc);
4483
4484 /*
4485 * When called from shmem_replace_page(), in some cases the
4486 * oldpage has already been charged, and in some cases not.
4487 */
4488 if (!memcg)
4489 return;
4490 /*
4491 * Even if newpage->mapping was NULL before starting replacement,
4492 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4493 * LRU while we overwrite pc->mem_cgroup.
4494 */
4495 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4496}
4497
4498#ifdef CONFIG_DEBUG_VM
4499static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4500{
4501 struct page_cgroup *pc;
4502
4503 pc = lookup_page_cgroup(page);
4504 /*
4505 * Can be NULL while feeding pages into the page allocator for
4506 * the first time, i.e. during boot or memory hotplug;
4507 * or when mem_cgroup_disabled().
4508 */
4509 if (likely(pc) && PageCgroupUsed(pc))
4510 return pc;
4511 return NULL;
4512}
4513
4514bool mem_cgroup_bad_page_check(struct page *page)
4515{
4516 if (mem_cgroup_disabled())
4517 return false;
4518
4519 return lookup_page_cgroup_used(page) != NULL;
4520}
4521
4522void mem_cgroup_print_bad_page(struct page *page)
4523{
4524 struct page_cgroup *pc;
4525
4526 pc = lookup_page_cgroup_used(page);
4527 if (pc) {
4528 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4529 pc, pc->flags, pc->mem_cgroup);
4530 }
4531}
4532#endif
4533
4534static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4535 unsigned long long val)
4536{
4537 int retry_count;
4538 u64 memswlimit, memlimit;
4539 int ret = 0;
4540 int children = mem_cgroup_count_children(memcg);
4541 u64 curusage, oldusage;
4542 int enlarge;
4543
4544 /*
4545 * For keeping hierarchical_reclaim simple, how long we should retry
4546 * is depends on callers. We set our retry-count to be function
4547 * of # of children which we should visit in this loop.
4548 */
4549 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4550
4551 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4552
4553 enlarge = 0;
4554 while (retry_count) {
4555 if (signal_pending(current)) {
4556 ret = -EINTR;
4557 break;
4558 }
4559 /*
4560 * Rather than hide all in some function, I do this in
4561 * open coded manner. You see what this really does.
4562 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4563 */
4564 mutex_lock(&set_limit_mutex);
4565 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4566 if (memswlimit < val) {
4567 ret = -EINVAL;
4568 mutex_unlock(&set_limit_mutex);
4569 break;
4570 }
4571
4572 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4573 if (memlimit < val)
4574 enlarge = 1;
4575
4576 ret = res_counter_set_limit(&memcg->res, val);
4577 if (!ret) {
4578 if (memswlimit == val)
4579 memcg->memsw_is_minimum = true;
4580 else
4581 memcg->memsw_is_minimum = false;
4582 }
4583 mutex_unlock(&set_limit_mutex);
4584
4585 if (!ret)
4586 break;
4587
4588 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4589 MEM_CGROUP_RECLAIM_SHRINK);
4590 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4591 /* Usage is reduced ? */
4592 if (curusage >= oldusage)
4593 retry_count--;
4594 else
4595 oldusage = curusage;
4596 }
4597 if (!ret && enlarge)
4598 memcg_oom_recover(memcg);
4599
4600 return ret;
4601}
4602
4603static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4604 unsigned long long val)
4605{
4606 int retry_count;
4607 u64 memlimit, memswlimit, oldusage, curusage;
4608 int children = mem_cgroup_count_children(memcg);
4609 int ret = -EBUSY;
4610 int enlarge = 0;
4611
4612 /* see mem_cgroup_resize_res_limit */
4613 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4614 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4615 while (retry_count) {
4616 if (signal_pending(current)) {
4617 ret = -EINTR;
4618 break;
4619 }
4620 /*
4621 * Rather than hide all in some function, I do this in
4622 * open coded manner. You see what this really does.
4623 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4624 */
4625 mutex_lock(&set_limit_mutex);
4626 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4627 if (memlimit > val) {
4628 ret = -EINVAL;
4629 mutex_unlock(&set_limit_mutex);
4630 break;
4631 }
4632 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4633 if (memswlimit < val)
4634 enlarge = 1;
4635 ret = res_counter_set_limit(&memcg->memsw, val);
4636 if (!ret) {
4637 if (memlimit == val)
4638 memcg->memsw_is_minimum = true;
4639 else
4640 memcg->memsw_is_minimum = false;
4641 }
4642 mutex_unlock(&set_limit_mutex);
4643
4644 if (!ret)
4645 break;
4646
4647 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4648 MEM_CGROUP_RECLAIM_NOSWAP |
4649 MEM_CGROUP_RECLAIM_SHRINK);
4650 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4651 /* Usage is reduced ? */
4652 if (curusage >= oldusage)
4653 retry_count--;
4654 else
4655 oldusage = curusage;
4656 }
4657 if (!ret && enlarge)
4658 memcg_oom_recover(memcg);
4659 return ret;
4660}
4661
4662/**
4663 * mem_cgroup_force_empty_list - clears LRU of a group
4664 * @memcg: group to clear
4665 * @node: NUMA node
4666 * @zid: zone id
4667 * @lru: lru to to clear
4668 *
4669 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4670 * reclaim the pages page themselves - pages are moved to the parent (or root)
4671 * group.
4672 */
4673static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4674 int node, int zid, enum lru_list lru)
4675{
4676 struct lruvec *lruvec;
4677 unsigned long flags;
4678 struct list_head *list;
4679 struct page *busy;
4680 struct zone *zone;
4681
4682 zone = &NODE_DATA(node)->node_zones[zid];
4683 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4684 list = &lruvec->lists[lru];
4685
4686 busy = NULL;
4687 do {
4688 struct page_cgroup *pc;
4689 struct page *page;
4690
4691 spin_lock_irqsave(&zone->lru_lock, flags);
4692 if (list_empty(list)) {
4693 spin_unlock_irqrestore(&zone->lru_lock, flags);
4694 break;
4695 }
4696 page = list_entry(list->prev, struct page, lru);
4697 if (busy == page) {
4698 list_move(&page->lru, list);
4699 busy = NULL;
4700 spin_unlock_irqrestore(&zone->lru_lock, flags);
4701 continue;
4702 }
4703 spin_unlock_irqrestore(&zone->lru_lock, flags);
4704
4705 pc = lookup_page_cgroup(page);
4706
4707 if (mem_cgroup_move_parent(page, pc, memcg)) {
4708 /* found lock contention or "pc" is obsolete. */
4709 busy = page;
4710 cond_resched();
4711 } else
4712 busy = NULL;
4713 } while (!list_empty(list));
4714}
4715
4716/*
4717 * make mem_cgroup's charge to be 0 if there is no task by moving
4718 * all the charges and pages to the parent.
4719 * This enables deleting this mem_cgroup.
4720 *
4721 * Caller is responsible for holding css reference on the memcg.
4722 */
4723static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4724{
4725 int node, zid;
4726 u64 usage;
4727
4728 do {
4729 /* This is for making all *used* pages to be on LRU. */
4730 lru_add_drain_all();
4731 drain_all_stock_sync(memcg);
4732 mem_cgroup_start_move(memcg);
4733 for_each_node_state(node, N_MEMORY) {
4734 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4735 enum lru_list lru;
4736 for_each_lru(lru) {
4737 mem_cgroup_force_empty_list(memcg,
4738 node, zid, lru);
4739 }
4740 }
4741 }
4742 mem_cgroup_end_move(memcg);
4743 memcg_oom_recover(memcg);
4744 cond_resched();
4745
4746 /*
4747 * Kernel memory may not necessarily be trackable to a specific
4748 * process. So they are not migrated, and therefore we can't
4749 * expect their value to drop to 0 here.
4750 * Having res filled up with kmem only is enough.
4751 *
4752 * This is a safety check because mem_cgroup_force_empty_list
4753 * could have raced with mem_cgroup_replace_page_cache callers
4754 * so the lru seemed empty but the page could have been added
4755 * right after the check. RES_USAGE should be safe as we always
4756 * charge before adding to the LRU.
4757 */
4758 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4759 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4760 } while (usage > 0);
4761}
4762
4763/*
4764 * This mainly exists for tests during the setting of set of use_hierarchy.
4765 * Since this is the very setting we are changing, the current hierarchy value
4766 * is meaningless
4767 */
4768static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4769{
4770 struct cgroup_subsys_state *pos;
4771
4772 /* bounce at first found */
4773 css_for_each_child(pos, &memcg->css)
4774 return true;
4775 return false;
4776}
4777
4778/*
4779 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4780 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4781 * from mem_cgroup_count_children(), in the sense that we don't really care how
4782 * many children we have; we only need to know if we have any. It also counts
4783 * any memcg without hierarchy as infertile.
4784 */
4785static inline bool memcg_has_children(struct mem_cgroup *memcg)
4786{
4787 return memcg->use_hierarchy && __memcg_has_children(memcg);
4788}
4789
4790/*
4791 * Reclaims as many pages from the given memcg as possible and moves
4792 * the rest to the parent.
4793 *
4794 * Caller is responsible for holding css reference for memcg.
4795 */
4796static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4797{
4798 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4799 struct cgroup *cgrp = memcg->css.cgroup;
4800
4801 /* returns EBUSY if there is a task or if we come here twice. */
4802 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4803 return -EBUSY;
4804
4805 /* we call try-to-free pages for make this cgroup empty */
4806 lru_add_drain_all();
4807 /* try to free all pages in this cgroup */
4808 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4809 int progress;
4810
4811 if (signal_pending(current))
4812 return -EINTR;
4813
4814 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4815 false);
4816 if (!progress) {
4817 nr_retries--;
4818 /* maybe some writeback is necessary */
4819 congestion_wait(BLK_RW_ASYNC, HZ/10);
4820 }
4821
4822 }
4823 lru_add_drain();
4824 mem_cgroup_reparent_charges(memcg);
4825
4826 return 0;
4827}
4828
4829static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4830 unsigned int event)
4831{
4832 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4833
4834 if (mem_cgroup_is_root(memcg))
4835 return -EINVAL;
4836 return mem_cgroup_force_empty(memcg);
4837}
4838
4839static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4840 struct cftype *cft)
4841{
4842 return mem_cgroup_from_css(css)->use_hierarchy;
4843}
4844
4845static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4846 struct cftype *cft, u64 val)
4847{
4848 int retval = 0;
4849 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4850 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4851
4852 mutex_lock(&memcg_create_mutex);
4853
4854 if (memcg->use_hierarchy == val)
4855 goto out;
4856
4857 /*
4858 * If parent's use_hierarchy is set, we can't make any modifications
4859 * in the child subtrees. If it is unset, then the change can
4860 * occur, provided the current cgroup has no children.
4861 *
4862 * For the root cgroup, parent_mem is NULL, we allow value to be
4863 * set if there are no children.
4864 */
4865 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4866 (val == 1 || val == 0)) {
4867 if (!__memcg_has_children(memcg))
4868 memcg->use_hierarchy = val;
4869 else
4870 retval = -EBUSY;
4871 } else
4872 retval = -EINVAL;
4873
4874out:
4875 mutex_unlock(&memcg_create_mutex);
4876
4877 return retval;
4878}
4879
4880
4881static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4882 enum mem_cgroup_stat_index idx)
4883{
4884 struct mem_cgroup *iter;
4885 long val = 0;
4886
4887 /* Per-cpu values can be negative, use a signed accumulator */
4888 for_each_mem_cgroup_tree(iter, memcg)
4889 val += mem_cgroup_read_stat(iter, idx);
4890
4891 if (val < 0) /* race ? */
4892 val = 0;
4893 return val;
4894}
4895
4896static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4897{
4898 u64 val;
4899
4900 if (!mem_cgroup_is_root(memcg)) {
4901 if (!swap)
4902 return res_counter_read_u64(&memcg->res, RES_USAGE);
4903 else
4904 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4905 }
4906
4907 /*
4908 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4909 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4910 */
4911 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4912 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4913
4914 if (swap)
4915 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4916
4917 return val << PAGE_SHIFT;
4918}
4919
4920static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
4921 struct cftype *cft, struct file *file,
4922 char __user *buf, size_t nbytes, loff_t *ppos)
4923{
4924 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4925 char str[64];
4926 u64 val;
4927 int name, len;
4928 enum res_type type;
4929
4930 type = MEMFILE_TYPE(cft->private);
4931 name = MEMFILE_ATTR(cft->private);
4932
4933 switch (type) {
4934 case _MEM:
4935 if (name == RES_USAGE)
4936 val = mem_cgroup_usage(memcg, false);
4937 else
4938 val = res_counter_read_u64(&memcg->res, name);
4939 break;
4940 case _MEMSWAP:
4941 if (name == RES_USAGE)
4942 val = mem_cgroup_usage(memcg, true);
4943 else
4944 val = res_counter_read_u64(&memcg->memsw, name);
4945 break;
4946 case _KMEM:
4947 val = res_counter_read_u64(&memcg->kmem, name);
4948 break;
4949 default:
4950 BUG();
4951 }
4952
4953 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4954 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
4955}
4956
4957static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4958{
4959 int ret = -EINVAL;
4960#ifdef CONFIG_MEMCG_KMEM
4961 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4962 /*
4963 * For simplicity, we won't allow this to be disabled. It also can't
4964 * be changed if the cgroup has children already, or if tasks had
4965 * already joined.
4966 *
4967 * If tasks join before we set the limit, a person looking at
4968 * kmem.usage_in_bytes will have no way to determine when it took
4969 * place, which makes the value quite meaningless.
4970 *
4971 * After it first became limited, changes in the value of the limit are
4972 * of course permitted.
4973 */
4974 mutex_lock(&memcg_create_mutex);
4975 mutex_lock(&set_limit_mutex);
4976 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
4977 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
4978 ret = -EBUSY;
4979 goto out;
4980 }
4981 ret = res_counter_set_limit(&memcg->kmem, val);
4982 VM_BUG_ON(ret);
4983
4984 ret = memcg_update_cache_sizes(memcg);
4985 if (ret) {
4986 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
4987 goto out;
4988 }
4989 static_key_slow_inc(&memcg_kmem_enabled_key);
4990 /*
4991 * setting the active bit after the inc will guarantee no one
4992 * starts accounting before all call sites are patched
4993 */
4994 memcg_kmem_set_active(memcg);
4995 } else
4996 ret = res_counter_set_limit(&memcg->kmem, val);
4997out:
4998 mutex_unlock(&set_limit_mutex);
4999 mutex_unlock(&memcg_create_mutex);
5000#endif
5001 return ret;
5002}
5003
5004#ifdef CONFIG_MEMCG_KMEM
5005static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5006{
5007 int ret = 0;
5008 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5009 if (!parent)
5010 goto out;
5011
5012 memcg->kmem_account_flags = parent->kmem_account_flags;
5013 /*
5014 * When that happen, we need to disable the static branch only on those
5015 * memcgs that enabled it. To achieve this, we would be forced to
5016 * complicate the code by keeping track of which memcgs were the ones
5017 * that actually enabled limits, and which ones got it from its
5018 * parents.
5019 *
5020 * It is a lot simpler just to do static_key_slow_inc() on every child
5021 * that is accounted.
5022 */
5023 if (!memcg_kmem_is_active(memcg))
5024 goto out;
5025
5026 /*
5027 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5028 * memcg is active already. If the later initialization fails then the
5029 * cgroup core triggers the cleanup so we do not have to do it here.
5030 */
5031 static_key_slow_inc(&memcg_kmem_enabled_key);
5032
5033 mutex_lock(&set_limit_mutex);
5034 memcg_stop_kmem_account();
5035 ret = memcg_update_cache_sizes(memcg);
5036 memcg_resume_kmem_account();
5037 mutex_unlock(&set_limit_mutex);
5038out:
5039 return ret;
5040}
5041#endif /* CONFIG_MEMCG_KMEM */
5042
5043/*
5044 * The user of this function is...
5045 * RES_LIMIT.
5046 */
5047static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5048 const char *buffer)
5049{
5050 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5051 enum res_type type;
5052 int name;
5053 unsigned long long val;
5054 int ret;
5055
5056 type = MEMFILE_TYPE(cft->private);
5057 name = MEMFILE_ATTR(cft->private);
5058
5059 switch (name) {
5060 case RES_LIMIT:
5061 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5062 ret = -EINVAL;
5063 break;
5064 }
5065 /* This function does all necessary parse...reuse it */
5066 ret = res_counter_memparse_write_strategy(buffer, &val);
5067 if (ret)
5068 break;
5069 if (type == _MEM)
5070 ret = mem_cgroup_resize_limit(memcg, val);
5071 else if (type == _MEMSWAP)
5072 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5073 else if (type == _KMEM)
5074 ret = memcg_update_kmem_limit(css, val);
5075 else
5076 return -EINVAL;
5077 break;
5078 case RES_SOFT_LIMIT:
5079 ret = res_counter_memparse_write_strategy(buffer, &val);
5080 if (ret)
5081 break;
5082 /*
5083 * For memsw, soft limits are hard to implement in terms
5084 * of semantics, for now, we support soft limits for
5085 * control without swap
5086 */
5087 if (type == _MEM)
5088 ret = res_counter_set_soft_limit(&memcg->res, val);
5089 else
5090 ret = -EINVAL;
5091 break;
5092 default:
5093 ret = -EINVAL; /* should be BUG() ? */
5094 break;
5095 }
5096 return ret;
5097}
5098
5099static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5100 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5101{
5102 unsigned long long min_limit, min_memsw_limit, tmp;
5103
5104 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5105 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5106 if (!memcg->use_hierarchy)
5107 goto out;
5108
5109 while (css_parent(&memcg->css)) {
5110 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5111 if (!memcg->use_hierarchy)
5112 break;
5113 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5114 min_limit = min(min_limit, tmp);
5115 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5116 min_memsw_limit = min(min_memsw_limit, tmp);
5117 }
5118out:
5119 *mem_limit = min_limit;
5120 *memsw_limit = min_memsw_limit;
5121}
5122
5123static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5124{
5125 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5126 int name;
5127 enum res_type type;
5128
5129 type = MEMFILE_TYPE(event);
5130 name = MEMFILE_ATTR(event);
5131
5132 switch (name) {
5133 case RES_MAX_USAGE:
5134 if (type == _MEM)
5135 res_counter_reset_max(&memcg->res);
5136 else if (type == _MEMSWAP)
5137 res_counter_reset_max(&memcg->memsw);
5138 else if (type == _KMEM)
5139 res_counter_reset_max(&memcg->kmem);
5140 else
5141 return -EINVAL;
5142 break;
5143 case RES_FAILCNT:
5144 if (type == _MEM)
5145 res_counter_reset_failcnt(&memcg->res);
5146 else if (type == _MEMSWAP)
5147 res_counter_reset_failcnt(&memcg->memsw);
5148 else if (type == _KMEM)
5149 res_counter_reset_failcnt(&memcg->kmem);
5150 else
5151 return -EINVAL;
5152 break;
5153 }
5154
5155 return 0;
5156}
5157
5158static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5159 struct cftype *cft)
5160{
5161 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5162}
5163
5164#ifdef CONFIG_MMU
5165static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5166 struct cftype *cft, u64 val)
5167{
5168 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5169
5170 if (val >= (1 << NR_MOVE_TYPE))
5171 return -EINVAL;
5172
5173 /*
5174 * No kind of locking is needed in here, because ->can_attach() will
5175 * check this value once in the beginning of the process, and then carry
5176 * on with stale data. This means that changes to this value will only
5177 * affect task migrations starting after the change.
5178 */
5179 memcg->move_charge_at_immigrate = val;
5180 return 0;
5181}
5182#else
5183static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5184 struct cftype *cft, u64 val)
5185{
5186 return -ENOSYS;
5187}
5188#endif
5189
5190#ifdef CONFIG_NUMA
5191static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5192 struct cftype *cft, struct seq_file *m)
5193{
5194 int nid;
5195 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5196 unsigned long node_nr;
5197 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5198
5199 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5200 seq_printf(m, "total=%lu", total_nr);
5201 for_each_node_state(nid, N_MEMORY) {
5202 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5203 seq_printf(m, " N%d=%lu", nid, node_nr);
5204 }
5205 seq_putc(m, '\n');
5206
5207 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5208 seq_printf(m, "file=%lu", file_nr);
5209 for_each_node_state(nid, N_MEMORY) {
5210 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5211 LRU_ALL_FILE);
5212 seq_printf(m, " N%d=%lu", nid, node_nr);
5213 }
5214 seq_putc(m, '\n');
5215
5216 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5217 seq_printf(m, "anon=%lu", anon_nr);
5218 for_each_node_state(nid, N_MEMORY) {
5219 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5220 LRU_ALL_ANON);
5221 seq_printf(m, " N%d=%lu", nid, node_nr);
5222 }
5223 seq_putc(m, '\n');
5224
5225 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5226 seq_printf(m, "unevictable=%lu", unevictable_nr);
5227 for_each_node_state(nid, N_MEMORY) {
5228 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5229 BIT(LRU_UNEVICTABLE));
5230 seq_printf(m, " N%d=%lu", nid, node_nr);
5231 }
5232 seq_putc(m, '\n');
5233 return 0;
5234}
5235#endif /* CONFIG_NUMA */
5236
5237static inline void mem_cgroup_lru_names_not_uptodate(void)
5238{
5239 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5240}
5241
5242static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5243 struct seq_file *m)
5244{
5245 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5246 struct mem_cgroup *mi;
5247 unsigned int i;
5248
5249 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5250 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5251 continue;
5252 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5253 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5254 }
5255
5256 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5257 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5258 mem_cgroup_read_events(memcg, i));
5259
5260 for (i = 0; i < NR_LRU_LISTS; i++)
5261 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5262 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5263
5264 /* Hierarchical information */
5265 {
5266 unsigned long long limit, memsw_limit;
5267 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5268 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5269 if (do_swap_account)
5270 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5271 memsw_limit);
5272 }
5273
5274 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5275 long long val = 0;
5276
5277 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5278 continue;
5279 for_each_mem_cgroup_tree(mi, memcg)
5280 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5281 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5282 }
5283
5284 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5285 unsigned long long val = 0;
5286
5287 for_each_mem_cgroup_tree(mi, memcg)
5288 val += mem_cgroup_read_events(mi, i);
5289 seq_printf(m, "total_%s %llu\n",
5290 mem_cgroup_events_names[i], val);
5291 }
5292
5293 for (i = 0; i < NR_LRU_LISTS; i++) {
5294 unsigned long long val = 0;
5295
5296 for_each_mem_cgroup_tree(mi, memcg)
5297 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5298 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5299 }
5300
5301#ifdef CONFIG_DEBUG_VM
5302 {
5303 int nid, zid;
5304 struct mem_cgroup_per_zone *mz;
5305 struct zone_reclaim_stat *rstat;
5306 unsigned long recent_rotated[2] = {0, 0};
5307 unsigned long recent_scanned[2] = {0, 0};
5308
5309 for_each_online_node(nid)
5310 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5311 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5312 rstat = &mz->lruvec.reclaim_stat;
5313
5314 recent_rotated[0] += rstat->recent_rotated[0];
5315 recent_rotated[1] += rstat->recent_rotated[1];
5316 recent_scanned[0] += rstat->recent_scanned[0];
5317 recent_scanned[1] += rstat->recent_scanned[1];
5318 }
5319 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5320 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5321 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5322 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5323 }
5324#endif
5325
5326 return 0;
5327}
5328
5329static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5330 struct cftype *cft)
5331{
5332 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5333
5334 return mem_cgroup_swappiness(memcg);
5335}
5336
5337static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5338 struct cftype *cft, u64 val)
5339{
5340 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5341 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5342
5343 if (val > 100 || !parent)
5344 return -EINVAL;
5345
5346 mutex_lock(&memcg_create_mutex);
5347
5348 /* If under hierarchy, only empty-root can set this value */
5349 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5350 mutex_unlock(&memcg_create_mutex);
5351 return -EINVAL;
5352 }
5353
5354 memcg->swappiness = val;
5355
5356 mutex_unlock(&memcg_create_mutex);
5357
5358 return 0;
5359}
5360
5361static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5362{
5363 struct mem_cgroup_threshold_ary *t;
5364 u64 usage;
5365 int i;
5366
5367 rcu_read_lock();
5368 if (!swap)
5369 t = rcu_dereference(memcg->thresholds.primary);
5370 else
5371 t = rcu_dereference(memcg->memsw_thresholds.primary);
5372
5373 if (!t)
5374 goto unlock;
5375
5376 usage = mem_cgroup_usage(memcg, swap);
5377
5378 /*
5379 * current_threshold points to threshold just below or equal to usage.
5380 * If it's not true, a threshold was crossed after last
5381 * call of __mem_cgroup_threshold().
5382 */
5383 i = t->current_threshold;
5384
5385 /*
5386 * Iterate backward over array of thresholds starting from
5387 * current_threshold and check if a threshold is crossed.
5388 * If none of thresholds below usage is crossed, we read
5389 * only one element of the array here.
5390 */
5391 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5392 eventfd_signal(t->entries[i].eventfd, 1);
5393
5394 /* i = current_threshold + 1 */
5395 i++;
5396
5397 /*
5398 * Iterate forward over array of thresholds starting from
5399 * current_threshold+1 and check if a threshold is crossed.
5400 * If none of thresholds above usage is crossed, we read
5401 * only one element of the array here.
5402 */
5403 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5404 eventfd_signal(t->entries[i].eventfd, 1);
5405
5406 /* Update current_threshold */
5407 t->current_threshold = i - 1;
5408unlock:
5409 rcu_read_unlock();
5410}
5411
5412static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5413{
5414 while (memcg) {
5415 __mem_cgroup_threshold(memcg, false);
5416 if (do_swap_account)
5417 __mem_cgroup_threshold(memcg, true);
5418
5419 memcg = parent_mem_cgroup(memcg);
5420 }
5421}
5422
5423static int compare_thresholds(const void *a, const void *b)
5424{
5425 const struct mem_cgroup_threshold *_a = a;
5426 const struct mem_cgroup_threshold *_b = b;
5427
5428 if (_a->threshold > _b->threshold)
5429 return 1;
5430
5431 if (_a->threshold < _b->threshold)
5432 return -1;
5433
5434 return 0;
5435}
5436
5437static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5438{
5439 struct mem_cgroup_eventfd_list *ev;
5440
5441 list_for_each_entry(ev, &memcg->oom_notify, list)
5442 eventfd_signal(ev->eventfd, 1);
5443 return 0;
5444}
5445
5446static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5447{
5448 struct mem_cgroup *iter;
5449
5450 for_each_mem_cgroup_tree(iter, memcg)
5451 mem_cgroup_oom_notify_cb(iter);
5452}
5453
5454static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5455 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5456{
5457 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5458 struct mem_cgroup_thresholds *thresholds;
5459 struct mem_cgroup_threshold_ary *new;
5460 enum res_type type = MEMFILE_TYPE(cft->private);
5461 u64 threshold, usage;
5462 int i, size, ret;
5463
5464 ret = res_counter_memparse_write_strategy(args, &threshold);
5465 if (ret)
5466 return ret;
5467
5468 mutex_lock(&memcg->thresholds_lock);
5469
5470 if (type == _MEM)
5471 thresholds = &memcg->thresholds;
5472 else if (type == _MEMSWAP)
5473 thresholds = &memcg->memsw_thresholds;
5474 else
5475 BUG();
5476
5477 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5478
5479 /* Check if a threshold crossed before adding a new one */
5480 if (thresholds->primary)
5481 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5482
5483 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5484
5485 /* Allocate memory for new array of thresholds */
5486 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5487 GFP_KERNEL);
5488 if (!new) {
5489 ret = -ENOMEM;
5490 goto unlock;
5491 }
5492 new->size = size;
5493
5494 /* Copy thresholds (if any) to new array */
5495 if (thresholds->primary) {
5496 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5497 sizeof(struct mem_cgroup_threshold));
5498 }
5499
5500 /* Add new threshold */
5501 new->entries[size - 1].eventfd = eventfd;
5502 new->entries[size - 1].threshold = threshold;
5503
5504 /* Sort thresholds. Registering of new threshold isn't time-critical */
5505 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5506 compare_thresholds, NULL);
5507
5508 /* Find current threshold */
5509 new->current_threshold = -1;
5510 for (i = 0; i < size; i++) {
5511 if (new->entries[i].threshold <= usage) {
5512 /*
5513 * new->current_threshold will not be used until
5514 * rcu_assign_pointer(), so it's safe to increment
5515 * it here.
5516 */
5517 ++new->current_threshold;
5518 } else
5519 break;
5520 }
5521
5522 /* Free old spare buffer and save old primary buffer as spare */
5523 kfree(thresholds->spare);
5524 thresholds->spare = thresholds->primary;
5525
5526 rcu_assign_pointer(thresholds->primary, new);
5527
5528 /* To be sure that nobody uses thresholds */
5529 synchronize_rcu();
5530
5531unlock:
5532 mutex_unlock(&memcg->thresholds_lock);
5533
5534 return ret;
5535}
5536
5537static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5538 struct cftype *cft, struct eventfd_ctx *eventfd)
5539{
5540 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5541 struct mem_cgroup_thresholds *thresholds;
5542 struct mem_cgroup_threshold_ary *new;
5543 enum res_type type = MEMFILE_TYPE(cft->private);
5544 u64 usage;
5545 int i, j, size;
5546
5547 mutex_lock(&memcg->thresholds_lock);
5548 if (type == _MEM)
5549 thresholds = &memcg->thresholds;
5550 else if (type == _MEMSWAP)
5551 thresholds = &memcg->memsw_thresholds;
5552 else
5553 BUG();
5554
5555 if (!thresholds->primary)
5556 goto unlock;
5557
5558 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5559
5560 /* Check if a threshold crossed before removing */
5561 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5562
5563 /* Calculate new number of threshold */
5564 size = 0;
5565 for (i = 0; i < thresholds->primary->size; i++) {
5566 if (thresholds->primary->entries[i].eventfd != eventfd)
5567 size++;
5568 }
5569
5570 new = thresholds->spare;
5571
5572 /* Set thresholds array to NULL if we don't have thresholds */
5573 if (!size) {
5574 kfree(new);
5575 new = NULL;
5576 goto swap_buffers;
5577 }
5578
5579 new->size = size;
5580
5581 /* Copy thresholds and find current threshold */
5582 new->current_threshold = -1;
5583 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5584 if (thresholds->primary->entries[i].eventfd == eventfd)
5585 continue;
5586
5587 new->entries[j] = thresholds->primary->entries[i];
5588 if (new->entries[j].threshold <= usage) {
5589 /*
5590 * new->current_threshold will not be used
5591 * until rcu_assign_pointer(), so it's safe to increment
5592 * it here.
5593 */
5594 ++new->current_threshold;
5595 }
5596 j++;
5597 }
5598
5599swap_buffers:
5600 /* Swap primary and spare array */
5601 thresholds->spare = thresholds->primary;
5602 /* If all events are unregistered, free the spare array */
5603 if (!new) {
5604 kfree(thresholds->spare);
5605 thresholds->spare = NULL;
5606 }
5607
5608 rcu_assign_pointer(thresholds->primary, new);
5609
5610 /* To be sure that nobody uses thresholds */
5611 synchronize_rcu();
5612unlock:
5613 mutex_unlock(&memcg->thresholds_lock);
5614}
5615
5616static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5617 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5618{
5619 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5620 struct mem_cgroup_eventfd_list *event;
5621 enum res_type type = MEMFILE_TYPE(cft->private);
5622
5623 BUG_ON(type != _OOM_TYPE);
5624 event = kmalloc(sizeof(*event), GFP_KERNEL);
5625 if (!event)
5626 return -ENOMEM;
5627
5628 spin_lock(&memcg_oom_lock);
5629
5630 event->eventfd = eventfd;
5631 list_add(&event->list, &memcg->oom_notify);
5632
5633 /* already in OOM ? */
5634 if (atomic_read(&memcg->under_oom))
5635 eventfd_signal(eventfd, 1);
5636 spin_unlock(&memcg_oom_lock);
5637
5638 return 0;
5639}
5640
5641static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5642 struct cftype *cft, struct eventfd_ctx *eventfd)
5643{
5644 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5645 struct mem_cgroup_eventfd_list *ev, *tmp;
5646 enum res_type type = MEMFILE_TYPE(cft->private);
5647
5648 BUG_ON(type != _OOM_TYPE);
5649
5650 spin_lock(&memcg_oom_lock);
5651
5652 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5653 if (ev->eventfd == eventfd) {
5654 list_del(&ev->list);
5655 kfree(ev);
5656 }
5657 }
5658
5659 spin_unlock(&memcg_oom_lock);
5660}
5661
5662static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5663 struct cftype *cft, struct cgroup_map_cb *cb)
5664{
5665 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5666
5667 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5668
5669 if (atomic_read(&memcg->under_oom))
5670 cb->fill(cb, "under_oom", 1);
5671 else
5672 cb->fill(cb, "under_oom", 0);
5673 return 0;
5674}
5675
5676static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5677 struct cftype *cft, u64 val)
5678{
5679 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5680 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5681
5682 /* cannot set to root cgroup and only 0 and 1 are allowed */
5683 if (!parent || !((val == 0) || (val == 1)))
5684 return -EINVAL;
5685
5686 mutex_lock(&memcg_create_mutex);
5687 /* oom-kill-disable is a flag for subhierarchy. */
5688 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5689 mutex_unlock(&memcg_create_mutex);
5690 return -EINVAL;
5691 }
5692 memcg->oom_kill_disable = val;
5693 if (!val)
5694 memcg_oom_recover(memcg);
5695 mutex_unlock(&memcg_create_mutex);
5696 return 0;
5697}
5698
5699#ifdef CONFIG_MEMCG_KMEM
5700static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5701{
5702 int ret;
5703
5704 memcg->kmemcg_id = -1;
5705 ret = memcg_propagate_kmem(memcg);
5706 if (ret)
5707 return ret;
5708
5709 return mem_cgroup_sockets_init(memcg, ss);
5710}
5711
5712static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5713{
5714 mem_cgroup_sockets_destroy(memcg);
5715}
5716
5717static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5718{
5719 if (!memcg_kmem_is_active(memcg))
5720 return;
5721
5722 /*
5723 * kmem charges can outlive the cgroup. In the case of slab
5724 * pages, for instance, a page contain objects from various
5725 * processes. As we prevent from taking a reference for every
5726 * such allocation we have to be careful when doing uncharge
5727 * (see memcg_uncharge_kmem) and here during offlining.
5728 *
5729 * The idea is that that only the _last_ uncharge which sees
5730 * the dead memcg will drop the last reference. An additional
5731 * reference is taken here before the group is marked dead
5732 * which is then paired with css_put during uncharge resp. here.
5733 *
5734 * Although this might sound strange as this path is called from
5735 * css_offline() when the referencemight have dropped down to 0
5736 * and shouldn't be incremented anymore (css_tryget would fail)
5737 * we do not have other options because of the kmem allocations
5738 * lifetime.
5739 */
5740 css_get(&memcg->css);
5741
5742 memcg_kmem_mark_dead(memcg);
5743
5744 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5745 return;
5746
5747 if (memcg_kmem_test_and_clear_dead(memcg))
5748 css_put(&memcg->css);
5749}
5750#else
5751static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5752{
5753 return 0;
5754}
5755
5756static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5757{
5758}
5759
5760static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5761{
5762}
5763#endif
5764
5765static struct cftype mem_cgroup_files[] = {
5766 {
5767 .name = "usage_in_bytes",
5768 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5769 .read = mem_cgroup_read,
5770 .register_event = mem_cgroup_usage_register_event,
5771 .unregister_event = mem_cgroup_usage_unregister_event,
5772 },
5773 {
5774 .name = "max_usage_in_bytes",
5775 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5776 .trigger = mem_cgroup_reset,
5777 .read = mem_cgroup_read,
5778 },
5779 {
5780 .name = "limit_in_bytes",
5781 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5782 .write_string = mem_cgroup_write,
5783 .read = mem_cgroup_read,
5784 },
5785 {
5786 .name = "soft_limit_in_bytes",
5787 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5788 .write_string = mem_cgroup_write,
5789 .read = mem_cgroup_read,
5790 },
5791 {
5792 .name = "failcnt",
5793 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5794 .trigger = mem_cgroup_reset,
5795 .read = mem_cgroup_read,
5796 },
5797 {
5798 .name = "stat",
5799 .read_seq_string = memcg_stat_show,
5800 },
5801 {
5802 .name = "force_empty",
5803 .trigger = mem_cgroup_force_empty_write,
5804 },
5805 {
5806 .name = "use_hierarchy",
5807 .flags = CFTYPE_INSANE,
5808 .write_u64 = mem_cgroup_hierarchy_write,
5809 .read_u64 = mem_cgroup_hierarchy_read,
5810 },
5811 {
5812 .name = "swappiness",
5813 .read_u64 = mem_cgroup_swappiness_read,
5814 .write_u64 = mem_cgroup_swappiness_write,
5815 },
5816 {
5817 .name = "move_charge_at_immigrate",
5818 .read_u64 = mem_cgroup_move_charge_read,
5819 .write_u64 = mem_cgroup_move_charge_write,
5820 },
5821 {
5822 .name = "oom_control",
5823 .read_map = mem_cgroup_oom_control_read,
5824 .write_u64 = mem_cgroup_oom_control_write,
5825 .register_event = mem_cgroup_oom_register_event,
5826 .unregister_event = mem_cgroup_oom_unregister_event,
5827 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5828 },
5829 {
5830 .name = "pressure_level",
5831 .register_event = vmpressure_register_event,
5832 .unregister_event = vmpressure_unregister_event,
5833 },
5834#ifdef CONFIG_NUMA
5835 {
5836 .name = "numa_stat",
5837 .read_seq_string = memcg_numa_stat_show,
5838 },
5839#endif
5840#ifdef CONFIG_MEMCG_KMEM
5841 {
5842 .name = "kmem.limit_in_bytes",
5843 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5844 .write_string = mem_cgroup_write,
5845 .read = mem_cgroup_read,
5846 },
5847 {
5848 .name = "kmem.usage_in_bytes",
5849 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5850 .read = mem_cgroup_read,
5851 },
5852 {
5853 .name = "kmem.failcnt",
5854 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5855 .trigger = mem_cgroup_reset,
5856 .read = mem_cgroup_read,
5857 },
5858 {
5859 .name = "kmem.max_usage_in_bytes",
5860 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5861 .trigger = mem_cgroup_reset,
5862 .read = mem_cgroup_read,
5863 },
5864#ifdef CONFIG_SLABINFO
5865 {
5866 .name = "kmem.slabinfo",
5867 .read_seq_string = mem_cgroup_slabinfo_read,
5868 },
5869#endif
5870#endif
5871 { }, /* terminate */
5872};
5873
5874#ifdef CONFIG_MEMCG_SWAP
5875static struct cftype memsw_cgroup_files[] = {
5876 {
5877 .name = "memsw.usage_in_bytes",
5878 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5879 .read = mem_cgroup_read,
5880 .register_event = mem_cgroup_usage_register_event,
5881 .unregister_event = mem_cgroup_usage_unregister_event,
5882 },
5883 {
5884 .name = "memsw.max_usage_in_bytes",
5885 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5886 .trigger = mem_cgroup_reset,
5887 .read = mem_cgroup_read,
5888 },
5889 {
5890 .name = "memsw.limit_in_bytes",
5891 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5892 .write_string = mem_cgroup_write,
5893 .read = mem_cgroup_read,
5894 },
5895 {
5896 .name = "memsw.failcnt",
5897 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5898 .trigger = mem_cgroup_reset,
5899 .read = mem_cgroup_read,
5900 },
5901 { }, /* terminate */
5902};
5903#endif
5904static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5905{
5906 struct mem_cgroup_per_node *pn;
5907 struct mem_cgroup_per_zone *mz;
5908 int zone, tmp = node;
5909 /*
5910 * This routine is called against possible nodes.
5911 * But it's BUG to call kmalloc() against offline node.
5912 *
5913 * TODO: this routine can waste much memory for nodes which will
5914 * never be onlined. It's better to use memory hotplug callback
5915 * function.
5916 */
5917 if (!node_state(node, N_NORMAL_MEMORY))
5918 tmp = -1;
5919 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5920 if (!pn)
5921 return 1;
5922
5923 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5924 mz = &pn->zoneinfo[zone];
5925 lruvec_init(&mz->lruvec);
5926 mz->memcg = memcg;
5927 }
5928 memcg->nodeinfo[node] = pn;
5929 return 0;
5930}
5931
5932static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5933{
5934 kfree(memcg->nodeinfo[node]);
5935}
5936
5937static struct mem_cgroup *mem_cgroup_alloc(void)
5938{
5939 struct mem_cgroup *memcg;
5940 size_t size = memcg_size();
5941
5942 /* Can be very big if nr_node_ids is very big */
5943 if (size < PAGE_SIZE)
5944 memcg = kzalloc(size, GFP_KERNEL);
5945 else
5946 memcg = vzalloc(size);
5947
5948 if (!memcg)
5949 return NULL;
5950
5951 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5952 if (!memcg->stat)
5953 goto out_free;
5954 spin_lock_init(&memcg->pcp_counter_lock);
5955 return memcg;
5956
5957out_free:
5958 if (size < PAGE_SIZE)
5959 kfree(memcg);
5960 else
5961 vfree(memcg);
5962 return NULL;
5963}
5964
5965/*
5966 * At destroying mem_cgroup, references from swap_cgroup can remain.
5967 * (scanning all at force_empty is too costly...)
5968 *
5969 * Instead of clearing all references at force_empty, we remember
5970 * the number of reference from swap_cgroup and free mem_cgroup when
5971 * it goes down to 0.
5972 *
5973 * Removal of cgroup itself succeeds regardless of refs from swap.
5974 */
5975
5976static void __mem_cgroup_free(struct mem_cgroup *memcg)
5977{
5978 int node;
5979 size_t size = memcg_size();
5980
5981 free_css_id(&mem_cgroup_subsys, &memcg->css);
5982
5983 for_each_node(node)
5984 free_mem_cgroup_per_zone_info(memcg, node);
5985
5986 free_percpu(memcg->stat);
5987
5988 /*
5989 * We need to make sure that (at least for now), the jump label
5990 * destruction code runs outside of the cgroup lock. This is because
5991 * get_online_cpus(), which is called from the static_branch update,
5992 * can't be called inside the cgroup_lock. cpusets are the ones
5993 * enforcing this dependency, so if they ever change, we might as well.
5994 *
5995 * schedule_work() will guarantee this happens. Be careful if you need
5996 * to move this code around, and make sure it is outside
5997 * the cgroup_lock.
5998 */
5999 disarm_static_keys(memcg);
6000 if (size < PAGE_SIZE)
6001 kfree(memcg);
6002 else
6003 vfree(memcg);
6004}
6005
6006/*
6007 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6008 */
6009struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6010{
6011 if (!memcg->res.parent)
6012 return NULL;
6013 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6014}
6015EXPORT_SYMBOL(parent_mem_cgroup);
6016
6017static struct cgroup_subsys_state * __ref
6018mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6019{
6020 struct mem_cgroup *memcg;
6021 long error = -ENOMEM;
6022 int node;
6023
6024 memcg = mem_cgroup_alloc();
6025 if (!memcg)
6026 return ERR_PTR(error);
6027
6028 for_each_node(node)
6029 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6030 goto free_out;
6031
6032 /* root ? */
6033 if (parent_css == NULL) {
6034 root_mem_cgroup = memcg;
6035 res_counter_init(&memcg->res, NULL);
6036 res_counter_init(&memcg->memsw, NULL);
6037 res_counter_init(&memcg->kmem, NULL);
6038 }
6039
6040 memcg->last_scanned_node = MAX_NUMNODES;
6041 INIT_LIST_HEAD(&memcg->oom_notify);
6042 memcg->move_charge_at_immigrate = 0;
6043 mutex_init(&memcg->thresholds_lock);
6044 spin_lock_init(&memcg->move_lock);
6045 vmpressure_init(&memcg->vmpressure);
6046 spin_lock_init(&memcg->soft_lock);
6047
6048 return &memcg->css;
6049
6050free_out:
6051 __mem_cgroup_free(memcg);
6052 return ERR_PTR(error);
6053}
6054
6055static int
6056mem_cgroup_css_online(struct cgroup_subsys_state *css)
6057{
6058 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6059 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6060 int error = 0;
6061
6062 if (!parent)
6063 return 0;
6064
6065 mutex_lock(&memcg_create_mutex);
6066
6067 memcg->use_hierarchy = parent->use_hierarchy;
6068 memcg->oom_kill_disable = parent->oom_kill_disable;
6069 memcg->swappiness = mem_cgroup_swappiness(parent);
6070
6071 if (parent->use_hierarchy) {
6072 res_counter_init(&memcg->res, &parent->res);
6073 res_counter_init(&memcg->memsw, &parent->memsw);
6074 res_counter_init(&memcg->kmem, &parent->kmem);
6075
6076 /*
6077 * No need to take a reference to the parent because cgroup
6078 * core guarantees its existence.
6079 */
6080 } else {
6081 res_counter_init(&memcg->res, NULL);
6082 res_counter_init(&memcg->memsw, NULL);
6083 res_counter_init(&memcg->kmem, NULL);
6084 /*
6085 * Deeper hierachy with use_hierarchy == false doesn't make
6086 * much sense so let cgroup subsystem know about this
6087 * unfortunate state in our controller.
6088 */
6089 if (parent != root_mem_cgroup)
6090 mem_cgroup_subsys.broken_hierarchy = true;
6091 }
6092
6093 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6094 mutex_unlock(&memcg_create_mutex);
6095 return error;
6096}
6097
6098/*
6099 * Announce all parents that a group from their hierarchy is gone.
6100 */
6101static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6102{
6103 struct mem_cgroup *parent = memcg;
6104
6105 while ((parent = parent_mem_cgroup(parent)))
6106 mem_cgroup_iter_invalidate(parent);
6107
6108 /*
6109 * if the root memcg is not hierarchical we have to check it
6110 * explicitely.
6111 */
6112 if (!root_mem_cgroup->use_hierarchy)
6113 mem_cgroup_iter_invalidate(root_mem_cgroup);
6114}
6115
6116static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6117{
6118 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6119
6120 kmem_cgroup_css_offline(memcg);
6121
6122 mem_cgroup_invalidate_reclaim_iterators(memcg);
6123 mem_cgroup_reparent_charges(memcg);
6124 if (memcg->soft_contributed) {
6125 while ((memcg = parent_mem_cgroup(memcg)))
6126 atomic_dec(&memcg->children_in_excess);
6127
6128 if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
6129 atomic_dec(&root_mem_cgroup->children_in_excess);
6130 }
6131 mem_cgroup_destroy_all_caches(memcg);
6132 vmpressure_cleanup(&memcg->vmpressure);
6133}
6134
6135static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6136{
6137 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6138
6139 memcg_destroy_kmem(memcg);
6140 __mem_cgroup_free(memcg);
6141}
6142
6143#ifdef CONFIG_MMU
6144/* Handlers for move charge at task migration. */
6145#define PRECHARGE_COUNT_AT_ONCE 256
6146static int mem_cgroup_do_precharge(unsigned long count)
6147{
6148 int ret = 0;
6149 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6150 struct mem_cgroup *memcg = mc.to;
6151
6152 if (mem_cgroup_is_root(memcg)) {
6153 mc.precharge += count;
6154 /* we don't need css_get for root */
6155 return ret;
6156 }
6157 /* try to charge at once */
6158 if (count > 1) {
6159 struct res_counter *dummy;
6160 /*
6161 * "memcg" cannot be under rmdir() because we've already checked
6162 * by cgroup_lock_live_cgroup() that it is not removed and we
6163 * are still under the same cgroup_mutex. So we can postpone
6164 * css_get().
6165 */
6166 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6167 goto one_by_one;
6168 if (do_swap_account && res_counter_charge(&memcg->memsw,
6169 PAGE_SIZE * count, &dummy)) {
6170 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6171 goto one_by_one;
6172 }
6173 mc.precharge += count;
6174 return ret;
6175 }
6176one_by_one:
6177 /* fall back to one by one charge */
6178 while (count--) {
6179 if (signal_pending(current)) {
6180 ret = -EINTR;
6181 break;
6182 }
6183 if (!batch_count--) {
6184 batch_count = PRECHARGE_COUNT_AT_ONCE;
6185 cond_resched();
6186 }
6187 ret = __mem_cgroup_try_charge(NULL,
6188 GFP_KERNEL, 1, &memcg, false);
6189 if (ret)
6190 /* mem_cgroup_clear_mc() will do uncharge later */
6191 return ret;
6192 mc.precharge++;
6193 }
6194 return ret;
6195}
6196
6197/**
6198 * get_mctgt_type - get target type of moving charge
6199 * @vma: the vma the pte to be checked belongs
6200 * @addr: the address corresponding to the pte to be checked
6201 * @ptent: the pte to be checked
6202 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6203 *
6204 * Returns
6205 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6206 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6207 * move charge. if @target is not NULL, the page is stored in target->page
6208 * with extra refcnt got(Callers should handle it).
6209 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6210 * target for charge migration. if @target is not NULL, the entry is stored
6211 * in target->ent.
6212 *
6213 * Called with pte lock held.
6214 */
6215union mc_target {
6216 struct page *page;
6217 swp_entry_t ent;
6218};
6219
6220enum mc_target_type {
6221 MC_TARGET_NONE = 0,
6222 MC_TARGET_PAGE,
6223 MC_TARGET_SWAP,
6224};
6225
6226static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6227 unsigned long addr, pte_t ptent)
6228{
6229 struct page *page = vm_normal_page(vma, addr, ptent);
6230
6231 if (!page || !page_mapped(page))
6232 return NULL;
6233 if (PageAnon(page)) {
6234 /* we don't move shared anon */
6235 if (!move_anon())
6236 return NULL;
6237 } else if (!move_file())
6238 /* we ignore mapcount for file pages */
6239 return NULL;
6240 if (!get_page_unless_zero(page))
6241 return NULL;
6242
6243 return page;
6244}
6245
6246#ifdef CONFIG_SWAP
6247static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6248 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6249{
6250 struct page *page = NULL;
6251 swp_entry_t ent = pte_to_swp_entry(ptent);
6252
6253 if (!move_anon() || non_swap_entry(ent))
6254 return NULL;
6255 /*
6256 * Because lookup_swap_cache() updates some statistics counter,
6257 * we call find_get_page() with swapper_space directly.
6258 */
6259 page = find_get_page(swap_address_space(ent), ent.val);
6260 if (do_swap_account)
6261 entry->val = ent.val;
6262
6263 return page;
6264}
6265#else
6266static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6267 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6268{
6269 return NULL;
6270}
6271#endif
6272
6273static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6274 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6275{
6276 struct page *page = NULL;
6277 struct address_space *mapping;
6278 pgoff_t pgoff;
6279
6280 if (!vma->vm_file) /* anonymous vma */
6281 return NULL;
6282 if (!move_file())
6283 return NULL;
6284
6285 mapping = vma->vm_file->f_mapping;
6286 if (pte_none(ptent))
6287 pgoff = linear_page_index(vma, addr);
6288 else /* pte_file(ptent) is true */
6289 pgoff = pte_to_pgoff(ptent);
6290
6291 /* page is moved even if it's not RSS of this task(page-faulted). */
6292 page = find_get_page(mapping, pgoff);
6293
6294#ifdef CONFIG_SWAP
6295 /* shmem/tmpfs may report page out on swap: account for that too. */
6296 if (radix_tree_exceptional_entry(page)) {
6297 swp_entry_t swap = radix_to_swp_entry(page);
6298 if (do_swap_account)
6299 *entry = swap;
6300 page = find_get_page(swap_address_space(swap), swap.val);
6301 }
6302#endif
6303 return page;
6304}
6305
6306static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6307 unsigned long addr, pte_t ptent, union mc_target *target)
6308{
6309 struct page *page = NULL;
6310 struct page_cgroup *pc;
6311 enum mc_target_type ret = MC_TARGET_NONE;
6312 swp_entry_t ent = { .val = 0 };
6313
6314 if (pte_present(ptent))
6315 page = mc_handle_present_pte(vma, addr, ptent);
6316 else if (is_swap_pte(ptent))
6317 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6318 else if (pte_none(ptent) || pte_file(ptent))
6319 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6320
6321 if (!page && !ent.val)
6322 return ret;
6323 if (page) {
6324 pc = lookup_page_cgroup(page);
6325 /*
6326 * Do only loose check w/o page_cgroup lock.
6327 * mem_cgroup_move_account() checks the pc is valid or not under
6328 * the lock.
6329 */
6330 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6331 ret = MC_TARGET_PAGE;
6332 if (target)
6333 target->page = page;
6334 }
6335 if (!ret || !target)
6336 put_page(page);
6337 }
6338 /* There is a swap entry and a page doesn't exist or isn't charged */
6339 if (ent.val && !ret &&
6340 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6341 ret = MC_TARGET_SWAP;
6342 if (target)
6343 target->ent = ent;
6344 }
6345 return ret;
6346}
6347
6348#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6349/*
6350 * We don't consider swapping or file mapped pages because THP does not
6351 * support them for now.
6352 * Caller should make sure that pmd_trans_huge(pmd) is true.
6353 */
6354static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6355 unsigned long addr, pmd_t pmd, union mc_target *target)
6356{
6357 struct page *page = NULL;
6358 struct page_cgroup *pc;
6359 enum mc_target_type ret = MC_TARGET_NONE;
6360
6361 page = pmd_page(pmd);
6362 VM_BUG_ON(!page || !PageHead(page));
6363 if (!move_anon())
6364 return ret;
6365 pc = lookup_page_cgroup(page);
6366 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6367 ret = MC_TARGET_PAGE;
6368 if (target) {
6369 get_page(page);
6370 target->page = page;
6371 }
6372 }
6373 return ret;
6374}
6375#else
6376static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6377 unsigned long addr, pmd_t pmd, union mc_target *target)
6378{
6379 return MC_TARGET_NONE;
6380}
6381#endif
6382
6383static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6384 unsigned long addr, unsigned long end,
6385 struct mm_walk *walk)
6386{
6387 struct vm_area_struct *vma = walk->private;
6388 pte_t *pte;
6389 spinlock_t *ptl;
6390
6391 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6392 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6393 mc.precharge += HPAGE_PMD_NR;
6394 spin_unlock(&vma->vm_mm->page_table_lock);
6395 return 0;
6396 }
6397
6398 if (pmd_trans_unstable(pmd))
6399 return 0;
6400 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6401 for (; addr != end; pte++, addr += PAGE_SIZE)
6402 if (get_mctgt_type(vma, addr, *pte, NULL))
6403 mc.precharge++; /* increment precharge temporarily */
6404 pte_unmap_unlock(pte - 1, ptl);
6405 cond_resched();
6406
6407 return 0;
6408}
6409
6410static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6411{
6412 unsigned long precharge;
6413 struct vm_area_struct *vma;
6414
6415 down_read(&mm->mmap_sem);
6416 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6417 struct mm_walk mem_cgroup_count_precharge_walk = {
6418 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6419 .mm = mm,
6420 .private = vma,
6421 };
6422 if (is_vm_hugetlb_page(vma))
6423 continue;
6424 walk_page_range(vma->vm_start, vma->vm_end,
6425 &mem_cgroup_count_precharge_walk);
6426 }
6427 up_read(&mm->mmap_sem);
6428
6429 precharge = mc.precharge;
6430 mc.precharge = 0;
6431
6432 return precharge;
6433}
6434
6435static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6436{
6437 unsigned long precharge = mem_cgroup_count_precharge(mm);
6438
6439 VM_BUG_ON(mc.moving_task);
6440 mc.moving_task = current;
6441 return mem_cgroup_do_precharge(precharge);
6442}
6443
6444/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6445static void __mem_cgroup_clear_mc(void)
6446{
6447 struct mem_cgroup *from = mc.from;
6448 struct mem_cgroup *to = mc.to;
6449 int i;
6450
6451 /* we must uncharge all the leftover precharges from mc.to */
6452 if (mc.precharge) {
6453 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6454 mc.precharge = 0;
6455 }
6456 /*
6457 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6458 * we must uncharge here.
6459 */
6460 if (mc.moved_charge) {
6461 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6462 mc.moved_charge = 0;
6463 }
6464 /* we must fixup refcnts and charges */
6465 if (mc.moved_swap) {
6466 /* uncharge swap account from the old cgroup */
6467 if (!mem_cgroup_is_root(mc.from))
6468 res_counter_uncharge(&mc.from->memsw,
6469 PAGE_SIZE * mc.moved_swap);
6470
6471 for (i = 0; i < mc.moved_swap; i++)
6472 css_put(&mc.from->css);
6473
6474 if (!mem_cgroup_is_root(mc.to)) {
6475 /*
6476 * we charged both to->res and to->memsw, so we should
6477 * uncharge to->res.
6478 */
6479 res_counter_uncharge(&mc.to->res,
6480 PAGE_SIZE * mc.moved_swap);
6481 }
6482 /* we've already done css_get(mc.to) */
6483 mc.moved_swap = 0;
6484 }
6485 memcg_oom_recover(from);
6486 memcg_oom_recover(to);
6487 wake_up_all(&mc.waitq);
6488}
6489
6490static void mem_cgroup_clear_mc(void)
6491{
6492 struct mem_cgroup *from = mc.from;
6493
6494 /*
6495 * we must clear moving_task before waking up waiters at the end of
6496 * task migration.
6497 */
6498 mc.moving_task = NULL;
6499 __mem_cgroup_clear_mc();
6500 spin_lock(&mc.lock);
6501 mc.from = NULL;
6502 mc.to = NULL;
6503 spin_unlock(&mc.lock);
6504 mem_cgroup_end_move(from);
6505}
6506
6507static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6508 struct cgroup_taskset *tset)
6509{
6510 struct task_struct *p = cgroup_taskset_first(tset);
6511 int ret = 0;
6512 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6513 unsigned long move_charge_at_immigrate;
6514
6515 /*
6516 * We are now commited to this value whatever it is. Changes in this
6517 * tunable will only affect upcoming migrations, not the current one.
6518 * So we need to save it, and keep it going.
6519 */
6520 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6521 if (move_charge_at_immigrate) {
6522 struct mm_struct *mm;
6523 struct mem_cgroup *from = mem_cgroup_from_task(p);
6524
6525 VM_BUG_ON(from == memcg);
6526
6527 mm = get_task_mm(p);
6528 if (!mm)
6529 return 0;
6530 /* We move charges only when we move a owner of the mm */
6531 if (mm->owner == p) {
6532 VM_BUG_ON(mc.from);
6533 VM_BUG_ON(mc.to);
6534 VM_BUG_ON(mc.precharge);
6535 VM_BUG_ON(mc.moved_charge);
6536 VM_BUG_ON(mc.moved_swap);
6537 mem_cgroup_start_move(from);
6538 spin_lock(&mc.lock);
6539 mc.from = from;
6540 mc.to = memcg;
6541 mc.immigrate_flags = move_charge_at_immigrate;
6542 spin_unlock(&mc.lock);
6543 /* We set mc.moving_task later */
6544
6545 ret = mem_cgroup_precharge_mc(mm);
6546 if (ret)
6547 mem_cgroup_clear_mc();
6548 }
6549 mmput(mm);
6550 }
6551 return ret;
6552}
6553
6554static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6555 struct cgroup_taskset *tset)
6556{
6557 mem_cgroup_clear_mc();
6558}
6559
6560static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6561 unsigned long addr, unsigned long end,
6562 struct mm_walk *walk)
6563{
6564 int ret = 0;
6565 struct vm_area_struct *vma = walk->private;
6566 pte_t *pte;
6567 spinlock_t *ptl;
6568 enum mc_target_type target_type;
6569 union mc_target target;
6570 struct page *page;
6571 struct page_cgroup *pc;
6572
6573 /*
6574 * We don't take compound_lock() here but no race with splitting thp
6575 * happens because:
6576 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6577 * under splitting, which means there's no concurrent thp split,
6578 * - if another thread runs into split_huge_page() just after we
6579 * entered this if-block, the thread must wait for page table lock
6580 * to be unlocked in __split_huge_page_splitting(), where the main
6581 * part of thp split is not executed yet.
6582 */
6583 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6584 if (mc.precharge < HPAGE_PMD_NR) {
6585 spin_unlock(&vma->vm_mm->page_table_lock);
6586 return 0;
6587 }
6588 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6589 if (target_type == MC_TARGET_PAGE) {
6590 page = target.page;
6591 if (!isolate_lru_page(page)) {
6592 pc = lookup_page_cgroup(page);
6593 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6594 pc, mc.from, mc.to)) {
6595 mc.precharge -= HPAGE_PMD_NR;
6596 mc.moved_charge += HPAGE_PMD_NR;
6597 }
6598 putback_lru_page(page);
6599 }
6600 put_page(page);
6601 }
6602 spin_unlock(&vma->vm_mm->page_table_lock);
6603 return 0;
6604 }
6605
6606 if (pmd_trans_unstable(pmd))
6607 return 0;
6608retry:
6609 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6610 for (; addr != end; addr += PAGE_SIZE) {
6611 pte_t ptent = *(pte++);
6612 swp_entry_t ent;
6613
6614 if (!mc.precharge)
6615 break;
6616
6617 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6618 case MC_TARGET_PAGE:
6619 page = target.page;
6620 if (isolate_lru_page(page))
6621 goto put;
6622 pc = lookup_page_cgroup(page);
6623 if (!mem_cgroup_move_account(page, 1, pc,
6624 mc.from, mc.to)) {
6625 mc.precharge--;
6626 /* we uncharge from mc.from later. */
6627 mc.moved_charge++;
6628 }
6629 putback_lru_page(page);
6630put: /* get_mctgt_type() gets the page */
6631 put_page(page);
6632 break;
6633 case MC_TARGET_SWAP:
6634 ent = target.ent;
6635 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6636 mc.precharge--;
6637 /* we fixup refcnts and charges later. */
6638 mc.moved_swap++;
6639 }
6640 break;
6641 default:
6642 break;
6643 }
6644 }
6645 pte_unmap_unlock(pte - 1, ptl);
6646 cond_resched();
6647
6648 if (addr != end) {
6649 /*
6650 * We have consumed all precharges we got in can_attach().
6651 * We try charge one by one, but don't do any additional
6652 * charges to mc.to if we have failed in charge once in attach()
6653 * phase.
6654 */
6655 ret = mem_cgroup_do_precharge(1);
6656 if (!ret)
6657 goto retry;
6658 }
6659
6660 return ret;
6661}
6662
6663static void mem_cgroup_move_charge(struct mm_struct *mm)
6664{
6665 struct vm_area_struct *vma;
6666
6667 lru_add_drain_all();
6668retry:
6669 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6670 /*
6671 * Someone who are holding the mmap_sem might be waiting in
6672 * waitq. So we cancel all extra charges, wake up all waiters,
6673 * and retry. Because we cancel precharges, we might not be able
6674 * to move enough charges, but moving charge is a best-effort
6675 * feature anyway, so it wouldn't be a big problem.
6676 */
6677 __mem_cgroup_clear_mc();
6678 cond_resched();
6679 goto retry;
6680 }
6681 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6682 int ret;
6683 struct mm_walk mem_cgroup_move_charge_walk = {
6684 .pmd_entry = mem_cgroup_move_charge_pte_range,
6685 .mm = mm,
6686 .private = vma,
6687 };
6688 if (is_vm_hugetlb_page(vma))
6689 continue;
6690 ret = walk_page_range(vma->vm_start, vma->vm_end,
6691 &mem_cgroup_move_charge_walk);
6692 if (ret)
6693 /*
6694 * means we have consumed all precharges and failed in
6695 * doing additional charge. Just abandon here.
6696 */
6697 break;
6698 }
6699 up_read(&mm->mmap_sem);
6700}
6701
6702static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6703 struct cgroup_taskset *tset)
6704{
6705 struct task_struct *p = cgroup_taskset_first(tset);
6706 struct mm_struct *mm = get_task_mm(p);
6707
6708 if (mm) {
6709 if (mc.to)
6710 mem_cgroup_move_charge(mm);
6711 mmput(mm);
6712 }
6713 if (mc.to)
6714 mem_cgroup_clear_mc();
6715}
6716#else /* !CONFIG_MMU */
6717static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6718 struct cgroup_taskset *tset)
6719{
6720 return 0;
6721}
6722static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6723 struct cgroup_taskset *tset)
6724{
6725}
6726static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6727 struct cgroup_taskset *tset)
6728{
6729}
6730#endif
6731
6732/*
6733 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6734 * to verify sane_behavior flag on each mount attempt.
6735 */
6736static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6737{
6738 /*
6739 * use_hierarchy is forced with sane_behavior. cgroup core
6740 * guarantees that @root doesn't have any children, so turning it
6741 * on for the root memcg is enough.
6742 */
6743 if (cgroup_sane_behavior(root_css->cgroup))
6744 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6745}
6746
6747struct cgroup_subsys mem_cgroup_subsys = {
6748 .name = "memory",
6749 .subsys_id = mem_cgroup_subsys_id,
6750 .css_alloc = mem_cgroup_css_alloc,
6751 .css_online = mem_cgroup_css_online,
6752 .css_offline = mem_cgroup_css_offline,
6753 .css_free = mem_cgroup_css_free,
6754 .can_attach = mem_cgroup_can_attach,
6755 .cancel_attach = mem_cgroup_cancel_attach,
6756 .attach = mem_cgroup_move_task,
6757 .bind = mem_cgroup_bind,
6758 .base_cftypes = mem_cgroup_files,
6759 .early_init = 0,
6760 .use_id = 1,
6761};
6762
6763#ifdef CONFIG_MEMCG_SWAP
6764static int __init enable_swap_account(char *s)
6765{
6766 if (!strcmp(s, "1"))
6767 really_do_swap_account = 1;
6768 else if (!strcmp(s, "0"))
6769 really_do_swap_account = 0;
6770 return 1;
6771}
6772__setup("swapaccount=", enable_swap_account);
6773
6774static void __init memsw_file_init(void)
6775{
6776 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6777}
6778
6779static void __init enable_swap_cgroup(void)
6780{
6781 if (!mem_cgroup_disabled() && really_do_swap_account) {
6782 do_swap_account = 1;
6783 memsw_file_init();
6784 }
6785}
6786
6787#else
6788static void __init enable_swap_cgroup(void)
6789{
6790}
6791#endif
6792
6793/*
6794 * subsys_initcall() for memory controller.
6795 *
6796 * Some parts like hotcpu_notifier() have to be initialized from this context
6797 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6798 * everything that doesn't depend on a specific mem_cgroup structure should
6799 * be initialized from here.
6800 */
6801static int __init mem_cgroup_init(void)
6802{
6803 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6804 enable_swap_cgroup();
6805 memcg_stock_init();
6806 return 0;
6807}
6808subsys_initcall(mem_cgroup_init);