]>
Commit | Line | Data |
---|---|---|
1 | // SPDX-License-Identifier: GPL-2.0-only | |
2 | /* | |
3 | * linux/mm/memory.c | |
4 | * | |
5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
6 | */ | |
7 | ||
8 | /* | |
9 | * demand-loading started 01.12.91 - seems it is high on the list of | |
10 | * things wanted, and it should be easy to implement. - Linus | |
11 | */ | |
12 | ||
13 | /* | |
14 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
15 | * pages started 02.12.91, seems to work. - Linus. | |
16 | * | |
17 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
18 | * would have taken more than the 6M I have free, but it worked well as | |
19 | * far as I could see. | |
20 | * | |
21 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
22 | */ | |
23 | ||
24 | /* | |
25 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
26 | * thought has to go into this. Oh, well.. | |
27 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
28 | * Found it. Everything seems to work now. | |
29 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
30 | */ | |
31 | ||
32 | /* | |
33 | * 05.04.94 - Multi-page memory management added for v1.1. | |
34 | * Idea by Alex Bligh (alex@cconcepts.co.uk) | |
35 | * | |
36 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
37 | * (Gerhard.Wichert@pdb.siemens.de) | |
38 | * | |
39 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
40 | */ | |
41 | ||
42 | #include <linux/kernel_stat.h> | |
43 | #include <linux/mm.h> | |
44 | #include <linux/mm_inline.h> | |
45 | #include <linux/sched/mm.h> | |
46 | #include <linux/sched/numa_balancing.h> | |
47 | #include <linux/sched/task.h> | |
48 | #include <linux/hugetlb.h> | |
49 | #include <linux/mman.h> | |
50 | #include <linux/swap.h> | |
51 | #include <linux/highmem.h> | |
52 | #include <linux/pagemap.h> | |
53 | #include <linux/memremap.h> | |
54 | #include <linux/kmsan.h> | |
55 | #include <linux/ksm.h> | |
56 | #include <linux/rmap.h> | |
57 | #include <linux/export.h> | |
58 | #include <linux/delayacct.h> | |
59 | #include <linux/init.h> | |
60 | #include <linux/pfn_t.h> | |
61 | #include <linux/writeback.h> | |
62 | #include <linux/memcontrol.h> | |
63 | #include <linux/mmu_notifier.h> | |
64 | #include <linux/swapops.h> | |
65 | #include <linux/elf.h> | |
66 | #include <linux/gfp.h> | |
67 | #include <linux/migrate.h> | |
68 | #include <linux/string.h> | |
69 | #include <linux/memory-tiers.h> | |
70 | #include <linux/debugfs.h> | |
71 | #include <linux/userfaultfd_k.h> | |
72 | #include <linux/dax.h> | |
73 | #include <linux/oom.h> | |
74 | #include <linux/numa.h> | |
75 | #include <linux/perf_event.h> | |
76 | #include <linux/ptrace.h> | |
77 | #include <linux/vmalloc.h> | |
78 | #include <linux/sched/sysctl.h> | |
79 | ||
80 | #include <trace/events/kmem.h> | |
81 | ||
82 | #include <asm/io.h> | |
83 | #include <asm/mmu_context.h> | |
84 | #include <asm/pgalloc.h> | |
85 | #include <linux/uaccess.h> | |
86 | #include <asm/tlb.h> | |
87 | #include <asm/tlbflush.h> | |
88 | ||
89 | #include "pgalloc-track.h" | |
90 | #include "internal.h" | |
91 | #include "swap.h" | |
92 | ||
93 | #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) | |
94 | #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. | |
95 | #endif | |
96 | ||
97 | static vm_fault_t do_fault(struct vm_fault *vmf); | |
98 | static vm_fault_t do_anonymous_page(struct vm_fault *vmf); | |
99 | static bool vmf_pte_changed(struct vm_fault *vmf); | |
100 | ||
101 | /* | |
102 | * Return true if the original pte was a uffd-wp pte marker (so the pte was | |
103 | * wr-protected). | |
104 | */ | |
105 | static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) | |
106 | { | |
107 | if (!userfaultfd_wp(vmf->vma)) | |
108 | return false; | |
109 | if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) | |
110 | return false; | |
111 | ||
112 | return pte_marker_uffd_wp(vmf->orig_pte); | |
113 | } | |
114 | ||
115 | /* | |
116 | * Randomize the address space (stacks, mmaps, brk, etc.). | |
117 | * | |
118 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | |
119 | * as ancient (libc5 based) binaries can segfault. ) | |
120 | */ | |
121 | int randomize_va_space __read_mostly = | |
122 | #ifdef CONFIG_COMPAT_BRK | |
123 | 1; | |
124 | #else | |
125 | 2; | |
126 | #endif | |
127 | ||
128 | #ifndef arch_wants_old_prefaulted_pte | |
129 | static inline bool arch_wants_old_prefaulted_pte(void) | |
130 | { | |
131 | /* | |
132 | * Transitioning a PTE from 'old' to 'young' can be expensive on | |
133 | * some architectures, even if it's performed in hardware. By | |
134 | * default, "false" means prefaulted entries will be 'young'. | |
135 | */ | |
136 | return false; | |
137 | } | |
138 | #endif | |
139 | ||
140 | static int __init disable_randmaps(char *s) | |
141 | { | |
142 | randomize_va_space = 0; | |
143 | return 1; | |
144 | } | |
145 | __setup("norandmaps", disable_randmaps); | |
146 | ||
147 | unsigned long zero_pfn __read_mostly; | |
148 | EXPORT_SYMBOL(zero_pfn); | |
149 | ||
150 | unsigned long highest_memmap_pfn __read_mostly; | |
151 | ||
152 | /* | |
153 | * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() | |
154 | */ | |
155 | static int __init init_zero_pfn(void) | |
156 | { | |
157 | zero_pfn = page_to_pfn(ZERO_PAGE(0)); | |
158 | return 0; | |
159 | } | |
160 | early_initcall(init_zero_pfn); | |
161 | ||
162 | void mm_trace_rss_stat(struct mm_struct *mm, int member) | |
163 | { | |
164 | trace_rss_stat(mm, member); | |
165 | } | |
166 | ||
167 | /* | |
168 | * Note: this doesn't free the actual pages themselves. That | |
169 | * has been handled earlier when unmapping all the memory regions. | |
170 | */ | |
171 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, | |
172 | unsigned long addr) | |
173 | { | |
174 | pgtable_t token = pmd_pgtable(*pmd); | |
175 | pmd_clear(pmd); | |
176 | pte_free_tlb(tlb, token, addr); | |
177 | mm_dec_nr_ptes(tlb->mm); | |
178 | } | |
179 | ||
180 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | |
181 | unsigned long addr, unsigned long end, | |
182 | unsigned long floor, unsigned long ceiling) | |
183 | { | |
184 | pmd_t *pmd; | |
185 | unsigned long next; | |
186 | unsigned long start; | |
187 | ||
188 | start = addr; | |
189 | pmd = pmd_offset(pud, addr); | |
190 | do { | |
191 | next = pmd_addr_end(addr, end); | |
192 | if (pmd_none_or_clear_bad(pmd)) | |
193 | continue; | |
194 | free_pte_range(tlb, pmd, addr); | |
195 | } while (pmd++, addr = next, addr != end); | |
196 | ||
197 | start &= PUD_MASK; | |
198 | if (start < floor) | |
199 | return; | |
200 | if (ceiling) { | |
201 | ceiling &= PUD_MASK; | |
202 | if (!ceiling) | |
203 | return; | |
204 | } | |
205 | if (end - 1 > ceiling - 1) | |
206 | return; | |
207 | ||
208 | pmd = pmd_offset(pud, start); | |
209 | pud_clear(pud); | |
210 | pmd_free_tlb(tlb, pmd, start); | |
211 | mm_dec_nr_pmds(tlb->mm); | |
212 | } | |
213 | ||
214 | static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, | |
215 | unsigned long addr, unsigned long end, | |
216 | unsigned long floor, unsigned long ceiling) | |
217 | { | |
218 | pud_t *pud; | |
219 | unsigned long next; | |
220 | unsigned long start; | |
221 | ||
222 | start = addr; | |
223 | pud = pud_offset(p4d, addr); | |
224 | do { | |
225 | next = pud_addr_end(addr, end); | |
226 | if (pud_none_or_clear_bad(pud)) | |
227 | continue; | |
228 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); | |
229 | } while (pud++, addr = next, addr != end); | |
230 | ||
231 | start &= P4D_MASK; | |
232 | if (start < floor) | |
233 | return; | |
234 | if (ceiling) { | |
235 | ceiling &= P4D_MASK; | |
236 | if (!ceiling) | |
237 | return; | |
238 | } | |
239 | if (end - 1 > ceiling - 1) | |
240 | return; | |
241 | ||
242 | pud = pud_offset(p4d, start); | |
243 | p4d_clear(p4d); | |
244 | pud_free_tlb(tlb, pud, start); | |
245 | mm_dec_nr_puds(tlb->mm); | |
246 | } | |
247 | ||
248 | static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, | |
249 | unsigned long addr, unsigned long end, | |
250 | unsigned long floor, unsigned long ceiling) | |
251 | { | |
252 | p4d_t *p4d; | |
253 | unsigned long next; | |
254 | unsigned long start; | |
255 | ||
256 | start = addr; | |
257 | p4d = p4d_offset(pgd, addr); | |
258 | do { | |
259 | next = p4d_addr_end(addr, end); | |
260 | if (p4d_none_or_clear_bad(p4d)) | |
261 | continue; | |
262 | free_pud_range(tlb, p4d, addr, next, floor, ceiling); | |
263 | } while (p4d++, addr = next, addr != end); | |
264 | ||
265 | start &= PGDIR_MASK; | |
266 | if (start < floor) | |
267 | return; | |
268 | if (ceiling) { | |
269 | ceiling &= PGDIR_MASK; | |
270 | if (!ceiling) | |
271 | return; | |
272 | } | |
273 | if (end - 1 > ceiling - 1) | |
274 | return; | |
275 | ||
276 | p4d = p4d_offset(pgd, start); | |
277 | pgd_clear(pgd); | |
278 | p4d_free_tlb(tlb, p4d, start); | |
279 | } | |
280 | ||
281 | /** | |
282 | * free_pgd_range - Unmap and free page tables in the range | |
283 | * @tlb: the mmu_gather containing pending TLB flush info | |
284 | * @addr: virtual address start | |
285 | * @end: virtual address end | |
286 | * @floor: lowest address boundary | |
287 | * @ceiling: highest address boundary | |
288 | * | |
289 | * This function tears down all user-level page tables in the | |
290 | * specified virtual address range [@addr..@end). It is part of | |
291 | * the memory unmap flow. | |
292 | */ | |
293 | void free_pgd_range(struct mmu_gather *tlb, | |
294 | unsigned long addr, unsigned long end, | |
295 | unsigned long floor, unsigned long ceiling) | |
296 | { | |
297 | pgd_t *pgd; | |
298 | unsigned long next; | |
299 | ||
300 | /* | |
301 | * The next few lines have given us lots of grief... | |
302 | * | |
303 | * Why are we testing PMD* at this top level? Because often | |
304 | * there will be no work to do at all, and we'd prefer not to | |
305 | * go all the way down to the bottom just to discover that. | |
306 | * | |
307 | * Why all these "- 1"s? Because 0 represents both the bottom | |
308 | * of the address space and the top of it (using -1 for the | |
309 | * top wouldn't help much: the masks would do the wrong thing). | |
310 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
311 | * the address space, but end 0 and ceiling 0 refer to the top | |
312 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
313 | * that end 0 case should be mythical). | |
314 | * | |
315 | * Wherever addr is brought up or ceiling brought down, we must | |
316 | * be careful to reject "the opposite 0" before it confuses the | |
317 | * subsequent tests. But what about where end is brought down | |
318 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
319 | * | |
320 | * Whereas we round start (addr) and ceiling down, by different | |
321 | * masks at different levels, in order to test whether a table | |
322 | * now has no other vmas using it, so can be freed, we don't | |
323 | * bother to round floor or end up - the tests don't need that. | |
324 | */ | |
325 | ||
326 | addr &= PMD_MASK; | |
327 | if (addr < floor) { | |
328 | addr += PMD_SIZE; | |
329 | if (!addr) | |
330 | return; | |
331 | } | |
332 | if (ceiling) { | |
333 | ceiling &= PMD_MASK; | |
334 | if (!ceiling) | |
335 | return; | |
336 | } | |
337 | if (end - 1 > ceiling - 1) | |
338 | end -= PMD_SIZE; | |
339 | if (addr > end - 1) | |
340 | return; | |
341 | /* | |
342 | * We add page table cache pages with PAGE_SIZE, | |
343 | * (see pte_free_tlb()), flush the tlb if we need | |
344 | */ | |
345 | tlb_change_page_size(tlb, PAGE_SIZE); | |
346 | pgd = pgd_offset(tlb->mm, addr); | |
347 | do { | |
348 | next = pgd_addr_end(addr, end); | |
349 | if (pgd_none_or_clear_bad(pgd)) | |
350 | continue; | |
351 | free_p4d_range(tlb, pgd, addr, next, floor, ceiling); | |
352 | } while (pgd++, addr = next, addr != end); | |
353 | } | |
354 | ||
355 | void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, | |
356 | struct vm_area_struct *vma, unsigned long floor, | |
357 | unsigned long ceiling, bool mm_wr_locked) | |
358 | { | |
359 | struct unlink_vma_file_batch vb; | |
360 | ||
361 | tlb_free_vmas(tlb); | |
362 | ||
363 | do { | |
364 | unsigned long addr = vma->vm_start; | |
365 | struct vm_area_struct *next; | |
366 | ||
367 | /* | |
368 | * Note: USER_PGTABLES_CEILING may be passed as ceiling and may | |
369 | * be 0. This will underflow and is okay. | |
370 | */ | |
371 | next = mas_find(mas, ceiling - 1); | |
372 | if (unlikely(xa_is_zero(next))) | |
373 | next = NULL; | |
374 | ||
375 | /* | |
376 | * Hide vma from rmap and truncate_pagecache before freeing | |
377 | * pgtables | |
378 | */ | |
379 | if (mm_wr_locked) | |
380 | vma_start_write(vma); | |
381 | unlink_anon_vmas(vma); | |
382 | ||
383 | if (is_vm_hugetlb_page(vma)) { | |
384 | unlink_file_vma(vma); | |
385 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, | |
386 | floor, next ? next->vm_start : ceiling); | |
387 | } else { | |
388 | unlink_file_vma_batch_init(&vb); | |
389 | unlink_file_vma_batch_add(&vb, vma); | |
390 | ||
391 | /* | |
392 | * Optimization: gather nearby vmas into one call down | |
393 | */ | |
394 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
395 | && !is_vm_hugetlb_page(next)) { | |
396 | vma = next; | |
397 | next = mas_find(mas, ceiling - 1); | |
398 | if (unlikely(xa_is_zero(next))) | |
399 | next = NULL; | |
400 | if (mm_wr_locked) | |
401 | vma_start_write(vma); | |
402 | unlink_anon_vmas(vma); | |
403 | unlink_file_vma_batch_add(&vb, vma); | |
404 | } | |
405 | unlink_file_vma_batch_final(&vb); | |
406 | free_pgd_range(tlb, addr, vma->vm_end, | |
407 | floor, next ? next->vm_start : ceiling); | |
408 | } | |
409 | vma = next; | |
410 | } while (vma); | |
411 | } | |
412 | ||
413 | void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) | |
414 | { | |
415 | spinlock_t *ptl = pmd_lock(mm, pmd); | |
416 | ||
417 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ | |
418 | mm_inc_nr_ptes(mm); | |
419 | /* | |
420 | * Ensure all pte setup (eg. pte page lock and page clearing) are | |
421 | * visible before the pte is made visible to other CPUs by being | |
422 | * put into page tables. | |
423 | * | |
424 | * The other side of the story is the pointer chasing in the page | |
425 | * table walking code (when walking the page table without locking; | |
426 | * ie. most of the time). Fortunately, these data accesses consist | |
427 | * of a chain of data-dependent loads, meaning most CPUs (alpha | |
428 | * being the notable exception) will already guarantee loads are | |
429 | * seen in-order. See the alpha page table accessors for the | |
430 | * smp_rmb() barriers in page table walking code. | |
431 | */ | |
432 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | |
433 | pmd_populate(mm, pmd, *pte); | |
434 | *pte = NULL; | |
435 | } | |
436 | spin_unlock(ptl); | |
437 | } | |
438 | ||
439 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) | |
440 | { | |
441 | pgtable_t new = pte_alloc_one(mm); | |
442 | if (!new) | |
443 | return -ENOMEM; | |
444 | ||
445 | pmd_install(mm, pmd, &new); | |
446 | if (new) | |
447 | pte_free(mm, new); | |
448 | return 0; | |
449 | } | |
450 | ||
451 | int __pte_alloc_kernel(pmd_t *pmd) | |
452 | { | |
453 | pte_t *new = pte_alloc_one_kernel(&init_mm); | |
454 | if (!new) | |
455 | return -ENOMEM; | |
456 | ||
457 | spin_lock(&init_mm.page_table_lock); | |
458 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ | |
459 | smp_wmb(); /* See comment in pmd_install() */ | |
460 | pmd_populate_kernel(&init_mm, pmd, new); | |
461 | new = NULL; | |
462 | } | |
463 | spin_unlock(&init_mm.page_table_lock); | |
464 | if (new) | |
465 | pte_free_kernel(&init_mm, new); | |
466 | return 0; | |
467 | } | |
468 | ||
469 | static inline void init_rss_vec(int *rss) | |
470 | { | |
471 | memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); | |
472 | } | |
473 | ||
474 | static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) | |
475 | { | |
476 | int i; | |
477 | ||
478 | for (i = 0; i < NR_MM_COUNTERS; i++) | |
479 | if (rss[i]) | |
480 | add_mm_counter(mm, i, rss[i]); | |
481 | } | |
482 | ||
483 | /* | |
484 | * This function is called to print an error when a bad pte | |
485 | * is found. For example, we might have a PFN-mapped pte in | |
486 | * a region that doesn't allow it. | |
487 | * | |
488 | * The calling function must still handle the error. | |
489 | */ | |
490 | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, | |
491 | pte_t pte, struct page *page) | |
492 | { | |
493 | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); | |
494 | p4d_t *p4d = p4d_offset(pgd, addr); | |
495 | pud_t *pud = pud_offset(p4d, addr); | |
496 | pmd_t *pmd = pmd_offset(pud, addr); | |
497 | struct address_space *mapping; | |
498 | pgoff_t index; | |
499 | static unsigned long resume; | |
500 | static unsigned long nr_shown; | |
501 | static unsigned long nr_unshown; | |
502 | ||
503 | /* | |
504 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
505 | * or allow a steady drip of one report per second. | |
506 | */ | |
507 | if (nr_shown == 60) { | |
508 | if (time_before(jiffies, resume)) { | |
509 | nr_unshown++; | |
510 | return; | |
511 | } | |
512 | if (nr_unshown) { | |
513 | pr_alert("BUG: Bad page map: %lu messages suppressed\n", | |
514 | nr_unshown); | |
515 | nr_unshown = 0; | |
516 | } | |
517 | nr_shown = 0; | |
518 | } | |
519 | if (nr_shown++ == 0) | |
520 | resume = jiffies + 60 * HZ; | |
521 | ||
522 | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | |
523 | index = linear_page_index(vma, addr); | |
524 | ||
525 | pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", | |
526 | current->comm, | |
527 | (long long)pte_val(pte), (long long)pmd_val(*pmd)); | |
528 | if (page) | |
529 | dump_page(page, "bad pte"); | |
530 | pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", | |
531 | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); | |
532 | pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n", | |
533 | vma->vm_file, | |
534 | vma->vm_ops ? vma->vm_ops->fault : NULL, | |
535 | vma->vm_file ? vma->vm_file->f_op->mmap : NULL, | |
536 | vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL, | |
537 | mapping ? mapping->a_ops->read_folio : NULL); | |
538 | dump_stack(); | |
539 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | |
540 | } | |
541 | ||
542 | /* | |
543 | * vm_normal_page -- This function gets the "struct page" associated with a pte. | |
544 | * | |
545 | * "Special" mappings do not wish to be associated with a "struct page" (either | |
546 | * it doesn't exist, or it exists but they don't want to touch it). In this | |
547 | * case, NULL is returned here. "Normal" mappings do have a struct page. | |
548 | * | |
549 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() | |
550 | * pte bit, in which case this function is trivial. Secondly, an architecture | |
551 | * may not have a spare pte bit, which requires a more complicated scheme, | |
552 | * described below. | |
553 | * | |
554 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | |
555 | * special mapping (even if there are underlying and valid "struct pages"). | |
556 | * COWed pages of a VM_PFNMAP are always normal. | |
557 | * | |
558 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the | |
559 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | |
560 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special | |
561 | * mapping will always honor the rule | |
562 | * | |
563 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
564 | * | |
565 | * And for normal mappings this is false. | |
566 | * | |
567 | * This restricts such mappings to be a linear translation from virtual address | |
568 | * to pfn. To get around this restriction, we allow arbitrary mappings so long | |
569 | * as the vma is not a COW mapping; in that case, we know that all ptes are | |
570 | * special (because none can have been COWed). | |
571 | * | |
572 | * | |
573 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. | |
574 | * | |
575 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | |
576 | * page" backing, however the difference is that _all_ pages with a struct | |
577 | * page (that is, those where pfn_valid is true) are refcounted and considered | |
578 | * normal pages by the VM. The only exception are zeropages, which are | |
579 | * *never* refcounted. | |
580 | * | |
581 | * The disadvantage is that pages are refcounted (which can be slower and | |
582 | * simply not an option for some PFNMAP users). The advantage is that we | |
583 | * don't have to follow the strict linearity rule of PFNMAP mappings in | |
584 | * order to support COWable mappings. | |
585 | * | |
586 | */ | |
587 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | |
588 | pte_t pte) | |
589 | { | |
590 | unsigned long pfn = pte_pfn(pte); | |
591 | ||
592 | if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { | |
593 | if (likely(!pte_special(pte))) | |
594 | goto check_pfn; | |
595 | if (vma->vm_ops && vma->vm_ops->find_special_page) | |
596 | return vma->vm_ops->find_special_page(vma, addr); | |
597 | if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) | |
598 | return NULL; | |
599 | if (is_zero_pfn(pfn)) | |
600 | return NULL; | |
601 | if (pte_devmap(pte)) | |
602 | /* | |
603 | * NOTE: New users of ZONE_DEVICE will not set pte_devmap() | |
604 | * and will have refcounts incremented on their struct pages | |
605 | * when they are inserted into PTEs, thus they are safe to | |
606 | * return here. Legacy ZONE_DEVICE pages that set pte_devmap() | |
607 | * do not have refcounts. Example of legacy ZONE_DEVICE is | |
608 | * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. | |
609 | */ | |
610 | return NULL; | |
611 | ||
612 | print_bad_pte(vma, addr, pte, NULL); | |
613 | return NULL; | |
614 | } | |
615 | ||
616 | /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ | |
617 | ||
618 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | |
619 | if (vma->vm_flags & VM_MIXEDMAP) { | |
620 | if (!pfn_valid(pfn)) | |
621 | return NULL; | |
622 | if (is_zero_pfn(pfn)) | |
623 | return NULL; | |
624 | goto out; | |
625 | } else { | |
626 | unsigned long off; | |
627 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
628 | if (pfn == vma->vm_pgoff + off) | |
629 | return NULL; | |
630 | if (!is_cow_mapping(vma->vm_flags)) | |
631 | return NULL; | |
632 | } | |
633 | } | |
634 | ||
635 | if (is_zero_pfn(pfn)) | |
636 | return NULL; | |
637 | ||
638 | check_pfn: | |
639 | if (unlikely(pfn > highest_memmap_pfn)) { | |
640 | print_bad_pte(vma, addr, pte, NULL); | |
641 | return NULL; | |
642 | } | |
643 | ||
644 | /* | |
645 | * NOTE! We still have PageReserved() pages in the page tables. | |
646 | * eg. VDSO mappings can cause them to exist. | |
647 | */ | |
648 | out: | |
649 | VM_WARN_ON_ONCE(is_zero_pfn(pfn)); | |
650 | return pfn_to_page(pfn); | |
651 | } | |
652 | ||
653 | struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, | |
654 | pte_t pte) | |
655 | { | |
656 | struct page *page = vm_normal_page(vma, addr, pte); | |
657 | ||
658 | if (page) | |
659 | return page_folio(page); | |
660 | return NULL; | |
661 | } | |
662 | ||
663 | #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES | |
664 | struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, | |
665 | pmd_t pmd) | |
666 | { | |
667 | unsigned long pfn = pmd_pfn(pmd); | |
668 | ||
669 | /* Currently it's only used for huge pfnmaps */ | |
670 | if (unlikely(pmd_special(pmd))) | |
671 | return NULL; | |
672 | ||
673 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | |
674 | if (vma->vm_flags & VM_MIXEDMAP) { | |
675 | if (!pfn_valid(pfn)) | |
676 | return NULL; | |
677 | goto out; | |
678 | } else { | |
679 | unsigned long off; | |
680 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
681 | if (pfn == vma->vm_pgoff + off) | |
682 | return NULL; | |
683 | if (!is_cow_mapping(vma->vm_flags)) | |
684 | return NULL; | |
685 | } | |
686 | } | |
687 | ||
688 | if (pmd_devmap(pmd)) | |
689 | return NULL; | |
690 | if (is_huge_zero_pmd(pmd)) | |
691 | return NULL; | |
692 | if (unlikely(pfn > highest_memmap_pfn)) | |
693 | return NULL; | |
694 | ||
695 | /* | |
696 | * NOTE! We still have PageReserved() pages in the page tables. | |
697 | * eg. VDSO mappings can cause them to exist. | |
698 | */ | |
699 | out: | |
700 | return pfn_to_page(pfn); | |
701 | } | |
702 | ||
703 | struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, | |
704 | unsigned long addr, pmd_t pmd) | |
705 | { | |
706 | struct page *page = vm_normal_page_pmd(vma, addr, pmd); | |
707 | ||
708 | if (page) | |
709 | return page_folio(page); | |
710 | return NULL; | |
711 | } | |
712 | #endif | |
713 | ||
714 | /** | |
715 | * restore_exclusive_pte - Restore a device-exclusive entry | |
716 | * @vma: VMA covering @address | |
717 | * @folio: the mapped folio | |
718 | * @page: the mapped folio page | |
719 | * @address: the virtual address | |
720 | * @ptep: pte pointer into the locked page table mapping the folio page | |
721 | * @orig_pte: pte value at @ptep | |
722 | * | |
723 | * Restore a device-exclusive non-swap entry to an ordinary present pte. | |
724 | * | |
725 | * The folio and the page table must be locked, and MMU notifiers must have | |
726 | * been called to invalidate any (exclusive) device mappings. | |
727 | * | |
728 | * Locking the folio makes sure that anybody who just converted the pte to | |
729 | * a device-exclusive entry can map it into the device to make forward | |
730 | * progress without others converting it back until the folio was unlocked. | |
731 | * | |
732 | * If the folio lock ever becomes an issue, we can stop relying on the folio | |
733 | * lock; it might make some scenarios with heavy thrashing less likely to | |
734 | * make forward progress, but these scenarios might not be valid use cases. | |
735 | * | |
736 | * Note that the folio lock does not protect against all cases of concurrent | |
737 | * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers | |
738 | * must use MMU notifiers to sync against any concurrent changes. | |
739 | */ | |
740 | static void restore_exclusive_pte(struct vm_area_struct *vma, | |
741 | struct folio *folio, struct page *page, unsigned long address, | |
742 | pte_t *ptep, pte_t orig_pte) | |
743 | { | |
744 | pte_t pte; | |
745 | ||
746 | VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); | |
747 | ||
748 | pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); | |
749 | if (pte_swp_soft_dirty(orig_pte)) | |
750 | pte = pte_mksoft_dirty(pte); | |
751 | ||
752 | if (pte_swp_uffd_wp(orig_pte)) | |
753 | pte = pte_mkuffd_wp(pte); | |
754 | ||
755 | if ((vma->vm_flags & VM_WRITE) && | |
756 | can_change_pte_writable(vma, address, pte)) { | |
757 | if (folio_test_dirty(folio)) | |
758 | pte = pte_mkdirty(pte); | |
759 | pte = pte_mkwrite(pte, vma); | |
760 | } | |
761 | set_pte_at(vma->vm_mm, address, ptep, pte); | |
762 | ||
763 | /* | |
764 | * No need to invalidate - it was non-present before. However | |
765 | * secondary CPUs may have mappings that need invalidating. | |
766 | */ | |
767 | update_mmu_cache(vma, address, ptep); | |
768 | } | |
769 | ||
770 | /* | |
771 | * Tries to restore an exclusive pte if the page lock can be acquired without | |
772 | * sleeping. | |
773 | */ | |
774 | static int try_restore_exclusive_pte(struct vm_area_struct *vma, | |
775 | unsigned long addr, pte_t *ptep, pte_t orig_pte) | |
776 | { | |
777 | struct page *page = pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte)); | |
778 | struct folio *folio = page_folio(page); | |
779 | ||
780 | if (folio_trylock(folio)) { | |
781 | restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte); | |
782 | folio_unlock(folio); | |
783 | return 0; | |
784 | } | |
785 | ||
786 | return -EBUSY; | |
787 | } | |
788 | ||
789 | /* | |
790 | * copy one vm_area from one task to the other. Assumes the page tables | |
791 | * already present in the new task to be cleared in the whole range | |
792 | * covered by this vma. | |
793 | */ | |
794 | ||
795 | static unsigned long | |
796 | copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
797 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, | |
798 | struct vm_area_struct *src_vma, unsigned long addr, int *rss) | |
799 | { | |
800 | unsigned long vm_flags = dst_vma->vm_flags; | |
801 | pte_t orig_pte = ptep_get(src_pte); | |
802 | pte_t pte = orig_pte; | |
803 | struct folio *folio; | |
804 | struct page *page; | |
805 | swp_entry_t entry = pte_to_swp_entry(orig_pte); | |
806 | ||
807 | if (likely(!non_swap_entry(entry))) { | |
808 | if (swap_duplicate(entry) < 0) | |
809 | return -EIO; | |
810 | ||
811 | /* make sure dst_mm is on swapoff's mmlist. */ | |
812 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
813 | spin_lock(&mmlist_lock); | |
814 | if (list_empty(&dst_mm->mmlist)) | |
815 | list_add(&dst_mm->mmlist, | |
816 | &src_mm->mmlist); | |
817 | spin_unlock(&mmlist_lock); | |
818 | } | |
819 | /* Mark the swap entry as shared. */ | |
820 | if (pte_swp_exclusive(orig_pte)) { | |
821 | pte = pte_swp_clear_exclusive(orig_pte); | |
822 | set_pte_at(src_mm, addr, src_pte, pte); | |
823 | } | |
824 | rss[MM_SWAPENTS]++; | |
825 | } else if (is_migration_entry(entry)) { | |
826 | folio = pfn_swap_entry_folio(entry); | |
827 | ||
828 | rss[mm_counter(folio)]++; | |
829 | ||
830 | if (!is_readable_migration_entry(entry) && | |
831 | is_cow_mapping(vm_flags)) { | |
832 | /* | |
833 | * COW mappings require pages in both parent and child | |
834 | * to be set to read. A previously exclusive entry is | |
835 | * now shared. | |
836 | */ | |
837 | entry = make_readable_migration_entry( | |
838 | swp_offset(entry)); | |
839 | pte = swp_entry_to_pte(entry); | |
840 | if (pte_swp_soft_dirty(orig_pte)) | |
841 | pte = pte_swp_mksoft_dirty(pte); | |
842 | if (pte_swp_uffd_wp(orig_pte)) | |
843 | pte = pte_swp_mkuffd_wp(pte); | |
844 | set_pte_at(src_mm, addr, src_pte, pte); | |
845 | } | |
846 | } else if (is_device_private_entry(entry)) { | |
847 | page = pfn_swap_entry_to_page(entry); | |
848 | folio = page_folio(page); | |
849 | ||
850 | /* | |
851 | * Update rss count even for unaddressable pages, as | |
852 | * they should treated just like normal pages in this | |
853 | * respect. | |
854 | * | |
855 | * We will likely want to have some new rss counters | |
856 | * for unaddressable pages, at some point. But for now | |
857 | * keep things as they are. | |
858 | */ | |
859 | folio_get(folio); | |
860 | rss[mm_counter(folio)]++; | |
861 | /* Cannot fail as these pages cannot get pinned. */ | |
862 | folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma); | |
863 | ||
864 | /* | |
865 | * We do not preserve soft-dirty information, because so | |
866 | * far, checkpoint/restore is the only feature that | |
867 | * requires that. And checkpoint/restore does not work | |
868 | * when a device driver is involved (you cannot easily | |
869 | * save and restore device driver state). | |
870 | */ | |
871 | if (is_writable_device_private_entry(entry) && | |
872 | is_cow_mapping(vm_flags)) { | |
873 | entry = make_readable_device_private_entry( | |
874 | swp_offset(entry)); | |
875 | pte = swp_entry_to_pte(entry); | |
876 | if (pte_swp_uffd_wp(orig_pte)) | |
877 | pte = pte_swp_mkuffd_wp(pte); | |
878 | set_pte_at(src_mm, addr, src_pte, pte); | |
879 | } | |
880 | } else if (is_device_exclusive_entry(entry)) { | |
881 | /* | |
882 | * Make device exclusive entries present by restoring the | |
883 | * original entry then copying as for a present pte. Device | |
884 | * exclusive entries currently only support private writable | |
885 | * (ie. COW) mappings. | |
886 | */ | |
887 | VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); | |
888 | if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte)) | |
889 | return -EBUSY; | |
890 | return -ENOENT; | |
891 | } else if (is_pte_marker_entry(entry)) { | |
892 | pte_marker marker = copy_pte_marker(entry, dst_vma); | |
893 | ||
894 | if (marker) | |
895 | set_pte_at(dst_mm, addr, dst_pte, | |
896 | make_pte_marker(marker)); | |
897 | return 0; | |
898 | } | |
899 | if (!userfaultfd_wp(dst_vma)) | |
900 | pte = pte_swp_clear_uffd_wp(pte); | |
901 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
902 | return 0; | |
903 | } | |
904 | ||
905 | /* | |
906 | * Copy a present and normal page. | |
907 | * | |
908 | * NOTE! The usual case is that this isn't required; | |
909 | * instead, the caller can just increase the page refcount | |
910 | * and re-use the pte the traditional way. | |
911 | * | |
912 | * And if we need a pre-allocated page but don't yet have | |
913 | * one, return a negative error to let the preallocation | |
914 | * code know so that it can do so outside the page table | |
915 | * lock. | |
916 | */ | |
917 | static inline int | |
918 | copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
919 | pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, | |
920 | struct folio **prealloc, struct page *page) | |
921 | { | |
922 | struct folio *new_folio; | |
923 | pte_t pte; | |
924 | ||
925 | new_folio = *prealloc; | |
926 | if (!new_folio) | |
927 | return -EAGAIN; | |
928 | ||
929 | /* | |
930 | * We have a prealloc page, all good! Take it | |
931 | * over and copy the page & arm it. | |
932 | */ | |
933 | ||
934 | if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) | |
935 | return -EHWPOISON; | |
936 | ||
937 | *prealloc = NULL; | |
938 | __folio_mark_uptodate(new_folio); | |
939 | folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); | |
940 | folio_add_lru_vma(new_folio, dst_vma); | |
941 | rss[MM_ANONPAGES]++; | |
942 | ||
943 | /* All done, just insert the new page copy in the child */ | |
944 | pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot); | |
945 | pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); | |
946 | if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) | |
947 | /* Uffd-wp needs to be delivered to dest pte as well */ | |
948 | pte = pte_mkuffd_wp(pte); | |
949 | set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); | |
950 | return 0; | |
951 | } | |
952 | ||
953 | static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, | |
954 | struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, | |
955 | pte_t pte, unsigned long addr, int nr) | |
956 | { | |
957 | struct mm_struct *src_mm = src_vma->vm_mm; | |
958 | ||
959 | /* If it's a COW mapping, write protect it both processes. */ | |
960 | if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { | |
961 | wrprotect_ptes(src_mm, addr, src_pte, nr); | |
962 | pte = pte_wrprotect(pte); | |
963 | } | |
964 | ||
965 | /* If it's a shared mapping, mark it clean in the child. */ | |
966 | if (src_vma->vm_flags & VM_SHARED) | |
967 | pte = pte_mkclean(pte); | |
968 | pte = pte_mkold(pte); | |
969 | ||
970 | if (!userfaultfd_wp(dst_vma)) | |
971 | pte = pte_clear_uffd_wp(pte); | |
972 | ||
973 | set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); | |
974 | } | |
975 | ||
976 | /* | |
977 | * Copy one present PTE, trying to batch-process subsequent PTEs that map | |
978 | * consecutive pages of the same folio by copying them as well. | |
979 | * | |
980 | * Returns -EAGAIN if one preallocated page is required to copy the next PTE. | |
981 | * Otherwise, returns the number of copied PTEs (at least 1). | |
982 | */ | |
983 | static inline int | |
984 | copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
985 | pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, | |
986 | int max_nr, int *rss, struct folio **prealloc) | |
987 | { | |
988 | struct page *page; | |
989 | struct folio *folio; | |
990 | bool any_writable; | |
991 | fpb_t flags = 0; | |
992 | int err, nr; | |
993 | ||
994 | page = vm_normal_page(src_vma, addr, pte); | |
995 | if (unlikely(!page)) | |
996 | goto copy_pte; | |
997 | ||
998 | folio = page_folio(page); | |
999 | ||
1000 | /* | |
1001 | * If we likely have to copy, just don't bother with batching. Make | |
1002 | * sure that the common "small folio" case is as fast as possible | |
1003 | * by keeping the batching logic separate. | |
1004 | */ | |
1005 | if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { | |
1006 | if (src_vma->vm_flags & VM_SHARED) | |
1007 | flags |= FPB_IGNORE_DIRTY; | |
1008 | if (!vma_soft_dirty_enabled(src_vma)) | |
1009 | flags |= FPB_IGNORE_SOFT_DIRTY; | |
1010 | ||
1011 | nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, | |
1012 | &any_writable, NULL, NULL); | |
1013 | folio_ref_add(folio, nr); | |
1014 | if (folio_test_anon(folio)) { | |
1015 | if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, | |
1016 | nr, dst_vma, src_vma))) { | |
1017 | folio_ref_sub(folio, nr); | |
1018 | return -EAGAIN; | |
1019 | } | |
1020 | rss[MM_ANONPAGES] += nr; | |
1021 | VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); | |
1022 | } else { | |
1023 | folio_dup_file_rmap_ptes(folio, page, nr, dst_vma); | |
1024 | rss[mm_counter_file(folio)] += nr; | |
1025 | } | |
1026 | if (any_writable) | |
1027 | pte = pte_mkwrite(pte, src_vma); | |
1028 | __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, | |
1029 | addr, nr); | |
1030 | return nr; | |
1031 | } | |
1032 | ||
1033 | folio_get(folio); | |
1034 | if (folio_test_anon(folio)) { | |
1035 | /* | |
1036 | * If this page may have been pinned by the parent process, | |
1037 | * copy the page immediately for the child so that we'll always | |
1038 | * guarantee the pinned page won't be randomly replaced in the | |
1039 | * future. | |
1040 | */ | |
1041 | if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) { | |
1042 | /* Page may be pinned, we have to copy. */ | |
1043 | folio_put(folio); | |
1044 | err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, | |
1045 | addr, rss, prealloc, page); | |
1046 | return err ? err : 1; | |
1047 | } | |
1048 | rss[MM_ANONPAGES]++; | |
1049 | VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); | |
1050 | } else { | |
1051 | folio_dup_file_rmap_pte(folio, page, dst_vma); | |
1052 | rss[mm_counter_file(folio)]++; | |
1053 | } | |
1054 | ||
1055 | copy_pte: | |
1056 | __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); | |
1057 | return 1; | |
1058 | } | |
1059 | ||
1060 | static inline struct folio *folio_prealloc(struct mm_struct *src_mm, | |
1061 | struct vm_area_struct *vma, unsigned long addr, bool need_zero) | |
1062 | { | |
1063 | struct folio *new_folio; | |
1064 | ||
1065 | if (need_zero) | |
1066 | new_folio = vma_alloc_zeroed_movable_folio(vma, addr); | |
1067 | else | |
1068 | new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); | |
1069 | ||
1070 | if (!new_folio) | |
1071 | return NULL; | |
1072 | ||
1073 | if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { | |
1074 | folio_put(new_folio); | |
1075 | return NULL; | |
1076 | } | |
1077 | folio_throttle_swaprate(new_folio, GFP_KERNEL); | |
1078 | ||
1079 | return new_folio; | |
1080 | } | |
1081 | ||
1082 | static int | |
1083 | copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1084 | pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, | |
1085 | unsigned long end) | |
1086 | { | |
1087 | struct mm_struct *dst_mm = dst_vma->vm_mm; | |
1088 | struct mm_struct *src_mm = src_vma->vm_mm; | |
1089 | pte_t *orig_src_pte, *orig_dst_pte; | |
1090 | pte_t *src_pte, *dst_pte; | |
1091 | pmd_t dummy_pmdval; | |
1092 | pte_t ptent; | |
1093 | spinlock_t *src_ptl, *dst_ptl; | |
1094 | int progress, max_nr, ret = 0; | |
1095 | int rss[NR_MM_COUNTERS]; | |
1096 | swp_entry_t entry = (swp_entry_t){0}; | |
1097 | struct folio *prealloc = NULL; | |
1098 | int nr; | |
1099 | ||
1100 | again: | |
1101 | progress = 0; | |
1102 | init_rss_vec(rss); | |
1103 | ||
1104 | /* | |
1105 | * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the | |
1106 | * error handling here, assume that exclusive mmap_lock on dst and src | |
1107 | * protects anon from unexpected THP transitions; with shmem and file | |
1108 | * protected by mmap_lock-less collapse skipping areas with anon_vma | |
1109 | * (whereas vma_needs_copy() skips areas without anon_vma). A rework | |
1110 | * can remove such assumptions later, but this is good enough for now. | |
1111 | */ | |
1112 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); | |
1113 | if (!dst_pte) { | |
1114 | ret = -ENOMEM; | |
1115 | goto out; | |
1116 | } | |
1117 | ||
1118 | /* | |
1119 | * We already hold the exclusive mmap_lock, the copy_pte_range() and | |
1120 | * retract_page_tables() are using vma->anon_vma to be exclusive, so | |
1121 | * the PTE page is stable, and there is no need to get pmdval and do | |
1122 | * pmd_same() check. | |
1123 | */ | |
1124 | src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, | |
1125 | &src_ptl); | |
1126 | if (!src_pte) { | |
1127 | pte_unmap_unlock(dst_pte, dst_ptl); | |
1128 | /* ret == 0 */ | |
1129 | goto out; | |
1130 | } | |
1131 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | |
1132 | orig_src_pte = src_pte; | |
1133 | orig_dst_pte = dst_pte; | |
1134 | arch_enter_lazy_mmu_mode(); | |
1135 | ||
1136 | do { | |
1137 | nr = 1; | |
1138 | ||
1139 | /* | |
1140 | * We are holding two locks at this point - either of them | |
1141 | * could generate latencies in another task on another CPU. | |
1142 | */ | |
1143 | if (progress >= 32) { | |
1144 | progress = 0; | |
1145 | if (need_resched() || | |
1146 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) | |
1147 | break; | |
1148 | } | |
1149 | ptent = ptep_get(src_pte); | |
1150 | if (pte_none(ptent)) { | |
1151 | progress++; | |
1152 | continue; | |
1153 | } | |
1154 | if (unlikely(!pte_present(ptent))) { | |
1155 | ret = copy_nonpresent_pte(dst_mm, src_mm, | |
1156 | dst_pte, src_pte, | |
1157 | dst_vma, src_vma, | |
1158 | addr, rss); | |
1159 | if (ret == -EIO) { | |
1160 | entry = pte_to_swp_entry(ptep_get(src_pte)); | |
1161 | break; | |
1162 | } else if (ret == -EBUSY) { | |
1163 | break; | |
1164 | } else if (!ret) { | |
1165 | progress += 8; | |
1166 | continue; | |
1167 | } | |
1168 | ptent = ptep_get(src_pte); | |
1169 | VM_WARN_ON_ONCE(!pte_present(ptent)); | |
1170 | ||
1171 | /* | |
1172 | * Device exclusive entry restored, continue by copying | |
1173 | * the now present pte. | |
1174 | */ | |
1175 | WARN_ON_ONCE(ret != -ENOENT); | |
1176 | } | |
1177 | /* copy_present_ptes() will clear `*prealloc' if consumed */ | |
1178 | max_nr = (end - addr) / PAGE_SIZE; | |
1179 | ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, | |
1180 | ptent, addr, max_nr, rss, &prealloc); | |
1181 | /* | |
1182 | * If we need a pre-allocated page for this pte, drop the | |
1183 | * locks, allocate, and try again. | |
1184 | * If copy failed due to hwpoison in source page, break out. | |
1185 | */ | |
1186 | if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) | |
1187 | break; | |
1188 | if (unlikely(prealloc)) { | |
1189 | /* | |
1190 | * pre-alloc page cannot be reused by next time so as | |
1191 | * to strictly follow mempolicy (e.g., alloc_page_vma() | |
1192 | * will allocate page according to address). This | |
1193 | * could only happen if one pinned pte changed. | |
1194 | */ | |
1195 | folio_put(prealloc); | |
1196 | prealloc = NULL; | |
1197 | } | |
1198 | nr = ret; | |
1199 | progress += 8 * nr; | |
1200 | } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, | |
1201 | addr != end); | |
1202 | ||
1203 | arch_leave_lazy_mmu_mode(); | |
1204 | pte_unmap_unlock(orig_src_pte, src_ptl); | |
1205 | add_mm_rss_vec(dst_mm, rss); | |
1206 | pte_unmap_unlock(orig_dst_pte, dst_ptl); | |
1207 | cond_resched(); | |
1208 | ||
1209 | if (ret == -EIO) { | |
1210 | VM_WARN_ON_ONCE(!entry.val); | |
1211 | if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { | |
1212 | ret = -ENOMEM; | |
1213 | goto out; | |
1214 | } | |
1215 | entry.val = 0; | |
1216 | } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { | |
1217 | goto out; | |
1218 | } else if (ret == -EAGAIN) { | |
1219 | prealloc = folio_prealloc(src_mm, src_vma, addr, false); | |
1220 | if (!prealloc) | |
1221 | return -ENOMEM; | |
1222 | } else if (ret < 0) { | |
1223 | VM_WARN_ON_ONCE(1); | |
1224 | } | |
1225 | ||
1226 | /* We've captured and resolved the error. Reset, try again. */ | |
1227 | ret = 0; | |
1228 | ||
1229 | if (addr != end) | |
1230 | goto again; | |
1231 | out: | |
1232 | if (unlikely(prealloc)) | |
1233 | folio_put(prealloc); | |
1234 | return ret; | |
1235 | } | |
1236 | ||
1237 | static inline int | |
1238 | copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1239 | pud_t *dst_pud, pud_t *src_pud, unsigned long addr, | |
1240 | unsigned long end) | |
1241 | { | |
1242 | struct mm_struct *dst_mm = dst_vma->vm_mm; | |
1243 | struct mm_struct *src_mm = src_vma->vm_mm; | |
1244 | pmd_t *src_pmd, *dst_pmd; | |
1245 | unsigned long next; | |
1246 | ||
1247 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
1248 | if (!dst_pmd) | |
1249 | return -ENOMEM; | |
1250 | src_pmd = pmd_offset(src_pud, addr); | |
1251 | do { | |
1252 | next = pmd_addr_end(addr, end); | |
1253 | if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) | |
1254 | || pmd_devmap(*src_pmd)) { | |
1255 | int err; | |
1256 | VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); | |
1257 | err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, | |
1258 | addr, dst_vma, src_vma); | |
1259 | if (err == -ENOMEM) | |
1260 | return -ENOMEM; | |
1261 | if (!err) | |
1262 | continue; | |
1263 | /* fall through */ | |
1264 | } | |
1265 | if (pmd_none_or_clear_bad(src_pmd)) | |
1266 | continue; | |
1267 | if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, | |
1268 | addr, next)) | |
1269 | return -ENOMEM; | |
1270 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
1271 | return 0; | |
1272 | } | |
1273 | ||
1274 | static inline int | |
1275 | copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1276 | p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, | |
1277 | unsigned long end) | |
1278 | { | |
1279 | struct mm_struct *dst_mm = dst_vma->vm_mm; | |
1280 | struct mm_struct *src_mm = src_vma->vm_mm; | |
1281 | pud_t *src_pud, *dst_pud; | |
1282 | unsigned long next; | |
1283 | ||
1284 | dst_pud = pud_alloc(dst_mm, dst_p4d, addr); | |
1285 | if (!dst_pud) | |
1286 | return -ENOMEM; | |
1287 | src_pud = pud_offset(src_p4d, addr); | |
1288 | do { | |
1289 | next = pud_addr_end(addr, end); | |
1290 | if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { | |
1291 | int err; | |
1292 | ||
1293 | VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); | |
1294 | err = copy_huge_pud(dst_mm, src_mm, | |
1295 | dst_pud, src_pud, addr, src_vma); | |
1296 | if (err == -ENOMEM) | |
1297 | return -ENOMEM; | |
1298 | if (!err) | |
1299 | continue; | |
1300 | /* fall through */ | |
1301 | } | |
1302 | if (pud_none_or_clear_bad(src_pud)) | |
1303 | continue; | |
1304 | if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, | |
1305 | addr, next)) | |
1306 | return -ENOMEM; | |
1307 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
1308 | return 0; | |
1309 | } | |
1310 | ||
1311 | static inline int | |
1312 | copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, | |
1313 | pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, | |
1314 | unsigned long end) | |
1315 | { | |
1316 | struct mm_struct *dst_mm = dst_vma->vm_mm; | |
1317 | p4d_t *src_p4d, *dst_p4d; | |
1318 | unsigned long next; | |
1319 | ||
1320 | dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); | |
1321 | if (!dst_p4d) | |
1322 | return -ENOMEM; | |
1323 | src_p4d = p4d_offset(src_pgd, addr); | |
1324 | do { | |
1325 | next = p4d_addr_end(addr, end); | |
1326 | if (p4d_none_or_clear_bad(src_p4d)) | |
1327 | continue; | |
1328 | if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, | |
1329 | addr, next)) | |
1330 | return -ENOMEM; | |
1331 | } while (dst_p4d++, src_p4d++, addr = next, addr != end); | |
1332 | return 0; | |
1333 | } | |
1334 | ||
1335 | /* | |
1336 | * Return true if the vma needs to copy the pgtable during this fork(). Return | |
1337 | * false when we can speed up fork() by allowing lazy page faults later until | |
1338 | * when the child accesses the memory range. | |
1339 | */ | |
1340 | static bool | |
1341 | vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) | |
1342 | { | |
1343 | /* | |
1344 | * Always copy pgtables when dst_vma has uffd-wp enabled even if it's | |
1345 | * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable | |
1346 | * contains uffd-wp protection information, that's something we can't | |
1347 | * retrieve from page cache, and skip copying will lose those info. | |
1348 | */ | |
1349 | if (userfaultfd_wp(dst_vma)) | |
1350 | return true; | |
1351 | ||
1352 | if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) | |
1353 | return true; | |
1354 | ||
1355 | if (src_vma->anon_vma) | |
1356 | return true; | |
1357 | ||
1358 | /* | |
1359 | * Don't copy ptes where a page fault will fill them correctly. Fork | |
1360 | * becomes much lighter when there are big shared or private readonly | |
1361 | * mappings. The tradeoff is that copy_page_range is more efficient | |
1362 | * than faulting. | |
1363 | */ | |
1364 | return false; | |
1365 | } | |
1366 | ||
1367 | int | |
1368 | copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) | |
1369 | { | |
1370 | pgd_t *src_pgd, *dst_pgd; | |
1371 | unsigned long addr = src_vma->vm_start; | |
1372 | unsigned long end = src_vma->vm_end; | |
1373 | struct mm_struct *dst_mm = dst_vma->vm_mm; | |
1374 | struct mm_struct *src_mm = src_vma->vm_mm; | |
1375 | struct mmu_notifier_range range; | |
1376 | unsigned long next; | |
1377 | bool is_cow; | |
1378 | int ret; | |
1379 | ||
1380 | if (!vma_needs_copy(dst_vma, src_vma)) | |
1381 | return 0; | |
1382 | ||
1383 | if (is_vm_hugetlb_page(src_vma)) | |
1384 | return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); | |
1385 | ||
1386 | /* | |
1387 | * We need to invalidate the secondary MMU mappings only when | |
1388 | * there could be a permission downgrade on the ptes of the | |
1389 | * parent mm. And a permission downgrade will only happen if | |
1390 | * is_cow_mapping() returns true. | |
1391 | */ | |
1392 | is_cow = is_cow_mapping(src_vma->vm_flags); | |
1393 | ||
1394 | if (is_cow) { | |
1395 | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, | |
1396 | 0, src_mm, addr, end); | |
1397 | mmu_notifier_invalidate_range_start(&range); | |
1398 | /* | |
1399 | * Disabling preemption is not needed for the write side, as | |
1400 | * the read side doesn't spin, but goes to the mmap_lock. | |
1401 | * | |
1402 | * Use the raw variant of the seqcount_t write API to avoid | |
1403 | * lockdep complaining about preemptibility. | |
1404 | */ | |
1405 | vma_assert_write_locked(src_vma); | |
1406 | raw_write_seqcount_begin(&src_mm->write_protect_seq); | |
1407 | } | |
1408 | ||
1409 | ret = 0; | |
1410 | dst_pgd = pgd_offset(dst_mm, addr); | |
1411 | src_pgd = pgd_offset(src_mm, addr); | |
1412 | do { | |
1413 | next = pgd_addr_end(addr, end); | |
1414 | if (pgd_none_or_clear_bad(src_pgd)) | |
1415 | continue; | |
1416 | if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, | |
1417 | addr, next))) { | |
1418 | ret = -ENOMEM; | |
1419 | break; | |
1420 | } | |
1421 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); | |
1422 | ||
1423 | if (is_cow) { | |
1424 | raw_write_seqcount_end(&src_mm->write_protect_seq); | |
1425 | mmu_notifier_invalidate_range_end(&range); | |
1426 | } | |
1427 | return ret; | |
1428 | } | |
1429 | ||
1430 | /* Whether we should zap all COWed (private) pages too */ | |
1431 | static inline bool should_zap_cows(struct zap_details *details) | |
1432 | { | |
1433 | /* By default, zap all pages */ | |
1434 | if (!details || details->reclaim_pt) | |
1435 | return true; | |
1436 | ||
1437 | /* Or, we zap COWed pages only if the caller wants to */ | |
1438 | return details->even_cows; | |
1439 | } | |
1440 | ||
1441 | /* Decides whether we should zap this folio with the folio pointer specified */ | |
1442 | static inline bool should_zap_folio(struct zap_details *details, | |
1443 | struct folio *folio) | |
1444 | { | |
1445 | /* If we can make a decision without *folio.. */ | |
1446 | if (should_zap_cows(details)) | |
1447 | return true; | |
1448 | ||
1449 | /* Otherwise we should only zap non-anon folios */ | |
1450 | return !folio_test_anon(folio); | |
1451 | } | |
1452 | ||
1453 | static inline bool zap_drop_markers(struct zap_details *details) | |
1454 | { | |
1455 | if (!details) | |
1456 | return false; | |
1457 | ||
1458 | return details->zap_flags & ZAP_FLAG_DROP_MARKER; | |
1459 | } | |
1460 | ||
1461 | /* | |
1462 | * This function makes sure that we'll replace the none pte with an uffd-wp | |
1463 | * swap special pte marker when necessary. Must be with the pgtable lock held. | |
1464 | * | |
1465 | * Returns true if uffd-wp ptes was installed, false otherwise. | |
1466 | */ | |
1467 | static inline bool | |
1468 | zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, | |
1469 | unsigned long addr, pte_t *pte, int nr, | |
1470 | struct zap_details *details, pte_t pteval) | |
1471 | { | |
1472 | bool was_installed = false; | |
1473 | ||
1474 | #ifdef CONFIG_PTE_MARKER_UFFD_WP | |
1475 | /* Zap on anonymous always means dropping everything */ | |
1476 | if (vma_is_anonymous(vma)) | |
1477 | return false; | |
1478 | ||
1479 | if (zap_drop_markers(details)) | |
1480 | return false; | |
1481 | ||
1482 | for (;;) { | |
1483 | /* the PFN in the PTE is irrelevant. */ | |
1484 | if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) | |
1485 | was_installed = true; | |
1486 | if (--nr == 0) | |
1487 | break; | |
1488 | pte++; | |
1489 | addr += PAGE_SIZE; | |
1490 | } | |
1491 | #endif | |
1492 | return was_installed; | |
1493 | } | |
1494 | ||
1495 | static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, | |
1496 | struct vm_area_struct *vma, struct folio *folio, | |
1497 | struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, | |
1498 | unsigned long addr, struct zap_details *details, int *rss, | |
1499 | bool *force_flush, bool *force_break, bool *any_skipped) | |
1500 | { | |
1501 | struct mm_struct *mm = tlb->mm; | |
1502 | bool delay_rmap = false; | |
1503 | ||
1504 | if (!folio_test_anon(folio)) { | |
1505 | ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); | |
1506 | if (pte_dirty(ptent)) { | |
1507 | folio_mark_dirty(folio); | |
1508 | if (tlb_delay_rmap(tlb)) { | |
1509 | delay_rmap = true; | |
1510 | *force_flush = true; | |
1511 | } | |
1512 | } | |
1513 | if (pte_young(ptent) && likely(vma_has_recency(vma))) | |
1514 | folio_mark_accessed(folio); | |
1515 | rss[mm_counter(folio)] -= nr; | |
1516 | } else { | |
1517 | /* We don't need up-to-date accessed/dirty bits. */ | |
1518 | clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); | |
1519 | rss[MM_ANONPAGES] -= nr; | |
1520 | } | |
1521 | /* Checking a single PTE in a batch is sufficient. */ | |
1522 | arch_check_zapped_pte(vma, ptent); | |
1523 | tlb_remove_tlb_entries(tlb, pte, nr, addr); | |
1524 | if (unlikely(userfaultfd_pte_wp(vma, ptent))) | |
1525 | *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, | |
1526 | nr, details, ptent); | |
1527 | ||
1528 | if (!delay_rmap) { | |
1529 | folio_remove_rmap_ptes(folio, page, nr, vma); | |
1530 | ||
1531 | if (unlikely(folio_mapcount(folio) < 0)) | |
1532 | print_bad_pte(vma, addr, ptent, page); | |
1533 | } | |
1534 | if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { | |
1535 | *force_flush = true; | |
1536 | *force_break = true; | |
1537 | } | |
1538 | } | |
1539 | ||
1540 | /* | |
1541 | * Zap or skip at least one present PTE, trying to batch-process subsequent | |
1542 | * PTEs that map consecutive pages of the same folio. | |
1543 | * | |
1544 | * Returns the number of processed (skipped or zapped) PTEs (at least 1). | |
1545 | */ | |
1546 | static inline int zap_present_ptes(struct mmu_gather *tlb, | |
1547 | struct vm_area_struct *vma, pte_t *pte, pte_t ptent, | |
1548 | unsigned int max_nr, unsigned long addr, | |
1549 | struct zap_details *details, int *rss, bool *force_flush, | |
1550 | bool *force_break, bool *any_skipped) | |
1551 | { | |
1552 | const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; | |
1553 | struct mm_struct *mm = tlb->mm; | |
1554 | struct folio *folio; | |
1555 | struct page *page; | |
1556 | int nr; | |
1557 | ||
1558 | page = vm_normal_page(vma, addr, ptent); | |
1559 | if (!page) { | |
1560 | /* We don't need up-to-date accessed/dirty bits. */ | |
1561 | ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); | |
1562 | arch_check_zapped_pte(vma, ptent); | |
1563 | tlb_remove_tlb_entry(tlb, pte, addr); | |
1564 | if (userfaultfd_pte_wp(vma, ptent)) | |
1565 | *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, | |
1566 | pte, 1, details, ptent); | |
1567 | ksm_might_unmap_zero_page(mm, ptent); | |
1568 | return 1; | |
1569 | } | |
1570 | ||
1571 | folio = page_folio(page); | |
1572 | if (unlikely(!should_zap_folio(details, folio))) { | |
1573 | *any_skipped = true; | |
1574 | return 1; | |
1575 | } | |
1576 | ||
1577 | /* | |
1578 | * Make sure that the common "small folio" case is as fast as possible | |
1579 | * by keeping the batching logic separate. | |
1580 | */ | |
1581 | if (unlikely(folio_test_large(folio) && max_nr != 1)) { | |
1582 | nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, | |
1583 | NULL, NULL, NULL); | |
1584 | ||
1585 | zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, | |
1586 | addr, details, rss, force_flush, | |
1587 | force_break, any_skipped); | |
1588 | return nr; | |
1589 | } | |
1590 | zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, | |
1591 | details, rss, force_flush, force_break, any_skipped); | |
1592 | return 1; | |
1593 | } | |
1594 | ||
1595 | static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, | |
1596 | struct vm_area_struct *vma, pte_t *pte, pte_t ptent, | |
1597 | unsigned int max_nr, unsigned long addr, | |
1598 | struct zap_details *details, int *rss, bool *any_skipped) | |
1599 | { | |
1600 | swp_entry_t entry; | |
1601 | int nr = 1; | |
1602 | ||
1603 | *any_skipped = true; | |
1604 | entry = pte_to_swp_entry(ptent); | |
1605 | if (is_device_private_entry(entry) || | |
1606 | is_device_exclusive_entry(entry)) { | |
1607 | struct page *page = pfn_swap_entry_to_page(entry); | |
1608 | struct folio *folio = page_folio(page); | |
1609 | ||
1610 | if (unlikely(!should_zap_folio(details, folio))) | |
1611 | return 1; | |
1612 | /* | |
1613 | * Both device private/exclusive mappings should only | |
1614 | * work with anonymous page so far, so we don't need to | |
1615 | * consider uffd-wp bit when zap. For more information, | |
1616 | * see zap_install_uffd_wp_if_needed(). | |
1617 | */ | |
1618 | WARN_ON_ONCE(!vma_is_anonymous(vma)); | |
1619 | rss[mm_counter(folio)]--; | |
1620 | folio_remove_rmap_pte(folio, page, vma); | |
1621 | folio_put(folio); | |
1622 | } else if (!non_swap_entry(entry)) { | |
1623 | /* Genuine swap entries, hence a private anon pages */ | |
1624 | if (!should_zap_cows(details)) | |
1625 | return 1; | |
1626 | ||
1627 | nr = swap_pte_batch(pte, max_nr, ptent); | |
1628 | rss[MM_SWAPENTS] -= nr; | |
1629 | free_swap_and_cache_nr(entry, nr); | |
1630 | } else if (is_migration_entry(entry)) { | |
1631 | struct folio *folio = pfn_swap_entry_folio(entry); | |
1632 | ||
1633 | if (!should_zap_folio(details, folio)) | |
1634 | return 1; | |
1635 | rss[mm_counter(folio)]--; | |
1636 | } else if (pte_marker_entry_uffd_wp(entry)) { | |
1637 | /* | |
1638 | * For anon: always drop the marker; for file: only | |
1639 | * drop the marker if explicitly requested. | |
1640 | */ | |
1641 | if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) | |
1642 | return 1; | |
1643 | } else if (is_guard_swp_entry(entry)) { | |
1644 | /* | |
1645 | * Ordinary zapping should not remove guard PTE | |
1646 | * markers. Only do so if we should remove PTE markers | |
1647 | * in general. | |
1648 | */ | |
1649 | if (!zap_drop_markers(details)) | |
1650 | return 1; | |
1651 | } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { | |
1652 | if (!should_zap_cows(details)) | |
1653 | return 1; | |
1654 | } else { | |
1655 | /* We should have covered all the swap entry types */ | |
1656 | pr_alert("unrecognized swap entry 0x%lx\n", entry.val); | |
1657 | WARN_ON_ONCE(1); | |
1658 | } | |
1659 | clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); | |
1660 | *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); | |
1661 | ||
1662 | return nr; | |
1663 | } | |
1664 | ||
1665 | static inline int do_zap_pte_range(struct mmu_gather *tlb, | |
1666 | struct vm_area_struct *vma, pte_t *pte, | |
1667 | unsigned long addr, unsigned long end, | |
1668 | struct zap_details *details, int *rss, | |
1669 | bool *force_flush, bool *force_break, | |
1670 | bool *any_skipped) | |
1671 | { | |
1672 | pte_t ptent = ptep_get(pte); | |
1673 | int max_nr = (end - addr) / PAGE_SIZE; | |
1674 | int nr = 0; | |
1675 | ||
1676 | /* Skip all consecutive none ptes */ | |
1677 | if (pte_none(ptent)) { | |
1678 | for (nr = 1; nr < max_nr; nr++) { | |
1679 | ptent = ptep_get(pte + nr); | |
1680 | if (!pte_none(ptent)) | |
1681 | break; | |
1682 | } | |
1683 | max_nr -= nr; | |
1684 | if (!max_nr) | |
1685 | return nr; | |
1686 | pte += nr; | |
1687 | addr += nr * PAGE_SIZE; | |
1688 | } | |
1689 | ||
1690 | if (pte_present(ptent)) | |
1691 | nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, | |
1692 | details, rss, force_flush, force_break, | |
1693 | any_skipped); | |
1694 | else | |
1695 | nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, | |
1696 | details, rss, any_skipped); | |
1697 | ||
1698 | return nr; | |
1699 | } | |
1700 | ||
1701 | static unsigned long zap_pte_range(struct mmu_gather *tlb, | |
1702 | struct vm_area_struct *vma, pmd_t *pmd, | |
1703 | unsigned long addr, unsigned long end, | |
1704 | struct zap_details *details) | |
1705 | { | |
1706 | bool force_flush = false, force_break = false; | |
1707 | struct mm_struct *mm = tlb->mm; | |
1708 | int rss[NR_MM_COUNTERS]; | |
1709 | spinlock_t *ptl; | |
1710 | pte_t *start_pte; | |
1711 | pte_t *pte; | |
1712 | pmd_t pmdval; | |
1713 | unsigned long start = addr; | |
1714 | bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); | |
1715 | bool direct_reclaim = true; | |
1716 | int nr; | |
1717 | ||
1718 | retry: | |
1719 | tlb_change_page_size(tlb, PAGE_SIZE); | |
1720 | init_rss_vec(rss); | |
1721 | start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); | |
1722 | if (!pte) | |
1723 | return addr; | |
1724 | ||
1725 | flush_tlb_batched_pending(mm); | |
1726 | arch_enter_lazy_mmu_mode(); | |
1727 | do { | |
1728 | bool any_skipped = false; | |
1729 | ||
1730 | if (need_resched()) { | |
1731 | direct_reclaim = false; | |
1732 | break; | |
1733 | } | |
1734 | ||
1735 | nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, | |
1736 | &force_flush, &force_break, &any_skipped); | |
1737 | if (any_skipped) | |
1738 | can_reclaim_pt = false; | |
1739 | if (unlikely(force_break)) { | |
1740 | addr += nr * PAGE_SIZE; | |
1741 | direct_reclaim = false; | |
1742 | break; | |
1743 | } | |
1744 | } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); | |
1745 | ||
1746 | /* | |
1747 | * Fast path: try to hold the pmd lock and unmap the PTE page. | |
1748 | * | |
1749 | * If the pte lock was released midway (retry case), or if the attempt | |
1750 | * to hold the pmd lock failed, then we need to recheck all pte entries | |
1751 | * to ensure they are still none, thereby preventing the pte entries | |
1752 | * from being repopulated by another thread. | |
1753 | */ | |
1754 | if (can_reclaim_pt && direct_reclaim && addr == end) | |
1755 | direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); | |
1756 | ||
1757 | add_mm_rss_vec(mm, rss); | |
1758 | arch_leave_lazy_mmu_mode(); | |
1759 | ||
1760 | /* Do the actual TLB flush before dropping ptl */ | |
1761 | if (force_flush) { | |
1762 | tlb_flush_mmu_tlbonly(tlb); | |
1763 | tlb_flush_rmaps(tlb, vma); | |
1764 | } | |
1765 | pte_unmap_unlock(start_pte, ptl); | |
1766 | ||
1767 | /* | |
1768 | * If we forced a TLB flush (either due to running out of | |
1769 | * batch buffers or because we needed to flush dirty TLB | |
1770 | * entries before releasing the ptl), free the batched | |
1771 | * memory too. Come back again if we didn't do everything. | |
1772 | */ | |
1773 | if (force_flush) | |
1774 | tlb_flush_mmu(tlb); | |
1775 | ||
1776 | if (addr != end) { | |
1777 | cond_resched(); | |
1778 | force_flush = false; | |
1779 | force_break = false; | |
1780 | goto retry; | |
1781 | } | |
1782 | ||
1783 | if (can_reclaim_pt) { | |
1784 | if (direct_reclaim) | |
1785 | free_pte(mm, start, tlb, pmdval); | |
1786 | else | |
1787 | try_to_free_pte(mm, pmd, start, tlb); | |
1788 | } | |
1789 | ||
1790 | return addr; | |
1791 | } | |
1792 | ||
1793 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, | |
1794 | struct vm_area_struct *vma, pud_t *pud, | |
1795 | unsigned long addr, unsigned long end, | |
1796 | struct zap_details *details) | |
1797 | { | |
1798 | pmd_t *pmd; | |
1799 | unsigned long next; | |
1800 | ||
1801 | pmd = pmd_offset(pud, addr); | |
1802 | do { | |
1803 | next = pmd_addr_end(addr, end); | |
1804 | if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { | |
1805 | if (next - addr != HPAGE_PMD_SIZE) | |
1806 | __split_huge_pmd(vma, pmd, addr, false); | |
1807 | else if (zap_huge_pmd(tlb, vma, pmd, addr)) { | |
1808 | addr = next; | |
1809 | continue; | |
1810 | } | |
1811 | /* fall through */ | |
1812 | } else if (details && details->single_folio && | |
1813 | folio_test_pmd_mappable(details->single_folio) && | |
1814 | next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { | |
1815 | spinlock_t *ptl = pmd_lock(tlb->mm, pmd); | |
1816 | /* | |
1817 | * Take and drop THP pmd lock so that we cannot return | |
1818 | * prematurely, while zap_huge_pmd() has cleared *pmd, | |
1819 | * but not yet decremented compound_mapcount(). | |
1820 | */ | |
1821 | spin_unlock(ptl); | |
1822 | } | |
1823 | if (pmd_none(*pmd)) { | |
1824 | addr = next; | |
1825 | continue; | |
1826 | } | |
1827 | addr = zap_pte_range(tlb, vma, pmd, addr, next, details); | |
1828 | if (addr != next) | |
1829 | pmd--; | |
1830 | } while (pmd++, cond_resched(), addr != end); | |
1831 | ||
1832 | return addr; | |
1833 | } | |
1834 | ||
1835 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, | |
1836 | struct vm_area_struct *vma, p4d_t *p4d, | |
1837 | unsigned long addr, unsigned long end, | |
1838 | struct zap_details *details) | |
1839 | { | |
1840 | pud_t *pud; | |
1841 | unsigned long next; | |
1842 | ||
1843 | pud = pud_offset(p4d, addr); | |
1844 | do { | |
1845 | next = pud_addr_end(addr, end); | |
1846 | if (pud_trans_huge(*pud) || pud_devmap(*pud)) { | |
1847 | if (next - addr != HPAGE_PUD_SIZE) { | |
1848 | mmap_assert_locked(tlb->mm); | |
1849 | split_huge_pud(vma, pud, addr); | |
1850 | } else if (zap_huge_pud(tlb, vma, pud, addr)) | |
1851 | goto next; | |
1852 | /* fall through */ | |
1853 | } | |
1854 | if (pud_none_or_clear_bad(pud)) | |
1855 | continue; | |
1856 | next = zap_pmd_range(tlb, vma, pud, addr, next, details); | |
1857 | next: | |
1858 | cond_resched(); | |
1859 | } while (pud++, addr = next, addr != end); | |
1860 | ||
1861 | return addr; | |
1862 | } | |
1863 | ||
1864 | static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, | |
1865 | struct vm_area_struct *vma, pgd_t *pgd, | |
1866 | unsigned long addr, unsigned long end, | |
1867 | struct zap_details *details) | |
1868 | { | |
1869 | p4d_t *p4d; | |
1870 | unsigned long next; | |
1871 | ||
1872 | p4d = p4d_offset(pgd, addr); | |
1873 | do { | |
1874 | next = p4d_addr_end(addr, end); | |
1875 | if (p4d_none_or_clear_bad(p4d)) | |
1876 | continue; | |
1877 | next = zap_pud_range(tlb, vma, p4d, addr, next, details); | |
1878 | } while (p4d++, addr = next, addr != end); | |
1879 | ||
1880 | return addr; | |
1881 | } | |
1882 | ||
1883 | void unmap_page_range(struct mmu_gather *tlb, | |
1884 | struct vm_area_struct *vma, | |
1885 | unsigned long addr, unsigned long end, | |
1886 | struct zap_details *details) | |
1887 | { | |
1888 | pgd_t *pgd; | |
1889 | unsigned long next; | |
1890 | ||
1891 | BUG_ON(addr >= end); | |
1892 | tlb_start_vma(tlb, vma); | |
1893 | pgd = pgd_offset(vma->vm_mm, addr); | |
1894 | do { | |
1895 | next = pgd_addr_end(addr, end); | |
1896 | if (pgd_none_or_clear_bad(pgd)) | |
1897 | continue; | |
1898 | next = zap_p4d_range(tlb, vma, pgd, addr, next, details); | |
1899 | } while (pgd++, addr = next, addr != end); | |
1900 | tlb_end_vma(tlb, vma); | |
1901 | } | |
1902 | ||
1903 | ||
1904 | static void unmap_single_vma(struct mmu_gather *tlb, | |
1905 | struct vm_area_struct *vma, unsigned long start_addr, | |
1906 | unsigned long end_addr, | |
1907 | struct zap_details *details, bool mm_wr_locked) | |
1908 | { | |
1909 | unsigned long start = max(vma->vm_start, start_addr); | |
1910 | unsigned long end; | |
1911 | ||
1912 | if (start >= vma->vm_end) | |
1913 | return; | |
1914 | end = min(vma->vm_end, end_addr); | |
1915 | if (end <= vma->vm_start) | |
1916 | return; | |
1917 | ||
1918 | if (vma->vm_file) | |
1919 | uprobe_munmap(vma, start, end); | |
1920 | ||
1921 | if (start != end) { | |
1922 | if (unlikely(is_vm_hugetlb_page(vma))) { | |
1923 | /* | |
1924 | * It is undesirable to test vma->vm_file as it | |
1925 | * should be non-null for valid hugetlb area. | |
1926 | * However, vm_file will be NULL in the error | |
1927 | * cleanup path of mmap_region. When | |
1928 | * hugetlbfs ->mmap method fails, | |
1929 | * mmap_region() nullifies vma->vm_file | |
1930 | * before calling this function to clean up. | |
1931 | * Since no pte has actually been setup, it is | |
1932 | * safe to do nothing in this case. | |
1933 | */ | |
1934 | if (vma->vm_file) { | |
1935 | zap_flags_t zap_flags = details ? | |
1936 | details->zap_flags : 0; | |
1937 | __unmap_hugepage_range(tlb, vma, start, end, | |
1938 | NULL, zap_flags); | |
1939 | } | |
1940 | } else | |
1941 | unmap_page_range(tlb, vma, start, end, details); | |
1942 | } | |
1943 | } | |
1944 | ||
1945 | /** | |
1946 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
1947 | * @tlb: address of the caller's struct mmu_gather | |
1948 | * @mas: the maple state | |
1949 | * @vma: the starting vma | |
1950 | * @start_addr: virtual address at which to start unmapping | |
1951 | * @end_addr: virtual address at which to end unmapping | |
1952 | * @tree_end: The maximum index to check | |
1953 | * @mm_wr_locked: lock flag | |
1954 | * | |
1955 | * Unmap all pages in the vma list. | |
1956 | * | |
1957 | * Only addresses between `start' and `end' will be unmapped. | |
1958 | * | |
1959 | * The VMA list must be sorted in ascending virtual address order. | |
1960 | * | |
1961 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
1962 | * range after unmap_vmas() returns. So the only responsibility here is to | |
1963 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
1964 | * drops the lock and schedules. | |
1965 | */ | |
1966 | void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, | |
1967 | struct vm_area_struct *vma, unsigned long start_addr, | |
1968 | unsigned long end_addr, unsigned long tree_end, | |
1969 | bool mm_wr_locked) | |
1970 | { | |
1971 | struct mmu_notifier_range range; | |
1972 | struct zap_details details = { | |
1973 | .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, | |
1974 | /* Careful - we need to zap private pages too! */ | |
1975 | .even_cows = true, | |
1976 | }; | |
1977 | ||
1978 | mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, | |
1979 | start_addr, end_addr); | |
1980 | mmu_notifier_invalidate_range_start(&range); | |
1981 | do { | |
1982 | unsigned long start = start_addr; | |
1983 | unsigned long end = end_addr; | |
1984 | hugetlb_zap_begin(vma, &start, &end); | |
1985 | unmap_single_vma(tlb, vma, start, end, &details, | |
1986 | mm_wr_locked); | |
1987 | hugetlb_zap_end(vma, &details); | |
1988 | vma = mas_find(mas, tree_end - 1); | |
1989 | } while (vma && likely(!xa_is_zero(vma))); | |
1990 | mmu_notifier_invalidate_range_end(&range); | |
1991 | } | |
1992 | ||
1993 | /** | |
1994 | * zap_page_range_single_batched - remove user pages in a given range | |
1995 | * @tlb: pointer to the caller's struct mmu_gather | |
1996 | * @vma: vm_area_struct holding the applicable pages | |
1997 | * @address: starting address of pages to remove | |
1998 | * @size: number of bytes to remove | |
1999 | * @details: details of shared cache invalidation | |
2000 | * | |
2001 | * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for | |
2002 | * hugetlb, @tlb is flushed and re-initialized by this function. | |
2003 | */ | |
2004 | void zap_page_range_single_batched(struct mmu_gather *tlb, | |
2005 | struct vm_area_struct *vma, unsigned long address, | |
2006 | unsigned long size, struct zap_details *details) | |
2007 | { | |
2008 | const unsigned long end = address + size; | |
2009 | struct mmu_notifier_range range; | |
2010 | ||
2011 | VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm); | |
2012 | ||
2013 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, | |
2014 | address, end); | |
2015 | hugetlb_zap_begin(vma, &range.start, &range.end); | |
2016 | update_hiwater_rss(vma->vm_mm); | |
2017 | mmu_notifier_invalidate_range_start(&range); | |
2018 | /* | |
2019 | * unmap 'address-end' not 'range.start-range.end' as range | |
2020 | * could have been expanded for hugetlb pmd sharing. | |
2021 | */ | |
2022 | unmap_single_vma(tlb, vma, address, end, details, false); | |
2023 | mmu_notifier_invalidate_range_end(&range); | |
2024 | if (is_vm_hugetlb_page(vma)) { | |
2025 | /* | |
2026 | * flush tlb and free resources before hugetlb_zap_end(), to | |
2027 | * avoid concurrent page faults' allocation failure. | |
2028 | */ | |
2029 | tlb_finish_mmu(tlb); | |
2030 | hugetlb_zap_end(vma, details); | |
2031 | tlb_gather_mmu(tlb, vma->vm_mm); | |
2032 | } | |
2033 | } | |
2034 | ||
2035 | /** | |
2036 | * zap_page_range_single - remove user pages in a given range | |
2037 | * @vma: vm_area_struct holding the applicable pages | |
2038 | * @address: starting address of pages to zap | |
2039 | * @size: number of bytes to zap | |
2040 | * @details: details of shared cache invalidation | |
2041 | * | |
2042 | * The range must fit into one VMA. | |
2043 | */ | |
2044 | void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, | |
2045 | unsigned long size, struct zap_details *details) | |
2046 | { | |
2047 | struct mmu_gather tlb; | |
2048 | ||
2049 | tlb_gather_mmu(&tlb, vma->vm_mm); | |
2050 | zap_page_range_single_batched(&tlb, vma, address, size, details); | |
2051 | tlb_finish_mmu(&tlb); | |
2052 | } | |
2053 | ||
2054 | /** | |
2055 | * zap_vma_ptes - remove ptes mapping the vma | |
2056 | * @vma: vm_area_struct holding ptes to be zapped | |
2057 | * @address: starting address of pages to zap | |
2058 | * @size: number of bytes to zap | |
2059 | * | |
2060 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | |
2061 | * | |
2062 | * The entire address range must be fully contained within the vma. | |
2063 | * | |
2064 | */ | |
2065 | void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | |
2066 | unsigned long size) | |
2067 | { | |
2068 | if (!range_in_vma(vma, address, address + size) || | |
2069 | !(vma->vm_flags & VM_PFNMAP)) | |
2070 | return; | |
2071 | ||
2072 | zap_page_range_single(vma, address, size, NULL); | |
2073 | } | |
2074 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | |
2075 | ||
2076 | static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) | |
2077 | { | |
2078 | pgd_t *pgd; | |
2079 | p4d_t *p4d; | |
2080 | pud_t *pud; | |
2081 | pmd_t *pmd; | |
2082 | ||
2083 | pgd = pgd_offset(mm, addr); | |
2084 | p4d = p4d_alloc(mm, pgd, addr); | |
2085 | if (!p4d) | |
2086 | return NULL; | |
2087 | pud = pud_alloc(mm, p4d, addr); | |
2088 | if (!pud) | |
2089 | return NULL; | |
2090 | pmd = pmd_alloc(mm, pud, addr); | |
2091 | if (!pmd) | |
2092 | return NULL; | |
2093 | ||
2094 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
2095 | return pmd; | |
2096 | } | |
2097 | ||
2098 | pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, | |
2099 | spinlock_t **ptl) | |
2100 | { | |
2101 | pmd_t *pmd = walk_to_pmd(mm, addr); | |
2102 | ||
2103 | if (!pmd) | |
2104 | return NULL; | |
2105 | return pte_alloc_map_lock(mm, pmd, addr, ptl); | |
2106 | } | |
2107 | ||
2108 | static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) | |
2109 | { | |
2110 | VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); | |
2111 | /* | |
2112 | * Whoever wants to forbid the zeropage after some zeropages | |
2113 | * might already have been mapped has to scan the page tables and | |
2114 | * bail out on any zeropages. Zeropages in COW mappings can | |
2115 | * be unshared using FAULT_FLAG_UNSHARE faults. | |
2116 | */ | |
2117 | if (mm_forbids_zeropage(vma->vm_mm)) | |
2118 | return false; | |
2119 | /* zeropages in COW mappings are common and unproblematic. */ | |
2120 | if (is_cow_mapping(vma->vm_flags)) | |
2121 | return true; | |
2122 | /* Mappings that do not allow for writable PTEs are unproblematic. */ | |
2123 | if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) | |
2124 | return true; | |
2125 | /* | |
2126 | * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could | |
2127 | * find the shared zeropage and longterm-pin it, which would | |
2128 | * be problematic as soon as the zeropage gets replaced by a different | |
2129 | * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would | |
2130 | * now differ to what GUP looked up. FSDAX is incompatible to | |
2131 | * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see | |
2132 | * check_vma_flags). | |
2133 | */ | |
2134 | return vma->vm_ops && vma->vm_ops->pfn_mkwrite && | |
2135 | (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); | |
2136 | } | |
2137 | ||
2138 | static int validate_page_before_insert(struct vm_area_struct *vma, | |
2139 | struct page *page) | |
2140 | { | |
2141 | struct folio *folio = page_folio(page); | |
2142 | ||
2143 | if (!folio_ref_count(folio)) | |
2144 | return -EINVAL; | |
2145 | if (unlikely(is_zero_folio(folio))) { | |
2146 | if (!vm_mixed_zeropage_allowed(vma)) | |
2147 | return -EINVAL; | |
2148 | return 0; | |
2149 | } | |
2150 | if (folio_test_anon(folio) || folio_test_slab(folio) || | |
2151 | page_has_type(page)) | |
2152 | return -EINVAL; | |
2153 | flush_dcache_folio(folio); | |
2154 | return 0; | |
2155 | } | |
2156 | ||
2157 | static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, | |
2158 | unsigned long addr, struct page *page, | |
2159 | pgprot_t prot, bool mkwrite) | |
2160 | { | |
2161 | struct folio *folio = page_folio(page); | |
2162 | pte_t pteval = ptep_get(pte); | |
2163 | ||
2164 | if (!pte_none(pteval)) { | |
2165 | if (!mkwrite) | |
2166 | return -EBUSY; | |
2167 | ||
2168 | /* see insert_pfn(). */ | |
2169 | if (pte_pfn(pteval) != page_to_pfn(page)) { | |
2170 | WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval))); | |
2171 | return -EFAULT; | |
2172 | } | |
2173 | pteval = maybe_mkwrite(pteval, vma); | |
2174 | pteval = pte_mkyoung(pteval); | |
2175 | if (ptep_set_access_flags(vma, addr, pte, pteval, 1)) | |
2176 | update_mmu_cache(vma, addr, pte); | |
2177 | return 0; | |
2178 | } | |
2179 | ||
2180 | /* Ok, finally just insert the thing.. */ | |
2181 | pteval = mk_pte(page, prot); | |
2182 | if (unlikely(is_zero_folio(folio))) { | |
2183 | pteval = pte_mkspecial(pteval); | |
2184 | } else { | |
2185 | folio_get(folio); | |
2186 | pteval = mk_pte(page, prot); | |
2187 | if (mkwrite) { | |
2188 | pteval = pte_mkyoung(pteval); | |
2189 | pteval = maybe_mkwrite(pte_mkdirty(pteval), vma); | |
2190 | } | |
2191 | inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); | |
2192 | folio_add_file_rmap_pte(folio, page, vma); | |
2193 | } | |
2194 | set_pte_at(vma->vm_mm, addr, pte, pteval); | |
2195 | return 0; | |
2196 | } | |
2197 | ||
2198 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, | |
2199 | struct page *page, pgprot_t prot, bool mkwrite) | |
2200 | { | |
2201 | int retval; | |
2202 | pte_t *pte; | |
2203 | spinlock_t *ptl; | |
2204 | ||
2205 | retval = validate_page_before_insert(vma, page); | |
2206 | if (retval) | |
2207 | goto out; | |
2208 | retval = -ENOMEM; | |
2209 | pte = get_locked_pte(vma->vm_mm, addr, &ptl); | |
2210 | if (!pte) | |
2211 | goto out; | |
2212 | retval = insert_page_into_pte_locked(vma, pte, addr, page, prot, | |
2213 | mkwrite); | |
2214 | pte_unmap_unlock(pte, ptl); | |
2215 | out: | |
2216 | return retval; | |
2217 | } | |
2218 | ||
2219 | static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, | |
2220 | unsigned long addr, struct page *page, pgprot_t prot) | |
2221 | { | |
2222 | int err; | |
2223 | ||
2224 | err = validate_page_before_insert(vma, page); | |
2225 | if (err) | |
2226 | return err; | |
2227 | return insert_page_into_pte_locked(vma, pte, addr, page, prot, false); | |
2228 | } | |
2229 | ||
2230 | /* insert_pages() amortizes the cost of spinlock operations | |
2231 | * when inserting pages in a loop. | |
2232 | */ | |
2233 | static int insert_pages(struct vm_area_struct *vma, unsigned long addr, | |
2234 | struct page **pages, unsigned long *num, pgprot_t prot) | |
2235 | { | |
2236 | pmd_t *pmd = NULL; | |
2237 | pte_t *start_pte, *pte; | |
2238 | spinlock_t *pte_lock; | |
2239 | struct mm_struct *const mm = vma->vm_mm; | |
2240 | unsigned long curr_page_idx = 0; | |
2241 | unsigned long remaining_pages_total = *num; | |
2242 | unsigned long pages_to_write_in_pmd; | |
2243 | int ret; | |
2244 | more: | |
2245 | ret = -EFAULT; | |
2246 | pmd = walk_to_pmd(mm, addr); | |
2247 | if (!pmd) | |
2248 | goto out; | |
2249 | ||
2250 | pages_to_write_in_pmd = min_t(unsigned long, | |
2251 | remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); | |
2252 | ||
2253 | /* Allocate the PTE if necessary; takes PMD lock once only. */ | |
2254 | ret = -ENOMEM; | |
2255 | if (pte_alloc(mm, pmd)) | |
2256 | goto out; | |
2257 | ||
2258 | while (pages_to_write_in_pmd) { | |
2259 | int pte_idx = 0; | |
2260 | const int batch_size = min_t(int, pages_to_write_in_pmd, 8); | |
2261 | ||
2262 | start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); | |
2263 | if (!start_pte) { | |
2264 | ret = -EFAULT; | |
2265 | goto out; | |
2266 | } | |
2267 | for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { | |
2268 | int err = insert_page_in_batch_locked(vma, pte, | |
2269 | addr, pages[curr_page_idx], prot); | |
2270 | if (unlikely(err)) { | |
2271 | pte_unmap_unlock(start_pte, pte_lock); | |
2272 | ret = err; | |
2273 | remaining_pages_total -= pte_idx; | |
2274 | goto out; | |
2275 | } | |
2276 | addr += PAGE_SIZE; | |
2277 | ++curr_page_idx; | |
2278 | } | |
2279 | pte_unmap_unlock(start_pte, pte_lock); | |
2280 | pages_to_write_in_pmd -= batch_size; | |
2281 | remaining_pages_total -= batch_size; | |
2282 | } | |
2283 | if (remaining_pages_total) | |
2284 | goto more; | |
2285 | ret = 0; | |
2286 | out: | |
2287 | *num = remaining_pages_total; | |
2288 | return ret; | |
2289 | } | |
2290 | ||
2291 | /** | |
2292 | * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. | |
2293 | * @vma: user vma to map to | |
2294 | * @addr: target start user address of these pages | |
2295 | * @pages: source kernel pages | |
2296 | * @num: in: number of pages to map. out: number of pages that were *not* | |
2297 | * mapped. (0 means all pages were successfully mapped). | |
2298 | * | |
2299 | * Preferred over vm_insert_page() when inserting multiple pages. | |
2300 | * | |
2301 | * In case of error, we may have mapped a subset of the provided | |
2302 | * pages. It is the caller's responsibility to account for this case. | |
2303 | * | |
2304 | * The same restrictions apply as in vm_insert_page(). | |
2305 | */ | |
2306 | int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, | |
2307 | struct page **pages, unsigned long *num) | |
2308 | { | |
2309 | const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; | |
2310 | ||
2311 | if (addr < vma->vm_start || end_addr >= vma->vm_end) | |
2312 | return -EFAULT; | |
2313 | if (!(vma->vm_flags & VM_MIXEDMAP)) { | |
2314 | BUG_ON(mmap_read_trylock(vma->vm_mm)); | |
2315 | BUG_ON(vma->vm_flags & VM_PFNMAP); | |
2316 | vm_flags_set(vma, VM_MIXEDMAP); | |
2317 | } | |
2318 | /* Defer page refcount checking till we're about to map that page. */ | |
2319 | return insert_pages(vma, addr, pages, num, vma->vm_page_prot); | |
2320 | } | |
2321 | EXPORT_SYMBOL(vm_insert_pages); | |
2322 | ||
2323 | /** | |
2324 | * vm_insert_page - insert single page into user vma | |
2325 | * @vma: user vma to map to | |
2326 | * @addr: target user address of this page | |
2327 | * @page: source kernel page | |
2328 | * | |
2329 | * This allows drivers to insert individual pages they've allocated | |
2330 | * into a user vma. The zeropage is supported in some VMAs, | |
2331 | * see vm_mixed_zeropage_allowed(). | |
2332 | * | |
2333 | * The page has to be a nice clean _individual_ kernel allocation. | |
2334 | * If you allocate a compound page, you need to have marked it as | |
2335 | * such (__GFP_COMP), or manually just split the page up yourself | |
2336 | * (see split_page()). | |
2337 | * | |
2338 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
2339 | * took an arbitrary page protection parameter. This doesn't allow | |
2340 | * that. Your vma protection will have to be set up correctly, which | |
2341 | * means that if you want a shared writable mapping, you'd better | |
2342 | * ask for a shared writable mapping! | |
2343 | * | |
2344 | * The page does not need to be reserved. | |
2345 | * | |
2346 | * Usually this function is called from f_op->mmap() handler | |
2347 | * under mm->mmap_lock write-lock, so it can change vma->vm_flags. | |
2348 | * Caller must set VM_MIXEDMAP on vma if it wants to call this | |
2349 | * function from other places, for example from page-fault handler. | |
2350 | * | |
2351 | * Return: %0 on success, negative error code otherwise. | |
2352 | */ | |
2353 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, | |
2354 | struct page *page) | |
2355 | { | |
2356 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
2357 | return -EFAULT; | |
2358 | if (!(vma->vm_flags & VM_MIXEDMAP)) { | |
2359 | BUG_ON(mmap_read_trylock(vma->vm_mm)); | |
2360 | BUG_ON(vma->vm_flags & VM_PFNMAP); | |
2361 | vm_flags_set(vma, VM_MIXEDMAP); | |
2362 | } | |
2363 | return insert_page(vma, addr, page, vma->vm_page_prot, false); | |
2364 | } | |
2365 | EXPORT_SYMBOL(vm_insert_page); | |
2366 | ||
2367 | /* | |
2368 | * __vm_map_pages - maps range of kernel pages into user vma | |
2369 | * @vma: user vma to map to | |
2370 | * @pages: pointer to array of source kernel pages | |
2371 | * @num: number of pages in page array | |
2372 | * @offset: user's requested vm_pgoff | |
2373 | * | |
2374 | * This allows drivers to map range of kernel pages into a user vma. | |
2375 | * The zeropage is supported in some VMAs, see | |
2376 | * vm_mixed_zeropage_allowed(). | |
2377 | * | |
2378 | * Return: 0 on success and error code otherwise. | |
2379 | */ | |
2380 | static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, | |
2381 | unsigned long num, unsigned long offset) | |
2382 | { | |
2383 | unsigned long count = vma_pages(vma); | |
2384 | unsigned long uaddr = vma->vm_start; | |
2385 | int ret, i; | |
2386 | ||
2387 | /* Fail if the user requested offset is beyond the end of the object */ | |
2388 | if (offset >= num) | |
2389 | return -ENXIO; | |
2390 | ||
2391 | /* Fail if the user requested size exceeds available object size */ | |
2392 | if (count > num - offset) | |
2393 | return -ENXIO; | |
2394 | ||
2395 | for (i = 0; i < count; i++) { | |
2396 | ret = vm_insert_page(vma, uaddr, pages[offset + i]); | |
2397 | if (ret < 0) | |
2398 | return ret; | |
2399 | uaddr += PAGE_SIZE; | |
2400 | } | |
2401 | ||
2402 | return 0; | |
2403 | } | |
2404 | ||
2405 | /** | |
2406 | * vm_map_pages - maps range of kernel pages starts with non zero offset | |
2407 | * @vma: user vma to map to | |
2408 | * @pages: pointer to array of source kernel pages | |
2409 | * @num: number of pages in page array | |
2410 | * | |
2411 | * Maps an object consisting of @num pages, catering for the user's | |
2412 | * requested vm_pgoff | |
2413 | * | |
2414 | * If we fail to insert any page into the vma, the function will return | |
2415 | * immediately leaving any previously inserted pages present. Callers | |
2416 | * from the mmap handler may immediately return the error as their caller | |
2417 | * will destroy the vma, removing any successfully inserted pages. Other | |
2418 | * callers should make their own arrangements for calling unmap_region(). | |
2419 | * | |
2420 | * Context: Process context. Called by mmap handlers. | |
2421 | * Return: 0 on success and error code otherwise. | |
2422 | */ | |
2423 | int vm_map_pages(struct vm_area_struct *vma, struct page **pages, | |
2424 | unsigned long num) | |
2425 | { | |
2426 | return __vm_map_pages(vma, pages, num, vma->vm_pgoff); | |
2427 | } | |
2428 | EXPORT_SYMBOL(vm_map_pages); | |
2429 | ||
2430 | /** | |
2431 | * vm_map_pages_zero - map range of kernel pages starts with zero offset | |
2432 | * @vma: user vma to map to | |
2433 | * @pages: pointer to array of source kernel pages | |
2434 | * @num: number of pages in page array | |
2435 | * | |
2436 | * Similar to vm_map_pages(), except that it explicitly sets the offset | |
2437 | * to 0. This function is intended for the drivers that did not consider | |
2438 | * vm_pgoff. | |
2439 | * | |
2440 | * Context: Process context. Called by mmap handlers. | |
2441 | * Return: 0 on success and error code otherwise. | |
2442 | */ | |
2443 | int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, | |
2444 | unsigned long num) | |
2445 | { | |
2446 | return __vm_map_pages(vma, pages, num, 0); | |
2447 | } | |
2448 | EXPORT_SYMBOL(vm_map_pages_zero); | |
2449 | ||
2450 | static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
2451 | pfn_t pfn, pgprot_t prot, bool mkwrite) | |
2452 | { | |
2453 | struct mm_struct *mm = vma->vm_mm; | |
2454 | pte_t *pte, entry; | |
2455 | spinlock_t *ptl; | |
2456 | ||
2457 | pte = get_locked_pte(mm, addr, &ptl); | |
2458 | if (!pte) | |
2459 | return VM_FAULT_OOM; | |
2460 | entry = ptep_get(pte); | |
2461 | if (!pte_none(entry)) { | |
2462 | if (mkwrite) { | |
2463 | /* | |
2464 | * For read faults on private mappings the PFN passed | |
2465 | * in may not match the PFN we have mapped if the | |
2466 | * mapped PFN is a writeable COW page. In the mkwrite | |
2467 | * case we are creating a writable PTE for a shared | |
2468 | * mapping and we expect the PFNs to match. If they | |
2469 | * don't match, we are likely racing with block | |
2470 | * allocation and mapping invalidation so just skip the | |
2471 | * update. | |
2472 | */ | |
2473 | if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { | |
2474 | WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); | |
2475 | goto out_unlock; | |
2476 | } | |
2477 | entry = pte_mkyoung(entry); | |
2478 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
2479 | if (ptep_set_access_flags(vma, addr, pte, entry, 1)) | |
2480 | update_mmu_cache(vma, addr, pte); | |
2481 | } | |
2482 | goto out_unlock; | |
2483 | } | |
2484 | ||
2485 | /* Ok, finally just insert the thing.. */ | |
2486 | if (pfn_t_devmap(pfn)) | |
2487 | entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); | |
2488 | else | |
2489 | entry = pte_mkspecial(pfn_t_pte(pfn, prot)); | |
2490 | ||
2491 | if (mkwrite) { | |
2492 | entry = pte_mkyoung(entry); | |
2493 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
2494 | } | |
2495 | ||
2496 | set_pte_at(mm, addr, pte, entry); | |
2497 | update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ | |
2498 | ||
2499 | out_unlock: | |
2500 | pte_unmap_unlock(pte, ptl); | |
2501 | return VM_FAULT_NOPAGE; | |
2502 | } | |
2503 | ||
2504 | /** | |
2505 | * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot | |
2506 | * @vma: user vma to map to | |
2507 | * @addr: target user address of this page | |
2508 | * @pfn: source kernel pfn | |
2509 | * @pgprot: pgprot flags for the inserted page | |
2510 | * | |
2511 | * This is exactly like vmf_insert_pfn(), except that it allows drivers | |
2512 | * to override pgprot on a per-page basis. | |
2513 | * | |
2514 | * This only makes sense for IO mappings, and it makes no sense for | |
2515 | * COW mappings. In general, using multiple vmas is preferable; | |
2516 | * vmf_insert_pfn_prot should only be used if using multiple VMAs is | |
2517 | * impractical. | |
2518 | * | |
2519 | * pgprot typically only differs from @vma->vm_page_prot when drivers set | |
2520 | * caching- and encryption bits different than those of @vma->vm_page_prot, | |
2521 | * because the caching- or encryption mode may not be known at mmap() time. | |
2522 | * | |
2523 | * This is ok as long as @vma->vm_page_prot is not used by the core vm | |
2524 | * to set caching and encryption bits for those vmas (except for COW pages). | |
2525 | * This is ensured by core vm only modifying these page table entries using | |
2526 | * functions that don't touch caching- or encryption bits, using pte_modify() | |
2527 | * if needed. (See for example mprotect()). | |
2528 | * | |
2529 | * Also when new page-table entries are created, this is only done using the | |
2530 | * fault() callback, and never using the value of vma->vm_page_prot, | |
2531 | * except for page-table entries that point to anonymous pages as the result | |
2532 | * of COW. | |
2533 | * | |
2534 | * Context: Process context. May allocate using %GFP_KERNEL. | |
2535 | * Return: vm_fault_t value. | |
2536 | */ | |
2537 | vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, | |
2538 | unsigned long pfn, pgprot_t pgprot) | |
2539 | { | |
2540 | /* | |
2541 | * Technically, architectures with pte_special can avoid all these | |
2542 | * restrictions (same for remap_pfn_range). However we would like | |
2543 | * consistency in testing and feature parity among all, so we should | |
2544 | * try to keep these invariants in place for everybody. | |
2545 | */ | |
2546 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); | |
2547 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | |
2548 | (VM_PFNMAP|VM_MIXEDMAP)); | |
2549 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | |
2550 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | |
2551 | ||
2552 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
2553 | return VM_FAULT_SIGBUS; | |
2554 | ||
2555 | if (!pfn_modify_allowed(pfn, pgprot)) | |
2556 | return VM_FAULT_SIGBUS; | |
2557 | ||
2558 | pfnmap_setup_cachemode_pfn(pfn, &pgprot); | |
2559 | ||
2560 | return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, | |
2561 | false); | |
2562 | } | |
2563 | EXPORT_SYMBOL(vmf_insert_pfn_prot); | |
2564 | ||
2565 | /** | |
2566 | * vmf_insert_pfn - insert single pfn into user vma | |
2567 | * @vma: user vma to map to | |
2568 | * @addr: target user address of this page | |
2569 | * @pfn: source kernel pfn | |
2570 | * | |
2571 | * Similar to vm_insert_page, this allows drivers to insert individual pages | |
2572 | * they've allocated into a user vma. Same comments apply. | |
2573 | * | |
2574 | * This function should only be called from a vm_ops->fault handler, and | |
2575 | * in that case the handler should return the result of this function. | |
2576 | * | |
2577 | * vma cannot be a COW mapping. | |
2578 | * | |
2579 | * As this is called only for pages that do not currently exist, we | |
2580 | * do not need to flush old virtual caches or the TLB. | |
2581 | * | |
2582 | * Context: Process context. May allocate using %GFP_KERNEL. | |
2583 | * Return: vm_fault_t value. | |
2584 | */ | |
2585 | vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
2586 | unsigned long pfn) | |
2587 | { | |
2588 | return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); | |
2589 | } | |
2590 | EXPORT_SYMBOL(vmf_insert_pfn); | |
2591 | ||
2592 | static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite) | |
2593 | { | |
2594 | if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) && | |
2595 | (mkwrite || !vm_mixed_zeropage_allowed(vma))) | |
2596 | return false; | |
2597 | /* these checks mirror the abort conditions in vm_normal_page */ | |
2598 | if (vma->vm_flags & VM_MIXEDMAP) | |
2599 | return true; | |
2600 | if (pfn_t_devmap(pfn)) | |
2601 | return true; | |
2602 | if (pfn_t_special(pfn)) | |
2603 | return true; | |
2604 | if (is_zero_pfn(pfn_t_to_pfn(pfn))) | |
2605 | return true; | |
2606 | return false; | |
2607 | } | |
2608 | ||
2609 | static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, | |
2610 | unsigned long addr, pfn_t pfn, bool mkwrite) | |
2611 | { | |
2612 | pgprot_t pgprot = vma->vm_page_prot; | |
2613 | int err; | |
2614 | ||
2615 | if (!vm_mixed_ok(vma, pfn, mkwrite)) | |
2616 | return VM_FAULT_SIGBUS; | |
2617 | ||
2618 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
2619 | return VM_FAULT_SIGBUS; | |
2620 | ||
2621 | pfnmap_setup_cachemode_pfn(pfn_t_to_pfn(pfn), &pgprot); | |
2622 | ||
2623 | if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) | |
2624 | return VM_FAULT_SIGBUS; | |
2625 | ||
2626 | /* | |
2627 | * If we don't have pte special, then we have to use the pfn_valid() | |
2628 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | |
2629 | * refcount the page if pfn_valid is true (hence insert_page rather | |
2630 | * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP | |
2631 | * without pte special, it would there be refcounted as a normal page. | |
2632 | */ | |
2633 | if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && | |
2634 | !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { | |
2635 | struct page *page; | |
2636 | ||
2637 | /* | |
2638 | * At this point we are committed to insert_page() | |
2639 | * regardless of whether the caller specified flags that | |
2640 | * result in pfn_t_has_page() == false. | |
2641 | */ | |
2642 | page = pfn_to_page(pfn_t_to_pfn(pfn)); | |
2643 | err = insert_page(vma, addr, page, pgprot, mkwrite); | |
2644 | } else { | |
2645 | return insert_pfn(vma, addr, pfn, pgprot, mkwrite); | |
2646 | } | |
2647 | ||
2648 | if (err == -ENOMEM) | |
2649 | return VM_FAULT_OOM; | |
2650 | if (err < 0 && err != -EBUSY) | |
2651 | return VM_FAULT_SIGBUS; | |
2652 | ||
2653 | return VM_FAULT_NOPAGE; | |
2654 | } | |
2655 | ||
2656 | vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, | |
2657 | bool write) | |
2658 | { | |
2659 | pgprot_t pgprot = vmf->vma->vm_page_prot; | |
2660 | unsigned long addr = vmf->address; | |
2661 | int err; | |
2662 | ||
2663 | if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end) | |
2664 | return VM_FAULT_SIGBUS; | |
2665 | ||
2666 | err = insert_page(vmf->vma, addr, page, pgprot, write); | |
2667 | if (err == -ENOMEM) | |
2668 | return VM_FAULT_OOM; | |
2669 | if (err < 0 && err != -EBUSY) | |
2670 | return VM_FAULT_SIGBUS; | |
2671 | ||
2672 | return VM_FAULT_NOPAGE; | |
2673 | } | |
2674 | EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite); | |
2675 | ||
2676 | vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, | |
2677 | pfn_t pfn) | |
2678 | { | |
2679 | return __vm_insert_mixed(vma, addr, pfn, false); | |
2680 | } | |
2681 | EXPORT_SYMBOL(vmf_insert_mixed); | |
2682 | ||
2683 | /* | |
2684 | * If the insertion of PTE failed because someone else already added a | |
2685 | * different entry in the mean time, we treat that as success as we assume | |
2686 | * the same entry was actually inserted. | |
2687 | */ | |
2688 | vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, | |
2689 | unsigned long addr, pfn_t pfn) | |
2690 | { | |
2691 | return __vm_insert_mixed(vma, addr, pfn, true); | |
2692 | } | |
2693 | ||
2694 | /* | |
2695 | * maps a range of physical memory into the requested pages. the old | |
2696 | * mappings are removed. any references to nonexistent pages results | |
2697 | * in null mappings (currently treated as "copy-on-access") | |
2698 | */ | |
2699 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
2700 | unsigned long addr, unsigned long end, | |
2701 | unsigned long pfn, pgprot_t prot) | |
2702 | { | |
2703 | pte_t *pte, *mapped_pte; | |
2704 | spinlock_t *ptl; | |
2705 | int err = 0; | |
2706 | ||
2707 | mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); | |
2708 | if (!pte) | |
2709 | return -ENOMEM; | |
2710 | arch_enter_lazy_mmu_mode(); | |
2711 | do { | |
2712 | BUG_ON(!pte_none(ptep_get(pte))); | |
2713 | if (!pfn_modify_allowed(pfn, prot)) { | |
2714 | err = -EACCES; | |
2715 | break; | |
2716 | } | |
2717 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); | |
2718 | pfn++; | |
2719 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
2720 | arch_leave_lazy_mmu_mode(); | |
2721 | pte_unmap_unlock(mapped_pte, ptl); | |
2722 | return err; | |
2723 | } | |
2724 | ||
2725 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
2726 | unsigned long addr, unsigned long end, | |
2727 | unsigned long pfn, pgprot_t prot) | |
2728 | { | |
2729 | pmd_t *pmd; | |
2730 | unsigned long next; | |
2731 | int err; | |
2732 | ||
2733 | pfn -= addr >> PAGE_SHIFT; | |
2734 | pmd = pmd_alloc(mm, pud, addr); | |
2735 | if (!pmd) | |
2736 | return -ENOMEM; | |
2737 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
2738 | do { | |
2739 | next = pmd_addr_end(addr, end); | |
2740 | err = remap_pte_range(mm, pmd, addr, next, | |
2741 | pfn + (addr >> PAGE_SHIFT), prot); | |
2742 | if (err) | |
2743 | return err; | |
2744 | } while (pmd++, addr = next, addr != end); | |
2745 | return 0; | |
2746 | } | |
2747 | ||
2748 | static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, | |
2749 | unsigned long addr, unsigned long end, | |
2750 | unsigned long pfn, pgprot_t prot) | |
2751 | { | |
2752 | pud_t *pud; | |
2753 | unsigned long next; | |
2754 | int err; | |
2755 | ||
2756 | pfn -= addr >> PAGE_SHIFT; | |
2757 | pud = pud_alloc(mm, p4d, addr); | |
2758 | if (!pud) | |
2759 | return -ENOMEM; | |
2760 | do { | |
2761 | next = pud_addr_end(addr, end); | |
2762 | err = remap_pmd_range(mm, pud, addr, next, | |
2763 | pfn + (addr >> PAGE_SHIFT), prot); | |
2764 | if (err) | |
2765 | return err; | |
2766 | } while (pud++, addr = next, addr != end); | |
2767 | return 0; | |
2768 | } | |
2769 | ||
2770 | static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, | |
2771 | unsigned long addr, unsigned long end, | |
2772 | unsigned long pfn, pgprot_t prot) | |
2773 | { | |
2774 | p4d_t *p4d; | |
2775 | unsigned long next; | |
2776 | int err; | |
2777 | ||
2778 | pfn -= addr >> PAGE_SHIFT; | |
2779 | p4d = p4d_alloc(mm, pgd, addr); | |
2780 | if (!p4d) | |
2781 | return -ENOMEM; | |
2782 | do { | |
2783 | next = p4d_addr_end(addr, end); | |
2784 | err = remap_pud_range(mm, p4d, addr, next, | |
2785 | pfn + (addr >> PAGE_SHIFT), prot); | |
2786 | if (err) | |
2787 | return err; | |
2788 | } while (p4d++, addr = next, addr != end); | |
2789 | return 0; | |
2790 | } | |
2791 | ||
2792 | static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, | |
2793 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
2794 | { | |
2795 | pgd_t *pgd; | |
2796 | unsigned long next; | |
2797 | unsigned long end = addr + PAGE_ALIGN(size); | |
2798 | struct mm_struct *mm = vma->vm_mm; | |
2799 | int err; | |
2800 | ||
2801 | if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) | |
2802 | return -EINVAL; | |
2803 | ||
2804 | /* | |
2805 | * Physically remapped pages are special. Tell the | |
2806 | * rest of the world about it: | |
2807 | * VM_IO tells people not to look at these pages | |
2808 | * (accesses can have side effects). | |
2809 | * VM_PFNMAP tells the core MM that the base pages are just | |
2810 | * raw PFN mappings, and do not have a "struct page" associated | |
2811 | * with them. | |
2812 | * VM_DONTEXPAND | |
2813 | * Disable vma merging and expanding with mremap(). | |
2814 | * VM_DONTDUMP | |
2815 | * Omit vma from core dump, even when VM_IO turned off. | |
2816 | * | |
2817 | * There's a horrible special case to handle copy-on-write | |
2818 | * behaviour that some programs depend on. We mark the "original" | |
2819 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
2820 | * See vm_normal_page() for details. | |
2821 | */ | |
2822 | if (is_cow_mapping(vma->vm_flags)) { | |
2823 | if (addr != vma->vm_start || end != vma->vm_end) | |
2824 | return -EINVAL; | |
2825 | vma->vm_pgoff = pfn; | |
2826 | } | |
2827 | ||
2828 | vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); | |
2829 | ||
2830 | BUG_ON(addr >= end); | |
2831 | pfn -= addr >> PAGE_SHIFT; | |
2832 | pgd = pgd_offset(mm, addr); | |
2833 | flush_cache_range(vma, addr, end); | |
2834 | do { | |
2835 | next = pgd_addr_end(addr, end); | |
2836 | err = remap_p4d_range(mm, pgd, addr, next, | |
2837 | pfn + (addr >> PAGE_SHIFT), prot); | |
2838 | if (err) | |
2839 | return err; | |
2840 | } while (pgd++, addr = next, addr != end); | |
2841 | ||
2842 | return 0; | |
2843 | } | |
2844 | ||
2845 | /* | |
2846 | * Variant of remap_pfn_range that does not call track_pfn_remap. The caller | |
2847 | * must have pre-validated the caching bits of the pgprot_t. | |
2848 | */ | |
2849 | int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, | |
2850 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
2851 | { | |
2852 | int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); | |
2853 | ||
2854 | if (!error) | |
2855 | return 0; | |
2856 | ||
2857 | /* | |
2858 | * A partial pfn range mapping is dangerous: it does not | |
2859 | * maintain page reference counts, and callers may free | |
2860 | * pages due to the error. So zap it early. | |
2861 | */ | |
2862 | zap_page_range_single(vma, addr, size, NULL); | |
2863 | return error; | |
2864 | } | |
2865 | ||
2866 | #ifdef __HAVE_PFNMAP_TRACKING | |
2867 | static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn, | |
2868 | unsigned long size, pgprot_t *prot) | |
2869 | { | |
2870 | struct pfnmap_track_ctx *ctx; | |
2871 | ||
2872 | if (pfnmap_track(pfn, size, prot)) | |
2873 | return ERR_PTR(-EINVAL); | |
2874 | ||
2875 | ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); | |
2876 | if (unlikely(!ctx)) { | |
2877 | pfnmap_untrack(pfn, size); | |
2878 | return ERR_PTR(-ENOMEM); | |
2879 | } | |
2880 | ||
2881 | ctx->pfn = pfn; | |
2882 | ctx->size = size; | |
2883 | kref_init(&ctx->kref); | |
2884 | return ctx; | |
2885 | } | |
2886 | ||
2887 | void pfnmap_track_ctx_release(struct kref *ref) | |
2888 | { | |
2889 | struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref); | |
2890 | ||
2891 | pfnmap_untrack(ctx->pfn, ctx->size); | |
2892 | kfree(ctx); | |
2893 | } | |
2894 | #endif /* __HAVE_PFNMAP_TRACKING */ | |
2895 | ||
2896 | /** | |
2897 | * remap_pfn_range - remap kernel memory to userspace | |
2898 | * @vma: user vma to map to | |
2899 | * @addr: target page aligned user address to start at | |
2900 | * @pfn: page frame number of kernel physical memory address | |
2901 | * @size: size of mapping area | |
2902 | * @prot: page protection flags for this mapping | |
2903 | * | |
2904 | * Note: this is only safe if the mm semaphore is held when called. | |
2905 | * | |
2906 | * Return: %0 on success, negative error code otherwise. | |
2907 | */ | |
2908 | #ifdef __HAVE_PFNMAP_TRACKING | |
2909 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | |
2910 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
2911 | { | |
2912 | struct pfnmap_track_ctx *ctx = NULL; | |
2913 | int err; | |
2914 | ||
2915 | size = PAGE_ALIGN(size); | |
2916 | ||
2917 | /* | |
2918 | * If we cover the full VMA, we'll perform actual tracking, and | |
2919 | * remember to untrack when the last reference to our tracking | |
2920 | * context from a VMA goes away. We'll keep tracking the whole pfn | |
2921 | * range even during VMA splits and partial unmapping. | |
2922 | * | |
2923 | * If we only cover parts of the VMA, we'll only setup the cachemode | |
2924 | * in the pgprot for the pfn range. | |
2925 | */ | |
2926 | if (addr == vma->vm_start && addr + size == vma->vm_end) { | |
2927 | if (vma->pfnmap_track_ctx) | |
2928 | return -EINVAL; | |
2929 | ctx = pfnmap_track_ctx_alloc(pfn, size, &prot); | |
2930 | if (IS_ERR(ctx)) | |
2931 | return PTR_ERR(ctx); | |
2932 | } else if (pfnmap_setup_cachemode(pfn, size, &prot)) { | |
2933 | return -EINVAL; | |
2934 | } | |
2935 | ||
2936 | err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); | |
2937 | if (ctx) { | |
2938 | if (err) | |
2939 | kref_put(&ctx->kref, pfnmap_track_ctx_release); | |
2940 | else | |
2941 | vma->pfnmap_track_ctx = ctx; | |
2942 | } | |
2943 | return err; | |
2944 | } | |
2945 | ||
2946 | #else | |
2947 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | |
2948 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
2949 | { | |
2950 | return remap_pfn_range_notrack(vma, addr, pfn, size, prot); | |
2951 | } | |
2952 | #endif | |
2953 | EXPORT_SYMBOL(remap_pfn_range); | |
2954 | ||
2955 | /** | |
2956 | * vm_iomap_memory - remap memory to userspace | |
2957 | * @vma: user vma to map to | |
2958 | * @start: start of the physical memory to be mapped | |
2959 | * @len: size of area | |
2960 | * | |
2961 | * This is a simplified io_remap_pfn_range() for common driver use. The | |
2962 | * driver just needs to give us the physical memory range to be mapped, | |
2963 | * we'll figure out the rest from the vma information. | |
2964 | * | |
2965 | * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get | |
2966 | * whatever write-combining details or similar. | |
2967 | * | |
2968 | * Return: %0 on success, negative error code otherwise. | |
2969 | */ | |
2970 | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) | |
2971 | { | |
2972 | unsigned long vm_len, pfn, pages; | |
2973 | ||
2974 | /* Check that the physical memory area passed in looks valid */ | |
2975 | if (start + len < start) | |
2976 | return -EINVAL; | |
2977 | /* | |
2978 | * You *really* shouldn't map things that aren't page-aligned, | |
2979 | * but we've historically allowed it because IO memory might | |
2980 | * just have smaller alignment. | |
2981 | */ | |
2982 | len += start & ~PAGE_MASK; | |
2983 | pfn = start >> PAGE_SHIFT; | |
2984 | pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; | |
2985 | if (pfn + pages < pfn) | |
2986 | return -EINVAL; | |
2987 | ||
2988 | /* We start the mapping 'vm_pgoff' pages into the area */ | |
2989 | if (vma->vm_pgoff > pages) | |
2990 | return -EINVAL; | |
2991 | pfn += vma->vm_pgoff; | |
2992 | pages -= vma->vm_pgoff; | |
2993 | ||
2994 | /* Can we fit all of the mapping? */ | |
2995 | vm_len = vma->vm_end - vma->vm_start; | |
2996 | if (vm_len >> PAGE_SHIFT > pages) | |
2997 | return -EINVAL; | |
2998 | ||
2999 | /* Ok, let it rip */ | |
3000 | return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); | |
3001 | } | |
3002 | EXPORT_SYMBOL(vm_iomap_memory); | |
3003 | ||
3004 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
3005 | unsigned long addr, unsigned long end, | |
3006 | pte_fn_t fn, void *data, bool create, | |
3007 | pgtbl_mod_mask *mask) | |
3008 | { | |
3009 | pte_t *pte, *mapped_pte; | |
3010 | int err = 0; | |
3011 | spinlock_t *ptl; | |
3012 | ||
3013 | if (create) { | |
3014 | mapped_pte = pte = (mm == &init_mm) ? | |
3015 | pte_alloc_kernel_track(pmd, addr, mask) : | |
3016 | pte_alloc_map_lock(mm, pmd, addr, &ptl); | |
3017 | if (!pte) | |
3018 | return -ENOMEM; | |
3019 | } else { | |
3020 | mapped_pte = pte = (mm == &init_mm) ? | |
3021 | pte_offset_kernel(pmd, addr) : | |
3022 | pte_offset_map_lock(mm, pmd, addr, &ptl); | |
3023 | if (!pte) | |
3024 | return -EINVAL; | |
3025 | } | |
3026 | ||
3027 | arch_enter_lazy_mmu_mode(); | |
3028 | ||
3029 | if (fn) { | |
3030 | do { | |
3031 | if (create || !pte_none(ptep_get(pte))) { | |
3032 | err = fn(pte, addr, data); | |
3033 | if (err) | |
3034 | break; | |
3035 | } | |
3036 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
3037 | } | |
3038 | *mask |= PGTBL_PTE_MODIFIED; | |
3039 | ||
3040 | arch_leave_lazy_mmu_mode(); | |
3041 | ||
3042 | if (mm != &init_mm) | |
3043 | pte_unmap_unlock(mapped_pte, ptl); | |
3044 | return err; | |
3045 | } | |
3046 | ||
3047 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |
3048 | unsigned long addr, unsigned long end, | |
3049 | pte_fn_t fn, void *data, bool create, | |
3050 | pgtbl_mod_mask *mask) | |
3051 | { | |
3052 | pmd_t *pmd; | |
3053 | unsigned long next; | |
3054 | int err = 0; | |
3055 | ||
3056 | BUG_ON(pud_leaf(*pud)); | |
3057 | ||
3058 | if (create) { | |
3059 | pmd = pmd_alloc_track(mm, pud, addr, mask); | |
3060 | if (!pmd) | |
3061 | return -ENOMEM; | |
3062 | } else { | |
3063 | pmd = pmd_offset(pud, addr); | |
3064 | } | |
3065 | do { | |
3066 | next = pmd_addr_end(addr, end); | |
3067 | if (pmd_none(*pmd) && !create) | |
3068 | continue; | |
3069 | if (WARN_ON_ONCE(pmd_leaf(*pmd))) | |
3070 | return -EINVAL; | |
3071 | if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { | |
3072 | if (!create) | |
3073 | continue; | |
3074 | pmd_clear_bad(pmd); | |
3075 | } | |
3076 | err = apply_to_pte_range(mm, pmd, addr, next, | |
3077 | fn, data, create, mask); | |
3078 | if (err) | |
3079 | break; | |
3080 | } while (pmd++, addr = next, addr != end); | |
3081 | ||
3082 | return err; | |
3083 | } | |
3084 | ||
3085 | static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, | |
3086 | unsigned long addr, unsigned long end, | |
3087 | pte_fn_t fn, void *data, bool create, | |
3088 | pgtbl_mod_mask *mask) | |
3089 | { | |
3090 | pud_t *pud; | |
3091 | unsigned long next; | |
3092 | int err = 0; | |
3093 | ||
3094 | if (create) { | |
3095 | pud = pud_alloc_track(mm, p4d, addr, mask); | |
3096 | if (!pud) | |
3097 | return -ENOMEM; | |
3098 | } else { | |
3099 | pud = pud_offset(p4d, addr); | |
3100 | } | |
3101 | do { | |
3102 | next = pud_addr_end(addr, end); | |
3103 | if (pud_none(*pud) && !create) | |
3104 | continue; | |
3105 | if (WARN_ON_ONCE(pud_leaf(*pud))) | |
3106 | return -EINVAL; | |
3107 | if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { | |
3108 | if (!create) | |
3109 | continue; | |
3110 | pud_clear_bad(pud); | |
3111 | } | |
3112 | err = apply_to_pmd_range(mm, pud, addr, next, | |
3113 | fn, data, create, mask); | |
3114 | if (err) | |
3115 | break; | |
3116 | } while (pud++, addr = next, addr != end); | |
3117 | ||
3118 | return err; | |
3119 | } | |
3120 | ||
3121 | static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, | |
3122 | unsigned long addr, unsigned long end, | |
3123 | pte_fn_t fn, void *data, bool create, | |
3124 | pgtbl_mod_mask *mask) | |
3125 | { | |
3126 | p4d_t *p4d; | |
3127 | unsigned long next; | |
3128 | int err = 0; | |
3129 | ||
3130 | if (create) { | |
3131 | p4d = p4d_alloc_track(mm, pgd, addr, mask); | |
3132 | if (!p4d) | |
3133 | return -ENOMEM; | |
3134 | } else { | |
3135 | p4d = p4d_offset(pgd, addr); | |
3136 | } | |
3137 | do { | |
3138 | next = p4d_addr_end(addr, end); | |
3139 | if (p4d_none(*p4d) && !create) | |
3140 | continue; | |
3141 | if (WARN_ON_ONCE(p4d_leaf(*p4d))) | |
3142 | return -EINVAL; | |
3143 | if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { | |
3144 | if (!create) | |
3145 | continue; | |
3146 | p4d_clear_bad(p4d); | |
3147 | } | |
3148 | err = apply_to_pud_range(mm, p4d, addr, next, | |
3149 | fn, data, create, mask); | |
3150 | if (err) | |
3151 | break; | |
3152 | } while (p4d++, addr = next, addr != end); | |
3153 | ||
3154 | return err; | |
3155 | } | |
3156 | ||
3157 | static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
3158 | unsigned long size, pte_fn_t fn, | |
3159 | void *data, bool create) | |
3160 | { | |
3161 | pgd_t *pgd; | |
3162 | unsigned long start = addr, next; | |
3163 | unsigned long end = addr + size; | |
3164 | pgtbl_mod_mask mask = 0; | |
3165 | int err = 0; | |
3166 | ||
3167 | if (WARN_ON(addr >= end)) | |
3168 | return -EINVAL; | |
3169 | ||
3170 | pgd = pgd_offset(mm, addr); | |
3171 | do { | |
3172 | next = pgd_addr_end(addr, end); | |
3173 | if (pgd_none(*pgd) && !create) | |
3174 | continue; | |
3175 | if (WARN_ON_ONCE(pgd_leaf(*pgd))) { | |
3176 | err = -EINVAL; | |
3177 | break; | |
3178 | } | |
3179 | if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { | |
3180 | if (!create) | |
3181 | continue; | |
3182 | pgd_clear_bad(pgd); | |
3183 | } | |
3184 | err = apply_to_p4d_range(mm, pgd, addr, next, | |
3185 | fn, data, create, &mask); | |
3186 | if (err) | |
3187 | break; | |
3188 | } while (pgd++, addr = next, addr != end); | |
3189 | ||
3190 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) | |
3191 | arch_sync_kernel_mappings(start, start + size); | |
3192 | ||
3193 | return err; | |
3194 | } | |
3195 | ||
3196 | /* | |
3197 | * Scan a region of virtual memory, filling in page tables as necessary | |
3198 | * and calling a provided function on each leaf page table. | |
3199 | */ | |
3200 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
3201 | unsigned long size, pte_fn_t fn, void *data) | |
3202 | { | |
3203 | return __apply_to_page_range(mm, addr, size, fn, data, true); | |
3204 | } | |
3205 | EXPORT_SYMBOL_GPL(apply_to_page_range); | |
3206 | ||
3207 | /* | |
3208 | * Scan a region of virtual memory, calling a provided function on | |
3209 | * each leaf page table where it exists. | |
3210 | * | |
3211 | * Unlike apply_to_page_range, this does _not_ fill in page tables | |
3212 | * where they are absent. | |
3213 | */ | |
3214 | int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, | |
3215 | unsigned long size, pte_fn_t fn, void *data) | |
3216 | { | |
3217 | return __apply_to_page_range(mm, addr, size, fn, data, false); | |
3218 | } | |
3219 | ||
3220 | /* | |
3221 | * handle_pte_fault chooses page fault handler according to an entry which was | |
3222 | * read non-atomically. Before making any commitment, on those architectures | |
3223 | * or configurations (e.g. i386 with PAE) which might give a mix of unmatched | |
3224 | * parts, do_swap_page must check under lock before unmapping the pte and | |
3225 | * proceeding (but do_wp_page is only called after already making such a check; | |
3226 | * and do_anonymous_page can safely check later on). | |
3227 | */ | |
3228 | static inline int pte_unmap_same(struct vm_fault *vmf) | |
3229 | { | |
3230 | int same = 1; | |
3231 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) | |
3232 | if (sizeof(pte_t) > sizeof(unsigned long)) { | |
3233 | spin_lock(vmf->ptl); | |
3234 | same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); | |
3235 | spin_unlock(vmf->ptl); | |
3236 | } | |
3237 | #endif | |
3238 | pte_unmap(vmf->pte); | |
3239 | vmf->pte = NULL; | |
3240 | return same; | |
3241 | } | |
3242 | ||
3243 | /* | |
3244 | * Return: | |
3245 | * 0: copied succeeded | |
3246 | * -EHWPOISON: copy failed due to hwpoison in source page | |
3247 | * -EAGAIN: copied failed (some other reason) | |
3248 | */ | |
3249 | static inline int __wp_page_copy_user(struct page *dst, struct page *src, | |
3250 | struct vm_fault *vmf) | |
3251 | { | |
3252 | int ret; | |
3253 | void *kaddr; | |
3254 | void __user *uaddr; | |
3255 | struct vm_area_struct *vma = vmf->vma; | |
3256 | struct mm_struct *mm = vma->vm_mm; | |
3257 | unsigned long addr = vmf->address; | |
3258 | ||
3259 | if (likely(src)) { | |
3260 | if (copy_mc_user_highpage(dst, src, addr, vma)) | |
3261 | return -EHWPOISON; | |
3262 | return 0; | |
3263 | } | |
3264 | ||
3265 | /* | |
3266 | * If the source page was a PFN mapping, we don't have | |
3267 | * a "struct page" for it. We do a best-effort copy by | |
3268 | * just copying from the original user address. If that | |
3269 | * fails, we just zero-fill it. Live with it. | |
3270 | */ | |
3271 | kaddr = kmap_local_page(dst); | |
3272 | pagefault_disable(); | |
3273 | uaddr = (void __user *)(addr & PAGE_MASK); | |
3274 | ||
3275 | /* | |
3276 | * On architectures with software "accessed" bits, we would | |
3277 | * take a double page fault, so mark it accessed here. | |
3278 | */ | |
3279 | vmf->pte = NULL; | |
3280 | if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { | |
3281 | pte_t entry; | |
3282 | ||
3283 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); | |
3284 | if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { | |
3285 | /* | |
3286 | * Other thread has already handled the fault | |
3287 | * and update local tlb only | |
3288 | */ | |
3289 | if (vmf->pte) | |
3290 | update_mmu_tlb(vma, addr, vmf->pte); | |
3291 | ret = -EAGAIN; | |
3292 | goto pte_unlock; | |
3293 | } | |
3294 | ||
3295 | entry = pte_mkyoung(vmf->orig_pte); | |
3296 | if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) | |
3297 | update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); | |
3298 | } | |
3299 | ||
3300 | /* | |
3301 | * This really shouldn't fail, because the page is there | |
3302 | * in the page tables. But it might just be unreadable, | |
3303 | * in which case we just give up and fill the result with | |
3304 | * zeroes. | |
3305 | */ | |
3306 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { | |
3307 | if (vmf->pte) | |
3308 | goto warn; | |
3309 | ||
3310 | /* Re-validate under PTL if the page is still mapped */ | |
3311 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); | |
3312 | if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { | |
3313 | /* The PTE changed under us, update local tlb */ | |
3314 | if (vmf->pte) | |
3315 | update_mmu_tlb(vma, addr, vmf->pte); | |
3316 | ret = -EAGAIN; | |
3317 | goto pte_unlock; | |
3318 | } | |
3319 | ||
3320 | /* | |
3321 | * The same page can be mapped back since last copy attempt. | |
3322 | * Try to copy again under PTL. | |
3323 | */ | |
3324 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { | |
3325 | /* | |
3326 | * Give a warn in case there can be some obscure | |
3327 | * use-case | |
3328 | */ | |
3329 | warn: | |
3330 | WARN_ON_ONCE(1); | |
3331 | clear_page(kaddr); | |
3332 | } | |
3333 | } | |
3334 | ||
3335 | ret = 0; | |
3336 | ||
3337 | pte_unlock: | |
3338 | if (vmf->pte) | |
3339 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3340 | pagefault_enable(); | |
3341 | kunmap_local(kaddr); | |
3342 | flush_dcache_page(dst); | |
3343 | ||
3344 | return ret; | |
3345 | } | |
3346 | ||
3347 | static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) | |
3348 | { | |
3349 | struct file *vm_file = vma->vm_file; | |
3350 | ||
3351 | if (vm_file) | |
3352 | return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; | |
3353 | ||
3354 | /* | |
3355 | * Special mappings (e.g. VDSO) do not have any file so fake | |
3356 | * a default GFP_KERNEL for them. | |
3357 | */ | |
3358 | return GFP_KERNEL; | |
3359 | } | |
3360 | ||
3361 | /* | |
3362 | * Notify the address space that the page is about to become writable so that | |
3363 | * it can prohibit this or wait for the page to get into an appropriate state. | |
3364 | * | |
3365 | * We do this without the lock held, so that it can sleep if it needs to. | |
3366 | */ | |
3367 | static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) | |
3368 | { | |
3369 | vm_fault_t ret; | |
3370 | unsigned int old_flags = vmf->flags; | |
3371 | ||
3372 | vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; | |
3373 | ||
3374 | if (vmf->vma->vm_file && | |
3375 | IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) | |
3376 | return VM_FAULT_SIGBUS; | |
3377 | ||
3378 | ret = vmf->vma->vm_ops->page_mkwrite(vmf); | |
3379 | /* Restore original flags so that caller is not surprised */ | |
3380 | vmf->flags = old_flags; | |
3381 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) | |
3382 | return ret; | |
3383 | if (unlikely(!(ret & VM_FAULT_LOCKED))) { | |
3384 | folio_lock(folio); | |
3385 | if (!folio->mapping) { | |
3386 | folio_unlock(folio); | |
3387 | return 0; /* retry */ | |
3388 | } | |
3389 | ret |= VM_FAULT_LOCKED; | |
3390 | } else | |
3391 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | |
3392 | return ret; | |
3393 | } | |
3394 | ||
3395 | /* | |
3396 | * Handle dirtying of a page in shared file mapping on a write fault. | |
3397 | * | |
3398 | * The function expects the page to be locked and unlocks it. | |
3399 | */ | |
3400 | static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) | |
3401 | { | |
3402 | struct vm_area_struct *vma = vmf->vma; | |
3403 | struct address_space *mapping; | |
3404 | struct folio *folio = page_folio(vmf->page); | |
3405 | bool dirtied; | |
3406 | bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; | |
3407 | ||
3408 | dirtied = folio_mark_dirty(folio); | |
3409 | VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); | |
3410 | /* | |
3411 | * Take a local copy of the address_space - folio.mapping may be zeroed | |
3412 | * by truncate after folio_unlock(). The address_space itself remains | |
3413 | * pinned by vma->vm_file's reference. We rely on folio_unlock()'s | |
3414 | * release semantics to prevent the compiler from undoing this copying. | |
3415 | */ | |
3416 | mapping = folio_raw_mapping(folio); | |
3417 | folio_unlock(folio); | |
3418 | ||
3419 | if (!page_mkwrite) | |
3420 | file_update_time(vma->vm_file); | |
3421 | ||
3422 | /* | |
3423 | * Throttle page dirtying rate down to writeback speed. | |
3424 | * | |
3425 | * mapping may be NULL here because some device drivers do not | |
3426 | * set page.mapping but still dirty their pages | |
3427 | * | |
3428 | * Drop the mmap_lock before waiting on IO, if we can. The file | |
3429 | * is pinning the mapping, as per above. | |
3430 | */ | |
3431 | if ((dirtied || page_mkwrite) && mapping) { | |
3432 | struct file *fpin; | |
3433 | ||
3434 | fpin = maybe_unlock_mmap_for_io(vmf, NULL); | |
3435 | balance_dirty_pages_ratelimited(mapping); | |
3436 | if (fpin) { | |
3437 | fput(fpin); | |
3438 | return VM_FAULT_COMPLETED; | |
3439 | } | |
3440 | } | |
3441 | ||
3442 | return 0; | |
3443 | } | |
3444 | ||
3445 | /* | |
3446 | * Handle write page faults for pages that can be reused in the current vma | |
3447 | * | |
3448 | * This can happen either due to the mapping being with the VM_SHARED flag, | |
3449 | * or due to us being the last reference standing to the page. In either | |
3450 | * case, all we need to do here is to mark the page as writable and update | |
3451 | * any related book-keeping. | |
3452 | */ | |
3453 | static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) | |
3454 | __releases(vmf->ptl) | |
3455 | { | |
3456 | struct vm_area_struct *vma = vmf->vma; | |
3457 | pte_t entry; | |
3458 | ||
3459 | VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); | |
3460 | VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); | |
3461 | ||
3462 | if (folio) { | |
3463 | VM_BUG_ON(folio_test_anon(folio) && | |
3464 | !PageAnonExclusive(vmf->page)); | |
3465 | /* | |
3466 | * Clear the folio's cpupid information as the existing | |
3467 | * information potentially belongs to a now completely | |
3468 | * unrelated process. | |
3469 | */ | |
3470 | folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); | |
3471 | } | |
3472 | ||
3473 | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); | |
3474 | entry = pte_mkyoung(vmf->orig_pte); | |
3475 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
3476 | if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) | |
3477 | update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); | |
3478 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3479 | count_vm_event(PGREUSE); | |
3480 | } | |
3481 | ||
3482 | /* | |
3483 | * We could add a bitflag somewhere, but for now, we know that all | |
3484 | * vm_ops that have a ->map_pages have been audited and don't need | |
3485 | * the mmap_lock to be held. | |
3486 | */ | |
3487 | static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) | |
3488 | { | |
3489 | struct vm_area_struct *vma = vmf->vma; | |
3490 | ||
3491 | if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) | |
3492 | return 0; | |
3493 | vma_end_read(vma); | |
3494 | return VM_FAULT_RETRY; | |
3495 | } | |
3496 | ||
3497 | /** | |
3498 | * __vmf_anon_prepare - Prepare to handle an anonymous fault. | |
3499 | * @vmf: The vm_fault descriptor passed from the fault handler. | |
3500 | * | |
3501 | * When preparing to insert an anonymous page into a VMA from a | |
3502 | * fault handler, call this function rather than anon_vma_prepare(). | |
3503 | * If this vma does not already have an associated anon_vma and we are | |
3504 | * only protected by the per-VMA lock, the caller must retry with the | |
3505 | * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to | |
3506 | * determine if this VMA can share its anon_vma, and that's not safe to | |
3507 | * do with only the per-VMA lock held for this VMA. | |
3508 | * | |
3509 | * Return: 0 if fault handling can proceed. Any other value should be | |
3510 | * returned to the caller. | |
3511 | */ | |
3512 | vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) | |
3513 | { | |
3514 | struct vm_area_struct *vma = vmf->vma; | |
3515 | vm_fault_t ret = 0; | |
3516 | ||
3517 | if (likely(vma->anon_vma)) | |
3518 | return 0; | |
3519 | if (vmf->flags & FAULT_FLAG_VMA_LOCK) { | |
3520 | if (!mmap_read_trylock(vma->vm_mm)) | |
3521 | return VM_FAULT_RETRY; | |
3522 | } | |
3523 | if (__anon_vma_prepare(vma)) | |
3524 | ret = VM_FAULT_OOM; | |
3525 | if (vmf->flags & FAULT_FLAG_VMA_LOCK) | |
3526 | mmap_read_unlock(vma->vm_mm); | |
3527 | return ret; | |
3528 | } | |
3529 | ||
3530 | /* | |
3531 | * Handle the case of a page which we actually need to copy to a new page, | |
3532 | * either due to COW or unsharing. | |
3533 | * | |
3534 | * Called with mmap_lock locked and the old page referenced, but | |
3535 | * without the ptl held. | |
3536 | * | |
3537 | * High level logic flow: | |
3538 | * | |
3539 | * - Allocate a page, copy the content of the old page to the new one. | |
3540 | * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. | |
3541 | * - Take the PTL. If the pte changed, bail out and release the allocated page | |
3542 | * - If the pte is still the way we remember it, update the page table and all | |
3543 | * relevant references. This includes dropping the reference the page-table | |
3544 | * held to the old page, as well as updating the rmap. | |
3545 | * - In any case, unlock the PTL and drop the reference we took to the old page. | |
3546 | */ | |
3547 | static vm_fault_t wp_page_copy(struct vm_fault *vmf) | |
3548 | { | |
3549 | const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; | |
3550 | struct vm_area_struct *vma = vmf->vma; | |
3551 | struct mm_struct *mm = vma->vm_mm; | |
3552 | struct folio *old_folio = NULL; | |
3553 | struct folio *new_folio = NULL; | |
3554 | pte_t entry; | |
3555 | int page_copied = 0; | |
3556 | struct mmu_notifier_range range; | |
3557 | vm_fault_t ret; | |
3558 | bool pfn_is_zero; | |
3559 | ||
3560 | delayacct_wpcopy_start(); | |
3561 | ||
3562 | if (vmf->page) | |
3563 | old_folio = page_folio(vmf->page); | |
3564 | ret = vmf_anon_prepare(vmf); | |
3565 | if (unlikely(ret)) | |
3566 | goto out; | |
3567 | ||
3568 | pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); | |
3569 | new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); | |
3570 | if (!new_folio) | |
3571 | goto oom; | |
3572 | ||
3573 | if (!pfn_is_zero) { | |
3574 | int err; | |
3575 | ||
3576 | err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); | |
3577 | if (err) { | |
3578 | /* | |
3579 | * COW failed, if the fault was solved by other, | |
3580 | * it's fine. If not, userspace would re-fault on | |
3581 | * the same address and we will handle the fault | |
3582 | * from the second attempt. | |
3583 | * The -EHWPOISON case will not be retried. | |
3584 | */ | |
3585 | folio_put(new_folio); | |
3586 | if (old_folio) | |
3587 | folio_put(old_folio); | |
3588 | ||
3589 | delayacct_wpcopy_end(); | |
3590 | return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; | |
3591 | } | |
3592 | kmsan_copy_page_meta(&new_folio->page, vmf->page); | |
3593 | } | |
3594 | ||
3595 | __folio_mark_uptodate(new_folio); | |
3596 | ||
3597 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, | |
3598 | vmf->address & PAGE_MASK, | |
3599 | (vmf->address & PAGE_MASK) + PAGE_SIZE); | |
3600 | mmu_notifier_invalidate_range_start(&range); | |
3601 | ||
3602 | /* | |
3603 | * Re-check the pte - we dropped the lock | |
3604 | */ | |
3605 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); | |
3606 | if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { | |
3607 | if (old_folio) { | |
3608 | if (!folio_test_anon(old_folio)) { | |
3609 | dec_mm_counter(mm, mm_counter_file(old_folio)); | |
3610 | inc_mm_counter(mm, MM_ANONPAGES); | |
3611 | } | |
3612 | } else { | |
3613 | ksm_might_unmap_zero_page(mm, vmf->orig_pte); | |
3614 | inc_mm_counter(mm, MM_ANONPAGES); | |
3615 | } | |
3616 | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); | |
3617 | entry = folio_mk_pte(new_folio, vma->vm_page_prot); | |
3618 | entry = pte_sw_mkyoung(entry); | |
3619 | if (unlikely(unshare)) { | |
3620 | if (pte_soft_dirty(vmf->orig_pte)) | |
3621 | entry = pte_mksoft_dirty(entry); | |
3622 | if (pte_uffd_wp(vmf->orig_pte)) | |
3623 | entry = pte_mkuffd_wp(entry); | |
3624 | } else { | |
3625 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
3626 | } | |
3627 | ||
3628 | /* | |
3629 | * Clear the pte entry and flush it first, before updating the | |
3630 | * pte with the new entry, to keep TLBs on different CPUs in | |
3631 | * sync. This code used to set the new PTE then flush TLBs, but | |
3632 | * that left a window where the new PTE could be loaded into | |
3633 | * some TLBs while the old PTE remains in others. | |
3634 | */ | |
3635 | ptep_clear_flush(vma, vmf->address, vmf->pte); | |
3636 | folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); | |
3637 | folio_add_lru_vma(new_folio, vma); | |
3638 | BUG_ON(unshare && pte_write(entry)); | |
3639 | set_pte_at(mm, vmf->address, vmf->pte, entry); | |
3640 | update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); | |
3641 | if (old_folio) { | |
3642 | /* | |
3643 | * Only after switching the pte to the new page may | |
3644 | * we remove the mapcount here. Otherwise another | |
3645 | * process may come and find the rmap count decremented | |
3646 | * before the pte is switched to the new page, and | |
3647 | * "reuse" the old page writing into it while our pte | |
3648 | * here still points into it and can be read by other | |
3649 | * threads. | |
3650 | * | |
3651 | * The critical issue is to order this | |
3652 | * folio_remove_rmap_pte() with the ptp_clear_flush | |
3653 | * above. Those stores are ordered by (if nothing else,) | |
3654 | * the barrier present in the atomic_add_negative | |
3655 | * in folio_remove_rmap_pte(); | |
3656 | * | |
3657 | * Then the TLB flush in ptep_clear_flush ensures that | |
3658 | * no process can access the old page before the | |
3659 | * decremented mapcount is visible. And the old page | |
3660 | * cannot be reused until after the decremented | |
3661 | * mapcount is visible. So transitively, TLBs to | |
3662 | * old page will be flushed before it can be reused. | |
3663 | */ | |
3664 | folio_remove_rmap_pte(old_folio, vmf->page, vma); | |
3665 | } | |
3666 | ||
3667 | /* Free the old page.. */ | |
3668 | new_folio = old_folio; | |
3669 | page_copied = 1; | |
3670 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3671 | } else if (vmf->pte) { | |
3672 | update_mmu_tlb(vma, vmf->address, vmf->pte); | |
3673 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3674 | } | |
3675 | ||
3676 | mmu_notifier_invalidate_range_end(&range); | |
3677 | ||
3678 | if (new_folio) | |
3679 | folio_put(new_folio); | |
3680 | if (old_folio) { | |
3681 | if (page_copied) | |
3682 | free_swap_cache(old_folio); | |
3683 | folio_put(old_folio); | |
3684 | } | |
3685 | ||
3686 | delayacct_wpcopy_end(); | |
3687 | return 0; | |
3688 | oom: | |
3689 | ret = VM_FAULT_OOM; | |
3690 | out: | |
3691 | if (old_folio) | |
3692 | folio_put(old_folio); | |
3693 | ||
3694 | delayacct_wpcopy_end(); | |
3695 | return ret; | |
3696 | } | |
3697 | ||
3698 | /** | |
3699 | * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE | |
3700 | * writeable once the page is prepared | |
3701 | * | |
3702 | * @vmf: structure describing the fault | |
3703 | * @folio: the folio of vmf->page | |
3704 | * | |
3705 | * This function handles all that is needed to finish a write page fault in a | |
3706 | * shared mapping due to PTE being read-only once the mapped page is prepared. | |
3707 | * It handles locking of PTE and modifying it. | |
3708 | * | |
3709 | * The function expects the page to be locked or other protection against | |
3710 | * concurrent faults / writeback (such as DAX radix tree locks). | |
3711 | * | |
3712 | * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before | |
3713 | * we acquired PTE lock. | |
3714 | */ | |
3715 | static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) | |
3716 | { | |
3717 | WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); | |
3718 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, | |
3719 | &vmf->ptl); | |
3720 | if (!vmf->pte) | |
3721 | return VM_FAULT_NOPAGE; | |
3722 | /* | |
3723 | * We might have raced with another page fault while we released the | |
3724 | * pte_offset_map_lock. | |
3725 | */ | |
3726 | if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { | |
3727 | update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); | |
3728 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3729 | return VM_FAULT_NOPAGE; | |
3730 | } | |
3731 | wp_page_reuse(vmf, folio); | |
3732 | return 0; | |
3733 | } | |
3734 | ||
3735 | /* | |
3736 | * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED | |
3737 | * mapping | |
3738 | */ | |
3739 | static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) | |
3740 | { | |
3741 | struct vm_area_struct *vma = vmf->vma; | |
3742 | ||
3743 | if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { | |
3744 | vm_fault_t ret; | |
3745 | ||
3746 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3747 | ret = vmf_can_call_fault(vmf); | |
3748 | if (ret) | |
3749 | return ret; | |
3750 | ||
3751 | vmf->flags |= FAULT_FLAG_MKWRITE; | |
3752 | ret = vma->vm_ops->pfn_mkwrite(vmf); | |
3753 | if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) | |
3754 | return ret; | |
3755 | return finish_mkwrite_fault(vmf, NULL); | |
3756 | } | |
3757 | wp_page_reuse(vmf, NULL); | |
3758 | return 0; | |
3759 | } | |
3760 | ||
3761 | static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) | |
3762 | __releases(vmf->ptl) | |
3763 | { | |
3764 | struct vm_area_struct *vma = vmf->vma; | |
3765 | vm_fault_t ret = 0; | |
3766 | ||
3767 | folio_get(folio); | |
3768 | ||
3769 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { | |
3770 | vm_fault_t tmp; | |
3771 | ||
3772 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3773 | tmp = vmf_can_call_fault(vmf); | |
3774 | if (tmp) { | |
3775 | folio_put(folio); | |
3776 | return tmp; | |
3777 | } | |
3778 | ||
3779 | tmp = do_page_mkwrite(vmf, folio); | |
3780 | if (unlikely(!tmp || (tmp & | |
3781 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
3782 | folio_put(folio); | |
3783 | return tmp; | |
3784 | } | |
3785 | tmp = finish_mkwrite_fault(vmf, folio); | |
3786 | if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { | |
3787 | folio_unlock(folio); | |
3788 | folio_put(folio); | |
3789 | return tmp; | |
3790 | } | |
3791 | } else { | |
3792 | wp_page_reuse(vmf, folio); | |
3793 | folio_lock(folio); | |
3794 | } | |
3795 | ret |= fault_dirty_shared_page(vmf); | |
3796 | folio_put(folio); | |
3797 | ||
3798 | return ret; | |
3799 | } | |
3800 | ||
3801 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
3802 | static bool __wp_can_reuse_large_anon_folio(struct folio *folio, | |
3803 | struct vm_area_struct *vma) | |
3804 | { | |
3805 | bool exclusive = false; | |
3806 | ||
3807 | /* Let's just free up a large folio if only a single page is mapped. */ | |
3808 | if (folio_large_mapcount(folio) <= 1) | |
3809 | return false; | |
3810 | ||
3811 | /* | |
3812 | * The assumption for anonymous folios is that each page can only get | |
3813 | * mapped once into each MM. The only exception are KSM folios, which | |
3814 | * are always small. | |
3815 | * | |
3816 | * Each taken mapcount must be paired with exactly one taken reference, | |
3817 | * whereby the refcount must be incremented before the mapcount when | |
3818 | * mapping a page, and the refcount must be decremented after the | |
3819 | * mapcount when unmapping a page. | |
3820 | * | |
3821 | * If all folio references are from mappings, and all mappings are in | |
3822 | * the page tables of this MM, then this folio is exclusive to this MM. | |
3823 | */ | |
3824 | if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) | |
3825 | return false; | |
3826 | ||
3827 | VM_WARN_ON_ONCE(folio_test_ksm(folio)); | |
3828 | ||
3829 | if (unlikely(folio_test_swapcache(folio))) { | |
3830 | /* | |
3831 | * Note: freeing up the swapcache will fail if some PTEs are | |
3832 | * still swap entries. | |
3833 | */ | |
3834 | if (!folio_trylock(folio)) | |
3835 | return false; | |
3836 | folio_free_swap(folio); | |
3837 | folio_unlock(folio); | |
3838 | } | |
3839 | ||
3840 | if (folio_large_mapcount(folio) != folio_ref_count(folio)) | |
3841 | return false; | |
3842 | ||
3843 | /* Stabilize the mapcount vs. refcount and recheck. */ | |
3844 | folio_lock_large_mapcount(folio); | |
3845 | VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio); | |
3846 | ||
3847 | if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) | |
3848 | goto unlock; | |
3849 | if (folio_large_mapcount(folio) != folio_ref_count(folio)) | |
3850 | goto unlock; | |
3851 | ||
3852 | VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio); | |
3853 | VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio); | |
3854 | VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id && | |
3855 | folio_mm_id(folio, 1) != vma->vm_mm->mm_id); | |
3856 | ||
3857 | /* | |
3858 | * Do we need the folio lock? Likely not. If there would have been | |
3859 | * references from page migration/swapout, we would have detected | |
3860 | * an additional folio reference and never ended up here. | |
3861 | */ | |
3862 | exclusive = true; | |
3863 | unlock: | |
3864 | folio_unlock_large_mapcount(folio); | |
3865 | return exclusive; | |
3866 | } | |
3867 | #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ | |
3868 | static bool __wp_can_reuse_large_anon_folio(struct folio *folio, | |
3869 | struct vm_area_struct *vma) | |
3870 | { | |
3871 | BUILD_BUG(); | |
3872 | } | |
3873 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | |
3874 | ||
3875 | static bool wp_can_reuse_anon_folio(struct folio *folio, | |
3876 | struct vm_area_struct *vma) | |
3877 | { | |
3878 | if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio)) | |
3879 | return __wp_can_reuse_large_anon_folio(folio, vma); | |
3880 | ||
3881 | /* | |
3882 | * We have to verify under folio lock: these early checks are | |
3883 | * just an optimization to avoid locking the folio and freeing | |
3884 | * the swapcache if there is little hope that we can reuse. | |
3885 | * | |
3886 | * KSM doesn't necessarily raise the folio refcount. | |
3887 | */ | |
3888 | if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) | |
3889 | return false; | |
3890 | if (!folio_test_lru(folio)) | |
3891 | /* | |
3892 | * We cannot easily detect+handle references from | |
3893 | * remote LRU caches or references to LRU folios. | |
3894 | */ | |
3895 | lru_add_drain(); | |
3896 | if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) | |
3897 | return false; | |
3898 | if (!folio_trylock(folio)) | |
3899 | return false; | |
3900 | if (folio_test_swapcache(folio)) | |
3901 | folio_free_swap(folio); | |
3902 | if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { | |
3903 | folio_unlock(folio); | |
3904 | return false; | |
3905 | } | |
3906 | /* | |
3907 | * Ok, we've got the only folio reference from our mapping | |
3908 | * and the folio is locked, it's dark out, and we're wearing | |
3909 | * sunglasses. Hit it. | |
3910 | */ | |
3911 | folio_move_anon_rmap(folio, vma); | |
3912 | folio_unlock(folio); | |
3913 | return true; | |
3914 | } | |
3915 | ||
3916 | /* | |
3917 | * This routine handles present pages, when | |
3918 | * * users try to write to a shared page (FAULT_FLAG_WRITE) | |
3919 | * * GUP wants to take a R/O pin on a possibly shared anonymous page | |
3920 | * (FAULT_FLAG_UNSHARE) | |
3921 | * | |
3922 | * It is done by copying the page to a new address and decrementing the | |
3923 | * shared-page counter for the old page. | |
3924 | * | |
3925 | * Note that this routine assumes that the protection checks have been | |
3926 | * done by the caller (the low-level page fault routine in most cases). | |
3927 | * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've | |
3928 | * done any necessary COW. | |
3929 | * | |
3930 | * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even | |
3931 | * though the page will change only once the write actually happens. This | |
3932 | * avoids a few races, and potentially makes it more efficient. | |
3933 | * | |
3934 | * We enter with non-exclusive mmap_lock (to exclude vma changes, | |
3935 | * but allow concurrent faults), with pte both mapped and locked. | |
3936 | * We return with mmap_lock still held, but pte unmapped and unlocked. | |
3937 | */ | |
3938 | static vm_fault_t do_wp_page(struct vm_fault *vmf) | |
3939 | __releases(vmf->ptl) | |
3940 | { | |
3941 | const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; | |
3942 | struct vm_area_struct *vma = vmf->vma; | |
3943 | struct folio *folio = NULL; | |
3944 | pte_t pte; | |
3945 | ||
3946 | if (likely(!unshare)) { | |
3947 | if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { | |
3948 | if (!userfaultfd_wp_async(vma)) { | |
3949 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3950 | return handle_userfault(vmf, VM_UFFD_WP); | |
3951 | } | |
3952 | ||
3953 | /* | |
3954 | * Nothing needed (cache flush, TLB invalidations, | |
3955 | * etc.) because we're only removing the uffd-wp bit, | |
3956 | * which is completely invisible to the user. | |
3957 | */ | |
3958 | pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); | |
3959 | ||
3960 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); | |
3961 | /* | |
3962 | * Update this to be prepared for following up CoW | |
3963 | * handling | |
3964 | */ | |
3965 | vmf->orig_pte = pte; | |
3966 | } | |
3967 | ||
3968 | /* | |
3969 | * Userfaultfd write-protect can defer flushes. Ensure the TLB | |
3970 | * is flushed in this case before copying. | |
3971 | */ | |
3972 | if (unlikely(userfaultfd_wp(vmf->vma) && | |
3973 | mm_tlb_flush_pending(vmf->vma->vm_mm))) | |
3974 | flush_tlb_page(vmf->vma, vmf->address); | |
3975 | } | |
3976 | ||
3977 | vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); | |
3978 | ||
3979 | if (vmf->page) | |
3980 | folio = page_folio(vmf->page); | |
3981 | ||
3982 | /* | |
3983 | * Shared mapping: we are guaranteed to have VM_WRITE and | |
3984 | * FAULT_FLAG_WRITE set at this point. | |
3985 | */ | |
3986 | if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { | |
3987 | /* | |
3988 | * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a | |
3989 | * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called. | |
3990 | * | |
3991 | * We should not cow pages in a shared writeable mapping. | |
3992 | * Just mark the pages writable and/or call ops->pfn_mkwrite. | |
3993 | */ | |
3994 | if (!vmf->page || is_fsdax_page(vmf->page)) { | |
3995 | vmf->page = NULL; | |
3996 | return wp_pfn_shared(vmf); | |
3997 | } | |
3998 | return wp_page_shared(vmf, folio); | |
3999 | } | |
4000 | ||
4001 | /* | |
4002 | * Private mapping: create an exclusive anonymous page copy if reuse | |
4003 | * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. | |
4004 | * | |
4005 | * If we encounter a page that is marked exclusive, we must reuse | |
4006 | * the page without further checks. | |
4007 | */ | |
4008 | if (folio && folio_test_anon(folio) && | |
4009 | (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { | |
4010 | if (!PageAnonExclusive(vmf->page)) | |
4011 | SetPageAnonExclusive(vmf->page); | |
4012 | if (unlikely(unshare)) { | |
4013 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4014 | return 0; | |
4015 | } | |
4016 | wp_page_reuse(vmf, folio); | |
4017 | return 0; | |
4018 | } | |
4019 | /* | |
4020 | * Ok, we need to copy. Oh, well.. | |
4021 | */ | |
4022 | if (folio) | |
4023 | folio_get(folio); | |
4024 | ||
4025 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4026 | #ifdef CONFIG_KSM | |
4027 | if (folio && folio_test_ksm(folio)) | |
4028 | count_vm_event(COW_KSM); | |
4029 | #endif | |
4030 | return wp_page_copy(vmf); | |
4031 | } | |
4032 | ||
4033 | static void unmap_mapping_range_vma(struct vm_area_struct *vma, | |
4034 | unsigned long start_addr, unsigned long end_addr, | |
4035 | struct zap_details *details) | |
4036 | { | |
4037 | zap_page_range_single(vma, start_addr, end_addr - start_addr, details); | |
4038 | } | |
4039 | ||
4040 | static inline void unmap_mapping_range_tree(struct rb_root_cached *root, | |
4041 | pgoff_t first_index, | |
4042 | pgoff_t last_index, | |
4043 | struct zap_details *details) | |
4044 | { | |
4045 | struct vm_area_struct *vma; | |
4046 | pgoff_t vba, vea, zba, zea; | |
4047 | ||
4048 | vma_interval_tree_foreach(vma, root, first_index, last_index) { | |
4049 | vba = vma->vm_pgoff; | |
4050 | vea = vba + vma_pages(vma) - 1; | |
4051 | zba = max(first_index, vba); | |
4052 | zea = min(last_index, vea); | |
4053 | ||
4054 | unmap_mapping_range_vma(vma, | |
4055 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | |
4056 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
4057 | details); | |
4058 | } | |
4059 | } | |
4060 | ||
4061 | /** | |
4062 | * unmap_mapping_folio() - Unmap single folio from processes. | |
4063 | * @folio: The locked folio to be unmapped. | |
4064 | * | |
4065 | * Unmap this folio from any userspace process which still has it mmaped. | |
4066 | * Typically, for efficiency, the range of nearby pages has already been | |
4067 | * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once | |
4068 | * truncation or invalidation holds the lock on a folio, it may find that | |
4069 | * the page has been remapped again: and then uses unmap_mapping_folio() | |
4070 | * to unmap it finally. | |
4071 | */ | |
4072 | void unmap_mapping_folio(struct folio *folio) | |
4073 | { | |
4074 | struct address_space *mapping = folio->mapping; | |
4075 | struct zap_details details = { }; | |
4076 | pgoff_t first_index; | |
4077 | pgoff_t last_index; | |
4078 | ||
4079 | VM_BUG_ON(!folio_test_locked(folio)); | |
4080 | ||
4081 | first_index = folio->index; | |
4082 | last_index = folio_next_index(folio) - 1; | |
4083 | ||
4084 | details.even_cows = false; | |
4085 | details.single_folio = folio; | |
4086 | details.zap_flags = ZAP_FLAG_DROP_MARKER; | |
4087 | ||
4088 | i_mmap_lock_read(mapping); | |
4089 | if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) | |
4090 | unmap_mapping_range_tree(&mapping->i_mmap, first_index, | |
4091 | last_index, &details); | |
4092 | i_mmap_unlock_read(mapping); | |
4093 | } | |
4094 | ||
4095 | /** | |
4096 | * unmap_mapping_pages() - Unmap pages from processes. | |
4097 | * @mapping: The address space containing pages to be unmapped. | |
4098 | * @start: Index of first page to be unmapped. | |
4099 | * @nr: Number of pages to be unmapped. 0 to unmap to end of file. | |
4100 | * @even_cows: Whether to unmap even private COWed pages. | |
4101 | * | |
4102 | * Unmap the pages in this address space from any userspace process which | |
4103 | * has them mmaped. Generally, you want to remove COWed pages as well when | |
4104 | * a file is being truncated, but not when invalidating pages from the page | |
4105 | * cache. | |
4106 | */ | |
4107 | void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, | |
4108 | pgoff_t nr, bool even_cows) | |
4109 | { | |
4110 | struct zap_details details = { }; | |
4111 | pgoff_t first_index = start; | |
4112 | pgoff_t last_index = start + nr - 1; | |
4113 | ||
4114 | details.even_cows = even_cows; | |
4115 | if (last_index < first_index) | |
4116 | last_index = ULONG_MAX; | |
4117 | ||
4118 | i_mmap_lock_read(mapping); | |
4119 | if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) | |
4120 | unmap_mapping_range_tree(&mapping->i_mmap, first_index, | |
4121 | last_index, &details); | |
4122 | i_mmap_unlock_read(mapping); | |
4123 | } | |
4124 | EXPORT_SYMBOL_GPL(unmap_mapping_pages); | |
4125 | ||
4126 | /** | |
4127 | * unmap_mapping_range - unmap the portion of all mmaps in the specified | |
4128 | * address_space corresponding to the specified byte range in the underlying | |
4129 | * file. | |
4130 | * | |
4131 | * @mapping: the address space containing mmaps to be unmapped. | |
4132 | * @holebegin: byte in first page to unmap, relative to the start of | |
4133 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
4134 | * boundary. Note that this is different from truncate_pagecache(), which | |
4135 | * must keep the partial page. In contrast, we must get rid of | |
4136 | * partial pages. | |
4137 | * @holelen: size of prospective hole in bytes. This will be rounded | |
4138 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
4139 | * end of the file. | |
4140 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
4141 | * but 0 when invalidating pagecache, don't throw away private data. | |
4142 | */ | |
4143 | void unmap_mapping_range(struct address_space *mapping, | |
4144 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
4145 | { | |
4146 | pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; | |
4147 | pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
4148 | ||
4149 | /* Check for overflow. */ | |
4150 | if (sizeof(holelen) > sizeof(hlen)) { | |
4151 | long long holeend = | |
4152 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
4153 | if (holeend & ~(long long)ULONG_MAX) | |
4154 | hlen = ULONG_MAX - hba + 1; | |
4155 | } | |
4156 | ||
4157 | unmap_mapping_pages(mapping, hba, hlen, even_cows); | |
4158 | } | |
4159 | EXPORT_SYMBOL(unmap_mapping_range); | |
4160 | ||
4161 | /* | |
4162 | * Restore a potential device exclusive pte to a working pte entry | |
4163 | */ | |
4164 | static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) | |
4165 | { | |
4166 | struct folio *folio = page_folio(vmf->page); | |
4167 | struct vm_area_struct *vma = vmf->vma; | |
4168 | struct mmu_notifier_range range; | |
4169 | vm_fault_t ret; | |
4170 | ||
4171 | /* | |
4172 | * We need a reference to lock the folio because we don't hold | |
4173 | * the PTL so a racing thread can remove the device-exclusive | |
4174 | * entry and unmap it. If the folio is free the entry must | |
4175 | * have been removed already. If it happens to have already | |
4176 | * been re-allocated after being freed all we do is lock and | |
4177 | * unlock it. | |
4178 | */ | |
4179 | if (!folio_try_get(folio)) | |
4180 | return 0; | |
4181 | ||
4182 | ret = folio_lock_or_retry(folio, vmf); | |
4183 | if (ret) { | |
4184 | folio_put(folio); | |
4185 | return ret; | |
4186 | } | |
4187 | mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0, | |
4188 | vma->vm_mm, vmf->address & PAGE_MASK, | |
4189 | (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); | |
4190 | mmu_notifier_invalidate_range_start(&range); | |
4191 | ||
4192 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, | |
4193 | &vmf->ptl); | |
4194 | if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) | |
4195 | restore_exclusive_pte(vma, folio, vmf->page, vmf->address, | |
4196 | vmf->pte, vmf->orig_pte); | |
4197 | ||
4198 | if (vmf->pte) | |
4199 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4200 | folio_unlock(folio); | |
4201 | folio_put(folio); | |
4202 | ||
4203 | mmu_notifier_invalidate_range_end(&range); | |
4204 | return 0; | |
4205 | } | |
4206 | ||
4207 | static inline bool should_try_to_free_swap(struct folio *folio, | |
4208 | struct vm_area_struct *vma, | |
4209 | unsigned int fault_flags) | |
4210 | { | |
4211 | if (!folio_test_swapcache(folio)) | |
4212 | return false; | |
4213 | if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || | |
4214 | folio_test_mlocked(folio)) | |
4215 | return true; | |
4216 | /* | |
4217 | * If we want to map a page that's in the swapcache writable, we | |
4218 | * have to detect via the refcount if we're really the exclusive | |
4219 | * user. Try freeing the swapcache to get rid of the swapcache | |
4220 | * reference only in case it's likely that we'll be the exlusive user. | |
4221 | */ | |
4222 | return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && | |
4223 | folio_ref_count(folio) == (1 + folio_nr_pages(folio)); | |
4224 | } | |
4225 | ||
4226 | static vm_fault_t pte_marker_clear(struct vm_fault *vmf) | |
4227 | { | |
4228 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, | |
4229 | vmf->address, &vmf->ptl); | |
4230 | if (!vmf->pte) | |
4231 | return 0; | |
4232 | /* | |
4233 | * Be careful so that we will only recover a special uffd-wp pte into a | |
4234 | * none pte. Otherwise it means the pte could have changed, so retry. | |
4235 | * | |
4236 | * This should also cover the case where e.g. the pte changed | |
4237 | * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. | |
4238 | * So is_pte_marker() check is not enough to safely drop the pte. | |
4239 | */ | |
4240 | if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) | |
4241 | pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); | |
4242 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4243 | return 0; | |
4244 | } | |
4245 | ||
4246 | static vm_fault_t do_pte_missing(struct vm_fault *vmf) | |
4247 | { | |
4248 | if (vma_is_anonymous(vmf->vma)) | |
4249 | return do_anonymous_page(vmf); | |
4250 | else | |
4251 | return do_fault(vmf); | |
4252 | } | |
4253 | ||
4254 | /* | |
4255 | * This is actually a page-missing access, but with uffd-wp special pte | |
4256 | * installed. It means this pte was wr-protected before being unmapped. | |
4257 | */ | |
4258 | static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) | |
4259 | { | |
4260 | /* | |
4261 | * Just in case there're leftover special ptes even after the region | |
4262 | * got unregistered - we can simply clear them. | |
4263 | */ | |
4264 | if (unlikely(!userfaultfd_wp(vmf->vma))) | |
4265 | return pte_marker_clear(vmf); | |
4266 | ||
4267 | return do_pte_missing(vmf); | |
4268 | } | |
4269 | ||
4270 | static vm_fault_t handle_pte_marker(struct vm_fault *vmf) | |
4271 | { | |
4272 | swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); | |
4273 | unsigned long marker = pte_marker_get(entry); | |
4274 | ||
4275 | /* | |
4276 | * PTE markers should never be empty. If anything weird happened, | |
4277 | * the best thing to do is to kill the process along with its mm. | |
4278 | */ | |
4279 | if (WARN_ON_ONCE(!marker)) | |
4280 | return VM_FAULT_SIGBUS; | |
4281 | ||
4282 | /* Higher priority than uffd-wp when data corrupted */ | |
4283 | if (marker & PTE_MARKER_POISONED) | |
4284 | return VM_FAULT_HWPOISON; | |
4285 | ||
4286 | /* Hitting a guard page is always a fatal condition. */ | |
4287 | if (marker & PTE_MARKER_GUARD) | |
4288 | return VM_FAULT_SIGSEGV; | |
4289 | ||
4290 | if (pte_marker_entry_uffd_wp(entry)) | |
4291 | return pte_marker_handle_uffd_wp(vmf); | |
4292 | ||
4293 | /* This is an unknown pte marker */ | |
4294 | return VM_FAULT_SIGBUS; | |
4295 | } | |
4296 | ||
4297 | static struct folio *__alloc_swap_folio(struct vm_fault *vmf) | |
4298 | { | |
4299 | struct vm_area_struct *vma = vmf->vma; | |
4300 | struct folio *folio; | |
4301 | swp_entry_t entry; | |
4302 | ||
4303 | folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); | |
4304 | if (!folio) | |
4305 | return NULL; | |
4306 | ||
4307 | entry = pte_to_swp_entry(vmf->orig_pte); | |
4308 | if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, | |
4309 | GFP_KERNEL, entry)) { | |
4310 | folio_put(folio); | |
4311 | return NULL; | |
4312 | } | |
4313 | ||
4314 | return folio; | |
4315 | } | |
4316 | ||
4317 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
4318 | /* | |
4319 | * Check if the PTEs within a range are contiguous swap entries | |
4320 | * and have consistent swapcache, zeromap. | |
4321 | */ | |
4322 | static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) | |
4323 | { | |
4324 | unsigned long addr; | |
4325 | swp_entry_t entry; | |
4326 | int idx; | |
4327 | pte_t pte; | |
4328 | ||
4329 | addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); | |
4330 | idx = (vmf->address - addr) / PAGE_SIZE; | |
4331 | pte = ptep_get(ptep); | |
4332 | ||
4333 | if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) | |
4334 | return false; | |
4335 | entry = pte_to_swp_entry(pte); | |
4336 | if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) | |
4337 | return false; | |
4338 | ||
4339 | /* | |
4340 | * swap_read_folio() can't handle the case a large folio is hybridly | |
4341 | * from different backends. And they are likely corner cases. Similar | |
4342 | * things might be added once zswap support large folios. | |
4343 | */ | |
4344 | if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) | |
4345 | return false; | |
4346 | if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) | |
4347 | return false; | |
4348 | ||
4349 | return true; | |
4350 | } | |
4351 | ||
4352 | static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, | |
4353 | unsigned long addr, | |
4354 | unsigned long orders) | |
4355 | { | |
4356 | int order, nr; | |
4357 | ||
4358 | order = highest_order(orders); | |
4359 | ||
4360 | /* | |
4361 | * To swap in a THP with nr pages, we require that its first swap_offset | |
4362 | * is aligned with that number, as it was when the THP was swapped out. | |
4363 | * This helps filter out most invalid entries. | |
4364 | */ | |
4365 | while (orders) { | |
4366 | nr = 1 << order; | |
4367 | if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) | |
4368 | break; | |
4369 | order = next_order(&orders, order); | |
4370 | } | |
4371 | ||
4372 | return orders; | |
4373 | } | |
4374 | ||
4375 | static struct folio *alloc_swap_folio(struct vm_fault *vmf) | |
4376 | { | |
4377 | struct vm_area_struct *vma = vmf->vma; | |
4378 | unsigned long orders; | |
4379 | struct folio *folio; | |
4380 | unsigned long addr; | |
4381 | swp_entry_t entry; | |
4382 | spinlock_t *ptl; | |
4383 | pte_t *pte; | |
4384 | gfp_t gfp; | |
4385 | int order; | |
4386 | ||
4387 | /* | |
4388 | * If uffd is active for the vma we need per-page fault fidelity to | |
4389 | * maintain the uffd semantics. | |
4390 | */ | |
4391 | if (unlikely(userfaultfd_armed(vma))) | |
4392 | goto fallback; | |
4393 | ||
4394 | /* | |
4395 | * A large swapped out folio could be partially or fully in zswap. We | |
4396 | * lack handling for such cases, so fallback to swapping in order-0 | |
4397 | * folio. | |
4398 | */ | |
4399 | if (!zswap_never_enabled()) | |
4400 | goto fallback; | |
4401 | ||
4402 | entry = pte_to_swp_entry(vmf->orig_pte); | |
4403 | /* | |
4404 | * Get a list of all the (large) orders below PMD_ORDER that are enabled | |
4405 | * and suitable for swapping THP. | |
4406 | */ | |
4407 | orders = thp_vma_allowable_orders(vma, vma->vm_flags, | |
4408 | TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); | |
4409 | orders = thp_vma_suitable_orders(vma, vmf->address, orders); | |
4410 | orders = thp_swap_suitable_orders(swp_offset(entry), | |
4411 | vmf->address, orders); | |
4412 | ||
4413 | if (!orders) | |
4414 | goto fallback; | |
4415 | ||
4416 | pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, | |
4417 | vmf->address & PMD_MASK, &ptl); | |
4418 | if (unlikely(!pte)) | |
4419 | goto fallback; | |
4420 | ||
4421 | /* | |
4422 | * For do_swap_page, find the highest order where the aligned range is | |
4423 | * completely swap entries with contiguous swap offsets. | |
4424 | */ | |
4425 | order = highest_order(orders); | |
4426 | while (orders) { | |
4427 | addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); | |
4428 | if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) | |
4429 | break; | |
4430 | order = next_order(&orders, order); | |
4431 | } | |
4432 | ||
4433 | pte_unmap_unlock(pte, ptl); | |
4434 | ||
4435 | /* Try allocating the highest of the remaining orders. */ | |
4436 | gfp = vma_thp_gfp_mask(vma); | |
4437 | while (orders) { | |
4438 | addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); | |
4439 | folio = vma_alloc_folio(gfp, order, vma, addr); | |
4440 | if (folio) { | |
4441 | if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, | |
4442 | gfp, entry)) | |
4443 | return folio; | |
4444 | count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); | |
4445 | folio_put(folio); | |
4446 | } | |
4447 | count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); | |
4448 | order = next_order(&orders, order); | |
4449 | } | |
4450 | ||
4451 | fallback: | |
4452 | return __alloc_swap_folio(vmf); | |
4453 | } | |
4454 | #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ | |
4455 | static struct folio *alloc_swap_folio(struct vm_fault *vmf) | |
4456 | { | |
4457 | return __alloc_swap_folio(vmf); | |
4458 | } | |
4459 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | |
4460 | ||
4461 | static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); | |
4462 | ||
4463 | /* | |
4464 | * We enter with non-exclusive mmap_lock (to exclude vma changes, | |
4465 | * but allow concurrent faults), and pte mapped but not yet locked. | |
4466 | * We return with pte unmapped and unlocked. | |
4467 | * | |
4468 | * We return with the mmap_lock locked or unlocked in the same cases | |
4469 | * as does filemap_fault(). | |
4470 | */ | |
4471 | vm_fault_t do_swap_page(struct vm_fault *vmf) | |
4472 | { | |
4473 | struct vm_area_struct *vma = vmf->vma; | |
4474 | struct folio *swapcache, *folio = NULL; | |
4475 | DECLARE_WAITQUEUE(wait, current); | |
4476 | struct page *page; | |
4477 | struct swap_info_struct *si = NULL; | |
4478 | rmap_t rmap_flags = RMAP_NONE; | |
4479 | bool need_clear_cache = false; | |
4480 | bool exclusive = false; | |
4481 | swp_entry_t entry; | |
4482 | pte_t pte; | |
4483 | vm_fault_t ret = 0; | |
4484 | void *shadow = NULL; | |
4485 | int nr_pages; | |
4486 | unsigned long page_idx; | |
4487 | unsigned long address; | |
4488 | pte_t *ptep; | |
4489 | ||
4490 | if (!pte_unmap_same(vmf)) | |
4491 | goto out; | |
4492 | ||
4493 | entry = pte_to_swp_entry(vmf->orig_pte); | |
4494 | if (unlikely(non_swap_entry(entry))) { | |
4495 | if (is_migration_entry(entry)) { | |
4496 | migration_entry_wait(vma->vm_mm, vmf->pmd, | |
4497 | vmf->address); | |
4498 | } else if (is_device_exclusive_entry(entry)) { | |
4499 | vmf->page = pfn_swap_entry_to_page(entry); | |
4500 | ret = remove_device_exclusive_entry(vmf); | |
4501 | } else if (is_device_private_entry(entry)) { | |
4502 | if (vmf->flags & FAULT_FLAG_VMA_LOCK) { | |
4503 | /* | |
4504 | * migrate_to_ram is not yet ready to operate | |
4505 | * under VMA lock. | |
4506 | */ | |
4507 | vma_end_read(vma); | |
4508 | ret = VM_FAULT_RETRY; | |
4509 | goto out; | |
4510 | } | |
4511 | ||
4512 | vmf->page = pfn_swap_entry_to_page(entry); | |
4513 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, | |
4514 | vmf->address, &vmf->ptl); | |
4515 | if (unlikely(!vmf->pte || | |
4516 | !pte_same(ptep_get(vmf->pte), | |
4517 | vmf->orig_pte))) | |
4518 | goto unlock; | |
4519 | ||
4520 | /* | |
4521 | * Get a page reference while we know the page can't be | |
4522 | * freed. | |
4523 | */ | |
4524 | if (trylock_page(vmf->page)) { | |
4525 | struct dev_pagemap *pgmap; | |
4526 | ||
4527 | get_page(vmf->page); | |
4528 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4529 | pgmap = page_pgmap(vmf->page); | |
4530 | ret = pgmap->ops->migrate_to_ram(vmf); | |
4531 | unlock_page(vmf->page); | |
4532 | put_page(vmf->page); | |
4533 | } else { | |
4534 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4535 | } | |
4536 | } else if (is_hwpoison_entry(entry)) { | |
4537 | ret = VM_FAULT_HWPOISON; | |
4538 | } else if (is_pte_marker_entry(entry)) { | |
4539 | ret = handle_pte_marker(vmf); | |
4540 | } else { | |
4541 | print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); | |
4542 | ret = VM_FAULT_SIGBUS; | |
4543 | } | |
4544 | goto out; | |
4545 | } | |
4546 | ||
4547 | /* Prevent swapoff from happening to us. */ | |
4548 | si = get_swap_device(entry); | |
4549 | if (unlikely(!si)) | |
4550 | goto out; | |
4551 | ||
4552 | folio = swap_cache_get_folio(entry, vma, vmf->address); | |
4553 | if (folio) | |
4554 | page = folio_file_page(folio, swp_offset(entry)); | |
4555 | swapcache = folio; | |
4556 | ||
4557 | if (!folio) { | |
4558 | if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && | |
4559 | __swap_count(entry) == 1) { | |
4560 | /* skip swapcache */ | |
4561 | folio = alloc_swap_folio(vmf); | |
4562 | if (folio) { | |
4563 | __folio_set_locked(folio); | |
4564 | __folio_set_swapbacked(folio); | |
4565 | ||
4566 | nr_pages = folio_nr_pages(folio); | |
4567 | if (folio_test_large(folio)) | |
4568 | entry.val = ALIGN_DOWN(entry.val, nr_pages); | |
4569 | /* | |
4570 | * Prevent parallel swapin from proceeding with | |
4571 | * the cache flag. Otherwise, another thread | |
4572 | * may finish swapin first, free the entry, and | |
4573 | * swapout reusing the same entry. It's | |
4574 | * undetectable as pte_same() returns true due | |
4575 | * to entry reuse. | |
4576 | */ | |
4577 | if (swapcache_prepare(entry, nr_pages)) { | |
4578 | /* | |
4579 | * Relax a bit to prevent rapid | |
4580 | * repeated page faults. | |
4581 | */ | |
4582 | add_wait_queue(&swapcache_wq, &wait); | |
4583 | schedule_timeout_uninterruptible(1); | |
4584 | remove_wait_queue(&swapcache_wq, &wait); | |
4585 | goto out_page; | |
4586 | } | |
4587 | need_clear_cache = true; | |
4588 | ||
4589 | memcg1_swapin(entry, nr_pages); | |
4590 | ||
4591 | shadow = get_shadow_from_swap_cache(entry); | |
4592 | if (shadow) | |
4593 | workingset_refault(folio, shadow); | |
4594 | ||
4595 | folio_add_lru(folio); | |
4596 | ||
4597 | /* To provide entry to swap_read_folio() */ | |
4598 | folio->swap = entry; | |
4599 | swap_read_folio(folio, NULL); | |
4600 | folio->private = NULL; | |
4601 | } | |
4602 | } else { | |
4603 | folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, | |
4604 | vmf); | |
4605 | swapcache = folio; | |
4606 | } | |
4607 | ||
4608 | if (!folio) { | |
4609 | /* | |
4610 | * Back out if somebody else faulted in this pte | |
4611 | * while we released the pte lock. | |
4612 | */ | |
4613 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, | |
4614 | vmf->address, &vmf->ptl); | |
4615 | if (likely(vmf->pte && | |
4616 | pte_same(ptep_get(vmf->pte), vmf->orig_pte))) | |
4617 | ret = VM_FAULT_OOM; | |
4618 | goto unlock; | |
4619 | } | |
4620 | ||
4621 | /* Had to read the page from swap area: Major fault */ | |
4622 | ret = VM_FAULT_MAJOR; | |
4623 | count_vm_event(PGMAJFAULT); | |
4624 | count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); | |
4625 | page = folio_file_page(folio, swp_offset(entry)); | |
4626 | } else if (PageHWPoison(page)) { | |
4627 | /* | |
4628 | * hwpoisoned dirty swapcache pages are kept for killing | |
4629 | * owner processes (which may be unknown at hwpoison time) | |
4630 | */ | |
4631 | ret = VM_FAULT_HWPOISON; | |
4632 | goto out_release; | |
4633 | } | |
4634 | ||
4635 | ret |= folio_lock_or_retry(folio, vmf); | |
4636 | if (ret & VM_FAULT_RETRY) | |
4637 | goto out_release; | |
4638 | ||
4639 | if (swapcache) { | |
4640 | /* | |
4641 | * Make sure folio_free_swap() or swapoff did not release the | |
4642 | * swapcache from under us. The page pin, and pte_same test | |
4643 | * below, are not enough to exclude that. Even if it is still | |
4644 | * swapcache, we need to check that the page's swap has not | |
4645 | * changed. | |
4646 | */ | |
4647 | if (unlikely(!folio_test_swapcache(folio) || | |
4648 | page_swap_entry(page).val != entry.val)) | |
4649 | goto out_page; | |
4650 | ||
4651 | /* | |
4652 | * KSM sometimes has to copy on read faults, for example, if | |
4653 | * folio->index of non-ksm folios would be nonlinear inside the | |
4654 | * anon VMA -- the ksm flag is lost on actual swapout. | |
4655 | */ | |
4656 | folio = ksm_might_need_to_copy(folio, vma, vmf->address); | |
4657 | if (unlikely(!folio)) { | |
4658 | ret = VM_FAULT_OOM; | |
4659 | folio = swapcache; | |
4660 | goto out_page; | |
4661 | } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { | |
4662 | ret = VM_FAULT_HWPOISON; | |
4663 | folio = swapcache; | |
4664 | goto out_page; | |
4665 | } | |
4666 | if (folio != swapcache) | |
4667 | page = folio_page(folio, 0); | |
4668 | ||
4669 | /* | |
4670 | * If we want to map a page that's in the swapcache writable, we | |
4671 | * have to detect via the refcount if we're really the exclusive | |
4672 | * owner. Try removing the extra reference from the local LRU | |
4673 | * caches if required. | |
4674 | */ | |
4675 | if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && | |
4676 | !folio_test_ksm(folio) && !folio_test_lru(folio)) | |
4677 | lru_add_drain(); | |
4678 | } | |
4679 | ||
4680 | folio_throttle_swaprate(folio, GFP_KERNEL); | |
4681 | ||
4682 | /* | |
4683 | * Back out if somebody else already faulted in this pte. | |
4684 | */ | |
4685 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, | |
4686 | &vmf->ptl); | |
4687 | if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) | |
4688 | goto out_nomap; | |
4689 | ||
4690 | if (unlikely(!folio_test_uptodate(folio))) { | |
4691 | ret = VM_FAULT_SIGBUS; | |
4692 | goto out_nomap; | |
4693 | } | |
4694 | ||
4695 | /* allocated large folios for SWP_SYNCHRONOUS_IO */ | |
4696 | if (folio_test_large(folio) && !folio_test_swapcache(folio)) { | |
4697 | unsigned long nr = folio_nr_pages(folio); | |
4698 | unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); | |
4699 | unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; | |
4700 | pte_t *folio_ptep = vmf->pte - idx; | |
4701 | pte_t folio_pte = ptep_get(folio_ptep); | |
4702 | ||
4703 | if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || | |
4704 | swap_pte_batch(folio_ptep, nr, folio_pte) != nr) | |
4705 | goto out_nomap; | |
4706 | ||
4707 | page_idx = idx; | |
4708 | address = folio_start; | |
4709 | ptep = folio_ptep; | |
4710 | goto check_folio; | |
4711 | } | |
4712 | ||
4713 | nr_pages = 1; | |
4714 | page_idx = 0; | |
4715 | address = vmf->address; | |
4716 | ptep = vmf->pte; | |
4717 | if (folio_test_large(folio) && folio_test_swapcache(folio)) { | |
4718 | int nr = folio_nr_pages(folio); | |
4719 | unsigned long idx = folio_page_idx(folio, page); | |
4720 | unsigned long folio_start = address - idx * PAGE_SIZE; | |
4721 | unsigned long folio_end = folio_start + nr * PAGE_SIZE; | |
4722 | pte_t *folio_ptep; | |
4723 | pte_t folio_pte; | |
4724 | ||
4725 | if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) | |
4726 | goto check_folio; | |
4727 | if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) | |
4728 | goto check_folio; | |
4729 | ||
4730 | folio_ptep = vmf->pte - idx; | |
4731 | folio_pte = ptep_get(folio_ptep); | |
4732 | if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || | |
4733 | swap_pte_batch(folio_ptep, nr, folio_pte) != nr) | |
4734 | goto check_folio; | |
4735 | ||
4736 | page_idx = idx; | |
4737 | address = folio_start; | |
4738 | ptep = folio_ptep; | |
4739 | nr_pages = nr; | |
4740 | entry = folio->swap; | |
4741 | page = &folio->page; | |
4742 | } | |
4743 | ||
4744 | check_folio: | |
4745 | /* | |
4746 | * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte | |
4747 | * must never point at an anonymous page in the swapcache that is | |
4748 | * PG_anon_exclusive. Sanity check that this holds and especially, that | |
4749 | * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity | |
4750 | * check after taking the PT lock and making sure that nobody | |
4751 | * concurrently faulted in this page and set PG_anon_exclusive. | |
4752 | */ | |
4753 | BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); | |
4754 | BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); | |
4755 | ||
4756 | /* | |
4757 | * Check under PT lock (to protect against concurrent fork() sharing | |
4758 | * the swap entry concurrently) for certainly exclusive pages. | |
4759 | */ | |
4760 | if (!folio_test_ksm(folio)) { | |
4761 | exclusive = pte_swp_exclusive(vmf->orig_pte); | |
4762 | if (folio != swapcache) { | |
4763 | /* | |
4764 | * We have a fresh page that is not exposed to the | |
4765 | * swapcache -> certainly exclusive. | |
4766 | */ | |
4767 | exclusive = true; | |
4768 | } else if (exclusive && folio_test_writeback(folio) && | |
4769 | data_race(si->flags & SWP_STABLE_WRITES)) { | |
4770 | /* | |
4771 | * This is tricky: not all swap backends support | |
4772 | * concurrent page modifications while under writeback. | |
4773 | * | |
4774 | * So if we stumble over such a page in the swapcache | |
4775 | * we must not set the page exclusive, otherwise we can | |
4776 | * map it writable without further checks and modify it | |
4777 | * while still under writeback. | |
4778 | * | |
4779 | * For these problematic swap backends, simply drop the | |
4780 | * exclusive marker: this is perfectly fine as we start | |
4781 | * writeback only if we fully unmapped the page and | |
4782 | * there are no unexpected references on the page after | |
4783 | * unmapping succeeded. After fully unmapped, no | |
4784 | * further GUP references (FOLL_GET and FOLL_PIN) can | |
4785 | * appear, so dropping the exclusive marker and mapping | |
4786 | * it only R/O is fine. | |
4787 | */ | |
4788 | exclusive = false; | |
4789 | } | |
4790 | } | |
4791 | ||
4792 | /* | |
4793 | * Some architectures may have to restore extra metadata to the page | |
4794 | * when reading from swap. This metadata may be indexed by swap entry | |
4795 | * so this must be called before swap_free(). | |
4796 | */ | |
4797 | arch_swap_restore(folio_swap(entry, folio), folio); | |
4798 | ||
4799 | /* | |
4800 | * Remove the swap entry and conditionally try to free up the swapcache. | |
4801 | * We're already holding a reference on the page but haven't mapped it | |
4802 | * yet. | |
4803 | */ | |
4804 | swap_free_nr(entry, nr_pages); | |
4805 | if (should_try_to_free_swap(folio, vma, vmf->flags)) | |
4806 | folio_free_swap(folio); | |
4807 | ||
4808 | add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); | |
4809 | add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); | |
4810 | pte = mk_pte(page, vma->vm_page_prot); | |
4811 | if (pte_swp_soft_dirty(vmf->orig_pte)) | |
4812 | pte = pte_mksoft_dirty(pte); | |
4813 | if (pte_swp_uffd_wp(vmf->orig_pte)) | |
4814 | pte = pte_mkuffd_wp(pte); | |
4815 | ||
4816 | /* | |
4817 | * Same logic as in do_wp_page(); however, optimize for pages that are | |
4818 | * certainly not shared either because we just allocated them without | |
4819 | * exposing them to the swapcache or because the swap entry indicates | |
4820 | * exclusivity. | |
4821 | */ | |
4822 | if (!folio_test_ksm(folio) && | |
4823 | (exclusive || folio_ref_count(folio) == 1)) { | |
4824 | if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && | |
4825 | !pte_needs_soft_dirty_wp(vma, pte)) { | |
4826 | pte = pte_mkwrite(pte, vma); | |
4827 | if (vmf->flags & FAULT_FLAG_WRITE) { | |
4828 | pte = pte_mkdirty(pte); | |
4829 | vmf->flags &= ~FAULT_FLAG_WRITE; | |
4830 | } | |
4831 | } | |
4832 | rmap_flags |= RMAP_EXCLUSIVE; | |
4833 | } | |
4834 | folio_ref_add(folio, nr_pages - 1); | |
4835 | flush_icache_pages(vma, page, nr_pages); | |
4836 | vmf->orig_pte = pte_advance_pfn(pte, page_idx); | |
4837 | ||
4838 | /* ksm created a completely new copy */ | |
4839 | if (unlikely(folio != swapcache && swapcache)) { | |
4840 | folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); | |
4841 | folio_add_lru_vma(folio, vma); | |
4842 | } else if (!folio_test_anon(folio)) { | |
4843 | /* | |
4844 | * We currently only expect small !anon folios which are either | |
4845 | * fully exclusive or fully shared, or new allocated large | |
4846 | * folios which are fully exclusive. If we ever get large | |
4847 | * folios within swapcache here, we have to be careful. | |
4848 | */ | |
4849 | VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); | |
4850 | VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); | |
4851 | folio_add_new_anon_rmap(folio, vma, address, rmap_flags); | |
4852 | } else { | |
4853 | folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, | |
4854 | rmap_flags); | |
4855 | } | |
4856 | ||
4857 | VM_BUG_ON(!folio_test_anon(folio) || | |
4858 | (pte_write(pte) && !PageAnonExclusive(page))); | |
4859 | set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); | |
4860 | arch_do_swap_page_nr(vma->vm_mm, vma, address, | |
4861 | pte, pte, nr_pages); | |
4862 | ||
4863 | folio_unlock(folio); | |
4864 | if (folio != swapcache && swapcache) { | |
4865 | /* | |
4866 | * Hold the lock to avoid the swap entry to be reused | |
4867 | * until we take the PT lock for the pte_same() check | |
4868 | * (to avoid false positives from pte_same). For | |
4869 | * further safety release the lock after the swap_free | |
4870 | * so that the swap count won't change under a | |
4871 | * parallel locked swapcache. | |
4872 | */ | |
4873 | folio_unlock(swapcache); | |
4874 | folio_put(swapcache); | |
4875 | } | |
4876 | ||
4877 | if (vmf->flags & FAULT_FLAG_WRITE) { | |
4878 | ret |= do_wp_page(vmf); | |
4879 | if (ret & VM_FAULT_ERROR) | |
4880 | ret &= VM_FAULT_ERROR; | |
4881 | goto out; | |
4882 | } | |
4883 | ||
4884 | /* No need to invalidate - it was non-present before */ | |
4885 | update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); | |
4886 | unlock: | |
4887 | if (vmf->pte) | |
4888 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4889 | out: | |
4890 | /* Clear the swap cache pin for direct swapin after PTL unlock */ | |
4891 | if (need_clear_cache) { | |
4892 | swapcache_clear(si, entry, nr_pages); | |
4893 | if (waitqueue_active(&swapcache_wq)) | |
4894 | wake_up(&swapcache_wq); | |
4895 | } | |
4896 | if (si) | |
4897 | put_swap_device(si); | |
4898 | return ret; | |
4899 | out_nomap: | |
4900 | if (vmf->pte) | |
4901 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4902 | out_page: | |
4903 | folio_unlock(folio); | |
4904 | out_release: | |
4905 | folio_put(folio); | |
4906 | if (folio != swapcache && swapcache) { | |
4907 | folio_unlock(swapcache); | |
4908 | folio_put(swapcache); | |
4909 | } | |
4910 | if (need_clear_cache) { | |
4911 | swapcache_clear(si, entry, nr_pages); | |
4912 | if (waitqueue_active(&swapcache_wq)) | |
4913 | wake_up(&swapcache_wq); | |
4914 | } | |
4915 | if (si) | |
4916 | put_swap_device(si); | |
4917 | return ret; | |
4918 | } | |
4919 | ||
4920 | static bool pte_range_none(pte_t *pte, int nr_pages) | |
4921 | { | |
4922 | int i; | |
4923 | ||
4924 | for (i = 0; i < nr_pages; i++) { | |
4925 | if (!pte_none(ptep_get_lockless(pte + i))) | |
4926 | return false; | |
4927 | } | |
4928 | ||
4929 | return true; | |
4930 | } | |
4931 | ||
4932 | static struct folio *alloc_anon_folio(struct vm_fault *vmf) | |
4933 | { | |
4934 | struct vm_area_struct *vma = vmf->vma; | |
4935 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
4936 | unsigned long orders; | |
4937 | struct folio *folio; | |
4938 | unsigned long addr; | |
4939 | pte_t *pte; | |
4940 | gfp_t gfp; | |
4941 | int order; | |
4942 | ||
4943 | /* | |
4944 | * If uffd is active for the vma we need per-page fault fidelity to | |
4945 | * maintain the uffd semantics. | |
4946 | */ | |
4947 | if (unlikely(userfaultfd_armed(vma))) | |
4948 | goto fallback; | |
4949 | ||
4950 | /* | |
4951 | * Get a list of all the (large) orders below PMD_ORDER that are enabled | |
4952 | * for this vma. Then filter out the orders that can't be allocated over | |
4953 | * the faulting address and still be fully contained in the vma. | |
4954 | */ | |
4955 | orders = thp_vma_allowable_orders(vma, vma->vm_flags, | |
4956 | TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); | |
4957 | orders = thp_vma_suitable_orders(vma, vmf->address, orders); | |
4958 | ||
4959 | if (!orders) | |
4960 | goto fallback; | |
4961 | ||
4962 | pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); | |
4963 | if (!pte) | |
4964 | return ERR_PTR(-EAGAIN); | |
4965 | ||
4966 | /* | |
4967 | * Find the highest order where the aligned range is completely | |
4968 | * pte_none(). Note that all remaining orders will be completely | |
4969 | * pte_none(). | |
4970 | */ | |
4971 | order = highest_order(orders); | |
4972 | while (orders) { | |
4973 | addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); | |
4974 | if (pte_range_none(pte + pte_index(addr), 1 << order)) | |
4975 | break; | |
4976 | order = next_order(&orders, order); | |
4977 | } | |
4978 | ||
4979 | pte_unmap(pte); | |
4980 | ||
4981 | if (!orders) | |
4982 | goto fallback; | |
4983 | ||
4984 | /* Try allocating the highest of the remaining orders. */ | |
4985 | gfp = vma_thp_gfp_mask(vma); | |
4986 | while (orders) { | |
4987 | addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); | |
4988 | folio = vma_alloc_folio(gfp, order, vma, addr); | |
4989 | if (folio) { | |
4990 | if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { | |
4991 | count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); | |
4992 | folio_put(folio); | |
4993 | goto next; | |
4994 | } | |
4995 | folio_throttle_swaprate(folio, gfp); | |
4996 | /* | |
4997 | * When a folio is not zeroed during allocation | |
4998 | * (__GFP_ZERO not used) or user folios require special | |
4999 | * handling, folio_zero_user() is used to make sure | |
5000 | * that the page corresponding to the faulting address | |
5001 | * will be hot in the cache after zeroing. | |
5002 | */ | |
5003 | if (user_alloc_needs_zeroing()) | |
5004 | folio_zero_user(folio, vmf->address); | |
5005 | return folio; | |
5006 | } | |
5007 | next: | |
5008 | count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); | |
5009 | order = next_order(&orders, order); | |
5010 | } | |
5011 | ||
5012 | fallback: | |
5013 | #endif | |
5014 | return folio_prealloc(vma->vm_mm, vma, vmf->address, true); | |
5015 | } | |
5016 | ||
5017 | /* | |
5018 | * We enter with non-exclusive mmap_lock (to exclude vma changes, | |
5019 | * but allow concurrent faults), and pte mapped but not yet locked. | |
5020 | * We return with mmap_lock still held, but pte unmapped and unlocked. | |
5021 | */ | |
5022 | static vm_fault_t do_anonymous_page(struct vm_fault *vmf) | |
5023 | { | |
5024 | struct vm_area_struct *vma = vmf->vma; | |
5025 | unsigned long addr = vmf->address; | |
5026 | struct folio *folio; | |
5027 | vm_fault_t ret = 0; | |
5028 | int nr_pages = 1; | |
5029 | pte_t entry; | |
5030 | ||
5031 | /* File mapping without ->vm_ops ? */ | |
5032 | if (vma->vm_flags & VM_SHARED) | |
5033 | return VM_FAULT_SIGBUS; | |
5034 | ||
5035 | /* | |
5036 | * Use pte_alloc() instead of pte_alloc_map(), so that OOM can | |
5037 | * be distinguished from a transient failure of pte_offset_map(). | |
5038 | */ | |
5039 | if (pte_alloc(vma->vm_mm, vmf->pmd)) | |
5040 | return VM_FAULT_OOM; | |
5041 | ||
5042 | /* Use the zero-page for reads */ | |
5043 | if (!(vmf->flags & FAULT_FLAG_WRITE) && | |
5044 | !mm_forbids_zeropage(vma->vm_mm)) { | |
5045 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), | |
5046 | vma->vm_page_prot)); | |
5047 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, | |
5048 | vmf->address, &vmf->ptl); | |
5049 | if (!vmf->pte) | |
5050 | goto unlock; | |
5051 | if (vmf_pte_changed(vmf)) { | |
5052 | update_mmu_tlb(vma, vmf->address, vmf->pte); | |
5053 | goto unlock; | |
5054 | } | |
5055 | ret = check_stable_address_space(vma->vm_mm); | |
5056 | if (ret) | |
5057 | goto unlock; | |
5058 | /* Deliver the page fault to userland, check inside PT lock */ | |
5059 | if (userfaultfd_missing(vma)) { | |
5060 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
5061 | return handle_userfault(vmf, VM_UFFD_MISSING); | |
5062 | } | |
5063 | goto setpte; | |
5064 | } | |
5065 | ||
5066 | /* Allocate our own private page. */ | |
5067 | ret = vmf_anon_prepare(vmf); | |
5068 | if (ret) | |
5069 | return ret; | |
5070 | /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ | |
5071 | folio = alloc_anon_folio(vmf); | |
5072 | if (IS_ERR(folio)) | |
5073 | return 0; | |
5074 | if (!folio) | |
5075 | goto oom; | |
5076 | ||
5077 | nr_pages = folio_nr_pages(folio); | |
5078 | addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); | |
5079 | ||
5080 | /* | |
5081 | * The memory barrier inside __folio_mark_uptodate makes sure that | |
5082 | * preceding stores to the page contents become visible before | |
5083 | * the set_pte_at() write. | |
5084 | */ | |
5085 | __folio_mark_uptodate(folio); | |
5086 | ||
5087 | entry = folio_mk_pte(folio, vma->vm_page_prot); | |
5088 | entry = pte_sw_mkyoung(entry); | |
5089 | if (vma->vm_flags & VM_WRITE) | |
5090 | entry = pte_mkwrite(pte_mkdirty(entry), vma); | |
5091 | ||
5092 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); | |
5093 | if (!vmf->pte) | |
5094 | goto release; | |
5095 | if (nr_pages == 1 && vmf_pte_changed(vmf)) { | |
5096 | update_mmu_tlb(vma, addr, vmf->pte); | |
5097 | goto release; | |
5098 | } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { | |
5099 | update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); | |
5100 | goto release; | |
5101 | } | |
5102 | ||
5103 | ret = check_stable_address_space(vma->vm_mm); | |
5104 | if (ret) | |
5105 | goto release; | |
5106 | ||
5107 | /* Deliver the page fault to userland, check inside PT lock */ | |
5108 | if (userfaultfd_missing(vma)) { | |
5109 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
5110 | folio_put(folio); | |
5111 | return handle_userfault(vmf, VM_UFFD_MISSING); | |
5112 | } | |
5113 | ||
5114 | folio_ref_add(folio, nr_pages - 1); | |
5115 | add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); | |
5116 | count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); | |
5117 | folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); | |
5118 | folio_add_lru_vma(folio, vma); | |
5119 | setpte: | |
5120 | if (vmf_orig_pte_uffd_wp(vmf)) | |
5121 | entry = pte_mkuffd_wp(entry); | |
5122 | set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); | |
5123 | ||
5124 | /* No need to invalidate - it was non-present before */ | |
5125 | update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); | |
5126 | unlock: | |
5127 | if (vmf->pte) | |
5128 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
5129 | return ret; | |
5130 | release: | |
5131 | folio_put(folio); | |
5132 | goto unlock; | |
5133 | oom: | |
5134 | return VM_FAULT_OOM; | |
5135 | } | |
5136 | ||
5137 | /* | |
5138 | * The mmap_lock must have been held on entry, and may have been | |
5139 | * released depending on flags and vma->vm_ops->fault() return value. | |
5140 | * See filemap_fault() and __lock_page_retry(). | |
5141 | */ | |
5142 | static vm_fault_t __do_fault(struct vm_fault *vmf) | |
5143 | { | |
5144 | struct vm_area_struct *vma = vmf->vma; | |
5145 | struct folio *folio; | |
5146 | vm_fault_t ret; | |
5147 | ||
5148 | /* | |
5149 | * Preallocate pte before we take page_lock because this might lead to | |
5150 | * deadlocks for memcg reclaim which waits for pages under writeback: | |
5151 | * lock_page(A) | |
5152 | * SetPageWriteback(A) | |
5153 | * unlock_page(A) | |
5154 | * lock_page(B) | |
5155 | * lock_page(B) | |
5156 | * pte_alloc_one | |
5157 | * shrink_folio_list | |
5158 | * wait_on_page_writeback(A) | |
5159 | * SetPageWriteback(B) | |
5160 | * unlock_page(B) | |
5161 | * # flush A, B to clear the writeback | |
5162 | */ | |
5163 | if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { | |
5164 | vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); | |
5165 | if (!vmf->prealloc_pte) | |
5166 | return VM_FAULT_OOM; | |
5167 | } | |
5168 | ||
5169 | ret = vma->vm_ops->fault(vmf); | |
5170 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | | |
5171 | VM_FAULT_DONE_COW))) | |
5172 | return ret; | |
5173 | ||
5174 | folio = page_folio(vmf->page); | |
5175 | if (unlikely(PageHWPoison(vmf->page))) { | |
5176 | vm_fault_t poisonret = VM_FAULT_HWPOISON; | |
5177 | if (ret & VM_FAULT_LOCKED) { | |
5178 | if (page_mapped(vmf->page)) | |
5179 | unmap_mapping_folio(folio); | |
5180 | /* Retry if a clean folio was removed from the cache. */ | |
5181 | if (mapping_evict_folio(folio->mapping, folio)) | |
5182 | poisonret = VM_FAULT_NOPAGE; | |
5183 | folio_unlock(folio); | |
5184 | } | |
5185 | folio_put(folio); | |
5186 | vmf->page = NULL; | |
5187 | return poisonret; | |
5188 | } | |
5189 | ||
5190 | if (unlikely(!(ret & VM_FAULT_LOCKED))) | |
5191 | folio_lock(folio); | |
5192 | else | |
5193 | VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); | |
5194 | ||
5195 | return ret; | |
5196 | } | |
5197 | ||
5198 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
5199 | static void deposit_prealloc_pte(struct vm_fault *vmf) | |
5200 | { | |
5201 | struct vm_area_struct *vma = vmf->vma; | |
5202 | ||
5203 | pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); | |
5204 | /* | |
5205 | * We are going to consume the prealloc table, | |
5206 | * count that as nr_ptes. | |
5207 | */ | |
5208 | mm_inc_nr_ptes(vma->vm_mm); | |
5209 | vmf->prealloc_pte = NULL; | |
5210 | } | |
5211 | ||
5212 | vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) | |
5213 | { | |
5214 | struct vm_area_struct *vma = vmf->vma; | |
5215 | bool write = vmf->flags & FAULT_FLAG_WRITE; | |
5216 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; | |
5217 | pmd_t entry; | |
5218 | vm_fault_t ret = VM_FAULT_FALLBACK; | |
5219 | ||
5220 | /* | |
5221 | * It is too late to allocate a small folio, we already have a large | |
5222 | * folio in the pagecache: especially s390 KVM cannot tolerate any | |
5223 | * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any | |
5224 | * PMD mappings if THPs are disabled. | |
5225 | */ | |
5226 | if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) | |
5227 | return ret; | |
5228 | ||
5229 | if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) | |
5230 | return ret; | |
5231 | ||
5232 | if (folio_order(folio) != HPAGE_PMD_ORDER) | |
5233 | return ret; | |
5234 | page = &folio->page; | |
5235 | ||
5236 | /* | |
5237 | * Just backoff if any subpage of a THP is corrupted otherwise | |
5238 | * the corrupted page may mapped by PMD silently to escape the | |
5239 | * check. This kind of THP just can be PTE mapped. Access to | |
5240 | * the corrupted subpage should trigger SIGBUS as expected. | |
5241 | */ | |
5242 | if (unlikely(folio_test_has_hwpoisoned(folio))) | |
5243 | return ret; | |
5244 | ||
5245 | /* | |
5246 | * Archs like ppc64 need additional space to store information | |
5247 | * related to pte entry. Use the preallocated table for that. | |
5248 | */ | |
5249 | if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { | |
5250 | vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); | |
5251 | if (!vmf->prealloc_pte) | |
5252 | return VM_FAULT_OOM; | |
5253 | } | |
5254 | ||
5255 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); | |
5256 | if (unlikely(!pmd_none(*vmf->pmd))) | |
5257 | goto out; | |
5258 | ||
5259 | flush_icache_pages(vma, page, HPAGE_PMD_NR); | |
5260 | ||
5261 | entry = folio_mk_pmd(folio, vma->vm_page_prot); | |
5262 | if (write) | |
5263 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | |
5264 | ||
5265 | add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); | |
5266 | folio_add_file_rmap_pmd(folio, page, vma); | |
5267 | ||
5268 | /* | |
5269 | * deposit and withdraw with pmd lock held | |
5270 | */ | |
5271 | if (arch_needs_pgtable_deposit()) | |
5272 | deposit_prealloc_pte(vmf); | |
5273 | ||
5274 | set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); | |
5275 | ||
5276 | update_mmu_cache_pmd(vma, haddr, vmf->pmd); | |
5277 | ||
5278 | /* fault is handled */ | |
5279 | ret = 0; | |
5280 | count_vm_event(THP_FILE_MAPPED); | |
5281 | out: | |
5282 | spin_unlock(vmf->ptl); | |
5283 | return ret; | |
5284 | } | |
5285 | #else | |
5286 | vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) | |
5287 | { | |
5288 | return VM_FAULT_FALLBACK; | |
5289 | } | |
5290 | #endif | |
5291 | ||
5292 | /** | |
5293 | * set_pte_range - Set a range of PTEs to point to pages in a folio. | |
5294 | * @vmf: Fault decription. | |
5295 | * @folio: The folio that contains @page. | |
5296 | * @page: The first page to create a PTE for. | |
5297 | * @nr: The number of PTEs to create. | |
5298 | * @addr: The first address to create a PTE for. | |
5299 | */ | |
5300 | void set_pte_range(struct vm_fault *vmf, struct folio *folio, | |
5301 | struct page *page, unsigned int nr, unsigned long addr) | |
5302 | { | |
5303 | struct vm_area_struct *vma = vmf->vma; | |
5304 | bool write = vmf->flags & FAULT_FLAG_WRITE; | |
5305 | bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); | |
5306 | pte_t entry; | |
5307 | ||
5308 | flush_icache_pages(vma, page, nr); | |
5309 | entry = mk_pte(page, vma->vm_page_prot); | |
5310 | ||
5311 | if (prefault && arch_wants_old_prefaulted_pte()) | |
5312 | entry = pte_mkold(entry); | |
5313 | else | |
5314 | entry = pte_sw_mkyoung(entry); | |
5315 | ||
5316 | if (write) | |
5317 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
5318 | else if (pte_write(entry) && folio_test_dirty(folio)) | |
5319 | entry = pte_mkdirty(entry); | |
5320 | if (unlikely(vmf_orig_pte_uffd_wp(vmf))) | |
5321 | entry = pte_mkuffd_wp(entry); | |
5322 | /* copy-on-write page */ | |
5323 | if (write && !(vma->vm_flags & VM_SHARED)) { | |
5324 | VM_BUG_ON_FOLIO(nr != 1, folio); | |
5325 | folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); | |
5326 | folio_add_lru_vma(folio, vma); | |
5327 | } else { | |
5328 | folio_add_file_rmap_ptes(folio, page, nr, vma); | |
5329 | } | |
5330 | set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); | |
5331 | ||
5332 | /* no need to invalidate: a not-present page won't be cached */ | |
5333 | update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); | |
5334 | } | |
5335 | ||
5336 | static bool vmf_pte_changed(struct vm_fault *vmf) | |
5337 | { | |
5338 | if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) | |
5339 | return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); | |
5340 | ||
5341 | return !pte_none(ptep_get(vmf->pte)); | |
5342 | } | |
5343 | ||
5344 | /** | |
5345 | * finish_fault - finish page fault once we have prepared the page to fault | |
5346 | * | |
5347 | * @vmf: structure describing the fault | |
5348 | * | |
5349 | * This function handles all that is needed to finish a page fault once the | |
5350 | * page to fault in is prepared. It handles locking of PTEs, inserts PTE for | |
5351 | * given page, adds reverse page mapping, handles memcg charges and LRU | |
5352 | * addition. | |
5353 | * | |
5354 | * The function expects the page to be locked and on success it consumes a | |
5355 | * reference of a page being mapped (for the PTE which maps it). | |
5356 | * | |
5357 | * Return: %0 on success, %VM_FAULT_ code in case of error. | |
5358 | */ | |
5359 | vm_fault_t finish_fault(struct vm_fault *vmf) | |
5360 | { | |
5361 | struct vm_area_struct *vma = vmf->vma; | |
5362 | struct page *page; | |
5363 | struct folio *folio; | |
5364 | vm_fault_t ret; | |
5365 | bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && | |
5366 | !(vma->vm_flags & VM_SHARED); | |
5367 | int type, nr_pages; | |
5368 | unsigned long addr; | |
5369 | bool needs_fallback = false; | |
5370 | ||
5371 | fallback: | |
5372 | addr = vmf->address; | |
5373 | ||
5374 | /* Did we COW the page? */ | |
5375 | if (is_cow) | |
5376 | page = vmf->cow_page; | |
5377 | else | |
5378 | page = vmf->page; | |
5379 | ||
5380 | folio = page_folio(page); | |
5381 | /* | |
5382 | * check even for read faults because we might have lost our CoWed | |
5383 | * page | |
5384 | */ | |
5385 | if (!(vma->vm_flags & VM_SHARED)) { | |
5386 | ret = check_stable_address_space(vma->vm_mm); | |
5387 | if (ret) | |
5388 | return ret; | |
5389 | } | |
5390 | ||
5391 | if (pmd_none(*vmf->pmd)) { | |
5392 | if (folio_test_pmd_mappable(folio)) { | |
5393 | ret = do_set_pmd(vmf, folio, page); | |
5394 | if (ret != VM_FAULT_FALLBACK) | |
5395 | return ret; | |
5396 | } | |
5397 | ||
5398 | if (vmf->prealloc_pte) | |
5399 | pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); | |
5400 | else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) | |
5401 | return VM_FAULT_OOM; | |
5402 | } | |
5403 | ||
5404 | nr_pages = folio_nr_pages(folio); | |
5405 | ||
5406 | /* | |
5407 | * Using per-page fault to maintain the uffd semantics, and same | |
5408 | * approach also applies to non-anonymous-shmem faults to avoid | |
5409 | * inflating the RSS of the process. | |
5410 | */ | |
5411 | if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) || | |
5412 | unlikely(needs_fallback)) { | |
5413 | nr_pages = 1; | |
5414 | } else if (nr_pages > 1) { | |
5415 | pgoff_t idx = folio_page_idx(folio, page); | |
5416 | /* The page offset of vmf->address within the VMA. */ | |
5417 | pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; | |
5418 | /* The index of the entry in the pagetable for fault page. */ | |
5419 | pgoff_t pte_off = pte_index(vmf->address); | |
5420 | ||
5421 | /* | |
5422 | * Fallback to per-page fault in case the folio size in page | |
5423 | * cache beyond the VMA limits and PMD pagetable limits. | |
5424 | */ | |
5425 | if (unlikely(vma_off < idx || | |
5426 | vma_off + (nr_pages - idx) > vma_pages(vma) || | |
5427 | pte_off < idx || | |
5428 | pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { | |
5429 | nr_pages = 1; | |
5430 | } else { | |
5431 | /* Now we can set mappings for the whole large folio. */ | |
5432 | addr = vmf->address - idx * PAGE_SIZE; | |
5433 | page = &folio->page; | |
5434 | } | |
5435 | } | |
5436 | ||
5437 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, | |
5438 | addr, &vmf->ptl); | |
5439 | if (!vmf->pte) | |
5440 | return VM_FAULT_NOPAGE; | |
5441 | ||
5442 | /* Re-check under ptl */ | |
5443 | if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { | |
5444 | update_mmu_tlb(vma, addr, vmf->pte); | |
5445 | ret = VM_FAULT_NOPAGE; | |
5446 | goto unlock; | |
5447 | } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { | |
5448 | needs_fallback = true; | |
5449 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
5450 | goto fallback; | |
5451 | } | |
5452 | ||
5453 | folio_ref_add(folio, nr_pages - 1); | |
5454 | set_pte_range(vmf, folio, page, nr_pages, addr); | |
5455 | type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); | |
5456 | add_mm_counter(vma->vm_mm, type, nr_pages); | |
5457 | ret = 0; | |
5458 | ||
5459 | unlock: | |
5460 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
5461 | return ret; | |
5462 | } | |
5463 | ||
5464 | static unsigned long fault_around_pages __read_mostly = | |
5465 | 65536 >> PAGE_SHIFT; | |
5466 | ||
5467 | #ifdef CONFIG_DEBUG_FS | |
5468 | static int fault_around_bytes_get(void *data, u64 *val) | |
5469 | { | |
5470 | *val = fault_around_pages << PAGE_SHIFT; | |
5471 | return 0; | |
5472 | } | |
5473 | ||
5474 | /* | |
5475 | * fault_around_bytes must be rounded down to the nearest page order as it's | |
5476 | * what do_fault_around() expects to see. | |
5477 | */ | |
5478 | static int fault_around_bytes_set(void *data, u64 val) | |
5479 | { | |
5480 | if (val / PAGE_SIZE > PTRS_PER_PTE) | |
5481 | return -EINVAL; | |
5482 | ||
5483 | /* | |
5484 | * The minimum value is 1 page, however this results in no fault-around | |
5485 | * at all. See should_fault_around(). | |
5486 | */ | |
5487 | val = max(val, PAGE_SIZE); | |
5488 | fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; | |
5489 | ||
5490 | return 0; | |
5491 | } | |
5492 | DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, | |
5493 | fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); | |
5494 | ||
5495 | static int __init fault_around_debugfs(void) | |
5496 | { | |
5497 | debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, | |
5498 | &fault_around_bytes_fops); | |
5499 | return 0; | |
5500 | } | |
5501 | late_initcall(fault_around_debugfs); | |
5502 | #endif | |
5503 | ||
5504 | /* | |
5505 | * do_fault_around() tries to map few pages around the fault address. The hope | |
5506 | * is that the pages will be needed soon and this will lower the number of | |
5507 | * faults to handle. | |
5508 | * | |
5509 | * It uses vm_ops->map_pages() to map the pages, which skips the page if it's | |
5510 | * not ready to be mapped: not up-to-date, locked, etc. | |
5511 | * | |
5512 | * This function doesn't cross VMA or page table boundaries, in order to call | |
5513 | * map_pages() and acquire a PTE lock only once. | |
5514 | * | |
5515 | * fault_around_pages defines how many pages we'll try to map. | |
5516 | * do_fault_around() expects it to be set to a power of two less than or equal | |
5517 | * to PTRS_PER_PTE. | |
5518 | * | |
5519 | * The virtual address of the area that we map is naturally aligned to | |
5520 | * fault_around_pages * PAGE_SIZE rounded down to the machine page size | |
5521 | * (and therefore to page order). This way it's easier to guarantee | |
5522 | * that we don't cross page table boundaries. | |
5523 | */ | |
5524 | static vm_fault_t do_fault_around(struct vm_fault *vmf) | |
5525 | { | |
5526 | pgoff_t nr_pages = READ_ONCE(fault_around_pages); | |
5527 | pgoff_t pte_off = pte_index(vmf->address); | |
5528 | /* The page offset of vmf->address within the VMA. */ | |
5529 | pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; | |
5530 | pgoff_t from_pte, to_pte; | |
5531 | vm_fault_t ret; | |
5532 | ||
5533 | /* The PTE offset of the start address, clamped to the VMA. */ | |
5534 | from_pte = max(ALIGN_DOWN(pte_off, nr_pages), | |
5535 | pte_off - min(pte_off, vma_off)); | |
5536 | ||
5537 | /* The PTE offset of the end address, clamped to the VMA and PTE. */ | |
5538 | to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, | |
5539 | pte_off + vma_pages(vmf->vma) - vma_off) - 1; | |
5540 | ||
5541 | if (pmd_none(*vmf->pmd)) { | |
5542 | vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); | |
5543 | if (!vmf->prealloc_pte) | |
5544 | return VM_FAULT_OOM; | |
5545 | } | |
5546 | ||
5547 | rcu_read_lock(); | |
5548 | ret = vmf->vma->vm_ops->map_pages(vmf, | |
5549 | vmf->pgoff + from_pte - pte_off, | |
5550 | vmf->pgoff + to_pte - pte_off); | |
5551 | rcu_read_unlock(); | |
5552 | ||
5553 | return ret; | |
5554 | } | |
5555 | ||
5556 | /* Return true if we should do read fault-around, false otherwise */ | |
5557 | static inline bool should_fault_around(struct vm_fault *vmf) | |
5558 | { | |
5559 | /* No ->map_pages? No way to fault around... */ | |
5560 | if (!vmf->vma->vm_ops->map_pages) | |
5561 | return false; | |
5562 | ||
5563 | if (uffd_disable_fault_around(vmf->vma)) | |
5564 | return false; | |
5565 | ||
5566 | /* A single page implies no faulting 'around' at all. */ | |
5567 | return fault_around_pages > 1; | |
5568 | } | |
5569 | ||
5570 | static vm_fault_t do_read_fault(struct vm_fault *vmf) | |
5571 | { | |
5572 | vm_fault_t ret = 0; | |
5573 | struct folio *folio; | |
5574 | ||
5575 | /* | |
5576 | * Let's call ->map_pages() first and use ->fault() as fallback | |
5577 | * if page by the offset is not ready to be mapped (cold cache or | |
5578 | * something). | |
5579 | */ | |
5580 | if (should_fault_around(vmf)) { | |
5581 | ret = do_fault_around(vmf); | |
5582 | if (ret) | |
5583 | return ret; | |
5584 | } | |
5585 | ||
5586 | ret = vmf_can_call_fault(vmf); | |
5587 | if (ret) | |
5588 | return ret; | |
5589 | ||
5590 | ret = __do_fault(vmf); | |
5591 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | |
5592 | return ret; | |
5593 | ||
5594 | ret |= finish_fault(vmf); | |
5595 | folio = page_folio(vmf->page); | |
5596 | folio_unlock(folio); | |
5597 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | |
5598 | folio_put(folio); | |
5599 | return ret; | |
5600 | } | |
5601 | ||
5602 | static vm_fault_t do_cow_fault(struct vm_fault *vmf) | |
5603 | { | |
5604 | struct vm_area_struct *vma = vmf->vma; | |
5605 | struct folio *folio; | |
5606 | vm_fault_t ret; | |
5607 | ||
5608 | ret = vmf_can_call_fault(vmf); | |
5609 | if (!ret) | |
5610 | ret = vmf_anon_prepare(vmf); | |
5611 | if (ret) | |
5612 | return ret; | |
5613 | ||
5614 | folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); | |
5615 | if (!folio) | |
5616 | return VM_FAULT_OOM; | |
5617 | ||
5618 | vmf->cow_page = &folio->page; | |
5619 | ||
5620 | ret = __do_fault(vmf); | |
5621 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | |
5622 | goto uncharge_out; | |
5623 | if (ret & VM_FAULT_DONE_COW) | |
5624 | return ret; | |
5625 | ||
5626 | if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { | |
5627 | ret = VM_FAULT_HWPOISON; | |
5628 | goto unlock; | |
5629 | } | |
5630 | __folio_mark_uptodate(folio); | |
5631 | ||
5632 | ret |= finish_fault(vmf); | |
5633 | unlock: | |
5634 | unlock_page(vmf->page); | |
5635 | put_page(vmf->page); | |
5636 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | |
5637 | goto uncharge_out; | |
5638 | return ret; | |
5639 | uncharge_out: | |
5640 | folio_put(folio); | |
5641 | return ret; | |
5642 | } | |
5643 | ||
5644 | static vm_fault_t do_shared_fault(struct vm_fault *vmf) | |
5645 | { | |
5646 | struct vm_area_struct *vma = vmf->vma; | |
5647 | vm_fault_t ret, tmp; | |
5648 | struct folio *folio; | |
5649 | ||
5650 | ret = vmf_can_call_fault(vmf); | |
5651 | if (ret) | |
5652 | return ret; | |
5653 | ||
5654 | ret = __do_fault(vmf); | |
5655 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | |
5656 | return ret; | |
5657 | ||
5658 | folio = page_folio(vmf->page); | |
5659 | ||
5660 | /* | |
5661 | * Check if the backing address space wants to know that the page is | |
5662 | * about to become writable | |
5663 | */ | |
5664 | if (vma->vm_ops->page_mkwrite) { | |
5665 | folio_unlock(folio); | |
5666 | tmp = do_page_mkwrite(vmf, folio); | |
5667 | if (unlikely(!tmp || | |
5668 | (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
5669 | folio_put(folio); | |
5670 | return tmp; | |
5671 | } | |
5672 | } | |
5673 | ||
5674 | ret |= finish_fault(vmf); | |
5675 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | | |
5676 | VM_FAULT_RETRY))) { | |
5677 | folio_unlock(folio); | |
5678 | folio_put(folio); | |
5679 | return ret; | |
5680 | } | |
5681 | ||
5682 | ret |= fault_dirty_shared_page(vmf); | |
5683 | return ret; | |
5684 | } | |
5685 | ||
5686 | /* | |
5687 | * We enter with non-exclusive mmap_lock (to exclude vma changes, | |
5688 | * but allow concurrent faults). | |
5689 | * The mmap_lock may have been released depending on flags and our | |
5690 | * return value. See filemap_fault() and __folio_lock_or_retry(). | |
5691 | * If mmap_lock is released, vma may become invalid (for example | |
5692 | * by other thread calling munmap()). | |
5693 | */ | |
5694 | static vm_fault_t do_fault(struct vm_fault *vmf) | |
5695 | { | |
5696 | struct vm_area_struct *vma = vmf->vma; | |
5697 | struct mm_struct *vm_mm = vma->vm_mm; | |
5698 | vm_fault_t ret; | |
5699 | ||
5700 | /* | |
5701 | * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND | |
5702 | */ | |
5703 | if (!vma->vm_ops->fault) { | |
5704 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, | |
5705 | vmf->address, &vmf->ptl); | |
5706 | if (unlikely(!vmf->pte)) | |
5707 | ret = VM_FAULT_SIGBUS; | |
5708 | else { | |
5709 | /* | |
5710 | * Make sure this is not a temporary clearing of pte | |
5711 | * by holding ptl and checking again. A R/M/W update | |
5712 | * of pte involves: take ptl, clearing the pte so that | |
5713 | * we don't have concurrent modification by hardware | |
5714 | * followed by an update. | |
5715 | */ | |
5716 | if (unlikely(pte_none(ptep_get(vmf->pte)))) | |
5717 | ret = VM_FAULT_SIGBUS; | |
5718 | else | |
5719 | ret = VM_FAULT_NOPAGE; | |
5720 | ||
5721 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
5722 | } | |
5723 | } else if (!(vmf->flags & FAULT_FLAG_WRITE)) | |
5724 | ret = do_read_fault(vmf); | |
5725 | else if (!(vma->vm_flags & VM_SHARED)) | |
5726 | ret = do_cow_fault(vmf); | |
5727 | else | |
5728 | ret = do_shared_fault(vmf); | |
5729 | ||
5730 | /* preallocated pagetable is unused: free it */ | |
5731 | if (vmf->prealloc_pte) { | |
5732 | pte_free(vm_mm, vmf->prealloc_pte); | |
5733 | vmf->prealloc_pte = NULL; | |
5734 | } | |
5735 | return ret; | |
5736 | } | |
5737 | ||
5738 | int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, | |
5739 | unsigned long addr, int *flags, | |
5740 | bool writable, int *last_cpupid) | |
5741 | { | |
5742 | struct vm_area_struct *vma = vmf->vma; | |
5743 | ||
5744 | /* | |
5745 | * Avoid grouping on RO pages in general. RO pages shouldn't hurt as | |
5746 | * much anyway since they can be in shared cache state. This misses | |
5747 | * the case where a mapping is writable but the process never writes | |
5748 | * to it but pte_write gets cleared during protection updates and | |
5749 | * pte_dirty has unpredictable behaviour between PTE scan updates, | |
5750 | * background writeback, dirty balancing and application behaviour. | |
5751 | */ | |
5752 | if (!writable) | |
5753 | *flags |= TNF_NO_GROUP; | |
5754 | ||
5755 | /* | |
5756 | * Flag if the folio is shared between multiple address spaces. This | |
5757 | * is later used when determining whether to group tasks together | |
5758 | */ | |
5759 | if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) | |
5760 | *flags |= TNF_SHARED; | |
5761 | /* | |
5762 | * For memory tiering mode, cpupid of slow memory page is used | |
5763 | * to record page access time. So use default value. | |
5764 | */ | |
5765 | if (folio_use_access_time(folio)) | |
5766 | *last_cpupid = (-1 & LAST_CPUPID_MASK); | |
5767 | else | |
5768 | *last_cpupid = folio_last_cpupid(folio); | |
5769 | ||
5770 | /* Record the current PID acceesing VMA */ | |
5771 | vma_set_access_pid_bit(vma); | |
5772 | ||
5773 | count_vm_numa_event(NUMA_HINT_FAULTS); | |
5774 | #ifdef CONFIG_NUMA_BALANCING | |
5775 | count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); | |
5776 | #endif | |
5777 | if (folio_nid(folio) == numa_node_id()) { | |
5778 | count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); | |
5779 | *flags |= TNF_FAULT_LOCAL; | |
5780 | } | |
5781 | ||
5782 | return mpol_misplaced(folio, vmf, addr); | |
5783 | } | |
5784 | ||
5785 | static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, | |
5786 | unsigned long fault_addr, pte_t *fault_pte, | |
5787 | bool writable) | |
5788 | { | |
5789 | pte_t pte, old_pte; | |
5790 | ||
5791 | old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); | |
5792 | pte = pte_modify(old_pte, vma->vm_page_prot); | |
5793 | pte = pte_mkyoung(pte); | |
5794 | if (writable) | |
5795 | pte = pte_mkwrite(pte, vma); | |
5796 | ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); | |
5797 | update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); | |
5798 | } | |
5799 | ||
5800 | static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, | |
5801 | struct folio *folio, pte_t fault_pte, | |
5802 | bool ignore_writable, bool pte_write_upgrade) | |
5803 | { | |
5804 | int nr = pte_pfn(fault_pte) - folio_pfn(folio); | |
5805 | unsigned long start, end, addr = vmf->address; | |
5806 | unsigned long addr_start = addr - (nr << PAGE_SHIFT); | |
5807 | unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); | |
5808 | pte_t *start_ptep; | |
5809 | ||
5810 | /* Stay within the VMA and within the page table. */ | |
5811 | start = max3(addr_start, pt_start, vma->vm_start); | |
5812 | end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, | |
5813 | vma->vm_end); | |
5814 | start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); | |
5815 | ||
5816 | /* Restore all PTEs' mapping of the large folio */ | |
5817 | for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { | |
5818 | pte_t ptent = ptep_get(start_ptep); | |
5819 | bool writable = false; | |
5820 | ||
5821 | if (!pte_present(ptent) || !pte_protnone(ptent)) | |
5822 | continue; | |
5823 | ||
5824 | if (pfn_folio(pte_pfn(ptent)) != folio) | |
5825 | continue; | |
5826 | ||
5827 | if (!ignore_writable) { | |
5828 | ptent = pte_modify(ptent, vma->vm_page_prot); | |
5829 | writable = pte_write(ptent); | |
5830 | if (!writable && pte_write_upgrade && | |
5831 | can_change_pte_writable(vma, addr, ptent)) | |
5832 | writable = true; | |
5833 | } | |
5834 | ||
5835 | numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); | |
5836 | } | |
5837 | } | |
5838 | ||
5839 | static vm_fault_t do_numa_page(struct vm_fault *vmf) | |
5840 | { | |
5841 | struct vm_area_struct *vma = vmf->vma; | |
5842 | struct folio *folio = NULL; | |
5843 | int nid = NUMA_NO_NODE; | |
5844 | bool writable = false, ignore_writable = false; | |
5845 | bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); | |
5846 | int last_cpupid; | |
5847 | int target_nid; | |
5848 | pte_t pte, old_pte; | |
5849 | int flags = 0, nr_pages; | |
5850 | ||
5851 | /* | |
5852 | * The pte cannot be used safely until we verify, while holding the page | |
5853 | * table lock, that its contents have not changed during fault handling. | |
5854 | */ | |
5855 | spin_lock(vmf->ptl); | |
5856 | /* Read the live PTE from the page tables: */ | |
5857 | old_pte = ptep_get(vmf->pte); | |
5858 | ||
5859 | if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { | |
5860 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
5861 | return 0; | |
5862 | } | |
5863 | ||
5864 | pte = pte_modify(old_pte, vma->vm_page_prot); | |
5865 | ||
5866 | /* | |
5867 | * Detect now whether the PTE could be writable; this information | |
5868 | * is only valid while holding the PT lock. | |
5869 | */ | |
5870 | writable = pte_write(pte); | |
5871 | if (!writable && pte_write_upgrade && | |
5872 | can_change_pte_writable(vma, vmf->address, pte)) | |
5873 | writable = true; | |
5874 | ||
5875 | folio = vm_normal_folio(vma, vmf->address, pte); | |
5876 | if (!folio || folio_is_zone_device(folio)) | |
5877 | goto out_map; | |
5878 | ||
5879 | nid = folio_nid(folio); | |
5880 | nr_pages = folio_nr_pages(folio); | |
5881 | ||
5882 | target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, | |
5883 | writable, &last_cpupid); | |
5884 | if (target_nid == NUMA_NO_NODE) | |
5885 | goto out_map; | |
5886 | if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { | |
5887 | flags |= TNF_MIGRATE_FAIL; | |
5888 | goto out_map; | |
5889 | } | |
5890 | /* The folio is isolated and isolation code holds a folio reference. */ | |
5891 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
5892 | writable = false; | |
5893 | ignore_writable = true; | |
5894 | ||
5895 | /* Migrate to the requested node */ | |
5896 | if (!migrate_misplaced_folio(folio, target_nid)) { | |
5897 | nid = target_nid; | |
5898 | flags |= TNF_MIGRATED; | |
5899 | task_numa_fault(last_cpupid, nid, nr_pages, flags); | |
5900 | return 0; | |
5901 | } | |
5902 | ||
5903 | flags |= TNF_MIGRATE_FAIL; | |
5904 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, | |
5905 | vmf->address, &vmf->ptl); | |
5906 | if (unlikely(!vmf->pte)) | |
5907 | return 0; | |
5908 | if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { | |
5909 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
5910 | return 0; | |
5911 | } | |
5912 | out_map: | |
5913 | /* | |
5914 | * Make it present again, depending on how arch implements | |
5915 | * non-accessible ptes, some can allow access by kernel mode. | |
5916 | */ | |
5917 | if (folio && folio_test_large(folio)) | |
5918 | numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, | |
5919 | pte_write_upgrade); | |
5920 | else | |
5921 | numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, | |
5922 | writable); | |
5923 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
5924 | ||
5925 | if (nid != NUMA_NO_NODE) | |
5926 | task_numa_fault(last_cpupid, nid, nr_pages, flags); | |
5927 | return 0; | |
5928 | } | |
5929 | ||
5930 | static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) | |
5931 | { | |
5932 | struct vm_area_struct *vma = vmf->vma; | |
5933 | if (vma_is_anonymous(vma)) | |
5934 | return do_huge_pmd_anonymous_page(vmf); | |
5935 | if (vma->vm_ops->huge_fault) | |
5936 | return vma->vm_ops->huge_fault(vmf, PMD_ORDER); | |
5937 | return VM_FAULT_FALLBACK; | |
5938 | } | |
5939 | ||
5940 | /* `inline' is required to avoid gcc 4.1.2 build error */ | |
5941 | static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) | |
5942 | { | |
5943 | struct vm_area_struct *vma = vmf->vma; | |
5944 | const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; | |
5945 | vm_fault_t ret; | |
5946 | ||
5947 | if (vma_is_anonymous(vma)) { | |
5948 | if (likely(!unshare) && | |
5949 | userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { | |
5950 | if (userfaultfd_wp_async(vmf->vma)) | |
5951 | goto split; | |
5952 | return handle_userfault(vmf, VM_UFFD_WP); | |
5953 | } | |
5954 | return do_huge_pmd_wp_page(vmf); | |
5955 | } | |
5956 | ||
5957 | if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { | |
5958 | if (vma->vm_ops->huge_fault) { | |
5959 | ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); | |
5960 | if (!(ret & VM_FAULT_FALLBACK)) | |
5961 | return ret; | |
5962 | } | |
5963 | } | |
5964 | ||
5965 | split: | |
5966 | /* COW or write-notify handled on pte level: split pmd. */ | |
5967 | __split_huge_pmd(vma, vmf->pmd, vmf->address, false); | |
5968 | ||
5969 | return VM_FAULT_FALLBACK; | |
5970 | } | |
5971 | ||
5972 | static vm_fault_t create_huge_pud(struct vm_fault *vmf) | |
5973 | { | |
5974 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ | |
5975 | defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | |
5976 | struct vm_area_struct *vma = vmf->vma; | |
5977 | /* No support for anonymous transparent PUD pages yet */ | |
5978 | if (vma_is_anonymous(vma)) | |
5979 | return VM_FAULT_FALLBACK; | |
5980 | if (vma->vm_ops->huge_fault) | |
5981 | return vma->vm_ops->huge_fault(vmf, PUD_ORDER); | |
5982 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | |
5983 | return VM_FAULT_FALLBACK; | |
5984 | } | |
5985 | ||
5986 | static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) | |
5987 | { | |
5988 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ | |
5989 | defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | |
5990 | struct vm_area_struct *vma = vmf->vma; | |
5991 | vm_fault_t ret; | |
5992 | ||
5993 | /* No support for anonymous transparent PUD pages yet */ | |
5994 | if (vma_is_anonymous(vma)) | |
5995 | goto split; | |
5996 | if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { | |
5997 | if (vma->vm_ops->huge_fault) { | |
5998 | ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); | |
5999 | if (!(ret & VM_FAULT_FALLBACK)) | |
6000 | return ret; | |
6001 | } | |
6002 | } | |
6003 | split: | |
6004 | /* COW or write-notify not handled on PUD level: split pud.*/ | |
6005 | __split_huge_pud(vma, vmf->pud, vmf->address); | |
6006 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ | |
6007 | return VM_FAULT_FALLBACK; | |
6008 | } | |
6009 | ||
6010 | /* | |
6011 | * These routines also need to handle stuff like marking pages dirty | |
6012 | * and/or accessed for architectures that don't do it in hardware (most | |
6013 | * RISC architectures). The early dirtying is also good on the i386. | |
6014 | * | |
6015 | * There is also a hook called "update_mmu_cache()" that architectures | |
6016 | * with external mmu caches can use to update those (ie the Sparc or | |
6017 | * PowerPC hashed page tables that act as extended TLBs). | |
6018 | * | |
6019 | * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow | |
6020 | * concurrent faults). | |
6021 | * | |
6022 | * The mmap_lock may have been released depending on flags and our return value. | |
6023 | * See filemap_fault() and __folio_lock_or_retry(). | |
6024 | */ | |
6025 | static vm_fault_t handle_pte_fault(struct vm_fault *vmf) | |
6026 | { | |
6027 | pte_t entry; | |
6028 | ||
6029 | if (unlikely(pmd_none(*vmf->pmd))) { | |
6030 | /* | |
6031 | * Leave __pte_alloc() until later: because vm_ops->fault may | |
6032 | * want to allocate huge page, and if we expose page table | |
6033 | * for an instant, it will be difficult to retract from | |
6034 | * concurrent faults and from rmap lookups. | |
6035 | */ | |
6036 | vmf->pte = NULL; | |
6037 | vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; | |
6038 | } else { | |
6039 | pmd_t dummy_pmdval; | |
6040 | ||
6041 | /* | |
6042 | * A regular pmd is established and it can't morph into a huge | |
6043 | * pmd by anon khugepaged, since that takes mmap_lock in write | |
6044 | * mode; but shmem or file collapse to THP could still morph | |
6045 | * it into a huge pmd: just retry later if so. | |
6046 | * | |
6047 | * Use the maywrite version to indicate that vmf->pte may be | |
6048 | * modified, but since we will use pte_same() to detect the | |
6049 | * change of the !pte_none() entry, there is no need to recheck | |
6050 | * the pmdval. Here we chooes to pass a dummy variable instead | |
6051 | * of NULL, which helps new user think about why this place is | |
6052 | * special. | |
6053 | */ | |
6054 | vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, | |
6055 | vmf->address, &dummy_pmdval, | |
6056 | &vmf->ptl); | |
6057 | if (unlikely(!vmf->pte)) | |
6058 | return 0; | |
6059 | vmf->orig_pte = ptep_get_lockless(vmf->pte); | |
6060 | vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; | |
6061 | ||
6062 | if (pte_none(vmf->orig_pte)) { | |
6063 | pte_unmap(vmf->pte); | |
6064 | vmf->pte = NULL; | |
6065 | } | |
6066 | } | |
6067 | ||
6068 | if (!vmf->pte) | |
6069 | return do_pte_missing(vmf); | |
6070 | ||
6071 | if (!pte_present(vmf->orig_pte)) | |
6072 | return do_swap_page(vmf); | |
6073 | ||
6074 | if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) | |
6075 | return do_numa_page(vmf); | |
6076 | ||
6077 | spin_lock(vmf->ptl); | |
6078 | entry = vmf->orig_pte; | |
6079 | if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { | |
6080 | update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); | |
6081 | goto unlock; | |
6082 | } | |
6083 | if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { | |
6084 | if (!pte_write(entry)) | |
6085 | return do_wp_page(vmf); | |
6086 | else if (likely(vmf->flags & FAULT_FLAG_WRITE)) | |
6087 | entry = pte_mkdirty(entry); | |
6088 | } | |
6089 | entry = pte_mkyoung(entry); | |
6090 | if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, | |
6091 | vmf->flags & FAULT_FLAG_WRITE)) { | |
6092 | update_mmu_cache_range(vmf, vmf->vma, vmf->address, | |
6093 | vmf->pte, 1); | |
6094 | } else { | |
6095 | /* Skip spurious TLB flush for retried page fault */ | |
6096 | if (vmf->flags & FAULT_FLAG_TRIED) | |
6097 | goto unlock; | |
6098 | /* | |
6099 | * This is needed only for protection faults but the arch code | |
6100 | * is not yet telling us if this is a protection fault or not. | |
6101 | * This still avoids useless tlb flushes for .text page faults | |
6102 | * with threads. | |
6103 | */ | |
6104 | if (vmf->flags & FAULT_FLAG_WRITE) | |
6105 | flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, | |
6106 | vmf->pte); | |
6107 | } | |
6108 | unlock: | |
6109 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
6110 | return 0; | |
6111 | } | |
6112 | ||
6113 | /* | |
6114 | * On entry, we hold either the VMA lock or the mmap_lock | |
6115 | * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in | |
6116 | * the result, the mmap_lock is not held on exit. See filemap_fault() | |
6117 | * and __folio_lock_or_retry(). | |
6118 | */ | |
6119 | static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, | |
6120 | unsigned long address, unsigned int flags) | |
6121 | { | |
6122 | struct vm_fault vmf = { | |
6123 | .vma = vma, | |
6124 | .address = address & PAGE_MASK, | |
6125 | .real_address = address, | |
6126 | .flags = flags, | |
6127 | .pgoff = linear_page_index(vma, address), | |
6128 | .gfp_mask = __get_fault_gfp_mask(vma), | |
6129 | }; | |
6130 | struct mm_struct *mm = vma->vm_mm; | |
6131 | unsigned long vm_flags = vma->vm_flags; | |
6132 | pgd_t *pgd; | |
6133 | p4d_t *p4d; | |
6134 | vm_fault_t ret; | |
6135 | ||
6136 | pgd = pgd_offset(mm, address); | |
6137 | p4d = p4d_alloc(mm, pgd, address); | |
6138 | if (!p4d) | |
6139 | return VM_FAULT_OOM; | |
6140 | ||
6141 | vmf.pud = pud_alloc(mm, p4d, address); | |
6142 | if (!vmf.pud) | |
6143 | return VM_FAULT_OOM; | |
6144 | retry_pud: | |
6145 | if (pud_none(*vmf.pud) && | |
6146 | thp_vma_allowable_order(vma, vm_flags, | |
6147 | TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { | |
6148 | ret = create_huge_pud(&vmf); | |
6149 | if (!(ret & VM_FAULT_FALLBACK)) | |
6150 | return ret; | |
6151 | } else { | |
6152 | pud_t orig_pud = *vmf.pud; | |
6153 | ||
6154 | barrier(); | |
6155 | if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { | |
6156 | ||
6157 | /* | |
6158 | * TODO once we support anonymous PUDs: NUMA case and | |
6159 | * FAULT_FLAG_UNSHARE handling. | |
6160 | */ | |
6161 | if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { | |
6162 | ret = wp_huge_pud(&vmf, orig_pud); | |
6163 | if (!(ret & VM_FAULT_FALLBACK)) | |
6164 | return ret; | |
6165 | } else { | |
6166 | huge_pud_set_accessed(&vmf, orig_pud); | |
6167 | return 0; | |
6168 | } | |
6169 | } | |
6170 | } | |
6171 | ||
6172 | vmf.pmd = pmd_alloc(mm, vmf.pud, address); | |
6173 | if (!vmf.pmd) | |
6174 | return VM_FAULT_OOM; | |
6175 | ||
6176 | /* Huge pud page fault raced with pmd_alloc? */ | |
6177 | if (pud_trans_unstable(vmf.pud)) | |
6178 | goto retry_pud; | |
6179 | ||
6180 | if (pmd_none(*vmf.pmd) && | |
6181 | thp_vma_allowable_order(vma, vm_flags, | |
6182 | TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { | |
6183 | ret = create_huge_pmd(&vmf); | |
6184 | if (!(ret & VM_FAULT_FALLBACK)) | |
6185 | return ret; | |
6186 | } else { | |
6187 | vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); | |
6188 | ||
6189 | if (unlikely(is_swap_pmd(vmf.orig_pmd))) { | |
6190 | VM_BUG_ON(thp_migration_supported() && | |
6191 | !is_pmd_migration_entry(vmf.orig_pmd)); | |
6192 | if (is_pmd_migration_entry(vmf.orig_pmd)) | |
6193 | pmd_migration_entry_wait(mm, vmf.pmd); | |
6194 | return 0; | |
6195 | } | |
6196 | if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { | |
6197 | if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) | |
6198 | return do_huge_pmd_numa_page(&vmf); | |
6199 | ||
6200 | if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && | |
6201 | !pmd_write(vmf.orig_pmd)) { | |
6202 | ret = wp_huge_pmd(&vmf); | |
6203 | if (!(ret & VM_FAULT_FALLBACK)) | |
6204 | return ret; | |
6205 | } else { | |
6206 | huge_pmd_set_accessed(&vmf); | |
6207 | return 0; | |
6208 | } | |
6209 | } | |
6210 | } | |
6211 | ||
6212 | return handle_pte_fault(&vmf); | |
6213 | } | |
6214 | ||
6215 | /** | |
6216 | * mm_account_fault - Do page fault accounting | |
6217 | * @mm: mm from which memcg should be extracted. It can be NULL. | |
6218 | * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting | |
6219 | * of perf event counters, but we'll still do the per-task accounting to | |
6220 | * the task who triggered this page fault. | |
6221 | * @address: the faulted address. | |
6222 | * @flags: the fault flags. | |
6223 | * @ret: the fault retcode. | |
6224 | * | |
6225 | * This will take care of most of the page fault accounting. Meanwhile, it | |
6226 | * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter | |
6227 | * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should | |
6228 | * still be in per-arch page fault handlers at the entry of page fault. | |
6229 | */ | |
6230 | static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, | |
6231 | unsigned long address, unsigned int flags, | |
6232 | vm_fault_t ret) | |
6233 | { | |
6234 | bool major; | |
6235 | ||
6236 | /* Incomplete faults will be accounted upon completion. */ | |
6237 | if (ret & VM_FAULT_RETRY) | |
6238 | return; | |
6239 | ||
6240 | /* | |
6241 | * To preserve the behavior of older kernels, PGFAULT counters record | |
6242 | * both successful and failed faults, as opposed to perf counters, | |
6243 | * which ignore failed cases. | |
6244 | */ | |
6245 | count_vm_event(PGFAULT); | |
6246 | count_memcg_event_mm(mm, PGFAULT); | |
6247 | ||
6248 | /* | |
6249 | * Do not account for unsuccessful faults (e.g. when the address wasn't | |
6250 | * valid). That includes arch_vma_access_permitted() failing before | |
6251 | * reaching here. So this is not a "this many hardware page faults" | |
6252 | * counter. We should use the hw profiling for that. | |
6253 | */ | |
6254 | if (ret & VM_FAULT_ERROR) | |
6255 | return; | |
6256 | ||
6257 | /* | |
6258 | * We define the fault as a major fault when the final successful fault | |
6259 | * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't | |
6260 | * handle it immediately previously). | |
6261 | */ | |
6262 | major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); | |
6263 | ||
6264 | if (major) | |
6265 | current->maj_flt++; | |
6266 | else | |
6267 | current->min_flt++; | |
6268 | ||
6269 | /* | |
6270 | * If the fault is done for GUP, regs will be NULL. We only do the | |
6271 | * accounting for the per thread fault counters who triggered the | |
6272 | * fault, and we skip the perf event updates. | |
6273 | */ | |
6274 | if (!regs) | |
6275 | return; | |
6276 | ||
6277 | if (major) | |
6278 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); | |
6279 | else | |
6280 | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); | |
6281 | } | |
6282 | ||
6283 | #ifdef CONFIG_LRU_GEN | |
6284 | static void lru_gen_enter_fault(struct vm_area_struct *vma) | |
6285 | { | |
6286 | /* the LRU algorithm only applies to accesses with recency */ | |
6287 | current->in_lru_fault = vma_has_recency(vma); | |
6288 | } | |
6289 | ||
6290 | static void lru_gen_exit_fault(void) | |
6291 | { | |
6292 | current->in_lru_fault = false; | |
6293 | } | |
6294 | #else | |
6295 | static void lru_gen_enter_fault(struct vm_area_struct *vma) | |
6296 | { | |
6297 | } | |
6298 | ||
6299 | static void lru_gen_exit_fault(void) | |
6300 | { | |
6301 | } | |
6302 | #endif /* CONFIG_LRU_GEN */ | |
6303 | ||
6304 | static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, | |
6305 | unsigned int *flags) | |
6306 | { | |
6307 | if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { | |
6308 | if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) | |
6309 | return VM_FAULT_SIGSEGV; | |
6310 | /* | |
6311 | * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's | |
6312 | * just treat it like an ordinary read-fault otherwise. | |
6313 | */ | |
6314 | if (!is_cow_mapping(vma->vm_flags)) | |
6315 | *flags &= ~FAULT_FLAG_UNSHARE; | |
6316 | } else if (*flags & FAULT_FLAG_WRITE) { | |
6317 | /* Write faults on read-only mappings are impossible ... */ | |
6318 | if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) | |
6319 | return VM_FAULT_SIGSEGV; | |
6320 | /* ... and FOLL_FORCE only applies to COW mappings. */ | |
6321 | if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && | |
6322 | !is_cow_mapping(vma->vm_flags))) | |
6323 | return VM_FAULT_SIGSEGV; | |
6324 | } | |
6325 | #ifdef CONFIG_PER_VMA_LOCK | |
6326 | /* | |
6327 | * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of | |
6328 | * the assumption that lock is dropped on VM_FAULT_RETRY. | |
6329 | */ | |
6330 | if (WARN_ON_ONCE((*flags & | |
6331 | (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == | |
6332 | (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) | |
6333 | return VM_FAULT_SIGSEGV; | |
6334 | #endif | |
6335 | ||
6336 | return 0; | |
6337 | } | |
6338 | ||
6339 | /* | |
6340 | * By the time we get here, we already hold either the VMA lock or the | |
6341 | * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). | |
6342 | * | |
6343 | * The mmap_lock may have been released depending on flags and our | |
6344 | * return value. See filemap_fault() and __folio_lock_or_retry(). | |
6345 | */ | |
6346 | vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, | |
6347 | unsigned int flags, struct pt_regs *regs) | |
6348 | { | |
6349 | /* If the fault handler drops the mmap_lock, vma may be freed */ | |
6350 | struct mm_struct *mm = vma->vm_mm; | |
6351 | vm_fault_t ret; | |
6352 | bool is_droppable; | |
6353 | ||
6354 | __set_current_state(TASK_RUNNING); | |
6355 | ||
6356 | ret = sanitize_fault_flags(vma, &flags); | |
6357 | if (ret) | |
6358 | goto out; | |
6359 | ||
6360 | if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, | |
6361 | flags & FAULT_FLAG_INSTRUCTION, | |
6362 | flags & FAULT_FLAG_REMOTE)) { | |
6363 | ret = VM_FAULT_SIGSEGV; | |
6364 | goto out; | |
6365 | } | |
6366 | ||
6367 | is_droppable = !!(vma->vm_flags & VM_DROPPABLE); | |
6368 | ||
6369 | /* | |
6370 | * Enable the memcg OOM handling for faults triggered in user | |
6371 | * space. Kernel faults are handled more gracefully. | |
6372 | */ | |
6373 | if (flags & FAULT_FLAG_USER) | |
6374 | mem_cgroup_enter_user_fault(); | |
6375 | ||
6376 | lru_gen_enter_fault(vma); | |
6377 | ||
6378 | if (unlikely(is_vm_hugetlb_page(vma))) | |
6379 | ret = hugetlb_fault(vma->vm_mm, vma, address, flags); | |
6380 | else | |
6381 | ret = __handle_mm_fault(vma, address, flags); | |
6382 | ||
6383 | /* | |
6384 | * Warning: It is no longer safe to dereference vma-> after this point, | |
6385 | * because mmap_lock might have been dropped by __handle_mm_fault(), so | |
6386 | * vma might be destroyed from underneath us. | |
6387 | */ | |
6388 | ||
6389 | lru_gen_exit_fault(); | |
6390 | ||
6391 | /* If the mapping is droppable, then errors due to OOM aren't fatal. */ | |
6392 | if (is_droppable) | |
6393 | ret &= ~VM_FAULT_OOM; | |
6394 | ||
6395 | if (flags & FAULT_FLAG_USER) { | |
6396 | mem_cgroup_exit_user_fault(); | |
6397 | /* | |
6398 | * The task may have entered a memcg OOM situation but | |
6399 | * if the allocation error was handled gracefully (no | |
6400 | * VM_FAULT_OOM), there is no need to kill anything. | |
6401 | * Just clean up the OOM state peacefully. | |
6402 | */ | |
6403 | if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) | |
6404 | mem_cgroup_oom_synchronize(false); | |
6405 | } | |
6406 | out: | |
6407 | mm_account_fault(mm, regs, address, flags, ret); | |
6408 | ||
6409 | return ret; | |
6410 | } | |
6411 | EXPORT_SYMBOL_GPL(handle_mm_fault); | |
6412 | ||
6413 | #ifndef __PAGETABLE_P4D_FOLDED | |
6414 | /* | |
6415 | * Allocate p4d page table. | |
6416 | * We've already handled the fast-path in-line. | |
6417 | */ | |
6418 | int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | |
6419 | { | |
6420 | p4d_t *new = p4d_alloc_one(mm, address); | |
6421 | if (!new) | |
6422 | return -ENOMEM; | |
6423 | ||
6424 | spin_lock(&mm->page_table_lock); | |
6425 | if (pgd_present(*pgd)) { /* Another has populated it */ | |
6426 | p4d_free(mm, new); | |
6427 | } else { | |
6428 | smp_wmb(); /* See comment in pmd_install() */ | |
6429 | pgd_populate(mm, pgd, new); | |
6430 | } | |
6431 | spin_unlock(&mm->page_table_lock); | |
6432 | return 0; | |
6433 | } | |
6434 | #endif /* __PAGETABLE_P4D_FOLDED */ | |
6435 | ||
6436 | #ifndef __PAGETABLE_PUD_FOLDED | |
6437 | /* | |
6438 | * Allocate page upper directory. | |
6439 | * We've already handled the fast-path in-line. | |
6440 | */ | |
6441 | int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) | |
6442 | { | |
6443 | pud_t *new = pud_alloc_one(mm, address); | |
6444 | if (!new) | |
6445 | return -ENOMEM; | |
6446 | ||
6447 | spin_lock(&mm->page_table_lock); | |
6448 | if (!p4d_present(*p4d)) { | |
6449 | mm_inc_nr_puds(mm); | |
6450 | smp_wmb(); /* See comment in pmd_install() */ | |
6451 | p4d_populate(mm, p4d, new); | |
6452 | } else /* Another has populated it */ | |
6453 | pud_free(mm, new); | |
6454 | spin_unlock(&mm->page_table_lock); | |
6455 | return 0; | |
6456 | } | |
6457 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
6458 | ||
6459 | #ifndef __PAGETABLE_PMD_FOLDED | |
6460 | /* | |
6461 | * Allocate page middle directory. | |
6462 | * We've already handled the fast-path in-line. | |
6463 | */ | |
6464 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | |
6465 | { | |
6466 | spinlock_t *ptl; | |
6467 | pmd_t *new = pmd_alloc_one(mm, address); | |
6468 | if (!new) | |
6469 | return -ENOMEM; | |
6470 | ||
6471 | ptl = pud_lock(mm, pud); | |
6472 | if (!pud_present(*pud)) { | |
6473 | mm_inc_nr_pmds(mm); | |
6474 | smp_wmb(); /* See comment in pmd_install() */ | |
6475 | pud_populate(mm, pud, new); | |
6476 | } else { /* Another has populated it */ | |
6477 | pmd_free(mm, new); | |
6478 | } | |
6479 | spin_unlock(ptl); | |
6480 | return 0; | |
6481 | } | |
6482 | #endif /* __PAGETABLE_PMD_FOLDED */ | |
6483 | ||
6484 | static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, | |
6485 | spinlock_t *lock, pte_t *ptep, | |
6486 | pgprot_t pgprot, unsigned long pfn_base, | |
6487 | unsigned long addr_mask, bool writable, | |
6488 | bool special) | |
6489 | { | |
6490 | args->lock = lock; | |
6491 | args->ptep = ptep; | |
6492 | args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); | |
6493 | args->addr_mask = addr_mask; | |
6494 | args->pgprot = pgprot; | |
6495 | args->writable = writable; | |
6496 | args->special = special; | |
6497 | } | |
6498 | ||
6499 | static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) | |
6500 | { | |
6501 | #ifdef CONFIG_LOCKDEP | |
6502 | struct file *file = vma->vm_file; | |
6503 | struct address_space *mapping = file ? file->f_mapping : NULL; | |
6504 | ||
6505 | if (mapping) | |
6506 | lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || | |
6507 | lockdep_is_held(&vma->vm_mm->mmap_lock)); | |
6508 | else | |
6509 | lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); | |
6510 | #endif | |
6511 | } | |
6512 | ||
6513 | /** | |
6514 | * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address | |
6515 | * @args: Pointer to struct @follow_pfnmap_args | |
6516 | * | |
6517 | * The caller needs to setup args->vma and args->address to point to the | |
6518 | * virtual address as the target of such lookup. On a successful return, | |
6519 | * the results will be put into other output fields. | |
6520 | * | |
6521 | * After the caller finished using the fields, the caller must invoke | |
6522 | * another follow_pfnmap_end() to proper releases the locks and resources | |
6523 | * of such look up request. | |
6524 | * | |
6525 | * During the start() and end() calls, the results in @args will be valid | |
6526 | * as proper locks will be held. After the end() is called, all the fields | |
6527 | * in @follow_pfnmap_args will be invalid to be further accessed. Further | |
6528 | * use of such information after end() may require proper synchronizations | |
6529 | * by the caller with page table updates, otherwise it can create a | |
6530 | * security bug. | |
6531 | * | |
6532 | * If the PTE maps a refcounted page, callers are responsible to protect | |
6533 | * against invalidation with MMU notifiers; otherwise access to the PFN at | |
6534 | * a later point in time can trigger use-after-free. | |
6535 | * | |
6536 | * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore | |
6537 | * should be taken for read, and the mmap semaphore cannot be released | |
6538 | * before the end() is invoked. | |
6539 | * | |
6540 | * This function must not be used to modify PTE content. | |
6541 | * | |
6542 | * Return: zero on success, negative otherwise. | |
6543 | */ | |
6544 | int follow_pfnmap_start(struct follow_pfnmap_args *args) | |
6545 | { | |
6546 | struct vm_area_struct *vma = args->vma; | |
6547 | unsigned long address = args->address; | |
6548 | struct mm_struct *mm = vma->vm_mm; | |
6549 | spinlock_t *lock; | |
6550 | pgd_t *pgdp; | |
6551 | p4d_t *p4dp, p4d; | |
6552 | pud_t *pudp, pud; | |
6553 | pmd_t *pmdp, pmd; | |
6554 | pte_t *ptep, pte; | |
6555 | ||
6556 | pfnmap_lockdep_assert(vma); | |
6557 | ||
6558 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | |
6559 | goto out; | |
6560 | ||
6561 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
6562 | goto out; | |
6563 | retry: | |
6564 | pgdp = pgd_offset(mm, address); | |
6565 | if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) | |
6566 | goto out; | |
6567 | ||
6568 | p4dp = p4d_offset(pgdp, address); | |
6569 | p4d = READ_ONCE(*p4dp); | |
6570 | if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) | |
6571 | goto out; | |
6572 | ||
6573 | pudp = pud_offset(p4dp, address); | |
6574 | pud = READ_ONCE(*pudp); | |
6575 | if (pud_none(pud)) | |
6576 | goto out; | |
6577 | if (pud_leaf(pud)) { | |
6578 | lock = pud_lock(mm, pudp); | |
6579 | if (!unlikely(pud_leaf(pud))) { | |
6580 | spin_unlock(lock); | |
6581 | goto retry; | |
6582 | } | |
6583 | pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), | |
6584 | pud_pfn(pud), PUD_MASK, pud_write(pud), | |
6585 | pud_special(pud)); | |
6586 | return 0; | |
6587 | } | |
6588 | ||
6589 | pmdp = pmd_offset(pudp, address); | |
6590 | pmd = pmdp_get_lockless(pmdp); | |
6591 | if (pmd_leaf(pmd)) { | |
6592 | lock = pmd_lock(mm, pmdp); | |
6593 | if (!unlikely(pmd_leaf(pmd))) { | |
6594 | spin_unlock(lock); | |
6595 | goto retry; | |
6596 | } | |
6597 | pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), | |
6598 | pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), | |
6599 | pmd_special(pmd)); | |
6600 | return 0; | |
6601 | } | |
6602 | ||
6603 | ptep = pte_offset_map_lock(mm, pmdp, address, &lock); | |
6604 | if (!ptep) | |
6605 | goto out; | |
6606 | pte = ptep_get(ptep); | |
6607 | if (!pte_present(pte)) | |
6608 | goto unlock; | |
6609 | pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), | |
6610 | pte_pfn(pte), PAGE_MASK, pte_write(pte), | |
6611 | pte_special(pte)); | |
6612 | return 0; | |
6613 | unlock: | |
6614 | pte_unmap_unlock(ptep, lock); | |
6615 | out: | |
6616 | return -EINVAL; | |
6617 | } | |
6618 | EXPORT_SYMBOL_GPL(follow_pfnmap_start); | |
6619 | ||
6620 | /** | |
6621 | * follow_pfnmap_end(): End a follow_pfnmap_start() process | |
6622 | * @args: Pointer to struct @follow_pfnmap_args | |
6623 | * | |
6624 | * Must be used in pair of follow_pfnmap_start(). See the start() function | |
6625 | * above for more information. | |
6626 | */ | |
6627 | void follow_pfnmap_end(struct follow_pfnmap_args *args) | |
6628 | { | |
6629 | if (args->lock) | |
6630 | spin_unlock(args->lock); | |
6631 | if (args->ptep) | |
6632 | pte_unmap(args->ptep); | |
6633 | } | |
6634 | EXPORT_SYMBOL_GPL(follow_pfnmap_end); | |
6635 | ||
6636 | #ifdef CONFIG_HAVE_IOREMAP_PROT | |
6637 | /** | |
6638 | * generic_access_phys - generic implementation for iomem mmap access | |
6639 | * @vma: the vma to access | |
6640 | * @addr: userspace address, not relative offset within @vma | |
6641 | * @buf: buffer to read/write | |
6642 | * @len: length of transfer | |
6643 | * @write: set to FOLL_WRITE when writing, otherwise reading | |
6644 | * | |
6645 | * This is a generic implementation for &vm_operations_struct.access for an | |
6646 | * iomem mapping. This callback is used by access_process_vm() when the @vma is | |
6647 | * not page based. | |
6648 | */ | |
6649 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | |
6650 | void *buf, int len, int write) | |
6651 | { | |
6652 | resource_size_t phys_addr; | |
6653 | pgprot_t prot = __pgprot(0); | |
6654 | void __iomem *maddr; | |
6655 | int offset = offset_in_page(addr); | |
6656 | int ret = -EINVAL; | |
6657 | bool writable; | |
6658 | struct follow_pfnmap_args args = { .vma = vma, .address = addr }; | |
6659 | ||
6660 | retry: | |
6661 | if (follow_pfnmap_start(&args)) | |
6662 | return -EINVAL; | |
6663 | prot = args.pgprot; | |
6664 | phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; | |
6665 | writable = args.writable; | |
6666 | follow_pfnmap_end(&args); | |
6667 | ||
6668 | if ((write & FOLL_WRITE) && !writable) | |
6669 | return -EINVAL; | |
6670 | ||
6671 | maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); | |
6672 | if (!maddr) | |
6673 | return -ENOMEM; | |
6674 | ||
6675 | if (follow_pfnmap_start(&args)) | |
6676 | goto out_unmap; | |
6677 | ||
6678 | if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || | |
6679 | (phys_addr != (args.pfn << PAGE_SHIFT)) || | |
6680 | (writable != args.writable)) { | |
6681 | follow_pfnmap_end(&args); | |
6682 | iounmap(maddr); | |
6683 | goto retry; | |
6684 | } | |
6685 | ||
6686 | if (write) | |
6687 | memcpy_toio(maddr + offset, buf, len); | |
6688 | else | |
6689 | memcpy_fromio(buf, maddr + offset, len); | |
6690 | ret = len; | |
6691 | follow_pfnmap_end(&args); | |
6692 | out_unmap: | |
6693 | iounmap(maddr); | |
6694 | ||
6695 | return ret; | |
6696 | } | |
6697 | EXPORT_SYMBOL_GPL(generic_access_phys); | |
6698 | #endif | |
6699 | ||
6700 | /* | |
6701 | * Access another process' address space as given in mm. | |
6702 | */ | |
6703 | static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, | |
6704 | void *buf, int len, unsigned int gup_flags) | |
6705 | { | |
6706 | void *old_buf = buf; | |
6707 | int write = gup_flags & FOLL_WRITE; | |
6708 | ||
6709 | if (mmap_read_lock_killable(mm)) | |
6710 | return 0; | |
6711 | ||
6712 | /* Untag the address before looking up the VMA */ | |
6713 | addr = untagged_addr_remote(mm, addr); | |
6714 | ||
6715 | /* Avoid triggering the temporary warning in __get_user_pages */ | |
6716 | if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) | |
6717 | return 0; | |
6718 | ||
6719 | /* ignore errors, just check how much was successfully transferred */ | |
6720 | while (len) { | |
6721 | int bytes, offset; | |
6722 | void *maddr; | |
6723 | struct vm_area_struct *vma = NULL; | |
6724 | struct page *page = get_user_page_vma_remote(mm, addr, | |
6725 | gup_flags, &vma); | |
6726 | ||
6727 | if (IS_ERR(page)) { | |
6728 | /* We might need to expand the stack to access it */ | |
6729 | vma = vma_lookup(mm, addr); | |
6730 | if (!vma) { | |
6731 | vma = expand_stack(mm, addr); | |
6732 | ||
6733 | /* mmap_lock was dropped on failure */ | |
6734 | if (!vma) | |
6735 | return buf - old_buf; | |
6736 | ||
6737 | /* Try again if stack expansion worked */ | |
6738 | continue; | |
6739 | } | |
6740 | ||
6741 | /* | |
6742 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
6743 | * we can access using slightly different code. | |
6744 | */ | |
6745 | bytes = 0; | |
6746 | #ifdef CONFIG_HAVE_IOREMAP_PROT | |
6747 | if (vma->vm_ops && vma->vm_ops->access) | |
6748 | bytes = vma->vm_ops->access(vma, addr, buf, | |
6749 | len, write); | |
6750 | #endif | |
6751 | if (bytes <= 0) | |
6752 | break; | |
6753 | } else { | |
6754 | bytes = len; | |
6755 | offset = addr & (PAGE_SIZE-1); | |
6756 | if (bytes > PAGE_SIZE-offset) | |
6757 | bytes = PAGE_SIZE-offset; | |
6758 | ||
6759 | maddr = kmap_local_page(page); | |
6760 | if (write) { | |
6761 | copy_to_user_page(vma, page, addr, | |
6762 | maddr + offset, buf, bytes); | |
6763 | set_page_dirty_lock(page); | |
6764 | } else { | |
6765 | copy_from_user_page(vma, page, addr, | |
6766 | buf, maddr + offset, bytes); | |
6767 | } | |
6768 | unmap_and_put_page(page, maddr); | |
6769 | } | |
6770 | len -= bytes; | |
6771 | buf += bytes; | |
6772 | addr += bytes; | |
6773 | } | |
6774 | mmap_read_unlock(mm); | |
6775 | ||
6776 | return buf - old_buf; | |
6777 | } | |
6778 | ||
6779 | /** | |
6780 | * access_remote_vm - access another process' address space | |
6781 | * @mm: the mm_struct of the target address space | |
6782 | * @addr: start address to access | |
6783 | * @buf: source or destination buffer | |
6784 | * @len: number of bytes to transfer | |
6785 | * @gup_flags: flags modifying lookup behaviour | |
6786 | * | |
6787 | * The caller must hold a reference on @mm. | |
6788 | * | |
6789 | * Return: number of bytes copied from source to destination. | |
6790 | */ | |
6791 | int access_remote_vm(struct mm_struct *mm, unsigned long addr, | |
6792 | void *buf, int len, unsigned int gup_flags) | |
6793 | { | |
6794 | return __access_remote_vm(mm, addr, buf, len, gup_flags); | |
6795 | } | |
6796 | ||
6797 | /* | |
6798 | * Access another process' address space. | |
6799 | * Source/target buffer must be kernel space, | |
6800 | * Do not walk the page table directly, use get_user_pages | |
6801 | */ | |
6802 | int access_process_vm(struct task_struct *tsk, unsigned long addr, | |
6803 | void *buf, int len, unsigned int gup_flags) | |
6804 | { | |
6805 | struct mm_struct *mm; | |
6806 | int ret; | |
6807 | ||
6808 | mm = get_task_mm(tsk); | |
6809 | if (!mm) | |
6810 | return 0; | |
6811 | ||
6812 | ret = __access_remote_vm(mm, addr, buf, len, gup_flags); | |
6813 | ||
6814 | mmput(mm); | |
6815 | ||
6816 | return ret; | |
6817 | } | |
6818 | EXPORT_SYMBOL_GPL(access_process_vm); | |
6819 | ||
6820 | #ifdef CONFIG_BPF_SYSCALL | |
6821 | /* | |
6822 | * Copy a string from another process's address space as given in mm. | |
6823 | * If there is any error return -EFAULT. | |
6824 | */ | |
6825 | static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, | |
6826 | void *buf, int len, unsigned int gup_flags) | |
6827 | { | |
6828 | void *old_buf = buf; | |
6829 | int err = 0; | |
6830 | ||
6831 | *(char *)buf = '\0'; | |
6832 | ||
6833 | if (mmap_read_lock_killable(mm)) | |
6834 | return -EFAULT; | |
6835 | ||
6836 | addr = untagged_addr_remote(mm, addr); | |
6837 | ||
6838 | /* Avoid triggering the temporary warning in __get_user_pages */ | |
6839 | if (!vma_lookup(mm, addr)) { | |
6840 | err = -EFAULT; | |
6841 | goto out; | |
6842 | } | |
6843 | ||
6844 | while (len) { | |
6845 | int bytes, offset, retval; | |
6846 | void *maddr; | |
6847 | struct page *page; | |
6848 | struct vm_area_struct *vma = NULL; | |
6849 | ||
6850 | page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); | |
6851 | if (IS_ERR(page)) { | |
6852 | /* | |
6853 | * Treat as a total failure for now until we decide how | |
6854 | * to handle the CONFIG_HAVE_IOREMAP_PROT case and | |
6855 | * stack expansion. | |
6856 | */ | |
6857 | *(char *)buf = '\0'; | |
6858 | err = -EFAULT; | |
6859 | goto out; | |
6860 | } | |
6861 | ||
6862 | bytes = len; | |
6863 | offset = addr & (PAGE_SIZE - 1); | |
6864 | if (bytes > PAGE_SIZE - offset) | |
6865 | bytes = PAGE_SIZE - offset; | |
6866 | ||
6867 | maddr = kmap_local_page(page); | |
6868 | retval = strscpy(buf, maddr + offset, bytes); | |
6869 | if (retval >= 0) { | |
6870 | /* Found the end of the string */ | |
6871 | buf += retval; | |
6872 | unmap_and_put_page(page, maddr); | |
6873 | break; | |
6874 | } | |
6875 | ||
6876 | buf += bytes - 1; | |
6877 | /* | |
6878 | * Because strscpy always NUL terminates we need to | |
6879 | * copy the last byte in the page if we are going to | |
6880 | * load more pages | |
6881 | */ | |
6882 | if (bytes != len) { | |
6883 | addr += bytes - 1; | |
6884 | copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); | |
6885 | buf += 1; | |
6886 | addr += 1; | |
6887 | } | |
6888 | len -= bytes; | |
6889 | ||
6890 | unmap_and_put_page(page, maddr); | |
6891 | } | |
6892 | ||
6893 | out: | |
6894 | mmap_read_unlock(mm); | |
6895 | if (err) | |
6896 | return err; | |
6897 | return buf - old_buf; | |
6898 | } | |
6899 | ||
6900 | /** | |
6901 | * copy_remote_vm_str - copy a string from another process's address space. | |
6902 | * @tsk: the task of the target address space | |
6903 | * @addr: start address to read from | |
6904 | * @buf: destination buffer | |
6905 | * @len: number of bytes to copy | |
6906 | * @gup_flags: flags modifying lookup behaviour | |
6907 | * | |
6908 | * The caller must hold a reference on @mm. | |
6909 | * | |
6910 | * Return: number of bytes copied from @addr (source) to @buf (destination); | |
6911 | * not including the trailing NUL. Always guaranteed to leave NUL-terminated | |
6912 | * buffer. On any error, return -EFAULT. | |
6913 | */ | |
6914 | int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, | |
6915 | void *buf, int len, unsigned int gup_flags) | |
6916 | { | |
6917 | struct mm_struct *mm; | |
6918 | int ret; | |
6919 | ||
6920 | if (unlikely(len == 0)) | |
6921 | return 0; | |
6922 | ||
6923 | mm = get_task_mm(tsk); | |
6924 | if (!mm) { | |
6925 | *(char *)buf = '\0'; | |
6926 | return -EFAULT; | |
6927 | } | |
6928 | ||
6929 | ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); | |
6930 | ||
6931 | mmput(mm); | |
6932 | ||
6933 | return ret; | |
6934 | } | |
6935 | EXPORT_SYMBOL_GPL(copy_remote_vm_str); | |
6936 | #endif /* CONFIG_BPF_SYSCALL */ | |
6937 | ||
6938 | /* | |
6939 | * Print the name of a VMA. | |
6940 | */ | |
6941 | void print_vma_addr(char *prefix, unsigned long ip) | |
6942 | { | |
6943 | struct mm_struct *mm = current->mm; | |
6944 | struct vm_area_struct *vma; | |
6945 | ||
6946 | /* | |
6947 | * we might be running from an atomic context so we cannot sleep | |
6948 | */ | |
6949 | if (!mmap_read_trylock(mm)) | |
6950 | return; | |
6951 | ||
6952 | vma = vma_lookup(mm, ip); | |
6953 | if (vma && vma->vm_file) { | |
6954 | struct file *f = vma->vm_file; | |
6955 | ip -= vma->vm_start; | |
6956 | ip += vma->vm_pgoff << PAGE_SHIFT; | |
6957 | printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, | |
6958 | vma->vm_start, | |
6959 | vma->vm_end - vma->vm_start); | |
6960 | } | |
6961 | mmap_read_unlock(mm); | |
6962 | } | |
6963 | ||
6964 | #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) | |
6965 | void __might_fault(const char *file, int line) | |
6966 | { | |
6967 | if (pagefault_disabled()) | |
6968 | return; | |
6969 | __might_sleep(file, line); | |
6970 | if (current->mm) | |
6971 | might_lock_read(¤t->mm->mmap_lock); | |
6972 | } | |
6973 | EXPORT_SYMBOL(__might_fault); | |
6974 | #endif | |
6975 | ||
6976 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) | |
6977 | /* | |
6978 | * Process all subpages of the specified huge page with the specified | |
6979 | * operation. The target subpage will be processed last to keep its | |
6980 | * cache lines hot. | |
6981 | */ | |
6982 | static inline int process_huge_page( | |
6983 | unsigned long addr_hint, unsigned int nr_pages, | |
6984 | int (*process_subpage)(unsigned long addr, int idx, void *arg), | |
6985 | void *arg) | |
6986 | { | |
6987 | int i, n, base, l, ret; | |
6988 | unsigned long addr = addr_hint & | |
6989 | ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); | |
6990 | ||
6991 | /* Process target subpage last to keep its cache lines hot */ | |
6992 | might_sleep(); | |
6993 | n = (addr_hint - addr) / PAGE_SIZE; | |
6994 | if (2 * n <= nr_pages) { | |
6995 | /* If target subpage in first half of huge page */ | |
6996 | base = 0; | |
6997 | l = n; | |
6998 | /* Process subpages at the end of huge page */ | |
6999 | for (i = nr_pages - 1; i >= 2 * n; i--) { | |
7000 | cond_resched(); | |
7001 | ret = process_subpage(addr + i * PAGE_SIZE, i, arg); | |
7002 | if (ret) | |
7003 | return ret; | |
7004 | } | |
7005 | } else { | |
7006 | /* If target subpage in second half of huge page */ | |
7007 | base = nr_pages - 2 * (nr_pages - n); | |
7008 | l = nr_pages - n; | |
7009 | /* Process subpages at the begin of huge page */ | |
7010 | for (i = 0; i < base; i++) { | |
7011 | cond_resched(); | |
7012 | ret = process_subpage(addr + i * PAGE_SIZE, i, arg); | |
7013 | if (ret) | |
7014 | return ret; | |
7015 | } | |
7016 | } | |
7017 | /* | |
7018 | * Process remaining subpages in left-right-left-right pattern | |
7019 | * towards the target subpage | |
7020 | */ | |
7021 | for (i = 0; i < l; i++) { | |
7022 | int left_idx = base + i; | |
7023 | int right_idx = base + 2 * l - 1 - i; | |
7024 | ||
7025 | cond_resched(); | |
7026 | ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); | |
7027 | if (ret) | |
7028 | return ret; | |
7029 | cond_resched(); | |
7030 | ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); | |
7031 | if (ret) | |
7032 | return ret; | |
7033 | } | |
7034 | return 0; | |
7035 | } | |
7036 | ||
7037 | static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, | |
7038 | unsigned int nr_pages) | |
7039 | { | |
7040 | unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); | |
7041 | int i; | |
7042 | ||
7043 | might_sleep(); | |
7044 | for (i = 0; i < nr_pages; i++) { | |
7045 | cond_resched(); | |
7046 | clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); | |
7047 | } | |
7048 | } | |
7049 | ||
7050 | static int clear_subpage(unsigned long addr, int idx, void *arg) | |
7051 | { | |
7052 | struct folio *folio = arg; | |
7053 | ||
7054 | clear_user_highpage(folio_page(folio, idx), addr); | |
7055 | return 0; | |
7056 | } | |
7057 | ||
7058 | /** | |
7059 | * folio_zero_user - Zero a folio which will be mapped to userspace. | |
7060 | * @folio: The folio to zero. | |
7061 | * @addr_hint: The address will be accessed or the base address if uncelar. | |
7062 | */ | |
7063 | void folio_zero_user(struct folio *folio, unsigned long addr_hint) | |
7064 | { | |
7065 | unsigned int nr_pages = folio_nr_pages(folio); | |
7066 | ||
7067 | if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) | |
7068 | clear_gigantic_page(folio, addr_hint, nr_pages); | |
7069 | else | |
7070 | process_huge_page(addr_hint, nr_pages, clear_subpage, folio); | |
7071 | } | |
7072 | ||
7073 | static int copy_user_gigantic_page(struct folio *dst, struct folio *src, | |
7074 | unsigned long addr_hint, | |
7075 | struct vm_area_struct *vma, | |
7076 | unsigned int nr_pages) | |
7077 | { | |
7078 | unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); | |
7079 | struct page *dst_page; | |
7080 | struct page *src_page; | |
7081 | int i; | |
7082 | ||
7083 | for (i = 0; i < nr_pages; i++) { | |
7084 | dst_page = folio_page(dst, i); | |
7085 | src_page = folio_page(src, i); | |
7086 | ||
7087 | cond_resched(); | |
7088 | if (copy_mc_user_highpage(dst_page, src_page, | |
7089 | addr + i*PAGE_SIZE, vma)) | |
7090 | return -EHWPOISON; | |
7091 | } | |
7092 | return 0; | |
7093 | } | |
7094 | ||
7095 | struct copy_subpage_arg { | |
7096 | struct folio *dst; | |
7097 | struct folio *src; | |
7098 | struct vm_area_struct *vma; | |
7099 | }; | |
7100 | ||
7101 | static int copy_subpage(unsigned long addr, int idx, void *arg) | |
7102 | { | |
7103 | struct copy_subpage_arg *copy_arg = arg; | |
7104 | struct page *dst = folio_page(copy_arg->dst, idx); | |
7105 | struct page *src = folio_page(copy_arg->src, idx); | |
7106 | ||
7107 | if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) | |
7108 | return -EHWPOISON; | |
7109 | return 0; | |
7110 | } | |
7111 | ||
7112 | int copy_user_large_folio(struct folio *dst, struct folio *src, | |
7113 | unsigned long addr_hint, struct vm_area_struct *vma) | |
7114 | { | |
7115 | unsigned int nr_pages = folio_nr_pages(dst); | |
7116 | struct copy_subpage_arg arg = { | |
7117 | .dst = dst, | |
7118 | .src = src, | |
7119 | .vma = vma, | |
7120 | }; | |
7121 | ||
7122 | if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) | |
7123 | return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); | |
7124 | ||
7125 | return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); | |
7126 | } | |
7127 | ||
7128 | long copy_folio_from_user(struct folio *dst_folio, | |
7129 | const void __user *usr_src, | |
7130 | bool allow_pagefault) | |
7131 | { | |
7132 | void *kaddr; | |
7133 | unsigned long i, rc = 0; | |
7134 | unsigned int nr_pages = folio_nr_pages(dst_folio); | |
7135 | unsigned long ret_val = nr_pages * PAGE_SIZE; | |
7136 | struct page *subpage; | |
7137 | ||
7138 | for (i = 0; i < nr_pages; i++) { | |
7139 | subpage = folio_page(dst_folio, i); | |
7140 | kaddr = kmap_local_page(subpage); | |
7141 | if (!allow_pagefault) | |
7142 | pagefault_disable(); | |
7143 | rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); | |
7144 | if (!allow_pagefault) | |
7145 | pagefault_enable(); | |
7146 | kunmap_local(kaddr); | |
7147 | ||
7148 | ret_val -= (PAGE_SIZE - rc); | |
7149 | if (rc) | |
7150 | break; | |
7151 | ||
7152 | flush_dcache_page(subpage); | |
7153 | ||
7154 | cond_resched(); | |
7155 | } | |
7156 | return ret_val; | |
7157 | } | |
7158 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ | |
7159 | ||
7160 | #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS | |
7161 | ||
7162 | static struct kmem_cache *page_ptl_cachep; | |
7163 | ||
7164 | void __init ptlock_cache_init(void) | |
7165 | { | |
7166 | page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, | |
7167 | SLAB_PANIC, NULL); | |
7168 | } | |
7169 | ||
7170 | bool ptlock_alloc(struct ptdesc *ptdesc) | |
7171 | { | |
7172 | spinlock_t *ptl; | |
7173 | ||
7174 | ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); | |
7175 | if (!ptl) | |
7176 | return false; | |
7177 | ptdesc->ptl = ptl; | |
7178 | return true; | |
7179 | } | |
7180 | ||
7181 | void ptlock_free(struct ptdesc *ptdesc) | |
7182 | { | |
7183 | if (ptdesc->ptl) | |
7184 | kmem_cache_free(page_ptl_cachep, ptdesc->ptl); | |
7185 | } | |
7186 | #endif | |
7187 | ||
7188 | void vma_pgtable_walk_begin(struct vm_area_struct *vma) | |
7189 | { | |
7190 | if (is_vm_hugetlb_page(vma)) | |
7191 | hugetlb_vma_lock_read(vma); | |
7192 | } | |
7193 | ||
7194 | void vma_pgtable_walk_end(struct vm_area_struct *vma) | |
7195 | { | |
7196 | if (is_vm_hugetlb_page(vma)) | |
7197 | hugetlb_vma_unlock_read(vma); | |
7198 | } |