]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame_incremental - mm/page_alloc.c
videobuf-dma-contig: zero copy USERPTR support
[thirdparty/kernel/linux.git] / mm / page_alloc.c
... / ...
CommitLineData
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/oom.h>
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
37#include <linux/memory_hotplug.h>
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
40#include <linux/mempolicy.h>
41#include <linux/stop_machine.h>
42#include <linux/sort.h>
43#include <linux/pfn.h>
44#include <linux/backing-dev.h>
45#include <linux/fault-inject.h>
46#include <linux/page-isolation.h>
47#include <linux/page_cgroup.h>
48#include <linux/debugobjects.h>
49#include <linux/kmemleak.h>
50
51#include <asm/tlbflush.h>
52#include <asm/div64.h>
53#include "internal.h"
54
55/*
56 * Array of node states.
57 */
58nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61#ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63#ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65#endif
66 [N_CPU] = { { [0] = 1UL } },
67#endif /* NUMA */
68};
69EXPORT_SYMBOL(node_states);
70
71unsigned long totalram_pages __read_mostly;
72unsigned long totalreserve_pages __read_mostly;
73unsigned long highest_memmap_pfn __read_mostly;
74int percpu_pagelist_fraction;
75
76#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77int pageblock_order __read_mostly;
78#endif
79
80static void __free_pages_ok(struct page *page, unsigned int order);
81
82/*
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 *
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
92 */
93int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
94#ifdef CONFIG_ZONE_DMA
95 256,
96#endif
97#ifdef CONFIG_ZONE_DMA32
98 256,
99#endif
100#ifdef CONFIG_HIGHMEM
101 32,
102#endif
103 32,
104};
105
106EXPORT_SYMBOL(totalram_pages);
107
108static char * const zone_names[MAX_NR_ZONES] = {
109#ifdef CONFIG_ZONE_DMA
110 "DMA",
111#endif
112#ifdef CONFIG_ZONE_DMA32
113 "DMA32",
114#endif
115 "Normal",
116#ifdef CONFIG_HIGHMEM
117 "HighMem",
118#endif
119 "Movable",
120};
121
122int min_free_kbytes = 1024;
123
124unsigned long __meminitdata nr_kernel_pages;
125unsigned long __meminitdata nr_all_pages;
126static unsigned long __meminitdata dma_reserve;
127
128#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 /*
130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
135 */
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
148
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153 static unsigned long __initdata required_kernelcore;
154 static unsigned long __initdata required_movablecore;
155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
156
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
160#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
162#if MAX_NUMNODES > 1
163int nr_node_ids __read_mostly = MAX_NUMNODES;
164int nr_online_nodes __read_mostly = 1;
165EXPORT_SYMBOL(nr_node_ids);
166EXPORT_SYMBOL(nr_online_nodes);
167#endif
168
169int page_group_by_mobility_disabled __read_mostly;
170
171static void set_pageblock_migratetype(struct page *page, int migratetype)
172{
173
174 if (unlikely(page_group_by_mobility_disabled))
175 migratetype = MIGRATE_UNMOVABLE;
176
177 set_pageblock_flags_group(page, (unsigned long)migratetype,
178 PB_migrate, PB_migrate_end);
179}
180
181#ifdef CONFIG_DEBUG_VM
182static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
183{
184 int ret = 0;
185 unsigned seq;
186 unsigned long pfn = page_to_pfn(page);
187
188 do {
189 seq = zone_span_seqbegin(zone);
190 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
191 ret = 1;
192 else if (pfn < zone->zone_start_pfn)
193 ret = 1;
194 } while (zone_span_seqretry(zone, seq));
195
196 return ret;
197}
198
199static int page_is_consistent(struct zone *zone, struct page *page)
200{
201 if (!pfn_valid_within(page_to_pfn(page)))
202 return 0;
203 if (zone != page_zone(page))
204 return 0;
205
206 return 1;
207}
208/*
209 * Temporary debugging check for pages not lying within a given zone.
210 */
211static int bad_range(struct zone *zone, struct page *page)
212{
213 if (page_outside_zone_boundaries(zone, page))
214 return 1;
215 if (!page_is_consistent(zone, page))
216 return 1;
217
218 return 0;
219}
220#else
221static inline int bad_range(struct zone *zone, struct page *page)
222{
223 return 0;
224}
225#endif
226
227static void bad_page(struct page *page)
228{
229 static unsigned long resume;
230 static unsigned long nr_shown;
231 static unsigned long nr_unshown;
232
233 /*
234 * Allow a burst of 60 reports, then keep quiet for that minute;
235 * or allow a steady drip of one report per second.
236 */
237 if (nr_shown == 60) {
238 if (time_before(jiffies, resume)) {
239 nr_unshown++;
240 goto out;
241 }
242 if (nr_unshown) {
243 printk(KERN_ALERT
244 "BUG: Bad page state: %lu messages suppressed\n",
245 nr_unshown);
246 nr_unshown = 0;
247 }
248 nr_shown = 0;
249 }
250 if (nr_shown++ == 0)
251 resume = jiffies + 60 * HZ;
252
253 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
254 current->comm, page_to_pfn(page));
255 printk(KERN_ALERT
256 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
257 page, (void *)page->flags, page_count(page),
258 page_mapcount(page), page->mapping, page->index);
259
260 dump_stack();
261out:
262 /* Leave bad fields for debug, except PageBuddy could make trouble */
263 __ClearPageBuddy(page);
264 add_taint(TAINT_BAD_PAGE);
265}
266
267/*
268 * Higher-order pages are called "compound pages". They are structured thusly:
269 *
270 * The first PAGE_SIZE page is called the "head page".
271 *
272 * The remaining PAGE_SIZE pages are called "tail pages".
273 *
274 * All pages have PG_compound set. All pages have their ->private pointing at
275 * the head page (even the head page has this).
276 *
277 * The first tail page's ->lru.next holds the address of the compound page's
278 * put_page() function. Its ->lru.prev holds the order of allocation.
279 * This usage means that zero-order pages may not be compound.
280 */
281
282static void free_compound_page(struct page *page)
283{
284 __free_pages_ok(page, compound_order(page));
285}
286
287void prep_compound_page(struct page *page, unsigned long order)
288{
289 int i;
290 int nr_pages = 1 << order;
291
292 set_compound_page_dtor(page, free_compound_page);
293 set_compound_order(page, order);
294 __SetPageHead(page);
295 for (i = 1; i < nr_pages; i++) {
296 struct page *p = page + i;
297
298 __SetPageTail(p);
299 p->first_page = page;
300 }
301}
302
303static int destroy_compound_page(struct page *page, unsigned long order)
304{
305 int i;
306 int nr_pages = 1 << order;
307 int bad = 0;
308
309 if (unlikely(compound_order(page) != order) ||
310 unlikely(!PageHead(page))) {
311 bad_page(page);
312 bad++;
313 }
314
315 __ClearPageHead(page);
316
317 for (i = 1; i < nr_pages; i++) {
318 struct page *p = page + i;
319
320 if (unlikely(!PageTail(p) || (p->first_page != page))) {
321 bad_page(page);
322 bad++;
323 }
324 __ClearPageTail(p);
325 }
326
327 return bad;
328}
329
330static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
331{
332 int i;
333
334 /*
335 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
336 * and __GFP_HIGHMEM from hard or soft interrupt context.
337 */
338 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
339 for (i = 0; i < (1 << order); i++)
340 clear_highpage(page + i);
341}
342
343static inline void set_page_order(struct page *page, int order)
344{
345 set_page_private(page, order);
346 __SetPageBuddy(page);
347}
348
349static inline void rmv_page_order(struct page *page)
350{
351 __ClearPageBuddy(page);
352 set_page_private(page, 0);
353}
354
355/*
356 * Locate the struct page for both the matching buddy in our
357 * pair (buddy1) and the combined O(n+1) page they form (page).
358 *
359 * 1) Any buddy B1 will have an order O twin B2 which satisfies
360 * the following equation:
361 * B2 = B1 ^ (1 << O)
362 * For example, if the starting buddy (buddy2) is #8 its order
363 * 1 buddy is #10:
364 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
365 *
366 * 2) Any buddy B will have an order O+1 parent P which
367 * satisfies the following equation:
368 * P = B & ~(1 << O)
369 *
370 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
371 */
372static inline struct page *
373__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
374{
375 unsigned long buddy_idx = page_idx ^ (1 << order);
376
377 return page + (buddy_idx - page_idx);
378}
379
380static inline unsigned long
381__find_combined_index(unsigned long page_idx, unsigned int order)
382{
383 return (page_idx & ~(1 << order));
384}
385
386/*
387 * This function checks whether a page is free && is the buddy
388 * we can do coalesce a page and its buddy if
389 * (a) the buddy is not in a hole &&
390 * (b) the buddy is in the buddy system &&
391 * (c) a page and its buddy have the same order &&
392 * (d) a page and its buddy are in the same zone.
393 *
394 * For recording whether a page is in the buddy system, we use PG_buddy.
395 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
396 *
397 * For recording page's order, we use page_private(page).
398 */
399static inline int page_is_buddy(struct page *page, struct page *buddy,
400 int order)
401{
402 if (!pfn_valid_within(page_to_pfn(buddy)))
403 return 0;
404
405 if (page_zone_id(page) != page_zone_id(buddy))
406 return 0;
407
408 if (PageBuddy(buddy) && page_order(buddy) == order) {
409 VM_BUG_ON(page_count(buddy) != 0);
410 return 1;
411 }
412 return 0;
413}
414
415/*
416 * Freeing function for a buddy system allocator.
417 *
418 * The concept of a buddy system is to maintain direct-mapped table
419 * (containing bit values) for memory blocks of various "orders".
420 * The bottom level table contains the map for the smallest allocatable
421 * units of memory (here, pages), and each level above it describes
422 * pairs of units from the levels below, hence, "buddies".
423 * At a high level, all that happens here is marking the table entry
424 * at the bottom level available, and propagating the changes upward
425 * as necessary, plus some accounting needed to play nicely with other
426 * parts of the VM system.
427 * At each level, we keep a list of pages, which are heads of continuous
428 * free pages of length of (1 << order) and marked with PG_buddy. Page's
429 * order is recorded in page_private(page) field.
430 * So when we are allocating or freeing one, we can derive the state of the
431 * other. That is, if we allocate a small block, and both were
432 * free, the remainder of the region must be split into blocks.
433 * If a block is freed, and its buddy is also free, then this
434 * triggers coalescing into a block of larger size.
435 *
436 * -- wli
437 */
438
439static inline void __free_one_page(struct page *page,
440 struct zone *zone, unsigned int order,
441 int migratetype)
442{
443 unsigned long page_idx;
444
445 if (unlikely(PageCompound(page)))
446 if (unlikely(destroy_compound_page(page, order)))
447 return;
448
449 VM_BUG_ON(migratetype == -1);
450
451 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
452
453 VM_BUG_ON(page_idx & ((1 << order) - 1));
454 VM_BUG_ON(bad_range(zone, page));
455
456 while (order < MAX_ORDER-1) {
457 unsigned long combined_idx;
458 struct page *buddy;
459
460 buddy = __page_find_buddy(page, page_idx, order);
461 if (!page_is_buddy(page, buddy, order))
462 break;
463
464 /* Our buddy is free, merge with it and move up one order. */
465 list_del(&buddy->lru);
466 zone->free_area[order].nr_free--;
467 rmv_page_order(buddy);
468 combined_idx = __find_combined_index(page_idx, order);
469 page = page + (combined_idx - page_idx);
470 page_idx = combined_idx;
471 order++;
472 }
473 set_page_order(page, order);
474 list_add(&page->lru,
475 &zone->free_area[order].free_list[migratetype]);
476 zone->free_area[order].nr_free++;
477}
478
479#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
480/*
481 * free_page_mlock() -- clean up attempts to free and mlocked() page.
482 * Page should not be on lru, so no need to fix that up.
483 * free_pages_check() will verify...
484 */
485static inline void free_page_mlock(struct page *page)
486{
487 __ClearPageMlocked(page);
488 __dec_zone_page_state(page, NR_MLOCK);
489 __count_vm_event(UNEVICTABLE_MLOCKFREED);
490}
491#else
492static void free_page_mlock(struct page *page) { }
493#endif
494
495static inline int free_pages_check(struct page *page)
496{
497 if (unlikely(page_mapcount(page) |
498 (page->mapping != NULL) |
499 (atomic_read(&page->_count) != 0) |
500 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
501 bad_page(page);
502 return 1;
503 }
504 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
505 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
506 return 0;
507}
508
509/*
510 * Frees a list of pages.
511 * Assumes all pages on list are in same zone, and of same order.
512 * count is the number of pages to free.
513 *
514 * If the zone was previously in an "all pages pinned" state then look to
515 * see if this freeing clears that state.
516 *
517 * And clear the zone's pages_scanned counter, to hold off the "all pages are
518 * pinned" detection logic.
519 */
520static void free_pages_bulk(struct zone *zone, int count,
521 struct list_head *list, int order)
522{
523 spin_lock(&zone->lock);
524 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
525 zone->pages_scanned = 0;
526
527 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
528 while (count--) {
529 struct page *page;
530
531 VM_BUG_ON(list_empty(list));
532 page = list_entry(list->prev, struct page, lru);
533 /* have to delete it as __free_one_page list manipulates */
534 list_del(&page->lru);
535 __free_one_page(page, zone, order, page_private(page));
536 }
537 spin_unlock(&zone->lock);
538}
539
540static void free_one_page(struct zone *zone, struct page *page, int order,
541 int migratetype)
542{
543 spin_lock(&zone->lock);
544 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
545 zone->pages_scanned = 0;
546
547 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
548 __free_one_page(page, zone, order, migratetype);
549 spin_unlock(&zone->lock);
550}
551
552static void __free_pages_ok(struct page *page, unsigned int order)
553{
554 unsigned long flags;
555 int i;
556 int bad = 0;
557 int clearMlocked = PageMlocked(page);
558
559 for (i = 0 ; i < (1 << order) ; ++i)
560 bad += free_pages_check(page + i);
561 if (bad)
562 return;
563
564 if (!PageHighMem(page)) {
565 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
566 debug_check_no_obj_freed(page_address(page),
567 PAGE_SIZE << order);
568 }
569 arch_free_page(page, order);
570 kernel_map_pages(page, 1 << order, 0);
571
572 local_irq_save(flags);
573 if (unlikely(clearMlocked))
574 free_page_mlock(page);
575 __count_vm_events(PGFREE, 1 << order);
576 free_one_page(page_zone(page), page, order,
577 get_pageblock_migratetype(page));
578 local_irq_restore(flags);
579}
580
581/*
582 * permit the bootmem allocator to evade page validation on high-order frees
583 */
584void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
585{
586 if (order == 0) {
587 __ClearPageReserved(page);
588 set_page_count(page, 0);
589 set_page_refcounted(page);
590 __free_page(page);
591 } else {
592 int loop;
593
594 prefetchw(page);
595 for (loop = 0; loop < BITS_PER_LONG; loop++) {
596 struct page *p = &page[loop];
597
598 if (loop + 1 < BITS_PER_LONG)
599 prefetchw(p + 1);
600 __ClearPageReserved(p);
601 set_page_count(p, 0);
602 }
603
604 set_page_refcounted(page);
605 __free_pages(page, order);
606 }
607}
608
609
610/*
611 * The order of subdivision here is critical for the IO subsystem.
612 * Please do not alter this order without good reasons and regression
613 * testing. Specifically, as large blocks of memory are subdivided,
614 * the order in which smaller blocks are delivered depends on the order
615 * they're subdivided in this function. This is the primary factor
616 * influencing the order in which pages are delivered to the IO
617 * subsystem according to empirical testing, and this is also justified
618 * by considering the behavior of a buddy system containing a single
619 * large block of memory acted on by a series of small allocations.
620 * This behavior is a critical factor in sglist merging's success.
621 *
622 * -- wli
623 */
624static inline void expand(struct zone *zone, struct page *page,
625 int low, int high, struct free_area *area,
626 int migratetype)
627{
628 unsigned long size = 1 << high;
629
630 while (high > low) {
631 area--;
632 high--;
633 size >>= 1;
634 VM_BUG_ON(bad_range(zone, &page[size]));
635 list_add(&page[size].lru, &area->free_list[migratetype]);
636 area->nr_free++;
637 set_page_order(&page[size], high);
638 }
639}
640
641/*
642 * This page is about to be returned from the page allocator
643 */
644static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
645{
646 if (unlikely(page_mapcount(page) |
647 (page->mapping != NULL) |
648 (atomic_read(&page->_count) != 0) |
649 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
650 bad_page(page);
651 return 1;
652 }
653
654 set_page_private(page, 0);
655 set_page_refcounted(page);
656
657 arch_alloc_page(page, order);
658 kernel_map_pages(page, 1 << order, 1);
659
660 if (gfp_flags & __GFP_ZERO)
661 prep_zero_page(page, order, gfp_flags);
662
663 if (order && (gfp_flags & __GFP_COMP))
664 prep_compound_page(page, order);
665
666 return 0;
667}
668
669/*
670 * Go through the free lists for the given migratetype and remove
671 * the smallest available page from the freelists
672 */
673static inline
674struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
675 int migratetype)
676{
677 unsigned int current_order;
678 struct free_area * area;
679 struct page *page;
680
681 /* Find a page of the appropriate size in the preferred list */
682 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
683 area = &(zone->free_area[current_order]);
684 if (list_empty(&area->free_list[migratetype]))
685 continue;
686
687 page = list_entry(area->free_list[migratetype].next,
688 struct page, lru);
689 list_del(&page->lru);
690 rmv_page_order(page);
691 area->nr_free--;
692 expand(zone, page, order, current_order, area, migratetype);
693 return page;
694 }
695
696 return NULL;
697}
698
699
700/*
701 * This array describes the order lists are fallen back to when
702 * the free lists for the desirable migrate type are depleted
703 */
704static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
705 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
706 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
707 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
708 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
709};
710
711/*
712 * Move the free pages in a range to the free lists of the requested type.
713 * Note that start_page and end_pages are not aligned on a pageblock
714 * boundary. If alignment is required, use move_freepages_block()
715 */
716static int move_freepages(struct zone *zone,
717 struct page *start_page, struct page *end_page,
718 int migratetype)
719{
720 struct page *page;
721 unsigned long order;
722 int pages_moved = 0;
723
724#ifndef CONFIG_HOLES_IN_ZONE
725 /*
726 * page_zone is not safe to call in this context when
727 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
728 * anyway as we check zone boundaries in move_freepages_block().
729 * Remove at a later date when no bug reports exist related to
730 * grouping pages by mobility
731 */
732 BUG_ON(page_zone(start_page) != page_zone(end_page));
733#endif
734
735 for (page = start_page; page <= end_page;) {
736 /* Make sure we are not inadvertently changing nodes */
737 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
738
739 if (!pfn_valid_within(page_to_pfn(page))) {
740 page++;
741 continue;
742 }
743
744 if (!PageBuddy(page)) {
745 page++;
746 continue;
747 }
748
749 order = page_order(page);
750 list_del(&page->lru);
751 list_add(&page->lru,
752 &zone->free_area[order].free_list[migratetype]);
753 page += 1 << order;
754 pages_moved += 1 << order;
755 }
756
757 return pages_moved;
758}
759
760static int move_freepages_block(struct zone *zone, struct page *page,
761 int migratetype)
762{
763 unsigned long start_pfn, end_pfn;
764 struct page *start_page, *end_page;
765
766 start_pfn = page_to_pfn(page);
767 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
768 start_page = pfn_to_page(start_pfn);
769 end_page = start_page + pageblock_nr_pages - 1;
770 end_pfn = start_pfn + pageblock_nr_pages - 1;
771
772 /* Do not cross zone boundaries */
773 if (start_pfn < zone->zone_start_pfn)
774 start_page = page;
775 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
776 return 0;
777
778 return move_freepages(zone, start_page, end_page, migratetype);
779}
780
781/* Remove an element from the buddy allocator from the fallback list */
782static inline struct page *
783__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
784{
785 struct free_area * area;
786 int current_order;
787 struct page *page;
788 int migratetype, i;
789
790 /* Find the largest possible block of pages in the other list */
791 for (current_order = MAX_ORDER-1; current_order >= order;
792 --current_order) {
793 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
794 migratetype = fallbacks[start_migratetype][i];
795
796 /* MIGRATE_RESERVE handled later if necessary */
797 if (migratetype == MIGRATE_RESERVE)
798 continue;
799
800 area = &(zone->free_area[current_order]);
801 if (list_empty(&area->free_list[migratetype]))
802 continue;
803
804 page = list_entry(area->free_list[migratetype].next,
805 struct page, lru);
806 area->nr_free--;
807
808 /*
809 * If breaking a large block of pages, move all free
810 * pages to the preferred allocation list. If falling
811 * back for a reclaimable kernel allocation, be more
812 * agressive about taking ownership of free pages
813 */
814 if (unlikely(current_order >= (pageblock_order >> 1)) ||
815 start_migratetype == MIGRATE_RECLAIMABLE) {
816 unsigned long pages;
817 pages = move_freepages_block(zone, page,
818 start_migratetype);
819
820 /* Claim the whole block if over half of it is free */
821 if (pages >= (1 << (pageblock_order-1)))
822 set_pageblock_migratetype(page,
823 start_migratetype);
824
825 migratetype = start_migratetype;
826 }
827
828 /* Remove the page from the freelists */
829 list_del(&page->lru);
830 rmv_page_order(page);
831
832 if (current_order == pageblock_order)
833 set_pageblock_migratetype(page,
834 start_migratetype);
835
836 expand(zone, page, order, current_order, area, migratetype);
837 return page;
838 }
839 }
840
841 return NULL;
842}
843
844/*
845 * Do the hard work of removing an element from the buddy allocator.
846 * Call me with the zone->lock already held.
847 */
848static struct page *__rmqueue(struct zone *zone, unsigned int order,
849 int migratetype)
850{
851 struct page *page;
852
853retry_reserve:
854 page = __rmqueue_smallest(zone, order, migratetype);
855
856 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
857 page = __rmqueue_fallback(zone, order, migratetype);
858
859 /*
860 * Use MIGRATE_RESERVE rather than fail an allocation. goto
861 * is used because __rmqueue_smallest is an inline function
862 * and we want just one call site
863 */
864 if (!page) {
865 migratetype = MIGRATE_RESERVE;
866 goto retry_reserve;
867 }
868 }
869
870 return page;
871}
872
873/*
874 * Obtain a specified number of elements from the buddy allocator, all under
875 * a single hold of the lock, for efficiency. Add them to the supplied list.
876 * Returns the number of new pages which were placed at *list.
877 */
878static int rmqueue_bulk(struct zone *zone, unsigned int order,
879 unsigned long count, struct list_head *list,
880 int migratetype)
881{
882 int i;
883
884 spin_lock(&zone->lock);
885 for (i = 0; i < count; ++i) {
886 struct page *page = __rmqueue(zone, order, migratetype);
887 if (unlikely(page == NULL))
888 break;
889
890 /*
891 * Split buddy pages returned by expand() are received here
892 * in physical page order. The page is added to the callers and
893 * list and the list head then moves forward. From the callers
894 * perspective, the linked list is ordered by page number in
895 * some conditions. This is useful for IO devices that can
896 * merge IO requests if the physical pages are ordered
897 * properly.
898 */
899 list_add(&page->lru, list);
900 set_page_private(page, migratetype);
901 list = &page->lru;
902 }
903 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
904 spin_unlock(&zone->lock);
905 return i;
906}
907
908#ifdef CONFIG_NUMA
909/*
910 * Called from the vmstat counter updater to drain pagesets of this
911 * currently executing processor on remote nodes after they have
912 * expired.
913 *
914 * Note that this function must be called with the thread pinned to
915 * a single processor.
916 */
917void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
918{
919 unsigned long flags;
920 int to_drain;
921
922 local_irq_save(flags);
923 if (pcp->count >= pcp->batch)
924 to_drain = pcp->batch;
925 else
926 to_drain = pcp->count;
927 free_pages_bulk(zone, to_drain, &pcp->list, 0);
928 pcp->count -= to_drain;
929 local_irq_restore(flags);
930}
931#endif
932
933/*
934 * Drain pages of the indicated processor.
935 *
936 * The processor must either be the current processor and the
937 * thread pinned to the current processor or a processor that
938 * is not online.
939 */
940static void drain_pages(unsigned int cpu)
941{
942 unsigned long flags;
943 struct zone *zone;
944
945 for_each_populated_zone(zone) {
946 struct per_cpu_pageset *pset;
947 struct per_cpu_pages *pcp;
948
949 pset = zone_pcp(zone, cpu);
950
951 pcp = &pset->pcp;
952 local_irq_save(flags);
953 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
954 pcp->count = 0;
955 local_irq_restore(flags);
956 }
957}
958
959/*
960 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
961 */
962void drain_local_pages(void *arg)
963{
964 drain_pages(smp_processor_id());
965}
966
967/*
968 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
969 */
970void drain_all_pages(void)
971{
972 on_each_cpu(drain_local_pages, NULL, 1);
973}
974
975#ifdef CONFIG_HIBERNATION
976
977void mark_free_pages(struct zone *zone)
978{
979 unsigned long pfn, max_zone_pfn;
980 unsigned long flags;
981 int order, t;
982 struct list_head *curr;
983
984 if (!zone->spanned_pages)
985 return;
986
987 spin_lock_irqsave(&zone->lock, flags);
988
989 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
990 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
991 if (pfn_valid(pfn)) {
992 struct page *page = pfn_to_page(pfn);
993
994 if (!swsusp_page_is_forbidden(page))
995 swsusp_unset_page_free(page);
996 }
997
998 for_each_migratetype_order(order, t) {
999 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1000 unsigned long i;
1001
1002 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1003 for (i = 0; i < (1UL << order); i++)
1004 swsusp_set_page_free(pfn_to_page(pfn + i));
1005 }
1006 }
1007 spin_unlock_irqrestore(&zone->lock, flags);
1008}
1009#endif /* CONFIG_PM */
1010
1011/*
1012 * Free a 0-order page
1013 */
1014static void free_hot_cold_page(struct page *page, int cold)
1015{
1016 struct zone *zone = page_zone(page);
1017 struct per_cpu_pages *pcp;
1018 unsigned long flags;
1019 int clearMlocked = PageMlocked(page);
1020
1021 if (PageAnon(page))
1022 page->mapping = NULL;
1023 if (free_pages_check(page))
1024 return;
1025
1026 if (!PageHighMem(page)) {
1027 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1028 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1029 }
1030 arch_free_page(page, 0);
1031 kernel_map_pages(page, 1, 0);
1032
1033 pcp = &zone_pcp(zone, get_cpu())->pcp;
1034 set_page_private(page, get_pageblock_migratetype(page));
1035 local_irq_save(flags);
1036 if (unlikely(clearMlocked))
1037 free_page_mlock(page);
1038 __count_vm_event(PGFREE);
1039
1040 if (cold)
1041 list_add_tail(&page->lru, &pcp->list);
1042 else
1043 list_add(&page->lru, &pcp->list);
1044 pcp->count++;
1045 if (pcp->count >= pcp->high) {
1046 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1047 pcp->count -= pcp->batch;
1048 }
1049 local_irq_restore(flags);
1050 put_cpu();
1051}
1052
1053void free_hot_page(struct page *page)
1054{
1055 free_hot_cold_page(page, 0);
1056}
1057
1058void free_cold_page(struct page *page)
1059{
1060 free_hot_cold_page(page, 1);
1061}
1062
1063/*
1064 * split_page takes a non-compound higher-order page, and splits it into
1065 * n (1<<order) sub-pages: page[0..n]
1066 * Each sub-page must be freed individually.
1067 *
1068 * Note: this is probably too low level an operation for use in drivers.
1069 * Please consult with lkml before using this in your driver.
1070 */
1071void split_page(struct page *page, unsigned int order)
1072{
1073 int i;
1074
1075 VM_BUG_ON(PageCompound(page));
1076 VM_BUG_ON(!page_count(page));
1077 for (i = 1; i < (1 << order); i++)
1078 set_page_refcounted(page + i);
1079}
1080
1081/*
1082 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1083 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1084 * or two.
1085 */
1086static inline
1087struct page *buffered_rmqueue(struct zone *preferred_zone,
1088 struct zone *zone, int order, gfp_t gfp_flags,
1089 int migratetype)
1090{
1091 unsigned long flags;
1092 struct page *page;
1093 int cold = !!(gfp_flags & __GFP_COLD);
1094 int cpu;
1095
1096again:
1097 cpu = get_cpu();
1098 if (likely(order == 0)) {
1099 struct per_cpu_pages *pcp;
1100
1101 pcp = &zone_pcp(zone, cpu)->pcp;
1102 local_irq_save(flags);
1103 if (!pcp->count) {
1104 pcp->count = rmqueue_bulk(zone, 0,
1105 pcp->batch, &pcp->list, migratetype);
1106 if (unlikely(!pcp->count))
1107 goto failed;
1108 }
1109
1110 /* Find a page of the appropriate migrate type */
1111 if (cold) {
1112 list_for_each_entry_reverse(page, &pcp->list, lru)
1113 if (page_private(page) == migratetype)
1114 break;
1115 } else {
1116 list_for_each_entry(page, &pcp->list, lru)
1117 if (page_private(page) == migratetype)
1118 break;
1119 }
1120
1121 /* Allocate more to the pcp list if necessary */
1122 if (unlikely(&page->lru == &pcp->list)) {
1123 pcp->count += rmqueue_bulk(zone, 0,
1124 pcp->batch, &pcp->list, migratetype);
1125 page = list_entry(pcp->list.next, struct page, lru);
1126 }
1127
1128 list_del(&page->lru);
1129 pcp->count--;
1130 } else {
1131 spin_lock_irqsave(&zone->lock, flags);
1132 page = __rmqueue(zone, order, migratetype);
1133 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1134 spin_unlock(&zone->lock);
1135 if (!page)
1136 goto failed;
1137 }
1138
1139 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1140 zone_statistics(preferred_zone, zone);
1141 local_irq_restore(flags);
1142 put_cpu();
1143
1144 VM_BUG_ON(bad_range(zone, page));
1145 if (prep_new_page(page, order, gfp_flags))
1146 goto again;
1147 return page;
1148
1149failed:
1150 local_irq_restore(flags);
1151 put_cpu();
1152 return NULL;
1153}
1154
1155/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1156#define ALLOC_WMARK_MIN WMARK_MIN
1157#define ALLOC_WMARK_LOW WMARK_LOW
1158#define ALLOC_WMARK_HIGH WMARK_HIGH
1159#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1160
1161/* Mask to get the watermark bits */
1162#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1163
1164#define ALLOC_HARDER 0x10 /* try to alloc harder */
1165#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1166#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1167
1168#ifdef CONFIG_FAIL_PAGE_ALLOC
1169
1170static struct fail_page_alloc_attr {
1171 struct fault_attr attr;
1172
1173 u32 ignore_gfp_highmem;
1174 u32 ignore_gfp_wait;
1175 u32 min_order;
1176
1177#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1178
1179 struct dentry *ignore_gfp_highmem_file;
1180 struct dentry *ignore_gfp_wait_file;
1181 struct dentry *min_order_file;
1182
1183#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1184
1185} fail_page_alloc = {
1186 .attr = FAULT_ATTR_INITIALIZER,
1187 .ignore_gfp_wait = 1,
1188 .ignore_gfp_highmem = 1,
1189 .min_order = 1,
1190};
1191
1192static int __init setup_fail_page_alloc(char *str)
1193{
1194 return setup_fault_attr(&fail_page_alloc.attr, str);
1195}
1196__setup("fail_page_alloc=", setup_fail_page_alloc);
1197
1198static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1199{
1200 if (order < fail_page_alloc.min_order)
1201 return 0;
1202 if (gfp_mask & __GFP_NOFAIL)
1203 return 0;
1204 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1205 return 0;
1206 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1207 return 0;
1208
1209 return should_fail(&fail_page_alloc.attr, 1 << order);
1210}
1211
1212#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1213
1214static int __init fail_page_alloc_debugfs(void)
1215{
1216 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1217 struct dentry *dir;
1218 int err;
1219
1220 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1221 "fail_page_alloc");
1222 if (err)
1223 return err;
1224 dir = fail_page_alloc.attr.dentries.dir;
1225
1226 fail_page_alloc.ignore_gfp_wait_file =
1227 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1228 &fail_page_alloc.ignore_gfp_wait);
1229
1230 fail_page_alloc.ignore_gfp_highmem_file =
1231 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1232 &fail_page_alloc.ignore_gfp_highmem);
1233 fail_page_alloc.min_order_file =
1234 debugfs_create_u32("min-order", mode, dir,
1235 &fail_page_alloc.min_order);
1236
1237 if (!fail_page_alloc.ignore_gfp_wait_file ||
1238 !fail_page_alloc.ignore_gfp_highmem_file ||
1239 !fail_page_alloc.min_order_file) {
1240 err = -ENOMEM;
1241 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1242 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1243 debugfs_remove(fail_page_alloc.min_order_file);
1244 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1245 }
1246
1247 return err;
1248}
1249
1250late_initcall(fail_page_alloc_debugfs);
1251
1252#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1253
1254#else /* CONFIG_FAIL_PAGE_ALLOC */
1255
1256static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1257{
1258 return 0;
1259}
1260
1261#endif /* CONFIG_FAIL_PAGE_ALLOC */
1262
1263/*
1264 * Return 1 if free pages are above 'mark'. This takes into account the order
1265 * of the allocation.
1266 */
1267int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1268 int classzone_idx, int alloc_flags)
1269{
1270 /* free_pages my go negative - that's OK */
1271 long min = mark;
1272 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1273 int o;
1274
1275 if (alloc_flags & ALLOC_HIGH)
1276 min -= min / 2;
1277 if (alloc_flags & ALLOC_HARDER)
1278 min -= min / 4;
1279
1280 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1281 return 0;
1282 for (o = 0; o < order; o++) {
1283 /* At the next order, this order's pages become unavailable */
1284 free_pages -= z->free_area[o].nr_free << o;
1285
1286 /* Require fewer higher order pages to be free */
1287 min >>= 1;
1288
1289 if (free_pages <= min)
1290 return 0;
1291 }
1292 return 1;
1293}
1294
1295#ifdef CONFIG_NUMA
1296/*
1297 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1298 * skip over zones that are not allowed by the cpuset, or that have
1299 * been recently (in last second) found to be nearly full. See further
1300 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1301 * that have to skip over a lot of full or unallowed zones.
1302 *
1303 * If the zonelist cache is present in the passed in zonelist, then
1304 * returns a pointer to the allowed node mask (either the current
1305 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1306 *
1307 * If the zonelist cache is not available for this zonelist, does
1308 * nothing and returns NULL.
1309 *
1310 * If the fullzones BITMAP in the zonelist cache is stale (more than
1311 * a second since last zap'd) then we zap it out (clear its bits.)
1312 *
1313 * We hold off even calling zlc_setup, until after we've checked the
1314 * first zone in the zonelist, on the theory that most allocations will
1315 * be satisfied from that first zone, so best to examine that zone as
1316 * quickly as we can.
1317 */
1318static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1319{
1320 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1321 nodemask_t *allowednodes; /* zonelist_cache approximation */
1322
1323 zlc = zonelist->zlcache_ptr;
1324 if (!zlc)
1325 return NULL;
1326
1327 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1328 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1329 zlc->last_full_zap = jiffies;
1330 }
1331
1332 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1333 &cpuset_current_mems_allowed :
1334 &node_states[N_HIGH_MEMORY];
1335 return allowednodes;
1336}
1337
1338/*
1339 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1340 * if it is worth looking at further for free memory:
1341 * 1) Check that the zone isn't thought to be full (doesn't have its
1342 * bit set in the zonelist_cache fullzones BITMAP).
1343 * 2) Check that the zones node (obtained from the zonelist_cache
1344 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1345 * Return true (non-zero) if zone is worth looking at further, or
1346 * else return false (zero) if it is not.
1347 *
1348 * This check -ignores- the distinction between various watermarks,
1349 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1350 * found to be full for any variation of these watermarks, it will
1351 * be considered full for up to one second by all requests, unless
1352 * we are so low on memory on all allowed nodes that we are forced
1353 * into the second scan of the zonelist.
1354 *
1355 * In the second scan we ignore this zonelist cache and exactly
1356 * apply the watermarks to all zones, even it is slower to do so.
1357 * We are low on memory in the second scan, and should leave no stone
1358 * unturned looking for a free page.
1359 */
1360static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1361 nodemask_t *allowednodes)
1362{
1363 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1364 int i; /* index of *z in zonelist zones */
1365 int n; /* node that zone *z is on */
1366
1367 zlc = zonelist->zlcache_ptr;
1368 if (!zlc)
1369 return 1;
1370
1371 i = z - zonelist->_zonerefs;
1372 n = zlc->z_to_n[i];
1373
1374 /* This zone is worth trying if it is allowed but not full */
1375 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1376}
1377
1378/*
1379 * Given 'z' scanning a zonelist, set the corresponding bit in
1380 * zlc->fullzones, so that subsequent attempts to allocate a page
1381 * from that zone don't waste time re-examining it.
1382 */
1383static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1384{
1385 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1386 int i; /* index of *z in zonelist zones */
1387
1388 zlc = zonelist->zlcache_ptr;
1389 if (!zlc)
1390 return;
1391
1392 i = z - zonelist->_zonerefs;
1393
1394 set_bit(i, zlc->fullzones);
1395}
1396
1397#else /* CONFIG_NUMA */
1398
1399static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1400{
1401 return NULL;
1402}
1403
1404static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1405 nodemask_t *allowednodes)
1406{
1407 return 1;
1408}
1409
1410static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1411{
1412}
1413#endif /* CONFIG_NUMA */
1414
1415/*
1416 * get_page_from_freelist goes through the zonelist trying to allocate
1417 * a page.
1418 */
1419static struct page *
1420get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1421 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1422 struct zone *preferred_zone, int migratetype)
1423{
1424 struct zoneref *z;
1425 struct page *page = NULL;
1426 int classzone_idx;
1427 struct zone *zone;
1428 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1429 int zlc_active = 0; /* set if using zonelist_cache */
1430 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1431
1432 classzone_idx = zone_idx(preferred_zone);
1433zonelist_scan:
1434 /*
1435 * Scan zonelist, looking for a zone with enough free.
1436 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1437 */
1438 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1439 high_zoneidx, nodemask) {
1440 if (NUMA_BUILD && zlc_active &&
1441 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1442 continue;
1443 if ((alloc_flags & ALLOC_CPUSET) &&
1444 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1445 goto try_next_zone;
1446
1447 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1448 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1449 unsigned long mark;
1450 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1451 if (!zone_watermark_ok(zone, order, mark,
1452 classzone_idx, alloc_flags)) {
1453 if (!zone_reclaim_mode ||
1454 !zone_reclaim(zone, gfp_mask, order))
1455 goto this_zone_full;
1456 }
1457 }
1458
1459 page = buffered_rmqueue(preferred_zone, zone, order,
1460 gfp_mask, migratetype);
1461 if (page)
1462 break;
1463this_zone_full:
1464 if (NUMA_BUILD)
1465 zlc_mark_zone_full(zonelist, z);
1466try_next_zone:
1467 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1468 /*
1469 * we do zlc_setup after the first zone is tried but only
1470 * if there are multiple nodes make it worthwhile
1471 */
1472 allowednodes = zlc_setup(zonelist, alloc_flags);
1473 zlc_active = 1;
1474 did_zlc_setup = 1;
1475 }
1476 }
1477
1478 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1479 /* Disable zlc cache for second zonelist scan */
1480 zlc_active = 0;
1481 goto zonelist_scan;
1482 }
1483 return page;
1484}
1485
1486static inline int
1487should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1488 unsigned long pages_reclaimed)
1489{
1490 /* Do not loop if specifically requested */
1491 if (gfp_mask & __GFP_NORETRY)
1492 return 0;
1493
1494 /*
1495 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1496 * means __GFP_NOFAIL, but that may not be true in other
1497 * implementations.
1498 */
1499 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1500 return 1;
1501
1502 /*
1503 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1504 * specified, then we retry until we no longer reclaim any pages
1505 * (above), or we've reclaimed an order of pages at least as
1506 * large as the allocation's order. In both cases, if the
1507 * allocation still fails, we stop retrying.
1508 */
1509 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1510 return 1;
1511
1512 /*
1513 * Don't let big-order allocations loop unless the caller
1514 * explicitly requests that.
1515 */
1516 if (gfp_mask & __GFP_NOFAIL)
1517 return 1;
1518
1519 return 0;
1520}
1521
1522static inline struct page *
1523__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1524 struct zonelist *zonelist, enum zone_type high_zoneidx,
1525 nodemask_t *nodemask, struct zone *preferred_zone,
1526 int migratetype)
1527{
1528 struct page *page;
1529
1530 /* Acquire the OOM killer lock for the zones in zonelist */
1531 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1532 schedule_timeout_uninterruptible(1);
1533 return NULL;
1534 }
1535
1536 /*
1537 * Go through the zonelist yet one more time, keep very high watermark
1538 * here, this is only to catch a parallel oom killing, we must fail if
1539 * we're still under heavy pressure.
1540 */
1541 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1542 order, zonelist, high_zoneidx,
1543 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1544 preferred_zone, migratetype);
1545 if (page)
1546 goto out;
1547
1548 /* The OOM killer will not help higher order allocs */
1549 if (order > PAGE_ALLOC_COSTLY_ORDER)
1550 goto out;
1551
1552 /* Exhausted what can be done so it's blamo time */
1553 out_of_memory(zonelist, gfp_mask, order);
1554
1555out:
1556 clear_zonelist_oom(zonelist, gfp_mask);
1557 return page;
1558}
1559
1560/* The really slow allocator path where we enter direct reclaim */
1561static inline struct page *
1562__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1563 struct zonelist *zonelist, enum zone_type high_zoneidx,
1564 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1565 int migratetype, unsigned long *did_some_progress)
1566{
1567 struct page *page = NULL;
1568 struct reclaim_state reclaim_state;
1569 struct task_struct *p = current;
1570
1571 cond_resched();
1572
1573 /* We now go into synchronous reclaim */
1574 cpuset_memory_pressure_bump();
1575
1576 /*
1577 * The task's cpuset might have expanded its set of allowable nodes
1578 */
1579 p->flags |= PF_MEMALLOC;
1580 lockdep_set_current_reclaim_state(gfp_mask);
1581 reclaim_state.reclaimed_slab = 0;
1582 p->reclaim_state = &reclaim_state;
1583
1584 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1585
1586 p->reclaim_state = NULL;
1587 lockdep_clear_current_reclaim_state();
1588 p->flags &= ~PF_MEMALLOC;
1589
1590 cond_resched();
1591
1592 if (order != 0)
1593 drain_all_pages();
1594
1595 if (likely(*did_some_progress))
1596 page = get_page_from_freelist(gfp_mask, nodemask, order,
1597 zonelist, high_zoneidx,
1598 alloc_flags, preferred_zone,
1599 migratetype);
1600 return page;
1601}
1602
1603/*
1604 * This is called in the allocator slow-path if the allocation request is of
1605 * sufficient urgency to ignore watermarks and take other desperate measures
1606 */
1607static inline struct page *
1608__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1609 struct zonelist *zonelist, enum zone_type high_zoneidx,
1610 nodemask_t *nodemask, struct zone *preferred_zone,
1611 int migratetype)
1612{
1613 struct page *page;
1614
1615 do {
1616 page = get_page_from_freelist(gfp_mask, nodemask, order,
1617 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1618 preferred_zone, migratetype);
1619
1620 if (!page && gfp_mask & __GFP_NOFAIL)
1621 congestion_wait(WRITE, HZ/50);
1622 } while (!page && (gfp_mask & __GFP_NOFAIL));
1623
1624 return page;
1625}
1626
1627static inline
1628void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1629 enum zone_type high_zoneidx)
1630{
1631 struct zoneref *z;
1632 struct zone *zone;
1633
1634 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1635 wakeup_kswapd(zone, order);
1636}
1637
1638static inline int
1639gfp_to_alloc_flags(gfp_t gfp_mask)
1640{
1641 struct task_struct *p = current;
1642 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1643 const gfp_t wait = gfp_mask & __GFP_WAIT;
1644
1645 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1646 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1647
1648 /*
1649 * The caller may dip into page reserves a bit more if the caller
1650 * cannot run direct reclaim, or if the caller has realtime scheduling
1651 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1652 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1653 */
1654 alloc_flags |= (gfp_mask & __GFP_HIGH);
1655
1656 if (!wait) {
1657 alloc_flags |= ALLOC_HARDER;
1658 /*
1659 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1660 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1661 */
1662 alloc_flags &= ~ALLOC_CPUSET;
1663 } else if (unlikely(rt_task(p)))
1664 alloc_flags |= ALLOC_HARDER;
1665
1666 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1667 if (!in_interrupt() &&
1668 ((p->flags & PF_MEMALLOC) ||
1669 unlikely(test_thread_flag(TIF_MEMDIE))))
1670 alloc_flags |= ALLOC_NO_WATERMARKS;
1671 }
1672
1673 return alloc_flags;
1674}
1675
1676static inline struct page *
1677__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1678 struct zonelist *zonelist, enum zone_type high_zoneidx,
1679 nodemask_t *nodemask, struct zone *preferred_zone,
1680 int migratetype)
1681{
1682 const gfp_t wait = gfp_mask & __GFP_WAIT;
1683 struct page *page = NULL;
1684 int alloc_flags;
1685 unsigned long pages_reclaimed = 0;
1686 unsigned long did_some_progress;
1687 struct task_struct *p = current;
1688
1689 /*
1690 * In the slowpath, we sanity check order to avoid ever trying to
1691 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1692 * be using allocators in order of preference for an area that is
1693 * too large.
1694 */
1695 if (WARN_ON_ONCE(order >= MAX_ORDER))
1696 return NULL;
1697
1698 /*
1699 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1700 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1701 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1702 * using a larger set of nodes after it has established that the
1703 * allowed per node queues are empty and that nodes are
1704 * over allocated.
1705 */
1706 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1707 goto nopage;
1708
1709 wake_all_kswapd(order, zonelist, high_zoneidx);
1710
1711 /*
1712 * OK, we're below the kswapd watermark and have kicked background
1713 * reclaim. Now things get more complex, so set up alloc_flags according
1714 * to how we want to proceed.
1715 */
1716 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1717
1718restart:
1719 /* This is the last chance, in general, before the goto nopage. */
1720 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1721 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1722 preferred_zone, migratetype);
1723 if (page)
1724 goto got_pg;
1725
1726rebalance:
1727 /* Allocate without watermarks if the context allows */
1728 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1729 page = __alloc_pages_high_priority(gfp_mask, order,
1730 zonelist, high_zoneidx, nodemask,
1731 preferred_zone, migratetype);
1732 if (page)
1733 goto got_pg;
1734 }
1735
1736 /* Atomic allocations - we can't balance anything */
1737 if (!wait)
1738 goto nopage;
1739
1740 /* Avoid recursion of direct reclaim */
1741 if (p->flags & PF_MEMALLOC)
1742 goto nopage;
1743
1744 /* Try direct reclaim and then allocating */
1745 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1746 zonelist, high_zoneidx,
1747 nodemask,
1748 alloc_flags, preferred_zone,
1749 migratetype, &did_some_progress);
1750 if (page)
1751 goto got_pg;
1752
1753 /*
1754 * If we failed to make any progress reclaiming, then we are
1755 * running out of options and have to consider going OOM
1756 */
1757 if (!did_some_progress) {
1758 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1759 page = __alloc_pages_may_oom(gfp_mask, order,
1760 zonelist, high_zoneidx,
1761 nodemask, preferred_zone,
1762 migratetype);
1763 if (page)
1764 goto got_pg;
1765
1766 /*
1767 * The OOM killer does not trigger for high-order allocations
1768 * but if no progress is being made, there are no other
1769 * options and retrying is unlikely to help
1770 */
1771 if (order > PAGE_ALLOC_COSTLY_ORDER)
1772 goto nopage;
1773
1774 goto restart;
1775 }
1776 }
1777
1778 /* Check if we should retry the allocation */
1779 pages_reclaimed += did_some_progress;
1780 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1781 /* Wait for some write requests to complete then retry */
1782 congestion_wait(WRITE, HZ/50);
1783 goto rebalance;
1784 }
1785
1786nopage:
1787 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1788 printk(KERN_WARNING "%s: page allocation failure."
1789 " order:%d, mode:0x%x\n",
1790 p->comm, order, gfp_mask);
1791 dump_stack();
1792 show_mem();
1793 }
1794got_pg:
1795 return page;
1796
1797}
1798
1799/*
1800 * This is the 'heart' of the zoned buddy allocator.
1801 */
1802struct page *
1803__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1804 struct zonelist *zonelist, nodemask_t *nodemask)
1805{
1806 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1807 struct zone *preferred_zone;
1808 struct page *page;
1809 int migratetype = allocflags_to_migratetype(gfp_mask);
1810
1811 lockdep_trace_alloc(gfp_mask);
1812
1813 might_sleep_if(gfp_mask & __GFP_WAIT);
1814
1815 if (should_fail_alloc_page(gfp_mask, order))
1816 return NULL;
1817
1818 /*
1819 * Check the zones suitable for the gfp_mask contain at least one
1820 * valid zone. It's possible to have an empty zonelist as a result
1821 * of GFP_THISNODE and a memoryless node
1822 */
1823 if (unlikely(!zonelist->_zonerefs->zone))
1824 return NULL;
1825
1826 /* The preferred zone is used for statistics later */
1827 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1828 if (!preferred_zone)
1829 return NULL;
1830
1831 /* First allocation attempt */
1832 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1833 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1834 preferred_zone, migratetype);
1835 if (unlikely(!page))
1836 page = __alloc_pages_slowpath(gfp_mask, order,
1837 zonelist, high_zoneidx, nodemask,
1838 preferred_zone, migratetype);
1839
1840 return page;
1841}
1842EXPORT_SYMBOL(__alloc_pages_nodemask);
1843
1844/*
1845 * Common helper functions.
1846 */
1847unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1848{
1849 struct page * page;
1850 page = alloc_pages(gfp_mask, order);
1851 if (!page)
1852 return 0;
1853 return (unsigned long) page_address(page);
1854}
1855
1856EXPORT_SYMBOL(__get_free_pages);
1857
1858unsigned long get_zeroed_page(gfp_t gfp_mask)
1859{
1860 struct page * page;
1861
1862 /*
1863 * get_zeroed_page() returns a 32-bit address, which cannot represent
1864 * a highmem page
1865 */
1866 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1867
1868 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1869 if (page)
1870 return (unsigned long) page_address(page);
1871 return 0;
1872}
1873
1874EXPORT_SYMBOL(get_zeroed_page);
1875
1876void __pagevec_free(struct pagevec *pvec)
1877{
1878 int i = pagevec_count(pvec);
1879
1880 while (--i >= 0)
1881 free_hot_cold_page(pvec->pages[i], pvec->cold);
1882}
1883
1884void __free_pages(struct page *page, unsigned int order)
1885{
1886 if (put_page_testzero(page)) {
1887 if (order == 0)
1888 free_hot_page(page);
1889 else
1890 __free_pages_ok(page, order);
1891 }
1892}
1893
1894EXPORT_SYMBOL(__free_pages);
1895
1896void free_pages(unsigned long addr, unsigned int order)
1897{
1898 if (addr != 0) {
1899 VM_BUG_ON(!virt_addr_valid((void *)addr));
1900 __free_pages(virt_to_page((void *)addr), order);
1901 }
1902}
1903
1904EXPORT_SYMBOL(free_pages);
1905
1906/**
1907 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1908 * @size: the number of bytes to allocate
1909 * @gfp_mask: GFP flags for the allocation
1910 *
1911 * This function is similar to alloc_pages(), except that it allocates the
1912 * minimum number of pages to satisfy the request. alloc_pages() can only
1913 * allocate memory in power-of-two pages.
1914 *
1915 * This function is also limited by MAX_ORDER.
1916 *
1917 * Memory allocated by this function must be released by free_pages_exact().
1918 */
1919void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1920{
1921 unsigned int order = get_order(size);
1922 unsigned long addr;
1923
1924 addr = __get_free_pages(gfp_mask, order);
1925 if (addr) {
1926 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1927 unsigned long used = addr + PAGE_ALIGN(size);
1928
1929 split_page(virt_to_page(addr), order);
1930 while (used < alloc_end) {
1931 free_page(used);
1932 used += PAGE_SIZE;
1933 }
1934 }
1935
1936 return (void *)addr;
1937}
1938EXPORT_SYMBOL(alloc_pages_exact);
1939
1940/**
1941 * free_pages_exact - release memory allocated via alloc_pages_exact()
1942 * @virt: the value returned by alloc_pages_exact.
1943 * @size: size of allocation, same value as passed to alloc_pages_exact().
1944 *
1945 * Release the memory allocated by a previous call to alloc_pages_exact.
1946 */
1947void free_pages_exact(void *virt, size_t size)
1948{
1949 unsigned long addr = (unsigned long)virt;
1950 unsigned long end = addr + PAGE_ALIGN(size);
1951
1952 while (addr < end) {
1953 free_page(addr);
1954 addr += PAGE_SIZE;
1955 }
1956}
1957EXPORT_SYMBOL(free_pages_exact);
1958
1959static unsigned int nr_free_zone_pages(int offset)
1960{
1961 struct zoneref *z;
1962 struct zone *zone;
1963
1964 /* Just pick one node, since fallback list is circular */
1965 unsigned int sum = 0;
1966
1967 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1968
1969 for_each_zone_zonelist(zone, z, zonelist, offset) {
1970 unsigned long size = zone->present_pages;
1971 unsigned long high = high_wmark_pages(zone);
1972 if (size > high)
1973 sum += size - high;
1974 }
1975
1976 return sum;
1977}
1978
1979/*
1980 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1981 */
1982unsigned int nr_free_buffer_pages(void)
1983{
1984 return nr_free_zone_pages(gfp_zone(GFP_USER));
1985}
1986EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1987
1988/*
1989 * Amount of free RAM allocatable within all zones
1990 */
1991unsigned int nr_free_pagecache_pages(void)
1992{
1993 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1994}
1995
1996static inline void show_node(struct zone *zone)
1997{
1998 if (NUMA_BUILD)
1999 printk("Node %d ", zone_to_nid(zone));
2000}
2001
2002void si_meminfo(struct sysinfo *val)
2003{
2004 val->totalram = totalram_pages;
2005 val->sharedram = 0;
2006 val->freeram = global_page_state(NR_FREE_PAGES);
2007 val->bufferram = nr_blockdev_pages();
2008 val->totalhigh = totalhigh_pages;
2009 val->freehigh = nr_free_highpages();
2010 val->mem_unit = PAGE_SIZE;
2011}
2012
2013EXPORT_SYMBOL(si_meminfo);
2014
2015#ifdef CONFIG_NUMA
2016void si_meminfo_node(struct sysinfo *val, int nid)
2017{
2018 pg_data_t *pgdat = NODE_DATA(nid);
2019
2020 val->totalram = pgdat->node_present_pages;
2021 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2022#ifdef CONFIG_HIGHMEM
2023 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2024 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2025 NR_FREE_PAGES);
2026#else
2027 val->totalhigh = 0;
2028 val->freehigh = 0;
2029#endif
2030 val->mem_unit = PAGE_SIZE;
2031}
2032#endif
2033
2034#define K(x) ((x) << (PAGE_SHIFT-10))
2035
2036/*
2037 * Show free area list (used inside shift_scroll-lock stuff)
2038 * We also calculate the percentage fragmentation. We do this by counting the
2039 * memory on each free list with the exception of the first item on the list.
2040 */
2041void show_free_areas(void)
2042{
2043 int cpu;
2044 struct zone *zone;
2045
2046 for_each_populated_zone(zone) {
2047 show_node(zone);
2048 printk("%s per-cpu:\n", zone->name);
2049
2050 for_each_online_cpu(cpu) {
2051 struct per_cpu_pageset *pageset;
2052
2053 pageset = zone_pcp(zone, cpu);
2054
2055 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2056 cpu, pageset->pcp.high,
2057 pageset->pcp.batch, pageset->pcp.count);
2058 }
2059 }
2060
2061 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2062 " inactive_file:%lu"
2063//TODO: check/adjust line lengths
2064#ifdef CONFIG_UNEVICTABLE_LRU
2065 " unevictable:%lu"
2066#endif
2067 " dirty:%lu writeback:%lu unstable:%lu\n"
2068 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2069 global_page_state(NR_ACTIVE_ANON),
2070 global_page_state(NR_ACTIVE_FILE),
2071 global_page_state(NR_INACTIVE_ANON),
2072 global_page_state(NR_INACTIVE_FILE),
2073#ifdef CONFIG_UNEVICTABLE_LRU
2074 global_page_state(NR_UNEVICTABLE),
2075#endif
2076 global_page_state(NR_FILE_DIRTY),
2077 global_page_state(NR_WRITEBACK),
2078 global_page_state(NR_UNSTABLE_NFS),
2079 global_page_state(NR_FREE_PAGES),
2080 global_page_state(NR_SLAB_RECLAIMABLE) +
2081 global_page_state(NR_SLAB_UNRECLAIMABLE),
2082 global_page_state(NR_FILE_MAPPED),
2083 global_page_state(NR_PAGETABLE),
2084 global_page_state(NR_BOUNCE));
2085
2086 for_each_populated_zone(zone) {
2087 int i;
2088
2089 show_node(zone);
2090 printk("%s"
2091 " free:%lukB"
2092 " min:%lukB"
2093 " low:%lukB"
2094 " high:%lukB"
2095 " active_anon:%lukB"
2096 " inactive_anon:%lukB"
2097 " active_file:%lukB"
2098 " inactive_file:%lukB"
2099#ifdef CONFIG_UNEVICTABLE_LRU
2100 " unevictable:%lukB"
2101#endif
2102 " present:%lukB"
2103 " pages_scanned:%lu"
2104 " all_unreclaimable? %s"
2105 "\n",
2106 zone->name,
2107 K(zone_page_state(zone, NR_FREE_PAGES)),
2108 K(min_wmark_pages(zone)),
2109 K(low_wmark_pages(zone)),
2110 K(high_wmark_pages(zone)),
2111 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2112 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2113 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2114 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2115#ifdef CONFIG_UNEVICTABLE_LRU
2116 K(zone_page_state(zone, NR_UNEVICTABLE)),
2117#endif
2118 K(zone->present_pages),
2119 zone->pages_scanned,
2120 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2121 );
2122 printk("lowmem_reserve[]:");
2123 for (i = 0; i < MAX_NR_ZONES; i++)
2124 printk(" %lu", zone->lowmem_reserve[i]);
2125 printk("\n");
2126 }
2127
2128 for_each_populated_zone(zone) {
2129 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2130
2131 show_node(zone);
2132 printk("%s: ", zone->name);
2133
2134 spin_lock_irqsave(&zone->lock, flags);
2135 for (order = 0; order < MAX_ORDER; order++) {
2136 nr[order] = zone->free_area[order].nr_free;
2137 total += nr[order] << order;
2138 }
2139 spin_unlock_irqrestore(&zone->lock, flags);
2140 for (order = 0; order < MAX_ORDER; order++)
2141 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2142 printk("= %lukB\n", K(total));
2143 }
2144
2145 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2146
2147 show_swap_cache_info();
2148}
2149
2150static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2151{
2152 zoneref->zone = zone;
2153 zoneref->zone_idx = zone_idx(zone);
2154}
2155
2156/*
2157 * Builds allocation fallback zone lists.
2158 *
2159 * Add all populated zones of a node to the zonelist.
2160 */
2161static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2162 int nr_zones, enum zone_type zone_type)
2163{
2164 struct zone *zone;
2165
2166 BUG_ON(zone_type >= MAX_NR_ZONES);
2167 zone_type++;
2168
2169 do {
2170 zone_type--;
2171 zone = pgdat->node_zones + zone_type;
2172 if (populated_zone(zone)) {
2173 zoneref_set_zone(zone,
2174 &zonelist->_zonerefs[nr_zones++]);
2175 check_highest_zone(zone_type);
2176 }
2177
2178 } while (zone_type);
2179 return nr_zones;
2180}
2181
2182
2183/*
2184 * zonelist_order:
2185 * 0 = automatic detection of better ordering.
2186 * 1 = order by ([node] distance, -zonetype)
2187 * 2 = order by (-zonetype, [node] distance)
2188 *
2189 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2190 * the same zonelist. So only NUMA can configure this param.
2191 */
2192#define ZONELIST_ORDER_DEFAULT 0
2193#define ZONELIST_ORDER_NODE 1
2194#define ZONELIST_ORDER_ZONE 2
2195
2196/* zonelist order in the kernel.
2197 * set_zonelist_order() will set this to NODE or ZONE.
2198 */
2199static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2200static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2201
2202
2203#ifdef CONFIG_NUMA
2204/* The value user specified ....changed by config */
2205static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2206/* string for sysctl */
2207#define NUMA_ZONELIST_ORDER_LEN 16
2208char numa_zonelist_order[16] = "default";
2209
2210/*
2211 * interface for configure zonelist ordering.
2212 * command line option "numa_zonelist_order"
2213 * = "[dD]efault - default, automatic configuration.
2214 * = "[nN]ode - order by node locality, then by zone within node
2215 * = "[zZ]one - order by zone, then by locality within zone
2216 */
2217
2218static int __parse_numa_zonelist_order(char *s)
2219{
2220 if (*s == 'd' || *s == 'D') {
2221 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2222 } else if (*s == 'n' || *s == 'N') {
2223 user_zonelist_order = ZONELIST_ORDER_NODE;
2224 } else if (*s == 'z' || *s == 'Z') {
2225 user_zonelist_order = ZONELIST_ORDER_ZONE;
2226 } else {
2227 printk(KERN_WARNING
2228 "Ignoring invalid numa_zonelist_order value: "
2229 "%s\n", s);
2230 return -EINVAL;
2231 }
2232 return 0;
2233}
2234
2235static __init int setup_numa_zonelist_order(char *s)
2236{
2237 if (s)
2238 return __parse_numa_zonelist_order(s);
2239 return 0;
2240}
2241early_param("numa_zonelist_order", setup_numa_zonelist_order);
2242
2243/*
2244 * sysctl handler for numa_zonelist_order
2245 */
2246int numa_zonelist_order_handler(ctl_table *table, int write,
2247 struct file *file, void __user *buffer, size_t *length,
2248 loff_t *ppos)
2249{
2250 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2251 int ret;
2252
2253 if (write)
2254 strncpy(saved_string, (char*)table->data,
2255 NUMA_ZONELIST_ORDER_LEN);
2256 ret = proc_dostring(table, write, file, buffer, length, ppos);
2257 if (ret)
2258 return ret;
2259 if (write) {
2260 int oldval = user_zonelist_order;
2261 if (__parse_numa_zonelist_order((char*)table->data)) {
2262 /*
2263 * bogus value. restore saved string
2264 */
2265 strncpy((char*)table->data, saved_string,
2266 NUMA_ZONELIST_ORDER_LEN);
2267 user_zonelist_order = oldval;
2268 } else if (oldval != user_zonelist_order)
2269 build_all_zonelists();
2270 }
2271 return 0;
2272}
2273
2274
2275#define MAX_NODE_LOAD (nr_online_nodes)
2276static int node_load[MAX_NUMNODES];
2277
2278/**
2279 * find_next_best_node - find the next node that should appear in a given node's fallback list
2280 * @node: node whose fallback list we're appending
2281 * @used_node_mask: nodemask_t of already used nodes
2282 *
2283 * We use a number of factors to determine which is the next node that should
2284 * appear on a given node's fallback list. The node should not have appeared
2285 * already in @node's fallback list, and it should be the next closest node
2286 * according to the distance array (which contains arbitrary distance values
2287 * from each node to each node in the system), and should also prefer nodes
2288 * with no CPUs, since presumably they'll have very little allocation pressure
2289 * on them otherwise.
2290 * It returns -1 if no node is found.
2291 */
2292static int find_next_best_node(int node, nodemask_t *used_node_mask)
2293{
2294 int n, val;
2295 int min_val = INT_MAX;
2296 int best_node = -1;
2297 const struct cpumask *tmp = cpumask_of_node(0);
2298
2299 /* Use the local node if we haven't already */
2300 if (!node_isset(node, *used_node_mask)) {
2301 node_set(node, *used_node_mask);
2302 return node;
2303 }
2304
2305 for_each_node_state(n, N_HIGH_MEMORY) {
2306
2307 /* Don't want a node to appear more than once */
2308 if (node_isset(n, *used_node_mask))
2309 continue;
2310
2311 /* Use the distance array to find the distance */
2312 val = node_distance(node, n);
2313
2314 /* Penalize nodes under us ("prefer the next node") */
2315 val += (n < node);
2316
2317 /* Give preference to headless and unused nodes */
2318 tmp = cpumask_of_node(n);
2319 if (!cpumask_empty(tmp))
2320 val += PENALTY_FOR_NODE_WITH_CPUS;
2321
2322 /* Slight preference for less loaded node */
2323 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2324 val += node_load[n];
2325
2326 if (val < min_val) {
2327 min_val = val;
2328 best_node = n;
2329 }
2330 }
2331
2332 if (best_node >= 0)
2333 node_set(best_node, *used_node_mask);
2334
2335 return best_node;
2336}
2337
2338
2339/*
2340 * Build zonelists ordered by node and zones within node.
2341 * This results in maximum locality--normal zone overflows into local
2342 * DMA zone, if any--but risks exhausting DMA zone.
2343 */
2344static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2345{
2346 int j;
2347 struct zonelist *zonelist;
2348
2349 zonelist = &pgdat->node_zonelists[0];
2350 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2351 ;
2352 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2353 MAX_NR_ZONES - 1);
2354 zonelist->_zonerefs[j].zone = NULL;
2355 zonelist->_zonerefs[j].zone_idx = 0;
2356}
2357
2358/*
2359 * Build gfp_thisnode zonelists
2360 */
2361static void build_thisnode_zonelists(pg_data_t *pgdat)
2362{
2363 int j;
2364 struct zonelist *zonelist;
2365
2366 zonelist = &pgdat->node_zonelists[1];
2367 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2368 zonelist->_zonerefs[j].zone = NULL;
2369 zonelist->_zonerefs[j].zone_idx = 0;
2370}
2371
2372/*
2373 * Build zonelists ordered by zone and nodes within zones.
2374 * This results in conserving DMA zone[s] until all Normal memory is
2375 * exhausted, but results in overflowing to remote node while memory
2376 * may still exist in local DMA zone.
2377 */
2378static int node_order[MAX_NUMNODES];
2379
2380static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2381{
2382 int pos, j, node;
2383 int zone_type; /* needs to be signed */
2384 struct zone *z;
2385 struct zonelist *zonelist;
2386
2387 zonelist = &pgdat->node_zonelists[0];
2388 pos = 0;
2389 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2390 for (j = 0; j < nr_nodes; j++) {
2391 node = node_order[j];
2392 z = &NODE_DATA(node)->node_zones[zone_type];
2393 if (populated_zone(z)) {
2394 zoneref_set_zone(z,
2395 &zonelist->_zonerefs[pos++]);
2396 check_highest_zone(zone_type);
2397 }
2398 }
2399 }
2400 zonelist->_zonerefs[pos].zone = NULL;
2401 zonelist->_zonerefs[pos].zone_idx = 0;
2402}
2403
2404static int default_zonelist_order(void)
2405{
2406 int nid, zone_type;
2407 unsigned long low_kmem_size,total_size;
2408 struct zone *z;
2409 int average_size;
2410 /*
2411 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2412 * If they are really small and used heavily, the system can fall
2413 * into OOM very easily.
2414 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2415 */
2416 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2417 low_kmem_size = 0;
2418 total_size = 0;
2419 for_each_online_node(nid) {
2420 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2421 z = &NODE_DATA(nid)->node_zones[zone_type];
2422 if (populated_zone(z)) {
2423 if (zone_type < ZONE_NORMAL)
2424 low_kmem_size += z->present_pages;
2425 total_size += z->present_pages;
2426 }
2427 }
2428 }
2429 if (!low_kmem_size || /* there are no DMA area. */
2430 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2431 return ZONELIST_ORDER_NODE;
2432 /*
2433 * look into each node's config.
2434 * If there is a node whose DMA/DMA32 memory is very big area on
2435 * local memory, NODE_ORDER may be suitable.
2436 */
2437 average_size = total_size /
2438 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2439 for_each_online_node(nid) {
2440 low_kmem_size = 0;
2441 total_size = 0;
2442 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2443 z = &NODE_DATA(nid)->node_zones[zone_type];
2444 if (populated_zone(z)) {
2445 if (zone_type < ZONE_NORMAL)
2446 low_kmem_size += z->present_pages;
2447 total_size += z->present_pages;
2448 }
2449 }
2450 if (low_kmem_size &&
2451 total_size > average_size && /* ignore small node */
2452 low_kmem_size > total_size * 70/100)
2453 return ZONELIST_ORDER_NODE;
2454 }
2455 return ZONELIST_ORDER_ZONE;
2456}
2457
2458static void set_zonelist_order(void)
2459{
2460 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2461 current_zonelist_order = default_zonelist_order();
2462 else
2463 current_zonelist_order = user_zonelist_order;
2464}
2465
2466static void build_zonelists(pg_data_t *pgdat)
2467{
2468 int j, node, load;
2469 enum zone_type i;
2470 nodemask_t used_mask;
2471 int local_node, prev_node;
2472 struct zonelist *zonelist;
2473 int order = current_zonelist_order;
2474
2475 /* initialize zonelists */
2476 for (i = 0; i < MAX_ZONELISTS; i++) {
2477 zonelist = pgdat->node_zonelists + i;
2478 zonelist->_zonerefs[0].zone = NULL;
2479 zonelist->_zonerefs[0].zone_idx = 0;
2480 }
2481
2482 /* NUMA-aware ordering of nodes */
2483 local_node = pgdat->node_id;
2484 load = nr_online_nodes;
2485 prev_node = local_node;
2486 nodes_clear(used_mask);
2487
2488 memset(node_load, 0, sizeof(node_load));
2489 memset(node_order, 0, sizeof(node_order));
2490 j = 0;
2491
2492 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2493 int distance = node_distance(local_node, node);
2494
2495 /*
2496 * If another node is sufficiently far away then it is better
2497 * to reclaim pages in a zone before going off node.
2498 */
2499 if (distance > RECLAIM_DISTANCE)
2500 zone_reclaim_mode = 1;
2501
2502 /*
2503 * We don't want to pressure a particular node.
2504 * So adding penalty to the first node in same
2505 * distance group to make it round-robin.
2506 */
2507 if (distance != node_distance(local_node, prev_node))
2508 node_load[node] = load;
2509
2510 prev_node = node;
2511 load--;
2512 if (order == ZONELIST_ORDER_NODE)
2513 build_zonelists_in_node_order(pgdat, node);
2514 else
2515 node_order[j++] = node; /* remember order */
2516 }
2517
2518 if (order == ZONELIST_ORDER_ZONE) {
2519 /* calculate node order -- i.e., DMA last! */
2520 build_zonelists_in_zone_order(pgdat, j);
2521 }
2522
2523 build_thisnode_zonelists(pgdat);
2524}
2525
2526/* Construct the zonelist performance cache - see further mmzone.h */
2527static void build_zonelist_cache(pg_data_t *pgdat)
2528{
2529 struct zonelist *zonelist;
2530 struct zonelist_cache *zlc;
2531 struct zoneref *z;
2532
2533 zonelist = &pgdat->node_zonelists[0];
2534 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2535 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2536 for (z = zonelist->_zonerefs; z->zone; z++)
2537 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2538}
2539
2540
2541#else /* CONFIG_NUMA */
2542
2543static void set_zonelist_order(void)
2544{
2545 current_zonelist_order = ZONELIST_ORDER_ZONE;
2546}
2547
2548static void build_zonelists(pg_data_t *pgdat)
2549{
2550 int node, local_node;
2551 enum zone_type j;
2552 struct zonelist *zonelist;
2553
2554 local_node = pgdat->node_id;
2555
2556 zonelist = &pgdat->node_zonelists[0];
2557 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2558
2559 /*
2560 * Now we build the zonelist so that it contains the zones
2561 * of all the other nodes.
2562 * We don't want to pressure a particular node, so when
2563 * building the zones for node N, we make sure that the
2564 * zones coming right after the local ones are those from
2565 * node N+1 (modulo N)
2566 */
2567 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2568 if (!node_online(node))
2569 continue;
2570 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2571 MAX_NR_ZONES - 1);
2572 }
2573 for (node = 0; node < local_node; node++) {
2574 if (!node_online(node))
2575 continue;
2576 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2577 MAX_NR_ZONES - 1);
2578 }
2579
2580 zonelist->_zonerefs[j].zone = NULL;
2581 zonelist->_zonerefs[j].zone_idx = 0;
2582}
2583
2584/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2585static void build_zonelist_cache(pg_data_t *pgdat)
2586{
2587 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2588}
2589
2590#endif /* CONFIG_NUMA */
2591
2592/* return values int ....just for stop_machine() */
2593static int __build_all_zonelists(void *dummy)
2594{
2595 int nid;
2596
2597 for_each_online_node(nid) {
2598 pg_data_t *pgdat = NODE_DATA(nid);
2599
2600 build_zonelists(pgdat);
2601 build_zonelist_cache(pgdat);
2602 }
2603 return 0;
2604}
2605
2606void build_all_zonelists(void)
2607{
2608 set_zonelist_order();
2609
2610 if (system_state == SYSTEM_BOOTING) {
2611 __build_all_zonelists(NULL);
2612 mminit_verify_zonelist();
2613 cpuset_init_current_mems_allowed();
2614 } else {
2615 /* we have to stop all cpus to guarantee there is no user
2616 of zonelist */
2617 stop_machine(__build_all_zonelists, NULL, NULL);
2618 /* cpuset refresh routine should be here */
2619 }
2620 vm_total_pages = nr_free_pagecache_pages();
2621 /*
2622 * Disable grouping by mobility if the number of pages in the
2623 * system is too low to allow the mechanism to work. It would be
2624 * more accurate, but expensive to check per-zone. This check is
2625 * made on memory-hotadd so a system can start with mobility
2626 * disabled and enable it later
2627 */
2628 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2629 page_group_by_mobility_disabled = 1;
2630 else
2631 page_group_by_mobility_disabled = 0;
2632
2633 printk("Built %i zonelists in %s order, mobility grouping %s. "
2634 "Total pages: %ld\n",
2635 nr_online_nodes,
2636 zonelist_order_name[current_zonelist_order],
2637 page_group_by_mobility_disabled ? "off" : "on",
2638 vm_total_pages);
2639#ifdef CONFIG_NUMA
2640 printk("Policy zone: %s\n", zone_names[policy_zone]);
2641#endif
2642}
2643
2644/*
2645 * Helper functions to size the waitqueue hash table.
2646 * Essentially these want to choose hash table sizes sufficiently
2647 * large so that collisions trying to wait on pages are rare.
2648 * But in fact, the number of active page waitqueues on typical
2649 * systems is ridiculously low, less than 200. So this is even
2650 * conservative, even though it seems large.
2651 *
2652 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2653 * waitqueues, i.e. the size of the waitq table given the number of pages.
2654 */
2655#define PAGES_PER_WAITQUEUE 256
2656
2657#ifndef CONFIG_MEMORY_HOTPLUG
2658static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2659{
2660 unsigned long size = 1;
2661
2662 pages /= PAGES_PER_WAITQUEUE;
2663
2664 while (size < pages)
2665 size <<= 1;
2666
2667 /*
2668 * Once we have dozens or even hundreds of threads sleeping
2669 * on IO we've got bigger problems than wait queue collision.
2670 * Limit the size of the wait table to a reasonable size.
2671 */
2672 size = min(size, 4096UL);
2673
2674 return max(size, 4UL);
2675}
2676#else
2677/*
2678 * A zone's size might be changed by hot-add, so it is not possible to determine
2679 * a suitable size for its wait_table. So we use the maximum size now.
2680 *
2681 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2682 *
2683 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2684 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2685 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2686 *
2687 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2688 * or more by the traditional way. (See above). It equals:
2689 *
2690 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2691 * ia64(16K page size) : = ( 8G + 4M)byte.
2692 * powerpc (64K page size) : = (32G +16M)byte.
2693 */
2694static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2695{
2696 return 4096UL;
2697}
2698#endif
2699
2700/*
2701 * This is an integer logarithm so that shifts can be used later
2702 * to extract the more random high bits from the multiplicative
2703 * hash function before the remainder is taken.
2704 */
2705static inline unsigned long wait_table_bits(unsigned long size)
2706{
2707 return ffz(~size);
2708}
2709
2710#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2711
2712/*
2713 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2714 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2715 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2716 * higher will lead to a bigger reserve which will get freed as contiguous
2717 * blocks as reclaim kicks in
2718 */
2719static void setup_zone_migrate_reserve(struct zone *zone)
2720{
2721 unsigned long start_pfn, pfn, end_pfn;
2722 struct page *page;
2723 unsigned long reserve, block_migratetype;
2724
2725 /* Get the start pfn, end pfn and the number of blocks to reserve */
2726 start_pfn = zone->zone_start_pfn;
2727 end_pfn = start_pfn + zone->spanned_pages;
2728 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2729 pageblock_order;
2730
2731 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2732 if (!pfn_valid(pfn))
2733 continue;
2734 page = pfn_to_page(pfn);
2735
2736 /* Watch out for overlapping nodes */
2737 if (page_to_nid(page) != zone_to_nid(zone))
2738 continue;
2739
2740 /* Blocks with reserved pages will never free, skip them. */
2741 if (PageReserved(page))
2742 continue;
2743
2744 block_migratetype = get_pageblock_migratetype(page);
2745
2746 /* If this block is reserved, account for it */
2747 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2748 reserve--;
2749 continue;
2750 }
2751
2752 /* Suitable for reserving if this block is movable */
2753 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2754 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2755 move_freepages_block(zone, page, MIGRATE_RESERVE);
2756 reserve--;
2757 continue;
2758 }
2759
2760 /*
2761 * If the reserve is met and this is a previous reserved block,
2762 * take it back
2763 */
2764 if (block_migratetype == MIGRATE_RESERVE) {
2765 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2766 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2767 }
2768 }
2769}
2770
2771/*
2772 * Initially all pages are reserved - free ones are freed
2773 * up by free_all_bootmem() once the early boot process is
2774 * done. Non-atomic initialization, single-pass.
2775 */
2776void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2777 unsigned long start_pfn, enum memmap_context context)
2778{
2779 struct page *page;
2780 unsigned long end_pfn = start_pfn + size;
2781 unsigned long pfn;
2782 struct zone *z;
2783
2784 if (highest_memmap_pfn < end_pfn - 1)
2785 highest_memmap_pfn = end_pfn - 1;
2786
2787 z = &NODE_DATA(nid)->node_zones[zone];
2788 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2789 /*
2790 * There can be holes in boot-time mem_map[]s
2791 * handed to this function. They do not
2792 * exist on hotplugged memory.
2793 */
2794 if (context == MEMMAP_EARLY) {
2795 if (!early_pfn_valid(pfn))
2796 continue;
2797 if (!early_pfn_in_nid(pfn, nid))
2798 continue;
2799 }
2800 page = pfn_to_page(pfn);
2801 set_page_links(page, zone, nid, pfn);
2802 mminit_verify_page_links(page, zone, nid, pfn);
2803 init_page_count(page);
2804 reset_page_mapcount(page);
2805 SetPageReserved(page);
2806 /*
2807 * Mark the block movable so that blocks are reserved for
2808 * movable at startup. This will force kernel allocations
2809 * to reserve their blocks rather than leaking throughout
2810 * the address space during boot when many long-lived
2811 * kernel allocations are made. Later some blocks near
2812 * the start are marked MIGRATE_RESERVE by
2813 * setup_zone_migrate_reserve()
2814 *
2815 * bitmap is created for zone's valid pfn range. but memmap
2816 * can be created for invalid pages (for alignment)
2817 * check here not to call set_pageblock_migratetype() against
2818 * pfn out of zone.
2819 */
2820 if ((z->zone_start_pfn <= pfn)
2821 && (pfn < z->zone_start_pfn + z->spanned_pages)
2822 && !(pfn & (pageblock_nr_pages - 1)))
2823 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2824
2825 INIT_LIST_HEAD(&page->lru);
2826#ifdef WANT_PAGE_VIRTUAL
2827 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2828 if (!is_highmem_idx(zone))
2829 set_page_address(page, __va(pfn << PAGE_SHIFT));
2830#endif
2831 }
2832}
2833
2834static void __meminit zone_init_free_lists(struct zone *zone)
2835{
2836 int order, t;
2837 for_each_migratetype_order(order, t) {
2838 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2839 zone->free_area[order].nr_free = 0;
2840 }
2841}
2842
2843#ifndef __HAVE_ARCH_MEMMAP_INIT
2844#define memmap_init(size, nid, zone, start_pfn) \
2845 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2846#endif
2847
2848static int zone_batchsize(struct zone *zone)
2849{
2850#ifdef CONFIG_MMU
2851 int batch;
2852
2853 /*
2854 * The per-cpu-pages pools are set to around 1000th of the
2855 * size of the zone. But no more than 1/2 of a meg.
2856 *
2857 * OK, so we don't know how big the cache is. So guess.
2858 */
2859 batch = zone->present_pages / 1024;
2860 if (batch * PAGE_SIZE > 512 * 1024)
2861 batch = (512 * 1024) / PAGE_SIZE;
2862 batch /= 4; /* We effectively *= 4 below */
2863 if (batch < 1)
2864 batch = 1;
2865
2866 /*
2867 * Clamp the batch to a 2^n - 1 value. Having a power
2868 * of 2 value was found to be more likely to have
2869 * suboptimal cache aliasing properties in some cases.
2870 *
2871 * For example if 2 tasks are alternately allocating
2872 * batches of pages, one task can end up with a lot
2873 * of pages of one half of the possible page colors
2874 * and the other with pages of the other colors.
2875 */
2876 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2877
2878 return batch;
2879
2880#else
2881 /* The deferral and batching of frees should be suppressed under NOMMU
2882 * conditions.
2883 *
2884 * The problem is that NOMMU needs to be able to allocate large chunks
2885 * of contiguous memory as there's no hardware page translation to
2886 * assemble apparent contiguous memory from discontiguous pages.
2887 *
2888 * Queueing large contiguous runs of pages for batching, however,
2889 * causes the pages to actually be freed in smaller chunks. As there
2890 * can be a significant delay between the individual batches being
2891 * recycled, this leads to the once large chunks of space being
2892 * fragmented and becoming unavailable for high-order allocations.
2893 */
2894 return 0;
2895#endif
2896}
2897
2898static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2899{
2900 struct per_cpu_pages *pcp;
2901
2902 memset(p, 0, sizeof(*p));
2903
2904 pcp = &p->pcp;
2905 pcp->count = 0;
2906 pcp->high = 6 * batch;
2907 pcp->batch = max(1UL, 1 * batch);
2908 INIT_LIST_HEAD(&pcp->list);
2909}
2910
2911/*
2912 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2913 * to the value high for the pageset p.
2914 */
2915
2916static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2917 unsigned long high)
2918{
2919 struct per_cpu_pages *pcp;
2920
2921 pcp = &p->pcp;
2922 pcp->high = high;
2923 pcp->batch = max(1UL, high/4);
2924 if ((high/4) > (PAGE_SHIFT * 8))
2925 pcp->batch = PAGE_SHIFT * 8;
2926}
2927
2928
2929#ifdef CONFIG_NUMA
2930/*
2931 * Boot pageset table. One per cpu which is going to be used for all
2932 * zones and all nodes. The parameters will be set in such a way
2933 * that an item put on a list will immediately be handed over to
2934 * the buddy list. This is safe since pageset manipulation is done
2935 * with interrupts disabled.
2936 *
2937 * Some NUMA counter updates may also be caught by the boot pagesets.
2938 *
2939 * The boot_pagesets must be kept even after bootup is complete for
2940 * unused processors and/or zones. They do play a role for bootstrapping
2941 * hotplugged processors.
2942 *
2943 * zoneinfo_show() and maybe other functions do
2944 * not check if the processor is online before following the pageset pointer.
2945 * Other parts of the kernel may not check if the zone is available.
2946 */
2947static struct per_cpu_pageset boot_pageset[NR_CPUS];
2948
2949/*
2950 * Dynamically allocate memory for the
2951 * per cpu pageset array in struct zone.
2952 */
2953static int __cpuinit process_zones(int cpu)
2954{
2955 struct zone *zone, *dzone;
2956 int node = cpu_to_node(cpu);
2957
2958 node_set_state(node, N_CPU); /* this node has a cpu */
2959
2960 for_each_populated_zone(zone) {
2961 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2962 GFP_KERNEL, node);
2963 if (!zone_pcp(zone, cpu))
2964 goto bad;
2965
2966 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2967
2968 if (percpu_pagelist_fraction)
2969 setup_pagelist_highmark(zone_pcp(zone, cpu),
2970 (zone->present_pages / percpu_pagelist_fraction));
2971 }
2972
2973 return 0;
2974bad:
2975 for_each_zone(dzone) {
2976 if (!populated_zone(dzone))
2977 continue;
2978 if (dzone == zone)
2979 break;
2980 kfree(zone_pcp(dzone, cpu));
2981 zone_pcp(dzone, cpu) = NULL;
2982 }
2983 return -ENOMEM;
2984}
2985
2986static inline void free_zone_pagesets(int cpu)
2987{
2988 struct zone *zone;
2989
2990 for_each_zone(zone) {
2991 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2992
2993 /* Free per_cpu_pageset if it is slab allocated */
2994 if (pset != &boot_pageset[cpu])
2995 kfree(pset);
2996 zone_pcp(zone, cpu) = NULL;
2997 }
2998}
2999
3000static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3001 unsigned long action,
3002 void *hcpu)
3003{
3004 int cpu = (long)hcpu;
3005 int ret = NOTIFY_OK;
3006
3007 switch (action) {
3008 case CPU_UP_PREPARE:
3009 case CPU_UP_PREPARE_FROZEN:
3010 if (process_zones(cpu))
3011 ret = NOTIFY_BAD;
3012 break;
3013 case CPU_UP_CANCELED:
3014 case CPU_UP_CANCELED_FROZEN:
3015 case CPU_DEAD:
3016 case CPU_DEAD_FROZEN:
3017 free_zone_pagesets(cpu);
3018 break;
3019 default:
3020 break;
3021 }
3022 return ret;
3023}
3024
3025static struct notifier_block __cpuinitdata pageset_notifier =
3026 { &pageset_cpuup_callback, NULL, 0 };
3027
3028void __init setup_per_cpu_pageset(void)
3029{
3030 int err;
3031
3032 /* Initialize per_cpu_pageset for cpu 0.
3033 * A cpuup callback will do this for every cpu
3034 * as it comes online
3035 */
3036 err = process_zones(smp_processor_id());
3037 BUG_ON(err);
3038 register_cpu_notifier(&pageset_notifier);
3039}
3040
3041#endif
3042
3043static noinline __init_refok
3044int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3045{
3046 int i;
3047 struct pglist_data *pgdat = zone->zone_pgdat;
3048 size_t alloc_size;
3049
3050 /*
3051 * The per-page waitqueue mechanism uses hashed waitqueues
3052 * per zone.
3053 */
3054 zone->wait_table_hash_nr_entries =
3055 wait_table_hash_nr_entries(zone_size_pages);
3056 zone->wait_table_bits =
3057 wait_table_bits(zone->wait_table_hash_nr_entries);
3058 alloc_size = zone->wait_table_hash_nr_entries
3059 * sizeof(wait_queue_head_t);
3060
3061 if (!slab_is_available()) {
3062 zone->wait_table = (wait_queue_head_t *)
3063 alloc_bootmem_node(pgdat, alloc_size);
3064 } else {
3065 /*
3066 * This case means that a zone whose size was 0 gets new memory
3067 * via memory hot-add.
3068 * But it may be the case that a new node was hot-added. In
3069 * this case vmalloc() will not be able to use this new node's
3070 * memory - this wait_table must be initialized to use this new
3071 * node itself as well.
3072 * To use this new node's memory, further consideration will be
3073 * necessary.
3074 */
3075 zone->wait_table = vmalloc(alloc_size);
3076 }
3077 if (!zone->wait_table)
3078 return -ENOMEM;
3079
3080 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3081 init_waitqueue_head(zone->wait_table + i);
3082
3083 return 0;
3084}
3085
3086static __meminit void zone_pcp_init(struct zone *zone)
3087{
3088 int cpu;
3089 unsigned long batch = zone_batchsize(zone);
3090
3091 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3092#ifdef CONFIG_NUMA
3093 /* Early boot. Slab allocator not functional yet */
3094 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3095 setup_pageset(&boot_pageset[cpu],0);
3096#else
3097 setup_pageset(zone_pcp(zone,cpu), batch);
3098#endif
3099 }
3100 if (zone->present_pages)
3101 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3102 zone->name, zone->present_pages, batch);
3103}
3104
3105__meminit int init_currently_empty_zone(struct zone *zone,
3106 unsigned long zone_start_pfn,
3107 unsigned long size,
3108 enum memmap_context context)
3109{
3110 struct pglist_data *pgdat = zone->zone_pgdat;
3111 int ret;
3112 ret = zone_wait_table_init(zone, size);
3113 if (ret)
3114 return ret;
3115 pgdat->nr_zones = zone_idx(zone) + 1;
3116
3117 zone->zone_start_pfn = zone_start_pfn;
3118
3119 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3120 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3121 pgdat->node_id,
3122 (unsigned long)zone_idx(zone),
3123 zone_start_pfn, (zone_start_pfn + size));
3124
3125 zone_init_free_lists(zone);
3126
3127 return 0;
3128}
3129
3130#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3131/*
3132 * Basic iterator support. Return the first range of PFNs for a node
3133 * Note: nid == MAX_NUMNODES returns first region regardless of node
3134 */
3135static int __meminit first_active_region_index_in_nid(int nid)
3136{
3137 int i;
3138
3139 for (i = 0; i < nr_nodemap_entries; i++)
3140 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3141 return i;
3142
3143 return -1;
3144}
3145
3146/*
3147 * Basic iterator support. Return the next active range of PFNs for a node
3148 * Note: nid == MAX_NUMNODES returns next region regardless of node
3149 */
3150static int __meminit next_active_region_index_in_nid(int index, int nid)
3151{
3152 for (index = index + 1; index < nr_nodemap_entries; index++)
3153 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3154 return index;
3155
3156 return -1;
3157}
3158
3159#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3160/*
3161 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3162 * Architectures may implement their own version but if add_active_range()
3163 * was used and there are no special requirements, this is a convenient
3164 * alternative
3165 */
3166int __meminit __early_pfn_to_nid(unsigned long pfn)
3167{
3168 int i;
3169
3170 for (i = 0; i < nr_nodemap_entries; i++) {
3171 unsigned long start_pfn = early_node_map[i].start_pfn;
3172 unsigned long end_pfn = early_node_map[i].end_pfn;
3173
3174 if (start_pfn <= pfn && pfn < end_pfn)
3175 return early_node_map[i].nid;
3176 }
3177 /* This is a memory hole */
3178 return -1;
3179}
3180#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3181
3182int __meminit early_pfn_to_nid(unsigned long pfn)
3183{
3184 int nid;
3185
3186 nid = __early_pfn_to_nid(pfn);
3187 if (nid >= 0)
3188 return nid;
3189 /* just returns 0 */
3190 return 0;
3191}
3192
3193#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3194bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3195{
3196 int nid;
3197
3198 nid = __early_pfn_to_nid(pfn);
3199 if (nid >= 0 && nid != node)
3200 return false;
3201 return true;
3202}
3203#endif
3204
3205/* Basic iterator support to walk early_node_map[] */
3206#define for_each_active_range_index_in_nid(i, nid) \
3207 for (i = first_active_region_index_in_nid(nid); i != -1; \
3208 i = next_active_region_index_in_nid(i, nid))
3209
3210/**
3211 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3212 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3213 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3214 *
3215 * If an architecture guarantees that all ranges registered with
3216 * add_active_ranges() contain no holes and may be freed, this
3217 * this function may be used instead of calling free_bootmem() manually.
3218 */
3219void __init free_bootmem_with_active_regions(int nid,
3220 unsigned long max_low_pfn)
3221{
3222 int i;
3223
3224 for_each_active_range_index_in_nid(i, nid) {
3225 unsigned long size_pages = 0;
3226 unsigned long end_pfn = early_node_map[i].end_pfn;
3227
3228 if (early_node_map[i].start_pfn >= max_low_pfn)
3229 continue;
3230
3231 if (end_pfn > max_low_pfn)
3232 end_pfn = max_low_pfn;
3233
3234 size_pages = end_pfn - early_node_map[i].start_pfn;
3235 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3236 PFN_PHYS(early_node_map[i].start_pfn),
3237 size_pages << PAGE_SHIFT);
3238 }
3239}
3240
3241void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3242{
3243 int i;
3244 int ret;
3245
3246 for_each_active_range_index_in_nid(i, nid) {
3247 ret = work_fn(early_node_map[i].start_pfn,
3248 early_node_map[i].end_pfn, data);
3249 if (ret)
3250 break;
3251 }
3252}
3253/**
3254 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3255 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3256 *
3257 * If an architecture guarantees that all ranges registered with
3258 * add_active_ranges() contain no holes and may be freed, this
3259 * function may be used instead of calling memory_present() manually.
3260 */
3261void __init sparse_memory_present_with_active_regions(int nid)
3262{
3263 int i;
3264
3265 for_each_active_range_index_in_nid(i, nid)
3266 memory_present(early_node_map[i].nid,
3267 early_node_map[i].start_pfn,
3268 early_node_map[i].end_pfn);
3269}
3270
3271/**
3272 * get_pfn_range_for_nid - Return the start and end page frames for a node
3273 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3274 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3275 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3276 *
3277 * It returns the start and end page frame of a node based on information
3278 * provided by an arch calling add_active_range(). If called for a node
3279 * with no available memory, a warning is printed and the start and end
3280 * PFNs will be 0.
3281 */
3282void __meminit get_pfn_range_for_nid(unsigned int nid,
3283 unsigned long *start_pfn, unsigned long *end_pfn)
3284{
3285 int i;
3286 *start_pfn = -1UL;
3287 *end_pfn = 0;
3288
3289 for_each_active_range_index_in_nid(i, nid) {
3290 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3291 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3292 }
3293
3294 if (*start_pfn == -1UL)
3295 *start_pfn = 0;
3296}
3297
3298/*
3299 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3300 * assumption is made that zones within a node are ordered in monotonic
3301 * increasing memory addresses so that the "highest" populated zone is used
3302 */
3303static void __init find_usable_zone_for_movable(void)
3304{
3305 int zone_index;
3306 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3307 if (zone_index == ZONE_MOVABLE)
3308 continue;
3309
3310 if (arch_zone_highest_possible_pfn[zone_index] >
3311 arch_zone_lowest_possible_pfn[zone_index])
3312 break;
3313 }
3314
3315 VM_BUG_ON(zone_index == -1);
3316 movable_zone = zone_index;
3317}
3318
3319/*
3320 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3321 * because it is sized independant of architecture. Unlike the other zones,
3322 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3323 * in each node depending on the size of each node and how evenly kernelcore
3324 * is distributed. This helper function adjusts the zone ranges
3325 * provided by the architecture for a given node by using the end of the
3326 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3327 * zones within a node are in order of monotonic increases memory addresses
3328 */
3329static void __meminit adjust_zone_range_for_zone_movable(int nid,
3330 unsigned long zone_type,
3331 unsigned long node_start_pfn,
3332 unsigned long node_end_pfn,
3333 unsigned long *zone_start_pfn,
3334 unsigned long *zone_end_pfn)
3335{
3336 /* Only adjust if ZONE_MOVABLE is on this node */
3337 if (zone_movable_pfn[nid]) {
3338 /* Size ZONE_MOVABLE */
3339 if (zone_type == ZONE_MOVABLE) {
3340 *zone_start_pfn = zone_movable_pfn[nid];
3341 *zone_end_pfn = min(node_end_pfn,
3342 arch_zone_highest_possible_pfn[movable_zone]);
3343
3344 /* Adjust for ZONE_MOVABLE starting within this range */
3345 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3346 *zone_end_pfn > zone_movable_pfn[nid]) {
3347 *zone_end_pfn = zone_movable_pfn[nid];
3348
3349 /* Check if this whole range is within ZONE_MOVABLE */
3350 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3351 *zone_start_pfn = *zone_end_pfn;
3352 }
3353}
3354
3355/*
3356 * Return the number of pages a zone spans in a node, including holes
3357 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3358 */
3359static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3360 unsigned long zone_type,
3361 unsigned long *ignored)
3362{
3363 unsigned long node_start_pfn, node_end_pfn;
3364 unsigned long zone_start_pfn, zone_end_pfn;
3365
3366 /* Get the start and end of the node and zone */
3367 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3368 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3369 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3370 adjust_zone_range_for_zone_movable(nid, zone_type,
3371 node_start_pfn, node_end_pfn,
3372 &zone_start_pfn, &zone_end_pfn);
3373
3374 /* Check that this node has pages within the zone's required range */
3375 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3376 return 0;
3377
3378 /* Move the zone boundaries inside the node if necessary */
3379 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3380 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3381
3382 /* Return the spanned pages */
3383 return zone_end_pfn - zone_start_pfn;
3384}
3385
3386/*
3387 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3388 * then all holes in the requested range will be accounted for.
3389 */
3390static unsigned long __meminit __absent_pages_in_range(int nid,
3391 unsigned long range_start_pfn,
3392 unsigned long range_end_pfn)
3393{
3394 int i = 0;
3395 unsigned long prev_end_pfn = 0, hole_pages = 0;
3396 unsigned long start_pfn;
3397
3398 /* Find the end_pfn of the first active range of pfns in the node */
3399 i = first_active_region_index_in_nid(nid);
3400 if (i == -1)
3401 return 0;
3402
3403 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3404
3405 /* Account for ranges before physical memory on this node */
3406 if (early_node_map[i].start_pfn > range_start_pfn)
3407 hole_pages = prev_end_pfn - range_start_pfn;
3408
3409 /* Find all holes for the zone within the node */
3410 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3411
3412 /* No need to continue if prev_end_pfn is outside the zone */
3413 if (prev_end_pfn >= range_end_pfn)
3414 break;
3415
3416 /* Make sure the end of the zone is not within the hole */
3417 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3418 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3419
3420 /* Update the hole size cound and move on */
3421 if (start_pfn > range_start_pfn) {
3422 BUG_ON(prev_end_pfn > start_pfn);
3423 hole_pages += start_pfn - prev_end_pfn;
3424 }
3425 prev_end_pfn = early_node_map[i].end_pfn;
3426 }
3427
3428 /* Account for ranges past physical memory on this node */
3429 if (range_end_pfn > prev_end_pfn)
3430 hole_pages += range_end_pfn -
3431 max(range_start_pfn, prev_end_pfn);
3432
3433 return hole_pages;
3434}
3435
3436/**
3437 * absent_pages_in_range - Return number of page frames in holes within a range
3438 * @start_pfn: The start PFN to start searching for holes
3439 * @end_pfn: The end PFN to stop searching for holes
3440 *
3441 * It returns the number of pages frames in memory holes within a range.
3442 */
3443unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3444 unsigned long end_pfn)
3445{
3446 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3447}
3448
3449/* Return the number of page frames in holes in a zone on a node */
3450static unsigned long __meminit zone_absent_pages_in_node(int nid,
3451 unsigned long zone_type,
3452 unsigned long *ignored)
3453{
3454 unsigned long node_start_pfn, node_end_pfn;
3455 unsigned long zone_start_pfn, zone_end_pfn;
3456
3457 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3458 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3459 node_start_pfn);
3460 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3461 node_end_pfn);
3462
3463 adjust_zone_range_for_zone_movable(nid, zone_type,
3464 node_start_pfn, node_end_pfn,
3465 &zone_start_pfn, &zone_end_pfn);
3466 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3467}
3468
3469#else
3470static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3471 unsigned long zone_type,
3472 unsigned long *zones_size)
3473{
3474 return zones_size[zone_type];
3475}
3476
3477static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3478 unsigned long zone_type,
3479 unsigned long *zholes_size)
3480{
3481 if (!zholes_size)
3482 return 0;
3483
3484 return zholes_size[zone_type];
3485}
3486
3487#endif
3488
3489static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3490 unsigned long *zones_size, unsigned long *zholes_size)
3491{
3492 unsigned long realtotalpages, totalpages = 0;
3493 enum zone_type i;
3494
3495 for (i = 0; i < MAX_NR_ZONES; i++)
3496 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3497 zones_size);
3498 pgdat->node_spanned_pages = totalpages;
3499
3500 realtotalpages = totalpages;
3501 for (i = 0; i < MAX_NR_ZONES; i++)
3502 realtotalpages -=
3503 zone_absent_pages_in_node(pgdat->node_id, i,
3504 zholes_size);
3505 pgdat->node_present_pages = realtotalpages;
3506 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3507 realtotalpages);
3508}
3509
3510#ifndef CONFIG_SPARSEMEM
3511/*
3512 * Calculate the size of the zone->blockflags rounded to an unsigned long
3513 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3514 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3515 * round what is now in bits to nearest long in bits, then return it in
3516 * bytes.
3517 */
3518static unsigned long __init usemap_size(unsigned long zonesize)
3519{
3520 unsigned long usemapsize;
3521
3522 usemapsize = roundup(zonesize, pageblock_nr_pages);
3523 usemapsize = usemapsize >> pageblock_order;
3524 usemapsize *= NR_PAGEBLOCK_BITS;
3525 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3526
3527 return usemapsize / 8;
3528}
3529
3530static void __init setup_usemap(struct pglist_data *pgdat,
3531 struct zone *zone, unsigned long zonesize)
3532{
3533 unsigned long usemapsize = usemap_size(zonesize);
3534 zone->pageblock_flags = NULL;
3535 if (usemapsize)
3536 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3537}
3538#else
3539static void inline setup_usemap(struct pglist_data *pgdat,
3540 struct zone *zone, unsigned long zonesize) {}
3541#endif /* CONFIG_SPARSEMEM */
3542
3543#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3544
3545/* Return a sensible default order for the pageblock size. */
3546static inline int pageblock_default_order(void)
3547{
3548 if (HPAGE_SHIFT > PAGE_SHIFT)
3549 return HUGETLB_PAGE_ORDER;
3550
3551 return MAX_ORDER-1;
3552}
3553
3554/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3555static inline void __init set_pageblock_order(unsigned int order)
3556{
3557 /* Check that pageblock_nr_pages has not already been setup */
3558 if (pageblock_order)
3559 return;
3560
3561 /*
3562 * Assume the largest contiguous order of interest is a huge page.
3563 * This value may be variable depending on boot parameters on IA64
3564 */
3565 pageblock_order = order;
3566}
3567#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3568
3569/*
3570 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3571 * and pageblock_default_order() are unused as pageblock_order is set
3572 * at compile-time. See include/linux/pageblock-flags.h for the values of
3573 * pageblock_order based on the kernel config
3574 */
3575static inline int pageblock_default_order(unsigned int order)
3576{
3577 return MAX_ORDER-1;
3578}
3579#define set_pageblock_order(x) do {} while (0)
3580
3581#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3582
3583/*
3584 * Set up the zone data structures:
3585 * - mark all pages reserved
3586 * - mark all memory queues empty
3587 * - clear the memory bitmaps
3588 */
3589static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3590 unsigned long *zones_size, unsigned long *zholes_size)
3591{
3592 enum zone_type j;
3593 int nid = pgdat->node_id;
3594 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3595 int ret;
3596
3597 pgdat_resize_init(pgdat);
3598 pgdat->nr_zones = 0;
3599 init_waitqueue_head(&pgdat->kswapd_wait);
3600 pgdat->kswapd_max_order = 0;
3601 pgdat_page_cgroup_init(pgdat);
3602
3603 for (j = 0; j < MAX_NR_ZONES; j++) {
3604 struct zone *zone = pgdat->node_zones + j;
3605 unsigned long size, realsize, memmap_pages;
3606 enum lru_list l;
3607
3608 size = zone_spanned_pages_in_node(nid, j, zones_size);
3609 realsize = size - zone_absent_pages_in_node(nid, j,
3610 zholes_size);
3611
3612 /*
3613 * Adjust realsize so that it accounts for how much memory
3614 * is used by this zone for memmap. This affects the watermark
3615 * and per-cpu initialisations
3616 */
3617 memmap_pages =
3618 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3619 if (realsize >= memmap_pages) {
3620 realsize -= memmap_pages;
3621 if (memmap_pages)
3622 printk(KERN_DEBUG
3623 " %s zone: %lu pages used for memmap\n",
3624 zone_names[j], memmap_pages);
3625 } else
3626 printk(KERN_WARNING
3627 " %s zone: %lu pages exceeds realsize %lu\n",
3628 zone_names[j], memmap_pages, realsize);
3629
3630 /* Account for reserved pages */
3631 if (j == 0 && realsize > dma_reserve) {
3632 realsize -= dma_reserve;
3633 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3634 zone_names[0], dma_reserve);
3635 }
3636
3637 if (!is_highmem_idx(j))
3638 nr_kernel_pages += realsize;
3639 nr_all_pages += realsize;
3640
3641 zone->spanned_pages = size;
3642 zone->present_pages = realsize;
3643#ifdef CONFIG_NUMA
3644 zone->node = nid;
3645 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3646 / 100;
3647 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3648#endif
3649 zone->name = zone_names[j];
3650 spin_lock_init(&zone->lock);
3651 spin_lock_init(&zone->lru_lock);
3652 zone_seqlock_init(zone);
3653 zone->zone_pgdat = pgdat;
3654
3655 zone->prev_priority = DEF_PRIORITY;
3656
3657 zone_pcp_init(zone);
3658 for_each_lru(l) {
3659 INIT_LIST_HEAD(&zone->lru[l].list);
3660 zone->lru[l].nr_saved_scan = 0;
3661 }
3662 zone->reclaim_stat.recent_rotated[0] = 0;
3663 zone->reclaim_stat.recent_rotated[1] = 0;
3664 zone->reclaim_stat.recent_scanned[0] = 0;
3665 zone->reclaim_stat.recent_scanned[1] = 0;
3666 zap_zone_vm_stats(zone);
3667 zone->flags = 0;
3668 if (!size)
3669 continue;
3670
3671 set_pageblock_order(pageblock_default_order());
3672 setup_usemap(pgdat, zone, size);
3673 ret = init_currently_empty_zone(zone, zone_start_pfn,
3674 size, MEMMAP_EARLY);
3675 BUG_ON(ret);
3676 memmap_init(size, nid, j, zone_start_pfn);
3677 zone_start_pfn += size;
3678 }
3679}
3680
3681static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3682{
3683 /* Skip empty nodes */
3684 if (!pgdat->node_spanned_pages)
3685 return;
3686
3687#ifdef CONFIG_FLAT_NODE_MEM_MAP
3688 /* ia64 gets its own node_mem_map, before this, without bootmem */
3689 if (!pgdat->node_mem_map) {
3690 unsigned long size, start, end;
3691 struct page *map;
3692
3693 /*
3694 * The zone's endpoints aren't required to be MAX_ORDER
3695 * aligned but the node_mem_map endpoints must be in order
3696 * for the buddy allocator to function correctly.
3697 */
3698 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3699 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3700 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3701 size = (end - start) * sizeof(struct page);
3702 map = alloc_remap(pgdat->node_id, size);
3703 if (!map)
3704 map = alloc_bootmem_node(pgdat, size);
3705 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3706 }
3707#ifndef CONFIG_NEED_MULTIPLE_NODES
3708 /*
3709 * With no DISCONTIG, the global mem_map is just set as node 0's
3710 */
3711 if (pgdat == NODE_DATA(0)) {
3712 mem_map = NODE_DATA(0)->node_mem_map;
3713#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3714 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3715 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3716#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3717 }
3718#endif
3719#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3720}
3721
3722void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3723 unsigned long node_start_pfn, unsigned long *zholes_size)
3724{
3725 pg_data_t *pgdat = NODE_DATA(nid);
3726
3727 pgdat->node_id = nid;
3728 pgdat->node_start_pfn = node_start_pfn;
3729 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3730
3731 alloc_node_mem_map(pgdat);
3732#ifdef CONFIG_FLAT_NODE_MEM_MAP
3733 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3734 nid, (unsigned long)pgdat,
3735 (unsigned long)pgdat->node_mem_map);
3736#endif
3737
3738 free_area_init_core(pgdat, zones_size, zholes_size);
3739}
3740
3741#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3742
3743#if MAX_NUMNODES > 1
3744/*
3745 * Figure out the number of possible node ids.
3746 */
3747static void __init setup_nr_node_ids(void)
3748{
3749 unsigned int node;
3750 unsigned int highest = 0;
3751
3752 for_each_node_mask(node, node_possible_map)
3753 highest = node;
3754 nr_node_ids = highest + 1;
3755}
3756#else
3757static inline void setup_nr_node_ids(void)
3758{
3759}
3760#endif
3761
3762/**
3763 * add_active_range - Register a range of PFNs backed by physical memory
3764 * @nid: The node ID the range resides on
3765 * @start_pfn: The start PFN of the available physical memory
3766 * @end_pfn: The end PFN of the available physical memory
3767 *
3768 * These ranges are stored in an early_node_map[] and later used by
3769 * free_area_init_nodes() to calculate zone sizes and holes. If the
3770 * range spans a memory hole, it is up to the architecture to ensure
3771 * the memory is not freed by the bootmem allocator. If possible
3772 * the range being registered will be merged with existing ranges.
3773 */
3774void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3775 unsigned long end_pfn)
3776{
3777 int i;
3778
3779 mminit_dprintk(MMINIT_TRACE, "memory_register",
3780 "Entering add_active_range(%d, %#lx, %#lx) "
3781 "%d entries of %d used\n",
3782 nid, start_pfn, end_pfn,
3783 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3784
3785 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3786
3787 /* Merge with existing active regions if possible */
3788 for (i = 0; i < nr_nodemap_entries; i++) {
3789 if (early_node_map[i].nid != nid)
3790 continue;
3791
3792 /* Skip if an existing region covers this new one */
3793 if (start_pfn >= early_node_map[i].start_pfn &&
3794 end_pfn <= early_node_map[i].end_pfn)
3795 return;
3796
3797 /* Merge forward if suitable */
3798 if (start_pfn <= early_node_map[i].end_pfn &&
3799 end_pfn > early_node_map[i].end_pfn) {
3800 early_node_map[i].end_pfn = end_pfn;
3801 return;
3802 }
3803
3804 /* Merge backward if suitable */
3805 if (start_pfn < early_node_map[i].end_pfn &&
3806 end_pfn >= early_node_map[i].start_pfn) {
3807 early_node_map[i].start_pfn = start_pfn;
3808 return;
3809 }
3810 }
3811
3812 /* Check that early_node_map is large enough */
3813 if (i >= MAX_ACTIVE_REGIONS) {
3814 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3815 MAX_ACTIVE_REGIONS);
3816 return;
3817 }
3818
3819 early_node_map[i].nid = nid;
3820 early_node_map[i].start_pfn = start_pfn;
3821 early_node_map[i].end_pfn = end_pfn;
3822 nr_nodemap_entries = i + 1;
3823}
3824
3825/**
3826 * remove_active_range - Shrink an existing registered range of PFNs
3827 * @nid: The node id the range is on that should be shrunk
3828 * @start_pfn: The new PFN of the range
3829 * @end_pfn: The new PFN of the range
3830 *
3831 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3832 * The map is kept near the end physical page range that has already been
3833 * registered. This function allows an arch to shrink an existing registered
3834 * range.
3835 */
3836void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3837 unsigned long end_pfn)
3838{
3839 int i, j;
3840 int removed = 0;
3841
3842 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3843 nid, start_pfn, end_pfn);
3844
3845 /* Find the old active region end and shrink */
3846 for_each_active_range_index_in_nid(i, nid) {
3847 if (early_node_map[i].start_pfn >= start_pfn &&
3848 early_node_map[i].end_pfn <= end_pfn) {
3849 /* clear it */
3850 early_node_map[i].start_pfn = 0;
3851 early_node_map[i].end_pfn = 0;
3852 removed = 1;
3853 continue;
3854 }
3855 if (early_node_map[i].start_pfn < start_pfn &&
3856 early_node_map[i].end_pfn > start_pfn) {
3857 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3858 early_node_map[i].end_pfn = start_pfn;
3859 if (temp_end_pfn > end_pfn)
3860 add_active_range(nid, end_pfn, temp_end_pfn);
3861 continue;
3862 }
3863 if (early_node_map[i].start_pfn >= start_pfn &&
3864 early_node_map[i].end_pfn > end_pfn &&
3865 early_node_map[i].start_pfn < end_pfn) {
3866 early_node_map[i].start_pfn = end_pfn;
3867 continue;
3868 }
3869 }
3870
3871 if (!removed)
3872 return;
3873
3874 /* remove the blank ones */
3875 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3876 if (early_node_map[i].nid != nid)
3877 continue;
3878 if (early_node_map[i].end_pfn)
3879 continue;
3880 /* we found it, get rid of it */
3881 for (j = i; j < nr_nodemap_entries - 1; j++)
3882 memcpy(&early_node_map[j], &early_node_map[j+1],
3883 sizeof(early_node_map[j]));
3884 j = nr_nodemap_entries - 1;
3885 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3886 nr_nodemap_entries--;
3887 }
3888}
3889
3890/**
3891 * remove_all_active_ranges - Remove all currently registered regions
3892 *
3893 * During discovery, it may be found that a table like SRAT is invalid
3894 * and an alternative discovery method must be used. This function removes
3895 * all currently registered regions.
3896 */
3897void __init remove_all_active_ranges(void)
3898{
3899 memset(early_node_map, 0, sizeof(early_node_map));
3900 nr_nodemap_entries = 0;
3901}
3902
3903/* Compare two active node_active_regions */
3904static int __init cmp_node_active_region(const void *a, const void *b)
3905{
3906 struct node_active_region *arange = (struct node_active_region *)a;
3907 struct node_active_region *brange = (struct node_active_region *)b;
3908
3909 /* Done this way to avoid overflows */
3910 if (arange->start_pfn > brange->start_pfn)
3911 return 1;
3912 if (arange->start_pfn < brange->start_pfn)
3913 return -1;
3914
3915 return 0;
3916}
3917
3918/* sort the node_map by start_pfn */
3919static void __init sort_node_map(void)
3920{
3921 sort(early_node_map, (size_t)nr_nodemap_entries,
3922 sizeof(struct node_active_region),
3923 cmp_node_active_region, NULL);
3924}
3925
3926/* Find the lowest pfn for a node */
3927static unsigned long __init find_min_pfn_for_node(int nid)
3928{
3929 int i;
3930 unsigned long min_pfn = ULONG_MAX;
3931
3932 /* Assuming a sorted map, the first range found has the starting pfn */
3933 for_each_active_range_index_in_nid(i, nid)
3934 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3935
3936 if (min_pfn == ULONG_MAX) {
3937 printk(KERN_WARNING
3938 "Could not find start_pfn for node %d\n", nid);
3939 return 0;
3940 }
3941
3942 return min_pfn;
3943}
3944
3945/**
3946 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3947 *
3948 * It returns the minimum PFN based on information provided via
3949 * add_active_range().
3950 */
3951unsigned long __init find_min_pfn_with_active_regions(void)
3952{
3953 return find_min_pfn_for_node(MAX_NUMNODES);
3954}
3955
3956/*
3957 * early_calculate_totalpages()
3958 * Sum pages in active regions for movable zone.
3959 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3960 */
3961static unsigned long __init early_calculate_totalpages(void)
3962{
3963 int i;
3964 unsigned long totalpages = 0;
3965
3966 for (i = 0; i < nr_nodemap_entries; i++) {
3967 unsigned long pages = early_node_map[i].end_pfn -
3968 early_node_map[i].start_pfn;
3969 totalpages += pages;
3970 if (pages)
3971 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3972 }
3973 return totalpages;
3974}
3975
3976/*
3977 * Find the PFN the Movable zone begins in each node. Kernel memory
3978 * is spread evenly between nodes as long as the nodes have enough
3979 * memory. When they don't, some nodes will have more kernelcore than
3980 * others
3981 */
3982static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3983{
3984 int i, nid;
3985 unsigned long usable_startpfn;
3986 unsigned long kernelcore_node, kernelcore_remaining;
3987 unsigned long totalpages = early_calculate_totalpages();
3988 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3989
3990 /*
3991 * If movablecore was specified, calculate what size of
3992 * kernelcore that corresponds so that memory usable for
3993 * any allocation type is evenly spread. If both kernelcore
3994 * and movablecore are specified, then the value of kernelcore
3995 * will be used for required_kernelcore if it's greater than
3996 * what movablecore would have allowed.
3997 */
3998 if (required_movablecore) {
3999 unsigned long corepages;
4000
4001 /*
4002 * Round-up so that ZONE_MOVABLE is at least as large as what
4003 * was requested by the user
4004 */
4005 required_movablecore =
4006 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4007 corepages = totalpages - required_movablecore;
4008
4009 required_kernelcore = max(required_kernelcore, corepages);
4010 }
4011
4012 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4013 if (!required_kernelcore)
4014 return;
4015
4016 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4017 find_usable_zone_for_movable();
4018 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4019
4020restart:
4021 /* Spread kernelcore memory as evenly as possible throughout nodes */
4022 kernelcore_node = required_kernelcore / usable_nodes;
4023 for_each_node_state(nid, N_HIGH_MEMORY) {
4024 /*
4025 * Recalculate kernelcore_node if the division per node
4026 * now exceeds what is necessary to satisfy the requested
4027 * amount of memory for the kernel
4028 */
4029 if (required_kernelcore < kernelcore_node)
4030 kernelcore_node = required_kernelcore / usable_nodes;
4031
4032 /*
4033 * As the map is walked, we track how much memory is usable
4034 * by the kernel using kernelcore_remaining. When it is
4035 * 0, the rest of the node is usable by ZONE_MOVABLE
4036 */
4037 kernelcore_remaining = kernelcore_node;
4038
4039 /* Go through each range of PFNs within this node */
4040 for_each_active_range_index_in_nid(i, nid) {
4041 unsigned long start_pfn, end_pfn;
4042 unsigned long size_pages;
4043
4044 start_pfn = max(early_node_map[i].start_pfn,
4045 zone_movable_pfn[nid]);
4046 end_pfn = early_node_map[i].end_pfn;
4047 if (start_pfn >= end_pfn)
4048 continue;
4049
4050 /* Account for what is only usable for kernelcore */
4051 if (start_pfn < usable_startpfn) {
4052 unsigned long kernel_pages;
4053 kernel_pages = min(end_pfn, usable_startpfn)
4054 - start_pfn;
4055
4056 kernelcore_remaining -= min(kernel_pages,
4057 kernelcore_remaining);
4058 required_kernelcore -= min(kernel_pages,
4059 required_kernelcore);
4060
4061 /* Continue if range is now fully accounted */
4062 if (end_pfn <= usable_startpfn) {
4063
4064 /*
4065 * Push zone_movable_pfn to the end so
4066 * that if we have to rebalance
4067 * kernelcore across nodes, we will
4068 * not double account here
4069 */
4070 zone_movable_pfn[nid] = end_pfn;
4071 continue;
4072 }
4073 start_pfn = usable_startpfn;
4074 }
4075
4076 /*
4077 * The usable PFN range for ZONE_MOVABLE is from
4078 * start_pfn->end_pfn. Calculate size_pages as the
4079 * number of pages used as kernelcore
4080 */
4081 size_pages = end_pfn - start_pfn;
4082 if (size_pages > kernelcore_remaining)
4083 size_pages = kernelcore_remaining;
4084 zone_movable_pfn[nid] = start_pfn + size_pages;
4085
4086 /*
4087 * Some kernelcore has been met, update counts and
4088 * break if the kernelcore for this node has been
4089 * satisified
4090 */
4091 required_kernelcore -= min(required_kernelcore,
4092 size_pages);
4093 kernelcore_remaining -= size_pages;
4094 if (!kernelcore_remaining)
4095 break;
4096 }
4097 }
4098
4099 /*
4100 * If there is still required_kernelcore, we do another pass with one
4101 * less node in the count. This will push zone_movable_pfn[nid] further
4102 * along on the nodes that still have memory until kernelcore is
4103 * satisified
4104 */
4105 usable_nodes--;
4106 if (usable_nodes && required_kernelcore > usable_nodes)
4107 goto restart;
4108
4109 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4110 for (nid = 0; nid < MAX_NUMNODES; nid++)
4111 zone_movable_pfn[nid] =
4112 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4113}
4114
4115/* Any regular memory on that node ? */
4116static void check_for_regular_memory(pg_data_t *pgdat)
4117{
4118#ifdef CONFIG_HIGHMEM
4119 enum zone_type zone_type;
4120
4121 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4122 struct zone *zone = &pgdat->node_zones[zone_type];
4123 if (zone->present_pages)
4124 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4125 }
4126#endif
4127}
4128
4129/**
4130 * free_area_init_nodes - Initialise all pg_data_t and zone data
4131 * @max_zone_pfn: an array of max PFNs for each zone
4132 *
4133 * This will call free_area_init_node() for each active node in the system.
4134 * Using the page ranges provided by add_active_range(), the size of each
4135 * zone in each node and their holes is calculated. If the maximum PFN
4136 * between two adjacent zones match, it is assumed that the zone is empty.
4137 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4138 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4139 * starts where the previous one ended. For example, ZONE_DMA32 starts
4140 * at arch_max_dma_pfn.
4141 */
4142void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4143{
4144 unsigned long nid;
4145 int i;
4146
4147 /* Sort early_node_map as initialisation assumes it is sorted */
4148 sort_node_map();
4149
4150 /* Record where the zone boundaries are */
4151 memset(arch_zone_lowest_possible_pfn, 0,
4152 sizeof(arch_zone_lowest_possible_pfn));
4153 memset(arch_zone_highest_possible_pfn, 0,
4154 sizeof(arch_zone_highest_possible_pfn));
4155 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4156 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4157 for (i = 1; i < MAX_NR_ZONES; i++) {
4158 if (i == ZONE_MOVABLE)
4159 continue;
4160 arch_zone_lowest_possible_pfn[i] =
4161 arch_zone_highest_possible_pfn[i-1];
4162 arch_zone_highest_possible_pfn[i] =
4163 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4164 }
4165 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4166 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4167
4168 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4169 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4170 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4171
4172 /* Print out the zone ranges */
4173 printk("Zone PFN ranges:\n");
4174 for (i = 0; i < MAX_NR_ZONES; i++) {
4175 if (i == ZONE_MOVABLE)
4176 continue;
4177 printk(" %-8s %0#10lx -> %0#10lx\n",
4178 zone_names[i],
4179 arch_zone_lowest_possible_pfn[i],
4180 arch_zone_highest_possible_pfn[i]);
4181 }
4182
4183 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4184 printk("Movable zone start PFN for each node\n");
4185 for (i = 0; i < MAX_NUMNODES; i++) {
4186 if (zone_movable_pfn[i])
4187 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4188 }
4189
4190 /* Print out the early_node_map[] */
4191 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4192 for (i = 0; i < nr_nodemap_entries; i++)
4193 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4194 early_node_map[i].start_pfn,
4195 early_node_map[i].end_pfn);
4196
4197 /* Initialise every node */
4198 mminit_verify_pageflags_layout();
4199 setup_nr_node_ids();
4200 for_each_online_node(nid) {
4201 pg_data_t *pgdat = NODE_DATA(nid);
4202 free_area_init_node(nid, NULL,
4203 find_min_pfn_for_node(nid), NULL);
4204
4205 /* Any memory on that node */
4206 if (pgdat->node_present_pages)
4207 node_set_state(nid, N_HIGH_MEMORY);
4208 check_for_regular_memory(pgdat);
4209 }
4210}
4211
4212static int __init cmdline_parse_core(char *p, unsigned long *core)
4213{
4214 unsigned long long coremem;
4215 if (!p)
4216 return -EINVAL;
4217
4218 coremem = memparse(p, &p);
4219 *core = coremem >> PAGE_SHIFT;
4220
4221 /* Paranoid check that UL is enough for the coremem value */
4222 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4223
4224 return 0;
4225}
4226
4227/*
4228 * kernelcore=size sets the amount of memory for use for allocations that
4229 * cannot be reclaimed or migrated.
4230 */
4231static int __init cmdline_parse_kernelcore(char *p)
4232{
4233 return cmdline_parse_core(p, &required_kernelcore);
4234}
4235
4236/*
4237 * movablecore=size sets the amount of memory for use for allocations that
4238 * can be reclaimed or migrated.
4239 */
4240static int __init cmdline_parse_movablecore(char *p)
4241{
4242 return cmdline_parse_core(p, &required_movablecore);
4243}
4244
4245early_param("kernelcore", cmdline_parse_kernelcore);
4246early_param("movablecore", cmdline_parse_movablecore);
4247
4248#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4249
4250/**
4251 * set_dma_reserve - set the specified number of pages reserved in the first zone
4252 * @new_dma_reserve: The number of pages to mark reserved
4253 *
4254 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4255 * In the DMA zone, a significant percentage may be consumed by kernel image
4256 * and other unfreeable allocations which can skew the watermarks badly. This
4257 * function may optionally be used to account for unfreeable pages in the
4258 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4259 * smaller per-cpu batchsize.
4260 */
4261void __init set_dma_reserve(unsigned long new_dma_reserve)
4262{
4263 dma_reserve = new_dma_reserve;
4264}
4265
4266#ifndef CONFIG_NEED_MULTIPLE_NODES
4267struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4268EXPORT_SYMBOL(contig_page_data);
4269#endif
4270
4271void __init free_area_init(unsigned long *zones_size)
4272{
4273 free_area_init_node(0, zones_size,
4274 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4275}
4276
4277static int page_alloc_cpu_notify(struct notifier_block *self,
4278 unsigned long action, void *hcpu)
4279{
4280 int cpu = (unsigned long)hcpu;
4281
4282 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4283 drain_pages(cpu);
4284
4285 /*
4286 * Spill the event counters of the dead processor
4287 * into the current processors event counters.
4288 * This artificially elevates the count of the current
4289 * processor.
4290 */
4291 vm_events_fold_cpu(cpu);
4292
4293 /*
4294 * Zero the differential counters of the dead processor
4295 * so that the vm statistics are consistent.
4296 *
4297 * This is only okay since the processor is dead and cannot
4298 * race with what we are doing.
4299 */
4300 refresh_cpu_vm_stats(cpu);
4301 }
4302 return NOTIFY_OK;
4303}
4304
4305void __init page_alloc_init(void)
4306{
4307 hotcpu_notifier(page_alloc_cpu_notify, 0);
4308}
4309
4310/*
4311 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4312 * or min_free_kbytes changes.
4313 */
4314static void calculate_totalreserve_pages(void)
4315{
4316 struct pglist_data *pgdat;
4317 unsigned long reserve_pages = 0;
4318 enum zone_type i, j;
4319
4320 for_each_online_pgdat(pgdat) {
4321 for (i = 0; i < MAX_NR_ZONES; i++) {
4322 struct zone *zone = pgdat->node_zones + i;
4323 unsigned long max = 0;
4324
4325 /* Find valid and maximum lowmem_reserve in the zone */
4326 for (j = i; j < MAX_NR_ZONES; j++) {
4327 if (zone->lowmem_reserve[j] > max)
4328 max = zone->lowmem_reserve[j];
4329 }
4330
4331 /* we treat the high watermark as reserved pages. */
4332 max += high_wmark_pages(zone);
4333
4334 if (max > zone->present_pages)
4335 max = zone->present_pages;
4336 reserve_pages += max;
4337 }
4338 }
4339 totalreserve_pages = reserve_pages;
4340}
4341
4342/*
4343 * setup_per_zone_lowmem_reserve - called whenever
4344 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4345 * has a correct pages reserved value, so an adequate number of
4346 * pages are left in the zone after a successful __alloc_pages().
4347 */
4348static void setup_per_zone_lowmem_reserve(void)
4349{
4350 struct pglist_data *pgdat;
4351 enum zone_type j, idx;
4352
4353 for_each_online_pgdat(pgdat) {
4354 for (j = 0; j < MAX_NR_ZONES; j++) {
4355 struct zone *zone = pgdat->node_zones + j;
4356 unsigned long present_pages = zone->present_pages;
4357
4358 zone->lowmem_reserve[j] = 0;
4359
4360 idx = j;
4361 while (idx) {
4362 struct zone *lower_zone;
4363
4364 idx--;
4365
4366 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4367 sysctl_lowmem_reserve_ratio[idx] = 1;
4368
4369 lower_zone = pgdat->node_zones + idx;
4370 lower_zone->lowmem_reserve[j] = present_pages /
4371 sysctl_lowmem_reserve_ratio[idx];
4372 present_pages += lower_zone->present_pages;
4373 }
4374 }
4375 }
4376
4377 /* update totalreserve_pages */
4378 calculate_totalreserve_pages();
4379}
4380
4381/**
4382 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4383 *
4384 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4385 * with respect to min_free_kbytes.
4386 */
4387void setup_per_zone_pages_min(void)
4388{
4389 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4390 unsigned long lowmem_pages = 0;
4391 struct zone *zone;
4392 unsigned long flags;
4393
4394 /* Calculate total number of !ZONE_HIGHMEM pages */
4395 for_each_zone(zone) {
4396 if (!is_highmem(zone))
4397 lowmem_pages += zone->present_pages;
4398 }
4399
4400 for_each_zone(zone) {
4401 u64 tmp;
4402
4403 spin_lock_irqsave(&zone->lock, flags);
4404 tmp = (u64)pages_min * zone->present_pages;
4405 do_div(tmp, lowmem_pages);
4406 if (is_highmem(zone)) {
4407 /*
4408 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4409 * need highmem pages, so cap pages_min to a small
4410 * value here.
4411 *
4412 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4413 * deltas controls asynch page reclaim, and so should
4414 * not be capped for highmem.
4415 */
4416 int min_pages;
4417
4418 min_pages = zone->present_pages / 1024;
4419 if (min_pages < SWAP_CLUSTER_MAX)
4420 min_pages = SWAP_CLUSTER_MAX;
4421 if (min_pages > 128)
4422 min_pages = 128;
4423 zone->watermark[WMARK_MIN] = min_pages;
4424 } else {
4425 /*
4426 * If it's a lowmem zone, reserve a number of pages
4427 * proportionate to the zone's size.
4428 */
4429 zone->watermark[WMARK_MIN] = tmp;
4430 }
4431
4432 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4433 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4434 setup_zone_migrate_reserve(zone);
4435 spin_unlock_irqrestore(&zone->lock, flags);
4436 }
4437
4438 /* update totalreserve_pages */
4439 calculate_totalreserve_pages();
4440}
4441
4442/**
4443 * The inactive anon list should be small enough that the VM never has to
4444 * do too much work, but large enough that each inactive page has a chance
4445 * to be referenced again before it is swapped out.
4446 *
4447 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4448 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4449 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4450 * the anonymous pages are kept on the inactive list.
4451 *
4452 * total target max
4453 * memory ratio inactive anon
4454 * -------------------------------------
4455 * 10MB 1 5MB
4456 * 100MB 1 50MB
4457 * 1GB 3 250MB
4458 * 10GB 10 0.9GB
4459 * 100GB 31 3GB
4460 * 1TB 101 10GB
4461 * 10TB 320 32GB
4462 */
4463static void __init setup_per_zone_inactive_ratio(void)
4464{
4465 struct zone *zone;
4466
4467 for_each_zone(zone) {
4468 unsigned int gb, ratio;
4469
4470 /* Zone size in gigabytes */
4471 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4472 if (gb)
4473 ratio = int_sqrt(10 * gb);
4474 else
4475 ratio = 1;
4476
4477 zone->inactive_ratio = ratio;
4478 }
4479}
4480
4481/*
4482 * Initialise min_free_kbytes.
4483 *
4484 * For small machines we want it small (128k min). For large machines
4485 * we want it large (64MB max). But it is not linear, because network
4486 * bandwidth does not increase linearly with machine size. We use
4487 *
4488 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4489 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4490 *
4491 * which yields
4492 *
4493 * 16MB: 512k
4494 * 32MB: 724k
4495 * 64MB: 1024k
4496 * 128MB: 1448k
4497 * 256MB: 2048k
4498 * 512MB: 2896k
4499 * 1024MB: 4096k
4500 * 2048MB: 5792k
4501 * 4096MB: 8192k
4502 * 8192MB: 11584k
4503 * 16384MB: 16384k
4504 */
4505static int __init init_per_zone_pages_min(void)
4506{
4507 unsigned long lowmem_kbytes;
4508
4509 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4510
4511 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4512 if (min_free_kbytes < 128)
4513 min_free_kbytes = 128;
4514 if (min_free_kbytes > 65536)
4515 min_free_kbytes = 65536;
4516 setup_per_zone_pages_min();
4517 setup_per_zone_lowmem_reserve();
4518 setup_per_zone_inactive_ratio();
4519 return 0;
4520}
4521module_init(init_per_zone_pages_min)
4522
4523/*
4524 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4525 * that we can call two helper functions whenever min_free_kbytes
4526 * changes.
4527 */
4528int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4529 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4530{
4531 proc_dointvec(table, write, file, buffer, length, ppos);
4532 if (write)
4533 setup_per_zone_pages_min();
4534 return 0;
4535}
4536
4537#ifdef CONFIG_NUMA
4538int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4539 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4540{
4541 struct zone *zone;
4542 int rc;
4543
4544 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4545 if (rc)
4546 return rc;
4547
4548 for_each_zone(zone)
4549 zone->min_unmapped_pages = (zone->present_pages *
4550 sysctl_min_unmapped_ratio) / 100;
4551 return 0;
4552}
4553
4554int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4555 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4556{
4557 struct zone *zone;
4558 int rc;
4559
4560 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4561 if (rc)
4562 return rc;
4563
4564 for_each_zone(zone)
4565 zone->min_slab_pages = (zone->present_pages *
4566 sysctl_min_slab_ratio) / 100;
4567 return 0;
4568}
4569#endif
4570
4571/*
4572 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4573 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4574 * whenever sysctl_lowmem_reserve_ratio changes.
4575 *
4576 * The reserve ratio obviously has absolutely no relation with the
4577 * minimum watermarks. The lowmem reserve ratio can only make sense
4578 * if in function of the boot time zone sizes.
4579 */
4580int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4581 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4582{
4583 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4584 setup_per_zone_lowmem_reserve();
4585 return 0;
4586}
4587
4588/*
4589 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4590 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4591 * can have before it gets flushed back to buddy allocator.
4592 */
4593
4594int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4595 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4596{
4597 struct zone *zone;
4598 unsigned int cpu;
4599 int ret;
4600
4601 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4602 if (!write || (ret == -EINVAL))
4603 return ret;
4604 for_each_zone(zone) {
4605 for_each_online_cpu(cpu) {
4606 unsigned long high;
4607 high = zone->present_pages / percpu_pagelist_fraction;
4608 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4609 }
4610 }
4611 return 0;
4612}
4613
4614int hashdist = HASHDIST_DEFAULT;
4615
4616#ifdef CONFIG_NUMA
4617static int __init set_hashdist(char *str)
4618{
4619 if (!str)
4620 return 0;
4621 hashdist = simple_strtoul(str, &str, 0);
4622 return 1;
4623}
4624__setup("hashdist=", set_hashdist);
4625#endif
4626
4627/*
4628 * allocate a large system hash table from bootmem
4629 * - it is assumed that the hash table must contain an exact power-of-2
4630 * quantity of entries
4631 * - limit is the number of hash buckets, not the total allocation size
4632 */
4633void *__init alloc_large_system_hash(const char *tablename,
4634 unsigned long bucketsize,
4635 unsigned long numentries,
4636 int scale,
4637 int flags,
4638 unsigned int *_hash_shift,
4639 unsigned int *_hash_mask,
4640 unsigned long limit)
4641{
4642 unsigned long long max = limit;
4643 unsigned long log2qty, size;
4644 void *table = NULL;
4645
4646 /* allow the kernel cmdline to have a say */
4647 if (!numentries) {
4648 /* round applicable memory size up to nearest megabyte */
4649 numentries = nr_kernel_pages;
4650 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4651 numentries >>= 20 - PAGE_SHIFT;
4652 numentries <<= 20 - PAGE_SHIFT;
4653
4654 /* limit to 1 bucket per 2^scale bytes of low memory */
4655 if (scale > PAGE_SHIFT)
4656 numentries >>= (scale - PAGE_SHIFT);
4657 else
4658 numentries <<= (PAGE_SHIFT - scale);
4659
4660 /* Make sure we've got at least a 0-order allocation.. */
4661 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4662 numentries = PAGE_SIZE / bucketsize;
4663 }
4664 numentries = roundup_pow_of_two(numentries);
4665
4666 /* limit allocation size to 1/16 total memory by default */
4667 if (max == 0) {
4668 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4669 do_div(max, bucketsize);
4670 }
4671
4672 if (numentries > max)
4673 numentries = max;
4674
4675 log2qty = ilog2(numentries);
4676
4677 do {
4678 size = bucketsize << log2qty;
4679 if (flags & HASH_EARLY)
4680 table = alloc_bootmem_nopanic(size);
4681 else if (hashdist)
4682 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4683 else {
4684 /*
4685 * If bucketsize is not a power-of-two, we may free
4686 * some pages at the end of hash table which
4687 * alloc_pages_exact() automatically does
4688 */
4689 if (get_order(size) < MAX_ORDER)
4690 table = alloc_pages_exact(size, GFP_ATOMIC);
4691 }
4692 } while (!table && size > PAGE_SIZE && --log2qty);
4693
4694 if (!table)
4695 panic("Failed to allocate %s hash table\n", tablename);
4696
4697 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4698 tablename,
4699 (1U << log2qty),
4700 ilog2(size) - PAGE_SHIFT,
4701 size);
4702
4703 if (_hash_shift)
4704 *_hash_shift = log2qty;
4705 if (_hash_mask)
4706 *_hash_mask = (1 << log2qty) - 1;
4707
4708 /*
4709 * If hashdist is set, the table allocation is done with __vmalloc()
4710 * which invokes the kmemleak_alloc() callback. This function may also
4711 * be called before the slab and kmemleak are initialised when
4712 * kmemleak simply buffers the request to be executed later
4713 * (GFP_ATOMIC flag ignored in this case).
4714 */
4715 if (!hashdist)
4716 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4717
4718 return table;
4719}
4720
4721/* Return a pointer to the bitmap storing bits affecting a block of pages */
4722static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4723 unsigned long pfn)
4724{
4725#ifdef CONFIG_SPARSEMEM
4726 return __pfn_to_section(pfn)->pageblock_flags;
4727#else
4728 return zone->pageblock_flags;
4729#endif /* CONFIG_SPARSEMEM */
4730}
4731
4732static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4733{
4734#ifdef CONFIG_SPARSEMEM
4735 pfn &= (PAGES_PER_SECTION-1);
4736 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4737#else
4738 pfn = pfn - zone->zone_start_pfn;
4739 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4740#endif /* CONFIG_SPARSEMEM */
4741}
4742
4743/**
4744 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4745 * @page: The page within the block of interest
4746 * @start_bitidx: The first bit of interest to retrieve
4747 * @end_bitidx: The last bit of interest
4748 * returns pageblock_bits flags
4749 */
4750unsigned long get_pageblock_flags_group(struct page *page,
4751 int start_bitidx, int end_bitidx)
4752{
4753 struct zone *zone;
4754 unsigned long *bitmap;
4755 unsigned long pfn, bitidx;
4756 unsigned long flags = 0;
4757 unsigned long value = 1;
4758
4759 zone = page_zone(page);
4760 pfn = page_to_pfn(page);
4761 bitmap = get_pageblock_bitmap(zone, pfn);
4762 bitidx = pfn_to_bitidx(zone, pfn);
4763
4764 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4765 if (test_bit(bitidx + start_bitidx, bitmap))
4766 flags |= value;
4767
4768 return flags;
4769}
4770
4771/**
4772 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4773 * @page: The page within the block of interest
4774 * @start_bitidx: The first bit of interest
4775 * @end_bitidx: The last bit of interest
4776 * @flags: The flags to set
4777 */
4778void set_pageblock_flags_group(struct page *page, unsigned long flags,
4779 int start_bitidx, int end_bitidx)
4780{
4781 struct zone *zone;
4782 unsigned long *bitmap;
4783 unsigned long pfn, bitidx;
4784 unsigned long value = 1;
4785
4786 zone = page_zone(page);
4787 pfn = page_to_pfn(page);
4788 bitmap = get_pageblock_bitmap(zone, pfn);
4789 bitidx = pfn_to_bitidx(zone, pfn);
4790 VM_BUG_ON(pfn < zone->zone_start_pfn);
4791 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4792
4793 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4794 if (flags & value)
4795 __set_bit(bitidx + start_bitidx, bitmap);
4796 else
4797 __clear_bit(bitidx + start_bitidx, bitmap);
4798}
4799
4800/*
4801 * This is designed as sub function...plz see page_isolation.c also.
4802 * set/clear page block's type to be ISOLATE.
4803 * page allocater never alloc memory from ISOLATE block.
4804 */
4805
4806int set_migratetype_isolate(struct page *page)
4807{
4808 struct zone *zone;
4809 unsigned long flags;
4810 int ret = -EBUSY;
4811
4812 zone = page_zone(page);
4813 spin_lock_irqsave(&zone->lock, flags);
4814 /*
4815 * In future, more migrate types will be able to be isolation target.
4816 */
4817 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4818 goto out;
4819 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4820 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4821 ret = 0;
4822out:
4823 spin_unlock_irqrestore(&zone->lock, flags);
4824 if (!ret)
4825 drain_all_pages();
4826 return ret;
4827}
4828
4829void unset_migratetype_isolate(struct page *page)
4830{
4831 struct zone *zone;
4832 unsigned long flags;
4833 zone = page_zone(page);
4834 spin_lock_irqsave(&zone->lock, flags);
4835 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4836 goto out;
4837 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4838 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4839out:
4840 spin_unlock_irqrestore(&zone->lock, flags);
4841}
4842
4843#ifdef CONFIG_MEMORY_HOTREMOVE
4844/*
4845 * All pages in the range must be isolated before calling this.
4846 */
4847void
4848__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4849{
4850 struct page *page;
4851 struct zone *zone;
4852 int order, i;
4853 unsigned long pfn;
4854 unsigned long flags;
4855 /* find the first valid pfn */
4856 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4857 if (pfn_valid(pfn))
4858 break;
4859 if (pfn == end_pfn)
4860 return;
4861 zone = page_zone(pfn_to_page(pfn));
4862 spin_lock_irqsave(&zone->lock, flags);
4863 pfn = start_pfn;
4864 while (pfn < end_pfn) {
4865 if (!pfn_valid(pfn)) {
4866 pfn++;
4867 continue;
4868 }
4869 page = pfn_to_page(pfn);
4870 BUG_ON(page_count(page));
4871 BUG_ON(!PageBuddy(page));
4872 order = page_order(page);
4873#ifdef CONFIG_DEBUG_VM
4874 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4875 pfn, 1 << order, end_pfn);
4876#endif
4877 list_del(&page->lru);
4878 rmv_page_order(page);
4879 zone->free_area[order].nr_free--;
4880 __mod_zone_page_state(zone, NR_FREE_PAGES,
4881 - (1UL << order));
4882 for (i = 0; i < (1 << order); i++)
4883 SetPageReserved((page+i));
4884 pfn += (1 << order);
4885 }
4886 spin_unlock_irqrestore(&zone->lock, flags);
4887}
4888#endif