]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame_incremental - mm/page_alloc.c
badpage: keep any bad page out of circulation
[thirdparty/kernel/linux.git] / mm / page_alloc.c
... / ...
CommitLineData
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/oom.h>
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
37#include <linux/memory_hotplug.h>
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
40#include <linux/mempolicy.h>
41#include <linux/stop_machine.h>
42#include <linux/sort.h>
43#include <linux/pfn.h>
44#include <linux/backing-dev.h>
45#include <linux/fault-inject.h>
46#include <linux/page-isolation.h>
47#include <linux/page_cgroup.h>
48#include <linux/debugobjects.h>
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52#include "internal.h"
53
54/*
55 * Array of node states.
56 */
57nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60#ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62#ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64#endif
65 [N_CPU] = { { [0] = 1UL } },
66#endif /* NUMA */
67};
68EXPORT_SYMBOL(node_states);
69
70unsigned long totalram_pages __read_mostly;
71unsigned long totalreserve_pages __read_mostly;
72int percpu_pagelist_fraction;
73
74#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
75int pageblock_order __read_mostly;
76#endif
77
78static void __free_pages_ok(struct page *page, unsigned int order);
79
80/*
81 * results with 256, 32 in the lowmem_reserve sysctl:
82 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
83 * 1G machine -> (16M dma, 784M normal, 224M high)
84 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
85 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
86 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
87 *
88 * TBD: should special case ZONE_DMA32 machines here - in those we normally
89 * don't need any ZONE_NORMAL reservation
90 */
91int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
92#ifdef CONFIG_ZONE_DMA
93 256,
94#endif
95#ifdef CONFIG_ZONE_DMA32
96 256,
97#endif
98#ifdef CONFIG_HIGHMEM
99 32,
100#endif
101 32,
102};
103
104EXPORT_SYMBOL(totalram_pages);
105
106static char * const zone_names[MAX_NR_ZONES] = {
107#ifdef CONFIG_ZONE_DMA
108 "DMA",
109#endif
110#ifdef CONFIG_ZONE_DMA32
111 "DMA32",
112#endif
113 "Normal",
114#ifdef CONFIG_HIGHMEM
115 "HighMem",
116#endif
117 "Movable",
118};
119
120int min_free_kbytes = 1024;
121
122unsigned long __meminitdata nr_kernel_pages;
123unsigned long __meminitdata nr_all_pages;
124static unsigned long __meminitdata dma_reserve;
125
126#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
127 /*
128 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
129 * ranges of memory (RAM) that may be registered with add_active_range().
130 * Ranges passed to add_active_range() will be merged if possible
131 * so the number of times add_active_range() can be called is
132 * related to the number of nodes and the number of holes
133 */
134 #ifdef CONFIG_MAX_ACTIVE_REGIONS
135 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
136 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
137 #else
138 #if MAX_NUMNODES >= 32
139 /* If there can be many nodes, allow up to 50 holes per node */
140 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
141 #else
142 /* By default, allow up to 256 distinct regions */
143 #define MAX_ACTIVE_REGIONS 256
144 #endif
145 #endif
146
147 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
148 static int __meminitdata nr_nodemap_entries;
149 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
150 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
151#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
152 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
153 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
154#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
155 static unsigned long __initdata required_kernelcore;
156 static unsigned long __initdata required_movablecore;
157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
162#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
164#if MAX_NUMNODES > 1
165int nr_node_ids __read_mostly = MAX_NUMNODES;
166EXPORT_SYMBOL(nr_node_ids);
167#endif
168
169int page_group_by_mobility_disabled __read_mostly;
170
171static void set_pageblock_migratetype(struct page *page, int migratetype)
172{
173 set_pageblock_flags_group(page, (unsigned long)migratetype,
174 PB_migrate, PB_migrate_end);
175}
176
177#ifdef CONFIG_DEBUG_VM
178static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
179{
180 int ret = 0;
181 unsigned seq;
182 unsigned long pfn = page_to_pfn(page);
183
184 do {
185 seq = zone_span_seqbegin(zone);
186 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
187 ret = 1;
188 else if (pfn < zone->zone_start_pfn)
189 ret = 1;
190 } while (zone_span_seqretry(zone, seq));
191
192 return ret;
193}
194
195static int page_is_consistent(struct zone *zone, struct page *page)
196{
197 if (!pfn_valid_within(page_to_pfn(page)))
198 return 0;
199 if (zone != page_zone(page))
200 return 0;
201
202 return 1;
203}
204/*
205 * Temporary debugging check for pages not lying within a given zone.
206 */
207static int bad_range(struct zone *zone, struct page *page)
208{
209 if (page_outside_zone_boundaries(zone, page))
210 return 1;
211 if (!page_is_consistent(zone, page))
212 return 1;
213
214 return 0;
215}
216#else
217static inline int bad_range(struct zone *zone, struct page *page)
218{
219 return 0;
220}
221#endif
222
223static void bad_page(struct page *page)
224{
225 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
226 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
227 current->comm, page, (int)(2*sizeof(unsigned long)),
228 (unsigned long)page->flags, page->mapping,
229 page_mapcount(page), page_count(page));
230
231 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
232 KERN_EMERG "Backtrace:\n");
233 dump_stack();
234
235 /* Leave bad fields for debug, except PageBuddy could make trouble */
236 __ClearPageBuddy(page);
237 add_taint(TAINT_BAD_PAGE);
238}
239
240/*
241 * Higher-order pages are called "compound pages". They are structured thusly:
242 *
243 * The first PAGE_SIZE page is called the "head page".
244 *
245 * The remaining PAGE_SIZE pages are called "tail pages".
246 *
247 * All pages have PG_compound set. All pages have their ->private pointing at
248 * the head page (even the head page has this).
249 *
250 * The first tail page's ->lru.next holds the address of the compound page's
251 * put_page() function. Its ->lru.prev holds the order of allocation.
252 * This usage means that zero-order pages may not be compound.
253 */
254
255static void free_compound_page(struct page *page)
256{
257 __free_pages_ok(page, compound_order(page));
258}
259
260void prep_compound_page(struct page *page, unsigned long order)
261{
262 int i;
263 int nr_pages = 1 << order;
264
265 set_compound_page_dtor(page, free_compound_page);
266 set_compound_order(page, order);
267 __SetPageHead(page);
268 for (i = 1; i < nr_pages; i++) {
269 struct page *p = page + i;
270
271 __SetPageTail(p);
272 p->first_page = page;
273 }
274}
275
276#ifdef CONFIG_HUGETLBFS
277void prep_compound_gigantic_page(struct page *page, unsigned long order)
278{
279 int i;
280 int nr_pages = 1 << order;
281 struct page *p = page + 1;
282
283 set_compound_page_dtor(page, free_compound_page);
284 set_compound_order(page, order);
285 __SetPageHead(page);
286 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
287 __SetPageTail(p);
288 p->first_page = page;
289 }
290}
291#endif
292
293static int destroy_compound_page(struct page *page, unsigned long order)
294{
295 int i;
296 int nr_pages = 1 << order;
297 int bad = 0;
298
299 if (unlikely(compound_order(page) != order) ||
300 unlikely(!PageHead(page))) {
301 bad_page(page);
302 bad++;
303 }
304
305 __ClearPageHead(page);
306
307 for (i = 1; i < nr_pages; i++) {
308 struct page *p = page + i;
309
310 if (unlikely(!PageTail(p) | (p->first_page != page))) {
311 bad_page(page);
312 bad++;
313 }
314 __ClearPageTail(p);
315 }
316
317 return bad;
318}
319
320static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
321{
322 int i;
323
324 /*
325 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
326 * and __GFP_HIGHMEM from hard or soft interrupt context.
327 */
328 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
329 for (i = 0; i < (1 << order); i++)
330 clear_highpage(page + i);
331}
332
333static inline void set_page_order(struct page *page, int order)
334{
335 set_page_private(page, order);
336 __SetPageBuddy(page);
337}
338
339static inline void rmv_page_order(struct page *page)
340{
341 __ClearPageBuddy(page);
342 set_page_private(page, 0);
343}
344
345/*
346 * Locate the struct page for both the matching buddy in our
347 * pair (buddy1) and the combined O(n+1) page they form (page).
348 *
349 * 1) Any buddy B1 will have an order O twin B2 which satisfies
350 * the following equation:
351 * B2 = B1 ^ (1 << O)
352 * For example, if the starting buddy (buddy2) is #8 its order
353 * 1 buddy is #10:
354 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
355 *
356 * 2) Any buddy B will have an order O+1 parent P which
357 * satisfies the following equation:
358 * P = B & ~(1 << O)
359 *
360 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
361 */
362static inline struct page *
363__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
364{
365 unsigned long buddy_idx = page_idx ^ (1 << order);
366
367 return page + (buddy_idx - page_idx);
368}
369
370static inline unsigned long
371__find_combined_index(unsigned long page_idx, unsigned int order)
372{
373 return (page_idx & ~(1 << order));
374}
375
376/*
377 * This function checks whether a page is free && is the buddy
378 * we can do coalesce a page and its buddy if
379 * (a) the buddy is not in a hole &&
380 * (b) the buddy is in the buddy system &&
381 * (c) a page and its buddy have the same order &&
382 * (d) a page and its buddy are in the same zone.
383 *
384 * For recording whether a page is in the buddy system, we use PG_buddy.
385 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
386 *
387 * For recording page's order, we use page_private(page).
388 */
389static inline int page_is_buddy(struct page *page, struct page *buddy,
390 int order)
391{
392 if (!pfn_valid_within(page_to_pfn(buddy)))
393 return 0;
394
395 if (page_zone_id(page) != page_zone_id(buddy))
396 return 0;
397
398 if (PageBuddy(buddy) && page_order(buddy) == order) {
399 BUG_ON(page_count(buddy) != 0);
400 return 1;
401 }
402 return 0;
403}
404
405/*
406 * Freeing function for a buddy system allocator.
407 *
408 * The concept of a buddy system is to maintain direct-mapped table
409 * (containing bit values) for memory blocks of various "orders".
410 * The bottom level table contains the map for the smallest allocatable
411 * units of memory (here, pages), and each level above it describes
412 * pairs of units from the levels below, hence, "buddies".
413 * At a high level, all that happens here is marking the table entry
414 * at the bottom level available, and propagating the changes upward
415 * as necessary, plus some accounting needed to play nicely with other
416 * parts of the VM system.
417 * At each level, we keep a list of pages, which are heads of continuous
418 * free pages of length of (1 << order) and marked with PG_buddy. Page's
419 * order is recorded in page_private(page) field.
420 * So when we are allocating or freeing one, we can derive the state of the
421 * other. That is, if we allocate a small block, and both were
422 * free, the remainder of the region must be split into blocks.
423 * If a block is freed, and its buddy is also free, then this
424 * triggers coalescing into a block of larger size.
425 *
426 * -- wli
427 */
428
429static inline void __free_one_page(struct page *page,
430 struct zone *zone, unsigned int order)
431{
432 unsigned long page_idx;
433 int order_size = 1 << order;
434 int migratetype = get_pageblock_migratetype(page);
435
436 if (unlikely(PageCompound(page)))
437 if (unlikely(destroy_compound_page(page, order)))
438 return;
439
440 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
441
442 VM_BUG_ON(page_idx & (order_size - 1));
443 VM_BUG_ON(bad_range(zone, page));
444
445 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
446 while (order < MAX_ORDER-1) {
447 unsigned long combined_idx;
448 struct page *buddy;
449
450 buddy = __page_find_buddy(page, page_idx, order);
451 if (!page_is_buddy(page, buddy, order))
452 break;
453
454 /* Our buddy is free, merge with it and move up one order. */
455 list_del(&buddy->lru);
456 zone->free_area[order].nr_free--;
457 rmv_page_order(buddy);
458 combined_idx = __find_combined_index(page_idx, order);
459 page = page + (combined_idx - page_idx);
460 page_idx = combined_idx;
461 order++;
462 }
463 set_page_order(page, order);
464 list_add(&page->lru,
465 &zone->free_area[order].free_list[migratetype]);
466 zone->free_area[order].nr_free++;
467}
468
469static inline int free_pages_check(struct page *page)
470{
471 free_page_mlock(page);
472 if (unlikely(page_mapcount(page) |
473 (page->mapping != NULL) |
474 (page_count(page) != 0) |
475 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
476 bad_page(page);
477 return 1;
478 }
479 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
480 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
481 return 0;
482}
483
484/*
485 * Frees a list of pages.
486 * Assumes all pages on list are in same zone, and of same order.
487 * count is the number of pages to free.
488 *
489 * If the zone was previously in an "all pages pinned" state then look to
490 * see if this freeing clears that state.
491 *
492 * And clear the zone's pages_scanned counter, to hold off the "all pages are
493 * pinned" detection logic.
494 */
495static void free_pages_bulk(struct zone *zone, int count,
496 struct list_head *list, int order)
497{
498 spin_lock(&zone->lock);
499 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
500 zone->pages_scanned = 0;
501 while (count--) {
502 struct page *page;
503
504 VM_BUG_ON(list_empty(list));
505 page = list_entry(list->prev, struct page, lru);
506 /* have to delete it as __free_one_page list manipulates */
507 list_del(&page->lru);
508 __free_one_page(page, zone, order);
509 }
510 spin_unlock(&zone->lock);
511}
512
513static void free_one_page(struct zone *zone, struct page *page, int order)
514{
515 spin_lock(&zone->lock);
516 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
517 zone->pages_scanned = 0;
518 __free_one_page(page, zone, order);
519 spin_unlock(&zone->lock);
520}
521
522static void __free_pages_ok(struct page *page, unsigned int order)
523{
524 unsigned long flags;
525 int i;
526 int bad = 0;
527
528 for (i = 0 ; i < (1 << order) ; ++i)
529 bad += free_pages_check(page + i);
530 if (bad)
531 return;
532
533 if (!PageHighMem(page)) {
534 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
535 debug_check_no_obj_freed(page_address(page),
536 PAGE_SIZE << order);
537 }
538 arch_free_page(page, order);
539 kernel_map_pages(page, 1 << order, 0);
540
541 local_irq_save(flags);
542 __count_vm_events(PGFREE, 1 << order);
543 free_one_page(page_zone(page), page, order);
544 local_irq_restore(flags);
545}
546
547/*
548 * permit the bootmem allocator to evade page validation on high-order frees
549 */
550void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
551{
552 if (order == 0) {
553 __ClearPageReserved(page);
554 set_page_count(page, 0);
555 set_page_refcounted(page);
556 __free_page(page);
557 } else {
558 int loop;
559
560 prefetchw(page);
561 for (loop = 0; loop < BITS_PER_LONG; loop++) {
562 struct page *p = &page[loop];
563
564 if (loop + 1 < BITS_PER_LONG)
565 prefetchw(p + 1);
566 __ClearPageReserved(p);
567 set_page_count(p, 0);
568 }
569
570 set_page_refcounted(page);
571 __free_pages(page, order);
572 }
573}
574
575
576/*
577 * The order of subdivision here is critical for the IO subsystem.
578 * Please do not alter this order without good reasons and regression
579 * testing. Specifically, as large blocks of memory are subdivided,
580 * the order in which smaller blocks are delivered depends on the order
581 * they're subdivided in this function. This is the primary factor
582 * influencing the order in which pages are delivered to the IO
583 * subsystem according to empirical testing, and this is also justified
584 * by considering the behavior of a buddy system containing a single
585 * large block of memory acted on by a series of small allocations.
586 * This behavior is a critical factor in sglist merging's success.
587 *
588 * -- wli
589 */
590static inline void expand(struct zone *zone, struct page *page,
591 int low, int high, struct free_area *area,
592 int migratetype)
593{
594 unsigned long size = 1 << high;
595
596 while (high > low) {
597 area--;
598 high--;
599 size >>= 1;
600 VM_BUG_ON(bad_range(zone, &page[size]));
601 list_add(&page[size].lru, &area->free_list[migratetype]);
602 area->nr_free++;
603 set_page_order(&page[size], high);
604 }
605}
606
607/*
608 * This page is about to be returned from the page allocator
609 */
610static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
611{
612 if (unlikely(page_mapcount(page) |
613 (page->mapping != NULL) |
614 (page_count(page) != 0) |
615 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
616 bad_page(page);
617 return 1;
618 }
619
620 set_page_private(page, 0);
621 set_page_refcounted(page);
622
623 arch_alloc_page(page, order);
624 kernel_map_pages(page, 1 << order, 1);
625
626 if (gfp_flags & __GFP_ZERO)
627 prep_zero_page(page, order, gfp_flags);
628
629 if (order && (gfp_flags & __GFP_COMP))
630 prep_compound_page(page, order);
631
632 return 0;
633}
634
635/*
636 * Go through the free lists for the given migratetype and remove
637 * the smallest available page from the freelists
638 */
639static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
640 int migratetype)
641{
642 unsigned int current_order;
643 struct free_area * area;
644 struct page *page;
645
646 /* Find a page of the appropriate size in the preferred list */
647 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
648 area = &(zone->free_area[current_order]);
649 if (list_empty(&area->free_list[migratetype]))
650 continue;
651
652 page = list_entry(area->free_list[migratetype].next,
653 struct page, lru);
654 list_del(&page->lru);
655 rmv_page_order(page);
656 area->nr_free--;
657 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
658 expand(zone, page, order, current_order, area, migratetype);
659 return page;
660 }
661
662 return NULL;
663}
664
665
666/*
667 * This array describes the order lists are fallen back to when
668 * the free lists for the desirable migrate type are depleted
669 */
670static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
671 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
672 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
673 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
674 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
675};
676
677/*
678 * Move the free pages in a range to the free lists of the requested type.
679 * Note that start_page and end_pages are not aligned on a pageblock
680 * boundary. If alignment is required, use move_freepages_block()
681 */
682static int move_freepages(struct zone *zone,
683 struct page *start_page, struct page *end_page,
684 int migratetype)
685{
686 struct page *page;
687 unsigned long order;
688 int pages_moved = 0;
689
690#ifndef CONFIG_HOLES_IN_ZONE
691 /*
692 * page_zone is not safe to call in this context when
693 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
694 * anyway as we check zone boundaries in move_freepages_block().
695 * Remove at a later date when no bug reports exist related to
696 * grouping pages by mobility
697 */
698 BUG_ON(page_zone(start_page) != page_zone(end_page));
699#endif
700
701 for (page = start_page; page <= end_page;) {
702 /* Make sure we are not inadvertently changing nodes */
703 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
704
705 if (!pfn_valid_within(page_to_pfn(page))) {
706 page++;
707 continue;
708 }
709
710 if (!PageBuddy(page)) {
711 page++;
712 continue;
713 }
714
715 order = page_order(page);
716 list_del(&page->lru);
717 list_add(&page->lru,
718 &zone->free_area[order].free_list[migratetype]);
719 page += 1 << order;
720 pages_moved += 1 << order;
721 }
722
723 return pages_moved;
724}
725
726static int move_freepages_block(struct zone *zone, struct page *page,
727 int migratetype)
728{
729 unsigned long start_pfn, end_pfn;
730 struct page *start_page, *end_page;
731
732 start_pfn = page_to_pfn(page);
733 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
734 start_page = pfn_to_page(start_pfn);
735 end_page = start_page + pageblock_nr_pages - 1;
736 end_pfn = start_pfn + pageblock_nr_pages - 1;
737
738 /* Do not cross zone boundaries */
739 if (start_pfn < zone->zone_start_pfn)
740 start_page = page;
741 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
742 return 0;
743
744 return move_freepages(zone, start_page, end_page, migratetype);
745}
746
747/* Remove an element from the buddy allocator from the fallback list */
748static struct page *__rmqueue_fallback(struct zone *zone, int order,
749 int start_migratetype)
750{
751 struct free_area * area;
752 int current_order;
753 struct page *page;
754 int migratetype, i;
755
756 /* Find the largest possible block of pages in the other list */
757 for (current_order = MAX_ORDER-1; current_order >= order;
758 --current_order) {
759 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
760 migratetype = fallbacks[start_migratetype][i];
761
762 /* MIGRATE_RESERVE handled later if necessary */
763 if (migratetype == MIGRATE_RESERVE)
764 continue;
765
766 area = &(zone->free_area[current_order]);
767 if (list_empty(&area->free_list[migratetype]))
768 continue;
769
770 page = list_entry(area->free_list[migratetype].next,
771 struct page, lru);
772 area->nr_free--;
773
774 /*
775 * If breaking a large block of pages, move all free
776 * pages to the preferred allocation list. If falling
777 * back for a reclaimable kernel allocation, be more
778 * agressive about taking ownership of free pages
779 */
780 if (unlikely(current_order >= (pageblock_order >> 1)) ||
781 start_migratetype == MIGRATE_RECLAIMABLE) {
782 unsigned long pages;
783 pages = move_freepages_block(zone, page,
784 start_migratetype);
785
786 /* Claim the whole block if over half of it is free */
787 if (pages >= (1 << (pageblock_order-1)))
788 set_pageblock_migratetype(page,
789 start_migratetype);
790
791 migratetype = start_migratetype;
792 }
793
794 /* Remove the page from the freelists */
795 list_del(&page->lru);
796 rmv_page_order(page);
797 __mod_zone_page_state(zone, NR_FREE_PAGES,
798 -(1UL << order));
799
800 if (current_order == pageblock_order)
801 set_pageblock_migratetype(page,
802 start_migratetype);
803
804 expand(zone, page, order, current_order, area, migratetype);
805 return page;
806 }
807 }
808
809 /* Use MIGRATE_RESERVE rather than fail an allocation */
810 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
811}
812
813/*
814 * Do the hard work of removing an element from the buddy allocator.
815 * Call me with the zone->lock already held.
816 */
817static struct page *__rmqueue(struct zone *zone, unsigned int order,
818 int migratetype)
819{
820 struct page *page;
821
822 page = __rmqueue_smallest(zone, order, migratetype);
823
824 if (unlikely(!page))
825 page = __rmqueue_fallback(zone, order, migratetype);
826
827 return page;
828}
829
830/*
831 * Obtain a specified number of elements from the buddy allocator, all under
832 * a single hold of the lock, for efficiency. Add them to the supplied list.
833 * Returns the number of new pages which were placed at *list.
834 */
835static int rmqueue_bulk(struct zone *zone, unsigned int order,
836 unsigned long count, struct list_head *list,
837 int migratetype)
838{
839 int i;
840
841 spin_lock(&zone->lock);
842 for (i = 0; i < count; ++i) {
843 struct page *page = __rmqueue(zone, order, migratetype);
844 if (unlikely(page == NULL))
845 break;
846
847 /*
848 * Split buddy pages returned by expand() are received here
849 * in physical page order. The page is added to the callers and
850 * list and the list head then moves forward. From the callers
851 * perspective, the linked list is ordered by page number in
852 * some conditions. This is useful for IO devices that can
853 * merge IO requests if the physical pages are ordered
854 * properly.
855 */
856 list_add(&page->lru, list);
857 set_page_private(page, migratetype);
858 list = &page->lru;
859 }
860 spin_unlock(&zone->lock);
861 return i;
862}
863
864#ifdef CONFIG_NUMA
865/*
866 * Called from the vmstat counter updater to drain pagesets of this
867 * currently executing processor on remote nodes after they have
868 * expired.
869 *
870 * Note that this function must be called with the thread pinned to
871 * a single processor.
872 */
873void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
874{
875 unsigned long flags;
876 int to_drain;
877
878 local_irq_save(flags);
879 if (pcp->count >= pcp->batch)
880 to_drain = pcp->batch;
881 else
882 to_drain = pcp->count;
883 free_pages_bulk(zone, to_drain, &pcp->list, 0);
884 pcp->count -= to_drain;
885 local_irq_restore(flags);
886}
887#endif
888
889/*
890 * Drain pages of the indicated processor.
891 *
892 * The processor must either be the current processor and the
893 * thread pinned to the current processor or a processor that
894 * is not online.
895 */
896static void drain_pages(unsigned int cpu)
897{
898 unsigned long flags;
899 struct zone *zone;
900
901 for_each_zone(zone) {
902 struct per_cpu_pageset *pset;
903 struct per_cpu_pages *pcp;
904
905 if (!populated_zone(zone))
906 continue;
907
908 pset = zone_pcp(zone, cpu);
909
910 pcp = &pset->pcp;
911 local_irq_save(flags);
912 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
913 pcp->count = 0;
914 local_irq_restore(flags);
915 }
916}
917
918/*
919 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
920 */
921void drain_local_pages(void *arg)
922{
923 drain_pages(smp_processor_id());
924}
925
926/*
927 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
928 */
929void drain_all_pages(void)
930{
931 on_each_cpu(drain_local_pages, NULL, 1);
932}
933
934#ifdef CONFIG_HIBERNATION
935
936void mark_free_pages(struct zone *zone)
937{
938 unsigned long pfn, max_zone_pfn;
939 unsigned long flags;
940 int order, t;
941 struct list_head *curr;
942
943 if (!zone->spanned_pages)
944 return;
945
946 spin_lock_irqsave(&zone->lock, flags);
947
948 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
949 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
950 if (pfn_valid(pfn)) {
951 struct page *page = pfn_to_page(pfn);
952
953 if (!swsusp_page_is_forbidden(page))
954 swsusp_unset_page_free(page);
955 }
956
957 for_each_migratetype_order(order, t) {
958 list_for_each(curr, &zone->free_area[order].free_list[t]) {
959 unsigned long i;
960
961 pfn = page_to_pfn(list_entry(curr, struct page, lru));
962 for (i = 0; i < (1UL << order); i++)
963 swsusp_set_page_free(pfn_to_page(pfn + i));
964 }
965 }
966 spin_unlock_irqrestore(&zone->lock, flags);
967}
968#endif /* CONFIG_PM */
969
970/*
971 * Free a 0-order page
972 */
973static void free_hot_cold_page(struct page *page, int cold)
974{
975 struct zone *zone = page_zone(page);
976 struct per_cpu_pages *pcp;
977 unsigned long flags;
978
979 if (PageAnon(page))
980 page->mapping = NULL;
981 if (free_pages_check(page))
982 return;
983
984 if (!PageHighMem(page)) {
985 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
986 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
987 }
988 arch_free_page(page, 0);
989 kernel_map_pages(page, 1, 0);
990
991 pcp = &zone_pcp(zone, get_cpu())->pcp;
992 local_irq_save(flags);
993 __count_vm_event(PGFREE);
994 if (cold)
995 list_add_tail(&page->lru, &pcp->list);
996 else
997 list_add(&page->lru, &pcp->list);
998 set_page_private(page, get_pageblock_migratetype(page));
999 pcp->count++;
1000 if (pcp->count >= pcp->high) {
1001 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1002 pcp->count -= pcp->batch;
1003 }
1004 local_irq_restore(flags);
1005 put_cpu();
1006}
1007
1008void free_hot_page(struct page *page)
1009{
1010 free_hot_cold_page(page, 0);
1011}
1012
1013void free_cold_page(struct page *page)
1014{
1015 free_hot_cold_page(page, 1);
1016}
1017
1018/*
1019 * split_page takes a non-compound higher-order page, and splits it into
1020 * n (1<<order) sub-pages: page[0..n]
1021 * Each sub-page must be freed individually.
1022 *
1023 * Note: this is probably too low level an operation for use in drivers.
1024 * Please consult with lkml before using this in your driver.
1025 */
1026void split_page(struct page *page, unsigned int order)
1027{
1028 int i;
1029
1030 VM_BUG_ON(PageCompound(page));
1031 VM_BUG_ON(!page_count(page));
1032 for (i = 1; i < (1 << order); i++)
1033 set_page_refcounted(page + i);
1034}
1035
1036/*
1037 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1038 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1039 * or two.
1040 */
1041static struct page *buffered_rmqueue(struct zone *preferred_zone,
1042 struct zone *zone, int order, gfp_t gfp_flags)
1043{
1044 unsigned long flags;
1045 struct page *page;
1046 int cold = !!(gfp_flags & __GFP_COLD);
1047 int cpu;
1048 int migratetype = allocflags_to_migratetype(gfp_flags);
1049
1050again:
1051 cpu = get_cpu();
1052 if (likely(order == 0)) {
1053 struct per_cpu_pages *pcp;
1054
1055 pcp = &zone_pcp(zone, cpu)->pcp;
1056 local_irq_save(flags);
1057 if (!pcp->count) {
1058 pcp->count = rmqueue_bulk(zone, 0,
1059 pcp->batch, &pcp->list, migratetype);
1060 if (unlikely(!pcp->count))
1061 goto failed;
1062 }
1063
1064 /* Find a page of the appropriate migrate type */
1065 if (cold) {
1066 list_for_each_entry_reverse(page, &pcp->list, lru)
1067 if (page_private(page) == migratetype)
1068 break;
1069 } else {
1070 list_for_each_entry(page, &pcp->list, lru)
1071 if (page_private(page) == migratetype)
1072 break;
1073 }
1074
1075 /* Allocate more to the pcp list if necessary */
1076 if (unlikely(&page->lru == &pcp->list)) {
1077 pcp->count += rmqueue_bulk(zone, 0,
1078 pcp->batch, &pcp->list, migratetype);
1079 page = list_entry(pcp->list.next, struct page, lru);
1080 }
1081
1082 list_del(&page->lru);
1083 pcp->count--;
1084 } else {
1085 spin_lock_irqsave(&zone->lock, flags);
1086 page = __rmqueue(zone, order, migratetype);
1087 spin_unlock(&zone->lock);
1088 if (!page)
1089 goto failed;
1090 }
1091
1092 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1093 zone_statistics(preferred_zone, zone);
1094 local_irq_restore(flags);
1095 put_cpu();
1096
1097 VM_BUG_ON(bad_range(zone, page));
1098 if (prep_new_page(page, order, gfp_flags))
1099 goto again;
1100 return page;
1101
1102failed:
1103 local_irq_restore(flags);
1104 put_cpu();
1105 return NULL;
1106}
1107
1108#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1109#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1110#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1111#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1112#define ALLOC_HARDER 0x10 /* try to alloc harder */
1113#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1114#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1115
1116#ifdef CONFIG_FAIL_PAGE_ALLOC
1117
1118static struct fail_page_alloc_attr {
1119 struct fault_attr attr;
1120
1121 u32 ignore_gfp_highmem;
1122 u32 ignore_gfp_wait;
1123 u32 min_order;
1124
1125#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1126
1127 struct dentry *ignore_gfp_highmem_file;
1128 struct dentry *ignore_gfp_wait_file;
1129 struct dentry *min_order_file;
1130
1131#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1132
1133} fail_page_alloc = {
1134 .attr = FAULT_ATTR_INITIALIZER,
1135 .ignore_gfp_wait = 1,
1136 .ignore_gfp_highmem = 1,
1137 .min_order = 1,
1138};
1139
1140static int __init setup_fail_page_alloc(char *str)
1141{
1142 return setup_fault_attr(&fail_page_alloc.attr, str);
1143}
1144__setup("fail_page_alloc=", setup_fail_page_alloc);
1145
1146static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1147{
1148 if (order < fail_page_alloc.min_order)
1149 return 0;
1150 if (gfp_mask & __GFP_NOFAIL)
1151 return 0;
1152 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1153 return 0;
1154 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1155 return 0;
1156
1157 return should_fail(&fail_page_alloc.attr, 1 << order);
1158}
1159
1160#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1161
1162static int __init fail_page_alloc_debugfs(void)
1163{
1164 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1165 struct dentry *dir;
1166 int err;
1167
1168 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1169 "fail_page_alloc");
1170 if (err)
1171 return err;
1172 dir = fail_page_alloc.attr.dentries.dir;
1173
1174 fail_page_alloc.ignore_gfp_wait_file =
1175 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1176 &fail_page_alloc.ignore_gfp_wait);
1177
1178 fail_page_alloc.ignore_gfp_highmem_file =
1179 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1180 &fail_page_alloc.ignore_gfp_highmem);
1181 fail_page_alloc.min_order_file =
1182 debugfs_create_u32("min-order", mode, dir,
1183 &fail_page_alloc.min_order);
1184
1185 if (!fail_page_alloc.ignore_gfp_wait_file ||
1186 !fail_page_alloc.ignore_gfp_highmem_file ||
1187 !fail_page_alloc.min_order_file) {
1188 err = -ENOMEM;
1189 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1190 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1191 debugfs_remove(fail_page_alloc.min_order_file);
1192 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1193 }
1194
1195 return err;
1196}
1197
1198late_initcall(fail_page_alloc_debugfs);
1199
1200#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1201
1202#else /* CONFIG_FAIL_PAGE_ALLOC */
1203
1204static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1205{
1206 return 0;
1207}
1208
1209#endif /* CONFIG_FAIL_PAGE_ALLOC */
1210
1211/*
1212 * Return 1 if free pages are above 'mark'. This takes into account the order
1213 * of the allocation.
1214 */
1215int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1216 int classzone_idx, int alloc_flags)
1217{
1218 /* free_pages my go negative - that's OK */
1219 long min = mark;
1220 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1221 int o;
1222
1223 if (alloc_flags & ALLOC_HIGH)
1224 min -= min / 2;
1225 if (alloc_flags & ALLOC_HARDER)
1226 min -= min / 4;
1227
1228 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1229 return 0;
1230 for (o = 0; o < order; o++) {
1231 /* At the next order, this order's pages become unavailable */
1232 free_pages -= z->free_area[o].nr_free << o;
1233
1234 /* Require fewer higher order pages to be free */
1235 min >>= 1;
1236
1237 if (free_pages <= min)
1238 return 0;
1239 }
1240 return 1;
1241}
1242
1243#ifdef CONFIG_NUMA
1244/*
1245 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1246 * skip over zones that are not allowed by the cpuset, or that have
1247 * been recently (in last second) found to be nearly full. See further
1248 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1249 * that have to skip over a lot of full or unallowed zones.
1250 *
1251 * If the zonelist cache is present in the passed in zonelist, then
1252 * returns a pointer to the allowed node mask (either the current
1253 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1254 *
1255 * If the zonelist cache is not available for this zonelist, does
1256 * nothing and returns NULL.
1257 *
1258 * If the fullzones BITMAP in the zonelist cache is stale (more than
1259 * a second since last zap'd) then we zap it out (clear its bits.)
1260 *
1261 * We hold off even calling zlc_setup, until after we've checked the
1262 * first zone in the zonelist, on the theory that most allocations will
1263 * be satisfied from that first zone, so best to examine that zone as
1264 * quickly as we can.
1265 */
1266static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1267{
1268 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1269 nodemask_t *allowednodes; /* zonelist_cache approximation */
1270
1271 zlc = zonelist->zlcache_ptr;
1272 if (!zlc)
1273 return NULL;
1274
1275 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1276 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1277 zlc->last_full_zap = jiffies;
1278 }
1279
1280 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1281 &cpuset_current_mems_allowed :
1282 &node_states[N_HIGH_MEMORY];
1283 return allowednodes;
1284}
1285
1286/*
1287 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1288 * if it is worth looking at further for free memory:
1289 * 1) Check that the zone isn't thought to be full (doesn't have its
1290 * bit set in the zonelist_cache fullzones BITMAP).
1291 * 2) Check that the zones node (obtained from the zonelist_cache
1292 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1293 * Return true (non-zero) if zone is worth looking at further, or
1294 * else return false (zero) if it is not.
1295 *
1296 * This check -ignores- the distinction between various watermarks,
1297 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1298 * found to be full for any variation of these watermarks, it will
1299 * be considered full for up to one second by all requests, unless
1300 * we are so low on memory on all allowed nodes that we are forced
1301 * into the second scan of the zonelist.
1302 *
1303 * In the second scan we ignore this zonelist cache and exactly
1304 * apply the watermarks to all zones, even it is slower to do so.
1305 * We are low on memory in the second scan, and should leave no stone
1306 * unturned looking for a free page.
1307 */
1308static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1309 nodemask_t *allowednodes)
1310{
1311 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1312 int i; /* index of *z in zonelist zones */
1313 int n; /* node that zone *z is on */
1314
1315 zlc = zonelist->zlcache_ptr;
1316 if (!zlc)
1317 return 1;
1318
1319 i = z - zonelist->_zonerefs;
1320 n = zlc->z_to_n[i];
1321
1322 /* This zone is worth trying if it is allowed but not full */
1323 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1324}
1325
1326/*
1327 * Given 'z' scanning a zonelist, set the corresponding bit in
1328 * zlc->fullzones, so that subsequent attempts to allocate a page
1329 * from that zone don't waste time re-examining it.
1330 */
1331static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1332{
1333 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1334 int i; /* index of *z in zonelist zones */
1335
1336 zlc = zonelist->zlcache_ptr;
1337 if (!zlc)
1338 return;
1339
1340 i = z - zonelist->_zonerefs;
1341
1342 set_bit(i, zlc->fullzones);
1343}
1344
1345#else /* CONFIG_NUMA */
1346
1347static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1348{
1349 return NULL;
1350}
1351
1352static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1353 nodemask_t *allowednodes)
1354{
1355 return 1;
1356}
1357
1358static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1359{
1360}
1361#endif /* CONFIG_NUMA */
1362
1363/*
1364 * get_page_from_freelist goes through the zonelist trying to allocate
1365 * a page.
1366 */
1367static struct page *
1368get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1369 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1370{
1371 struct zoneref *z;
1372 struct page *page = NULL;
1373 int classzone_idx;
1374 struct zone *zone, *preferred_zone;
1375 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1376 int zlc_active = 0; /* set if using zonelist_cache */
1377 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1378
1379 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1380 &preferred_zone);
1381 if (!preferred_zone)
1382 return NULL;
1383
1384 classzone_idx = zone_idx(preferred_zone);
1385
1386zonelist_scan:
1387 /*
1388 * Scan zonelist, looking for a zone with enough free.
1389 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1390 */
1391 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1392 high_zoneidx, nodemask) {
1393 if (NUMA_BUILD && zlc_active &&
1394 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1395 continue;
1396 if ((alloc_flags & ALLOC_CPUSET) &&
1397 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1398 goto try_next_zone;
1399
1400 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1401 unsigned long mark;
1402 if (alloc_flags & ALLOC_WMARK_MIN)
1403 mark = zone->pages_min;
1404 else if (alloc_flags & ALLOC_WMARK_LOW)
1405 mark = zone->pages_low;
1406 else
1407 mark = zone->pages_high;
1408 if (!zone_watermark_ok(zone, order, mark,
1409 classzone_idx, alloc_flags)) {
1410 if (!zone_reclaim_mode ||
1411 !zone_reclaim(zone, gfp_mask, order))
1412 goto this_zone_full;
1413 }
1414 }
1415
1416 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1417 if (page)
1418 break;
1419this_zone_full:
1420 if (NUMA_BUILD)
1421 zlc_mark_zone_full(zonelist, z);
1422try_next_zone:
1423 if (NUMA_BUILD && !did_zlc_setup) {
1424 /* we do zlc_setup after the first zone is tried */
1425 allowednodes = zlc_setup(zonelist, alloc_flags);
1426 zlc_active = 1;
1427 did_zlc_setup = 1;
1428 }
1429 }
1430
1431 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1432 /* Disable zlc cache for second zonelist scan */
1433 zlc_active = 0;
1434 goto zonelist_scan;
1435 }
1436 return page;
1437}
1438
1439/*
1440 * This is the 'heart' of the zoned buddy allocator.
1441 */
1442struct page *
1443__alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1444 struct zonelist *zonelist, nodemask_t *nodemask)
1445{
1446 const gfp_t wait = gfp_mask & __GFP_WAIT;
1447 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1448 struct zoneref *z;
1449 struct zone *zone;
1450 struct page *page;
1451 struct reclaim_state reclaim_state;
1452 struct task_struct *p = current;
1453 int do_retry;
1454 int alloc_flags;
1455 unsigned long did_some_progress;
1456 unsigned long pages_reclaimed = 0;
1457
1458 might_sleep_if(wait);
1459
1460 if (should_fail_alloc_page(gfp_mask, order))
1461 return NULL;
1462
1463restart:
1464 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1465
1466 if (unlikely(!z->zone)) {
1467 /*
1468 * Happens if we have an empty zonelist as a result of
1469 * GFP_THISNODE being used on a memoryless node
1470 */
1471 return NULL;
1472 }
1473
1474 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1475 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1476 if (page)
1477 goto got_pg;
1478
1479 /*
1480 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1481 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1482 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1483 * using a larger set of nodes after it has established that the
1484 * allowed per node queues are empty and that nodes are
1485 * over allocated.
1486 */
1487 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1488 goto nopage;
1489
1490 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1491 wakeup_kswapd(zone, order);
1492
1493 /*
1494 * OK, we're below the kswapd watermark and have kicked background
1495 * reclaim. Now things get more complex, so set up alloc_flags according
1496 * to how we want to proceed.
1497 *
1498 * The caller may dip into page reserves a bit more if the caller
1499 * cannot run direct reclaim, or if the caller has realtime scheduling
1500 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1501 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1502 */
1503 alloc_flags = ALLOC_WMARK_MIN;
1504 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1505 alloc_flags |= ALLOC_HARDER;
1506 if (gfp_mask & __GFP_HIGH)
1507 alloc_flags |= ALLOC_HIGH;
1508 if (wait)
1509 alloc_flags |= ALLOC_CPUSET;
1510
1511 /*
1512 * Go through the zonelist again. Let __GFP_HIGH and allocations
1513 * coming from realtime tasks go deeper into reserves.
1514 *
1515 * This is the last chance, in general, before the goto nopage.
1516 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1517 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1518 */
1519 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1520 high_zoneidx, alloc_flags);
1521 if (page)
1522 goto got_pg;
1523
1524 /* This allocation should allow future memory freeing. */
1525
1526rebalance:
1527 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1528 && !in_interrupt()) {
1529 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1530nofail_alloc:
1531 /* go through the zonelist yet again, ignoring mins */
1532 page = get_page_from_freelist(gfp_mask, nodemask, order,
1533 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1534 if (page)
1535 goto got_pg;
1536 if (gfp_mask & __GFP_NOFAIL) {
1537 congestion_wait(WRITE, HZ/50);
1538 goto nofail_alloc;
1539 }
1540 }
1541 goto nopage;
1542 }
1543
1544 /* Atomic allocations - we can't balance anything */
1545 if (!wait)
1546 goto nopage;
1547
1548 cond_resched();
1549
1550 /* We now go into synchronous reclaim */
1551 cpuset_memory_pressure_bump();
1552 /*
1553 * The task's cpuset might have expanded its set of allowable nodes
1554 */
1555 cpuset_update_task_memory_state();
1556 p->flags |= PF_MEMALLOC;
1557 reclaim_state.reclaimed_slab = 0;
1558 p->reclaim_state = &reclaim_state;
1559
1560 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1561
1562 p->reclaim_state = NULL;
1563 p->flags &= ~PF_MEMALLOC;
1564
1565 cond_resched();
1566
1567 if (order != 0)
1568 drain_all_pages();
1569
1570 if (likely(did_some_progress)) {
1571 page = get_page_from_freelist(gfp_mask, nodemask, order,
1572 zonelist, high_zoneidx, alloc_flags);
1573 if (page)
1574 goto got_pg;
1575 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1576 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1577 schedule_timeout_uninterruptible(1);
1578 goto restart;
1579 }
1580
1581 /*
1582 * Go through the zonelist yet one more time, keep
1583 * very high watermark here, this is only to catch
1584 * a parallel oom killing, we must fail if we're still
1585 * under heavy pressure.
1586 */
1587 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1588 order, zonelist, high_zoneidx,
1589 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1590 if (page) {
1591 clear_zonelist_oom(zonelist, gfp_mask);
1592 goto got_pg;
1593 }
1594
1595 /* The OOM killer will not help higher order allocs so fail */
1596 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1597 clear_zonelist_oom(zonelist, gfp_mask);
1598 goto nopage;
1599 }
1600
1601 out_of_memory(zonelist, gfp_mask, order);
1602 clear_zonelist_oom(zonelist, gfp_mask);
1603 goto restart;
1604 }
1605
1606 /*
1607 * Don't let big-order allocations loop unless the caller explicitly
1608 * requests that. Wait for some write requests to complete then retry.
1609 *
1610 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1611 * means __GFP_NOFAIL, but that may not be true in other
1612 * implementations.
1613 *
1614 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1615 * specified, then we retry until we no longer reclaim any pages
1616 * (above), or we've reclaimed an order of pages at least as
1617 * large as the allocation's order. In both cases, if the
1618 * allocation still fails, we stop retrying.
1619 */
1620 pages_reclaimed += did_some_progress;
1621 do_retry = 0;
1622 if (!(gfp_mask & __GFP_NORETRY)) {
1623 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1624 do_retry = 1;
1625 } else {
1626 if (gfp_mask & __GFP_REPEAT &&
1627 pages_reclaimed < (1 << order))
1628 do_retry = 1;
1629 }
1630 if (gfp_mask & __GFP_NOFAIL)
1631 do_retry = 1;
1632 }
1633 if (do_retry) {
1634 congestion_wait(WRITE, HZ/50);
1635 goto rebalance;
1636 }
1637
1638nopage:
1639 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1640 printk(KERN_WARNING "%s: page allocation failure."
1641 " order:%d, mode:0x%x\n",
1642 p->comm, order, gfp_mask);
1643 dump_stack();
1644 show_mem();
1645 }
1646got_pg:
1647 return page;
1648}
1649EXPORT_SYMBOL(__alloc_pages_internal);
1650
1651/*
1652 * Common helper functions.
1653 */
1654unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1655{
1656 struct page * page;
1657 page = alloc_pages(gfp_mask, order);
1658 if (!page)
1659 return 0;
1660 return (unsigned long) page_address(page);
1661}
1662
1663EXPORT_SYMBOL(__get_free_pages);
1664
1665unsigned long get_zeroed_page(gfp_t gfp_mask)
1666{
1667 struct page * page;
1668
1669 /*
1670 * get_zeroed_page() returns a 32-bit address, which cannot represent
1671 * a highmem page
1672 */
1673 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1674
1675 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1676 if (page)
1677 return (unsigned long) page_address(page);
1678 return 0;
1679}
1680
1681EXPORT_SYMBOL(get_zeroed_page);
1682
1683void __pagevec_free(struct pagevec *pvec)
1684{
1685 int i = pagevec_count(pvec);
1686
1687 while (--i >= 0)
1688 free_hot_cold_page(pvec->pages[i], pvec->cold);
1689}
1690
1691void __free_pages(struct page *page, unsigned int order)
1692{
1693 if (put_page_testzero(page)) {
1694 if (order == 0)
1695 free_hot_page(page);
1696 else
1697 __free_pages_ok(page, order);
1698 }
1699}
1700
1701EXPORT_SYMBOL(__free_pages);
1702
1703void free_pages(unsigned long addr, unsigned int order)
1704{
1705 if (addr != 0) {
1706 VM_BUG_ON(!virt_addr_valid((void *)addr));
1707 __free_pages(virt_to_page((void *)addr), order);
1708 }
1709}
1710
1711EXPORT_SYMBOL(free_pages);
1712
1713/**
1714 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1715 * @size: the number of bytes to allocate
1716 * @gfp_mask: GFP flags for the allocation
1717 *
1718 * This function is similar to alloc_pages(), except that it allocates the
1719 * minimum number of pages to satisfy the request. alloc_pages() can only
1720 * allocate memory in power-of-two pages.
1721 *
1722 * This function is also limited by MAX_ORDER.
1723 *
1724 * Memory allocated by this function must be released by free_pages_exact().
1725 */
1726void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1727{
1728 unsigned int order = get_order(size);
1729 unsigned long addr;
1730
1731 addr = __get_free_pages(gfp_mask, order);
1732 if (addr) {
1733 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1734 unsigned long used = addr + PAGE_ALIGN(size);
1735
1736 split_page(virt_to_page(addr), order);
1737 while (used < alloc_end) {
1738 free_page(used);
1739 used += PAGE_SIZE;
1740 }
1741 }
1742
1743 return (void *)addr;
1744}
1745EXPORT_SYMBOL(alloc_pages_exact);
1746
1747/**
1748 * free_pages_exact - release memory allocated via alloc_pages_exact()
1749 * @virt: the value returned by alloc_pages_exact.
1750 * @size: size of allocation, same value as passed to alloc_pages_exact().
1751 *
1752 * Release the memory allocated by a previous call to alloc_pages_exact.
1753 */
1754void free_pages_exact(void *virt, size_t size)
1755{
1756 unsigned long addr = (unsigned long)virt;
1757 unsigned long end = addr + PAGE_ALIGN(size);
1758
1759 while (addr < end) {
1760 free_page(addr);
1761 addr += PAGE_SIZE;
1762 }
1763}
1764EXPORT_SYMBOL(free_pages_exact);
1765
1766static unsigned int nr_free_zone_pages(int offset)
1767{
1768 struct zoneref *z;
1769 struct zone *zone;
1770
1771 /* Just pick one node, since fallback list is circular */
1772 unsigned int sum = 0;
1773
1774 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1775
1776 for_each_zone_zonelist(zone, z, zonelist, offset) {
1777 unsigned long size = zone->present_pages;
1778 unsigned long high = zone->pages_high;
1779 if (size > high)
1780 sum += size - high;
1781 }
1782
1783 return sum;
1784}
1785
1786/*
1787 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1788 */
1789unsigned int nr_free_buffer_pages(void)
1790{
1791 return nr_free_zone_pages(gfp_zone(GFP_USER));
1792}
1793EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1794
1795/*
1796 * Amount of free RAM allocatable within all zones
1797 */
1798unsigned int nr_free_pagecache_pages(void)
1799{
1800 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1801}
1802
1803static inline void show_node(struct zone *zone)
1804{
1805 if (NUMA_BUILD)
1806 printk("Node %d ", zone_to_nid(zone));
1807}
1808
1809void si_meminfo(struct sysinfo *val)
1810{
1811 val->totalram = totalram_pages;
1812 val->sharedram = 0;
1813 val->freeram = global_page_state(NR_FREE_PAGES);
1814 val->bufferram = nr_blockdev_pages();
1815 val->totalhigh = totalhigh_pages;
1816 val->freehigh = nr_free_highpages();
1817 val->mem_unit = PAGE_SIZE;
1818}
1819
1820EXPORT_SYMBOL(si_meminfo);
1821
1822#ifdef CONFIG_NUMA
1823void si_meminfo_node(struct sysinfo *val, int nid)
1824{
1825 pg_data_t *pgdat = NODE_DATA(nid);
1826
1827 val->totalram = pgdat->node_present_pages;
1828 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1829#ifdef CONFIG_HIGHMEM
1830 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1831 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1832 NR_FREE_PAGES);
1833#else
1834 val->totalhigh = 0;
1835 val->freehigh = 0;
1836#endif
1837 val->mem_unit = PAGE_SIZE;
1838}
1839#endif
1840
1841#define K(x) ((x) << (PAGE_SHIFT-10))
1842
1843/*
1844 * Show free area list (used inside shift_scroll-lock stuff)
1845 * We also calculate the percentage fragmentation. We do this by counting the
1846 * memory on each free list with the exception of the first item on the list.
1847 */
1848void show_free_areas(void)
1849{
1850 int cpu;
1851 struct zone *zone;
1852
1853 for_each_zone(zone) {
1854 if (!populated_zone(zone))
1855 continue;
1856
1857 show_node(zone);
1858 printk("%s per-cpu:\n", zone->name);
1859
1860 for_each_online_cpu(cpu) {
1861 struct per_cpu_pageset *pageset;
1862
1863 pageset = zone_pcp(zone, cpu);
1864
1865 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1866 cpu, pageset->pcp.high,
1867 pageset->pcp.batch, pageset->pcp.count);
1868 }
1869 }
1870
1871 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1872 " inactive_file:%lu"
1873//TODO: check/adjust line lengths
1874#ifdef CONFIG_UNEVICTABLE_LRU
1875 " unevictable:%lu"
1876#endif
1877 " dirty:%lu writeback:%lu unstable:%lu\n"
1878 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1879 global_page_state(NR_ACTIVE_ANON),
1880 global_page_state(NR_ACTIVE_FILE),
1881 global_page_state(NR_INACTIVE_ANON),
1882 global_page_state(NR_INACTIVE_FILE),
1883#ifdef CONFIG_UNEVICTABLE_LRU
1884 global_page_state(NR_UNEVICTABLE),
1885#endif
1886 global_page_state(NR_FILE_DIRTY),
1887 global_page_state(NR_WRITEBACK),
1888 global_page_state(NR_UNSTABLE_NFS),
1889 global_page_state(NR_FREE_PAGES),
1890 global_page_state(NR_SLAB_RECLAIMABLE) +
1891 global_page_state(NR_SLAB_UNRECLAIMABLE),
1892 global_page_state(NR_FILE_MAPPED),
1893 global_page_state(NR_PAGETABLE),
1894 global_page_state(NR_BOUNCE));
1895
1896 for_each_zone(zone) {
1897 int i;
1898
1899 if (!populated_zone(zone))
1900 continue;
1901
1902 show_node(zone);
1903 printk("%s"
1904 " free:%lukB"
1905 " min:%lukB"
1906 " low:%lukB"
1907 " high:%lukB"
1908 " active_anon:%lukB"
1909 " inactive_anon:%lukB"
1910 " active_file:%lukB"
1911 " inactive_file:%lukB"
1912#ifdef CONFIG_UNEVICTABLE_LRU
1913 " unevictable:%lukB"
1914#endif
1915 " present:%lukB"
1916 " pages_scanned:%lu"
1917 " all_unreclaimable? %s"
1918 "\n",
1919 zone->name,
1920 K(zone_page_state(zone, NR_FREE_PAGES)),
1921 K(zone->pages_min),
1922 K(zone->pages_low),
1923 K(zone->pages_high),
1924 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1925 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1926 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1927 K(zone_page_state(zone, NR_INACTIVE_FILE)),
1928#ifdef CONFIG_UNEVICTABLE_LRU
1929 K(zone_page_state(zone, NR_UNEVICTABLE)),
1930#endif
1931 K(zone->present_pages),
1932 zone->pages_scanned,
1933 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1934 );
1935 printk("lowmem_reserve[]:");
1936 for (i = 0; i < MAX_NR_ZONES; i++)
1937 printk(" %lu", zone->lowmem_reserve[i]);
1938 printk("\n");
1939 }
1940
1941 for_each_zone(zone) {
1942 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1943
1944 if (!populated_zone(zone))
1945 continue;
1946
1947 show_node(zone);
1948 printk("%s: ", zone->name);
1949
1950 spin_lock_irqsave(&zone->lock, flags);
1951 for (order = 0; order < MAX_ORDER; order++) {
1952 nr[order] = zone->free_area[order].nr_free;
1953 total += nr[order] << order;
1954 }
1955 spin_unlock_irqrestore(&zone->lock, flags);
1956 for (order = 0; order < MAX_ORDER; order++)
1957 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1958 printk("= %lukB\n", K(total));
1959 }
1960
1961 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1962
1963 show_swap_cache_info();
1964}
1965
1966static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1967{
1968 zoneref->zone = zone;
1969 zoneref->zone_idx = zone_idx(zone);
1970}
1971
1972/*
1973 * Builds allocation fallback zone lists.
1974 *
1975 * Add all populated zones of a node to the zonelist.
1976 */
1977static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1978 int nr_zones, enum zone_type zone_type)
1979{
1980 struct zone *zone;
1981
1982 BUG_ON(zone_type >= MAX_NR_ZONES);
1983 zone_type++;
1984
1985 do {
1986 zone_type--;
1987 zone = pgdat->node_zones + zone_type;
1988 if (populated_zone(zone)) {
1989 zoneref_set_zone(zone,
1990 &zonelist->_zonerefs[nr_zones++]);
1991 check_highest_zone(zone_type);
1992 }
1993
1994 } while (zone_type);
1995 return nr_zones;
1996}
1997
1998
1999/*
2000 * zonelist_order:
2001 * 0 = automatic detection of better ordering.
2002 * 1 = order by ([node] distance, -zonetype)
2003 * 2 = order by (-zonetype, [node] distance)
2004 *
2005 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2006 * the same zonelist. So only NUMA can configure this param.
2007 */
2008#define ZONELIST_ORDER_DEFAULT 0
2009#define ZONELIST_ORDER_NODE 1
2010#define ZONELIST_ORDER_ZONE 2
2011
2012/* zonelist order in the kernel.
2013 * set_zonelist_order() will set this to NODE or ZONE.
2014 */
2015static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2016static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2017
2018
2019#ifdef CONFIG_NUMA
2020/* The value user specified ....changed by config */
2021static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2022/* string for sysctl */
2023#define NUMA_ZONELIST_ORDER_LEN 16
2024char numa_zonelist_order[16] = "default";
2025
2026/*
2027 * interface for configure zonelist ordering.
2028 * command line option "numa_zonelist_order"
2029 * = "[dD]efault - default, automatic configuration.
2030 * = "[nN]ode - order by node locality, then by zone within node
2031 * = "[zZ]one - order by zone, then by locality within zone
2032 */
2033
2034static int __parse_numa_zonelist_order(char *s)
2035{
2036 if (*s == 'd' || *s == 'D') {
2037 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2038 } else if (*s == 'n' || *s == 'N') {
2039 user_zonelist_order = ZONELIST_ORDER_NODE;
2040 } else if (*s == 'z' || *s == 'Z') {
2041 user_zonelist_order = ZONELIST_ORDER_ZONE;
2042 } else {
2043 printk(KERN_WARNING
2044 "Ignoring invalid numa_zonelist_order value: "
2045 "%s\n", s);
2046 return -EINVAL;
2047 }
2048 return 0;
2049}
2050
2051static __init int setup_numa_zonelist_order(char *s)
2052{
2053 if (s)
2054 return __parse_numa_zonelist_order(s);
2055 return 0;
2056}
2057early_param("numa_zonelist_order", setup_numa_zonelist_order);
2058
2059/*
2060 * sysctl handler for numa_zonelist_order
2061 */
2062int numa_zonelist_order_handler(ctl_table *table, int write,
2063 struct file *file, void __user *buffer, size_t *length,
2064 loff_t *ppos)
2065{
2066 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2067 int ret;
2068
2069 if (write)
2070 strncpy(saved_string, (char*)table->data,
2071 NUMA_ZONELIST_ORDER_LEN);
2072 ret = proc_dostring(table, write, file, buffer, length, ppos);
2073 if (ret)
2074 return ret;
2075 if (write) {
2076 int oldval = user_zonelist_order;
2077 if (__parse_numa_zonelist_order((char*)table->data)) {
2078 /*
2079 * bogus value. restore saved string
2080 */
2081 strncpy((char*)table->data, saved_string,
2082 NUMA_ZONELIST_ORDER_LEN);
2083 user_zonelist_order = oldval;
2084 } else if (oldval != user_zonelist_order)
2085 build_all_zonelists();
2086 }
2087 return 0;
2088}
2089
2090
2091#define MAX_NODE_LOAD (num_online_nodes())
2092static int node_load[MAX_NUMNODES];
2093
2094/**
2095 * find_next_best_node - find the next node that should appear in a given node's fallback list
2096 * @node: node whose fallback list we're appending
2097 * @used_node_mask: nodemask_t of already used nodes
2098 *
2099 * We use a number of factors to determine which is the next node that should
2100 * appear on a given node's fallback list. The node should not have appeared
2101 * already in @node's fallback list, and it should be the next closest node
2102 * according to the distance array (which contains arbitrary distance values
2103 * from each node to each node in the system), and should also prefer nodes
2104 * with no CPUs, since presumably they'll have very little allocation pressure
2105 * on them otherwise.
2106 * It returns -1 if no node is found.
2107 */
2108static int find_next_best_node(int node, nodemask_t *used_node_mask)
2109{
2110 int n, val;
2111 int min_val = INT_MAX;
2112 int best_node = -1;
2113 node_to_cpumask_ptr(tmp, 0);
2114
2115 /* Use the local node if we haven't already */
2116 if (!node_isset(node, *used_node_mask)) {
2117 node_set(node, *used_node_mask);
2118 return node;
2119 }
2120
2121 for_each_node_state(n, N_HIGH_MEMORY) {
2122
2123 /* Don't want a node to appear more than once */
2124 if (node_isset(n, *used_node_mask))
2125 continue;
2126
2127 /* Use the distance array to find the distance */
2128 val = node_distance(node, n);
2129
2130 /* Penalize nodes under us ("prefer the next node") */
2131 val += (n < node);
2132
2133 /* Give preference to headless and unused nodes */
2134 node_to_cpumask_ptr_next(tmp, n);
2135 if (!cpus_empty(*tmp))
2136 val += PENALTY_FOR_NODE_WITH_CPUS;
2137
2138 /* Slight preference for less loaded node */
2139 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2140 val += node_load[n];
2141
2142 if (val < min_val) {
2143 min_val = val;
2144 best_node = n;
2145 }
2146 }
2147
2148 if (best_node >= 0)
2149 node_set(best_node, *used_node_mask);
2150
2151 return best_node;
2152}
2153
2154
2155/*
2156 * Build zonelists ordered by node and zones within node.
2157 * This results in maximum locality--normal zone overflows into local
2158 * DMA zone, if any--but risks exhausting DMA zone.
2159 */
2160static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2161{
2162 int j;
2163 struct zonelist *zonelist;
2164
2165 zonelist = &pgdat->node_zonelists[0];
2166 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2167 ;
2168 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2169 MAX_NR_ZONES - 1);
2170 zonelist->_zonerefs[j].zone = NULL;
2171 zonelist->_zonerefs[j].zone_idx = 0;
2172}
2173
2174/*
2175 * Build gfp_thisnode zonelists
2176 */
2177static void build_thisnode_zonelists(pg_data_t *pgdat)
2178{
2179 int j;
2180 struct zonelist *zonelist;
2181
2182 zonelist = &pgdat->node_zonelists[1];
2183 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2184 zonelist->_zonerefs[j].zone = NULL;
2185 zonelist->_zonerefs[j].zone_idx = 0;
2186}
2187
2188/*
2189 * Build zonelists ordered by zone and nodes within zones.
2190 * This results in conserving DMA zone[s] until all Normal memory is
2191 * exhausted, but results in overflowing to remote node while memory
2192 * may still exist in local DMA zone.
2193 */
2194static int node_order[MAX_NUMNODES];
2195
2196static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2197{
2198 int pos, j, node;
2199 int zone_type; /* needs to be signed */
2200 struct zone *z;
2201 struct zonelist *zonelist;
2202
2203 zonelist = &pgdat->node_zonelists[0];
2204 pos = 0;
2205 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2206 for (j = 0; j < nr_nodes; j++) {
2207 node = node_order[j];
2208 z = &NODE_DATA(node)->node_zones[zone_type];
2209 if (populated_zone(z)) {
2210 zoneref_set_zone(z,
2211 &zonelist->_zonerefs[pos++]);
2212 check_highest_zone(zone_type);
2213 }
2214 }
2215 }
2216 zonelist->_zonerefs[pos].zone = NULL;
2217 zonelist->_zonerefs[pos].zone_idx = 0;
2218}
2219
2220static int default_zonelist_order(void)
2221{
2222 int nid, zone_type;
2223 unsigned long low_kmem_size,total_size;
2224 struct zone *z;
2225 int average_size;
2226 /*
2227 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2228 * If they are really small and used heavily, the system can fall
2229 * into OOM very easily.
2230 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2231 */
2232 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2233 low_kmem_size = 0;
2234 total_size = 0;
2235 for_each_online_node(nid) {
2236 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2237 z = &NODE_DATA(nid)->node_zones[zone_type];
2238 if (populated_zone(z)) {
2239 if (zone_type < ZONE_NORMAL)
2240 low_kmem_size += z->present_pages;
2241 total_size += z->present_pages;
2242 }
2243 }
2244 }
2245 if (!low_kmem_size || /* there are no DMA area. */
2246 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2247 return ZONELIST_ORDER_NODE;
2248 /*
2249 * look into each node's config.
2250 * If there is a node whose DMA/DMA32 memory is very big area on
2251 * local memory, NODE_ORDER may be suitable.
2252 */
2253 average_size = total_size /
2254 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2255 for_each_online_node(nid) {
2256 low_kmem_size = 0;
2257 total_size = 0;
2258 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2259 z = &NODE_DATA(nid)->node_zones[zone_type];
2260 if (populated_zone(z)) {
2261 if (zone_type < ZONE_NORMAL)
2262 low_kmem_size += z->present_pages;
2263 total_size += z->present_pages;
2264 }
2265 }
2266 if (low_kmem_size &&
2267 total_size > average_size && /* ignore small node */
2268 low_kmem_size > total_size * 70/100)
2269 return ZONELIST_ORDER_NODE;
2270 }
2271 return ZONELIST_ORDER_ZONE;
2272}
2273
2274static void set_zonelist_order(void)
2275{
2276 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2277 current_zonelist_order = default_zonelist_order();
2278 else
2279 current_zonelist_order = user_zonelist_order;
2280}
2281
2282static void build_zonelists(pg_data_t *pgdat)
2283{
2284 int j, node, load;
2285 enum zone_type i;
2286 nodemask_t used_mask;
2287 int local_node, prev_node;
2288 struct zonelist *zonelist;
2289 int order = current_zonelist_order;
2290
2291 /* initialize zonelists */
2292 for (i = 0; i < MAX_ZONELISTS; i++) {
2293 zonelist = pgdat->node_zonelists + i;
2294 zonelist->_zonerefs[0].zone = NULL;
2295 zonelist->_zonerefs[0].zone_idx = 0;
2296 }
2297
2298 /* NUMA-aware ordering of nodes */
2299 local_node = pgdat->node_id;
2300 load = num_online_nodes();
2301 prev_node = local_node;
2302 nodes_clear(used_mask);
2303
2304 memset(node_load, 0, sizeof(node_load));
2305 memset(node_order, 0, sizeof(node_order));
2306 j = 0;
2307
2308 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2309 int distance = node_distance(local_node, node);
2310
2311 /*
2312 * If another node is sufficiently far away then it is better
2313 * to reclaim pages in a zone before going off node.
2314 */
2315 if (distance > RECLAIM_DISTANCE)
2316 zone_reclaim_mode = 1;
2317
2318 /*
2319 * We don't want to pressure a particular node.
2320 * So adding penalty to the first node in same
2321 * distance group to make it round-robin.
2322 */
2323 if (distance != node_distance(local_node, prev_node))
2324 node_load[node] = load;
2325
2326 prev_node = node;
2327 load--;
2328 if (order == ZONELIST_ORDER_NODE)
2329 build_zonelists_in_node_order(pgdat, node);
2330 else
2331 node_order[j++] = node; /* remember order */
2332 }
2333
2334 if (order == ZONELIST_ORDER_ZONE) {
2335 /* calculate node order -- i.e., DMA last! */
2336 build_zonelists_in_zone_order(pgdat, j);
2337 }
2338
2339 build_thisnode_zonelists(pgdat);
2340}
2341
2342/* Construct the zonelist performance cache - see further mmzone.h */
2343static void build_zonelist_cache(pg_data_t *pgdat)
2344{
2345 struct zonelist *zonelist;
2346 struct zonelist_cache *zlc;
2347 struct zoneref *z;
2348
2349 zonelist = &pgdat->node_zonelists[0];
2350 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2351 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2352 for (z = zonelist->_zonerefs; z->zone; z++)
2353 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2354}
2355
2356
2357#else /* CONFIG_NUMA */
2358
2359static void set_zonelist_order(void)
2360{
2361 current_zonelist_order = ZONELIST_ORDER_ZONE;
2362}
2363
2364static void build_zonelists(pg_data_t *pgdat)
2365{
2366 int node, local_node;
2367 enum zone_type j;
2368 struct zonelist *zonelist;
2369
2370 local_node = pgdat->node_id;
2371
2372 zonelist = &pgdat->node_zonelists[0];
2373 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2374
2375 /*
2376 * Now we build the zonelist so that it contains the zones
2377 * of all the other nodes.
2378 * We don't want to pressure a particular node, so when
2379 * building the zones for node N, we make sure that the
2380 * zones coming right after the local ones are those from
2381 * node N+1 (modulo N)
2382 */
2383 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2384 if (!node_online(node))
2385 continue;
2386 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2387 MAX_NR_ZONES - 1);
2388 }
2389 for (node = 0; node < local_node; node++) {
2390 if (!node_online(node))
2391 continue;
2392 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2393 MAX_NR_ZONES - 1);
2394 }
2395
2396 zonelist->_zonerefs[j].zone = NULL;
2397 zonelist->_zonerefs[j].zone_idx = 0;
2398}
2399
2400/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2401static void build_zonelist_cache(pg_data_t *pgdat)
2402{
2403 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2404}
2405
2406#endif /* CONFIG_NUMA */
2407
2408/* return values int ....just for stop_machine() */
2409static int __build_all_zonelists(void *dummy)
2410{
2411 int nid;
2412
2413 for_each_online_node(nid) {
2414 pg_data_t *pgdat = NODE_DATA(nid);
2415
2416 build_zonelists(pgdat);
2417 build_zonelist_cache(pgdat);
2418 }
2419 return 0;
2420}
2421
2422void build_all_zonelists(void)
2423{
2424 set_zonelist_order();
2425
2426 if (system_state == SYSTEM_BOOTING) {
2427 __build_all_zonelists(NULL);
2428 mminit_verify_zonelist();
2429 cpuset_init_current_mems_allowed();
2430 } else {
2431 /* we have to stop all cpus to guarantee there is no user
2432 of zonelist */
2433 stop_machine(__build_all_zonelists, NULL, NULL);
2434 /* cpuset refresh routine should be here */
2435 }
2436 vm_total_pages = nr_free_pagecache_pages();
2437 /*
2438 * Disable grouping by mobility if the number of pages in the
2439 * system is too low to allow the mechanism to work. It would be
2440 * more accurate, but expensive to check per-zone. This check is
2441 * made on memory-hotadd so a system can start with mobility
2442 * disabled and enable it later
2443 */
2444 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2445 page_group_by_mobility_disabled = 1;
2446 else
2447 page_group_by_mobility_disabled = 0;
2448
2449 printk("Built %i zonelists in %s order, mobility grouping %s. "
2450 "Total pages: %ld\n",
2451 num_online_nodes(),
2452 zonelist_order_name[current_zonelist_order],
2453 page_group_by_mobility_disabled ? "off" : "on",
2454 vm_total_pages);
2455#ifdef CONFIG_NUMA
2456 printk("Policy zone: %s\n", zone_names[policy_zone]);
2457#endif
2458}
2459
2460/*
2461 * Helper functions to size the waitqueue hash table.
2462 * Essentially these want to choose hash table sizes sufficiently
2463 * large so that collisions trying to wait on pages are rare.
2464 * But in fact, the number of active page waitqueues on typical
2465 * systems is ridiculously low, less than 200. So this is even
2466 * conservative, even though it seems large.
2467 *
2468 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2469 * waitqueues, i.e. the size of the waitq table given the number of pages.
2470 */
2471#define PAGES_PER_WAITQUEUE 256
2472
2473#ifndef CONFIG_MEMORY_HOTPLUG
2474static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2475{
2476 unsigned long size = 1;
2477
2478 pages /= PAGES_PER_WAITQUEUE;
2479
2480 while (size < pages)
2481 size <<= 1;
2482
2483 /*
2484 * Once we have dozens or even hundreds of threads sleeping
2485 * on IO we've got bigger problems than wait queue collision.
2486 * Limit the size of the wait table to a reasonable size.
2487 */
2488 size = min(size, 4096UL);
2489
2490 return max(size, 4UL);
2491}
2492#else
2493/*
2494 * A zone's size might be changed by hot-add, so it is not possible to determine
2495 * a suitable size for its wait_table. So we use the maximum size now.
2496 *
2497 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2498 *
2499 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2500 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2501 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2502 *
2503 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2504 * or more by the traditional way. (See above). It equals:
2505 *
2506 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2507 * ia64(16K page size) : = ( 8G + 4M)byte.
2508 * powerpc (64K page size) : = (32G +16M)byte.
2509 */
2510static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2511{
2512 return 4096UL;
2513}
2514#endif
2515
2516/*
2517 * This is an integer logarithm so that shifts can be used later
2518 * to extract the more random high bits from the multiplicative
2519 * hash function before the remainder is taken.
2520 */
2521static inline unsigned long wait_table_bits(unsigned long size)
2522{
2523 return ffz(~size);
2524}
2525
2526#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2527
2528/*
2529 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2530 * of blocks reserved is based on zone->pages_min. The memory within the
2531 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2532 * higher will lead to a bigger reserve which will get freed as contiguous
2533 * blocks as reclaim kicks in
2534 */
2535static void setup_zone_migrate_reserve(struct zone *zone)
2536{
2537 unsigned long start_pfn, pfn, end_pfn;
2538 struct page *page;
2539 unsigned long reserve, block_migratetype;
2540
2541 /* Get the start pfn, end pfn and the number of blocks to reserve */
2542 start_pfn = zone->zone_start_pfn;
2543 end_pfn = start_pfn + zone->spanned_pages;
2544 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2545 pageblock_order;
2546
2547 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2548 if (!pfn_valid(pfn))
2549 continue;
2550 page = pfn_to_page(pfn);
2551
2552 /* Watch out for overlapping nodes */
2553 if (page_to_nid(page) != zone_to_nid(zone))
2554 continue;
2555
2556 /* Blocks with reserved pages will never free, skip them. */
2557 if (PageReserved(page))
2558 continue;
2559
2560 block_migratetype = get_pageblock_migratetype(page);
2561
2562 /* If this block is reserved, account for it */
2563 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2564 reserve--;
2565 continue;
2566 }
2567
2568 /* Suitable for reserving if this block is movable */
2569 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2570 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2571 move_freepages_block(zone, page, MIGRATE_RESERVE);
2572 reserve--;
2573 continue;
2574 }
2575
2576 /*
2577 * If the reserve is met and this is a previous reserved block,
2578 * take it back
2579 */
2580 if (block_migratetype == MIGRATE_RESERVE) {
2581 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2582 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2583 }
2584 }
2585}
2586
2587/*
2588 * Initially all pages are reserved - free ones are freed
2589 * up by free_all_bootmem() once the early boot process is
2590 * done. Non-atomic initialization, single-pass.
2591 */
2592void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2593 unsigned long start_pfn, enum memmap_context context)
2594{
2595 struct page *page;
2596 unsigned long end_pfn = start_pfn + size;
2597 unsigned long pfn;
2598 struct zone *z;
2599
2600 z = &NODE_DATA(nid)->node_zones[zone];
2601 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2602 /*
2603 * There can be holes in boot-time mem_map[]s
2604 * handed to this function. They do not
2605 * exist on hotplugged memory.
2606 */
2607 if (context == MEMMAP_EARLY) {
2608 if (!early_pfn_valid(pfn))
2609 continue;
2610 if (!early_pfn_in_nid(pfn, nid))
2611 continue;
2612 }
2613 page = pfn_to_page(pfn);
2614 set_page_links(page, zone, nid, pfn);
2615 mminit_verify_page_links(page, zone, nid, pfn);
2616 init_page_count(page);
2617 reset_page_mapcount(page);
2618 SetPageReserved(page);
2619 /*
2620 * Mark the block movable so that blocks are reserved for
2621 * movable at startup. This will force kernel allocations
2622 * to reserve their blocks rather than leaking throughout
2623 * the address space during boot when many long-lived
2624 * kernel allocations are made. Later some blocks near
2625 * the start are marked MIGRATE_RESERVE by
2626 * setup_zone_migrate_reserve()
2627 *
2628 * bitmap is created for zone's valid pfn range. but memmap
2629 * can be created for invalid pages (for alignment)
2630 * check here not to call set_pageblock_migratetype() against
2631 * pfn out of zone.
2632 */
2633 if ((z->zone_start_pfn <= pfn)
2634 && (pfn < z->zone_start_pfn + z->spanned_pages)
2635 && !(pfn & (pageblock_nr_pages - 1)))
2636 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2637
2638 INIT_LIST_HEAD(&page->lru);
2639#ifdef WANT_PAGE_VIRTUAL
2640 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2641 if (!is_highmem_idx(zone))
2642 set_page_address(page, __va(pfn << PAGE_SHIFT));
2643#endif
2644 }
2645}
2646
2647static void __meminit zone_init_free_lists(struct zone *zone)
2648{
2649 int order, t;
2650 for_each_migratetype_order(order, t) {
2651 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2652 zone->free_area[order].nr_free = 0;
2653 }
2654}
2655
2656#ifndef __HAVE_ARCH_MEMMAP_INIT
2657#define memmap_init(size, nid, zone, start_pfn) \
2658 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2659#endif
2660
2661static int zone_batchsize(struct zone *zone)
2662{
2663 int batch;
2664
2665 /*
2666 * The per-cpu-pages pools are set to around 1000th of the
2667 * size of the zone. But no more than 1/2 of a meg.
2668 *
2669 * OK, so we don't know how big the cache is. So guess.
2670 */
2671 batch = zone->present_pages / 1024;
2672 if (batch * PAGE_SIZE > 512 * 1024)
2673 batch = (512 * 1024) / PAGE_SIZE;
2674 batch /= 4; /* We effectively *= 4 below */
2675 if (batch < 1)
2676 batch = 1;
2677
2678 /*
2679 * Clamp the batch to a 2^n - 1 value. Having a power
2680 * of 2 value was found to be more likely to have
2681 * suboptimal cache aliasing properties in some cases.
2682 *
2683 * For example if 2 tasks are alternately allocating
2684 * batches of pages, one task can end up with a lot
2685 * of pages of one half of the possible page colors
2686 * and the other with pages of the other colors.
2687 */
2688 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2689
2690 return batch;
2691}
2692
2693static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2694{
2695 struct per_cpu_pages *pcp;
2696
2697 memset(p, 0, sizeof(*p));
2698
2699 pcp = &p->pcp;
2700 pcp->count = 0;
2701 pcp->high = 6 * batch;
2702 pcp->batch = max(1UL, 1 * batch);
2703 INIT_LIST_HEAD(&pcp->list);
2704}
2705
2706/*
2707 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2708 * to the value high for the pageset p.
2709 */
2710
2711static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2712 unsigned long high)
2713{
2714 struct per_cpu_pages *pcp;
2715
2716 pcp = &p->pcp;
2717 pcp->high = high;
2718 pcp->batch = max(1UL, high/4);
2719 if ((high/4) > (PAGE_SHIFT * 8))
2720 pcp->batch = PAGE_SHIFT * 8;
2721}
2722
2723
2724#ifdef CONFIG_NUMA
2725/*
2726 * Boot pageset table. One per cpu which is going to be used for all
2727 * zones and all nodes. The parameters will be set in such a way
2728 * that an item put on a list will immediately be handed over to
2729 * the buddy list. This is safe since pageset manipulation is done
2730 * with interrupts disabled.
2731 *
2732 * Some NUMA counter updates may also be caught by the boot pagesets.
2733 *
2734 * The boot_pagesets must be kept even after bootup is complete for
2735 * unused processors and/or zones. They do play a role for bootstrapping
2736 * hotplugged processors.
2737 *
2738 * zoneinfo_show() and maybe other functions do
2739 * not check if the processor is online before following the pageset pointer.
2740 * Other parts of the kernel may not check if the zone is available.
2741 */
2742static struct per_cpu_pageset boot_pageset[NR_CPUS];
2743
2744/*
2745 * Dynamically allocate memory for the
2746 * per cpu pageset array in struct zone.
2747 */
2748static int __cpuinit process_zones(int cpu)
2749{
2750 struct zone *zone, *dzone;
2751 int node = cpu_to_node(cpu);
2752
2753 node_set_state(node, N_CPU); /* this node has a cpu */
2754
2755 for_each_zone(zone) {
2756
2757 if (!populated_zone(zone))
2758 continue;
2759
2760 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2761 GFP_KERNEL, node);
2762 if (!zone_pcp(zone, cpu))
2763 goto bad;
2764
2765 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2766
2767 if (percpu_pagelist_fraction)
2768 setup_pagelist_highmark(zone_pcp(zone, cpu),
2769 (zone->present_pages / percpu_pagelist_fraction));
2770 }
2771
2772 return 0;
2773bad:
2774 for_each_zone(dzone) {
2775 if (!populated_zone(dzone))
2776 continue;
2777 if (dzone == zone)
2778 break;
2779 kfree(zone_pcp(dzone, cpu));
2780 zone_pcp(dzone, cpu) = NULL;
2781 }
2782 return -ENOMEM;
2783}
2784
2785static inline void free_zone_pagesets(int cpu)
2786{
2787 struct zone *zone;
2788
2789 for_each_zone(zone) {
2790 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2791
2792 /* Free per_cpu_pageset if it is slab allocated */
2793 if (pset != &boot_pageset[cpu])
2794 kfree(pset);
2795 zone_pcp(zone, cpu) = NULL;
2796 }
2797}
2798
2799static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2800 unsigned long action,
2801 void *hcpu)
2802{
2803 int cpu = (long)hcpu;
2804 int ret = NOTIFY_OK;
2805
2806 switch (action) {
2807 case CPU_UP_PREPARE:
2808 case CPU_UP_PREPARE_FROZEN:
2809 if (process_zones(cpu))
2810 ret = NOTIFY_BAD;
2811 break;
2812 case CPU_UP_CANCELED:
2813 case CPU_UP_CANCELED_FROZEN:
2814 case CPU_DEAD:
2815 case CPU_DEAD_FROZEN:
2816 free_zone_pagesets(cpu);
2817 break;
2818 default:
2819 break;
2820 }
2821 return ret;
2822}
2823
2824static struct notifier_block __cpuinitdata pageset_notifier =
2825 { &pageset_cpuup_callback, NULL, 0 };
2826
2827void __init setup_per_cpu_pageset(void)
2828{
2829 int err;
2830
2831 /* Initialize per_cpu_pageset for cpu 0.
2832 * A cpuup callback will do this for every cpu
2833 * as it comes online
2834 */
2835 err = process_zones(smp_processor_id());
2836 BUG_ON(err);
2837 register_cpu_notifier(&pageset_notifier);
2838}
2839
2840#endif
2841
2842static noinline __init_refok
2843int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2844{
2845 int i;
2846 struct pglist_data *pgdat = zone->zone_pgdat;
2847 size_t alloc_size;
2848
2849 /*
2850 * The per-page waitqueue mechanism uses hashed waitqueues
2851 * per zone.
2852 */
2853 zone->wait_table_hash_nr_entries =
2854 wait_table_hash_nr_entries(zone_size_pages);
2855 zone->wait_table_bits =
2856 wait_table_bits(zone->wait_table_hash_nr_entries);
2857 alloc_size = zone->wait_table_hash_nr_entries
2858 * sizeof(wait_queue_head_t);
2859
2860 if (!slab_is_available()) {
2861 zone->wait_table = (wait_queue_head_t *)
2862 alloc_bootmem_node(pgdat, alloc_size);
2863 } else {
2864 /*
2865 * This case means that a zone whose size was 0 gets new memory
2866 * via memory hot-add.
2867 * But it may be the case that a new node was hot-added. In
2868 * this case vmalloc() will not be able to use this new node's
2869 * memory - this wait_table must be initialized to use this new
2870 * node itself as well.
2871 * To use this new node's memory, further consideration will be
2872 * necessary.
2873 */
2874 zone->wait_table = vmalloc(alloc_size);
2875 }
2876 if (!zone->wait_table)
2877 return -ENOMEM;
2878
2879 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2880 init_waitqueue_head(zone->wait_table + i);
2881
2882 return 0;
2883}
2884
2885static __meminit void zone_pcp_init(struct zone *zone)
2886{
2887 int cpu;
2888 unsigned long batch = zone_batchsize(zone);
2889
2890 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2891#ifdef CONFIG_NUMA
2892 /* Early boot. Slab allocator not functional yet */
2893 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2894 setup_pageset(&boot_pageset[cpu],0);
2895#else
2896 setup_pageset(zone_pcp(zone,cpu), batch);
2897#endif
2898 }
2899 if (zone->present_pages)
2900 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2901 zone->name, zone->present_pages, batch);
2902}
2903
2904__meminit int init_currently_empty_zone(struct zone *zone,
2905 unsigned long zone_start_pfn,
2906 unsigned long size,
2907 enum memmap_context context)
2908{
2909 struct pglist_data *pgdat = zone->zone_pgdat;
2910 int ret;
2911 ret = zone_wait_table_init(zone, size);
2912 if (ret)
2913 return ret;
2914 pgdat->nr_zones = zone_idx(zone) + 1;
2915
2916 zone->zone_start_pfn = zone_start_pfn;
2917
2918 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2919 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2920 pgdat->node_id,
2921 (unsigned long)zone_idx(zone),
2922 zone_start_pfn, (zone_start_pfn + size));
2923
2924 zone_init_free_lists(zone);
2925
2926 return 0;
2927}
2928
2929#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2930/*
2931 * Basic iterator support. Return the first range of PFNs for a node
2932 * Note: nid == MAX_NUMNODES returns first region regardless of node
2933 */
2934static int __meminit first_active_region_index_in_nid(int nid)
2935{
2936 int i;
2937
2938 for (i = 0; i < nr_nodemap_entries; i++)
2939 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2940 return i;
2941
2942 return -1;
2943}
2944
2945/*
2946 * Basic iterator support. Return the next active range of PFNs for a node
2947 * Note: nid == MAX_NUMNODES returns next region regardless of node
2948 */
2949static int __meminit next_active_region_index_in_nid(int index, int nid)
2950{
2951 for (index = index + 1; index < nr_nodemap_entries; index++)
2952 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2953 return index;
2954
2955 return -1;
2956}
2957
2958#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2959/*
2960 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2961 * Architectures may implement their own version but if add_active_range()
2962 * was used and there are no special requirements, this is a convenient
2963 * alternative
2964 */
2965int __meminit early_pfn_to_nid(unsigned long pfn)
2966{
2967 int i;
2968
2969 for (i = 0; i < nr_nodemap_entries; i++) {
2970 unsigned long start_pfn = early_node_map[i].start_pfn;
2971 unsigned long end_pfn = early_node_map[i].end_pfn;
2972
2973 if (start_pfn <= pfn && pfn < end_pfn)
2974 return early_node_map[i].nid;
2975 }
2976
2977 return 0;
2978}
2979#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2980
2981/* Basic iterator support to walk early_node_map[] */
2982#define for_each_active_range_index_in_nid(i, nid) \
2983 for (i = first_active_region_index_in_nid(nid); i != -1; \
2984 i = next_active_region_index_in_nid(i, nid))
2985
2986/**
2987 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2988 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2989 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2990 *
2991 * If an architecture guarantees that all ranges registered with
2992 * add_active_ranges() contain no holes and may be freed, this
2993 * this function may be used instead of calling free_bootmem() manually.
2994 */
2995void __init free_bootmem_with_active_regions(int nid,
2996 unsigned long max_low_pfn)
2997{
2998 int i;
2999
3000 for_each_active_range_index_in_nid(i, nid) {
3001 unsigned long size_pages = 0;
3002 unsigned long end_pfn = early_node_map[i].end_pfn;
3003
3004 if (early_node_map[i].start_pfn >= max_low_pfn)
3005 continue;
3006
3007 if (end_pfn > max_low_pfn)
3008 end_pfn = max_low_pfn;
3009
3010 size_pages = end_pfn - early_node_map[i].start_pfn;
3011 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3012 PFN_PHYS(early_node_map[i].start_pfn),
3013 size_pages << PAGE_SHIFT);
3014 }
3015}
3016
3017void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3018{
3019 int i;
3020 int ret;
3021
3022 for_each_active_range_index_in_nid(i, nid) {
3023 ret = work_fn(early_node_map[i].start_pfn,
3024 early_node_map[i].end_pfn, data);
3025 if (ret)
3026 break;
3027 }
3028}
3029/**
3030 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3031 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3032 *
3033 * If an architecture guarantees that all ranges registered with
3034 * add_active_ranges() contain no holes and may be freed, this
3035 * function may be used instead of calling memory_present() manually.
3036 */
3037void __init sparse_memory_present_with_active_regions(int nid)
3038{
3039 int i;
3040
3041 for_each_active_range_index_in_nid(i, nid)
3042 memory_present(early_node_map[i].nid,
3043 early_node_map[i].start_pfn,
3044 early_node_map[i].end_pfn);
3045}
3046
3047/**
3048 * push_node_boundaries - Push node boundaries to at least the requested boundary
3049 * @nid: The nid of the node to push the boundary for
3050 * @start_pfn: The start pfn of the node
3051 * @end_pfn: The end pfn of the node
3052 *
3053 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3054 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3055 * be hotplugged even though no physical memory exists. This function allows
3056 * an arch to push out the node boundaries so mem_map is allocated that can
3057 * be used later.
3058 */
3059#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3060void __init push_node_boundaries(unsigned int nid,
3061 unsigned long start_pfn, unsigned long end_pfn)
3062{
3063 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3064 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3065 nid, start_pfn, end_pfn);
3066
3067 /* Initialise the boundary for this node if necessary */
3068 if (node_boundary_end_pfn[nid] == 0)
3069 node_boundary_start_pfn[nid] = -1UL;
3070
3071 /* Update the boundaries */
3072 if (node_boundary_start_pfn[nid] > start_pfn)
3073 node_boundary_start_pfn[nid] = start_pfn;
3074 if (node_boundary_end_pfn[nid] < end_pfn)
3075 node_boundary_end_pfn[nid] = end_pfn;
3076}
3077
3078/* If necessary, push the node boundary out for reserve hotadd */
3079static void __meminit account_node_boundary(unsigned int nid,
3080 unsigned long *start_pfn, unsigned long *end_pfn)
3081{
3082 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3083 "Entering account_node_boundary(%u, %lu, %lu)\n",
3084 nid, *start_pfn, *end_pfn);
3085
3086 /* Return if boundary information has not been provided */
3087 if (node_boundary_end_pfn[nid] == 0)
3088 return;
3089
3090 /* Check the boundaries and update if necessary */
3091 if (node_boundary_start_pfn[nid] < *start_pfn)
3092 *start_pfn = node_boundary_start_pfn[nid];
3093 if (node_boundary_end_pfn[nid] > *end_pfn)
3094 *end_pfn = node_boundary_end_pfn[nid];
3095}
3096#else
3097void __init push_node_boundaries(unsigned int nid,
3098 unsigned long start_pfn, unsigned long end_pfn) {}
3099
3100static void __meminit account_node_boundary(unsigned int nid,
3101 unsigned long *start_pfn, unsigned long *end_pfn) {}
3102#endif
3103
3104
3105/**
3106 * get_pfn_range_for_nid - Return the start and end page frames for a node
3107 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3108 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3109 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3110 *
3111 * It returns the start and end page frame of a node based on information
3112 * provided by an arch calling add_active_range(). If called for a node
3113 * with no available memory, a warning is printed and the start and end
3114 * PFNs will be 0.
3115 */
3116void __meminit get_pfn_range_for_nid(unsigned int nid,
3117 unsigned long *start_pfn, unsigned long *end_pfn)
3118{
3119 int i;
3120 *start_pfn = -1UL;
3121 *end_pfn = 0;
3122
3123 for_each_active_range_index_in_nid(i, nid) {
3124 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3125 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3126 }
3127
3128 if (*start_pfn == -1UL)
3129 *start_pfn = 0;
3130
3131 /* Push the node boundaries out if requested */
3132 account_node_boundary(nid, start_pfn, end_pfn);
3133}
3134
3135/*
3136 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3137 * assumption is made that zones within a node are ordered in monotonic
3138 * increasing memory addresses so that the "highest" populated zone is used
3139 */
3140static void __init find_usable_zone_for_movable(void)
3141{
3142 int zone_index;
3143 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3144 if (zone_index == ZONE_MOVABLE)
3145 continue;
3146
3147 if (arch_zone_highest_possible_pfn[zone_index] >
3148 arch_zone_lowest_possible_pfn[zone_index])
3149 break;
3150 }
3151
3152 VM_BUG_ON(zone_index == -1);
3153 movable_zone = zone_index;
3154}
3155
3156/*
3157 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3158 * because it is sized independant of architecture. Unlike the other zones,
3159 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3160 * in each node depending on the size of each node and how evenly kernelcore
3161 * is distributed. This helper function adjusts the zone ranges
3162 * provided by the architecture for a given node by using the end of the
3163 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3164 * zones within a node are in order of monotonic increases memory addresses
3165 */
3166static void __meminit adjust_zone_range_for_zone_movable(int nid,
3167 unsigned long zone_type,
3168 unsigned long node_start_pfn,
3169 unsigned long node_end_pfn,
3170 unsigned long *zone_start_pfn,
3171 unsigned long *zone_end_pfn)
3172{
3173 /* Only adjust if ZONE_MOVABLE is on this node */
3174 if (zone_movable_pfn[nid]) {
3175 /* Size ZONE_MOVABLE */
3176 if (zone_type == ZONE_MOVABLE) {
3177 *zone_start_pfn = zone_movable_pfn[nid];
3178 *zone_end_pfn = min(node_end_pfn,
3179 arch_zone_highest_possible_pfn[movable_zone]);
3180
3181 /* Adjust for ZONE_MOVABLE starting within this range */
3182 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3183 *zone_end_pfn > zone_movable_pfn[nid]) {
3184 *zone_end_pfn = zone_movable_pfn[nid];
3185
3186 /* Check if this whole range is within ZONE_MOVABLE */
3187 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3188 *zone_start_pfn = *zone_end_pfn;
3189 }
3190}
3191
3192/*
3193 * Return the number of pages a zone spans in a node, including holes
3194 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3195 */
3196static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3197 unsigned long zone_type,
3198 unsigned long *ignored)
3199{
3200 unsigned long node_start_pfn, node_end_pfn;
3201 unsigned long zone_start_pfn, zone_end_pfn;
3202
3203 /* Get the start and end of the node and zone */
3204 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3205 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3206 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3207 adjust_zone_range_for_zone_movable(nid, zone_type,
3208 node_start_pfn, node_end_pfn,
3209 &zone_start_pfn, &zone_end_pfn);
3210
3211 /* Check that this node has pages within the zone's required range */
3212 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3213 return 0;
3214
3215 /* Move the zone boundaries inside the node if necessary */
3216 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3217 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3218
3219 /* Return the spanned pages */
3220 return zone_end_pfn - zone_start_pfn;
3221}
3222
3223/*
3224 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3225 * then all holes in the requested range will be accounted for.
3226 */
3227static unsigned long __meminit __absent_pages_in_range(int nid,
3228 unsigned long range_start_pfn,
3229 unsigned long range_end_pfn)
3230{
3231 int i = 0;
3232 unsigned long prev_end_pfn = 0, hole_pages = 0;
3233 unsigned long start_pfn;
3234
3235 /* Find the end_pfn of the first active range of pfns in the node */
3236 i = first_active_region_index_in_nid(nid);
3237 if (i == -1)
3238 return 0;
3239
3240 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3241
3242 /* Account for ranges before physical memory on this node */
3243 if (early_node_map[i].start_pfn > range_start_pfn)
3244 hole_pages = prev_end_pfn - range_start_pfn;
3245
3246 /* Find all holes for the zone within the node */
3247 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3248
3249 /* No need to continue if prev_end_pfn is outside the zone */
3250 if (prev_end_pfn >= range_end_pfn)
3251 break;
3252
3253 /* Make sure the end of the zone is not within the hole */
3254 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3255 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3256
3257 /* Update the hole size cound and move on */
3258 if (start_pfn > range_start_pfn) {
3259 BUG_ON(prev_end_pfn > start_pfn);
3260 hole_pages += start_pfn - prev_end_pfn;
3261 }
3262 prev_end_pfn = early_node_map[i].end_pfn;
3263 }
3264
3265 /* Account for ranges past physical memory on this node */
3266 if (range_end_pfn > prev_end_pfn)
3267 hole_pages += range_end_pfn -
3268 max(range_start_pfn, prev_end_pfn);
3269
3270 return hole_pages;
3271}
3272
3273/**
3274 * absent_pages_in_range - Return number of page frames in holes within a range
3275 * @start_pfn: The start PFN to start searching for holes
3276 * @end_pfn: The end PFN to stop searching for holes
3277 *
3278 * It returns the number of pages frames in memory holes within a range.
3279 */
3280unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3281 unsigned long end_pfn)
3282{
3283 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3284}
3285
3286/* Return the number of page frames in holes in a zone on a node */
3287static unsigned long __meminit zone_absent_pages_in_node(int nid,
3288 unsigned long zone_type,
3289 unsigned long *ignored)
3290{
3291 unsigned long node_start_pfn, node_end_pfn;
3292 unsigned long zone_start_pfn, zone_end_pfn;
3293
3294 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3295 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3296 node_start_pfn);
3297 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3298 node_end_pfn);
3299
3300 adjust_zone_range_for_zone_movable(nid, zone_type,
3301 node_start_pfn, node_end_pfn,
3302 &zone_start_pfn, &zone_end_pfn);
3303 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3304}
3305
3306#else
3307static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3308 unsigned long zone_type,
3309 unsigned long *zones_size)
3310{
3311 return zones_size[zone_type];
3312}
3313
3314static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3315 unsigned long zone_type,
3316 unsigned long *zholes_size)
3317{
3318 if (!zholes_size)
3319 return 0;
3320
3321 return zholes_size[zone_type];
3322}
3323
3324#endif
3325
3326static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3327 unsigned long *zones_size, unsigned long *zholes_size)
3328{
3329 unsigned long realtotalpages, totalpages = 0;
3330 enum zone_type i;
3331
3332 for (i = 0; i < MAX_NR_ZONES; i++)
3333 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3334 zones_size);
3335 pgdat->node_spanned_pages = totalpages;
3336
3337 realtotalpages = totalpages;
3338 for (i = 0; i < MAX_NR_ZONES; i++)
3339 realtotalpages -=
3340 zone_absent_pages_in_node(pgdat->node_id, i,
3341 zholes_size);
3342 pgdat->node_present_pages = realtotalpages;
3343 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3344 realtotalpages);
3345}
3346
3347#ifndef CONFIG_SPARSEMEM
3348/*
3349 * Calculate the size of the zone->blockflags rounded to an unsigned long
3350 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3351 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3352 * round what is now in bits to nearest long in bits, then return it in
3353 * bytes.
3354 */
3355static unsigned long __init usemap_size(unsigned long zonesize)
3356{
3357 unsigned long usemapsize;
3358
3359 usemapsize = roundup(zonesize, pageblock_nr_pages);
3360 usemapsize = usemapsize >> pageblock_order;
3361 usemapsize *= NR_PAGEBLOCK_BITS;
3362 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3363
3364 return usemapsize / 8;
3365}
3366
3367static void __init setup_usemap(struct pglist_data *pgdat,
3368 struct zone *zone, unsigned long zonesize)
3369{
3370 unsigned long usemapsize = usemap_size(zonesize);
3371 zone->pageblock_flags = NULL;
3372 if (usemapsize)
3373 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3374}
3375#else
3376static void inline setup_usemap(struct pglist_data *pgdat,
3377 struct zone *zone, unsigned long zonesize) {}
3378#endif /* CONFIG_SPARSEMEM */
3379
3380#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3381
3382/* Return a sensible default order for the pageblock size. */
3383static inline int pageblock_default_order(void)
3384{
3385 if (HPAGE_SHIFT > PAGE_SHIFT)
3386 return HUGETLB_PAGE_ORDER;
3387
3388 return MAX_ORDER-1;
3389}
3390
3391/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3392static inline void __init set_pageblock_order(unsigned int order)
3393{
3394 /* Check that pageblock_nr_pages has not already been setup */
3395 if (pageblock_order)
3396 return;
3397
3398 /*
3399 * Assume the largest contiguous order of interest is a huge page.
3400 * This value may be variable depending on boot parameters on IA64
3401 */
3402 pageblock_order = order;
3403}
3404#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3405
3406/*
3407 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3408 * and pageblock_default_order() are unused as pageblock_order is set
3409 * at compile-time. See include/linux/pageblock-flags.h for the values of
3410 * pageblock_order based on the kernel config
3411 */
3412static inline int pageblock_default_order(unsigned int order)
3413{
3414 return MAX_ORDER-1;
3415}
3416#define set_pageblock_order(x) do {} while (0)
3417
3418#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3419
3420/*
3421 * Set up the zone data structures:
3422 * - mark all pages reserved
3423 * - mark all memory queues empty
3424 * - clear the memory bitmaps
3425 */
3426static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3427 unsigned long *zones_size, unsigned long *zholes_size)
3428{
3429 enum zone_type j;
3430 int nid = pgdat->node_id;
3431 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3432 int ret;
3433
3434 pgdat_resize_init(pgdat);
3435 pgdat->nr_zones = 0;
3436 init_waitqueue_head(&pgdat->kswapd_wait);
3437 pgdat->kswapd_max_order = 0;
3438 pgdat_page_cgroup_init(pgdat);
3439
3440 for (j = 0; j < MAX_NR_ZONES; j++) {
3441 struct zone *zone = pgdat->node_zones + j;
3442 unsigned long size, realsize, memmap_pages;
3443 enum lru_list l;
3444
3445 size = zone_spanned_pages_in_node(nid, j, zones_size);
3446 realsize = size - zone_absent_pages_in_node(nid, j,
3447 zholes_size);
3448
3449 /*
3450 * Adjust realsize so that it accounts for how much memory
3451 * is used by this zone for memmap. This affects the watermark
3452 * and per-cpu initialisations
3453 */
3454 memmap_pages =
3455 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3456 if (realsize >= memmap_pages) {
3457 realsize -= memmap_pages;
3458 if (memmap_pages)
3459 printk(KERN_DEBUG
3460 " %s zone: %lu pages used for memmap\n",
3461 zone_names[j], memmap_pages);
3462 } else
3463 printk(KERN_WARNING
3464 " %s zone: %lu pages exceeds realsize %lu\n",
3465 zone_names[j], memmap_pages, realsize);
3466
3467 /* Account for reserved pages */
3468 if (j == 0 && realsize > dma_reserve) {
3469 realsize -= dma_reserve;
3470 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3471 zone_names[0], dma_reserve);
3472 }
3473
3474 if (!is_highmem_idx(j))
3475 nr_kernel_pages += realsize;
3476 nr_all_pages += realsize;
3477
3478 zone->spanned_pages = size;
3479 zone->present_pages = realsize;
3480#ifdef CONFIG_NUMA
3481 zone->node = nid;
3482 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3483 / 100;
3484 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3485#endif
3486 zone->name = zone_names[j];
3487 spin_lock_init(&zone->lock);
3488 spin_lock_init(&zone->lru_lock);
3489 zone_seqlock_init(zone);
3490 zone->zone_pgdat = pgdat;
3491
3492 zone->prev_priority = DEF_PRIORITY;
3493
3494 zone_pcp_init(zone);
3495 for_each_lru(l) {
3496 INIT_LIST_HEAD(&zone->lru[l].list);
3497 zone->lru[l].nr_scan = 0;
3498 }
3499 zone->recent_rotated[0] = 0;
3500 zone->recent_rotated[1] = 0;
3501 zone->recent_scanned[0] = 0;
3502 zone->recent_scanned[1] = 0;
3503 zap_zone_vm_stats(zone);
3504 zone->flags = 0;
3505 if (!size)
3506 continue;
3507
3508 set_pageblock_order(pageblock_default_order());
3509 setup_usemap(pgdat, zone, size);
3510 ret = init_currently_empty_zone(zone, zone_start_pfn,
3511 size, MEMMAP_EARLY);
3512 BUG_ON(ret);
3513 memmap_init(size, nid, j, zone_start_pfn);
3514 zone_start_pfn += size;
3515 }
3516}
3517
3518static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3519{
3520 /* Skip empty nodes */
3521 if (!pgdat->node_spanned_pages)
3522 return;
3523
3524#ifdef CONFIG_FLAT_NODE_MEM_MAP
3525 /* ia64 gets its own node_mem_map, before this, without bootmem */
3526 if (!pgdat->node_mem_map) {
3527 unsigned long size, start, end;
3528 struct page *map;
3529
3530 /*
3531 * The zone's endpoints aren't required to be MAX_ORDER
3532 * aligned but the node_mem_map endpoints must be in order
3533 * for the buddy allocator to function correctly.
3534 */
3535 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3536 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3537 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3538 size = (end - start) * sizeof(struct page);
3539 map = alloc_remap(pgdat->node_id, size);
3540 if (!map)
3541 map = alloc_bootmem_node(pgdat, size);
3542 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3543 }
3544#ifndef CONFIG_NEED_MULTIPLE_NODES
3545 /*
3546 * With no DISCONTIG, the global mem_map is just set as node 0's
3547 */
3548 if (pgdat == NODE_DATA(0)) {
3549 mem_map = NODE_DATA(0)->node_mem_map;
3550#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3551 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3552 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3553#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3554 }
3555#endif
3556#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3557}
3558
3559void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3560 unsigned long node_start_pfn, unsigned long *zholes_size)
3561{
3562 pg_data_t *pgdat = NODE_DATA(nid);
3563
3564 pgdat->node_id = nid;
3565 pgdat->node_start_pfn = node_start_pfn;
3566 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3567
3568 alloc_node_mem_map(pgdat);
3569#ifdef CONFIG_FLAT_NODE_MEM_MAP
3570 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3571 nid, (unsigned long)pgdat,
3572 (unsigned long)pgdat->node_mem_map);
3573#endif
3574
3575 free_area_init_core(pgdat, zones_size, zholes_size);
3576}
3577
3578#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3579
3580#if MAX_NUMNODES > 1
3581/*
3582 * Figure out the number of possible node ids.
3583 */
3584static void __init setup_nr_node_ids(void)
3585{
3586 unsigned int node;
3587 unsigned int highest = 0;
3588
3589 for_each_node_mask(node, node_possible_map)
3590 highest = node;
3591 nr_node_ids = highest + 1;
3592}
3593#else
3594static inline void setup_nr_node_ids(void)
3595{
3596}
3597#endif
3598
3599/**
3600 * add_active_range - Register a range of PFNs backed by physical memory
3601 * @nid: The node ID the range resides on
3602 * @start_pfn: The start PFN of the available physical memory
3603 * @end_pfn: The end PFN of the available physical memory
3604 *
3605 * These ranges are stored in an early_node_map[] and later used by
3606 * free_area_init_nodes() to calculate zone sizes and holes. If the
3607 * range spans a memory hole, it is up to the architecture to ensure
3608 * the memory is not freed by the bootmem allocator. If possible
3609 * the range being registered will be merged with existing ranges.
3610 */
3611void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3612 unsigned long end_pfn)
3613{
3614 int i;
3615
3616 mminit_dprintk(MMINIT_TRACE, "memory_register",
3617 "Entering add_active_range(%d, %#lx, %#lx) "
3618 "%d entries of %d used\n",
3619 nid, start_pfn, end_pfn,
3620 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3621
3622 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3623
3624 /* Merge with existing active regions if possible */
3625 for (i = 0; i < nr_nodemap_entries; i++) {
3626 if (early_node_map[i].nid != nid)
3627 continue;
3628
3629 /* Skip if an existing region covers this new one */
3630 if (start_pfn >= early_node_map[i].start_pfn &&
3631 end_pfn <= early_node_map[i].end_pfn)
3632 return;
3633
3634 /* Merge forward if suitable */
3635 if (start_pfn <= early_node_map[i].end_pfn &&
3636 end_pfn > early_node_map[i].end_pfn) {
3637 early_node_map[i].end_pfn = end_pfn;
3638 return;
3639 }
3640
3641 /* Merge backward if suitable */
3642 if (start_pfn < early_node_map[i].end_pfn &&
3643 end_pfn >= early_node_map[i].start_pfn) {
3644 early_node_map[i].start_pfn = start_pfn;
3645 return;
3646 }
3647 }
3648
3649 /* Check that early_node_map is large enough */
3650 if (i >= MAX_ACTIVE_REGIONS) {
3651 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3652 MAX_ACTIVE_REGIONS);
3653 return;
3654 }
3655
3656 early_node_map[i].nid = nid;
3657 early_node_map[i].start_pfn = start_pfn;
3658 early_node_map[i].end_pfn = end_pfn;
3659 nr_nodemap_entries = i + 1;
3660}
3661
3662/**
3663 * remove_active_range - Shrink an existing registered range of PFNs
3664 * @nid: The node id the range is on that should be shrunk
3665 * @start_pfn: The new PFN of the range
3666 * @end_pfn: The new PFN of the range
3667 *
3668 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3669 * The map is kept near the end physical page range that has already been
3670 * registered. This function allows an arch to shrink an existing registered
3671 * range.
3672 */
3673void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3674 unsigned long end_pfn)
3675{
3676 int i, j;
3677 int removed = 0;
3678
3679 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3680 nid, start_pfn, end_pfn);
3681
3682 /* Find the old active region end and shrink */
3683 for_each_active_range_index_in_nid(i, nid) {
3684 if (early_node_map[i].start_pfn >= start_pfn &&
3685 early_node_map[i].end_pfn <= end_pfn) {
3686 /* clear it */
3687 early_node_map[i].start_pfn = 0;
3688 early_node_map[i].end_pfn = 0;
3689 removed = 1;
3690 continue;
3691 }
3692 if (early_node_map[i].start_pfn < start_pfn &&
3693 early_node_map[i].end_pfn > start_pfn) {
3694 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3695 early_node_map[i].end_pfn = start_pfn;
3696 if (temp_end_pfn > end_pfn)
3697 add_active_range(nid, end_pfn, temp_end_pfn);
3698 continue;
3699 }
3700 if (early_node_map[i].start_pfn >= start_pfn &&
3701 early_node_map[i].end_pfn > end_pfn &&
3702 early_node_map[i].start_pfn < end_pfn) {
3703 early_node_map[i].start_pfn = end_pfn;
3704 continue;
3705 }
3706 }
3707
3708 if (!removed)
3709 return;
3710
3711 /* remove the blank ones */
3712 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3713 if (early_node_map[i].nid != nid)
3714 continue;
3715 if (early_node_map[i].end_pfn)
3716 continue;
3717 /* we found it, get rid of it */
3718 for (j = i; j < nr_nodemap_entries - 1; j++)
3719 memcpy(&early_node_map[j], &early_node_map[j+1],
3720 sizeof(early_node_map[j]));
3721 j = nr_nodemap_entries - 1;
3722 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3723 nr_nodemap_entries--;
3724 }
3725}
3726
3727/**
3728 * remove_all_active_ranges - Remove all currently registered regions
3729 *
3730 * During discovery, it may be found that a table like SRAT is invalid
3731 * and an alternative discovery method must be used. This function removes
3732 * all currently registered regions.
3733 */
3734void __init remove_all_active_ranges(void)
3735{
3736 memset(early_node_map, 0, sizeof(early_node_map));
3737 nr_nodemap_entries = 0;
3738#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3739 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3740 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3741#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3742}
3743
3744/* Compare two active node_active_regions */
3745static int __init cmp_node_active_region(const void *a, const void *b)
3746{
3747 struct node_active_region *arange = (struct node_active_region *)a;
3748 struct node_active_region *brange = (struct node_active_region *)b;
3749
3750 /* Done this way to avoid overflows */
3751 if (arange->start_pfn > brange->start_pfn)
3752 return 1;
3753 if (arange->start_pfn < brange->start_pfn)
3754 return -1;
3755
3756 return 0;
3757}
3758
3759/* sort the node_map by start_pfn */
3760static void __init sort_node_map(void)
3761{
3762 sort(early_node_map, (size_t)nr_nodemap_entries,
3763 sizeof(struct node_active_region),
3764 cmp_node_active_region, NULL);
3765}
3766
3767/* Find the lowest pfn for a node */
3768static unsigned long __init find_min_pfn_for_node(int nid)
3769{
3770 int i;
3771 unsigned long min_pfn = ULONG_MAX;
3772
3773 /* Assuming a sorted map, the first range found has the starting pfn */
3774 for_each_active_range_index_in_nid(i, nid)
3775 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3776
3777 if (min_pfn == ULONG_MAX) {
3778 printk(KERN_WARNING
3779 "Could not find start_pfn for node %d\n", nid);
3780 return 0;
3781 }
3782
3783 return min_pfn;
3784}
3785
3786/**
3787 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3788 *
3789 * It returns the minimum PFN based on information provided via
3790 * add_active_range().
3791 */
3792unsigned long __init find_min_pfn_with_active_regions(void)
3793{
3794 return find_min_pfn_for_node(MAX_NUMNODES);
3795}
3796
3797/*
3798 * early_calculate_totalpages()
3799 * Sum pages in active regions for movable zone.
3800 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3801 */
3802static unsigned long __init early_calculate_totalpages(void)
3803{
3804 int i;
3805 unsigned long totalpages = 0;
3806
3807 for (i = 0; i < nr_nodemap_entries; i++) {
3808 unsigned long pages = early_node_map[i].end_pfn -
3809 early_node_map[i].start_pfn;
3810 totalpages += pages;
3811 if (pages)
3812 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3813 }
3814 return totalpages;
3815}
3816
3817/*
3818 * Find the PFN the Movable zone begins in each node. Kernel memory
3819 * is spread evenly between nodes as long as the nodes have enough
3820 * memory. When they don't, some nodes will have more kernelcore than
3821 * others
3822 */
3823static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3824{
3825 int i, nid;
3826 unsigned long usable_startpfn;
3827 unsigned long kernelcore_node, kernelcore_remaining;
3828 unsigned long totalpages = early_calculate_totalpages();
3829 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3830
3831 /*
3832 * If movablecore was specified, calculate what size of
3833 * kernelcore that corresponds so that memory usable for
3834 * any allocation type is evenly spread. If both kernelcore
3835 * and movablecore are specified, then the value of kernelcore
3836 * will be used for required_kernelcore if it's greater than
3837 * what movablecore would have allowed.
3838 */
3839 if (required_movablecore) {
3840 unsigned long corepages;
3841
3842 /*
3843 * Round-up so that ZONE_MOVABLE is at least as large as what
3844 * was requested by the user
3845 */
3846 required_movablecore =
3847 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3848 corepages = totalpages - required_movablecore;
3849
3850 required_kernelcore = max(required_kernelcore, corepages);
3851 }
3852
3853 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3854 if (!required_kernelcore)
3855 return;
3856
3857 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3858 find_usable_zone_for_movable();
3859 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3860
3861restart:
3862 /* Spread kernelcore memory as evenly as possible throughout nodes */
3863 kernelcore_node = required_kernelcore / usable_nodes;
3864 for_each_node_state(nid, N_HIGH_MEMORY) {
3865 /*
3866 * Recalculate kernelcore_node if the division per node
3867 * now exceeds what is necessary to satisfy the requested
3868 * amount of memory for the kernel
3869 */
3870 if (required_kernelcore < kernelcore_node)
3871 kernelcore_node = required_kernelcore / usable_nodes;
3872
3873 /*
3874 * As the map is walked, we track how much memory is usable
3875 * by the kernel using kernelcore_remaining. When it is
3876 * 0, the rest of the node is usable by ZONE_MOVABLE
3877 */
3878 kernelcore_remaining = kernelcore_node;
3879
3880 /* Go through each range of PFNs within this node */
3881 for_each_active_range_index_in_nid(i, nid) {
3882 unsigned long start_pfn, end_pfn;
3883 unsigned long size_pages;
3884
3885 start_pfn = max(early_node_map[i].start_pfn,
3886 zone_movable_pfn[nid]);
3887 end_pfn = early_node_map[i].end_pfn;
3888 if (start_pfn >= end_pfn)
3889 continue;
3890
3891 /* Account for what is only usable for kernelcore */
3892 if (start_pfn < usable_startpfn) {
3893 unsigned long kernel_pages;
3894 kernel_pages = min(end_pfn, usable_startpfn)
3895 - start_pfn;
3896
3897 kernelcore_remaining -= min(kernel_pages,
3898 kernelcore_remaining);
3899 required_kernelcore -= min(kernel_pages,
3900 required_kernelcore);
3901
3902 /* Continue if range is now fully accounted */
3903 if (end_pfn <= usable_startpfn) {
3904
3905 /*
3906 * Push zone_movable_pfn to the end so
3907 * that if we have to rebalance
3908 * kernelcore across nodes, we will
3909 * not double account here
3910 */
3911 zone_movable_pfn[nid] = end_pfn;
3912 continue;
3913 }
3914 start_pfn = usable_startpfn;
3915 }
3916
3917 /*
3918 * The usable PFN range for ZONE_MOVABLE is from
3919 * start_pfn->end_pfn. Calculate size_pages as the
3920 * number of pages used as kernelcore
3921 */
3922 size_pages = end_pfn - start_pfn;
3923 if (size_pages > kernelcore_remaining)
3924 size_pages = kernelcore_remaining;
3925 zone_movable_pfn[nid] = start_pfn + size_pages;
3926
3927 /*
3928 * Some kernelcore has been met, update counts and
3929 * break if the kernelcore for this node has been
3930 * satisified
3931 */
3932 required_kernelcore -= min(required_kernelcore,
3933 size_pages);
3934 kernelcore_remaining -= size_pages;
3935 if (!kernelcore_remaining)
3936 break;
3937 }
3938 }
3939
3940 /*
3941 * If there is still required_kernelcore, we do another pass with one
3942 * less node in the count. This will push zone_movable_pfn[nid] further
3943 * along on the nodes that still have memory until kernelcore is
3944 * satisified
3945 */
3946 usable_nodes--;
3947 if (usable_nodes && required_kernelcore > usable_nodes)
3948 goto restart;
3949
3950 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3951 for (nid = 0; nid < MAX_NUMNODES; nid++)
3952 zone_movable_pfn[nid] =
3953 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3954}
3955
3956/* Any regular memory on that node ? */
3957static void check_for_regular_memory(pg_data_t *pgdat)
3958{
3959#ifdef CONFIG_HIGHMEM
3960 enum zone_type zone_type;
3961
3962 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3963 struct zone *zone = &pgdat->node_zones[zone_type];
3964 if (zone->present_pages)
3965 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3966 }
3967#endif
3968}
3969
3970/**
3971 * free_area_init_nodes - Initialise all pg_data_t and zone data
3972 * @max_zone_pfn: an array of max PFNs for each zone
3973 *
3974 * This will call free_area_init_node() for each active node in the system.
3975 * Using the page ranges provided by add_active_range(), the size of each
3976 * zone in each node and their holes is calculated. If the maximum PFN
3977 * between two adjacent zones match, it is assumed that the zone is empty.
3978 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3979 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3980 * starts where the previous one ended. For example, ZONE_DMA32 starts
3981 * at arch_max_dma_pfn.
3982 */
3983void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3984{
3985 unsigned long nid;
3986 int i;
3987
3988 /* Sort early_node_map as initialisation assumes it is sorted */
3989 sort_node_map();
3990
3991 /* Record where the zone boundaries are */
3992 memset(arch_zone_lowest_possible_pfn, 0,
3993 sizeof(arch_zone_lowest_possible_pfn));
3994 memset(arch_zone_highest_possible_pfn, 0,
3995 sizeof(arch_zone_highest_possible_pfn));
3996 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3997 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3998 for (i = 1; i < MAX_NR_ZONES; i++) {
3999 if (i == ZONE_MOVABLE)
4000 continue;
4001 arch_zone_lowest_possible_pfn[i] =
4002 arch_zone_highest_possible_pfn[i-1];
4003 arch_zone_highest_possible_pfn[i] =
4004 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4005 }
4006 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4007 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4008
4009 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4010 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4011 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4012
4013 /* Print out the zone ranges */
4014 printk("Zone PFN ranges:\n");
4015 for (i = 0; i < MAX_NR_ZONES; i++) {
4016 if (i == ZONE_MOVABLE)
4017 continue;
4018 printk(" %-8s %0#10lx -> %0#10lx\n",
4019 zone_names[i],
4020 arch_zone_lowest_possible_pfn[i],
4021 arch_zone_highest_possible_pfn[i]);
4022 }
4023
4024 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4025 printk("Movable zone start PFN for each node\n");
4026 for (i = 0; i < MAX_NUMNODES; i++) {
4027 if (zone_movable_pfn[i])
4028 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4029 }
4030
4031 /* Print out the early_node_map[] */
4032 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4033 for (i = 0; i < nr_nodemap_entries; i++)
4034 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4035 early_node_map[i].start_pfn,
4036 early_node_map[i].end_pfn);
4037
4038 /* Initialise every node */
4039 mminit_verify_pageflags_layout();
4040 setup_nr_node_ids();
4041 for_each_online_node(nid) {
4042 pg_data_t *pgdat = NODE_DATA(nid);
4043 free_area_init_node(nid, NULL,
4044 find_min_pfn_for_node(nid), NULL);
4045
4046 /* Any memory on that node */
4047 if (pgdat->node_present_pages)
4048 node_set_state(nid, N_HIGH_MEMORY);
4049 check_for_regular_memory(pgdat);
4050 }
4051}
4052
4053static int __init cmdline_parse_core(char *p, unsigned long *core)
4054{
4055 unsigned long long coremem;
4056 if (!p)
4057 return -EINVAL;
4058
4059 coremem = memparse(p, &p);
4060 *core = coremem >> PAGE_SHIFT;
4061
4062 /* Paranoid check that UL is enough for the coremem value */
4063 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4064
4065 return 0;
4066}
4067
4068/*
4069 * kernelcore=size sets the amount of memory for use for allocations that
4070 * cannot be reclaimed or migrated.
4071 */
4072static int __init cmdline_parse_kernelcore(char *p)
4073{
4074 return cmdline_parse_core(p, &required_kernelcore);
4075}
4076
4077/*
4078 * movablecore=size sets the amount of memory for use for allocations that
4079 * can be reclaimed or migrated.
4080 */
4081static int __init cmdline_parse_movablecore(char *p)
4082{
4083 return cmdline_parse_core(p, &required_movablecore);
4084}
4085
4086early_param("kernelcore", cmdline_parse_kernelcore);
4087early_param("movablecore", cmdline_parse_movablecore);
4088
4089#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4090
4091/**
4092 * set_dma_reserve - set the specified number of pages reserved in the first zone
4093 * @new_dma_reserve: The number of pages to mark reserved
4094 *
4095 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4096 * In the DMA zone, a significant percentage may be consumed by kernel image
4097 * and other unfreeable allocations which can skew the watermarks badly. This
4098 * function may optionally be used to account for unfreeable pages in the
4099 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4100 * smaller per-cpu batchsize.
4101 */
4102void __init set_dma_reserve(unsigned long new_dma_reserve)
4103{
4104 dma_reserve = new_dma_reserve;
4105}
4106
4107#ifndef CONFIG_NEED_MULTIPLE_NODES
4108struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4109EXPORT_SYMBOL(contig_page_data);
4110#endif
4111
4112void __init free_area_init(unsigned long *zones_size)
4113{
4114 free_area_init_node(0, zones_size,
4115 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4116}
4117
4118static int page_alloc_cpu_notify(struct notifier_block *self,
4119 unsigned long action, void *hcpu)
4120{
4121 int cpu = (unsigned long)hcpu;
4122
4123 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4124 drain_pages(cpu);
4125
4126 /*
4127 * Spill the event counters of the dead processor
4128 * into the current processors event counters.
4129 * This artificially elevates the count of the current
4130 * processor.
4131 */
4132 vm_events_fold_cpu(cpu);
4133
4134 /*
4135 * Zero the differential counters of the dead processor
4136 * so that the vm statistics are consistent.
4137 *
4138 * This is only okay since the processor is dead and cannot
4139 * race with what we are doing.
4140 */
4141 refresh_cpu_vm_stats(cpu);
4142 }
4143 return NOTIFY_OK;
4144}
4145
4146void __init page_alloc_init(void)
4147{
4148 hotcpu_notifier(page_alloc_cpu_notify, 0);
4149}
4150
4151/*
4152 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4153 * or min_free_kbytes changes.
4154 */
4155static void calculate_totalreserve_pages(void)
4156{
4157 struct pglist_data *pgdat;
4158 unsigned long reserve_pages = 0;
4159 enum zone_type i, j;
4160
4161 for_each_online_pgdat(pgdat) {
4162 for (i = 0; i < MAX_NR_ZONES; i++) {
4163 struct zone *zone = pgdat->node_zones + i;
4164 unsigned long max = 0;
4165
4166 /* Find valid and maximum lowmem_reserve in the zone */
4167 for (j = i; j < MAX_NR_ZONES; j++) {
4168 if (zone->lowmem_reserve[j] > max)
4169 max = zone->lowmem_reserve[j];
4170 }
4171
4172 /* we treat pages_high as reserved pages. */
4173 max += zone->pages_high;
4174
4175 if (max > zone->present_pages)
4176 max = zone->present_pages;
4177 reserve_pages += max;
4178 }
4179 }
4180 totalreserve_pages = reserve_pages;
4181}
4182
4183/*
4184 * setup_per_zone_lowmem_reserve - called whenever
4185 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4186 * has a correct pages reserved value, so an adequate number of
4187 * pages are left in the zone after a successful __alloc_pages().
4188 */
4189static void setup_per_zone_lowmem_reserve(void)
4190{
4191 struct pglist_data *pgdat;
4192 enum zone_type j, idx;
4193
4194 for_each_online_pgdat(pgdat) {
4195 for (j = 0; j < MAX_NR_ZONES; j++) {
4196 struct zone *zone = pgdat->node_zones + j;
4197 unsigned long present_pages = zone->present_pages;
4198
4199 zone->lowmem_reserve[j] = 0;
4200
4201 idx = j;
4202 while (idx) {
4203 struct zone *lower_zone;
4204
4205 idx--;
4206
4207 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4208 sysctl_lowmem_reserve_ratio[idx] = 1;
4209
4210 lower_zone = pgdat->node_zones + idx;
4211 lower_zone->lowmem_reserve[j] = present_pages /
4212 sysctl_lowmem_reserve_ratio[idx];
4213 present_pages += lower_zone->present_pages;
4214 }
4215 }
4216 }
4217
4218 /* update totalreserve_pages */
4219 calculate_totalreserve_pages();
4220}
4221
4222/**
4223 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4224 *
4225 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4226 * with respect to min_free_kbytes.
4227 */
4228void setup_per_zone_pages_min(void)
4229{
4230 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4231 unsigned long lowmem_pages = 0;
4232 struct zone *zone;
4233 unsigned long flags;
4234
4235 /* Calculate total number of !ZONE_HIGHMEM pages */
4236 for_each_zone(zone) {
4237 if (!is_highmem(zone))
4238 lowmem_pages += zone->present_pages;
4239 }
4240
4241 for_each_zone(zone) {
4242 u64 tmp;
4243
4244 spin_lock_irqsave(&zone->lock, flags);
4245 tmp = (u64)pages_min * zone->present_pages;
4246 do_div(tmp, lowmem_pages);
4247 if (is_highmem(zone)) {
4248 /*
4249 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4250 * need highmem pages, so cap pages_min to a small
4251 * value here.
4252 *
4253 * The (pages_high-pages_low) and (pages_low-pages_min)
4254 * deltas controls asynch page reclaim, and so should
4255 * not be capped for highmem.
4256 */
4257 int min_pages;
4258
4259 min_pages = zone->present_pages / 1024;
4260 if (min_pages < SWAP_CLUSTER_MAX)
4261 min_pages = SWAP_CLUSTER_MAX;
4262 if (min_pages > 128)
4263 min_pages = 128;
4264 zone->pages_min = min_pages;
4265 } else {
4266 /*
4267 * If it's a lowmem zone, reserve a number of pages
4268 * proportionate to the zone's size.
4269 */
4270 zone->pages_min = tmp;
4271 }
4272
4273 zone->pages_low = zone->pages_min + (tmp >> 2);
4274 zone->pages_high = zone->pages_min + (tmp >> 1);
4275 setup_zone_migrate_reserve(zone);
4276 spin_unlock_irqrestore(&zone->lock, flags);
4277 }
4278
4279 /* update totalreserve_pages */
4280 calculate_totalreserve_pages();
4281}
4282
4283/**
4284 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4285 *
4286 * The inactive anon list should be small enough that the VM never has to
4287 * do too much work, but large enough that each inactive page has a chance
4288 * to be referenced again before it is swapped out.
4289 *
4290 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4291 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4292 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4293 * the anonymous pages are kept on the inactive list.
4294 *
4295 * total target max
4296 * memory ratio inactive anon
4297 * -------------------------------------
4298 * 10MB 1 5MB
4299 * 100MB 1 50MB
4300 * 1GB 3 250MB
4301 * 10GB 10 0.9GB
4302 * 100GB 31 3GB
4303 * 1TB 101 10GB
4304 * 10TB 320 32GB
4305 */
4306static void setup_per_zone_inactive_ratio(void)
4307{
4308 struct zone *zone;
4309
4310 for_each_zone(zone) {
4311 unsigned int gb, ratio;
4312
4313 /* Zone size in gigabytes */
4314 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4315 ratio = int_sqrt(10 * gb);
4316 if (!ratio)
4317 ratio = 1;
4318
4319 zone->inactive_ratio = ratio;
4320 }
4321}
4322
4323/*
4324 * Initialise min_free_kbytes.
4325 *
4326 * For small machines we want it small (128k min). For large machines
4327 * we want it large (64MB max). But it is not linear, because network
4328 * bandwidth does not increase linearly with machine size. We use
4329 *
4330 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4331 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4332 *
4333 * which yields
4334 *
4335 * 16MB: 512k
4336 * 32MB: 724k
4337 * 64MB: 1024k
4338 * 128MB: 1448k
4339 * 256MB: 2048k
4340 * 512MB: 2896k
4341 * 1024MB: 4096k
4342 * 2048MB: 5792k
4343 * 4096MB: 8192k
4344 * 8192MB: 11584k
4345 * 16384MB: 16384k
4346 */
4347static int __init init_per_zone_pages_min(void)
4348{
4349 unsigned long lowmem_kbytes;
4350
4351 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4352
4353 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4354 if (min_free_kbytes < 128)
4355 min_free_kbytes = 128;
4356 if (min_free_kbytes > 65536)
4357 min_free_kbytes = 65536;
4358 setup_per_zone_pages_min();
4359 setup_per_zone_lowmem_reserve();
4360 setup_per_zone_inactive_ratio();
4361 return 0;
4362}
4363module_init(init_per_zone_pages_min)
4364
4365/*
4366 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4367 * that we can call two helper functions whenever min_free_kbytes
4368 * changes.
4369 */
4370int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4371 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4372{
4373 proc_dointvec(table, write, file, buffer, length, ppos);
4374 if (write)
4375 setup_per_zone_pages_min();
4376 return 0;
4377}
4378
4379#ifdef CONFIG_NUMA
4380int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4381 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4382{
4383 struct zone *zone;
4384 int rc;
4385
4386 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4387 if (rc)
4388 return rc;
4389
4390 for_each_zone(zone)
4391 zone->min_unmapped_pages = (zone->present_pages *
4392 sysctl_min_unmapped_ratio) / 100;
4393 return 0;
4394}
4395
4396int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4397 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4398{
4399 struct zone *zone;
4400 int rc;
4401
4402 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4403 if (rc)
4404 return rc;
4405
4406 for_each_zone(zone)
4407 zone->min_slab_pages = (zone->present_pages *
4408 sysctl_min_slab_ratio) / 100;
4409 return 0;
4410}
4411#endif
4412
4413/*
4414 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4415 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4416 * whenever sysctl_lowmem_reserve_ratio changes.
4417 *
4418 * The reserve ratio obviously has absolutely no relation with the
4419 * pages_min watermarks. The lowmem reserve ratio can only make sense
4420 * if in function of the boot time zone sizes.
4421 */
4422int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4423 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4424{
4425 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4426 setup_per_zone_lowmem_reserve();
4427 return 0;
4428}
4429
4430/*
4431 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4432 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4433 * can have before it gets flushed back to buddy allocator.
4434 */
4435
4436int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4437 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4438{
4439 struct zone *zone;
4440 unsigned int cpu;
4441 int ret;
4442
4443 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4444 if (!write || (ret == -EINVAL))
4445 return ret;
4446 for_each_zone(zone) {
4447 for_each_online_cpu(cpu) {
4448 unsigned long high;
4449 high = zone->present_pages / percpu_pagelist_fraction;
4450 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4451 }
4452 }
4453 return 0;
4454}
4455
4456int hashdist = HASHDIST_DEFAULT;
4457
4458#ifdef CONFIG_NUMA
4459static int __init set_hashdist(char *str)
4460{
4461 if (!str)
4462 return 0;
4463 hashdist = simple_strtoul(str, &str, 0);
4464 return 1;
4465}
4466__setup("hashdist=", set_hashdist);
4467#endif
4468
4469/*
4470 * allocate a large system hash table from bootmem
4471 * - it is assumed that the hash table must contain an exact power-of-2
4472 * quantity of entries
4473 * - limit is the number of hash buckets, not the total allocation size
4474 */
4475void *__init alloc_large_system_hash(const char *tablename,
4476 unsigned long bucketsize,
4477 unsigned long numentries,
4478 int scale,
4479 int flags,
4480 unsigned int *_hash_shift,
4481 unsigned int *_hash_mask,
4482 unsigned long limit)
4483{
4484 unsigned long long max = limit;
4485 unsigned long log2qty, size;
4486 void *table = NULL;
4487
4488 /* allow the kernel cmdline to have a say */
4489 if (!numentries) {
4490 /* round applicable memory size up to nearest megabyte */
4491 numentries = nr_kernel_pages;
4492 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4493 numentries >>= 20 - PAGE_SHIFT;
4494 numentries <<= 20 - PAGE_SHIFT;
4495
4496 /* limit to 1 bucket per 2^scale bytes of low memory */
4497 if (scale > PAGE_SHIFT)
4498 numentries >>= (scale - PAGE_SHIFT);
4499 else
4500 numentries <<= (PAGE_SHIFT - scale);
4501
4502 /* Make sure we've got at least a 0-order allocation.. */
4503 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4504 numentries = PAGE_SIZE / bucketsize;
4505 }
4506 numentries = roundup_pow_of_two(numentries);
4507
4508 /* limit allocation size to 1/16 total memory by default */
4509 if (max == 0) {
4510 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4511 do_div(max, bucketsize);
4512 }
4513
4514 if (numentries > max)
4515 numentries = max;
4516
4517 log2qty = ilog2(numentries);
4518
4519 do {
4520 size = bucketsize << log2qty;
4521 if (flags & HASH_EARLY)
4522 table = alloc_bootmem_nopanic(size);
4523 else if (hashdist)
4524 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4525 else {
4526 unsigned long order = get_order(size);
4527 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4528 /*
4529 * If bucketsize is not a power-of-two, we may free
4530 * some pages at the end of hash table.
4531 */
4532 if (table) {
4533 unsigned long alloc_end = (unsigned long)table +
4534 (PAGE_SIZE << order);
4535 unsigned long used = (unsigned long)table +
4536 PAGE_ALIGN(size);
4537 split_page(virt_to_page(table), order);
4538 while (used < alloc_end) {
4539 free_page(used);
4540 used += PAGE_SIZE;
4541 }
4542 }
4543 }
4544 } while (!table && size > PAGE_SIZE && --log2qty);
4545
4546 if (!table)
4547 panic("Failed to allocate %s hash table\n", tablename);
4548
4549 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4550 tablename,
4551 (1U << log2qty),
4552 ilog2(size) - PAGE_SHIFT,
4553 size);
4554
4555 if (_hash_shift)
4556 *_hash_shift = log2qty;
4557 if (_hash_mask)
4558 *_hash_mask = (1 << log2qty) - 1;
4559
4560 return table;
4561}
4562
4563#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4564struct page *pfn_to_page(unsigned long pfn)
4565{
4566 return __pfn_to_page(pfn);
4567}
4568unsigned long page_to_pfn(struct page *page)
4569{
4570 return __page_to_pfn(page);
4571}
4572EXPORT_SYMBOL(pfn_to_page);
4573EXPORT_SYMBOL(page_to_pfn);
4574#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4575
4576/* Return a pointer to the bitmap storing bits affecting a block of pages */
4577static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4578 unsigned long pfn)
4579{
4580#ifdef CONFIG_SPARSEMEM
4581 return __pfn_to_section(pfn)->pageblock_flags;
4582#else
4583 return zone->pageblock_flags;
4584#endif /* CONFIG_SPARSEMEM */
4585}
4586
4587static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4588{
4589#ifdef CONFIG_SPARSEMEM
4590 pfn &= (PAGES_PER_SECTION-1);
4591 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4592#else
4593 pfn = pfn - zone->zone_start_pfn;
4594 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4595#endif /* CONFIG_SPARSEMEM */
4596}
4597
4598/**
4599 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4600 * @page: The page within the block of interest
4601 * @start_bitidx: The first bit of interest to retrieve
4602 * @end_bitidx: The last bit of interest
4603 * returns pageblock_bits flags
4604 */
4605unsigned long get_pageblock_flags_group(struct page *page,
4606 int start_bitidx, int end_bitidx)
4607{
4608 struct zone *zone;
4609 unsigned long *bitmap;
4610 unsigned long pfn, bitidx;
4611 unsigned long flags = 0;
4612 unsigned long value = 1;
4613
4614 zone = page_zone(page);
4615 pfn = page_to_pfn(page);
4616 bitmap = get_pageblock_bitmap(zone, pfn);
4617 bitidx = pfn_to_bitidx(zone, pfn);
4618
4619 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4620 if (test_bit(bitidx + start_bitidx, bitmap))
4621 flags |= value;
4622
4623 return flags;
4624}
4625
4626/**
4627 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4628 * @page: The page within the block of interest
4629 * @start_bitidx: The first bit of interest
4630 * @end_bitidx: The last bit of interest
4631 * @flags: The flags to set
4632 */
4633void set_pageblock_flags_group(struct page *page, unsigned long flags,
4634 int start_bitidx, int end_bitidx)
4635{
4636 struct zone *zone;
4637 unsigned long *bitmap;
4638 unsigned long pfn, bitidx;
4639 unsigned long value = 1;
4640
4641 zone = page_zone(page);
4642 pfn = page_to_pfn(page);
4643 bitmap = get_pageblock_bitmap(zone, pfn);
4644 bitidx = pfn_to_bitidx(zone, pfn);
4645 VM_BUG_ON(pfn < zone->zone_start_pfn);
4646 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4647
4648 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4649 if (flags & value)
4650 __set_bit(bitidx + start_bitidx, bitmap);
4651 else
4652 __clear_bit(bitidx + start_bitidx, bitmap);
4653}
4654
4655/*
4656 * This is designed as sub function...plz see page_isolation.c also.
4657 * set/clear page block's type to be ISOLATE.
4658 * page allocater never alloc memory from ISOLATE block.
4659 */
4660
4661int set_migratetype_isolate(struct page *page)
4662{
4663 struct zone *zone;
4664 unsigned long flags;
4665 int ret = -EBUSY;
4666
4667 zone = page_zone(page);
4668 spin_lock_irqsave(&zone->lock, flags);
4669 /*
4670 * In future, more migrate types will be able to be isolation target.
4671 */
4672 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4673 goto out;
4674 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4675 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4676 ret = 0;
4677out:
4678 spin_unlock_irqrestore(&zone->lock, flags);
4679 if (!ret)
4680 drain_all_pages();
4681 return ret;
4682}
4683
4684void unset_migratetype_isolate(struct page *page)
4685{
4686 struct zone *zone;
4687 unsigned long flags;
4688 zone = page_zone(page);
4689 spin_lock_irqsave(&zone->lock, flags);
4690 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4691 goto out;
4692 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4693 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4694out:
4695 spin_unlock_irqrestore(&zone->lock, flags);
4696}
4697
4698#ifdef CONFIG_MEMORY_HOTREMOVE
4699/*
4700 * All pages in the range must be isolated before calling this.
4701 */
4702void
4703__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4704{
4705 struct page *page;
4706 struct zone *zone;
4707 int order, i;
4708 unsigned long pfn;
4709 unsigned long flags;
4710 /* find the first valid pfn */
4711 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4712 if (pfn_valid(pfn))
4713 break;
4714 if (pfn == end_pfn)
4715 return;
4716 zone = page_zone(pfn_to_page(pfn));
4717 spin_lock_irqsave(&zone->lock, flags);
4718 pfn = start_pfn;
4719 while (pfn < end_pfn) {
4720 if (!pfn_valid(pfn)) {
4721 pfn++;
4722 continue;
4723 }
4724 page = pfn_to_page(pfn);
4725 BUG_ON(page_count(page));
4726 BUG_ON(!PageBuddy(page));
4727 order = page_order(page);
4728#ifdef CONFIG_DEBUG_VM
4729 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4730 pfn, 1 << order, end_pfn);
4731#endif
4732 list_del(&page->lru);
4733 rmv_page_order(page);
4734 zone->free_area[order].nr_free--;
4735 __mod_zone_page_state(zone, NR_FREE_PAGES,
4736 - (1UL << order));
4737 for (i = 0; i < (1 << order); i++)
4738 SetPageReserved((page+i));
4739 pfn += (1 << order);
4740 }
4741 spin_unlock_irqrestore(&zone->lock, flags);
4742}
4743#endif