]>
Commit | Line | Data |
---|---|---|
1 | // SPDX-License-Identifier: GPL-2.0-only | |
2 | /* | |
3 | * linux/mm/page_alloc.c | |
4 | * | |
5 | * Manages the free list, the system allocates free pages here. | |
6 | * Note that kmalloc() lives in slab.c | |
7 | * | |
8 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
9 | * Swap reorganised 29.12.95, Stephen Tweedie | |
10 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
11 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | |
12 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | |
13 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | |
14 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | |
15 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) | |
16 | */ | |
17 | ||
18 | #include <linux/stddef.h> | |
19 | #include <linux/mm.h> | |
20 | #include <linux/highmem.h> | |
21 | #include <linux/interrupt.h> | |
22 | #include <linux/jiffies.h> | |
23 | #include <linux/compiler.h> | |
24 | #include <linux/kernel.h> | |
25 | #include <linux/kasan.h> | |
26 | #include <linux/kmsan.h> | |
27 | #include <linux/module.h> | |
28 | #include <linux/suspend.h> | |
29 | #include <linux/ratelimit.h> | |
30 | #include <linux/oom.h> | |
31 | #include <linux/topology.h> | |
32 | #include <linux/sysctl.h> | |
33 | #include <linux/cpu.h> | |
34 | #include <linux/cpuset.h> | |
35 | #include <linux/pagevec.h> | |
36 | #include <linux/memory_hotplug.h> | |
37 | #include <linux/nodemask.h> | |
38 | #include <linux/vmstat.h> | |
39 | #include <linux/fault-inject.h> | |
40 | #include <linux/compaction.h> | |
41 | #include <trace/events/kmem.h> | |
42 | #include <trace/events/oom.h> | |
43 | #include <linux/prefetch.h> | |
44 | #include <linux/mm_inline.h> | |
45 | #include <linux/mmu_notifier.h> | |
46 | #include <linux/migrate.h> | |
47 | #include <linux/sched/mm.h> | |
48 | #include <linux/page_owner.h> | |
49 | #include <linux/page_table_check.h> | |
50 | #include <linux/memcontrol.h> | |
51 | #include <linux/ftrace.h> | |
52 | #include <linux/lockdep.h> | |
53 | #include <linux/psi.h> | |
54 | #include <linux/khugepaged.h> | |
55 | #include <linux/delayacct.h> | |
56 | #include <linux/cacheinfo.h> | |
57 | #include <linux/pgalloc_tag.h> | |
58 | #include <asm/div64.h> | |
59 | #include "internal.h" | |
60 | #include "shuffle.h" | |
61 | #include "page_reporting.h" | |
62 | ||
63 | /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ | |
64 | typedef int __bitwise fpi_t; | |
65 | ||
66 | /* No special request */ | |
67 | #define FPI_NONE ((__force fpi_t)0) | |
68 | ||
69 | /* | |
70 | * Skip free page reporting notification for the (possibly merged) page. | |
71 | * This does not hinder free page reporting from grabbing the page, | |
72 | * reporting it and marking it "reported" - it only skips notifying | |
73 | * the free page reporting infrastructure about a newly freed page. For | |
74 | * example, used when temporarily pulling a page from a freelist and | |
75 | * putting it back unmodified. | |
76 | */ | |
77 | #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) | |
78 | ||
79 | /* | |
80 | * Place the (possibly merged) page to the tail of the freelist. Will ignore | |
81 | * page shuffling (relevant code - e.g., memory onlining - is expected to | |
82 | * shuffle the whole zone). | |
83 | * | |
84 | * Note: No code should rely on this flag for correctness - it's purely | |
85 | * to allow for optimizations when handing back either fresh pages | |
86 | * (memory onlining) or untouched pages (page isolation, free page | |
87 | * reporting). | |
88 | */ | |
89 | #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) | |
90 | ||
91 | /* Free the page without taking locks. Rely on trylock only. */ | |
92 | #define FPI_TRYLOCK ((__force fpi_t)BIT(2)) | |
93 | ||
94 | /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ | |
95 | static DEFINE_MUTEX(pcp_batch_high_lock); | |
96 | #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) | |
97 | ||
98 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) | |
99 | /* | |
100 | * On SMP, spin_trylock is sufficient protection. | |
101 | * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. | |
102 | */ | |
103 | #define pcp_trylock_prepare(flags) do { } while (0) | |
104 | #define pcp_trylock_finish(flag) do { } while (0) | |
105 | #else | |
106 | ||
107 | /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ | |
108 | #define pcp_trylock_prepare(flags) local_irq_save(flags) | |
109 | #define pcp_trylock_finish(flags) local_irq_restore(flags) | |
110 | #endif | |
111 | ||
112 | /* | |
113 | * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid | |
114 | * a migration causing the wrong PCP to be locked and remote memory being | |
115 | * potentially allocated, pin the task to the CPU for the lookup+lock. | |
116 | * preempt_disable is used on !RT because it is faster than migrate_disable. | |
117 | * migrate_disable is used on RT because otherwise RT spinlock usage is | |
118 | * interfered with and a high priority task cannot preempt the allocator. | |
119 | */ | |
120 | #ifndef CONFIG_PREEMPT_RT | |
121 | #define pcpu_task_pin() preempt_disable() | |
122 | #define pcpu_task_unpin() preempt_enable() | |
123 | #else | |
124 | #define pcpu_task_pin() migrate_disable() | |
125 | #define pcpu_task_unpin() migrate_enable() | |
126 | #endif | |
127 | ||
128 | /* | |
129 | * Generic helper to lookup and a per-cpu variable with an embedded spinlock. | |
130 | * Return value should be used with equivalent unlock helper. | |
131 | */ | |
132 | #define pcpu_spin_lock(type, member, ptr) \ | |
133 | ({ \ | |
134 | type *_ret; \ | |
135 | pcpu_task_pin(); \ | |
136 | _ret = this_cpu_ptr(ptr); \ | |
137 | spin_lock(&_ret->member); \ | |
138 | _ret; \ | |
139 | }) | |
140 | ||
141 | #define pcpu_spin_trylock(type, member, ptr) \ | |
142 | ({ \ | |
143 | type *_ret; \ | |
144 | pcpu_task_pin(); \ | |
145 | _ret = this_cpu_ptr(ptr); \ | |
146 | if (!spin_trylock(&_ret->member)) { \ | |
147 | pcpu_task_unpin(); \ | |
148 | _ret = NULL; \ | |
149 | } \ | |
150 | _ret; \ | |
151 | }) | |
152 | ||
153 | #define pcpu_spin_unlock(member, ptr) \ | |
154 | ({ \ | |
155 | spin_unlock(&ptr->member); \ | |
156 | pcpu_task_unpin(); \ | |
157 | }) | |
158 | ||
159 | /* struct per_cpu_pages specific helpers. */ | |
160 | #define pcp_spin_lock(ptr) \ | |
161 | pcpu_spin_lock(struct per_cpu_pages, lock, ptr) | |
162 | ||
163 | #define pcp_spin_trylock(ptr) \ | |
164 | pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) | |
165 | ||
166 | #define pcp_spin_unlock(ptr) \ | |
167 | pcpu_spin_unlock(lock, ptr) | |
168 | ||
169 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID | |
170 | DEFINE_PER_CPU(int, numa_node); | |
171 | EXPORT_PER_CPU_SYMBOL(numa_node); | |
172 | #endif | |
173 | ||
174 | DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); | |
175 | ||
176 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | |
177 | /* | |
178 | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. | |
179 | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. | |
180 | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() | |
181 | * defined in <linux/topology.h>. | |
182 | */ | |
183 | DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ | |
184 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); | |
185 | #endif | |
186 | ||
187 | static DEFINE_MUTEX(pcpu_drain_mutex); | |
188 | ||
189 | #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY | |
190 | volatile unsigned long latent_entropy __latent_entropy; | |
191 | EXPORT_SYMBOL(latent_entropy); | |
192 | #endif | |
193 | ||
194 | /* | |
195 | * Array of node states. | |
196 | */ | |
197 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { | |
198 | [N_POSSIBLE] = NODE_MASK_ALL, | |
199 | [N_ONLINE] = { { [0] = 1UL } }, | |
200 | #ifndef CONFIG_NUMA | |
201 | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, | |
202 | #ifdef CONFIG_HIGHMEM | |
203 | [N_HIGH_MEMORY] = { { [0] = 1UL } }, | |
204 | #endif | |
205 | [N_MEMORY] = { { [0] = 1UL } }, | |
206 | [N_CPU] = { { [0] = 1UL } }, | |
207 | #endif /* NUMA */ | |
208 | }; | |
209 | EXPORT_SYMBOL(node_states); | |
210 | ||
211 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; | |
212 | ||
213 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE | |
214 | unsigned int pageblock_order __read_mostly; | |
215 | #endif | |
216 | ||
217 | static void __free_pages_ok(struct page *page, unsigned int order, | |
218 | fpi_t fpi_flags); | |
219 | ||
220 | /* | |
221 | * results with 256, 32 in the lowmem_reserve sysctl: | |
222 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | |
223 | * 1G machine -> (16M dma, 784M normal, 224M high) | |
224 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | |
225 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | |
226 | * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA | |
227 | * | |
228 | * TBD: should special case ZONE_DMA32 machines here - in those we normally | |
229 | * don't need any ZONE_NORMAL reservation | |
230 | */ | |
231 | static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { | |
232 | #ifdef CONFIG_ZONE_DMA | |
233 | [ZONE_DMA] = 256, | |
234 | #endif | |
235 | #ifdef CONFIG_ZONE_DMA32 | |
236 | [ZONE_DMA32] = 256, | |
237 | #endif | |
238 | [ZONE_NORMAL] = 32, | |
239 | #ifdef CONFIG_HIGHMEM | |
240 | [ZONE_HIGHMEM] = 0, | |
241 | #endif | |
242 | [ZONE_MOVABLE] = 0, | |
243 | }; | |
244 | ||
245 | char * const zone_names[MAX_NR_ZONES] = { | |
246 | #ifdef CONFIG_ZONE_DMA | |
247 | "DMA", | |
248 | #endif | |
249 | #ifdef CONFIG_ZONE_DMA32 | |
250 | "DMA32", | |
251 | #endif | |
252 | "Normal", | |
253 | #ifdef CONFIG_HIGHMEM | |
254 | "HighMem", | |
255 | #endif | |
256 | "Movable", | |
257 | #ifdef CONFIG_ZONE_DEVICE | |
258 | "Device", | |
259 | #endif | |
260 | }; | |
261 | ||
262 | const char * const migratetype_names[MIGRATE_TYPES] = { | |
263 | "Unmovable", | |
264 | "Movable", | |
265 | "Reclaimable", | |
266 | "HighAtomic", | |
267 | #ifdef CONFIG_CMA | |
268 | "CMA", | |
269 | #endif | |
270 | #ifdef CONFIG_MEMORY_ISOLATION | |
271 | "Isolate", | |
272 | #endif | |
273 | }; | |
274 | ||
275 | int min_free_kbytes = 1024; | |
276 | int user_min_free_kbytes = -1; | |
277 | static int watermark_boost_factor __read_mostly = 15000; | |
278 | static int watermark_scale_factor = 10; | |
279 | int defrag_mode; | |
280 | ||
281 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | |
282 | int movable_zone; | |
283 | EXPORT_SYMBOL(movable_zone); | |
284 | ||
285 | #if MAX_NUMNODES > 1 | |
286 | unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; | |
287 | unsigned int nr_online_nodes __read_mostly = 1; | |
288 | EXPORT_SYMBOL(nr_node_ids); | |
289 | EXPORT_SYMBOL(nr_online_nodes); | |
290 | #endif | |
291 | ||
292 | static bool page_contains_unaccepted(struct page *page, unsigned int order); | |
293 | static bool cond_accept_memory(struct zone *zone, unsigned int order, | |
294 | int alloc_flags); | |
295 | static bool __free_unaccepted(struct page *page); | |
296 | ||
297 | int page_group_by_mobility_disabled __read_mostly; | |
298 | ||
299 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | |
300 | /* | |
301 | * During boot we initialize deferred pages on-demand, as needed, but once | |
302 | * page_alloc_init_late() has finished, the deferred pages are all initialized, | |
303 | * and we can permanently disable that path. | |
304 | */ | |
305 | DEFINE_STATIC_KEY_TRUE(deferred_pages); | |
306 | ||
307 | static inline bool deferred_pages_enabled(void) | |
308 | { | |
309 | return static_branch_unlikely(&deferred_pages); | |
310 | } | |
311 | ||
312 | /* | |
313 | * deferred_grow_zone() is __init, but it is called from | |
314 | * get_page_from_freelist() during early boot until deferred_pages permanently | |
315 | * disables this call. This is why we have refdata wrapper to avoid warning, | |
316 | * and to ensure that the function body gets unloaded. | |
317 | */ | |
318 | static bool __ref | |
319 | _deferred_grow_zone(struct zone *zone, unsigned int order) | |
320 | { | |
321 | return deferred_grow_zone(zone, order); | |
322 | } | |
323 | #else | |
324 | static inline bool deferred_pages_enabled(void) | |
325 | { | |
326 | return false; | |
327 | } | |
328 | ||
329 | static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) | |
330 | { | |
331 | return false; | |
332 | } | |
333 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | |
334 | ||
335 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ | |
336 | static inline unsigned long *get_pageblock_bitmap(const struct page *page, | |
337 | unsigned long pfn) | |
338 | { | |
339 | #ifdef CONFIG_SPARSEMEM | |
340 | return section_to_usemap(__pfn_to_section(pfn)); | |
341 | #else | |
342 | return page_zone(page)->pageblock_flags; | |
343 | #endif /* CONFIG_SPARSEMEM */ | |
344 | } | |
345 | ||
346 | static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) | |
347 | { | |
348 | #ifdef CONFIG_SPARSEMEM | |
349 | pfn &= (PAGES_PER_SECTION-1); | |
350 | #else | |
351 | pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); | |
352 | #endif /* CONFIG_SPARSEMEM */ | |
353 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; | |
354 | } | |
355 | ||
356 | /** | |
357 | * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages | |
358 | * @page: The page within the block of interest | |
359 | * @pfn: The target page frame number | |
360 | * @mask: mask of bits that the caller is interested in | |
361 | * | |
362 | * Return: pageblock_bits flags | |
363 | */ | |
364 | unsigned long get_pfnblock_flags_mask(const struct page *page, | |
365 | unsigned long pfn, unsigned long mask) | |
366 | { | |
367 | unsigned long *bitmap; | |
368 | unsigned long bitidx, word_bitidx; | |
369 | unsigned long word; | |
370 | ||
371 | bitmap = get_pageblock_bitmap(page, pfn); | |
372 | bitidx = pfn_to_bitidx(page, pfn); | |
373 | word_bitidx = bitidx / BITS_PER_LONG; | |
374 | bitidx &= (BITS_PER_LONG-1); | |
375 | /* | |
376 | * This races, without locks, with set_pfnblock_flags_mask(). Ensure | |
377 | * a consistent read of the memory array, so that results, even though | |
378 | * racy, are not corrupted. | |
379 | */ | |
380 | word = READ_ONCE(bitmap[word_bitidx]); | |
381 | return (word >> bitidx) & mask; | |
382 | } | |
383 | ||
384 | static __always_inline int get_pfnblock_migratetype(const struct page *page, | |
385 | unsigned long pfn) | |
386 | { | |
387 | return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); | |
388 | } | |
389 | ||
390 | /** | |
391 | * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages | |
392 | * @page: The page within the block of interest | |
393 | * @flags: The flags to set | |
394 | * @pfn: The target page frame number | |
395 | * @mask: mask of bits that the caller is interested in | |
396 | */ | |
397 | void set_pfnblock_flags_mask(struct page *page, unsigned long flags, | |
398 | unsigned long pfn, | |
399 | unsigned long mask) | |
400 | { | |
401 | unsigned long *bitmap; | |
402 | unsigned long bitidx, word_bitidx; | |
403 | unsigned long word; | |
404 | ||
405 | BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); | |
406 | BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); | |
407 | ||
408 | bitmap = get_pageblock_bitmap(page, pfn); | |
409 | bitidx = pfn_to_bitidx(page, pfn); | |
410 | word_bitidx = bitidx / BITS_PER_LONG; | |
411 | bitidx &= (BITS_PER_LONG-1); | |
412 | ||
413 | VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); | |
414 | ||
415 | mask <<= bitidx; | |
416 | flags <<= bitidx; | |
417 | ||
418 | word = READ_ONCE(bitmap[word_bitidx]); | |
419 | do { | |
420 | } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); | |
421 | } | |
422 | ||
423 | void set_pageblock_migratetype(struct page *page, int migratetype) | |
424 | { | |
425 | if (unlikely(page_group_by_mobility_disabled && | |
426 | migratetype < MIGRATE_PCPTYPES)) | |
427 | migratetype = MIGRATE_UNMOVABLE; | |
428 | ||
429 | set_pfnblock_flags_mask(page, (unsigned long)migratetype, | |
430 | page_to_pfn(page), MIGRATETYPE_MASK); | |
431 | } | |
432 | ||
433 | #ifdef CONFIG_DEBUG_VM | |
434 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) | |
435 | { | |
436 | int ret; | |
437 | unsigned seq; | |
438 | unsigned long pfn = page_to_pfn(page); | |
439 | unsigned long sp, start_pfn; | |
440 | ||
441 | do { | |
442 | seq = zone_span_seqbegin(zone); | |
443 | start_pfn = zone->zone_start_pfn; | |
444 | sp = zone->spanned_pages; | |
445 | ret = !zone_spans_pfn(zone, pfn); | |
446 | } while (zone_span_seqretry(zone, seq)); | |
447 | ||
448 | if (ret) | |
449 | pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", | |
450 | pfn, zone_to_nid(zone), zone->name, | |
451 | start_pfn, start_pfn + sp); | |
452 | ||
453 | return ret; | |
454 | } | |
455 | ||
456 | /* | |
457 | * Temporary debugging check for pages not lying within a given zone. | |
458 | */ | |
459 | static bool __maybe_unused bad_range(struct zone *zone, struct page *page) | |
460 | { | |
461 | if (page_outside_zone_boundaries(zone, page)) | |
462 | return true; | |
463 | if (zone != page_zone(page)) | |
464 | return true; | |
465 | ||
466 | return false; | |
467 | } | |
468 | #else | |
469 | static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) | |
470 | { | |
471 | return false; | |
472 | } | |
473 | #endif | |
474 | ||
475 | static void bad_page(struct page *page, const char *reason) | |
476 | { | |
477 | static unsigned long resume; | |
478 | static unsigned long nr_shown; | |
479 | static unsigned long nr_unshown; | |
480 | ||
481 | /* | |
482 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
483 | * or allow a steady drip of one report per second. | |
484 | */ | |
485 | if (nr_shown == 60) { | |
486 | if (time_before(jiffies, resume)) { | |
487 | nr_unshown++; | |
488 | goto out; | |
489 | } | |
490 | if (nr_unshown) { | |
491 | pr_alert( | |
492 | "BUG: Bad page state: %lu messages suppressed\n", | |
493 | nr_unshown); | |
494 | nr_unshown = 0; | |
495 | } | |
496 | nr_shown = 0; | |
497 | } | |
498 | if (nr_shown++ == 0) | |
499 | resume = jiffies + 60 * HZ; | |
500 | ||
501 | pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", | |
502 | current->comm, page_to_pfn(page)); | |
503 | dump_page(page, reason); | |
504 | ||
505 | print_modules(); | |
506 | dump_stack(); | |
507 | out: | |
508 | /* Leave bad fields for debug, except PageBuddy could make trouble */ | |
509 | if (PageBuddy(page)) | |
510 | __ClearPageBuddy(page); | |
511 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | |
512 | } | |
513 | ||
514 | static inline unsigned int order_to_pindex(int migratetype, int order) | |
515 | { | |
516 | ||
517 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
518 | bool movable; | |
519 | if (order > PAGE_ALLOC_COSTLY_ORDER) { | |
520 | VM_BUG_ON(order != HPAGE_PMD_ORDER); | |
521 | ||
522 | movable = migratetype == MIGRATE_MOVABLE; | |
523 | ||
524 | return NR_LOWORDER_PCP_LISTS + movable; | |
525 | } | |
526 | #else | |
527 | VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); | |
528 | #endif | |
529 | ||
530 | return (MIGRATE_PCPTYPES * order) + migratetype; | |
531 | } | |
532 | ||
533 | static inline int pindex_to_order(unsigned int pindex) | |
534 | { | |
535 | int order = pindex / MIGRATE_PCPTYPES; | |
536 | ||
537 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
538 | if (pindex >= NR_LOWORDER_PCP_LISTS) | |
539 | order = HPAGE_PMD_ORDER; | |
540 | #else | |
541 | VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); | |
542 | #endif | |
543 | ||
544 | return order; | |
545 | } | |
546 | ||
547 | static inline bool pcp_allowed_order(unsigned int order) | |
548 | { | |
549 | if (order <= PAGE_ALLOC_COSTLY_ORDER) | |
550 | return true; | |
551 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
552 | if (order == HPAGE_PMD_ORDER) | |
553 | return true; | |
554 | #endif | |
555 | return false; | |
556 | } | |
557 | ||
558 | /* | |
559 | * Higher-order pages are called "compound pages". They are structured thusly: | |
560 | * | |
561 | * The first PAGE_SIZE page is called the "head page" and have PG_head set. | |
562 | * | |
563 | * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded | |
564 | * in bit 0 of page->compound_head. The rest of bits is pointer to head page. | |
565 | * | |
566 | * The first tail page's ->compound_order holds the order of allocation. | |
567 | * This usage means that zero-order pages may not be compound. | |
568 | */ | |
569 | ||
570 | void prep_compound_page(struct page *page, unsigned int order) | |
571 | { | |
572 | int i; | |
573 | int nr_pages = 1 << order; | |
574 | ||
575 | __SetPageHead(page); | |
576 | for (i = 1; i < nr_pages; i++) | |
577 | prep_compound_tail(page, i); | |
578 | ||
579 | prep_compound_head(page, order); | |
580 | } | |
581 | ||
582 | static inline void set_buddy_order(struct page *page, unsigned int order) | |
583 | { | |
584 | set_page_private(page, order); | |
585 | __SetPageBuddy(page); | |
586 | } | |
587 | ||
588 | #ifdef CONFIG_COMPACTION | |
589 | static inline struct capture_control *task_capc(struct zone *zone) | |
590 | { | |
591 | struct capture_control *capc = current->capture_control; | |
592 | ||
593 | return unlikely(capc) && | |
594 | !(current->flags & PF_KTHREAD) && | |
595 | !capc->page && | |
596 | capc->cc->zone == zone ? capc : NULL; | |
597 | } | |
598 | ||
599 | static inline bool | |
600 | compaction_capture(struct capture_control *capc, struct page *page, | |
601 | int order, int migratetype) | |
602 | { | |
603 | if (!capc || order != capc->cc->order) | |
604 | return false; | |
605 | ||
606 | /* Do not accidentally pollute CMA or isolated regions*/ | |
607 | if (is_migrate_cma(migratetype) || | |
608 | is_migrate_isolate(migratetype)) | |
609 | return false; | |
610 | ||
611 | /* | |
612 | * Do not let lower order allocations pollute a movable pageblock | |
613 | * unless compaction is also requesting movable pages. | |
614 | * This might let an unmovable request use a reclaimable pageblock | |
615 | * and vice-versa but no more than normal fallback logic which can | |
616 | * have trouble finding a high-order free page. | |
617 | */ | |
618 | if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && | |
619 | capc->cc->migratetype != MIGRATE_MOVABLE) | |
620 | return false; | |
621 | ||
622 | if (migratetype != capc->cc->migratetype) | |
623 | trace_mm_page_alloc_extfrag(page, capc->cc->order, order, | |
624 | capc->cc->migratetype, migratetype); | |
625 | ||
626 | capc->page = page; | |
627 | return true; | |
628 | } | |
629 | ||
630 | #else | |
631 | static inline struct capture_control *task_capc(struct zone *zone) | |
632 | { | |
633 | return NULL; | |
634 | } | |
635 | ||
636 | static inline bool | |
637 | compaction_capture(struct capture_control *capc, struct page *page, | |
638 | int order, int migratetype) | |
639 | { | |
640 | return false; | |
641 | } | |
642 | #endif /* CONFIG_COMPACTION */ | |
643 | ||
644 | static inline void account_freepages(struct zone *zone, int nr_pages, | |
645 | int migratetype) | |
646 | { | |
647 | lockdep_assert_held(&zone->lock); | |
648 | ||
649 | if (is_migrate_isolate(migratetype)) | |
650 | return; | |
651 | ||
652 | __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); | |
653 | ||
654 | if (is_migrate_cma(migratetype)) | |
655 | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); | |
656 | else if (is_migrate_highatomic(migratetype)) | |
657 | WRITE_ONCE(zone->nr_free_highatomic, | |
658 | zone->nr_free_highatomic + nr_pages); | |
659 | } | |
660 | ||
661 | /* Used for pages not on another list */ | |
662 | static inline void __add_to_free_list(struct page *page, struct zone *zone, | |
663 | unsigned int order, int migratetype, | |
664 | bool tail) | |
665 | { | |
666 | struct free_area *area = &zone->free_area[order]; | |
667 | int nr_pages = 1 << order; | |
668 | ||
669 | VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, | |
670 | "page type is %lu, passed migratetype is %d (nr=%d)\n", | |
671 | get_pageblock_migratetype(page), migratetype, nr_pages); | |
672 | ||
673 | if (tail) | |
674 | list_add_tail(&page->buddy_list, &area->free_list[migratetype]); | |
675 | else | |
676 | list_add(&page->buddy_list, &area->free_list[migratetype]); | |
677 | area->nr_free++; | |
678 | ||
679 | if (order >= pageblock_order && !is_migrate_isolate(migratetype)) | |
680 | __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); | |
681 | } | |
682 | ||
683 | /* | |
684 | * Used for pages which are on another list. Move the pages to the tail | |
685 | * of the list - so the moved pages won't immediately be considered for | |
686 | * allocation again (e.g., optimization for memory onlining). | |
687 | */ | |
688 | static inline void move_to_free_list(struct page *page, struct zone *zone, | |
689 | unsigned int order, int old_mt, int new_mt) | |
690 | { | |
691 | struct free_area *area = &zone->free_area[order]; | |
692 | int nr_pages = 1 << order; | |
693 | ||
694 | /* Free page moving can fail, so it happens before the type update */ | |
695 | VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, | |
696 | "page type is %lu, passed migratetype is %d (nr=%d)\n", | |
697 | get_pageblock_migratetype(page), old_mt, nr_pages); | |
698 | ||
699 | list_move_tail(&page->buddy_list, &area->free_list[new_mt]); | |
700 | ||
701 | account_freepages(zone, -nr_pages, old_mt); | |
702 | account_freepages(zone, nr_pages, new_mt); | |
703 | ||
704 | if (order >= pageblock_order && | |
705 | is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) { | |
706 | if (!is_migrate_isolate(old_mt)) | |
707 | nr_pages = -nr_pages; | |
708 | __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); | |
709 | } | |
710 | } | |
711 | ||
712 | static inline void __del_page_from_free_list(struct page *page, struct zone *zone, | |
713 | unsigned int order, int migratetype) | |
714 | { | |
715 | int nr_pages = 1 << order; | |
716 | ||
717 | VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, | |
718 | "page type is %lu, passed migratetype is %d (nr=%d)\n", | |
719 | get_pageblock_migratetype(page), migratetype, nr_pages); | |
720 | ||
721 | /* clear reported state and update reported page count */ | |
722 | if (page_reported(page)) | |
723 | __ClearPageReported(page); | |
724 | ||
725 | list_del(&page->buddy_list); | |
726 | __ClearPageBuddy(page); | |
727 | set_page_private(page, 0); | |
728 | zone->free_area[order].nr_free--; | |
729 | ||
730 | if (order >= pageblock_order && !is_migrate_isolate(migratetype)) | |
731 | __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages); | |
732 | } | |
733 | ||
734 | static inline void del_page_from_free_list(struct page *page, struct zone *zone, | |
735 | unsigned int order, int migratetype) | |
736 | { | |
737 | __del_page_from_free_list(page, zone, order, migratetype); | |
738 | account_freepages(zone, -(1 << order), migratetype); | |
739 | } | |
740 | ||
741 | static inline struct page *get_page_from_free_area(struct free_area *area, | |
742 | int migratetype) | |
743 | { | |
744 | return list_first_entry_or_null(&area->free_list[migratetype], | |
745 | struct page, buddy_list); | |
746 | } | |
747 | ||
748 | /* | |
749 | * If this is less than the 2nd largest possible page, check if the buddy | |
750 | * of the next-higher order is free. If it is, it's possible | |
751 | * that pages are being freed that will coalesce soon. In case, | |
752 | * that is happening, add the free page to the tail of the list | |
753 | * so it's less likely to be used soon and more likely to be merged | |
754 | * as a 2-level higher order page | |
755 | */ | |
756 | static inline bool | |
757 | buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, | |
758 | struct page *page, unsigned int order) | |
759 | { | |
760 | unsigned long higher_page_pfn; | |
761 | struct page *higher_page; | |
762 | ||
763 | if (order >= MAX_PAGE_ORDER - 1) | |
764 | return false; | |
765 | ||
766 | higher_page_pfn = buddy_pfn & pfn; | |
767 | higher_page = page + (higher_page_pfn - pfn); | |
768 | ||
769 | return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, | |
770 | NULL) != NULL; | |
771 | } | |
772 | ||
773 | /* | |
774 | * Freeing function for a buddy system allocator. | |
775 | * | |
776 | * The concept of a buddy system is to maintain direct-mapped table | |
777 | * (containing bit values) for memory blocks of various "orders". | |
778 | * The bottom level table contains the map for the smallest allocatable | |
779 | * units of memory (here, pages), and each level above it describes | |
780 | * pairs of units from the levels below, hence, "buddies". | |
781 | * At a high level, all that happens here is marking the table entry | |
782 | * at the bottom level available, and propagating the changes upward | |
783 | * as necessary, plus some accounting needed to play nicely with other | |
784 | * parts of the VM system. | |
785 | * At each level, we keep a list of pages, which are heads of continuous | |
786 | * free pages of length of (1 << order) and marked with PageBuddy. | |
787 | * Page's order is recorded in page_private(page) field. | |
788 | * So when we are allocating or freeing one, we can derive the state of the | |
789 | * other. That is, if we allocate a small block, and both were | |
790 | * free, the remainder of the region must be split into blocks. | |
791 | * If a block is freed, and its buddy is also free, then this | |
792 | * triggers coalescing into a block of larger size. | |
793 | * | |
794 | * -- nyc | |
795 | */ | |
796 | ||
797 | static inline void __free_one_page(struct page *page, | |
798 | unsigned long pfn, | |
799 | struct zone *zone, unsigned int order, | |
800 | int migratetype, fpi_t fpi_flags) | |
801 | { | |
802 | struct capture_control *capc = task_capc(zone); | |
803 | unsigned long buddy_pfn = 0; | |
804 | unsigned long combined_pfn; | |
805 | struct page *buddy; | |
806 | bool to_tail; | |
807 | ||
808 | VM_BUG_ON(!zone_is_initialized(zone)); | |
809 | VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); | |
810 | ||
811 | VM_BUG_ON(migratetype == -1); | |
812 | VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); | |
813 | VM_BUG_ON_PAGE(bad_range(zone, page), page); | |
814 | ||
815 | account_freepages(zone, 1 << order, migratetype); | |
816 | ||
817 | while (order < MAX_PAGE_ORDER) { | |
818 | int buddy_mt = migratetype; | |
819 | ||
820 | if (compaction_capture(capc, page, order, migratetype)) { | |
821 | account_freepages(zone, -(1 << order), migratetype); | |
822 | return; | |
823 | } | |
824 | ||
825 | buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); | |
826 | if (!buddy) | |
827 | goto done_merging; | |
828 | ||
829 | if (unlikely(order >= pageblock_order)) { | |
830 | /* | |
831 | * We want to prevent merge between freepages on pageblock | |
832 | * without fallbacks and normal pageblock. Without this, | |
833 | * pageblock isolation could cause incorrect freepage or CMA | |
834 | * accounting or HIGHATOMIC accounting. | |
835 | */ | |
836 | buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); | |
837 | ||
838 | if (migratetype != buddy_mt && | |
839 | (!migratetype_is_mergeable(migratetype) || | |
840 | !migratetype_is_mergeable(buddy_mt))) | |
841 | goto done_merging; | |
842 | } | |
843 | ||
844 | /* | |
845 | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, | |
846 | * merge with it and move up one order. | |
847 | */ | |
848 | if (page_is_guard(buddy)) | |
849 | clear_page_guard(zone, buddy, order); | |
850 | else | |
851 | __del_page_from_free_list(buddy, zone, order, buddy_mt); | |
852 | ||
853 | if (unlikely(buddy_mt != migratetype)) { | |
854 | /* | |
855 | * Match buddy type. This ensures that an | |
856 | * expand() down the line puts the sub-blocks | |
857 | * on the right freelists. | |
858 | */ | |
859 | set_pageblock_migratetype(buddy, migratetype); | |
860 | } | |
861 | ||
862 | combined_pfn = buddy_pfn & pfn; | |
863 | page = page + (combined_pfn - pfn); | |
864 | pfn = combined_pfn; | |
865 | order++; | |
866 | } | |
867 | ||
868 | done_merging: | |
869 | set_buddy_order(page, order); | |
870 | ||
871 | if (fpi_flags & FPI_TO_TAIL) | |
872 | to_tail = true; | |
873 | else if (is_shuffle_order(order)) | |
874 | to_tail = shuffle_pick_tail(); | |
875 | else | |
876 | to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); | |
877 | ||
878 | __add_to_free_list(page, zone, order, migratetype, to_tail); | |
879 | ||
880 | /* Notify page reporting subsystem of freed page */ | |
881 | if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) | |
882 | page_reporting_notify_free(order); | |
883 | } | |
884 | ||
885 | /* | |
886 | * A bad page could be due to a number of fields. Instead of multiple branches, | |
887 | * try and check multiple fields with one check. The caller must do a detailed | |
888 | * check if necessary. | |
889 | */ | |
890 | static inline bool page_expected_state(struct page *page, | |
891 | unsigned long check_flags) | |
892 | { | |
893 | if (unlikely(atomic_read(&page->_mapcount) != -1)) | |
894 | return false; | |
895 | ||
896 | if (unlikely((unsigned long)page->mapping | | |
897 | page_ref_count(page) | | |
898 | #ifdef CONFIG_MEMCG | |
899 | page->memcg_data | | |
900 | #endif | |
901 | page_pool_page_is_pp(page) | | |
902 | (page->flags & check_flags))) | |
903 | return false; | |
904 | ||
905 | return true; | |
906 | } | |
907 | ||
908 | static const char *page_bad_reason(struct page *page, unsigned long flags) | |
909 | { | |
910 | const char *bad_reason = NULL; | |
911 | ||
912 | if (unlikely(atomic_read(&page->_mapcount) != -1)) | |
913 | bad_reason = "nonzero mapcount"; | |
914 | if (unlikely(page->mapping != NULL)) | |
915 | bad_reason = "non-NULL mapping"; | |
916 | if (unlikely(page_ref_count(page) != 0)) | |
917 | bad_reason = "nonzero _refcount"; | |
918 | if (unlikely(page->flags & flags)) { | |
919 | if (flags == PAGE_FLAGS_CHECK_AT_PREP) | |
920 | bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; | |
921 | else | |
922 | bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; | |
923 | } | |
924 | #ifdef CONFIG_MEMCG | |
925 | if (unlikely(page->memcg_data)) | |
926 | bad_reason = "page still charged to cgroup"; | |
927 | #endif | |
928 | if (unlikely(page_pool_page_is_pp(page))) | |
929 | bad_reason = "page_pool leak"; | |
930 | return bad_reason; | |
931 | } | |
932 | ||
933 | static inline bool free_page_is_bad(struct page *page) | |
934 | { | |
935 | if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) | |
936 | return false; | |
937 | ||
938 | /* Something has gone sideways, find it */ | |
939 | bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); | |
940 | return true; | |
941 | } | |
942 | ||
943 | static inline bool is_check_pages_enabled(void) | |
944 | { | |
945 | return static_branch_unlikely(&check_pages_enabled); | |
946 | } | |
947 | ||
948 | static int free_tail_page_prepare(struct page *head_page, struct page *page) | |
949 | { | |
950 | struct folio *folio = (struct folio *)head_page; | |
951 | int ret = 1; | |
952 | ||
953 | /* | |
954 | * We rely page->lru.next never has bit 0 set, unless the page | |
955 | * is PageTail(). Let's make sure that's true even for poisoned ->lru. | |
956 | */ | |
957 | BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); | |
958 | ||
959 | if (!is_check_pages_enabled()) { | |
960 | ret = 0; | |
961 | goto out; | |
962 | } | |
963 | switch (page - head_page) { | |
964 | case 1: | |
965 | /* the first tail page: these may be in place of ->mapping */ | |
966 | if (unlikely(folio_large_mapcount(folio))) { | |
967 | bad_page(page, "nonzero large_mapcount"); | |
968 | goto out; | |
969 | } | |
970 | if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) && | |
971 | unlikely(atomic_read(&folio->_nr_pages_mapped))) { | |
972 | bad_page(page, "nonzero nr_pages_mapped"); | |
973 | goto out; | |
974 | } | |
975 | if (IS_ENABLED(CONFIG_MM_ID)) { | |
976 | if (unlikely(folio->_mm_id_mapcount[0] != -1)) { | |
977 | bad_page(page, "nonzero mm mapcount 0"); | |
978 | goto out; | |
979 | } | |
980 | if (unlikely(folio->_mm_id_mapcount[1] != -1)) { | |
981 | bad_page(page, "nonzero mm mapcount 1"); | |
982 | goto out; | |
983 | } | |
984 | } | |
985 | if (IS_ENABLED(CONFIG_64BIT)) { | |
986 | if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { | |
987 | bad_page(page, "nonzero entire_mapcount"); | |
988 | goto out; | |
989 | } | |
990 | if (unlikely(atomic_read(&folio->_pincount))) { | |
991 | bad_page(page, "nonzero pincount"); | |
992 | goto out; | |
993 | } | |
994 | } | |
995 | break; | |
996 | case 2: | |
997 | /* the second tail page: deferred_list overlaps ->mapping */ | |
998 | if (unlikely(!list_empty(&folio->_deferred_list))) { | |
999 | bad_page(page, "on deferred list"); | |
1000 | goto out; | |
1001 | } | |
1002 | if (!IS_ENABLED(CONFIG_64BIT)) { | |
1003 | if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { | |
1004 | bad_page(page, "nonzero entire_mapcount"); | |
1005 | goto out; | |
1006 | } | |
1007 | if (unlikely(atomic_read(&folio->_pincount))) { | |
1008 | bad_page(page, "nonzero pincount"); | |
1009 | goto out; | |
1010 | } | |
1011 | } | |
1012 | break; | |
1013 | case 3: | |
1014 | /* the third tail page: hugetlb specifics overlap ->mappings */ | |
1015 | if (IS_ENABLED(CONFIG_HUGETLB_PAGE)) | |
1016 | break; | |
1017 | fallthrough; | |
1018 | default: | |
1019 | if (page->mapping != TAIL_MAPPING) { | |
1020 | bad_page(page, "corrupted mapping in tail page"); | |
1021 | goto out; | |
1022 | } | |
1023 | break; | |
1024 | } | |
1025 | if (unlikely(!PageTail(page))) { | |
1026 | bad_page(page, "PageTail not set"); | |
1027 | goto out; | |
1028 | } | |
1029 | if (unlikely(compound_head(page) != head_page)) { | |
1030 | bad_page(page, "compound_head not consistent"); | |
1031 | goto out; | |
1032 | } | |
1033 | ret = 0; | |
1034 | out: | |
1035 | page->mapping = NULL; | |
1036 | clear_compound_head(page); | |
1037 | return ret; | |
1038 | } | |
1039 | ||
1040 | /* | |
1041 | * Skip KASAN memory poisoning when either: | |
1042 | * | |
1043 | * 1. For generic KASAN: deferred memory initialization has not yet completed. | |
1044 | * Tag-based KASAN modes skip pages freed via deferred memory initialization | |
1045 | * using page tags instead (see below). | |
1046 | * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating | |
1047 | * that error detection is disabled for accesses via the page address. | |
1048 | * | |
1049 | * Pages will have match-all tags in the following circumstances: | |
1050 | * | |
1051 | * 1. Pages are being initialized for the first time, including during deferred | |
1052 | * memory init; see the call to page_kasan_tag_reset in __init_single_page. | |
1053 | * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the | |
1054 | * exception of pages unpoisoned by kasan_unpoison_vmalloc. | |
1055 | * 3. The allocation was excluded from being checked due to sampling, | |
1056 | * see the call to kasan_unpoison_pages. | |
1057 | * | |
1058 | * Poisoning pages during deferred memory init will greatly lengthen the | |
1059 | * process and cause problem in large memory systems as the deferred pages | |
1060 | * initialization is done with interrupt disabled. | |
1061 | * | |
1062 | * Assuming that there will be no reference to those newly initialized | |
1063 | * pages before they are ever allocated, this should have no effect on | |
1064 | * KASAN memory tracking as the poison will be properly inserted at page | |
1065 | * allocation time. The only corner case is when pages are allocated by | |
1066 | * on-demand allocation and then freed again before the deferred pages | |
1067 | * initialization is done, but this is not likely to happen. | |
1068 | */ | |
1069 | static inline bool should_skip_kasan_poison(struct page *page) | |
1070 | { | |
1071 | if (IS_ENABLED(CONFIG_KASAN_GENERIC)) | |
1072 | return deferred_pages_enabled(); | |
1073 | ||
1074 | return page_kasan_tag(page) == KASAN_TAG_KERNEL; | |
1075 | } | |
1076 | ||
1077 | static void kernel_init_pages(struct page *page, int numpages) | |
1078 | { | |
1079 | int i; | |
1080 | ||
1081 | /* s390's use of memset() could override KASAN redzones. */ | |
1082 | kasan_disable_current(); | |
1083 | for (i = 0; i < numpages; i++) | |
1084 | clear_highpage_kasan_tagged(page + i); | |
1085 | kasan_enable_current(); | |
1086 | } | |
1087 | ||
1088 | #ifdef CONFIG_MEM_ALLOC_PROFILING | |
1089 | ||
1090 | /* Should be called only if mem_alloc_profiling_enabled() */ | |
1091 | void __clear_page_tag_ref(struct page *page) | |
1092 | { | |
1093 | union pgtag_ref_handle handle; | |
1094 | union codetag_ref ref; | |
1095 | ||
1096 | if (get_page_tag_ref(page, &ref, &handle)) { | |
1097 | set_codetag_empty(&ref); | |
1098 | update_page_tag_ref(handle, &ref); | |
1099 | put_page_tag_ref(handle); | |
1100 | } | |
1101 | } | |
1102 | ||
1103 | /* Should be called only if mem_alloc_profiling_enabled() */ | |
1104 | static noinline | |
1105 | void __pgalloc_tag_add(struct page *page, struct task_struct *task, | |
1106 | unsigned int nr) | |
1107 | { | |
1108 | union pgtag_ref_handle handle; | |
1109 | union codetag_ref ref; | |
1110 | ||
1111 | if (get_page_tag_ref(page, &ref, &handle)) { | |
1112 | alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr); | |
1113 | update_page_tag_ref(handle, &ref); | |
1114 | put_page_tag_ref(handle); | |
1115 | } | |
1116 | } | |
1117 | ||
1118 | static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, | |
1119 | unsigned int nr) | |
1120 | { | |
1121 | if (mem_alloc_profiling_enabled()) | |
1122 | __pgalloc_tag_add(page, task, nr); | |
1123 | } | |
1124 | ||
1125 | /* Should be called only if mem_alloc_profiling_enabled() */ | |
1126 | static noinline | |
1127 | void __pgalloc_tag_sub(struct page *page, unsigned int nr) | |
1128 | { | |
1129 | union pgtag_ref_handle handle; | |
1130 | union codetag_ref ref; | |
1131 | ||
1132 | if (get_page_tag_ref(page, &ref, &handle)) { | |
1133 | alloc_tag_sub(&ref, PAGE_SIZE * nr); | |
1134 | update_page_tag_ref(handle, &ref); | |
1135 | put_page_tag_ref(handle); | |
1136 | } | |
1137 | } | |
1138 | ||
1139 | static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) | |
1140 | { | |
1141 | if (mem_alloc_profiling_enabled()) | |
1142 | __pgalloc_tag_sub(page, nr); | |
1143 | } | |
1144 | ||
1145 | /* When tag is not NULL, assuming mem_alloc_profiling_enabled */ | |
1146 | static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) | |
1147 | { | |
1148 | if (tag) | |
1149 | this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr); | |
1150 | } | |
1151 | ||
1152 | #else /* CONFIG_MEM_ALLOC_PROFILING */ | |
1153 | ||
1154 | static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, | |
1155 | unsigned int nr) {} | |
1156 | static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {} | |
1157 | static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {} | |
1158 | ||
1159 | #endif /* CONFIG_MEM_ALLOC_PROFILING */ | |
1160 | ||
1161 | __always_inline bool free_pages_prepare(struct page *page, | |
1162 | unsigned int order) | |
1163 | { | |
1164 | int bad = 0; | |
1165 | bool skip_kasan_poison = should_skip_kasan_poison(page); | |
1166 | bool init = want_init_on_free(); | |
1167 | bool compound = PageCompound(page); | |
1168 | struct folio *folio = page_folio(page); | |
1169 | ||
1170 | VM_BUG_ON_PAGE(PageTail(page), page); | |
1171 | ||
1172 | trace_mm_page_free(page, order); | |
1173 | kmsan_free_page(page, order); | |
1174 | ||
1175 | if (memcg_kmem_online() && PageMemcgKmem(page)) | |
1176 | __memcg_kmem_uncharge_page(page, order); | |
1177 | ||
1178 | /* | |
1179 | * In rare cases, when truncation or holepunching raced with | |
1180 | * munlock after VM_LOCKED was cleared, Mlocked may still be | |
1181 | * found set here. This does not indicate a problem, unless | |
1182 | * "unevictable_pgs_cleared" appears worryingly large. | |
1183 | */ | |
1184 | if (unlikely(folio_test_mlocked(folio))) { | |
1185 | long nr_pages = folio_nr_pages(folio); | |
1186 | ||
1187 | __folio_clear_mlocked(folio); | |
1188 | zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); | |
1189 | count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); | |
1190 | } | |
1191 | ||
1192 | if (unlikely(PageHWPoison(page)) && !order) { | |
1193 | /* Do not let hwpoison pages hit pcplists/buddy */ | |
1194 | reset_page_owner(page, order); | |
1195 | page_table_check_free(page, order); | |
1196 | pgalloc_tag_sub(page, 1 << order); | |
1197 | ||
1198 | /* | |
1199 | * The page is isolated and accounted for. | |
1200 | * Mark the codetag as empty to avoid accounting error | |
1201 | * when the page is freed by unpoison_memory(). | |
1202 | */ | |
1203 | clear_page_tag_ref(page); | |
1204 | return false; | |
1205 | } | |
1206 | ||
1207 | VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); | |
1208 | ||
1209 | /* | |
1210 | * Check tail pages before head page information is cleared to | |
1211 | * avoid checking PageCompound for order-0 pages. | |
1212 | */ | |
1213 | if (unlikely(order)) { | |
1214 | int i; | |
1215 | ||
1216 | if (compound) { | |
1217 | page[1].flags &= ~PAGE_FLAGS_SECOND; | |
1218 | #ifdef NR_PAGES_IN_LARGE_FOLIO | |
1219 | folio->_nr_pages = 0; | |
1220 | #endif | |
1221 | } | |
1222 | for (i = 1; i < (1 << order); i++) { | |
1223 | if (compound) | |
1224 | bad += free_tail_page_prepare(page, page + i); | |
1225 | if (is_check_pages_enabled()) { | |
1226 | if (free_page_is_bad(page + i)) { | |
1227 | bad++; | |
1228 | continue; | |
1229 | } | |
1230 | } | |
1231 | (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
1232 | } | |
1233 | } | |
1234 | if (PageMappingFlags(page)) { | |
1235 | if (PageAnon(page)) | |
1236 | mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); | |
1237 | page->mapping = NULL; | |
1238 | } | |
1239 | if (is_check_pages_enabled()) { | |
1240 | if (free_page_is_bad(page)) | |
1241 | bad++; | |
1242 | if (bad) | |
1243 | return false; | |
1244 | } | |
1245 | ||
1246 | page_cpupid_reset_last(page); | |
1247 | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
1248 | reset_page_owner(page, order); | |
1249 | page_table_check_free(page, order); | |
1250 | pgalloc_tag_sub(page, 1 << order); | |
1251 | ||
1252 | if (!PageHighMem(page)) { | |
1253 | debug_check_no_locks_freed(page_address(page), | |
1254 | PAGE_SIZE << order); | |
1255 | debug_check_no_obj_freed(page_address(page), | |
1256 | PAGE_SIZE << order); | |
1257 | } | |
1258 | ||
1259 | kernel_poison_pages(page, 1 << order); | |
1260 | ||
1261 | /* | |
1262 | * As memory initialization might be integrated into KASAN, | |
1263 | * KASAN poisoning and memory initialization code must be | |
1264 | * kept together to avoid discrepancies in behavior. | |
1265 | * | |
1266 | * With hardware tag-based KASAN, memory tags must be set before the | |
1267 | * page becomes unavailable via debug_pagealloc or arch_free_page. | |
1268 | */ | |
1269 | if (!skip_kasan_poison) { | |
1270 | kasan_poison_pages(page, order, init); | |
1271 | ||
1272 | /* Memory is already initialized if KASAN did it internally. */ | |
1273 | if (kasan_has_integrated_init()) | |
1274 | init = false; | |
1275 | } | |
1276 | if (init) | |
1277 | kernel_init_pages(page, 1 << order); | |
1278 | ||
1279 | /* | |
1280 | * arch_free_page() can make the page's contents inaccessible. s390 | |
1281 | * does this. So nothing which can access the page's contents should | |
1282 | * happen after this. | |
1283 | */ | |
1284 | arch_free_page(page, order); | |
1285 | ||
1286 | debug_pagealloc_unmap_pages(page, 1 << order); | |
1287 | ||
1288 | return true; | |
1289 | } | |
1290 | ||
1291 | /* | |
1292 | * Frees a number of pages from the PCP lists | |
1293 | * Assumes all pages on list are in same zone. | |
1294 | * count is the number of pages to free. | |
1295 | */ | |
1296 | static void free_pcppages_bulk(struct zone *zone, int count, | |
1297 | struct per_cpu_pages *pcp, | |
1298 | int pindex) | |
1299 | { | |
1300 | unsigned long flags; | |
1301 | unsigned int order; | |
1302 | struct page *page; | |
1303 | ||
1304 | /* | |
1305 | * Ensure proper count is passed which otherwise would stuck in the | |
1306 | * below while (list_empty(list)) loop. | |
1307 | */ | |
1308 | count = min(pcp->count, count); | |
1309 | ||
1310 | /* Ensure requested pindex is drained first. */ | |
1311 | pindex = pindex - 1; | |
1312 | ||
1313 | spin_lock_irqsave(&zone->lock, flags); | |
1314 | ||
1315 | while (count > 0) { | |
1316 | struct list_head *list; | |
1317 | int nr_pages; | |
1318 | ||
1319 | /* Remove pages from lists in a round-robin fashion. */ | |
1320 | do { | |
1321 | if (++pindex > NR_PCP_LISTS - 1) | |
1322 | pindex = 0; | |
1323 | list = &pcp->lists[pindex]; | |
1324 | } while (list_empty(list)); | |
1325 | ||
1326 | order = pindex_to_order(pindex); | |
1327 | nr_pages = 1 << order; | |
1328 | do { | |
1329 | unsigned long pfn; | |
1330 | int mt; | |
1331 | ||
1332 | page = list_last_entry(list, struct page, pcp_list); | |
1333 | pfn = page_to_pfn(page); | |
1334 | mt = get_pfnblock_migratetype(page, pfn); | |
1335 | ||
1336 | /* must delete to avoid corrupting pcp list */ | |
1337 | list_del(&page->pcp_list); | |
1338 | count -= nr_pages; | |
1339 | pcp->count -= nr_pages; | |
1340 | ||
1341 | __free_one_page(page, pfn, zone, order, mt, FPI_NONE); | |
1342 | trace_mm_page_pcpu_drain(page, order, mt); | |
1343 | } while (count > 0 && !list_empty(list)); | |
1344 | } | |
1345 | ||
1346 | spin_unlock_irqrestore(&zone->lock, flags); | |
1347 | } | |
1348 | ||
1349 | /* Split a multi-block free page into its individual pageblocks. */ | |
1350 | static void split_large_buddy(struct zone *zone, struct page *page, | |
1351 | unsigned long pfn, int order, fpi_t fpi) | |
1352 | { | |
1353 | unsigned long end = pfn + (1 << order); | |
1354 | ||
1355 | VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); | |
1356 | /* Caller removed page from freelist, buddy info cleared! */ | |
1357 | VM_WARN_ON_ONCE(PageBuddy(page)); | |
1358 | ||
1359 | if (order > pageblock_order) | |
1360 | order = pageblock_order; | |
1361 | ||
1362 | do { | |
1363 | int mt = get_pfnblock_migratetype(page, pfn); | |
1364 | ||
1365 | __free_one_page(page, pfn, zone, order, mt, fpi); | |
1366 | pfn += 1 << order; | |
1367 | if (pfn == end) | |
1368 | break; | |
1369 | page = pfn_to_page(pfn); | |
1370 | } while (1); | |
1371 | } | |
1372 | ||
1373 | static void add_page_to_zone_llist(struct zone *zone, struct page *page, | |
1374 | unsigned int order) | |
1375 | { | |
1376 | /* Remember the order */ | |
1377 | page->order = order; | |
1378 | /* Add the page to the free list */ | |
1379 | llist_add(&page->pcp_llist, &zone->trylock_free_pages); | |
1380 | } | |
1381 | ||
1382 | static void free_one_page(struct zone *zone, struct page *page, | |
1383 | unsigned long pfn, unsigned int order, | |
1384 | fpi_t fpi_flags) | |
1385 | { | |
1386 | struct llist_head *llhead; | |
1387 | unsigned long flags; | |
1388 | ||
1389 | if (unlikely(fpi_flags & FPI_TRYLOCK)) { | |
1390 | if (!spin_trylock_irqsave(&zone->lock, flags)) { | |
1391 | add_page_to_zone_llist(zone, page, order); | |
1392 | return; | |
1393 | } | |
1394 | } else { | |
1395 | spin_lock_irqsave(&zone->lock, flags); | |
1396 | } | |
1397 | ||
1398 | /* The lock succeeded. Process deferred pages. */ | |
1399 | llhead = &zone->trylock_free_pages; | |
1400 | if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) { | |
1401 | struct llist_node *llnode; | |
1402 | struct page *p, *tmp; | |
1403 | ||
1404 | llnode = llist_del_all(llhead); | |
1405 | llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) { | |
1406 | unsigned int p_order = p->order; | |
1407 | ||
1408 | split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags); | |
1409 | __count_vm_events(PGFREE, 1 << p_order); | |
1410 | } | |
1411 | } | |
1412 | split_large_buddy(zone, page, pfn, order, fpi_flags); | |
1413 | spin_unlock_irqrestore(&zone->lock, flags); | |
1414 | ||
1415 | __count_vm_events(PGFREE, 1 << order); | |
1416 | } | |
1417 | ||
1418 | static void __free_pages_ok(struct page *page, unsigned int order, | |
1419 | fpi_t fpi_flags) | |
1420 | { | |
1421 | unsigned long pfn = page_to_pfn(page); | |
1422 | struct zone *zone = page_zone(page); | |
1423 | ||
1424 | if (free_pages_prepare(page, order)) | |
1425 | free_one_page(zone, page, pfn, order, fpi_flags); | |
1426 | } | |
1427 | ||
1428 | void __meminit __free_pages_core(struct page *page, unsigned int order, | |
1429 | enum meminit_context context) | |
1430 | { | |
1431 | unsigned int nr_pages = 1 << order; | |
1432 | struct page *p = page; | |
1433 | unsigned int loop; | |
1434 | ||
1435 | /* | |
1436 | * When initializing the memmap, __init_single_page() sets the refcount | |
1437 | * of all pages to 1 ("allocated"/"not free"). We have to set the | |
1438 | * refcount of all involved pages to 0. | |
1439 | * | |
1440 | * Note that hotplugged memory pages are initialized to PageOffline(). | |
1441 | * Pages freed from memblock might be marked as reserved. | |
1442 | */ | |
1443 | if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && | |
1444 | unlikely(context == MEMINIT_HOTPLUG)) { | |
1445 | for (loop = 0; loop < nr_pages; loop++, p++) { | |
1446 | VM_WARN_ON_ONCE(PageReserved(p)); | |
1447 | __ClearPageOffline(p); | |
1448 | set_page_count(p, 0); | |
1449 | } | |
1450 | ||
1451 | adjust_managed_page_count(page, nr_pages); | |
1452 | } else { | |
1453 | for (loop = 0; loop < nr_pages; loop++, p++) { | |
1454 | __ClearPageReserved(p); | |
1455 | set_page_count(p, 0); | |
1456 | } | |
1457 | ||
1458 | /* memblock adjusts totalram_pages() manually. */ | |
1459 | atomic_long_add(nr_pages, &page_zone(page)->managed_pages); | |
1460 | } | |
1461 | ||
1462 | if (page_contains_unaccepted(page, order)) { | |
1463 | if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) | |
1464 | return; | |
1465 | ||
1466 | accept_memory(page_to_phys(page), PAGE_SIZE << order); | |
1467 | } | |
1468 | ||
1469 | /* | |
1470 | * Bypass PCP and place fresh pages right to the tail, primarily | |
1471 | * relevant for memory onlining. | |
1472 | */ | |
1473 | __free_pages_ok(page, order, FPI_TO_TAIL); | |
1474 | } | |
1475 | ||
1476 | /* | |
1477 | * Check that the whole (or subset of) a pageblock given by the interval of | |
1478 | * [start_pfn, end_pfn) is valid and within the same zone, before scanning it | |
1479 | * with the migration of free compaction scanner. | |
1480 | * | |
1481 | * Return struct page pointer of start_pfn, or NULL if checks were not passed. | |
1482 | * | |
1483 | * It's possible on some configurations to have a setup like node0 node1 node0 | |
1484 | * i.e. it's possible that all pages within a zones range of pages do not | |
1485 | * belong to a single zone. We assume that a border between node0 and node1 | |
1486 | * can occur within a single pageblock, but not a node0 node1 node0 | |
1487 | * interleaving within a single pageblock. It is therefore sufficient to check | |
1488 | * the first and last page of a pageblock and avoid checking each individual | |
1489 | * page in a pageblock. | |
1490 | * | |
1491 | * Note: the function may return non-NULL struct page even for a page block | |
1492 | * which contains a memory hole (i.e. there is no physical memory for a subset | |
1493 | * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which | |
1494 | * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole | |
1495 | * even though the start pfn is online and valid. This should be safe most of | |
1496 | * the time because struct pages are still initialized via init_unavailable_range() | |
1497 | * and pfn walkers shouldn't touch any physical memory range for which they do | |
1498 | * not recognize any specific metadata in struct pages. | |
1499 | */ | |
1500 | struct page *__pageblock_pfn_to_page(unsigned long start_pfn, | |
1501 | unsigned long end_pfn, struct zone *zone) | |
1502 | { | |
1503 | struct page *start_page; | |
1504 | struct page *end_page; | |
1505 | ||
1506 | /* end_pfn is one past the range we are checking */ | |
1507 | end_pfn--; | |
1508 | ||
1509 | if (!pfn_valid(end_pfn)) | |
1510 | return NULL; | |
1511 | ||
1512 | start_page = pfn_to_online_page(start_pfn); | |
1513 | if (!start_page) | |
1514 | return NULL; | |
1515 | ||
1516 | if (page_zone(start_page) != zone) | |
1517 | return NULL; | |
1518 | ||
1519 | end_page = pfn_to_page(end_pfn); | |
1520 | ||
1521 | /* This gives a shorter code than deriving page_zone(end_page) */ | |
1522 | if (page_zone_id(start_page) != page_zone_id(end_page)) | |
1523 | return NULL; | |
1524 | ||
1525 | return start_page; | |
1526 | } | |
1527 | ||
1528 | /* | |
1529 | * The order of subdivision here is critical for the IO subsystem. | |
1530 | * Please do not alter this order without good reasons and regression | |
1531 | * testing. Specifically, as large blocks of memory are subdivided, | |
1532 | * the order in which smaller blocks are delivered depends on the order | |
1533 | * they're subdivided in this function. This is the primary factor | |
1534 | * influencing the order in which pages are delivered to the IO | |
1535 | * subsystem according to empirical testing, and this is also justified | |
1536 | * by considering the behavior of a buddy system containing a single | |
1537 | * large block of memory acted on by a series of small allocations. | |
1538 | * This behavior is a critical factor in sglist merging's success. | |
1539 | * | |
1540 | * -- nyc | |
1541 | */ | |
1542 | static inline unsigned int expand(struct zone *zone, struct page *page, int low, | |
1543 | int high, int migratetype) | |
1544 | { | |
1545 | unsigned int size = 1 << high; | |
1546 | unsigned int nr_added = 0; | |
1547 | ||
1548 | while (high > low) { | |
1549 | high--; | |
1550 | size >>= 1; | |
1551 | VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); | |
1552 | ||
1553 | /* | |
1554 | * Mark as guard pages (or page), that will allow to | |
1555 | * merge back to allocator when buddy will be freed. | |
1556 | * Corresponding page table entries will not be touched, | |
1557 | * pages will stay not present in virtual address space | |
1558 | */ | |
1559 | if (set_page_guard(zone, &page[size], high)) | |
1560 | continue; | |
1561 | ||
1562 | __add_to_free_list(&page[size], zone, high, migratetype, false); | |
1563 | set_buddy_order(&page[size], high); | |
1564 | nr_added += size; | |
1565 | } | |
1566 | ||
1567 | return nr_added; | |
1568 | } | |
1569 | ||
1570 | static __always_inline void page_del_and_expand(struct zone *zone, | |
1571 | struct page *page, int low, | |
1572 | int high, int migratetype) | |
1573 | { | |
1574 | int nr_pages = 1 << high; | |
1575 | ||
1576 | __del_page_from_free_list(page, zone, high, migratetype); | |
1577 | nr_pages -= expand(zone, page, low, high, migratetype); | |
1578 | account_freepages(zone, -nr_pages, migratetype); | |
1579 | } | |
1580 | ||
1581 | static void check_new_page_bad(struct page *page) | |
1582 | { | |
1583 | if (unlikely(PageHWPoison(page))) { | |
1584 | /* Don't complain about hwpoisoned pages */ | |
1585 | if (PageBuddy(page)) | |
1586 | __ClearPageBuddy(page); | |
1587 | return; | |
1588 | } | |
1589 | ||
1590 | bad_page(page, | |
1591 | page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); | |
1592 | } | |
1593 | ||
1594 | /* | |
1595 | * This page is about to be returned from the page allocator | |
1596 | */ | |
1597 | static bool check_new_page(struct page *page) | |
1598 | { | |
1599 | if (likely(page_expected_state(page, | |
1600 | PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) | |
1601 | return false; | |
1602 | ||
1603 | check_new_page_bad(page); | |
1604 | return true; | |
1605 | } | |
1606 | ||
1607 | static inline bool check_new_pages(struct page *page, unsigned int order) | |
1608 | { | |
1609 | if (is_check_pages_enabled()) { | |
1610 | for (int i = 0; i < (1 << order); i++) { | |
1611 | struct page *p = page + i; | |
1612 | ||
1613 | if (check_new_page(p)) | |
1614 | return true; | |
1615 | } | |
1616 | } | |
1617 | ||
1618 | return false; | |
1619 | } | |
1620 | ||
1621 | static inline bool should_skip_kasan_unpoison(gfp_t flags) | |
1622 | { | |
1623 | /* Don't skip if a software KASAN mode is enabled. */ | |
1624 | if (IS_ENABLED(CONFIG_KASAN_GENERIC) || | |
1625 | IS_ENABLED(CONFIG_KASAN_SW_TAGS)) | |
1626 | return false; | |
1627 | ||
1628 | /* Skip, if hardware tag-based KASAN is not enabled. */ | |
1629 | if (!kasan_hw_tags_enabled()) | |
1630 | return true; | |
1631 | ||
1632 | /* | |
1633 | * With hardware tag-based KASAN enabled, skip if this has been | |
1634 | * requested via __GFP_SKIP_KASAN. | |
1635 | */ | |
1636 | return flags & __GFP_SKIP_KASAN; | |
1637 | } | |
1638 | ||
1639 | static inline bool should_skip_init(gfp_t flags) | |
1640 | { | |
1641 | /* Don't skip, if hardware tag-based KASAN is not enabled. */ | |
1642 | if (!kasan_hw_tags_enabled()) | |
1643 | return false; | |
1644 | ||
1645 | /* For hardware tag-based KASAN, skip if requested. */ | |
1646 | return (flags & __GFP_SKIP_ZERO); | |
1647 | } | |
1648 | ||
1649 | inline void post_alloc_hook(struct page *page, unsigned int order, | |
1650 | gfp_t gfp_flags) | |
1651 | { | |
1652 | bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && | |
1653 | !should_skip_init(gfp_flags); | |
1654 | bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); | |
1655 | int i; | |
1656 | ||
1657 | set_page_private(page, 0); | |
1658 | ||
1659 | arch_alloc_page(page, order); | |
1660 | debug_pagealloc_map_pages(page, 1 << order); | |
1661 | ||
1662 | /* | |
1663 | * Page unpoisoning must happen before memory initialization. | |
1664 | * Otherwise, the poison pattern will be overwritten for __GFP_ZERO | |
1665 | * allocations and the page unpoisoning code will complain. | |
1666 | */ | |
1667 | kernel_unpoison_pages(page, 1 << order); | |
1668 | ||
1669 | /* | |
1670 | * As memory initialization might be integrated into KASAN, | |
1671 | * KASAN unpoisoning and memory initializion code must be | |
1672 | * kept together to avoid discrepancies in behavior. | |
1673 | */ | |
1674 | ||
1675 | /* | |
1676 | * If memory tags should be zeroed | |
1677 | * (which happens only when memory should be initialized as well). | |
1678 | */ | |
1679 | if (zero_tags) { | |
1680 | /* Initialize both memory and memory tags. */ | |
1681 | for (i = 0; i != 1 << order; ++i) | |
1682 | tag_clear_highpage(page + i); | |
1683 | ||
1684 | /* Take note that memory was initialized by the loop above. */ | |
1685 | init = false; | |
1686 | } | |
1687 | if (!should_skip_kasan_unpoison(gfp_flags) && | |
1688 | kasan_unpoison_pages(page, order, init)) { | |
1689 | /* Take note that memory was initialized by KASAN. */ | |
1690 | if (kasan_has_integrated_init()) | |
1691 | init = false; | |
1692 | } else { | |
1693 | /* | |
1694 | * If memory tags have not been set by KASAN, reset the page | |
1695 | * tags to ensure page_address() dereferencing does not fault. | |
1696 | */ | |
1697 | for (i = 0; i != 1 << order; ++i) | |
1698 | page_kasan_tag_reset(page + i); | |
1699 | } | |
1700 | /* If memory is still not initialized, initialize it now. */ | |
1701 | if (init) | |
1702 | kernel_init_pages(page, 1 << order); | |
1703 | ||
1704 | set_page_owner(page, order, gfp_flags); | |
1705 | page_table_check_alloc(page, order); | |
1706 | pgalloc_tag_add(page, current, 1 << order); | |
1707 | } | |
1708 | ||
1709 | static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, | |
1710 | unsigned int alloc_flags) | |
1711 | { | |
1712 | post_alloc_hook(page, order, gfp_flags); | |
1713 | ||
1714 | if (order && (gfp_flags & __GFP_COMP)) | |
1715 | prep_compound_page(page, order); | |
1716 | ||
1717 | /* | |
1718 | * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to | |
1719 | * allocate the page. The expectation is that the caller is taking | |
1720 | * steps that will free more memory. The caller should avoid the page | |
1721 | * being used for !PFMEMALLOC purposes. | |
1722 | */ | |
1723 | if (alloc_flags & ALLOC_NO_WATERMARKS) | |
1724 | set_page_pfmemalloc(page); | |
1725 | else | |
1726 | clear_page_pfmemalloc(page); | |
1727 | } | |
1728 | ||
1729 | /* | |
1730 | * Go through the free lists for the given migratetype and remove | |
1731 | * the smallest available page from the freelists | |
1732 | */ | |
1733 | static __always_inline | |
1734 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, | |
1735 | int migratetype) | |
1736 | { | |
1737 | unsigned int current_order; | |
1738 | struct free_area *area; | |
1739 | struct page *page; | |
1740 | ||
1741 | /* Find a page of the appropriate size in the preferred list */ | |
1742 | for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { | |
1743 | area = &(zone->free_area[current_order]); | |
1744 | page = get_page_from_free_area(area, migratetype); | |
1745 | if (!page) | |
1746 | continue; | |
1747 | ||
1748 | page_del_and_expand(zone, page, order, current_order, | |
1749 | migratetype); | |
1750 | trace_mm_page_alloc_zone_locked(page, order, migratetype, | |
1751 | pcp_allowed_order(order) && | |
1752 | migratetype < MIGRATE_PCPTYPES); | |
1753 | return page; | |
1754 | } | |
1755 | ||
1756 | return NULL; | |
1757 | } | |
1758 | ||
1759 | ||
1760 | /* | |
1761 | * This array describes the order lists are fallen back to when | |
1762 | * the free lists for the desirable migrate type are depleted | |
1763 | * | |
1764 | * The other migratetypes do not have fallbacks. | |
1765 | */ | |
1766 | static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { | |
1767 | [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, | |
1768 | [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, | |
1769 | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, | |
1770 | }; | |
1771 | ||
1772 | #ifdef CONFIG_CMA | |
1773 | static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, | |
1774 | unsigned int order) | |
1775 | { | |
1776 | return __rmqueue_smallest(zone, order, MIGRATE_CMA); | |
1777 | } | |
1778 | #else | |
1779 | static inline struct page *__rmqueue_cma_fallback(struct zone *zone, | |
1780 | unsigned int order) { return NULL; } | |
1781 | #endif | |
1782 | ||
1783 | /* | |
1784 | * Change the type of a block and move all its free pages to that | |
1785 | * type's freelist. | |
1786 | */ | |
1787 | static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, | |
1788 | int old_mt, int new_mt) | |
1789 | { | |
1790 | struct page *page; | |
1791 | unsigned long pfn, end_pfn; | |
1792 | unsigned int order; | |
1793 | int pages_moved = 0; | |
1794 | ||
1795 | VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); | |
1796 | end_pfn = pageblock_end_pfn(start_pfn); | |
1797 | ||
1798 | for (pfn = start_pfn; pfn < end_pfn;) { | |
1799 | page = pfn_to_page(pfn); | |
1800 | if (!PageBuddy(page)) { | |
1801 | pfn++; | |
1802 | continue; | |
1803 | } | |
1804 | ||
1805 | /* Make sure we are not inadvertently changing nodes */ | |
1806 | VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); | |
1807 | VM_BUG_ON_PAGE(page_zone(page) != zone, page); | |
1808 | ||
1809 | order = buddy_order(page); | |
1810 | ||
1811 | move_to_free_list(page, zone, order, old_mt, new_mt); | |
1812 | ||
1813 | pfn += 1 << order; | |
1814 | pages_moved += 1 << order; | |
1815 | } | |
1816 | ||
1817 | set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); | |
1818 | ||
1819 | return pages_moved; | |
1820 | } | |
1821 | ||
1822 | static bool prep_move_freepages_block(struct zone *zone, struct page *page, | |
1823 | unsigned long *start_pfn, | |
1824 | int *num_free, int *num_movable) | |
1825 | { | |
1826 | unsigned long pfn, start, end; | |
1827 | ||
1828 | pfn = page_to_pfn(page); | |
1829 | start = pageblock_start_pfn(pfn); | |
1830 | end = pageblock_end_pfn(pfn); | |
1831 | ||
1832 | /* | |
1833 | * The caller only has the lock for @zone, don't touch ranges | |
1834 | * that straddle into other zones. While we could move part of | |
1835 | * the range that's inside the zone, this call is usually | |
1836 | * accompanied by other operations such as migratetype updates | |
1837 | * which also should be locked. | |
1838 | */ | |
1839 | if (!zone_spans_pfn(zone, start)) | |
1840 | return false; | |
1841 | if (!zone_spans_pfn(zone, end - 1)) | |
1842 | return false; | |
1843 | ||
1844 | *start_pfn = start; | |
1845 | ||
1846 | if (num_free) { | |
1847 | *num_free = 0; | |
1848 | *num_movable = 0; | |
1849 | for (pfn = start; pfn < end;) { | |
1850 | page = pfn_to_page(pfn); | |
1851 | if (PageBuddy(page)) { | |
1852 | int nr = 1 << buddy_order(page); | |
1853 | ||
1854 | *num_free += nr; | |
1855 | pfn += nr; | |
1856 | continue; | |
1857 | } | |
1858 | /* | |
1859 | * We assume that pages that could be isolated for | |
1860 | * migration are movable. But we don't actually try | |
1861 | * isolating, as that would be expensive. | |
1862 | */ | |
1863 | if (PageLRU(page) || __PageMovable(page)) | |
1864 | (*num_movable)++; | |
1865 | pfn++; | |
1866 | } | |
1867 | } | |
1868 | ||
1869 | return true; | |
1870 | } | |
1871 | ||
1872 | static int move_freepages_block(struct zone *zone, struct page *page, | |
1873 | int old_mt, int new_mt) | |
1874 | { | |
1875 | unsigned long start_pfn; | |
1876 | ||
1877 | if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) | |
1878 | return -1; | |
1879 | ||
1880 | return __move_freepages_block(zone, start_pfn, old_mt, new_mt); | |
1881 | } | |
1882 | ||
1883 | #ifdef CONFIG_MEMORY_ISOLATION | |
1884 | /* Look for a buddy that straddles start_pfn */ | |
1885 | static unsigned long find_large_buddy(unsigned long start_pfn) | |
1886 | { | |
1887 | int order = 0; | |
1888 | struct page *page; | |
1889 | unsigned long pfn = start_pfn; | |
1890 | ||
1891 | while (!PageBuddy(page = pfn_to_page(pfn))) { | |
1892 | /* Nothing found */ | |
1893 | if (++order > MAX_PAGE_ORDER) | |
1894 | return start_pfn; | |
1895 | pfn &= ~0UL << order; | |
1896 | } | |
1897 | ||
1898 | /* | |
1899 | * Found a preceding buddy, but does it straddle? | |
1900 | */ | |
1901 | if (pfn + (1 << buddy_order(page)) > start_pfn) | |
1902 | return pfn; | |
1903 | ||
1904 | /* Nothing found */ | |
1905 | return start_pfn; | |
1906 | } | |
1907 | ||
1908 | /** | |
1909 | * move_freepages_block_isolate - move free pages in block for page isolation | |
1910 | * @zone: the zone | |
1911 | * @page: the pageblock page | |
1912 | * @migratetype: migratetype to set on the pageblock | |
1913 | * | |
1914 | * This is similar to move_freepages_block(), but handles the special | |
1915 | * case encountered in page isolation, where the block of interest | |
1916 | * might be part of a larger buddy spanning multiple pageblocks. | |
1917 | * | |
1918 | * Unlike the regular page allocator path, which moves pages while | |
1919 | * stealing buddies off the freelist, page isolation is interested in | |
1920 | * arbitrary pfn ranges that may have overlapping buddies on both ends. | |
1921 | * | |
1922 | * This function handles that. Straddling buddies are split into | |
1923 | * individual pageblocks. Only the block of interest is moved. | |
1924 | * | |
1925 | * Returns %true if pages could be moved, %false otherwise. | |
1926 | */ | |
1927 | bool move_freepages_block_isolate(struct zone *zone, struct page *page, | |
1928 | int migratetype) | |
1929 | { | |
1930 | unsigned long start_pfn, pfn; | |
1931 | ||
1932 | if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) | |
1933 | return false; | |
1934 | ||
1935 | /* No splits needed if buddies can't span multiple blocks */ | |
1936 | if (pageblock_order == MAX_PAGE_ORDER) | |
1937 | goto move; | |
1938 | ||
1939 | /* We're a tail block in a larger buddy */ | |
1940 | pfn = find_large_buddy(start_pfn); | |
1941 | if (pfn != start_pfn) { | |
1942 | struct page *buddy = pfn_to_page(pfn); | |
1943 | int order = buddy_order(buddy); | |
1944 | ||
1945 | del_page_from_free_list(buddy, zone, order, | |
1946 | get_pfnblock_migratetype(buddy, pfn)); | |
1947 | set_pageblock_migratetype(page, migratetype); | |
1948 | split_large_buddy(zone, buddy, pfn, order, FPI_NONE); | |
1949 | return true; | |
1950 | } | |
1951 | ||
1952 | /* We're the starting block of a larger buddy */ | |
1953 | if (PageBuddy(page) && buddy_order(page) > pageblock_order) { | |
1954 | int order = buddy_order(page); | |
1955 | ||
1956 | del_page_from_free_list(page, zone, order, | |
1957 | get_pfnblock_migratetype(page, pfn)); | |
1958 | set_pageblock_migratetype(page, migratetype); | |
1959 | split_large_buddy(zone, page, pfn, order, FPI_NONE); | |
1960 | return true; | |
1961 | } | |
1962 | move: | |
1963 | __move_freepages_block(zone, start_pfn, | |
1964 | get_pfnblock_migratetype(page, start_pfn), | |
1965 | migratetype); | |
1966 | return true; | |
1967 | } | |
1968 | #endif /* CONFIG_MEMORY_ISOLATION */ | |
1969 | ||
1970 | static void change_pageblock_range(struct page *pageblock_page, | |
1971 | int start_order, int migratetype) | |
1972 | { | |
1973 | int nr_pageblocks = 1 << (start_order - pageblock_order); | |
1974 | ||
1975 | while (nr_pageblocks--) { | |
1976 | set_pageblock_migratetype(pageblock_page, migratetype); | |
1977 | pageblock_page += pageblock_nr_pages; | |
1978 | } | |
1979 | } | |
1980 | ||
1981 | static inline bool boost_watermark(struct zone *zone) | |
1982 | { | |
1983 | unsigned long max_boost; | |
1984 | ||
1985 | if (!watermark_boost_factor) | |
1986 | return false; | |
1987 | /* | |
1988 | * Don't bother in zones that are unlikely to produce results. | |
1989 | * On small machines, including kdump capture kernels running | |
1990 | * in a small area, boosting the watermark can cause an out of | |
1991 | * memory situation immediately. | |
1992 | */ | |
1993 | if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) | |
1994 | return false; | |
1995 | ||
1996 | max_boost = mult_frac(zone->_watermark[WMARK_HIGH], | |
1997 | watermark_boost_factor, 10000); | |
1998 | ||
1999 | /* | |
2000 | * high watermark may be uninitialised if fragmentation occurs | |
2001 | * very early in boot so do not boost. We do not fall | |
2002 | * through and boost by pageblock_nr_pages as failing | |
2003 | * allocations that early means that reclaim is not going | |
2004 | * to help and it may even be impossible to reclaim the | |
2005 | * boosted watermark resulting in a hang. | |
2006 | */ | |
2007 | if (!max_boost) | |
2008 | return false; | |
2009 | ||
2010 | max_boost = max(pageblock_nr_pages, max_boost); | |
2011 | ||
2012 | zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, | |
2013 | max_boost); | |
2014 | ||
2015 | return true; | |
2016 | } | |
2017 | ||
2018 | /* | |
2019 | * When we are falling back to another migratetype during allocation, should we | |
2020 | * try to claim an entire block to satisfy further allocations, instead of | |
2021 | * polluting multiple pageblocks? | |
2022 | */ | |
2023 | static bool should_try_claim_block(unsigned int order, int start_mt) | |
2024 | { | |
2025 | /* | |
2026 | * Leaving this order check is intended, although there is | |
2027 | * relaxed order check in next check. The reason is that | |
2028 | * we can actually claim the whole pageblock if this condition met, | |
2029 | * but, below check doesn't guarantee it and that is just heuristic | |
2030 | * so could be changed anytime. | |
2031 | */ | |
2032 | if (order >= pageblock_order) | |
2033 | return true; | |
2034 | ||
2035 | /* | |
2036 | * Above a certain threshold, always try to claim, as it's likely there | |
2037 | * will be more free pages in the pageblock. | |
2038 | */ | |
2039 | if (order >= pageblock_order / 2) | |
2040 | return true; | |
2041 | ||
2042 | /* | |
2043 | * Unmovable/reclaimable allocations would cause permanent | |
2044 | * fragmentations if they fell back to allocating from a movable block | |
2045 | * (polluting it), so we try to claim the whole block regardless of the | |
2046 | * allocation size. Later movable allocations can always steal from this | |
2047 | * block, which is less problematic. | |
2048 | */ | |
2049 | if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE) | |
2050 | return true; | |
2051 | ||
2052 | if (page_group_by_mobility_disabled) | |
2053 | return true; | |
2054 | ||
2055 | /* | |
2056 | * Movable pages won't cause permanent fragmentation, so when you alloc | |
2057 | * small pages, we just need to temporarily steal unmovable or | |
2058 | * reclaimable pages that are closest to the request size. After a | |
2059 | * while, memory compaction may occur to form large contiguous pages, | |
2060 | * and the next movable allocation may not need to steal. | |
2061 | */ | |
2062 | return false; | |
2063 | } | |
2064 | ||
2065 | /* | |
2066 | * Check whether there is a suitable fallback freepage with requested order. | |
2067 | * If claimable is true, this function returns fallback_mt only if | |
2068 | * we would do this whole-block claiming. This would help to reduce | |
2069 | * fragmentation due to mixed migratetype pages in one pageblock. | |
2070 | */ | |
2071 | int find_suitable_fallback(struct free_area *area, unsigned int order, | |
2072 | int migratetype, bool claimable) | |
2073 | { | |
2074 | int i; | |
2075 | ||
2076 | if (claimable && !should_try_claim_block(order, migratetype)) | |
2077 | return -2; | |
2078 | ||
2079 | if (area->nr_free == 0) | |
2080 | return -1; | |
2081 | ||
2082 | for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { | |
2083 | int fallback_mt = fallbacks[migratetype][i]; | |
2084 | ||
2085 | if (!free_area_empty(area, fallback_mt)) | |
2086 | return fallback_mt; | |
2087 | } | |
2088 | ||
2089 | return -1; | |
2090 | } | |
2091 | ||
2092 | /* | |
2093 | * This function implements actual block claiming behaviour. If order is large | |
2094 | * enough, we can claim the whole pageblock for the requested migratetype. If | |
2095 | * not, we check the pageblock for constituent pages; if at least half of the | |
2096 | * pages are free or compatible, we can still claim the whole block, so pages | |
2097 | * freed in the future will be put on the correct free list. | |
2098 | */ | |
2099 | static struct page * | |
2100 | try_to_claim_block(struct zone *zone, struct page *page, | |
2101 | int current_order, int order, int start_type, | |
2102 | int block_type, unsigned int alloc_flags) | |
2103 | { | |
2104 | int free_pages, movable_pages, alike_pages; | |
2105 | unsigned long start_pfn; | |
2106 | ||
2107 | /* Take ownership for orders >= pageblock_order */ | |
2108 | if (current_order >= pageblock_order) { | |
2109 | unsigned int nr_added; | |
2110 | ||
2111 | del_page_from_free_list(page, zone, current_order, block_type); | |
2112 | change_pageblock_range(page, current_order, start_type); | |
2113 | nr_added = expand(zone, page, order, current_order, start_type); | |
2114 | account_freepages(zone, nr_added, start_type); | |
2115 | return page; | |
2116 | } | |
2117 | ||
2118 | /* | |
2119 | * Boost watermarks to increase reclaim pressure to reduce the | |
2120 | * likelihood of future fallbacks. Wake kswapd now as the node | |
2121 | * may be balanced overall and kswapd will not wake naturally. | |
2122 | */ | |
2123 | if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) | |
2124 | set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); | |
2125 | ||
2126 | /* moving whole block can fail due to zone boundary conditions */ | |
2127 | if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, | |
2128 | &movable_pages)) | |
2129 | return NULL; | |
2130 | ||
2131 | /* | |
2132 | * Determine how many pages are compatible with our allocation. | |
2133 | * For movable allocation, it's the number of movable pages which | |
2134 | * we just obtained. For other types it's a bit more tricky. | |
2135 | */ | |
2136 | if (start_type == MIGRATE_MOVABLE) { | |
2137 | alike_pages = movable_pages; | |
2138 | } else { | |
2139 | /* | |
2140 | * If we are falling back a RECLAIMABLE or UNMOVABLE allocation | |
2141 | * to MOVABLE pageblock, consider all non-movable pages as | |
2142 | * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or | |
2143 | * vice versa, be conservative since we can't distinguish the | |
2144 | * exact migratetype of non-movable pages. | |
2145 | */ | |
2146 | if (block_type == MIGRATE_MOVABLE) | |
2147 | alike_pages = pageblock_nr_pages | |
2148 | - (free_pages + movable_pages); | |
2149 | else | |
2150 | alike_pages = 0; | |
2151 | } | |
2152 | /* | |
2153 | * If a sufficient number of pages in the block are either free or of | |
2154 | * compatible migratability as our allocation, claim the whole block. | |
2155 | */ | |
2156 | if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || | |
2157 | page_group_by_mobility_disabled) { | |
2158 | __move_freepages_block(zone, start_pfn, block_type, start_type); | |
2159 | return __rmqueue_smallest(zone, order, start_type); | |
2160 | } | |
2161 | ||
2162 | return NULL; | |
2163 | } | |
2164 | ||
2165 | /* | |
2166 | * Try to allocate from some fallback migratetype by claiming the entire block, | |
2167 | * i.e. converting it to the allocation's start migratetype. | |
2168 | * | |
2169 | * The use of signed ints for order and current_order is a deliberate | |
2170 | * deviation from the rest of this file, to make the for loop | |
2171 | * condition simpler. | |
2172 | */ | |
2173 | static __always_inline struct page * | |
2174 | __rmqueue_claim(struct zone *zone, int order, int start_migratetype, | |
2175 | unsigned int alloc_flags) | |
2176 | { | |
2177 | struct free_area *area; | |
2178 | int current_order; | |
2179 | int min_order = order; | |
2180 | struct page *page; | |
2181 | int fallback_mt; | |
2182 | ||
2183 | /* | |
2184 | * Do not steal pages from freelists belonging to other pageblocks | |
2185 | * i.e. orders < pageblock_order. If there are no local zones free, | |
2186 | * the zonelists will be reiterated without ALLOC_NOFRAGMENT. | |
2187 | */ | |
2188 | if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) | |
2189 | min_order = pageblock_order; | |
2190 | ||
2191 | /* | |
2192 | * Find the largest available free page in the other list. This roughly | |
2193 | * approximates finding the pageblock with the most free pages, which | |
2194 | * would be too costly to do exactly. | |
2195 | */ | |
2196 | for (current_order = MAX_PAGE_ORDER; current_order >= min_order; | |
2197 | --current_order) { | |
2198 | area = &(zone->free_area[current_order]); | |
2199 | fallback_mt = find_suitable_fallback(area, current_order, | |
2200 | start_migratetype, true); | |
2201 | ||
2202 | /* No block in that order */ | |
2203 | if (fallback_mt == -1) | |
2204 | continue; | |
2205 | ||
2206 | /* Advanced into orders too low to claim, abort */ | |
2207 | if (fallback_mt == -2) | |
2208 | break; | |
2209 | ||
2210 | page = get_page_from_free_area(area, fallback_mt); | |
2211 | page = try_to_claim_block(zone, page, current_order, order, | |
2212 | start_migratetype, fallback_mt, | |
2213 | alloc_flags); | |
2214 | if (page) { | |
2215 | trace_mm_page_alloc_extfrag(page, order, current_order, | |
2216 | start_migratetype, fallback_mt); | |
2217 | return page; | |
2218 | } | |
2219 | } | |
2220 | ||
2221 | return NULL; | |
2222 | } | |
2223 | ||
2224 | /* | |
2225 | * Try to steal a single page from some fallback migratetype. Leave the rest of | |
2226 | * the block as its current migratetype, potentially causing fragmentation. | |
2227 | */ | |
2228 | static __always_inline struct page * | |
2229 | __rmqueue_steal(struct zone *zone, int order, int start_migratetype) | |
2230 | { | |
2231 | struct free_area *area; | |
2232 | int current_order; | |
2233 | struct page *page; | |
2234 | int fallback_mt; | |
2235 | ||
2236 | for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { | |
2237 | area = &(zone->free_area[current_order]); | |
2238 | fallback_mt = find_suitable_fallback(area, current_order, | |
2239 | start_migratetype, false); | |
2240 | if (fallback_mt == -1) | |
2241 | continue; | |
2242 | ||
2243 | page = get_page_from_free_area(area, fallback_mt); | |
2244 | page_del_and_expand(zone, page, order, current_order, fallback_mt); | |
2245 | trace_mm_page_alloc_extfrag(page, order, current_order, | |
2246 | start_migratetype, fallback_mt); | |
2247 | return page; | |
2248 | } | |
2249 | ||
2250 | return NULL; | |
2251 | } | |
2252 | ||
2253 | enum rmqueue_mode { | |
2254 | RMQUEUE_NORMAL, | |
2255 | RMQUEUE_CMA, | |
2256 | RMQUEUE_CLAIM, | |
2257 | RMQUEUE_STEAL, | |
2258 | }; | |
2259 | ||
2260 | /* | |
2261 | * Do the hard work of removing an element from the buddy allocator. | |
2262 | * Call me with the zone->lock already held. | |
2263 | */ | |
2264 | static __always_inline struct page * | |
2265 | __rmqueue(struct zone *zone, unsigned int order, int migratetype, | |
2266 | unsigned int alloc_flags, enum rmqueue_mode *mode) | |
2267 | { | |
2268 | struct page *page; | |
2269 | ||
2270 | if (IS_ENABLED(CONFIG_CMA)) { | |
2271 | /* | |
2272 | * Balance movable allocations between regular and CMA areas by | |
2273 | * allocating from CMA when over half of the zone's free memory | |
2274 | * is in the CMA area. | |
2275 | */ | |
2276 | if (alloc_flags & ALLOC_CMA && | |
2277 | zone_page_state(zone, NR_FREE_CMA_PAGES) > | |
2278 | zone_page_state(zone, NR_FREE_PAGES) / 2) { | |
2279 | page = __rmqueue_cma_fallback(zone, order); | |
2280 | if (page) | |
2281 | return page; | |
2282 | } | |
2283 | } | |
2284 | ||
2285 | /* | |
2286 | * First try the freelists of the requested migratetype, then try | |
2287 | * fallbacks modes with increasing levels of fragmentation risk. | |
2288 | * | |
2289 | * The fallback logic is expensive and rmqueue_bulk() calls in | |
2290 | * a loop with the zone->lock held, meaning the freelists are | |
2291 | * not subject to any outside changes. Remember in *mode where | |
2292 | * we found pay dirt, to save us the search on the next call. | |
2293 | */ | |
2294 | switch (*mode) { | |
2295 | case RMQUEUE_NORMAL: | |
2296 | page = __rmqueue_smallest(zone, order, migratetype); | |
2297 | if (page) | |
2298 | return page; | |
2299 | fallthrough; | |
2300 | case RMQUEUE_CMA: | |
2301 | if (alloc_flags & ALLOC_CMA) { | |
2302 | page = __rmqueue_cma_fallback(zone, order); | |
2303 | if (page) { | |
2304 | *mode = RMQUEUE_CMA; | |
2305 | return page; | |
2306 | } | |
2307 | } | |
2308 | fallthrough; | |
2309 | case RMQUEUE_CLAIM: | |
2310 | page = __rmqueue_claim(zone, order, migratetype, alloc_flags); | |
2311 | if (page) { | |
2312 | /* Replenished preferred freelist, back to normal mode. */ | |
2313 | *mode = RMQUEUE_NORMAL; | |
2314 | return page; | |
2315 | } | |
2316 | fallthrough; | |
2317 | case RMQUEUE_STEAL: | |
2318 | if (!(alloc_flags & ALLOC_NOFRAGMENT)) { | |
2319 | page = __rmqueue_steal(zone, order, migratetype); | |
2320 | if (page) { | |
2321 | *mode = RMQUEUE_STEAL; | |
2322 | return page; | |
2323 | } | |
2324 | } | |
2325 | } | |
2326 | return NULL; | |
2327 | } | |
2328 | ||
2329 | /* | |
2330 | * Obtain a specified number of elements from the buddy allocator, all under | |
2331 | * a single hold of the lock, for efficiency. Add them to the supplied list. | |
2332 | * Returns the number of new pages which were placed at *list. | |
2333 | */ | |
2334 | static int rmqueue_bulk(struct zone *zone, unsigned int order, | |
2335 | unsigned long count, struct list_head *list, | |
2336 | int migratetype, unsigned int alloc_flags) | |
2337 | { | |
2338 | enum rmqueue_mode rmqm = RMQUEUE_NORMAL; | |
2339 | unsigned long flags; | |
2340 | int i; | |
2341 | ||
2342 | if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { | |
2343 | if (!spin_trylock_irqsave(&zone->lock, flags)) | |
2344 | return 0; | |
2345 | } else { | |
2346 | spin_lock_irqsave(&zone->lock, flags); | |
2347 | } | |
2348 | for (i = 0; i < count; ++i) { | |
2349 | struct page *page = __rmqueue(zone, order, migratetype, | |
2350 | alloc_flags, &rmqm); | |
2351 | if (unlikely(page == NULL)) | |
2352 | break; | |
2353 | ||
2354 | /* | |
2355 | * Split buddy pages returned by expand() are received here in | |
2356 | * physical page order. The page is added to the tail of | |
2357 | * caller's list. From the callers perspective, the linked list | |
2358 | * is ordered by page number under some conditions. This is | |
2359 | * useful for IO devices that can forward direction from the | |
2360 | * head, thus also in the physical page order. This is useful | |
2361 | * for IO devices that can merge IO requests if the physical | |
2362 | * pages are ordered properly. | |
2363 | */ | |
2364 | list_add_tail(&page->pcp_list, list); | |
2365 | } | |
2366 | spin_unlock_irqrestore(&zone->lock, flags); | |
2367 | ||
2368 | return i; | |
2369 | } | |
2370 | ||
2371 | /* | |
2372 | * Called from the vmstat counter updater to decay the PCP high. | |
2373 | * Return whether there are addition works to do. | |
2374 | */ | |
2375 | int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) | |
2376 | { | |
2377 | int high_min, to_drain, batch; | |
2378 | int todo = 0; | |
2379 | ||
2380 | high_min = READ_ONCE(pcp->high_min); | |
2381 | batch = READ_ONCE(pcp->batch); | |
2382 | /* | |
2383 | * Decrease pcp->high periodically to try to free possible | |
2384 | * idle PCP pages. And, avoid to free too many pages to | |
2385 | * control latency. This caps pcp->high decrement too. | |
2386 | */ | |
2387 | if (pcp->high > high_min) { | |
2388 | pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), | |
2389 | pcp->high - (pcp->high >> 3), high_min); | |
2390 | if (pcp->high > high_min) | |
2391 | todo++; | |
2392 | } | |
2393 | ||
2394 | to_drain = pcp->count - pcp->high; | |
2395 | if (to_drain > 0) { | |
2396 | spin_lock(&pcp->lock); | |
2397 | free_pcppages_bulk(zone, to_drain, pcp, 0); | |
2398 | spin_unlock(&pcp->lock); | |
2399 | todo++; | |
2400 | } | |
2401 | ||
2402 | return todo; | |
2403 | } | |
2404 | ||
2405 | #ifdef CONFIG_NUMA | |
2406 | /* | |
2407 | * Called from the vmstat counter updater to drain pagesets of this | |
2408 | * currently executing processor on remote nodes after they have | |
2409 | * expired. | |
2410 | */ | |
2411 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) | |
2412 | { | |
2413 | int to_drain, batch; | |
2414 | ||
2415 | batch = READ_ONCE(pcp->batch); | |
2416 | to_drain = min(pcp->count, batch); | |
2417 | if (to_drain > 0) { | |
2418 | spin_lock(&pcp->lock); | |
2419 | free_pcppages_bulk(zone, to_drain, pcp, 0); | |
2420 | spin_unlock(&pcp->lock); | |
2421 | } | |
2422 | } | |
2423 | #endif | |
2424 | ||
2425 | /* | |
2426 | * Drain pcplists of the indicated processor and zone. | |
2427 | */ | |
2428 | static void drain_pages_zone(unsigned int cpu, struct zone *zone) | |
2429 | { | |
2430 | struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); | |
2431 | int count; | |
2432 | ||
2433 | do { | |
2434 | spin_lock(&pcp->lock); | |
2435 | count = pcp->count; | |
2436 | if (count) { | |
2437 | int to_drain = min(count, | |
2438 | pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); | |
2439 | ||
2440 | free_pcppages_bulk(zone, to_drain, pcp, 0); | |
2441 | count -= to_drain; | |
2442 | } | |
2443 | spin_unlock(&pcp->lock); | |
2444 | } while (count); | |
2445 | } | |
2446 | ||
2447 | /* | |
2448 | * Drain pcplists of all zones on the indicated processor. | |
2449 | */ | |
2450 | static void drain_pages(unsigned int cpu) | |
2451 | { | |
2452 | struct zone *zone; | |
2453 | ||
2454 | for_each_populated_zone(zone) { | |
2455 | drain_pages_zone(cpu, zone); | |
2456 | } | |
2457 | } | |
2458 | ||
2459 | /* | |
2460 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | |
2461 | */ | |
2462 | void drain_local_pages(struct zone *zone) | |
2463 | { | |
2464 | int cpu = smp_processor_id(); | |
2465 | ||
2466 | if (zone) | |
2467 | drain_pages_zone(cpu, zone); | |
2468 | else | |
2469 | drain_pages(cpu); | |
2470 | } | |
2471 | ||
2472 | /* | |
2473 | * The implementation of drain_all_pages(), exposing an extra parameter to | |
2474 | * drain on all cpus. | |
2475 | * | |
2476 | * drain_all_pages() is optimized to only execute on cpus where pcplists are | |
2477 | * not empty. The check for non-emptiness can however race with a free to | |
2478 | * pcplist that has not yet increased the pcp->count from 0 to 1. Callers | |
2479 | * that need the guarantee that every CPU has drained can disable the | |
2480 | * optimizing racy check. | |
2481 | */ | |
2482 | static void __drain_all_pages(struct zone *zone, bool force_all_cpus) | |
2483 | { | |
2484 | int cpu; | |
2485 | ||
2486 | /* | |
2487 | * Allocate in the BSS so we won't require allocation in | |
2488 | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y | |
2489 | */ | |
2490 | static cpumask_t cpus_with_pcps; | |
2491 | ||
2492 | /* | |
2493 | * Do not drain if one is already in progress unless it's specific to | |
2494 | * a zone. Such callers are primarily CMA and memory hotplug and need | |
2495 | * the drain to be complete when the call returns. | |
2496 | */ | |
2497 | if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { | |
2498 | if (!zone) | |
2499 | return; | |
2500 | mutex_lock(&pcpu_drain_mutex); | |
2501 | } | |
2502 | ||
2503 | /* | |
2504 | * We don't care about racing with CPU hotplug event | |
2505 | * as offline notification will cause the notified | |
2506 | * cpu to drain that CPU pcps and on_each_cpu_mask | |
2507 | * disables preemption as part of its processing | |
2508 | */ | |
2509 | for_each_online_cpu(cpu) { | |
2510 | struct per_cpu_pages *pcp; | |
2511 | struct zone *z; | |
2512 | bool has_pcps = false; | |
2513 | ||
2514 | if (force_all_cpus) { | |
2515 | /* | |
2516 | * The pcp.count check is racy, some callers need a | |
2517 | * guarantee that no cpu is missed. | |
2518 | */ | |
2519 | has_pcps = true; | |
2520 | } else if (zone) { | |
2521 | pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); | |
2522 | if (pcp->count) | |
2523 | has_pcps = true; | |
2524 | } else { | |
2525 | for_each_populated_zone(z) { | |
2526 | pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); | |
2527 | if (pcp->count) { | |
2528 | has_pcps = true; | |
2529 | break; | |
2530 | } | |
2531 | } | |
2532 | } | |
2533 | ||
2534 | if (has_pcps) | |
2535 | cpumask_set_cpu(cpu, &cpus_with_pcps); | |
2536 | else | |
2537 | cpumask_clear_cpu(cpu, &cpus_with_pcps); | |
2538 | } | |
2539 | ||
2540 | for_each_cpu(cpu, &cpus_with_pcps) { | |
2541 | if (zone) | |
2542 | drain_pages_zone(cpu, zone); | |
2543 | else | |
2544 | drain_pages(cpu); | |
2545 | } | |
2546 | ||
2547 | mutex_unlock(&pcpu_drain_mutex); | |
2548 | } | |
2549 | ||
2550 | /* | |
2551 | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. | |
2552 | * | |
2553 | * When zone parameter is non-NULL, spill just the single zone's pages. | |
2554 | */ | |
2555 | void drain_all_pages(struct zone *zone) | |
2556 | { | |
2557 | __drain_all_pages(zone, false); | |
2558 | } | |
2559 | ||
2560 | static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) | |
2561 | { | |
2562 | int min_nr_free, max_nr_free; | |
2563 | ||
2564 | /* Free as much as possible if batch freeing high-order pages. */ | |
2565 | if (unlikely(free_high)) | |
2566 | return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); | |
2567 | ||
2568 | /* Check for PCP disabled or boot pageset */ | |
2569 | if (unlikely(high < batch)) | |
2570 | return 1; | |
2571 | ||
2572 | /* Leave at least pcp->batch pages on the list */ | |
2573 | min_nr_free = batch; | |
2574 | max_nr_free = high - batch; | |
2575 | ||
2576 | /* | |
2577 | * Increase the batch number to the number of the consecutive | |
2578 | * freed pages to reduce zone lock contention. | |
2579 | */ | |
2580 | batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); | |
2581 | ||
2582 | return batch; | |
2583 | } | |
2584 | ||
2585 | static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, | |
2586 | int batch, bool free_high) | |
2587 | { | |
2588 | int high, high_min, high_max; | |
2589 | ||
2590 | high_min = READ_ONCE(pcp->high_min); | |
2591 | high_max = READ_ONCE(pcp->high_max); | |
2592 | high = pcp->high = clamp(pcp->high, high_min, high_max); | |
2593 | ||
2594 | if (unlikely(!high)) | |
2595 | return 0; | |
2596 | ||
2597 | if (unlikely(free_high)) { | |
2598 | pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), | |
2599 | high_min); | |
2600 | return 0; | |
2601 | } | |
2602 | ||
2603 | /* | |
2604 | * If reclaim is active, limit the number of pages that can be | |
2605 | * stored on pcp lists | |
2606 | */ | |
2607 | if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { | |
2608 | int free_count = max_t(int, pcp->free_count, batch); | |
2609 | ||
2610 | pcp->high = max(high - free_count, high_min); | |
2611 | return min(batch << 2, pcp->high); | |
2612 | } | |
2613 | ||
2614 | if (high_min == high_max) | |
2615 | return high; | |
2616 | ||
2617 | if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { | |
2618 | int free_count = max_t(int, pcp->free_count, batch); | |
2619 | ||
2620 | pcp->high = max(high - free_count, high_min); | |
2621 | high = max(pcp->count, high_min); | |
2622 | } else if (pcp->count >= high) { | |
2623 | int need_high = pcp->free_count + batch; | |
2624 | ||
2625 | /* pcp->high should be large enough to hold batch freed pages */ | |
2626 | if (pcp->high < need_high) | |
2627 | pcp->high = clamp(need_high, high_min, high_max); | |
2628 | } | |
2629 | ||
2630 | return high; | |
2631 | } | |
2632 | ||
2633 | static void free_frozen_page_commit(struct zone *zone, | |
2634 | struct per_cpu_pages *pcp, struct page *page, int migratetype, | |
2635 | unsigned int order, fpi_t fpi_flags) | |
2636 | { | |
2637 | int high, batch; | |
2638 | int pindex; | |
2639 | bool free_high = false; | |
2640 | ||
2641 | /* | |
2642 | * On freeing, reduce the number of pages that are batch allocated. | |
2643 | * See nr_pcp_alloc() where alloc_factor is increased for subsequent | |
2644 | * allocations. | |
2645 | */ | |
2646 | pcp->alloc_factor >>= 1; | |
2647 | __count_vm_events(PGFREE, 1 << order); | |
2648 | pindex = order_to_pindex(migratetype, order); | |
2649 | list_add(&page->pcp_list, &pcp->lists[pindex]); | |
2650 | pcp->count += 1 << order; | |
2651 | ||
2652 | batch = READ_ONCE(pcp->batch); | |
2653 | /* | |
2654 | * As high-order pages other than THP's stored on PCP can contribute | |
2655 | * to fragmentation, limit the number stored when PCP is heavily | |
2656 | * freeing without allocation. The remainder after bulk freeing | |
2657 | * stops will be drained from vmstat refresh context. | |
2658 | */ | |
2659 | if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { | |
2660 | free_high = (pcp->free_count >= (batch + pcp->high_min / 2) && | |
2661 | (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && | |
2662 | (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || | |
2663 | pcp->count >= batch)); | |
2664 | pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; | |
2665 | } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { | |
2666 | pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; | |
2667 | } | |
2668 | if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) | |
2669 | pcp->free_count += (1 << order); | |
2670 | ||
2671 | if (unlikely(fpi_flags & FPI_TRYLOCK)) { | |
2672 | /* | |
2673 | * Do not attempt to take a zone lock. Let pcp->count get | |
2674 | * over high mark temporarily. | |
2675 | */ | |
2676 | return; | |
2677 | } | |
2678 | high = nr_pcp_high(pcp, zone, batch, free_high); | |
2679 | if (pcp->count >= high) { | |
2680 | free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), | |
2681 | pcp, pindex); | |
2682 | if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && | |
2683 | zone_watermark_ok(zone, 0, high_wmark_pages(zone), | |
2684 | ZONE_MOVABLE, 0)) | |
2685 | clear_bit(ZONE_BELOW_HIGH, &zone->flags); | |
2686 | } | |
2687 | } | |
2688 | ||
2689 | /* | |
2690 | * Free a pcp page | |
2691 | */ | |
2692 | static void __free_frozen_pages(struct page *page, unsigned int order, | |
2693 | fpi_t fpi_flags) | |
2694 | { | |
2695 | unsigned long __maybe_unused UP_flags; | |
2696 | struct per_cpu_pages *pcp; | |
2697 | struct zone *zone; | |
2698 | unsigned long pfn = page_to_pfn(page); | |
2699 | int migratetype; | |
2700 | ||
2701 | if (!pcp_allowed_order(order)) { | |
2702 | __free_pages_ok(page, order, fpi_flags); | |
2703 | return; | |
2704 | } | |
2705 | ||
2706 | if (!free_pages_prepare(page, order)) | |
2707 | return; | |
2708 | ||
2709 | /* | |
2710 | * We only track unmovable, reclaimable and movable on pcp lists. | |
2711 | * Place ISOLATE pages on the isolated list because they are being | |
2712 | * offlined but treat HIGHATOMIC and CMA as movable pages so we can | |
2713 | * get those areas back if necessary. Otherwise, we may have to free | |
2714 | * excessively into the page allocator | |
2715 | */ | |
2716 | zone = page_zone(page); | |
2717 | migratetype = get_pfnblock_migratetype(page, pfn); | |
2718 | if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { | |
2719 | if (unlikely(is_migrate_isolate(migratetype))) { | |
2720 | free_one_page(zone, page, pfn, order, fpi_flags); | |
2721 | return; | |
2722 | } | |
2723 | migratetype = MIGRATE_MOVABLE; | |
2724 | } | |
2725 | ||
2726 | if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT) | |
2727 | && (in_nmi() || in_hardirq()))) { | |
2728 | add_page_to_zone_llist(zone, page, order); | |
2729 | return; | |
2730 | } | |
2731 | pcp_trylock_prepare(UP_flags); | |
2732 | pcp = pcp_spin_trylock(zone->per_cpu_pageset); | |
2733 | if (pcp) { | |
2734 | free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags); | |
2735 | pcp_spin_unlock(pcp); | |
2736 | } else { | |
2737 | free_one_page(zone, page, pfn, order, fpi_flags); | |
2738 | } | |
2739 | pcp_trylock_finish(UP_flags); | |
2740 | } | |
2741 | ||
2742 | void free_frozen_pages(struct page *page, unsigned int order) | |
2743 | { | |
2744 | __free_frozen_pages(page, order, FPI_NONE); | |
2745 | } | |
2746 | ||
2747 | /* | |
2748 | * Free a batch of folios | |
2749 | */ | |
2750 | void free_unref_folios(struct folio_batch *folios) | |
2751 | { | |
2752 | unsigned long __maybe_unused UP_flags; | |
2753 | struct per_cpu_pages *pcp = NULL; | |
2754 | struct zone *locked_zone = NULL; | |
2755 | int i, j; | |
2756 | ||
2757 | /* Prepare folios for freeing */ | |
2758 | for (i = 0, j = 0; i < folios->nr; i++) { | |
2759 | struct folio *folio = folios->folios[i]; | |
2760 | unsigned long pfn = folio_pfn(folio); | |
2761 | unsigned int order = folio_order(folio); | |
2762 | ||
2763 | if (!free_pages_prepare(&folio->page, order)) | |
2764 | continue; | |
2765 | /* | |
2766 | * Free orders not handled on the PCP directly to the | |
2767 | * allocator. | |
2768 | */ | |
2769 | if (!pcp_allowed_order(order)) { | |
2770 | free_one_page(folio_zone(folio), &folio->page, | |
2771 | pfn, order, FPI_NONE); | |
2772 | continue; | |
2773 | } | |
2774 | folio->private = (void *)(unsigned long)order; | |
2775 | if (j != i) | |
2776 | folios->folios[j] = folio; | |
2777 | j++; | |
2778 | } | |
2779 | folios->nr = j; | |
2780 | ||
2781 | for (i = 0; i < folios->nr; i++) { | |
2782 | struct folio *folio = folios->folios[i]; | |
2783 | struct zone *zone = folio_zone(folio); | |
2784 | unsigned long pfn = folio_pfn(folio); | |
2785 | unsigned int order = (unsigned long)folio->private; | |
2786 | int migratetype; | |
2787 | ||
2788 | folio->private = NULL; | |
2789 | migratetype = get_pfnblock_migratetype(&folio->page, pfn); | |
2790 | ||
2791 | /* Different zone requires a different pcp lock */ | |
2792 | if (zone != locked_zone || | |
2793 | is_migrate_isolate(migratetype)) { | |
2794 | if (pcp) { | |
2795 | pcp_spin_unlock(pcp); | |
2796 | pcp_trylock_finish(UP_flags); | |
2797 | locked_zone = NULL; | |
2798 | pcp = NULL; | |
2799 | } | |
2800 | ||
2801 | /* | |
2802 | * Free isolated pages directly to the | |
2803 | * allocator, see comment in free_frozen_pages. | |
2804 | */ | |
2805 | if (is_migrate_isolate(migratetype)) { | |
2806 | free_one_page(zone, &folio->page, pfn, | |
2807 | order, FPI_NONE); | |
2808 | continue; | |
2809 | } | |
2810 | ||
2811 | /* | |
2812 | * trylock is necessary as folios may be getting freed | |
2813 | * from IRQ or SoftIRQ context after an IO completion. | |
2814 | */ | |
2815 | pcp_trylock_prepare(UP_flags); | |
2816 | pcp = pcp_spin_trylock(zone->per_cpu_pageset); | |
2817 | if (unlikely(!pcp)) { | |
2818 | pcp_trylock_finish(UP_flags); | |
2819 | free_one_page(zone, &folio->page, pfn, | |
2820 | order, FPI_NONE); | |
2821 | continue; | |
2822 | } | |
2823 | locked_zone = zone; | |
2824 | } | |
2825 | ||
2826 | /* | |
2827 | * Non-isolated types over MIGRATE_PCPTYPES get added | |
2828 | * to the MIGRATE_MOVABLE pcp list. | |
2829 | */ | |
2830 | if (unlikely(migratetype >= MIGRATE_PCPTYPES)) | |
2831 | migratetype = MIGRATE_MOVABLE; | |
2832 | ||
2833 | trace_mm_page_free_batched(&folio->page); | |
2834 | free_frozen_page_commit(zone, pcp, &folio->page, migratetype, | |
2835 | order, FPI_NONE); | |
2836 | } | |
2837 | ||
2838 | if (pcp) { | |
2839 | pcp_spin_unlock(pcp); | |
2840 | pcp_trylock_finish(UP_flags); | |
2841 | } | |
2842 | folio_batch_reinit(folios); | |
2843 | } | |
2844 | ||
2845 | /* | |
2846 | * split_page takes a non-compound higher-order page, and splits it into | |
2847 | * n (1<<order) sub-pages: page[0..n] | |
2848 | * Each sub-page must be freed individually. | |
2849 | * | |
2850 | * Note: this is probably too low level an operation for use in drivers. | |
2851 | * Please consult with lkml before using this in your driver. | |
2852 | */ | |
2853 | void split_page(struct page *page, unsigned int order) | |
2854 | { | |
2855 | int i; | |
2856 | ||
2857 | VM_BUG_ON_PAGE(PageCompound(page), page); | |
2858 | VM_BUG_ON_PAGE(!page_count(page), page); | |
2859 | ||
2860 | for (i = 1; i < (1 << order); i++) | |
2861 | set_page_refcounted(page + i); | |
2862 | split_page_owner(page, order, 0); | |
2863 | pgalloc_tag_split(page_folio(page), order, 0); | |
2864 | split_page_memcg(page, order); | |
2865 | } | |
2866 | EXPORT_SYMBOL_GPL(split_page); | |
2867 | ||
2868 | int __isolate_free_page(struct page *page, unsigned int order) | |
2869 | { | |
2870 | struct zone *zone = page_zone(page); | |
2871 | int mt = get_pageblock_migratetype(page); | |
2872 | ||
2873 | if (!is_migrate_isolate(mt)) { | |
2874 | unsigned long watermark; | |
2875 | /* | |
2876 | * Obey watermarks as if the page was being allocated. We can | |
2877 | * emulate a high-order watermark check with a raised order-0 | |
2878 | * watermark, because we already know our high-order page | |
2879 | * exists. | |
2880 | */ | |
2881 | watermark = zone->_watermark[WMARK_MIN] + (1UL << order); | |
2882 | if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) | |
2883 | return 0; | |
2884 | } | |
2885 | ||
2886 | del_page_from_free_list(page, zone, order, mt); | |
2887 | ||
2888 | /* | |
2889 | * Set the pageblock if the isolated page is at least half of a | |
2890 | * pageblock | |
2891 | */ | |
2892 | if (order >= pageblock_order - 1) { | |
2893 | struct page *endpage = page + (1 << order) - 1; | |
2894 | for (; page < endpage; page += pageblock_nr_pages) { | |
2895 | int mt = get_pageblock_migratetype(page); | |
2896 | /* | |
2897 | * Only change normal pageblocks (i.e., they can merge | |
2898 | * with others) | |
2899 | */ | |
2900 | if (migratetype_is_mergeable(mt)) | |
2901 | move_freepages_block(zone, page, mt, | |
2902 | MIGRATE_MOVABLE); | |
2903 | } | |
2904 | } | |
2905 | ||
2906 | return 1UL << order; | |
2907 | } | |
2908 | ||
2909 | /** | |
2910 | * __putback_isolated_page - Return a now-isolated page back where we got it | |
2911 | * @page: Page that was isolated | |
2912 | * @order: Order of the isolated page | |
2913 | * @mt: The page's pageblock's migratetype | |
2914 | * | |
2915 | * This function is meant to return a page pulled from the free lists via | |
2916 | * __isolate_free_page back to the free lists they were pulled from. | |
2917 | */ | |
2918 | void __putback_isolated_page(struct page *page, unsigned int order, int mt) | |
2919 | { | |
2920 | struct zone *zone = page_zone(page); | |
2921 | ||
2922 | /* zone lock should be held when this function is called */ | |
2923 | lockdep_assert_held(&zone->lock); | |
2924 | ||
2925 | /* Return isolated page to tail of freelist. */ | |
2926 | __free_one_page(page, page_to_pfn(page), zone, order, mt, | |
2927 | FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); | |
2928 | } | |
2929 | ||
2930 | /* | |
2931 | * Update NUMA hit/miss statistics | |
2932 | */ | |
2933 | static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, | |
2934 | long nr_account) | |
2935 | { | |
2936 | #ifdef CONFIG_NUMA | |
2937 | enum numa_stat_item local_stat = NUMA_LOCAL; | |
2938 | ||
2939 | /* skip numa counters update if numa stats is disabled */ | |
2940 | if (!static_branch_likely(&vm_numa_stat_key)) | |
2941 | return; | |
2942 | ||
2943 | if (zone_to_nid(z) != numa_node_id()) | |
2944 | local_stat = NUMA_OTHER; | |
2945 | ||
2946 | if (zone_to_nid(z) == zone_to_nid(preferred_zone)) | |
2947 | __count_numa_events(z, NUMA_HIT, nr_account); | |
2948 | else { | |
2949 | __count_numa_events(z, NUMA_MISS, nr_account); | |
2950 | __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); | |
2951 | } | |
2952 | __count_numa_events(z, local_stat, nr_account); | |
2953 | #endif | |
2954 | } | |
2955 | ||
2956 | static __always_inline | |
2957 | struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, | |
2958 | unsigned int order, unsigned int alloc_flags, | |
2959 | int migratetype) | |
2960 | { | |
2961 | struct page *page; | |
2962 | unsigned long flags; | |
2963 | ||
2964 | do { | |
2965 | page = NULL; | |
2966 | if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { | |
2967 | if (!spin_trylock_irqsave(&zone->lock, flags)) | |
2968 | return NULL; | |
2969 | } else { | |
2970 | spin_lock_irqsave(&zone->lock, flags); | |
2971 | } | |
2972 | if (alloc_flags & ALLOC_HIGHATOMIC) | |
2973 | page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); | |
2974 | if (!page) { | |
2975 | enum rmqueue_mode rmqm = RMQUEUE_NORMAL; | |
2976 | ||
2977 | page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm); | |
2978 | ||
2979 | /* | |
2980 | * If the allocation fails, allow OOM handling and | |
2981 | * order-0 (atomic) allocs access to HIGHATOMIC | |
2982 | * reserves as failing now is worse than failing a | |
2983 | * high-order atomic allocation in the future. | |
2984 | */ | |
2985 | if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) | |
2986 | page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); | |
2987 | ||
2988 | if (!page) { | |
2989 | spin_unlock_irqrestore(&zone->lock, flags); | |
2990 | return NULL; | |
2991 | } | |
2992 | } | |
2993 | spin_unlock_irqrestore(&zone->lock, flags); | |
2994 | } while (check_new_pages(page, order)); | |
2995 | ||
2996 | __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); | |
2997 | zone_statistics(preferred_zone, zone, 1); | |
2998 | ||
2999 | return page; | |
3000 | } | |
3001 | ||
3002 | static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) | |
3003 | { | |
3004 | int high, base_batch, batch, max_nr_alloc; | |
3005 | int high_max, high_min; | |
3006 | ||
3007 | base_batch = READ_ONCE(pcp->batch); | |
3008 | high_min = READ_ONCE(pcp->high_min); | |
3009 | high_max = READ_ONCE(pcp->high_max); | |
3010 | high = pcp->high = clamp(pcp->high, high_min, high_max); | |
3011 | ||
3012 | /* Check for PCP disabled or boot pageset */ | |
3013 | if (unlikely(high < base_batch)) | |
3014 | return 1; | |
3015 | ||
3016 | if (order) | |
3017 | batch = base_batch; | |
3018 | else | |
3019 | batch = (base_batch << pcp->alloc_factor); | |
3020 | ||
3021 | /* | |
3022 | * If we had larger pcp->high, we could avoid to allocate from | |
3023 | * zone. | |
3024 | */ | |
3025 | if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) | |
3026 | high = pcp->high = min(high + batch, high_max); | |
3027 | ||
3028 | if (!order) { | |
3029 | max_nr_alloc = max(high - pcp->count - base_batch, base_batch); | |
3030 | /* | |
3031 | * Double the number of pages allocated each time there is | |
3032 | * subsequent allocation of order-0 pages without any freeing. | |
3033 | */ | |
3034 | if (batch <= max_nr_alloc && | |
3035 | pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) | |
3036 | pcp->alloc_factor++; | |
3037 | batch = min(batch, max_nr_alloc); | |
3038 | } | |
3039 | ||
3040 | /* | |
3041 | * Scale batch relative to order if batch implies free pages | |
3042 | * can be stored on the PCP. Batch can be 1 for small zones or | |
3043 | * for boot pagesets which should never store free pages as | |
3044 | * the pages may belong to arbitrary zones. | |
3045 | */ | |
3046 | if (batch > 1) | |
3047 | batch = max(batch >> order, 2); | |
3048 | ||
3049 | return batch; | |
3050 | } | |
3051 | ||
3052 | /* Remove page from the per-cpu list, caller must protect the list */ | |
3053 | static inline | |
3054 | struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, | |
3055 | int migratetype, | |
3056 | unsigned int alloc_flags, | |
3057 | struct per_cpu_pages *pcp, | |
3058 | struct list_head *list) | |
3059 | { | |
3060 | struct page *page; | |
3061 | ||
3062 | do { | |
3063 | if (list_empty(list)) { | |
3064 | int batch = nr_pcp_alloc(pcp, zone, order); | |
3065 | int alloced; | |
3066 | ||
3067 | alloced = rmqueue_bulk(zone, order, | |
3068 | batch, list, | |
3069 | migratetype, alloc_flags); | |
3070 | ||
3071 | pcp->count += alloced << order; | |
3072 | if (unlikely(list_empty(list))) | |
3073 | return NULL; | |
3074 | } | |
3075 | ||
3076 | page = list_first_entry(list, struct page, pcp_list); | |
3077 | list_del(&page->pcp_list); | |
3078 | pcp->count -= 1 << order; | |
3079 | } while (check_new_pages(page, order)); | |
3080 | ||
3081 | return page; | |
3082 | } | |
3083 | ||
3084 | /* Lock and remove page from the per-cpu list */ | |
3085 | static struct page *rmqueue_pcplist(struct zone *preferred_zone, | |
3086 | struct zone *zone, unsigned int order, | |
3087 | int migratetype, unsigned int alloc_flags) | |
3088 | { | |
3089 | struct per_cpu_pages *pcp; | |
3090 | struct list_head *list; | |
3091 | struct page *page; | |
3092 | unsigned long __maybe_unused UP_flags; | |
3093 | ||
3094 | /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ | |
3095 | pcp_trylock_prepare(UP_flags); | |
3096 | pcp = pcp_spin_trylock(zone->per_cpu_pageset); | |
3097 | if (!pcp) { | |
3098 | pcp_trylock_finish(UP_flags); | |
3099 | return NULL; | |
3100 | } | |
3101 | ||
3102 | /* | |
3103 | * On allocation, reduce the number of pages that are batch freed. | |
3104 | * See nr_pcp_free() where free_factor is increased for subsequent | |
3105 | * frees. | |
3106 | */ | |
3107 | pcp->free_count >>= 1; | |
3108 | list = &pcp->lists[order_to_pindex(migratetype, order)]; | |
3109 | page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); | |
3110 | pcp_spin_unlock(pcp); | |
3111 | pcp_trylock_finish(UP_flags); | |
3112 | if (page) { | |
3113 | __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); | |
3114 | zone_statistics(preferred_zone, zone, 1); | |
3115 | } | |
3116 | return page; | |
3117 | } | |
3118 | ||
3119 | /* | |
3120 | * Allocate a page from the given zone. | |
3121 | * Use pcplists for THP or "cheap" high-order allocations. | |
3122 | */ | |
3123 | ||
3124 | /* | |
3125 | * Do not instrument rmqueue() with KMSAN. This function may call | |
3126 | * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). | |
3127 | * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it | |
3128 | * may call rmqueue() again, which will result in a deadlock. | |
3129 | */ | |
3130 | __no_sanitize_memory | |
3131 | static inline | |
3132 | struct page *rmqueue(struct zone *preferred_zone, | |
3133 | struct zone *zone, unsigned int order, | |
3134 | gfp_t gfp_flags, unsigned int alloc_flags, | |
3135 | int migratetype) | |
3136 | { | |
3137 | struct page *page; | |
3138 | ||
3139 | if (likely(pcp_allowed_order(order))) { | |
3140 | page = rmqueue_pcplist(preferred_zone, zone, order, | |
3141 | migratetype, alloc_flags); | |
3142 | if (likely(page)) | |
3143 | goto out; | |
3144 | } | |
3145 | ||
3146 | page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, | |
3147 | migratetype); | |
3148 | ||
3149 | out: | |
3150 | /* Separate test+clear to avoid unnecessary atomics */ | |
3151 | if ((alloc_flags & ALLOC_KSWAPD) && | |
3152 | unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { | |
3153 | clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); | |
3154 | wakeup_kswapd(zone, 0, 0, zone_idx(zone)); | |
3155 | } | |
3156 | ||
3157 | VM_BUG_ON_PAGE(page && bad_range(zone, page), page); | |
3158 | return page; | |
3159 | } | |
3160 | ||
3161 | /* | |
3162 | * Reserve the pageblock(s) surrounding an allocation request for | |
3163 | * exclusive use of high-order atomic allocations if there are no | |
3164 | * empty page blocks that contain a page with a suitable order | |
3165 | */ | |
3166 | static void reserve_highatomic_pageblock(struct page *page, int order, | |
3167 | struct zone *zone) | |
3168 | { | |
3169 | int mt; | |
3170 | unsigned long max_managed, flags; | |
3171 | ||
3172 | /* | |
3173 | * The number reserved as: minimum is 1 pageblock, maximum is | |
3174 | * roughly 1% of a zone. But if 1% of a zone falls below a | |
3175 | * pageblock size, then don't reserve any pageblocks. | |
3176 | * Check is race-prone but harmless. | |
3177 | */ | |
3178 | if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) | |
3179 | return; | |
3180 | max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); | |
3181 | if (zone->nr_reserved_highatomic >= max_managed) | |
3182 | return; | |
3183 | ||
3184 | spin_lock_irqsave(&zone->lock, flags); | |
3185 | ||
3186 | /* Recheck the nr_reserved_highatomic limit under the lock */ | |
3187 | if (zone->nr_reserved_highatomic >= max_managed) | |
3188 | goto out_unlock; | |
3189 | ||
3190 | /* Yoink! */ | |
3191 | mt = get_pageblock_migratetype(page); | |
3192 | /* Only reserve normal pageblocks (i.e., they can merge with others) */ | |
3193 | if (!migratetype_is_mergeable(mt)) | |
3194 | goto out_unlock; | |
3195 | ||
3196 | if (order < pageblock_order) { | |
3197 | if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) | |
3198 | goto out_unlock; | |
3199 | zone->nr_reserved_highatomic += pageblock_nr_pages; | |
3200 | } else { | |
3201 | change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); | |
3202 | zone->nr_reserved_highatomic += 1 << order; | |
3203 | } | |
3204 | ||
3205 | out_unlock: | |
3206 | spin_unlock_irqrestore(&zone->lock, flags); | |
3207 | } | |
3208 | ||
3209 | /* | |
3210 | * Used when an allocation is about to fail under memory pressure. This | |
3211 | * potentially hurts the reliability of high-order allocations when under | |
3212 | * intense memory pressure but failed atomic allocations should be easier | |
3213 | * to recover from than an OOM. | |
3214 | * | |
3215 | * If @force is true, try to unreserve pageblocks even though highatomic | |
3216 | * pageblock is exhausted. | |
3217 | */ | |
3218 | static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, | |
3219 | bool force) | |
3220 | { | |
3221 | struct zonelist *zonelist = ac->zonelist; | |
3222 | unsigned long flags; | |
3223 | struct zoneref *z; | |
3224 | struct zone *zone; | |
3225 | struct page *page; | |
3226 | int order; | |
3227 | int ret; | |
3228 | ||
3229 | for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, | |
3230 | ac->nodemask) { | |
3231 | /* | |
3232 | * Preserve at least one pageblock unless memory pressure | |
3233 | * is really high. | |
3234 | */ | |
3235 | if (!force && zone->nr_reserved_highatomic <= | |
3236 | pageblock_nr_pages) | |
3237 | continue; | |
3238 | ||
3239 | spin_lock_irqsave(&zone->lock, flags); | |
3240 | for (order = 0; order < NR_PAGE_ORDERS; order++) { | |
3241 | struct free_area *area = &(zone->free_area[order]); | |
3242 | unsigned long size; | |
3243 | ||
3244 | page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); | |
3245 | if (!page) | |
3246 | continue; | |
3247 | ||
3248 | size = max(pageblock_nr_pages, 1UL << order); | |
3249 | /* | |
3250 | * It should never happen but changes to | |
3251 | * locking could inadvertently allow a per-cpu | |
3252 | * drain to add pages to MIGRATE_HIGHATOMIC | |
3253 | * while unreserving so be safe and watch for | |
3254 | * underflows. | |
3255 | */ | |
3256 | if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic)) | |
3257 | size = zone->nr_reserved_highatomic; | |
3258 | zone->nr_reserved_highatomic -= size; | |
3259 | ||
3260 | /* | |
3261 | * Convert to ac->migratetype and avoid the normal | |
3262 | * pageblock stealing heuristics. Minimally, the caller | |
3263 | * is doing the work and needs the pages. More | |
3264 | * importantly, if the block was always converted to | |
3265 | * MIGRATE_UNMOVABLE or another type then the number | |
3266 | * of pageblocks that cannot be completely freed | |
3267 | * may increase. | |
3268 | */ | |
3269 | if (order < pageblock_order) | |
3270 | ret = move_freepages_block(zone, page, | |
3271 | MIGRATE_HIGHATOMIC, | |
3272 | ac->migratetype); | |
3273 | else { | |
3274 | move_to_free_list(page, zone, order, | |
3275 | MIGRATE_HIGHATOMIC, | |
3276 | ac->migratetype); | |
3277 | change_pageblock_range(page, order, | |
3278 | ac->migratetype); | |
3279 | ret = 1; | |
3280 | } | |
3281 | /* | |
3282 | * Reserving the block(s) already succeeded, | |
3283 | * so this should not fail on zone boundaries. | |
3284 | */ | |
3285 | WARN_ON_ONCE(ret == -1); | |
3286 | if (ret > 0) { | |
3287 | spin_unlock_irqrestore(&zone->lock, flags); | |
3288 | return ret; | |
3289 | } | |
3290 | } | |
3291 | spin_unlock_irqrestore(&zone->lock, flags); | |
3292 | } | |
3293 | ||
3294 | return false; | |
3295 | } | |
3296 | ||
3297 | static inline long __zone_watermark_unusable_free(struct zone *z, | |
3298 | unsigned int order, unsigned int alloc_flags) | |
3299 | { | |
3300 | long unusable_free = (1 << order) - 1; | |
3301 | ||
3302 | /* | |
3303 | * If the caller does not have rights to reserves below the min | |
3304 | * watermark then subtract the free pages reserved for highatomic. | |
3305 | */ | |
3306 | if (likely(!(alloc_flags & ALLOC_RESERVES))) | |
3307 | unusable_free += READ_ONCE(z->nr_free_highatomic); | |
3308 | ||
3309 | #ifdef CONFIG_CMA | |
3310 | /* If allocation can't use CMA areas don't use free CMA pages */ | |
3311 | if (!(alloc_flags & ALLOC_CMA)) | |
3312 | unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); | |
3313 | #endif | |
3314 | ||
3315 | return unusable_free; | |
3316 | } | |
3317 | ||
3318 | /* | |
3319 | * Return true if free base pages are above 'mark'. For high-order checks it | |
3320 | * will return true of the order-0 watermark is reached and there is at least | |
3321 | * one free page of a suitable size. Checking now avoids taking the zone lock | |
3322 | * to check in the allocation paths if no pages are free. | |
3323 | */ | |
3324 | bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, | |
3325 | int highest_zoneidx, unsigned int alloc_flags, | |
3326 | long free_pages) | |
3327 | { | |
3328 | long min = mark; | |
3329 | int o; | |
3330 | ||
3331 | /* free_pages may go negative - that's OK */ | |
3332 | free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); | |
3333 | ||
3334 | if (unlikely(alloc_flags & ALLOC_RESERVES)) { | |
3335 | /* | |
3336 | * __GFP_HIGH allows access to 50% of the min reserve as well | |
3337 | * as OOM. | |
3338 | */ | |
3339 | if (alloc_flags & ALLOC_MIN_RESERVE) { | |
3340 | min -= min / 2; | |
3341 | ||
3342 | /* | |
3343 | * Non-blocking allocations (e.g. GFP_ATOMIC) can | |
3344 | * access more reserves than just __GFP_HIGH. Other | |
3345 | * non-blocking allocations requests such as GFP_NOWAIT | |
3346 | * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get | |
3347 | * access to the min reserve. | |
3348 | */ | |
3349 | if (alloc_flags & ALLOC_NON_BLOCK) | |
3350 | min -= min / 4; | |
3351 | } | |
3352 | ||
3353 | /* | |
3354 | * OOM victims can try even harder than the normal reserve | |
3355 | * users on the grounds that it's definitely going to be in | |
3356 | * the exit path shortly and free memory. Any allocation it | |
3357 | * makes during the free path will be small and short-lived. | |
3358 | */ | |
3359 | if (alloc_flags & ALLOC_OOM) | |
3360 | min -= min / 2; | |
3361 | } | |
3362 | ||
3363 | /* | |
3364 | * Check watermarks for an order-0 allocation request. If these | |
3365 | * are not met, then a high-order request also cannot go ahead | |
3366 | * even if a suitable page happened to be free. | |
3367 | */ | |
3368 | if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) | |
3369 | return false; | |
3370 | ||
3371 | /* If this is an order-0 request then the watermark is fine */ | |
3372 | if (!order) | |
3373 | return true; | |
3374 | ||
3375 | /* For a high-order request, check at least one suitable page is free */ | |
3376 | for (o = order; o < NR_PAGE_ORDERS; o++) { | |
3377 | struct free_area *area = &z->free_area[o]; | |
3378 | int mt; | |
3379 | ||
3380 | if (!area->nr_free) | |
3381 | continue; | |
3382 | ||
3383 | for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { | |
3384 | if (!free_area_empty(area, mt)) | |
3385 | return true; | |
3386 | } | |
3387 | ||
3388 | #ifdef CONFIG_CMA | |
3389 | if ((alloc_flags & ALLOC_CMA) && | |
3390 | !free_area_empty(area, MIGRATE_CMA)) { | |
3391 | return true; | |
3392 | } | |
3393 | #endif | |
3394 | if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && | |
3395 | !free_area_empty(area, MIGRATE_HIGHATOMIC)) { | |
3396 | return true; | |
3397 | } | |
3398 | } | |
3399 | return false; | |
3400 | } | |
3401 | ||
3402 | bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, | |
3403 | int highest_zoneidx, unsigned int alloc_flags) | |
3404 | { | |
3405 | return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, | |
3406 | zone_page_state(z, NR_FREE_PAGES)); | |
3407 | } | |
3408 | ||
3409 | static inline bool zone_watermark_fast(struct zone *z, unsigned int order, | |
3410 | unsigned long mark, int highest_zoneidx, | |
3411 | unsigned int alloc_flags, gfp_t gfp_mask) | |
3412 | { | |
3413 | long free_pages; | |
3414 | ||
3415 | free_pages = zone_page_state(z, NR_FREE_PAGES); | |
3416 | ||
3417 | /* | |
3418 | * Fast check for order-0 only. If this fails then the reserves | |
3419 | * need to be calculated. | |
3420 | */ | |
3421 | if (!order) { | |
3422 | long usable_free; | |
3423 | long reserved; | |
3424 | ||
3425 | usable_free = free_pages; | |
3426 | reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); | |
3427 | ||
3428 | /* reserved may over estimate high-atomic reserves. */ | |
3429 | usable_free -= min(usable_free, reserved); | |
3430 | if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) | |
3431 | return true; | |
3432 | } | |
3433 | ||
3434 | if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, | |
3435 | free_pages)) | |
3436 | return true; | |
3437 | ||
3438 | /* | |
3439 | * Ignore watermark boosting for __GFP_HIGH order-0 allocations | |
3440 | * when checking the min watermark. The min watermark is the | |
3441 | * point where boosting is ignored so that kswapd is woken up | |
3442 | * when below the low watermark. | |
3443 | */ | |
3444 | if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost | |
3445 | && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { | |
3446 | mark = z->_watermark[WMARK_MIN]; | |
3447 | return __zone_watermark_ok(z, order, mark, highest_zoneidx, | |
3448 | alloc_flags, free_pages); | |
3449 | } | |
3450 | ||
3451 | return false; | |
3452 | } | |
3453 | ||
3454 | #ifdef CONFIG_NUMA | |
3455 | int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; | |
3456 | ||
3457 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) | |
3458 | { | |
3459 | return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= | |
3460 | node_reclaim_distance; | |
3461 | } | |
3462 | #else /* CONFIG_NUMA */ | |
3463 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) | |
3464 | { | |
3465 | return true; | |
3466 | } | |
3467 | #endif /* CONFIG_NUMA */ | |
3468 | ||
3469 | /* | |
3470 | * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid | |
3471 | * fragmentation is subtle. If the preferred zone was HIGHMEM then | |
3472 | * premature use of a lower zone may cause lowmem pressure problems that | |
3473 | * are worse than fragmentation. If the next zone is ZONE_DMA then it is | |
3474 | * probably too small. It only makes sense to spread allocations to avoid | |
3475 | * fragmentation between the Normal and DMA32 zones. | |
3476 | */ | |
3477 | static inline unsigned int | |
3478 | alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) | |
3479 | { | |
3480 | unsigned int alloc_flags; | |
3481 | ||
3482 | /* | |
3483 | * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD | |
3484 | * to save a branch. | |
3485 | */ | |
3486 | alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); | |
3487 | ||
3488 | if (defrag_mode) { | |
3489 | alloc_flags |= ALLOC_NOFRAGMENT; | |
3490 | return alloc_flags; | |
3491 | } | |
3492 | ||
3493 | #ifdef CONFIG_ZONE_DMA32 | |
3494 | if (!zone) | |
3495 | return alloc_flags; | |
3496 | ||
3497 | if (zone_idx(zone) != ZONE_NORMAL) | |
3498 | return alloc_flags; | |
3499 | ||
3500 | /* | |
3501 | * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and | |
3502 | * the pointer is within zone->zone_pgdat->node_zones[]. Also assume | |
3503 | * on UMA that if Normal is populated then so is DMA32. | |
3504 | */ | |
3505 | BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); | |
3506 | if (nr_online_nodes > 1 && !populated_zone(--zone)) | |
3507 | return alloc_flags; | |
3508 | ||
3509 | alloc_flags |= ALLOC_NOFRAGMENT; | |
3510 | #endif /* CONFIG_ZONE_DMA32 */ | |
3511 | return alloc_flags; | |
3512 | } | |
3513 | ||
3514 | /* Must be called after current_gfp_context() which can change gfp_mask */ | |
3515 | static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, | |
3516 | unsigned int alloc_flags) | |
3517 | { | |
3518 | #ifdef CONFIG_CMA | |
3519 | if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) | |
3520 | alloc_flags |= ALLOC_CMA; | |
3521 | #endif | |
3522 | return alloc_flags; | |
3523 | } | |
3524 | ||
3525 | /* | |
3526 | * get_page_from_freelist goes through the zonelist trying to allocate | |
3527 | * a page. | |
3528 | */ | |
3529 | static struct page * | |
3530 | get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, | |
3531 | const struct alloc_context *ac) | |
3532 | { | |
3533 | struct zoneref *z; | |
3534 | struct zone *zone; | |
3535 | struct pglist_data *last_pgdat = NULL; | |
3536 | bool last_pgdat_dirty_ok = false; | |
3537 | bool no_fallback; | |
3538 | ||
3539 | retry: | |
3540 | /* | |
3541 | * Scan zonelist, looking for a zone with enough free. | |
3542 | * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c. | |
3543 | */ | |
3544 | no_fallback = alloc_flags & ALLOC_NOFRAGMENT; | |
3545 | z = ac->preferred_zoneref; | |
3546 | for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, | |
3547 | ac->nodemask) { | |
3548 | struct page *page; | |
3549 | unsigned long mark; | |
3550 | ||
3551 | if (cpusets_enabled() && | |
3552 | (alloc_flags & ALLOC_CPUSET) && | |
3553 | !__cpuset_zone_allowed(zone, gfp_mask)) | |
3554 | continue; | |
3555 | /* | |
3556 | * When allocating a page cache page for writing, we | |
3557 | * want to get it from a node that is within its dirty | |
3558 | * limit, such that no single node holds more than its | |
3559 | * proportional share of globally allowed dirty pages. | |
3560 | * The dirty limits take into account the node's | |
3561 | * lowmem reserves and high watermark so that kswapd | |
3562 | * should be able to balance it without having to | |
3563 | * write pages from its LRU list. | |
3564 | * | |
3565 | * XXX: For now, allow allocations to potentially | |
3566 | * exceed the per-node dirty limit in the slowpath | |
3567 | * (spread_dirty_pages unset) before going into reclaim, | |
3568 | * which is important when on a NUMA setup the allowed | |
3569 | * nodes are together not big enough to reach the | |
3570 | * global limit. The proper fix for these situations | |
3571 | * will require awareness of nodes in the | |
3572 | * dirty-throttling and the flusher threads. | |
3573 | */ | |
3574 | if (ac->spread_dirty_pages) { | |
3575 | if (last_pgdat != zone->zone_pgdat) { | |
3576 | last_pgdat = zone->zone_pgdat; | |
3577 | last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); | |
3578 | } | |
3579 | ||
3580 | if (!last_pgdat_dirty_ok) | |
3581 | continue; | |
3582 | } | |
3583 | ||
3584 | if (no_fallback && !defrag_mode && nr_online_nodes > 1 && | |
3585 | zone != zonelist_zone(ac->preferred_zoneref)) { | |
3586 | int local_nid; | |
3587 | ||
3588 | /* | |
3589 | * If moving to a remote node, retry but allow | |
3590 | * fragmenting fallbacks. Locality is more important | |
3591 | * than fragmentation avoidance. | |
3592 | */ | |
3593 | local_nid = zonelist_node_idx(ac->preferred_zoneref); | |
3594 | if (zone_to_nid(zone) != local_nid) { | |
3595 | alloc_flags &= ~ALLOC_NOFRAGMENT; | |
3596 | goto retry; | |
3597 | } | |
3598 | } | |
3599 | ||
3600 | cond_accept_memory(zone, order, alloc_flags); | |
3601 | ||
3602 | /* | |
3603 | * Detect whether the number of free pages is below high | |
3604 | * watermark. If so, we will decrease pcp->high and free | |
3605 | * PCP pages in free path to reduce the possibility of | |
3606 | * premature page reclaiming. Detection is done here to | |
3607 | * avoid to do that in hotter free path. | |
3608 | */ | |
3609 | if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) | |
3610 | goto check_alloc_wmark; | |
3611 | ||
3612 | mark = high_wmark_pages(zone); | |
3613 | if (zone_watermark_fast(zone, order, mark, | |
3614 | ac->highest_zoneidx, alloc_flags, | |
3615 | gfp_mask)) | |
3616 | goto try_this_zone; | |
3617 | else | |
3618 | set_bit(ZONE_BELOW_HIGH, &zone->flags); | |
3619 | ||
3620 | check_alloc_wmark: | |
3621 | mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); | |
3622 | if (!zone_watermark_fast(zone, order, mark, | |
3623 | ac->highest_zoneidx, alloc_flags, | |
3624 | gfp_mask)) { | |
3625 | int ret; | |
3626 | ||
3627 | if (cond_accept_memory(zone, order, alloc_flags)) | |
3628 | goto try_this_zone; | |
3629 | ||
3630 | /* | |
3631 | * Watermark failed for this zone, but see if we can | |
3632 | * grow this zone if it contains deferred pages. | |
3633 | */ | |
3634 | if (deferred_pages_enabled()) { | |
3635 | if (_deferred_grow_zone(zone, order)) | |
3636 | goto try_this_zone; | |
3637 | } | |
3638 | /* Checked here to keep the fast path fast */ | |
3639 | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); | |
3640 | if (alloc_flags & ALLOC_NO_WATERMARKS) | |
3641 | goto try_this_zone; | |
3642 | ||
3643 | if (!node_reclaim_enabled() || | |
3644 | !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) | |
3645 | continue; | |
3646 | ||
3647 | ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); | |
3648 | switch (ret) { | |
3649 | case NODE_RECLAIM_NOSCAN: | |
3650 | /* did not scan */ | |
3651 | continue; | |
3652 | case NODE_RECLAIM_FULL: | |
3653 | /* scanned but unreclaimable */ | |
3654 | continue; | |
3655 | default: | |
3656 | /* did we reclaim enough */ | |
3657 | if (zone_watermark_ok(zone, order, mark, | |
3658 | ac->highest_zoneidx, alloc_flags)) | |
3659 | goto try_this_zone; | |
3660 | ||
3661 | continue; | |
3662 | } | |
3663 | } | |
3664 | ||
3665 | try_this_zone: | |
3666 | page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, | |
3667 | gfp_mask, alloc_flags, ac->migratetype); | |
3668 | if (page) { | |
3669 | prep_new_page(page, order, gfp_mask, alloc_flags); | |
3670 | ||
3671 | /* | |
3672 | * If this is a high-order atomic allocation then check | |
3673 | * if the pageblock should be reserved for the future | |
3674 | */ | |
3675 | if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) | |
3676 | reserve_highatomic_pageblock(page, order, zone); | |
3677 | ||
3678 | return page; | |
3679 | } else { | |
3680 | if (cond_accept_memory(zone, order, alloc_flags)) | |
3681 | goto try_this_zone; | |
3682 | ||
3683 | /* Try again if zone has deferred pages */ | |
3684 | if (deferred_pages_enabled()) { | |
3685 | if (_deferred_grow_zone(zone, order)) | |
3686 | goto try_this_zone; | |
3687 | } | |
3688 | } | |
3689 | } | |
3690 | ||
3691 | /* | |
3692 | * It's possible on a UMA machine to get through all zones that are | |
3693 | * fragmented. If avoiding fragmentation, reset and try again. | |
3694 | */ | |
3695 | if (no_fallback && !defrag_mode) { | |
3696 | alloc_flags &= ~ALLOC_NOFRAGMENT; | |
3697 | goto retry; | |
3698 | } | |
3699 | ||
3700 | return NULL; | |
3701 | } | |
3702 | ||
3703 | static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) | |
3704 | { | |
3705 | unsigned int filter = SHOW_MEM_FILTER_NODES; | |
3706 | ||
3707 | /* | |
3708 | * This documents exceptions given to allocations in certain | |
3709 | * contexts that are allowed to allocate outside current's set | |
3710 | * of allowed nodes. | |
3711 | */ | |
3712 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | |
3713 | if (tsk_is_oom_victim(current) || | |
3714 | (current->flags & (PF_MEMALLOC | PF_EXITING))) | |
3715 | filter &= ~SHOW_MEM_FILTER_NODES; | |
3716 | if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) | |
3717 | filter &= ~SHOW_MEM_FILTER_NODES; | |
3718 | ||
3719 | __show_mem(filter, nodemask, gfp_zone(gfp_mask)); | |
3720 | } | |
3721 | ||
3722 | void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) | |
3723 | { | |
3724 | struct va_format vaf; | |
3725 | va_list args; | |
3726 | static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); | |
3727 | ||
3728 | if ((gfp_mask & __GFP_NOWARN) || | |
3729 | !__ratelimit(&nopage_rs) || | |
3730 | ((gfp_mask & __GFP_DMA) && !has_managed_dma())) | |
3731 | return; | |
3732 | ||
3733 | va_start(args, fmt); | |
3734 | vaf.fmt = fmt; | |
3735 | vaf.va = &args; | |
3736 | pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", | |
3737 | current->comm, &vaf, gfp_mask, &gfp_mask, | |
3738 | nodemask_pr_args(nodemask)); | |
3739 | va_end(args); | |
3740 | ||
3741 | cpuset_print_current_mems_allowed(); | |
3742 | pr_cont("\n"); | |
3743 | dump_stack(); | |
3744 | warn_alloc_show_mem(gfp_mask, nodemask); | |
3745 | } | |
3746 | ||
3747 | static inline struct page * | |
3748 | __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, | |
3749 | unsigned int alloc_flags, | |
3750 | const struct alloc_context *ac) | |
3751 | { | |
3752 | struct page *page; | |
3753 | ||
3754 | page = get_page_from_freelist(gfp_mask, order, | |
3755 | alloc_flags|ALLOC_CPUSET, ac); | |
3756 | /* | |
3757 | * fallback to ignore cpuset restriction if our nodes | |
3758 | * are depleted | |
3759 | */ | |
3760 | if (!page) | |
3761 | page = get_page_from_freelist(gfp_mask, order, | |
3762 | alloc_flags, ac); | |
3763 | return page; | |
3764 | } | |
3765 | ||
3766 | static inline struct page * | |
3767 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | |
3768 | const struct alloc_context *ac, unsigned long *did_some_progress) | |
3769 | { | |
3770 | struct oom_control oc = { | |
3771 | .zonelist = ac->zonelist, | |
3772 | .nodemask = ac->nodemask, | |
3773 | .memcg = NULL, | |
3774 | .gfp_mask = gfp_mask, | |
3775 | .order = order, | |
3776 | }; | |
3777 | struct page *page; | |
3778 | ||
3779 | *did_some_progress = 0; | |
3780 | ||
3781 | /* | |
3782 | * Acquire the oom lock. If that fails, somebody else is | |
3783 | * making progress for us. | |
3784 | */ | |
3785 | if (!mutex_trylock(&oom_lock)) { | |
3786 | *did_some_progress = 1; | |
3787 | schedule_timeout_uninterruptible(1); | |
3788 | return NULL; | |
3789 | } | |
3790 | ||
3791 | /* | |
3792 | * Go through the zonelist yet one more time, keep very high watermark | |
3793 | * here, this is only to catch a parallel oom killing, we must fail if | |
3794 | * we're still under heavy pressure. But make sure that this reclaim | |
3795 | * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY | |
3796 | * allocation which will never fail due to oom_lock already held. | |
3797 | */ | |
3798 | page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & | |
3799 | ~__GFP_DIRECT_RECLAIM, order, | |
3800 | ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); | |
3801 | if (page) | |
3802 | goto out; | |
3803 | ||
3804 | /* Coredumps can quickly deplete all memory reserves */ | |
3805 | if (current->flags & PF_DUMPCORE) | |
3806 | goto out; | |
3807 | /* The OOM killer will not help higher order allocs */ | |
3808 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
3809 | goto out; | |
3810 | /* | |
3811 | * We have already exhausted all our reclaim opportunities without any | |
3812 | * success so it is time to admit defeat. We will skip the OOM killer | |
3813 | * because it is very likely that the caller has a more reasonable | |
3814 | * fallback than shooting a random task. | |
3815 | * | |
3816 | * The OOM killer may not free memory on a specific node. | |
3817 | */ | |
3818 | if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) | |
3819 | goto out; | |
3820 | /* The OOM killer does not needlessly kill tasks for lowmem */ | |
3821 | if (ac->highest_zoneidx < ZONE_NORMAL) | |
3822 | goto out; | |
3823 | if (pm_suspended_storage()) | |
3824 | goto out; | |
3825 | /* | |
3826 | * XXX: GFP_NOFS allocations should rather fail than rely on | |
3827 | * other request to make a forward progress. | |
3828 | * We are in an unfortunate situation where out_of_memory cannot | |
3829 | * do much for this context but let's try it to at least get | |
3830 | * access to memory reserved if the current task is killed (see | |
3831 | * out_of_memory). Once filesystems are ready to handle allocation | |
3832 | * failures more gracefully we should just bail out here. | |
3833 | */ | |
3834 | ||
3835 | /* Exhausted what can be done so it's blame time */ | |
3836 | if (out_of_memory(&oc) || | |
3837 | WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { | |
3838 | *did_some_progress = 1; | |
3839 | ||
3840 | /* | |
3841 | * Help non-failing allocations by giving them access to memory | |
3842 | * reserves | |
3843 | */ | |
3844 | if (gfp_mask & __GFP_NOFAIL) | |
3845 | page = __alloc_pages_cpuset_fallback(gfp_mask, order, | |
3846 | ALLOC_NO_WATERMARKS, ac); | |
3847 | } | |
3848 | out: | |
3849 | mutex_unlock(&oom_lock); | |
3850 | return page; | |
3851 | } | |
3852 | ||
3853 | /* | |
3854 | * Maximum number of compaction retries with a progress before OOM | |
3855 | * killer is consider as the only way to move forward. | |
3856 | */ | |
3857 | #define MAX_COMPACT_RETRIES 16 | |
3858 | ||
3859 | #ifdef CONFIG_COMPACTION | |
3860 | /* Try memory compaction for high-order allocations before reclaim */ | |
3861 | static struct page * | |
3862 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
3863 | unsigned int alloc_flags, const struct alloc_context *ac, | |
3864 | enum compact_priority prio, enum compact_result *compact_result) | |
3865 | { | |
3866 | struct page *page = NULL; | |
3867 | unsigned long pflags; | |
3868 | unsigned int noreclaim_flag; | |
3869 | ||
3870 | if (!order) | |
3871 | return NULL; | |
3872 | ||
3873 | psi_memstall_enter(&pflags); | |
3874 | delayacct_compact_start(); | |
3875 | noreclaim_flag = memalloc_noreclaim_save(); | |
3876 | ||
3877 | *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, | |
3878 | prio, &page); | |
3879 | ||
3880 | memalloc_noreclaim_restore(noreclaim_flag); | |
3881 | psi_memstall_leave(&pflags); | |
3882 | delayacct_compact_end(); | |
3883 | ||
3884 | if (*compact_result == COMPACT_SKIPPED) | |
3885 | return NULL; | |
3886 | /* | |
3887 | * At least in one zone compaction wasn't deferred or skipped, so let's | |
3888 | * count a compaction stall | |
3889 | */ | |
3890 | count_vm_event(COMPACTSTALL); | |
3891 | ||
3892 | /* Prep a captured page if available */ | |
3893 | if (page) | |
3894 | prep_new_page(page, order, gfp_mask, alloc_flags); | |
3895 | ||
3896 | /* Try get a page from the freelist if available */ | |
3897 | if (!page) | |
3898 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | |
3899 | ||
3900 | if (page) { | |
3901 | struct zone *zone = page_zone(page); | |
3902 | ||
3903 | zone->compact_blockskip_flush = false; | |
3904 | compaction_defer_reset(zone, order, true); | |
3905 | count_vm_event(COMPACTSUCCESS); | |
3906 | return page; | |
3907 | } | |
3908 | ||
3909 | /* | |
3910 | * It's bad if compaction run occurs and fails. The most likely reason | |
3911 | * is that pages exist, but not enough to satisfy watermarks. | |
3912 | */ | |
3913 | count_vm_event(COMPACTFAIL); | |
3914 | ||
3915 | cond_resched(); | |
3916 | ||
3917 | return NULL; | |
3918 | } | |
3919 | ||
3920 | static inline bool | |
3921 | should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, | |
3922 | enum compact_result compact_result, | |
3923 | enum compact_priority *compact_priority, | |
3924 | int *compaction_retries) | |
3925 | { | |
3926 | int max_retries = MAX_COMPACT_RETRIES; | |
3927 | int min_priority; | |
3928 | bool ret = false; | |
3929 | int retries = *compaction_retries; | |
3930 | enum compact_priority priority = *compact_priority; | |
3931 | ||
3932 | if (!order) | |
3933 | return false; | |
3934 | ||
3935 | if (fatal_signal_pending(current)) | |
3936 | return false; | |
3937 | ||
3938 | /* | |
3939 | * Compaction was skipped due to a lack of free order-0 | |
3940 | * migration targets. Continue if reclaim can help. | |
3941 | */ | |
3942 | if (compact_result == COMPACT_SKIPPED) { | |
3943 | ret = compaction_zonelist_suitable(ac, order, alloc_flags); | |
3944 | goto out; | |
3945 | } | |
3946 | ||
3947 | /* | |
3948 | * Compaction managed to coalesce some page blocks, but the | |
3949 | * allocation failed presumably due to a race. Retry some. | |
3950 | */ | |
3951 | if (compact_result == COMPACT_SUCCESS) { | |
3952 | /* | |
3953 | * !costly requests are much more important than | |
3954 | * __GFP_RETRY_MAYFAIL costly ones because they are de | |
3955 | * facto nofail and invoke OOM killer to move on while | |
3956 | * costly can fail and users are ready to cope with | |
3957 | * that. 1/4 retries is rather arbitrary but we would | |
3958 | * need much more detailed feedback from compaction to | |
3959 | * make a better decision. | |
3960 | */ | |
3961 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
3962 | max_retries /= 4; | |
3963 | ||
3964 | if (++(*compaction_retries) <= max_retries) { | |
3965 | ret = true; | |
3966 | goto out; | |
3967 | } | |
3968 | } | |
3969 | ||
3970 | /* | |
3971 | * Compaction failed. Retry with increasing priority. | |
3972 | */ | |
3973 | min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? | |
3974 | MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; | |
3975 | ||
3976 | if (*compact_priority > min_priority) { | |
3977 | (*compact_priority)--; | |
3978 | *compaction_retries = 0; | |
3979 | ret = true; | |
3980 | } | |
3981 | out: | |
3982 | trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); | |
3983 | return ret; | |
3984 | } | |
3985 | #else | |
3986 | static inline struct page * | |
3987 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
3988 | unsigned int alloc_flags, const struct alloc_context *ac, | |
3989 | enum compact_priority prio, enum compact_result *compact_result) | |
3990 | { | |
3991 | *compact_result = COMPACT_SKIPPED; | |
3992 | return NULL; | |
3993 | } | |
3994 | ||
3995 | static inline bool | |
3996 | should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, | |
3997 | enum compact_result compact_result, | |
3998 | enum compact_priority *compact_priority, | |
3999 | int *compaction_retries) | |
4000 | { | |
4001 | struct zone *zone; | |
4002 | struct zoneref *z; | |
4003 | ||
4004 | if (!order || order > PAGE_ALLOC_COSTLY_ORDER) | |
4005 | return false; | |
4006 | ||
4007 | /* | |
4008 | * There are setups with compaction disabled which would prefer to loop | |
4009 | * inside the allocator rather than hit the oom killer prematurely. | |
4010 | * Let's give them a good hope and keep retrying while the order-0 | |
4011 | * watermarks are OK. | |
4012 | */ | |
4013 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, | |
4014 | ac->highest_zoneidx, ac->nodemask) { | |
4015 | if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), | |
4016 | ac->highest_zoneidx, alloc_flags)) | |
4017 | return true; | |
4018 | } | |
4019 | return false; | |
4020 | } | |
4021 | #endif /* CONFIG_COMPACTION */ | |
4022 | ||
4023 | #ifdef CONFIG_LOCKDEP | |
4024 | static struct lockdep_map __fs_reclaim_map = | |
4025 | STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); | |
4026 | ||
4027 | static bool __need_reclaim(gfp_t gfp_mask) | |
4028 | { | |
4029 | /* no reclaim without waiting on it */ | |
4030 | if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) | |
4031 | return false; | |
4032 | ||
4033 | /* this guy won't enter reclaim */ | |
4034 | if (current->flags & PF_MEMALLOC) | |
4035 | return false; | |
4036 | ||
4037 | if (gfp_mask & __GFP_NOLOCKDEP) | |
4038 | return false; | |
4039 | ||
4040 | return true; | |
4041 | } | |
4042 | ||
4043 | void __fs_reclaim_acquire(unsigned long ip) | |
4044 | { | |
4045 | lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); | |
4046 | } | |
4047 | ||
4048 | void __fs_reclaim_release(unsigned long ip) | |
4049 | { | |
4050 | lock_release(&__fs_reclaim_map, ip); | |
4051 | } | |
4052 | ||
4053 | void fs_reclaim_acquire(gfp_t gfp_mask) | |
4054 | { | |
4055 | gfp_mask = current_gfp_context(gfp_mask); | |
4056 | ||
4057 | if (__need_reclaim(gfp_mask)) { | |
4058 | if (gfp_mask & __GFP_FS) | |
4059 | __fs_reclaim_acquire(_RET_IP_); | |
4060 | ||
4061 | #ifdef CONFIG_MMU_NOTIFIER | |
4062 | lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); | |
4063 | lock_map_release(&__mmu_notifier_invalidate_range_start_map); | |
4064 | #endif | |
4065 | ||
4066 | } | |
4067 | } | |
4068 | EXPORT_SYMBOL_GPL(fs_reclaim_acquire); | |
4069 | ||
4070 | void fs_reclaim_release(gfp_t gfp_mask) | |
4071 | { | |
4072 | gfp_mask = current_gfp_context(gfp_mask); | |
4073 | ||
4074 | if (__need_reclaim(gfp_mask)) { | |
4075 | if (gfp_mask & __GFP_FS) | |
4076 | __fs_reclaim_release(_RET_IP_); | |
4077 | } | |
4078 | } | |
4079 | EXPORT_SYMBOL_GPL(fs_reclaim_release); | |
4080 | #endif | |
4081 | ||
4082 | /* | |
4083 | * Zonelists may change due to hotplug during allocation. Detect when zonelists | |
4084 | * have been rebuilt so allocation retries. Reader side does not lock and | |
4085 | * retries the allocation if zonelist changes. Writer side is protected by the | |
4086 | * embedded spin_lock. | |
4087 | */ | |
4088 | static DEFINE_SEQLOCK(zonelist_update_seq); | |
4089 | ||
4090 | static unsigned int zonelist_iter_begin(void) | |
4091 | { | |
4092 | if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) | |
4093 | return read_seqbegin(&zonelist_update_seq); | |
4094 | ||
4095 | return 0; | |
4096 | } | |
4097 | ||
4098 | static unsigned int check_retry_zonelist(unsigned int seq) | |
4099 | { | |
4100 | if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) | |
4101 | return read_seqretry(&zonelist_update_seq, seq); | |
4102 | ||
4103 | return seq; | |
4104 | } | |
4105 | ||
4106 | /* Perform direct synchronous page reclaim */ | |
4107 | static unsigned long | |
4108 | __perform_reclaim(gfp_t gfp_mask, unsigned int order, | |
4109 | const struct alloc_context *ac) | |
4110 | { | |
4111 | unsigned int noreclaim_flag; | |
4112 | unsigned long progress; | |
4113 | ||
4114 | cond_resched(); | |
4115 | ||
4116 | /* We now go into synchronous reclaim */ | |
4117 | cpuset_memory_pressure_bump(); | |
4118 | fs_reclaim_acquire(gfp_mask); | |
4119 | noreclaim_flag = memalloc_noreclaim_save(); | |
4120 | ||
4121 | progress = try_to_free_pages(ac->zonelist, order, gfp_mask, | |
4122 | ac->nodemask); | |
4123 | ||
4124 | memalloc_noreclaim_restore(noreclaim_flag); | |
4125 | fs_reclaim_release(gfp_mask); | |
4126 | ||
4127 | cond_resched(); | |
4128 | ||
4129 | return progress; | |
4130 | } | |
4131 | ||
4132 | /* The really slow allocator path where we enter direct reclaim */ | |
4133 | static inline struct page * | |
4134 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | |
4135 | unsigned int alloc_flags, const struct alloc_context *ac, | |
4136 | unsigned long *did_some_progress) | |
4137 | { | |
4138 | struct page *page = NULL; | |
4139 | unsigned long pflags; | |
4140 | bool drained = false; | |
4141 | ||
4142 | psi_memstall_enter(&pflags); | |
4143 | *did_some_progress = __perform_reclaim(gfp_mask, order, ac); | |
4144 | if (unlikely(!(*did_some_progress))) | |
4145 | goto out; | |
4146 | ||
4147 | retry: | |
4148 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | |
4149 | ||
4150 | /* | |
4151 | * If an allocation failed after direct reclaim, it could be because | |
4152 | * pages are pinned on the per-cpu lists or in high alloc reserves. | |
4153 | * Shrink them and try again | |
4154 | */ | |
4155 | if (!page && !drained) { | |
4156 | unreserve_highatomic_pageblock(ac, false); | |
4157 | drain_all_pages(NULL); | |
4158 | drained = true; | |
4159 | goto retry; | |
4160 | } | |
4161 | out: | |
4162 | psi_memstall_leave(&pflags); | |
4163 | ||
4164 | return page; | |
4165 | } | |
4166 | ||
4167 | static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, | |
4168 | const struct alloc_context *ac) | |
4169 | { | |
4170 | struct zoneref *z; | |
4171 | struct zone *zone; | |
4172 | pg_data_t *last_pgdat = NULL; | |
4173 | enum zone_type highest_zoneidx = ac->highest_zoneidx; | |
4174 | unsigned int reclaim_order; | |
4175 | ||
4176 | if (defrag_mode) | |
4177 | reclaim_order = max(order, pageblock_order); | |
4178 | else | |
4179 | reclaim_order = order; | |
4180 | ||
4181 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, | |
4182 | ac->nodemask) { | |
4183 | if (!managed_zone(zone)) | |
4184 | continue; | |
4185 | if (last_pgdat == zone->zone_pgdat) | |
4186 | continue; | |
4187 | wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx); | |
4188 | last_pgdat = zone->zone_pgdat; | |
4189 | } | |
4190 | } | |
4191 | ||
4192 | static inline unsigned int | |
4193 | gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) | |
4194 | { | |
4195 | unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; | |
4196 | ||
4197 | /* | |
4198 | * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE | |
4199 | * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD | |
4200 | * to save two branches. | |
4201 | */ | |
4202 | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); | |
4203 | BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); | |
4204 | ||
4205 | /* | |
4206 | * The caller may dip into page reserves a bit more if the caller | |
4207 | * cannot run direct reclaim, or if the caller has realtime scheduling | |
4208 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will | |
4209 | * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). | |
4210 | */ | |
4211 | alloc_flags |= (__force int) | |
4212 | (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); | |
4213 | ||
4214 | if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { | |
4215 | /* | |
4216 | * Not worth trying to allocate harder for __GFP_NOMEMALLOC even | |
4217 | * if it can't schedule. | |
4218 | */ | |
4219 | if (!(gfp_mask & __GFP_NOMEMALLOC)) { | |
4220 | alloc_flags |= ALLOC_NON_BLOCK; | |
4221 | ||
4222 | if (order > 0) | |
4223 | alloc_flags |= ALLOC_HIGHATOMIC; | |
4224 | } | |
4225 | ||
4226 | /* | |
4227 | * Ignore cpuset mems for non-blocking __GFP_HIGH (probably | |
4228 | * GFP_ATOMIC) rather than fail, see the comment for | |
4229 | * cpuset_current_node_allowed(). | |
4230 | */ | |
4231 | if (alloc_flags & ALLOC_MIN_RESERVE) | |
4232 | alloc_flags &= ~ALLOC_CPUSET; | |
4233 | } else if (unlikely(rt_or_dl_task(current)) && in_task()) | |
4234 | alloc_flags |= ALLOC_MIN_RESERVE; | |
4235 | ||
4236 | alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); | |
4237 | ||
4238 | if (defrag_mode) | |
4239 | alloc_flags |= ALLOC_NOFRAGMENT; | |
4240 | ||
4241 | return alloc_flags; | |
4242 | } | |
4243 | ||
4244 | static bool oom_reserves_allowed(struct task_struct *tsk) | |
4245 | { | |
4246 | if (!tsk_is_oom_victim(tsk)) | |
4247 | return false; | |
4248 | ||
4249 | /* | |
4250 | * !MMU doesn't have oom reaper so give access to memory reserves | |
4251 | * only to the thread with TIF_MEMDIE set | |
4252 | */ | |
4253 | if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) | |
4254 | return false; | |
4255 | ||
4256 | return true; | |
4257 | } | |
4258 | ||
4259 | /* | |
4260 | * Distinguish requests which really need access to full memory | |
4261 | * reserves from oom victims which can live with a portion of it | |
4262 | */ | |
4263 | static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) | |
4264 | { | |
4265 | if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) | |
4266 | return 0; | |
4267 | if (gfp_mask & __GFP_MEMALLOC) | |
4268 | return ALLOC_NO_WATERMARKS; | |
4269 | if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) | |
4270 | return ALLOC_NO_WATERMARKS; | |
4271 | if (!in_interrupt()) { | |
4272 | if (current->flags & PF_MEMALLOC) | |
4273 | return ALLOC_NO_WATERMARKS; | |
4274 | else if (oom_reserves_allowed(current)) | |
4275 | return ALLOC_OOM; | |
4276 | } | |
4277 | ||
4278 | return 0; | |
4279 | } | |
4280 | ||
4281 | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) | |
4282 | { | |
4283 | return !!__gfp_pfmemalloc_flags(gfp_mask); | |
4284 | } | |
4285 | ||
4286 | /* | |
4287 | * Checks whether it makes sense to retry the reclaim to make a forward progress | |
4288 | * for the given allocation request. | |
4289 | * | |
4290 | * We give up when we either have tried MAX_RECLAIM_RETRIES in a row | |
4291 | * without success, or when we couldn't even meet the watermark if we | |
4292 | * reclaimed all remaining pages on the LRU lists. | |
4293 | * | |
4294 | * Returns true if a retry is viable or false to enter the oom path. | |
4295 | */ | |
4296 | static inline bool | |
4297 | should_reclaim_retry(gfp_t gfp_mask, unsigned order, | |
4298 | struct alloc_context *ac, int alloc_flags, | |
4299 | bool did_some_progress, int *no_progress_loops) | |
4300 | { | |
4301 | struct zone *zone; | |
4302 | struct zoneref *z; | |
4303 | bool ret = false; | |
4304 | ||
4305 | /* | |
4306 | * Costly allocations might have made a progress but this doesn't mean | |
4307 | * their order will become available due to high fragmentation so | |
4308 | * always increment the no progress counter for them | |
4309 | */ | |
4310 | if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) | |
4311 | *no_progress_loops = 0; | |
4312 | else | |
4313 | (*no_progress_loops)++; | |
4314 | ||
4315 | if (*no_progress_loops > MAX_RECLAIM_RETRIES) | |
4316 | goto out; | |
4317 | ||
4318 | ||
4319 | /* | |
4320 | * Keep reclaiming pages while there is a chance this will lead | |
4321 | * somewhere. If none of the target zones can satisfy our allocation | |
4322 | * request even if all reclaimable pages are considered then we are | |
4323 | * screwed and have to go OOM. | |
4324 | */ | |
4325 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, | |
4326 | ac->highest_zoneidx, ac->nodemask) { | |
4327 | unsigned long available; | |
4328 | unsigned long reclaimable; | |
4329 | unsigned long min_wmark = min_wmark_pages(zone); | |
4330 | bool wmark; | |
4331 | ||
4332 | if (cpusets_enabled() && | |
4333 | (alloc_flags & ALLOC_CPUSET) && | |
4334 | !__cpuset_zone_allowed(zone, gfp_mask)) | |
4335 | continue; | |
4336 | ||
4337 | available = reclaimable = zone_reclaimable_pages(zone); | |
4338 | available += zone_page_state_snapshot(zone, NR_FREE_PAGES); | |
4339 | ||
4340 | /* | |
4341 | * Would the allocation succeed if we reclaimed all | |
4342 | * reclaimable pages? | |
4343 | */ | |
4344 | wmark = __zone_watermark_ok(zone, order, min_wmark, | |
4345 | ac->highest_zoneidx, alloc_flags, available); | |
4346 | trace_reclaim_retry_zone(z, order, reclaimable, | |
4347 | available, min_wmark, *no_progress_loops, wmark); | |
4348 | if (wmark) { | |
4349 | ret = true; | |
4350 | break; | |
4351 | } | |
4352 | } | |
4353 | ||
4354 | /* | |
4355 | * Memory allocation/reclaim might be called from a WQ context and the | |
4356 | * current implementation of the WQ concurrency control doesn't | |
4357 | * recognize that a particular WQ is congested if the worker thread is | |
4358 | * looping without ever sleeping. Therefore we have to do a short sleep | |
4359 | * here rather than calling cond_resched(). | |
4360 | */ | |
4361 | if (current->flags & PF_WQ_WORKER) | |
4362 | schedule_timeout_uninterruptible(1); | |
4363 | else | |
4364 | cond_resched(); | |
4365 | out: | |
4366 | /* Before OOM, exhaust highatomic_reserve */ | |
4367 | if (!ret) | |
4368 | return unreserve_highatomic_pageblock(ac, true); | |
4369 | ||
4370 | return ret; | |
4371 | } | |
4372 | ||
4373 | static inline bool | |
4374 | check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) | |
4375 | { | |
4376 | /* | |
4377 | * It's possible that cpuset's mems_allowed and the nodemask from | |
4378 | * mempolicy don't intersect. This should be normally dealt with by | |
4379 | * policy_nodemask(), but it's possible to race with cpuset update in | |
4380 | * such a way the check therein was true, and then it became false | |
4381 | * before we got our cpuset_mems_cookie here. | |
4382 | * This assumes that for all allocations, ac->nodemask can come only | |
4383 | * from MPOL_BIND mempolicy (whose documented semantics is to be ignored | |
4384 | * when it does not intersect with the cpuset restrictions) or the | |
4385 | * caller can deal with a violated nodemask. | |
4386 | */ | |
4387 | if (cpusets_enabled() && ac->nodemask && | |
4388 | !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { | |
4389 | ac->nodemask = NULL; | |
4390 | return true; | |
4391 | } | |
4392 | ||
4393 | /* | |
4394 | * When updating a task's mems_allowed or mempolicy nodemask, it is | |
4395 | * possible to race with parallel threads in such a way that our | |
4396 | * allocation can fail while the mask is being updated. If we are about | |
4397 | * to fail, check if the cpuset changed during allocation and if so, | |
4398 | * retry. | |
4399 | */ | |
4400 | if (read_mems_allowed_retry(cpuset_mems_cookie)) | |
4401 | return true; | |
4402 | ||
4403 | return false; | |
4404 | } | |
4405 | ||
4406 | static inline struct page * | |
4407 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | |
4408 | struct alloc_context *ac) | |
4409 | { | |
4410 | bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; | |
4411 | bool can_compact = gfp_compaction_allowed(gfp_mask); | |
4412 | bool nofail = gfp_mask & __GFP_NOFAIL; | |
4413 | const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; | |
4414 | struct page *page = NULL; | |
4415 | unsigned int alloc_flags; | |
4416 | unsigned long did_some_progress; | |
4417 | enum compact_priority compact_priority; | |
4418 | enum compact_result compact_result; | |
4419 | int compaction_retries; | |
4420 | int no_progress_loops; | |
4421 | unsigned int cpuset_mems_cookie; | |
4422 | unsigned int zonelist_iter_cookie; | |
4423 | int reserve_flags; | |
4424 | ||
4425 | if (unlikely(nofail)) { | |
4426 | /* | |
4427 | * We most definitely don't want callers attempting to | |
4428 | * allocate greater than order-1 page units with __GFP_NOFAIL. | |
4429 | */ | |
4430 | WARN_ON_ONCE(order > 1); | |
4431 | /* | |
4432 | * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, | |
4433 | * otherwise, we may result in lockup. | |
4434 | */ | |
4435 | WARN_ON_ONCE(!can_direct_reclaim); | |
4436 | /* | |
4437 | * PF_MEMALLOC request from this context is rather bizarre | |
4438 | * because we cannot reclaim anything and only can loop waiting | |
4439 | * for somebody to do a work for us. | |
4440 | */ | |
4441 | WARN_ON_ONCE(current->flags & PF_MEMALLOC); | |
4442 | } | |
4443 | ||
4444 | restart: | |
4445 | compaction_retries = 0; | |
4446 | no_progress_loops = 0; | |
4447 | compact_result = COMPACT_SKIPPED; | |
4448 | compact_priority = DEF_COMPACT_PRIORITY; | |
4449 | cpuset_mems_cookie = read_mems_allowed_begin(); | |
4450 | zonelist_iter_cookie = zonelist_iter_begin(); | |
4451 | ||
4452 | /* | |
4453 | * The fast path uses conservative alloc_flags to succeed only until | |
4454 | * kswapd needs to be woken up, and to avoid the cost of setting up | |
4455 | * alloc_flags precisely. So we do that now. | |
4456 | */ | |
4457 | alloc_flags = gfp_to_alloc_flags(gfp_mask, order); | |
4458 | ||
4459 | /* | |
4460 | * We need to recalculate the starting point for the zonelist iterator | |
4461 | * because we might have used different nodemask in the fast path, or | |
4462 | * there was a cpuset modification and we are retrying - otherwise we | |
4463 | * could end up iterating over non-eligible zones endlessly. | |
4464 | */ | |
4465 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | |
4466 | ac->highest_zoneidx, ac->nodemask); | |
4467 | if (!zonelist_zone(ac->preferred_zoneref)) | |
4468 | goto nopage; | |
4469 | ||
4470 | /* | |
4471 | * Check for insane configurations where the cpuset doesn't contain | |
4472 | * any suitable zone to satisfy the request - e.g. non-movable | |
4473 | * GFP_HIGHUSER allocations from MOVABLE nodes only. | |
4474 | */ | |
4475 | if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { | |
4476 | struct zoneref *z = first_zones_zonelist(ac->zonelist, | |
4477 | ac->highest_zoneidx, | |
4478 | &cpuset_current_mems_allowed); | |
4479 | if (!zonelist_zone(z)) | |
4480 | goto nopage; | |
4481 | } | |
4482 | ||
4483 | if (alloc_flags & ALLOC_KSWAPD) | |
4484 | wake_all_kswapds(order, gfp_mask, ac); | |
4485 | ||
4486 | /* | |
4487 | * The adjusted alloc_flags might result in immediate success, so try | |
4488 | * that first | |
4489 | */ | |
4490 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | |
4491 | if (page) | |
4492 | goto got_pg; | |
4493 | ||
4494 | /* | |
4495 | * For costly allocations, try direct compaction first, as it's likely | |
4496 | * that we have enough base pages and don't need to reclaim. For non- | |
4497 | * movable high-order allocations, do that as well, as compaction will | |
4498 | * try prevent permanent fragmentation by migrating from blocks of the | |
4499 | * same migratetype. | |
4500 | * Don't try this for allocations that are allowed to ignore | |
4501 | * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. | |
4502 | */ | |
4503 | if (can_direct_reclaim && can_compact && | |
4504 | (costly_order || | |
4505 | (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) | |
4506 | && !gfp_pfmemalloc_allowed(gfp_mask)) { | |
4507 | page = __alloc_pages_direct_compact(gfp_mask, order, | |
4508 | alloc_flags, ac, | |
4509 | INIT_COMPACT_PRIORITY, | |
4510 | &compact_result); | |
4511 | if (page) | |
4512 | goto got_pg; | |
4513 | ||
4514 | /* | |
4515 | * Checks for costly allocations with __GFP_NORETRY, which | |
4516 | * includes some THP page fault allocations | |
4517 | */ | |
4518 | if (costly_order && (gfp_mask & __GFP_NORETRY)) { | |
4519 | /* | |
4520 | * If allocating entire pageblock(s) and compaction | |
4521 | * failed because all zones are below low watermarks | |
4522 | * or is prohibited because it recently failed at this | |
4523 | * order, fail immediately unless the allocator has | |
4524 | * requested compaction and reclaim retry. | |
4525 | * | |
4526 | * Reclaim is | |
4527 | * - potentially very expensive because zones are far | |
4528 | * below their low watermarks or this is part of very | |
4529 | * bursty high order allocations, | |
4530 | * - not guaranteed to help because isolate_freepages() | |
4531 | * may not iterate over freed pages as part of its | |
4532 | * linear scan, and | |
4533 | * - unlikely to make entire pageblocks free on its | |
4534 | * own. | |
4535 | */ | |
4536 | if (compact_result == COMPACT_SKIPPED || | |
4537 | compact_result == COMPACT_DEFERRED) | |
4538 | goto nopage; | |
4539 | ||
4540 | /* | |
4541 | * Looks like reclaim/compaction is worth trying, but | |
4542 | * sync compaction could be very expensive, so keep | |
4543 | * using async compaction. | |
4544 | */ | |
4545 | compact_priority = INIT_COMPACT_PRIORITY; | |
4546 | } | |
4547 | } | |
4548 | ||
4549 | retry: | |
4550 | /* | |
4551 | * Deal with possible cpuset update races or zonelist updates to avoid | |
4552 | * infinite retries. | |
4553 | */ | |
4554 | if (check_retry_cpuset(cpuset_mems_cookie, ac) || | |
4555 | check_retry_zonelist(zonelist_iter_cookie)) | |
4556 | goto restart; | |
4557 | ||
4558 | /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ | |
4559 | if (alloc_flags & ALLOC_KSWAPD) | |
4560 | wake_all_kswapds(order, gfp_mask, ac); | |
4561 | ||
4562 | reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); | |
4563 | if (reserve_flags) | |
4564 | alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | | |
4565 | (alloc_flags & ALLOC_KSWAPD); | |
4566 | ||
4567 | /* | |
4568 | * Reset the nodemask and zonelist iterators if memory policies can be | |
4569 | * ignored. These allocations are high priority and system rather than | |
4570 | * user oriented. | |
4571 | */ | |
4572 | if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { | |
4573 | ac->nodemask = NULL; | |
4574 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | |
4575 | ac->highest_zoneidx, ac->nodemask); | |
4576 | } | |
4577 | ||
4578 | /* Attempt with potentially adjusted zonelist and alloc_flags */ | |
4579 | page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); | |
4580 | if (page) | |
4581 | goto got_pg; | |
4582 | ||
4583 | /* Caller is not willing to reclaim, we can't balance anything */ | |
4584 | if (!can_direct_reclaim) | |
4585 | goto nopage; | |
4586 | ||
4587 | /* Avoid recursion of direct reclaim */ | |
4588 | if (current->flags & PF_MEMALLOC) | |
4589 | goto nopage; | |
4590 | ||
4591 | /* Try direct reclaim and then allocating */ | |
4592 | page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, | |
4593 | &did_some_progress); | |
4594 | if (page) | |
4595 | goto got_pg; | |
4596 | ||
4597 | /* Try direct compaction and then allocating */ | |
4598 | page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, | |
4599 | compact_priority, &compact_result); | |
4600 | if (page) | |
4601 | goto got_pg; | |
4602 | ||
4603 | /* Do not loop if specifically requested */ | |
4604 | if (gfp_mask & __GFP_NORETRY) | |
4605 | goto nopage; | |
4606 | ||
4607 | /* | |
4608 | * Do not retry costly high order allocations unless they are | |
4609 | * __GFP_RETRY_MAYFAIL and we can compact | |
4610 | */ | |
4611 | if (costly_order && (!can_compact || | |
4612 | !(gfp_mask & __GFP_RETRY_MAYFAIL))) | |
4613 | goto nopage; | |
4614 | ||
4615 | if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, | |
4616 | did_some_progress > 0, &no_progress_loops)) | |
4617 | goto retry; | |
4618 | ||
4619 | /* | |
4620 | * It doesn't make any sense to retry for the compaction if the order-0 | |
4621 | * reclaim is not able to make any progress because the current | |
4622 | * implementation of the compaction depends on the sufficient amount | |
4623 | * of free memory (see __compaction_suitable) | |
4624 | */ | |
4625 | if (did_some_progress > 0 && can_compact && | |
4626 | should_compact_retry(ac, order, alloc_flags, | |
4627 | compact_result, &compact_priority, | |
4628 | &compaction_retries)) | |
4629 | goto retry; | |
4630 | ||
4631 | /* Reclaim/compaction failed to prevent the fallback */ | |
4632 | if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) { | |
4633 | alloc_flags &= ~ALLOC_NOFRAGMENT; | |
4634 | goto retry; | |
4635 | } | |
4636 | ||
4637 | /* | |
4638 | * Deal with possible cpuset update races or zonelist updates to avoid | |
4639 | * a unnecessary OOM kill. | |
4640 | */ | |
4641 | if (check_retry_cpuset(cpuset_mems_cookie, ac) || | |
4642 | check_retry_zonelist(zonelist_iter_cookie)) | |
4643 | goto restart; | |
4644 | ||
4645 | /* Reclaim has failed us, start killing things */ | |
4646 | page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); | |
4647 | if (page) | |
4648 | goto got_pg; | |
4649 | ||
4650 | /* Avoid allocations with no watermarks from looping endlessly */ | |
4651 | if (tsk_is_oom_victim(current) && | |
4652 | (alloc_flags & ALLOC_OOM || | |
4653 | (gfp_mask & __GFP_NOMEMALLOC))) | |
4654 | goto nopage; | |
4655 | ||
4656 | /* Retry as long as the OOM killer is making progress */ | |
4657 | if (did_some_progress) { | |
4658 | no_progress_loops = 0; | |
4659 | goto retry; | |
4660 | } | |
4661 | ||
4662 | nopage: | |
4663 | /* | |
4664 | * Deal with possible cpuset update races or zonelist updates to avoid | |
4665 | * a unnecessary OOM kill. | |
4666 | */ | |
4667 | if (check_retry_cpuset(cpuset_mems_cookie, ac) || | |
4668 | check_retry_zonelist(zonelist_iter_cookie)) | |
4669 | goto restart; | |
4670 | ||
4671 | /* | |
4672 | * Make sure that __GFP_NOFAIL request doesn't leak out and make sure | |
4673 | * we always retry | |
4674 | */ | |
4675 | if (unlikely(nofail)) { | |
4676 | /* | |
4677 | * Lacking direct_reclaim we can't do anything to reclaim memory, | |
4678 | * we disregard these unreasonable nofail requests and still | |
4679 | * return NULL | |
4680 | */ | |
4681 | if (!can_direct_reclaim) | |
4682 | goto fail; | |
4683 | ||
4684 | /* | |
4685 | * Help non-failing allocations by giving some access to memory | |
4686 | * reserves normally used for high priority non-blocking | |
4687 | * allocations but do not use ALLOC_NO_WATERMARKS because this | |
4688 | * could deplete whole memory reserves which would just make | |
4689 | * the situation worse. | |
4690 | */ | |
4691 | page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); | |
4692 | if (page) | |
4693 | goto got_pg; | |
4694 | ||
4695 | cond_resched(); | |
4696 | goto retry; | |
4697 | } | |
4698 | fail: | |
4699 | warn_alloc(gfp_mask, ac->nodemask, | |
4700 | "page allocation failure: order:%u", order); | |
4701 | got_pg: | |
4702 | return page; | |
4703 | } | |
4704 | ||
4705 | static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, | |
4706 | int preferred_nid, nodemask_t *nodemask, | |
4707 | struct alloc_context *ac, gfp_t *alloc_gfp, | |
4708 | unsigned int *alloc_flags) | |
4709 | { | |
4710 | ac->highest_zoneidx = gfp_zone(gfp_mask); | |
4711 | ac->zonelist = node_zonelist(preferred_nid, gfp_mask); | |
4712 | ac->nodemask = nodemask; | |
4713 | ac->migratetype = gfp_migratetype(gfp_mask); | |
4714 | ||
4715 | if (cpusets_enabled()) { | |
4716 | *alloc_gfp |= __GFP_HARDWALL; | |
4717 | /* | |
4718 | * When we are in the interrupt context, it is irrelevant | |
4719 | * to the current task context. It means that any node ok. | |
4720 | */ | |
4721 | if (in_task() && !ac->nodemask) | |
4722 | ac->nodemask = &cpuset_current_mems_allowed; | |
4723 | else | |
4724 | *alloc_flags |= ALLOC_CPUSET; | |
4725 | } | |
4726 | ||
4727 | might_alloc(gfp_mask); | |
4728 | ||
4729 | /* | |
4730 | * Don't invoke should_fail logic, since it may call | |
4731 | * get_random_u32() and printk() which need to spin_lock. | |
4732 | */ | |
4733 | if (!(*alloc_flags & ALLOC_TRYLOCK) && | |
4734 | should_fail_alloc_page(gfp_mask, order)) | |
4735 | return false; | |
4736 | ||
4737 | *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); | |
4738 | ||
4739 | /* Dirty zone balancing only done in the fast path */ | |
4740 | ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); | |
4741 | ||
4742 | /* | |
4743 | * The preferred zone is used for statistics but crucially it is | |
4744 | * also used as the starting point for the zonelist iterator. It | |
4745 | * may get reset for allocations that ignore memory policies. | |
4746 | */ | |
4747 | ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, | |
4748 | ac->highest_zoneidx, ac->nodemask); | |
4749 | ||
4750 | return true; | |
4751 | } | |
4752 | ||
4753 | /* | |
4754 | * __alloc_pages_bulk - Allocate a number of order-0 pages to an array | |
4755 | * @gfp: GFP flags for the allocation | |
4756 | * @preferred_nid: The preferred NUMA node ID to allocate from | |
4757 | * @nodemask: Set of nodes to allocate from, may be NULL | |
4758 | * @nr_pages: The number of pages desired in the array | |
4759 | * @page_array: Array to store the pages | |
4760 | * | |
4761 | * This is a batched version of the page allocator that attempts to | |
4762 | * allocate nr_pages quickly. Pages are added to the page_array. | |
4763 | * | |
4764 | * Note that only NULL elements are populated with pages and nr_pages | |
4765 | * is the maximum number of pages that will be stored in the array. | |
4766 | * | |
4767 | * Returns the number of pages in the array. | |
4768 | */ | |
4769 | unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, | |
4770 | nodemask_t *nodemask, int nr_pages, | |
4771 | struct page **page_array) | |
4772 | { | |
4773 | struct page *page; | |
4774 | unsigned long __maybe_unused UP_flags; | |
4775 | struct zone *zone; | |
4776 | struct zoneref *z; | |
4777 | struct per_cpu_pages *pcp; | |
4778 | struct list_head *pcp_list; | |
4779 | struct alloc_context ac; | |
4780 | gfp_t alloc_gfp; | |
4781 | unsigned int alloc_flags = ALLOC_WMARK_LOW; | |
4782 | int nr_populated = 0, nr_account = 0; | |
4783 | ||
4784 | /* | |
4785 | * Skip populated array elements to determine if any pages need | |
4786 | * to be allocated before disabling IRQs. | |
4787 | */ | |
4788 | while (nr_populated < nr_pages && page_array[nr_populated]) | |
4789 | nr_populated++; | |
4790 | ||
4791 | /* No pages requested? */ | |
4792 | if (unlikely(nr_pages <= 0)) | |
4793 | goto out; | |
4794 | ||
4795 | /* Already populated array? */ | |
4796 | if (unlikely(nr_pages - nr_populated == 0)) | |
4797 | goto out; | |
4798 | ||
4799 | /* Bulk allocator does not support memcg accounting. */ | |
4800 | if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) | |
4801 | goto failed; | |
4802 | ||
4803 | /* Use the single page allocator for one page. */ | |
4804 | if (nr_pages - nr_populated == 1) | |
4805 | goto failed; | |
4806 | ||
4807 | #ifdef CONFIG_PAGE_OWNER | |
4808 | /* | |
4809 | * PAGE_OWNER may recurse into the allocator to allocate space to | |
4810 | * save the stack with pagesets.lock held. Releasing/reacquiring | |
4811 | * removes much of the performance benefit of bulk allocation so | |
4812 | * force the caller to allocate one page at a time as it'll have | |
4813 | * similar performance to added complexity to the bulk allocator. | |
4814 | */ | |
4815 | if (static_branch_unlikely(&page_owner_inited)) | |
4816 | goto failed; | |
4817 | #endif | |
4818 | ||
4819 | /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ | |
4820 | gfp &= gfp_allowed_mask; | |
4821 | alloc_gfp = gfp; | |
4822 | if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) | |
4823 | goto out; | |
4824 | gfp = alloc_gfp; | |
4825 | ||
4826 | /* Find an allowed local zone that meets the low watermark. */ | |
4827 | z = ac.preferred_zoneref; | |
4828 | for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { | |
4829 | unsigned long mark; | |
4830 | ||
4831 | if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && | |
4832 | !__cpuset_zone_allowed(zone, gfp)) { | |
4833 | continue; | |
4834 | } | |
4835 | ||
4836 | if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && | |
4837 | zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { | |
4838 | goto failed; | |
4839 | } | |
4840 | ||
4841 | cond_accept_memory(zone, 0, alloc_flags); | |
4842 | retry_this_zone: | |
4843 | mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; | |
4844 | if (zone_watermark_fast(zone, 0, mark, | |
4845 | zonelist_zone_idx(ac.preferred_zoneref), | |
4846 | alloc_flags, gfp)) { | |
4847 | break; | |
4848 | } | |
4849 | ||
4850 | if (cond_accept_memory(zone, 0, alloc_flags)) | |
4851 | goto retry_this_zone; | |
4852 | ||
4853 | /* Try again if zone has deferred pages */ | |
4854 | if (deferred_pages_enabled()) { | |
4855 | if (_deferred_grow_zone(zone, 0)) | |
4856 | goto retry_this_zone; | |
4857 | } | |
4858 | } | |
4859 | ||
4860 | /* | |
4861 | * If there are no allowed local zones that meets the watermarks then | |
4862 | * try to allocate a single page and reclaim if necessary. | |
4863 | */ | |
4864 | if (unlikely(!zone)) | |
4865 | goto failed; | |
4866 | ||
4867 | /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ | |
4868 | pcp_trylock_prepare(UP_flags); | |
4869 | pcp = pcp_spin_trylock(zone->per_cpu_pageset); | |
4870 | if (!pcp) | |
4871 | goto failed_irq; | |
4872 | ||
4873 | /* Attempt the batch allocation */ | |
4874 | pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; | |
4875 | while (nr_populated < nr_pages) { | |
4876 | ||
4877 | /* Skip existing pages */ | |
4878 | if (page_array[nr_populated]) { | |
4879 | nr_populated++; | |
4880 | continue; | |
4881 | } | |
4882 | ||
4883 | page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, | |
4884 | pcp, pcp_list); | |
4885 | if (unlikely(!page)) { | |
4886 | /* Try and allocate at least one page */ | |
4887 | if (!nr_account) { | |
4888 | pcp_spin_unlock(pcp); | |
4889 | goto failed_irq; | |
4890 | } | |
4891 | break; | |
4892 | } | |
4893 | nr_account++; | |
4894 | ||
4895 | prep_new_page(page, 0, gfp, 0); | |
4896 | set_page_refcounted(page); | |
4897 | page_array[nr_populated++] = page; | |
4898 | } | |
4899 | ||
4900 | pcp_spin_unlock(pcp); | |
4901 | pcp_trylock_finish(UP_flags); | |
4902 | ||
4903 | __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); | |
4904 | zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); | |
4905 | ||
4906 | out: | |
4907 | return nr_populated; | |
4908 | ||
4909 | failed_irq: | |
4910 | pcp_trylock_finish(UP_flags); | |
4911 | ||
4912 | failed: | |
4913 | page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); | |
4914 | if (page) | |
4915 | page_array[nr_populated++] = page; | |
4916 | goto out; | |
4917 | } | |
4918 | EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); | |
4919 | ||
4920 | /* | |
4921 | * This is the 'heart' of the zoned buddy allocator. | |
4922 | */ | |
4923 | struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, | |
4924 | int preferred_nid, nodemask_t *nodemask) | |
4925 | { | |
4926 | struct page *page; | |
4927 | unsigned int alloc_flags = ALLOC_WMARK_LOW; | |
4928 | gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ | |
4929 | struct alloc_context ac = { }; | |
4930 | ||
4931 | /* | |
4932 | * There are several places where we assume that the order value is sane | |
4933 | * so bail out early if the request is out of bound. | |
4934 | */ | |
4935 | if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) | |
4936 | return NULL; | |
4937 | ||
4938 | gfp &= gfp_allowed_mask; | |
4939 | /* | |
4940 | * Apply scoped allocation constraints. This is mainly about GFP_NOFS | |
4941 | * resp. GFP_NOIO which has to be inherited for all allocation requests | |
4942 | * from a particular context which has been marked by | |
4943 | * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures | |
4944 | * movable zones are not used during allocation. | |
4945 | */ | |
4946 | gfp = current_gfp_context(gfp); | |
4947 | alloc_gfp = gfp; | |
4948 | if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, | |
4949 | &alloc_gfp, &alloc_flags)) | |
4950 | return NULL; | |
4951 | ||
4952 | /* | |
4953 | * Forbid the first pass from falling back to types that fragment | |
4954 | * memory until all local zones are considered. | |
4955 | */ | |
4956 | alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); | |
4957 | ||
4958 | /* First allocation attempt */ | |
4959 | page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); | |
4960 | if (likely(page)) | |
4961 | goto out; | |
4962 | ||
4963 | alloc_gfp = gfp; | |
4964 | ac.spread_dirty_pages = false; | |
4965 | ||
4966 | /* | |
4967 | * Restore the original nodemask if it was potentially replaced with | |
4968 | * &cpuset_current_mems_allowed to optimize the fast-path attempt. | |
4969 | */ | |
4970 | ac.nodemask = nodemask; | |
4971 | ||
4972 | page = __alloc_pages_slowpath(alloc_gfp, order, &ac); | |
4973 | ||
4974 | out: | |
4975 | if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && | |
4976 | unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { | |
4977 | free_frozen_pages(page, order); | |
4978 | page = NULL; | |
4979 | } | |
4980 | ||
4981 | trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); | |
4982 | kmsan_alloc_page(page, order, alloc_gfp); | |
4983 | ||
4984 | return page; | |
4985 | } | |
4986 | EXPORT_SYMBOL(__alloc_frozen_pages_noprof); | |
4987 | ||
4988 | struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, | |
4989 | int preferred_nid, nodemask_t *nodemask) | |
4990 | { | |
4991 | struct page *page; | |
4992 | ||
4993 | page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); | |
4994 | if (page) | |
4995 | set_page_refcounted(page); | |
4996 | return page; | |
4997 | } | |
4998 | EXPORT_SYMBOL(__alloc_pages_noprof); | |
4999 | ||
5000 | struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, | |
5001 | nodemask_t *nodemask) | |
5002 | { | |
5003 | struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, | |
5004 | preferred_nid, nodemask); | |
5005 | return page_rmappable_folio(page); | |
5006 | } | |
5007 | EXPORT_SYMBOL(__folio_alloc_noprof); | |
5008 | ||
5009 | /* | |
5010 | * Common helper functions. Never use with __GFP_HIGHMEM because the returned | |
5011 | * address cannot represent highmem pages. Use alloc_pages and then kmap if | |
5012 | * you need to access high mem. | |
5013 | */ | |
5014 | unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) | |
5015 | { | |
5016 | struct page *page; | |
5017 | ||
5018 | page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); | |
5019 | if (!page) | |
5020 | return 0; | |
5021 | return (unsigned long) page_address(page); | |
5022 | } | |
5023 | EXPORT_SYMBOL(get_free_pages_noprof); | |
5024 | ||
5025 | unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) | |
5026 | { | |
5027 | return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); | |
5028 | } | |
5029 | EXPORT_SYMBOL(get_zeroed_page_noprof); | |
5030 | ||
5031 | /** | |
5032 | * ___free_pages - Free pages allocated with alloc_pages(). | |
5033 | * @page: The page pointer returned from alloc_pages(). | |
5034 | * @order: The order of the allocation. | |
5035 | * @fpi_flags: Free Page Internal flags. | |
5036 | * | |
5037 | * This function can free multi-page allocations that are not compound | |
5038 | * pages. It does not check that the @order passed in matches that of | |
5039 | * the allocation, so it is easy to leak memory. Freeing more memory | |
5040 | * than was allocated will probably emit a warning. | |
5041 | * | |
5042 | * If the last reference to this page is speculative, it will be released | |
5043 | * by put_page() which only frees the first page of a non-compound | |
5044 | * allocation. To prevent the remaining pages from being leaked, we free | |
5045 | * the subsequent pages here. If you want to use the page's reference | |
5046 | * count to decide when to free the allocation, you should allocate a | |
5047 | * compound page, and use put_page() instead of __free_pages(). | |
5048 | * | |
5049 | * Context: May be called in interrupt context or while holding a normal | |
5050 | * spinlock, but not in NMI context or while holding a raw spinlock. | |
5051 | */ | |
5052 | static void ___free_pages(struct page *page, unsigned int order, | |
5053 | fpi_t fpi_flags) | |
5054 | { | |
5055 | /* get PageHead before we drop reference */ | |
5056 | int head = PageHead(page); | |
5057 | /* get alloc tag in case the page is released by others */ | |
5058 | struct alloc_tag *tag = pgalloc_tag_get(page); | |
5059 | ||
5060 | if (put_page_testzero(page)) | |
5061 | __free_frozen_pages(page, order, fpi_flags); | |
5062 | else if (!head) { | |
5063 | pgalloc_tag_sub_pages(tag, (1 << order) - 1); | |
5064 | while (order-- > 0) | |
5065 | __free_frozen_pages(page + (1 << order), order, | |
5066 | fpi_flags); | |
5067 | } | |
5068 | } | |
5069 | void __free_pages(struct page *page, unsigned int order) | |
5070 | { | |
5071 | ___free_pages(page, order, FPI_NONE); | |
5072 | } | |
5073 | EXPORT_SYMBOL(__free_pages); | |
5074 | ||
5075 | /* | |
5076 | * Can be called while holding raw_spin_lock or from IRQ and NMI for any | |
5077 | * page type (not only those that came from alloc_pages_nolock) | |
5078 | */ | |
5079 | void free_pages_nolock(struct page *page, unsigned int order) | |
5080 | { | |
5081 | ___free_pages(page, order, FPI_TRYLOCK); | |
5082 | } | |
5083 | ||
5084 | void free_pages(unsigned long addr, unsigned int order) | |
5085 | { | |
5086 | if (addr != 0) { | |
5087 | VM_BUG_ON(!virt_addr_valid((void *)addr)); | |
5088 | __free_pages(virt_to_page((void *)addr), order); | |
5089 | } | |
5090 | } | |
5091 | ||
5092 | EXPORT_SYMBOL(free_pages); | |
5093 | ||
5094 | static void *make_alloc_exact(unsigned long addr, unsigned int order, | |
5095 | size_t size) | |
5096 | { | |
5097 | if (addr) { | |
5098 | unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); | |
5099 | struct page *page = virt_to_page((void *)addr); | |
5100 | struct page *last = page + nr; | |
5101 | ||
5102 | split_page_owner(page, order, 0); | |
5103 | pgalloc_tag_split(page_folio(page), order, 0); | |
5104 | split_page_memcg(page, order); | |
5105 | while (page < --last) | |
5106 | set_page_refcounted(last); | |
5107 | ||
5108 | last = page + (1UL << order); | |
5109 | for (page += nr; page < last; page++) | |
5110 | __free_pages_ok(page, 0, FPI_TO_TAIL); | |
5111 | } | |
5112 | return (void *)addr; | |
5113 | } | |
5114 | ||
5115 | /** | |
5116 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | |
5117 | * @size: the number of bytes to allocate | |
5118 | * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP | |
5119 | * | |
5120 | * This function is similar to alloc_pages(), except that it allocates the | |
5121 | * minimum number of pages to satisfy the request. alloc_pages() can only | |
5122 | * allocate memory in power-of-two pages. | |
5123 | * | |
5124 | * This function is also limited by MAX_PAGE_ORDER. | |
5125 | * | |
5126 | * Memory allocated by this function must be released by free_pages_exact(). | |
5127 | * | |
5128 | * Return: pointer to the allocated area or %NULL in case of error. | |
5129 | */ | |
5130 | void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) | |
5131 | { | |
5132 | unsigned int order = get_order(size); | |
5133 | unsigned long addr; | |
5134 | ||
5135 | if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) | |
5136 | gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); | |
5137 | ||
5138 | addr = get_free_pages_noprof(gfp_mask, order); | |
5139 | return make_alloc_exact(addr, order, size); | |
5140 | } | |
5141 | EXPORT_SYMBOL(alloc_pages_exact_noprof); | |
5142 | ||
5143 | /** | |
5144 | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous | |
5145 | * pages on a node. | |
5146 | * @nid: the preferred node ID where memory should be allocated | |
5147 | * @size: the number of bytes to allocate | |
5148 | * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP | |
5149 | * | |
5150 | * Like alloc_pages_exact(), but try to allocate on node nid first before falling | |
5151 | * back. | |
5152 | * | |
5153 | * Return: pointer to the allocated area or %NULL in case of error. | |
5154 | */ | |
5155 | void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) | |
5156 | { | |
5157 | unsigned int order = get_order(size); | |
5158 | struct page *p; | |
5159 | ||
5160 | if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) | |
5161 | gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); | |
5162 | ||
5163 | p = alloc_pages_node_noprof(nid, gfp_mask, order); | |
5164 | if (!p) | |
5165 | return NULL; | |
5166 | return make_alloc_exact((unsigned long)page_address(p), order, size); | |
5167 | } | |
5168 | ||
5169 | /** | |
5170 | * free_pages_exact - release memory allocated via alloc_pages_exact() | |
5171 | * @virt: the value returned by alloc_pages_exact. | |
5172 | * @size: size of allocation, same value as passed to alloc_pages_exact(). | |
5173 | * | |
5174 | * Release the memory allocated by a previous call to alloc_pages_exact. | |
5175 | */ | |
5176 | void free_pages_exact(void *virt, size_t size) | |
5177 | { | |
5178 | unsigned long addr = (unsigned long)virt; | |
5179 | unsigned long end = addr + PAGE_ALIGN(size); | |
5180 | ||
5181 | while (addr < end) { | |
5182 | free_page(addr); | |
5183 | addr += PAGE_SIZE; | |
5184 | } | |
5185 | } | |
5186 | EXPORT_SYMBOL(free_pages_exact); | |
5187 | ||
5188 | /** | |
5189 | * nr_free_zone_pages - count number of pages beyond high watermark | |
5190 | * @offset: The zone index of the highest zone | |
5191 | * | |
5192 | * nr_free_zone_pages() counts the number of pages which are beyond the | |
5193 | * high watermark within all zones at or below a given zone index. For each | |
5194 | * zone, the number of pages is calculated as: | |
5195 | * | |
5196 | * nr_free_zone_pages = managed_pages - high_pages | |
5197 | * | |
5198 | * Return: number of pages beyond high watermark. | |
5199 | */ | |
5200 | static unsigned long nr_free_zone_pages(int offset) | |
5201 | { | |
5202 | struct zoneref *z; | |
5203 | struct zone *zone; | |
5204 | ||
5205 | /* Just pick one node, since fallback list is circular */ | |
5206 | unsigned long sum = 0; | |
5207 | ||
5208 | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); | |
5209 | ||
5210 | for_each_zone_zonelist(zone, z, zonelist, offset) { | |
5211 | unsigned long size = zone_managed_pages(zone); | |
5212 | unsigned long high = high_wmark_pages(zone); | |
5213 | if (size > high) | |
5214 | sum += size - high; | |
5215 | } | |
5216 | ||
5217 | return sum; | |
5218 | } | |
5219 | ||
5220 | /** | |
5221 | * nr_free_buffer_pages - count number of pages beyond high watermark | |
5222 | * | |
5223 | * nr_free_buffer_pages() counts the number of pages which are beyond the high | |
5224 | * watermark within ZONE_DMA and ZONE_NORMAL. | |
5225 | * | |
5226 | * Return: number of pages beyond high watermark within ZONE_DMA and | |
5227 | * ZONE_NORMAL. | |
5228 | */ | |
5229 | unsigned long nr_free_buffer_pages(void) | |
5230 | { | |
5231 | return nr_free_zone_pages(gfp_zone(GFP_USER)); | |
5232 | } | |
5233 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); | |
5234 | ||
5235 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) | |
5236 | { | |
5237 | zoneref->zone = zone; | |
5238 | zoneref->zone_idx = zone_idx(zone); | |
5239 | } | |
5240 | ||
5241 | /* | |
5242 | * Builds allocation fallback zone lists. | |
5243 | * | |
5244 | * Add all populated zones of a node to the zonelist. | |
5245 | */ | |
5246 | static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) | |
5247 | { | |
5248 | struct zone *zone; | |
5249 | enum zone_type zone_type = MAX_NR_ZONES; | |
5250 | int nr_zones = 0; | |
5251 | ||
5252 | do { | |
5253 | zone_type--; | |
5254 | zone = pgdat->node_zones + zone_type; | |
5255 | if (populated_zone(zone)) { | |
5256 | zoneref_set_zone(zone, &zonerefs[nr_zones++]); | |
5257 | check_highest_zone(zone_type); | |
5258 | } | |
5259 | } while (zone_type); | |
5260 | ||
5261 | return nr_zones; | |
5262 | } | |
5263 | ||
5264 | #ifdef CONFIG_NUMA | |
5265 | ||
5266 | static int __parse_numa_zonelist_order(char *s) | |
5267 | { | |
5268 | /* | |
5269 | * We used to support different zonelists modes but they turned | |
5270 | * out to be just not useful. Let's keep the warning in place | |
5271 | * if somebody still use the cmd line parameter so that we do | |
5272 | * not fail it silently | |
5273 | */ | |
5274 | if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { | |
5275 | pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); | |
5276 | return -EINVAL; | |
5277 | } | |
5278 | return 0; | |
5279 | } | |
5280 | ||
5281 | static char numa_zonelist_order[] = "Node"; | |
5282 | #define NUMA_ZONELIST_ORDER_LEN 16 | |
5283 | /* | |
5284 | * sysctl handler for numa_zonelist_order | |
5285 | */ | |
5286 | static int numa_zonelist_order_handler(const struct ctl_table *table, int write, | |
5287 | void *buffer, size_t *length, loff_t *ppos) | |
5288 | { | |
5289 | if (write) | |
5290 | return __parse_numa_zonelist_order(buffer); | |
5291 | return proc_dostring(table, write, buffer, length, ppos); | |
5292 | } | |
5293 | ||
5294 | static int node_load[MAX_NUMNODES]; | |
5295 | ||
5296 | /** | |
5297 | * find_next_best_node - find the next node that should appear in a given node's fallback list | |
5298 | * @node: node whose fallback list we're appending | |
5299 | * @used_node_mask: nodemask_t of already used nodes | |
5300 | * | |
5301 | * We use a number of factors to determine which is the next node that should | |
5302 | * appear on a given node's fallback list. The node should not have appeared | |
5303 | * already in @node's fallback list, and it should be the next closest node | |
5304 | * according to the distance array (which contains arbitrary distance values | |
5305 | * from each node to each node in the system), and should also prefer nodes | |
5306 | * with no CPUs, since presumably they'll have very little allocation pressure | |
5307 | * on them otherwise. | |
5308 | * | |
5309 | * Return: node id of the found node or %NUMA_NO_NODE if no node is found. | |
5310 | */ | |
5311 | int find_next_best_node(int node, nodemask_t *used_node_mask) | |
5312 | { | |
5313 | int n, val; | |
5314 | int min_val = INT_MAX; | |
5315 | int best_node = NUMA_NO_NODE; | |
5316 | ||
5317 | /* | |
5318 | * Use the local node if we haven't already, but for memoryless local | |
5319 | * node, we should skip it and fall back to other nodes. | |
5320 | */ | |
5321 | if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { | |
5322 | node_set(node, *used_node_mask); | |
5323 | return node; | |
5324 | } | |
5325 | ||
5326 | for_each_node_state(n, N_MEMORY) { | |
5327 | ||
5328 | /* Don't want a node to appear more than once */ | |
5329 | if (node_isset(n, *used_node_mask)) | |
5330 | continue; | |
5331 | ||
5332 | /* Use the distance array to find the distance */ | |
5333 | val = node_distance(node, n); | |
5334 | ||
5335 | /* Penalize nodes under us ("prefer the next node") */ | |
5336 | val += (n < node); | |
5337 | ||
5338 | /* Give preference to headless and unused nodes */ | |
5339 | if (!cpumask_empty(cpumask_of_node(n))) | |
5340 | val += PENALTY_FOR_NODE_WITH_CPUS; | |
5341 | ||
5342 | /* Slight preference for less loaded node */ | |
5343 | val *= MAX_NUMNODES; | |
5344 | val += node_load[n]; | |
5345 | ||
5346 | if (val < min_val) { | |
5347 | min_val = val; | |
5348 | best_node = n; | |
5349 | } | |
5350 | } | |
5351 | ||
5352 | if (best_node >= 0) | |
5353 | node_set(best_node, *used_node_mask); | |
5354 | ||
5355 | return best_node; | |
5356 | } | |
5357 | ||
5358 | ||
5359 | /* | |
5360 | * Build zonelists ordered by node and zones within node. | |
5361 | * This results in maximum locality--normal zone overflows into local | |
5362 | * DMA zone, if any--but risks exhausting DMA zone. | |
5363 | */ | |
5364 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, | |
5365 | unsigned nr_nodes) | |
5366 | { | |
5367 | struct zoneref *zonerefs; | |
5368 | int i; | |
5369 | ||
5370 | zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; | |
5371 | ||
5372 | for (i = 0; i < nr_nodes; i++) { | |
5373 | int nr_zones; | |
5374 | ||
5375 | pg_data_t *node = NODE_DATA(node_order[i]); | |
5376 | ||
5377 | nr_zones = build_zonerefs_node(node, zonerefs); | |
5378 | zonerefs += nr_zones; | |
5379 | } | |
5380 | zonerefs->zone = NULL; | |
5381 | zonerefs->zone_idx = 0; | |
5382 | } | |
5383 | ||
5384 | /* | |
5385 | * Build __GFP_THISNODE zonelists | |
5386 | */ | |
5387 | static void build_thisnode_zonelists(pg_data_t *pgdat) | |
5388 | { | |
5389 | struct zoneref *zonerefs; | |
5390 | int nr_zones; | |
5391 | ||
5392 | zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; | |
5393 | nr_zones = build_zonerefs_node(pgdat, zonerefs); | |
5394 | zonerefs += nr_zones; | |
5395 | zonerefs->zone = NULL; | |
5396 | zonerefs->zone_idx = 0; | |
5397 | } | |
5398 | ||
5399 | static void build_zonelists(pg_data_t *pgdat) | |
5400 | { | |
5401 | static int node_order[MAX_NUMNODES]; | |
5402 | int node, nr_nodes = 0; | |
5403 | nodemask_t used_mask = NODE_MASK_NONE; | |
5404 | int local_node, prev_node; | |
5405 | ||
5406 | /* NUMA-aware ordering of nodes */ | |
5407 | local_node = pgdat->node_id; | |
5408 | prev_node = local_node; | |
5409 | ||
5410 | memset(node_order, 0, sizeof(node_order)); | |
5411 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { | |
5412 | /* | |
5413 | * We don't want to pressure a particular node. | |
5414 | * So adding penalty to the first node in same | |
5415 | * distance group to make it round-robin. | |
5416 | */ | |
5417 | if (node_distance(local_node, node) != | |
5418 | node_distance(local_node, prev_node)) | |
5419 | node_load[node] += 1; | |
5420 | ||
5421 | node_order[nr_nodes++] = node; | |
5422 | prev_node = node; | |
5423 | } | |
5424 | ||
5425 | build_zonelists_in_node_order(pgdat, node_order, nr_nodes); | |
5426 | build_thisnode_zonelists(pgdat); | |
5427 | pr_info("Fallback order for Node %d: ", local_node); | |
5428 | for (node = 0; node < nr_nodes; node++) | |
5429 | pr_cont("%d ", node_order[node]); | |
5430 | pr_cont("\n"); | |
5431 | } | |
5432 | ||
5433 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | |
5434 | /* | |
5435 | * Return node id of node used for "local" allocations. | |
5436 | * I.e., first node id of first zone in arg node's generic zonelist. | |
5437 | * Used for initializing percpu 'numa_mem', which is used primarily | |
5438 | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. | |
5439 | */ | |
5440 | int local_memory_node(int node) | |
5441 | { | |
5442 | struct zoneref *z; | |
5443 | ||
5444 | z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), | |
5445 | gfp_zone(GFP_KERNEL), | |
5446 | NULL); | |
5447 | return zonelist_node_idx(z); | |
5448 | } | |
5449 | #endif | |
5450 | ||
5451 | static void setup_min_unmapped_ratio(void); | |
5452 | static void setup_min_slab_ratio(void); | |
5453 | #else /* CONFIG_NUMA */ | |
5454 | ||
5455 | static void build_zonelists(pg_data_t *pgdat) | |
5456 | { | |
5457 | struct zoneref *zonerefs; | |
5458 | int nr_zones; | |
5459 | ||
5460 | zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; | |
5461 | nr_zones = build_zonerefs_node(pgdat, zonerefs); | |
5462 | zonerefs += nr_zones; | |
5463 | ||
5464 | zonerefs->zone = NULL; | |
5465 | zonerefs->zone_idx = 0; | |
5466 | } | |
5467 | ||
5468 | #endif /* CONFIG_NUMA */ | |
5469 | ||
5470 | /* | |
5471 | * Boot pageset table. One per cpu which is going to be used for all | |
5472 | * zones and all nodes. The parameters will be set in such a way | |
5473 | * that an item put on a list will immediately be handed over to | |
5474 | * the buddy list. This is safe since pageset manipulation is done | |
5475 | * with interrupts disabled. | |
5476 | * | |
5477 | * The boot_pagesets must be kept even after bootup is complete for | |
5478 | * unused processors and/or zones. They do play a role for bootstrapping | |
5479 | * hotplugged processors. | |
5480 | * | |
5481 | * zoneinfo_show() and maybe other functions do | |
5482 | * not check if the processor is online before following the pageset pointer. | |
5483 | * Other parts of the kernel may not check if the zone is available. | |
5484 | */ | |
5485 | static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); | |
5486 | /* These effectively disable the pcplists in the boot pageset completely */ | |
5487 | #define BOOT_PAGESET_HIGH 0 | |
5488 | #define BOOT_PAGESET_BATCH 1 | |
5489 | static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); | |
5490 | static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); | |
5491 | ||
5492 | static void __build_all_zonelists(void *data) | |
5493 | { | |
5494 | int nid; | |
5495 | int __maybe_unused cpu; | |
5496 | pg_data_t *self = data; | |
5497 | unsigned long flags; | |
5498 | ||
5499 | /* | |
5500 | * The zonelist_update_seq must be acquired with irqsave because the | |
5501 | * reader can be invoked from IRQ with GFP_ATOMIC. | |
5502 | */ | |
5503 | write_seqlock_irqsave(&zonelist_update_seq, flags); | |
5504 | /* | |
5505 | * Also disable synchronous printk() to prevent any printk() from | |
5506 | * trying to hold port->lock, for | |
5507 | * tty_insert_flip_string_and_push_buffer() on other CPU might be | |
5508 | * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. | |
5509 | */ | |
5510 | printk_deferred_enter(); | |
5511 | ||
5512 | #ifdef CONFIG_NUMA | |
5513 | memset(node_load, 0, sizeof(node_load)); | |
5514 | #endif | |
5515 | ||
5516 | /* | |
5517 | * This node is hotadded and no memory is yet present. So just | |
5518 | * building zonelists is fine - no need to touch other nodes. | |
5519 | */ | |
5520 | if (self && !node_online(self->node_id)) { | |
5521 | build_zonelists(self); | |
5522 | } else { | |
5523 | /* | |
5524 | * All possible nodes have pgdat preallocated | |
5525 | * in free_area_init | |
5526 | */ | |
5527 | for_each_node(nid) { | |
5528 | pg_data_t *pgdat = NODE_DATA(nid); | |
5529 | ||
5530 | build_zonelists(pgdat); | |
5531 | } | |
5532 | ||
5533 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | |
5534 | /* | |
5535 | * We now know the "local memory node" for each node-- | |
5536 | * i.e., the node of the first zone in the generic zonelist. | |
5537 | * Set up numa_mem percpu variable for on-line cpus. During | |
5538 | * boot, only the boot cpu should be on-line; we'll init the | |
5539 | * secondary cpus' numa_mem as they come on-line. During | |
5540 | * node/memory hotplug, we'll fixup all on-line cpus. | |
5541 | */ | |
5542 | for_each_online_cpu(cpu) | |
5543 | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); | |
5544 | #endif | |
5545 | } | |
5546 | ||
5547 | printk_deferred_exit(); | |
5548 | write_sequnlock_irqrestore(&zonelist_update_seq, flags); | |
5549 | } | |
5550 | ||
5551 | static noinline void __init | |
5552 | build_all_zonelists_init(void) | |
5553 | { | |
5554 | int cpu; | |
5555 | ||
5556 | __build_all_zonelists(NULL); | |
5557 | ||
5558 | /* | |
5559 | * Initialize the boot_pagesets that are going to be used | |
5560 | * for bootstrapping processors. The real pagesets for | |
5561 | * each zone will be allocated later when the per cpu | |
5562 | * allocator is available. | |
5563 | * | |
5564 | * boot_pagesets are used also for bootstrapping offline | |
5565 | * cpus if the system is already booted because the pagesets | |
5566 | * are needed to initialize allocators on a specific cpu too. | |
5567 | * F.e. the percpu allocator needs the page allocator which | |
5568 | * needs the percpu allocator in order to allocate its pagesets | |
5569 | * (a chicken-egg dilemma). | |
5570 | */ | |
5571 | for_each_possible_cpu(cpu) | |
5572 | per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); | |
5573 | ||
5574 | mminit_verify_zonelist(); | |
5575 | cpuset_init_current_mems_allowed(); | |
5576 | } | |
5577 | ||
5578 | /* | |
5579 | * unless system_state == SYSTEM_BOOTING. | |
5580 | * | |
5581 | * __ref due to call of __init annotated helper build_all_zonelists_init | |
5582 | * [protected by SYSTEM_BOOTING]. | |
5583 | */ | |
5584 | void __ref build_all_zonelists(pg_data_t *pgdat) | |
5585 | { | |
5586 | unsigned long vm_total_pages; | |
5587 | ||
5588 | if (system_state == SYSTEM_BOOTING) { | |
5589 | build_all_zonelists_init(); | |
5590 | } else { | |
5591 | __build_all_zonelists(pgdat); | |
5592 | /* cpuset refresh routine should be here */ | |
5593 | } | |
5594 | /* Get the number of free pages beyond high watermark in all zones. */ | |
5595 | vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); | |
5596 | /* | |
5597 | * Disable grouping by mobility if the number of pages in the | |
5598 | * system is too low to allow the mechanism to work. It would be | |
5599 | * more accurate, but expensive to check per-zone. This check is | |
5600 | * made on memory-hotadd so a system can start with mobility | |
5601 | * disabled and enable it later | |
5602 | */ | |
5603 | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) | |
5604 | page_group_by_mobility_disabled = 1; | |
5605 | else | |
5606 | page_group_by_mobility_disabled = 0; | |
5607 | ||
5608 | pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", | |
5609 | nr_online_nodes, | |
5610 | str_off_on(page_group_by_mobility_disabled), | |
5611 | vm_total_pages); | |
5612 | #ifdef CONFIG_NUMA | |
5613 | pr_info("Policy zone: %s\n", zone_names[policy_zone]); | |
5614 | #endif | |
5615 | } | |
5616 | ||
5617 | static int zone_batchsize(struct zone *zone) | |
5618 | { | |
5619 | #ifdef CONFIG_MMU | |
5620 | int batch; | |
5621 | ||
5622 | /* | |
5623 | * The number of pages to batch allocate is either ~0.1% | |
5624 | * of the zone or 1MB, whichever is smaller. The batch | |
5625 | * size is striking a balance between allocation latency | |
5626 | * and zone lock contention. | |
5627 | */ | |
5628 | batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); | |
5629 | batch /= 4; /* We effectively *= 4 below */ | |
5630 | if (batch < 1) | |
5631 | batch = 1; | |
5632 | ||
5633 | /* | |
5634 | * Clamp the batch to a 2^n - 1 value. Having a power | |
5635 | * of 2 value was found to be more likely to have | |
5636 | * suboptimal cache aliasing properties in some cases. | |
5637 | * | |
5638 | * For example if 2 tasks are alternately allocating | |
5639 | * batches of pages, one task can end up with a lot | |
5640 | * of pages of one half of the possible page colors | |
5641 | * and the other with pages of the other colors. | |
5642 | */ | |
5643 | batch = rounddown_pow_of_two(batch + batch/2) - 1; | |
5644 | ||
5645 | return batch; | |
5646 | ||
5647 | #else | |
5648 | /* The deferral and batching of frees should be suppressed under NOMMU | |
5649 | * conditions. | |
5650 | * | |
5651 | * The problem is that NOMMU needs to be able to allocate large chunks | |
5652 | * of contiguous memory as there's no hardware page translation to | |
5653 | * assemble apparent contiguous memory from discontiguous pages. | |
5654 | * | |
5655 | * Queueing large contiguous runs of pages for batching, however, | |
5656 | * causes the pages to actually be freed in smaller chunks. As there | |
5657 | * can be a significant delay between the individual batches being | |
5658 | * recycled, this leads to the once large chunks of space being | |
5659 | * fragmented and becoming unavailable for high-order allocations. | |
5660 | */ | |
5661 | return 0; | |
5662 | #endif | |
5663 | } | |
5664 | ||
5665 | static int percpu_pagelist_high_fraction; | |
5666 | static int zone_highsize(struct zone *zone, int batch, int cpu_online, | |
5667 | int high_fraction) | |
5668 | { | |
5669 | #ifdef CONFIG_MMU | |
5670 | int high; | |
5671 | int nr_split_cpus; | |
5672 | unsigned long total_pages; | |
5673 | ||
5674 | if (!high_fraction) { | |
5675 | /* | |
5676 | * By default, the high value of the pcp is based on the zone | |
5677 | * low watermark so that if they are full then background | |
5678 | * reclaim will not be started prematurely. | |
5679 | */ | |
5680 | total_pages = low_wmark_pages(zone); | |
5681 | } else { | |
5682 | /* | |
5683 | * If percpu_pagelist_high_fraction is configured, the high | |
5684 | * value is based on a fraction of the managed pages in the | |
5685 | * zone. | |
5686 | */ | |
5687 | total_pages = zone_managed_pages(zone) / high_fraction; | |
5688 | } | |
5689 | ||
5690 | /* | |
5691 | * Split the high value across all online CPUs local to the zone. Note | |
5692 | * that early in boot that CPUs may not be online yet and that during | |
5693 | * CPU hotplug that the cpumask is not yet updated when a CPU is being | |
5694 | * onlined. For memory nodes that have no CPUs, split the high value | |
5695 | * across all online CPUs to mitigate the risk that reclaim is triggered | |
5696 | * prematurely due to pages stored on pcp lists. | |
5697 | */ | |
5698 | nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; | |
5699 | if (!nr_split_cpus) | |
5700 | nr_split_cpus = num_online_cpus(); | |
5701 | high = total_pages / nr_split_cpus; | |
5702 | ||
5703 | /* | |
5704 | * Ensure high is at least batch*4. The multiple is based on the | |
5705 | * historical relationship between high and batch. | |
5706 | */ | |
5707 | high = max(high, batch << 2); | |
5708 | ||
5709 | return high; | |
5710 | #else | |
5711 | return 0; | |
5712 | #endif | |
5713 | } | |
5714 | ||
5715 | /* | |
5716 | * pcp->high and pcp->batch values are related and generally batch is lower | |
5717 | * than high. They are also related to pcp->count such that count is lower | |
5718 | * than high, and as soon as it reaches high, the pcplist is flushed. | |
5719 | * | |
5720 | * However, guaranteeing these relations at all times would require e.g. write | |
5721 | * barriers here but also careful usage of read barriers at the read side, and | |
5722 | * thus be prone to error and bad for performance. Thus the update only prevents | |
5723 | * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max | |
5724 | * should ensure they can cope with those fields changing asynchronously, and | |
5725 | * fully trust only the pcp->count field on the local CPU with interrupts | |
5726 | * disabled. | |
5727 | * | |
5728 | * mutex_is_locked(&pcp_batch_high_lock) required when calling this function | |
5729 | * outside of boot time (or some other assurance that no concurrent updaters | |
5730 | * exist). | |
5731 | */ | |
5732 | static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, | |
5733 | unsigned long high_max, unsigned long batch) | |
5734 | { | |
5735 | WRITE_ONCE(pcp->batch, batch); | |
5736 | WRITE_ONCE(pcp->high_min, high_min); | |
5737 | WRITE_ONCE(pcp->high_max, high_max); | |
5738 | } | |
5739 | ||
5740 | static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) | |
5741 | { | |
5742 | int pindex; | |
5743 | ||
5744 | memset(pcp, 0, sizeof(*pcp)); | |
5745 | memset(pzstats, 0, sizeof(*pzstats)); | |
5746 | ||
5747 | spin_lock_init(&pcp->lock); | |
5748 | for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) | |
5749 | INIT_LIST_HEAD(&pcp->lists[pindex]); | |
5750 | ||
5751 | /* | |
5752 | * Set batch and high values safe for a boot pageset. A true percpu | |
5753 | * pageset's initialization will update them subsequently. Here we don't | |
5754 | * need to be as careful as pageset_update() as nobody can access the | |
5755 | * pageset yet. | |
5756 | */ | |
5757 | pcp->high_min = BOOT_PAGESET_HIGH; | |
5758 | pcp->high_max = BOOT_PAGESET_HIGH; | |
5759 | pcp->batch = BOOT_PAGESET_BATCH; | |
5760 | pcp->free_count = 0; | |
5761 | } | |
5762 | ||
5763 | static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, | |
5764 | unsigned long high_max, unsigned long batch) | |
5765 | { | |
5766 | struct per_cpu_pages *pcp; | |
5767 | int cpu; | |
5768 | ||
5769 | for_each_possible_cpu(cpu) { | |
5770 | pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); | |
5771 | pageset_update(pcp, high_min, high_max, batch); | |
5772 | } | |
5773 | } | |
5774 | ||
5775 | /* | |
5776 | * Calculate and set new high and batch values for all per-cpu pagesets of a | |
5777 | * zone based on the zone's size. | |
5778 | */ | |
5779 | static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) | |
5780 | { | |
5781 | int new_high_min, new_high_max, new_batch; | |
5782 | ||
5783 | new_batch = max(1, zone_batchsize(zone)); | |
5784 | if (percpu_pagelist_high_fraction) { | |
5785 | new_high_min = zone_highsize(zone, new_batch, cpu_online, | |
5786 | percpu_pagelist_high_fraction); | |
5787 | /* | |
5788 | * PCP high is tuned manually, disable auto-tuning via | |
5789 | * setting high_min and high_max to the manual value. | |
5790 | */ | |
5791 | new_high_max = new_high_min; | |
5792 | } else { | |
5793 | new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); | |
5794 | new_high_max = zone_highsize(zone, new_batch, cpu_online, | |
5795 | MIN_PERCPU_PAGELIST_HIGH_FRACTION); | |
5796 | } | |
5797 | ||
5798 | if (zone->pageset_high_min == new_high_min && | |
5799 | zone->pageset_high_max == new_high_max && | |
5800 | zone->pageset_batch == new_batch) | |
5801 | return; | |
5802 | ||
5803 | zone->pageset_high_min = new_high_min; | |
5804 | zone->pageset_high_max = new_high_max; | |
5805 | zone->pageset_batch = new_batch; | |
5806 | ||
5807 | __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, | |
5808 | new_batch); | |
5809 | } | |
5810 | ||
5811 | void __meminit setup_zone_pageset(struct zone *zone) | |
5812 | { | |
5813 | int cpu; | |
5814 | ||
5815 | /* Size may be 0 on !SMP && !NUMA */ | |
5816 | if (sizeof(struct per_cpu_zonestat) > 0) | |
5817 | zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); | |
5818 | ||
5819 | zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); | |
5820 | for_each_possible_cpu(cpu) { | |
5821 | struct per_cpu_pages *pcp; | |
5822 | struct per_cpu_zonestat *pzstats; | |
5823 | ||
5824 | pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); | |
5825 | pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); | |
5826 | per_cpu_pages_init(pcp, pzstats); | |
5827 | } | |
5828 | ||
5829 | zone_set_pageset_high_and_batch(zone, 0); | |
5830 | } | |
5831 | ||
5832 | /* | |
5833 | * The zone indicated has a new number of managed_pages; batch sizes and percpu | |
5834 | * page high values need to be recalculated. | |
5835 | */ | |
5836 | static void zone_pcp_update(struct zone *zone, int cpu_online) | |
5837 | { | |
5838 | mutex_lock(&pcp_batch_high_lock); | |
5839 | zone_set_pageset_high_and_batch(zone, cpu_online); | |
5840 | mutex_unlock(&pcp_batch_high_lock); | |
5841 | } | |
5842 | ||
5843 | static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) | |
5844 | { | |
5845 | struct per_cpu_pages *pcp; | |
5846 | struct cpu_cacheinfo *cci; | |
5847 | ||
5848 | pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); | |
5849 | cci = get_cpu_cacheinfo(cpu); | |
5850 | /* | |
5851 | * If data cache slice of CPU is large enough, "pcp->batch" | |
5852 | * pages can be preserved in PCP before draining PCP for | |
5853 | * consecutive high-order pages freeing without allocation. | |
5854 | * This can reduce zone lock contention without hurting | |
5855 | * cache-hot pages sharing. | |
5856 | */ | |
5857 | spin_lock(&pcp->lock); | |
5858 | if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) | |
5859 | pcp->flags |= PCPF_FREE_HIGH_BATCH; | |
5860 | else | |
5861 | pcp->flags &= ~PCPF_FREE_HIGH_BATCH; | |
5862 | spin_unlock(&pcp->lock); | |
5863 | } | |
5864 | ||
5865 | void setup_pcp_cacheinfo(unsigned int cpu) | |
5866 | { | |
5867 | struct zone *zone; | |
5868 | ||
5869 | for_each_populated_zone(zone) | |
5870 | zone_pcp_update_cacheinfo(zone, cpu); | |
5871 | } | |
5872 | ||
5873 | /* | |
5874 | * Allocate per cpu pagesets and initialize them. | |
5875 | * Before this call only boot pagesets were available. | |
5876 | */ | |
5877 | void __init setup_per_cpu_pageset(void) | |
5878 | { | |
5879 | struct pglist_data *pgdat; | |
5880 | struct zone *zone; | |
5881 | int __maybe_unused cpu; | |
5882 | ||
5883 | for_each_populated_zone(zone) | |
5884 | setup_zone_pageset(zone); | |
5885 | ||
5886 | #ifdef CONFIG_NUMA | |
5887 | /* | |
5888 | * Unpopulated zones continue using the boot pagesets. | |
5889 | * The numa stats for these pagesets need to be reset. | |
5890 | * Otherwise, they will end up skewing the stats of | |
5891 | * the nodes these zones are associated with. | |
5892 | */ | |
5893 | for_each_possible_cpu(cpu) { | |
5894 | struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); | |
5895 | memset(pzstats->vm_numa_event, 0, | |
5896 | sizeof(pzstats->vm_numa_event)); | |
5897 | } | |
5898 | #endif | |
5899 | ||
5900 | for_each_online_pgdat(pgdat) | |
5901 | pgdat->per_cpu_nodestats = | |
5902 | alloc_percpu(struct per_cpu_nodestat); | |
5903 | } | |
5904 | ||
5905 | __meminit void zone_pcp_init(struct zone *zone) | |
5906 | { | |
5907 | /* | |
5908 | * per cpu subsystem is not up at this point. The following code | |
5909 | * relies on the ability of the linker to provide the | |
5910 | * offset of a (static) per cpu variable into the per cpu area. | |
5911 | */ | |
5912 | zone->per_cpu_pageset = &boot_pageset; | |
5913 | zone->per_cpu_zonestats = &boot_zonestats; | |
5914 | zone->pageset_high_min = BOOT_PAGESET_HIGH; | |
5915 | zone->pageset_high_max = BOOT_PAGESET_HIGH; | |
5916 | zone->pageset_batch = BOOT_PAGESET_BATCH; | |
5917 | ||
5918 | if (populated_zone(zone)) | |
5919 | pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, | |
5920 | zone->present_pages, zone_batchsize(zone)); | |
5921 | } | |
5922 | ||
5923 | static void setup_per_zone_lowmem_reserve(void); | |
5924 | ||
5925 | void adjust_managed_page_count(struct page *page, long count) | |
5926 | { | |
5927 | atomic_long_add(count, &page_zone(page)->managed_pages); | |
5928 | totalram_pages_add(count); | |
5929 | setup_per_zone_lowmem_reserve(); | |
5930 | } | |
5931 | EXPORT_SYMBOL(adjust_managed_page_count); | |
5932 | ||
5933 | unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) | |
5934 | { | |
5935 | void *pos; | |
5936 | unsigned long pages = 0; | |
5937 | ||
5938 | start = (void *)PAGE_ALIGN((unsigned long)start); | |
5939 | end = (void *)((unsigned long)end & PAGE_MASK); | |
5940 | for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { | |
5941 | struct page *page = virt_to_page(pos); | |
5942 | void *direct_map_addr; | |
5943 | ||
5944 | /* | |
5945 | * 'direct_map_addr' might be different from 'pos' | |
5946 | * because some architectures' virt_to_page() | |
5947 | * work with aliases. Getting the direct map | |
5948 | * address ensures that we get a _writeable_ | |
5949 | * alias for the memset(). | |
5950 | */ | |
5951 | direct_map_addr = page_address(page); | |
5952 | /* | |
5953 | * Perform a kasan-unchecked memset() since this memory | |
5954 | * has not been initialized. | |
5955 | */ | |
5956 | direct_map_addr = kasan_reset_tag(direct_map_addr); | |
5957 | if ((unsigned int)poison <= 0xFF) | |
5958 | memset(direct_map_addr, poison, PAGE_SIZE); | |
5959 | ||
5960 | free_reserved_page(page); | |
5961 | } | |
5962 | ||
5963 | if (pages && s) | |
5964 | pr_info("Freeing %s memory: %ldK\n", s, K(pages)); | |
5965 | ||
5966 | return pages; | |
5967 | } | |
5968 | ||
5969 | void free_reserved_page(struct page *page) | |
5970 | { | |
5971 | clear_page_tag_ref(page); | |
5972 | ClearPageReserved(page); | |
5973 | init_page_count(page); | |
5974 | __free_page(page); | |
5975 | adjust_managed_page_count(page, 1); | |
5976 | } | |
5977 | EXPORT_SYMBOL(free_reserved_page); | |
5978 | ||
5979 | static int page_alloc_cpu_dead(unsigned int cpu) | |
5980 | { | |
5981 | struct zone *zone; | |
5982 | ||
5983 | lru_add_drain_cpu(cpu); | |
5984 | mlock_drain_remote(cpu); | |
5985 | drain_pages(cpu); | |
5986 | ||
5987 | /* | |
5988 | * Spill the event counters of the dead processor | |
5989 | * into the current processors event counters. | |
5990 | * This artificially elevates the count of the current | |
5991 | * processor. | |
5992 | */ | |
5993 | vm_events_fold_cpu(cpu); | |
5994 | ||
5995 | /* | |
5996 | * Zero the differential counters of the dead processor | |
5997 | * so that the vm statistics are consistent. | |
5998 | * | |
5999 | * This is only okay since the processor is dead and cannot | |
6000 | * race with what we are doing. | |
6001 | */ | |
6002 | cpu_vm_stats_fold(cpu); | |
6003 | ||
6004 | for_each_populated_zone(zone) | |
6005 | zone_pcp_update(zone, 0); | |
6006 | ||
6007 | return 0; | |
6008 | } | |
6009 | ||
6010 | static int page_alloc_cpu_online(unsigned int cpu) | |
6011 | { | |
6012 | struct zone *zone; | |
6013 | ||
6014 | for_each_populated_zone(zone) | |
6015 | zone_pcp_update(zone, 1); | |
6016 | return 0; | |
6017 | } | |
6018 | ||
6019 | void __init page_alloc_init_cpuhp(void) | |
6020 | { | |
6021 | int ret; | |
6022 | ||
6023 | ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, | |
6024 | "mm/page_alloc:pcp", | |
6025 | page_alloc_cpu_online, | |
6026 | page_alloc_cpu_dead); | |
6027 | WARN_ON(ret < 0); | |
6028 | } | |
6029 | ||
6030 | /* | |
6031 | * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio | |
6032 | * or min_free_kbytes changes. | |
6033 | */ | |
6034 | static void calculate_totalreserve_pages(void) | |
6035 | { | |
6036 | struct pglist_data *pgdat; | |
6037 | unsigned long reserve_pages = 0; | |
6038 | enum zone_type i, j; | |
6039 | ||
6040 | for_each_online_pgdat(pgdat) { | |
6041 | ||
6042 | pgdat->totalreserve_pages = 0; | |
6043 | ||
6044 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
6045 | struct zone *zone = pgdat->node_zones + i; | |
6046 | long max = 0; | |
6047 | unsigned long managed_pages = zone_managed_pages(zone); | |
6048 | ||
6049 | /* Find valid and maximum lowmem_reserve in the zone */ | |
6050 | for (j = i; j < MAX_NR_ZONES; j++) { | |
6051 | if (zone->lowmem_reserve[j] > max) | |
6052 | max = zone->lowmem_reserve[j]; | |
6053 | } | |
6054 | ||
6055 | /* we treat the high watermark as reserved pages. */ | |
6056 | max += high_wmark_pages(zone); | |
6057 | ||
6058 | if (max > managed_pages) | |
6059 | max = managed_pages; | |
6060 | ||
6061 | pgdat->totalreserve_pages += max; | |
6062 | ||
6063 | reserve_pages += max; | |
6064 | } | |
6065 | } | |
6066 | totalreserve_pages = reserve_pages; | |
6067 | trace_mm_calculate_totalreserve_pages(totalreserve_pages); | |
6068 | } | |
6069 | ||
6070 | /* | |
6071 | * setup_per_zone_lowmem_reserve - called whenever | |
6072 | * sysctl_lowmem_reserve_ratio changes. Ensures that each zone | |
6073 | * has a correct pages reserved value, so an adequate number of | |
6074 | * pages are left in the zone after a successful __alloc_pages(). | |
6075 | */ | |
6076 | static void setup_per_zone_lowmem_reserve(void) | |
6077 | { | |
6078 | struct pglist_data *pgdat; | |
6079 | enum zone_type i, j; | |
6080 | ||
6081 | for_each_online_pgdat(pgdat) { | |
6082 | for (i = 0; i < MAX_NR_ZONES - 1; i++) { | |
6083 | struct zone *zone = &pgdat->node_zones[i]; | |
6084 | int ratio = sysctl_lowmem_reserve_ratio[i]; | |
6085 | bool clear = !ratio || !zone_managed_pages(zone); | |
6086 | unsigned long managed_pages = 0; | |
6087 | ||
6088 | for (j = i + 1; j < MAX_NR_ZONES; j++) { | |
6089 | struct zone *upper_zone = &pgdat->node_zones[j]; | |
6090 | ||
6091 | managed_pages += zone_managed_pages(upper_zone); | |
6092 | ||
6093 | if (clear) | |
6094 | zone->lowmem_reserve[j] = 0; | |
6095 | else | |
6096 | zone->lowmem_reserve[j] = managed_pages / ratio; | |
6097 | trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone, | |
6098 | zone->lowmem_reserve[j]); | |
6099 | } | |
6100 | } | |
6101 | } | |
6102 | ||
6103 | /* update totalreserve_pages */ | |
6104 | calculate_totalreserve_pages(); | |
6105 | } | |
6106 | ||
6107 | static void __setup_per_zone_wmarks(void) | |
6108 | { | |
6109 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | |
6110 | unsigned long lowmem_pages = 0; | |
6111 | struct zone *zone; | |
6112 | unsigned long flags; | |
6113 | ||
6114 | /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ | |
6115 | for_each_zone(zone) { | |
6116 | if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) | |
6117 | lowmem_pages += zone_managed_pages(zone); | |
6118 | } | |
6119 | ||
6120 | for_each_zone(zone) { | |
6121 | u64 tmp; | |
6122 | ||
6123 | spin_lock_irqsave(&zone->lock, flags); | |
6124 | tmp = (u64)pages_min * zone_managed_pages(zone); | |
6125 | tmp = div64_ul(tmp, lowmem_pages); | |
6126 | if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { | |
6127 | /* | |
6128 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't | |
6129 | * need highmem and movable zones pages, so cap pages_min | |
6130 | * to a small value here. | |
6131 | * | |
6132 | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) | |
6133 | * deltas control async page reclaim, and so should | |
6134 | * not be capped for highmem and movable zones. | |
6135 | */ | |
6136 | unsigned long min_pages; | |
6137 | ||
6138 | min_pages = zone_managed_pages(zone) / 1024; | |
6139 | min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); | |
6140 | zone->_watermark[WMARK_MIN] = min_pages; | |
6141 | } else { | |
6142 | /* | |
6143 | * If it's a lowmem zone, reserve a number of pages | |
6144 | * proportionate to the zone's size. | |
6145 | */ | |
6146 | zone->_watermark[WMARK_MIN] = tmp; | |
6147 | } | |
6148 | ||
6149 | /* | |
6150 | * Set the kswapd watermarks distance according to the | |
6151 | * scale factor in proportion to available memory, but | |
6152 | * ensure a minimum size on small systems. | |
6153 | */ | |
6154 | tmp = max_t(u64, tmp >> 2, | |
6155 | mult_frac(zone_managed_pages(zone), | |
6156 | watermark_scale_factor, 10000)); | |
6157 | ||
6158 | zone->watermark_boost = 0; | |
6159 | zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; | |
6160 | zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; | |
6161 | zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; | |
6162 | trace_mm_setup_per_zone_wmarks(zone); | |
6163 | ||
6164 | spin_unlock_irqrestore(&zone->lock, flags); | |
6165 | } | |
6166 | ||
6167 | /* update totalreserve_pages */ | |
6168 | calculate_totalreserve_pages(); | |
6169 | } | |
6170 | ||
6171 | /** | |
6172 | * setup_per_zone_wmarks - called when min_free_kbytes changes | |
6173 | * or when memory is hot-{added|removed} | |
6174 | * | |
6175 | * Ensures that the watermark[min,low,high] values for each zone are set | |
6176 | * correctly with respect to min_free_kbytes. | |
6177 | */ | |
6178 | void setup_per_zone_wmarks(void) | |
6179 | { | |
6180 | struct zone *zone; | |
6181 | static DEFINE_SPINLOCK(lock); | |
6182 | ||
6183 | spin_lock(&lock); | |
6184 | __setup_per_zone_wmarks(); | |
6185 | spin_unlock(&lock); | |
6186 | ||
6187 | /* | |
6188 | * The watermark size have changed so update the pcpu batch | |
6189 | * and high limits or the limits may be inappropriate. | |
6190 | */ | |
6191 | for_each_zone(zone) | |
6192 | zone_pcp_update(zone, 0); | |
6193 | } | |
6194 | ||
6195 | /* | |
6196 | * Initialise min_free_kbytes. | |
6197 | * | |
6198 | * For small machines we want it small (128k min). For large machines | |
6199 | * we want it large (256MB max). But it is not linear, because network | |
6200 | * bandwidth does not increase linearly with machine size. We use | |
6201 | * | |
6202 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | |
6203 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) | |
6204 | * | |
6205 | * which yields | |
6206 | * | |
6207 | * 16MB: 512k | |
6208 | * 32MB: 724k | |
6209 | * 64MB: 1024k | |
6210 | * 128MB: 1448k | |
6211 | * 256MB: 2048k | |
6212 | * 512MB: 2896k | |
6213 | * 1024MB: 4096k | |
6214 | * 2048MB: 5792k | |
6215 | * 4096MB: 8192k | |
6216 | * 8192MB: 11584k | |
6217 | * 16384MB: 16384k | |
6218 | */ | |
6219 | void calculate_min_free_kbytes(void) | |
6220 | { | |
6221 | unsigned long lowmem_kbytes; | |
6222 | int new_min_free_kbytes; | |
6223 | ||
6224 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | |
6225 | new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | |
6226 | ||
6227 | if (new_min_free_kbytes > user_min_free_kbytes) | |
6228 | min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); | |
6229 | else | |
6230 | pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", | |
6231 | new_min_free_kbytes, user_min_free_kbytes); | |
6232 | ||
6233 | } | |
6234 | ||
6235 | int __meminit init_per_zone_wmark_min(void) | |
6236 | { | |
6237 | calculate_min_free_kbytes(); | |
6238 | setup_per_zone_wmarks(); | |
6239 | refresh_zone_stat_thresholds(); | |
6240 | setup_per_zone_lowmem_reserve(); | |
6241 | ||
6242 | #ifdef CONFIG_NUMA | |
6243 | setup_min_unmapped_ratio(); | |
6244 | setup_min_slab_ratio(); | |
6245 | #endif | |
6246 | ||
6247 | khugepaged_min_free_kbytes_update(); | |
6248 | ||
6249 | return 0; | |
6250 | } | |
6251 | postcore_initcall(init_per_zone_wmark_min) | |
6252 | ||
6253 | /* | |
6254 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so | |
6255 | * that we can call two helper functions whenever min_free_kbytes | |
6256 | * changes. | |
6257 | */ | |
6258 | static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, | |
6259 | void *buffer, size_t *length, loff_t *ppos) | |
6260 | { | |
6261 | int rc; | |
6262 | ||
6263 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
6264 | if (rc) | |
6265 | return rc; | |
6266 | ||
6267 | if (write) { | |
6268 | user_min_free_kbytes = min_free_kbytes; | |
6269 | setup_per_zone_wmarks(); | |
6270 | } | |
6271 | return 0; | |
6272 | } | |
6273 | ||
6274 | static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, | |
6275 | void *buffer, size_t *length, loff_t *ppos) | |
6276 | { | |
6277 | int rc; | |
6278 | ||
6279 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
6280 | if (rc) | |
6281 | return rc; | |
6282 | ||
6283 | if (write) | |
6284 | setup_per_zone_wmarks(); | |
6285 | ||
6286 | return 0; | |
6287 | } | |
6288 | ||
6289 | #ifdef CONFIG_NUMA | |
6290 | static void setup_min_unmapped_ratio(void) | |
6291 | { | |
6292 | pg_data_t *pgdat; | |
6293 | struct zone *zone; | |
6294 | ||
6295 | for_each_online_pgdat(pgdat) | |
6296 | pgdat->min_unmapped_pages = 0; | |
6297 | ||
6298 | for_each_zone(zone) | |
6299 | zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * | |
6300 | sysctl_min_unmapped_ratio) / 100; | |
6301 | } | |
6302 | ||
6303 | ||
6304 | static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, | |
6305 | void *buffer, size_t *length, loff_t *ppos) | |
6306 | { | |
6307 | int rc; | |
6308 | ||
6309 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
6310 | if (rc) | |
6311 | return rc; | |
6312 | ||
6313 | setup_min_unmapped_ratio(); | |
6314 | ||
6315 | return 0; | |
6316 | } | |
6317 | ||
6318 | static void setup_min_slab_ratio(void) | |
6319 | { | |
6320 | pg_data_t *pgdat; | |
6321 | struct zone *zone; | |
6322 | ||
6323 | for_each_online_pgdat(pgdat) | |
6324 | pgdat->min_slab_pages = 0; | |
6325 | ||
6326 | for_each_zone(zone) | |
6327 | zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * | |
6328 | sysctl_min_slab_ratio) / 100; | |
6329 | } | |
6330 | ||
6331 | static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, | |
6332 | void *buffer, size_t *length, loff_t *ppos) | |
6333 | { | |
6334 | int rc; | |
6335 | ||
6336 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
6337 | if (rc) | |
6338 | return rc; | |
6339 | ||
6340 | setup_min_slab_ratio(); | |
6341 | ||
6342 | return 0; | |
6343 | } | |
6344 | #endif | |
6345 | ||
6346 | /* | |
6347 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | |
6348 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | |
6349 | * whenever sysctl_lowmem_reserve_ratio changes. | |
6350 | * | |
6351 | * The reserve ratio obviously has absolutely no relation with the | |
6352 | * minimum watermarks. The lowmem reserve ratio can only make sense | |
6353 | * if in function of the boot time zone sizes. | |
6354 | */ | |
6355 | static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, | |
6356 | int write, void *buffer, size_t *length, loff_t *ppos) | |
6357 | { | |
6358 | int i; | |
6359 | ||
6360 | proc_dointvec_minmax(table, write, buffer, length, ppos); | |
6361 | ||
6362 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
6363 | if (sysctl_lowmem_reserve_ratio[i] < 1) | |
6364 | sysctl_lowmem_reserve_ratio[i] = 0; | |
6365 | } | |
6366 | ||
6367 | setup_per_zone_lowmem_reserve(); | |
6368 | return 0; | |
6369 | } | |
6370 | ||
6371 | /* | |
6372 | * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each | |
6373 | * cpu. It is the fraction of total pages in each zone that a hot per cpu | |
6374 | * pagelist can have before it gets flushed back to buddy allocator. | |
6375 | */ | |
6376 | static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, | |
6377 | int write, void *buffer, size_t *length, loff_t *ppos) | |
6378 | { | |
6379 | struct zone *zone; | |
6380 | int old_percpu_pagelist_high_fraction; | |
6381 | int ret; | |
6382 | ||
6383 | mutex_lock(&pcp_batch_high_lock); | |
6384 | old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; | |
6385 | ||
6386 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
6387 | if (!write || ret < 0) | |
6388 | goto out; | |
6389 | ||
6390 | /* Sanity checking to avoid pcp imbalance */ | |
6391 | if (percpu_pagelist_high_fraction && | |
6392 | percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { | |
6393 | percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; | |
6394 | ret = -EINVAL; | |
6395 | goto out; | |
6396 | } | |
6397 | ||
6398 | /* No change? */ | |
6399 | if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) | |
6400 | goto out; | |
6401 | ||
6402 | for_each_populated_zone(zone) | |
6403 | zone_set_pageset_high_and_batch(zone, 0); | |
6404 | out: | |
6405 | mutex_unlock(&pcp_batch_high_lock); | |
6406 | return ret; | |
6407 | } | |
6408 | ||
6409 | static const struct ctl_table page_alloc_sysctl_table[] = { | |
6410 | { | |
6411 | .procname = "min_free_kbytes", | |
6412 | .data = &min_free_kbytes, | |
6413 | .maxlen = sizeof(min_free_kbytes), | |
6414 | .mode = 0644, | |
6415 | .proc_handler = min_free_kbytes_sysctl_handler, | |
6416 | .extra1 = SYSCTL_ZERO, | |
6417 | }, | |
6418 | { | |
6419 | .procname = "watermark_boost_factor", | |
6420 | .data = &watermark_boost_factor, | |
6421 | .maxlen = sizeof(watermark_boost_factor), | |
6422 | .mode = 0644, | |
6423 | .proc_handler = proc_dointvec_minmax, | |
6424 | .extra1 = SYSCTL_ZERO, | |
6425 | }, | |
6426 | { | |
6427 | .procname = "watermark_scale_factor", | |
6428 | .data = &watermark_scale_factor, | |
6429 | .maxlen = sizeof(watermark_scale_factor), | |
6430 | .mode = 0644, | |
6431 | .proc_handler = watermark_scale_factor_sysctl_handler, | |
6432 | .extra1 = SYSCTL_ONE, | |
6433 | .extra2 = SYSCTL_THREE_THOUSAND, | |
6434 | }, | |
6435 | { | |
6436 | .procname = "defrag_mode", | |
6437 | .data = &defrag_mode, | |
6438 | .maxlen = sizeof(defrag_mode), | |
6439 | .mode = 0644, | |
6440 | .proc_handler = proc_dointvec_minmax, | |
6441 | .extra1 = SYSCTL_ZERO, | |
6442 | .extra2 = SYSCTL_ONE, | |
6443 | }, | |
6444 | { | |
6445 | .procname = "percpu_pagelist_high_fraction", | |
6446 | .data = &percpu_pagelist_high_fraction, | |
6447 | .maxlen = sizeof(percpu_pagelist_high_fraction), | |
6448 | .mode = 0644, | |
6449 | .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, | |
6450 | .extra1 = SYSCTL_ZERO, | |
6451 | }, | |
6452 | { | |
6453 | .procname = "lowmem_reserve_ratio", | |
6454 | .data = &sysctl_lowmem_reserve_ratio, | |
6455 | .maxlen = sizeof(sysctl_lowmem_reserve_ratio), | |
6456 | .mode = 0644, | |
6457 | .proc_handler = lowmem_reserve_ratio_sysctl_handler, | |
6458 | }, | |
6459 | #ifdef CONFIG_NUMA | |
6460 | { | |
6461 | .procname = "numa_zonelist_order", | |
6462 | .data = &numa_zonelist_order, | |
6463 | .maxlen = NUMA_ZONELIST_ORDER_LEN, | |
6464 | .mode = 0644, | |
6465 | .proc_handler = numa_zonelist_order_handler, | |
6466 | }, | |
6467 | { | |
6468 | .procname = "min_unmapped_ratio", | |
6469 | .data = &sysctl_min_unmapped_ratio, | |
6470 | .maxlen = sizeof(sysctl_min_unmapped_ratio), | |
6471 | .mode = 0644, | |
6472 | .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, | |
6473 | .extra1 = SYSCTL_ZERO, | |
6474 | .extra2 = SYSCTL_ONE_HUNDRED, | |
6475 | }, | |
6476 | { | |
6477 | .procname = "min_slab_ratio", | |
6478 | .data = &sysctl_min_slab_ratio, | |
6479 | .maxlen = sizeof(sysctl_min_slab_ratio), | |
6480 | .mode = 0644, | |
6481 | .proc_handler = sysctl_min_slab_ratio_sysctl_handler, | |
6482 | .extra1 = SYSCTL_ZERO, | |
6483 | .extra2 = SYSCTL_ONE_HUNDRED, | |
6484 | }, | |
6485 | #endif | |
6486 | }; | |
6487 | ||
6488 | void __init page_alloc_sysctl_init(void) | |
6489 | { | |
6490 | register_sysctl_init("vm", page_alloc_sysctl_table); | |
6491 | } | |
6492 | ||
6493 | #ifdef CONFIG_CONTIG_ALLOC | |
6494 | /* Usage: See admin-guide/dynamic-debug-howto.rst */ | |
6495 | static void alloc_contig_dump_pages(struct list_head *page_list) | |
6496 | { | |
6497 | DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); | |
6498 | ||
6499 | if (DYNAMIC_DEBUG_BRANCH(descriptor)) { | |
6500 | struct page *page; | |
6501 | ||
6502 | dump_stack(); | |
6503 | list_for_each_entry(page, page_list, lru) | |
6504 | dump_page(page, "migration failure"); | |
6505 | } | |
6506 | } | |
6507 | ||
6508 | /* | |
6509 | * [start, end) must belong to a single zone. | |
6510 | * @migratetype: using migratetype to filter the type of migration in | |
6511 | * trace_mm_alloc_contig_migrate_range_info. | |
6512 | */ | |
6513 | static int __alloc_contig_migrate_range(struct compact_control *cc, | |
6514 | unsigned long start, unsigned long end, int migratetype) | |
6515 | { | |
6516 | /* This function is based on compact_zone() from compaction.c. */ | |
6517 | unsigned int nr_reclaimed; | |
6518 | unsigned long pfn = start; | |
6519 | unsigned int tries = 0; | |
6520 | int ret = 0; | |
6521 | struct migration_target_control mtc = { | |
6522 | .nid = zone_to_nid(cc->zone), | |
6523 | .gfp_mask = cc->gfp_mask, | |
6524 | .reason = MR_CONTIG_RANGE, | |
6525 | }; | |
6526 | struct page *page; | |
6527 | unsigned long total_mapped = 0; | |
6528 | unsigned long total_migrated = 0; | |
6529 | unsigned long total_reclaimed = 0; | |
6530 | ||
6531 | lru_cache_disable(); | |
6532 | ||
6533 | while (pfn < end || !list_empty(&cc->migratepages)) { | |
6534 | if (fatal_signal_pending(current)) { | |
6535 | ret = -EINTR; | |
6536 | break; | |
6537 | } | |
6538 | ||
6539 | if (list_empty(&cc->migratepages)) { | |
6540 | cc->nr_migratepages = 0; | |
6541 | ret = isolate_migratepages_range(cc, pfn, end); | |
6542 | if (ret && ret != -EAGAIN) | |
6543 | break; | |
6544 | pfn = cc->migrate_pfn; | |
6545 | tries = 0; | |
6546 | } else if (++tries == 5) { | |
6547 | ret = -EBUSY; | |
6548 | break; | |
6549 | } | |
6550 | ||
6551 | nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, | |
6552 | &cc->migratepages); | |
6553 | cc->nr_migratepages -= nr_reclaimed; | |
6554 | ||
6555 | if (trace_mm_alloc_contig_migrate_range_info_enabled()) { | |
6556 | total_reclaimed += nr_reclaimed; | |
6557 | list_for_each_entry(page, &cc->migratepages, lru) { | |
6558 | struct folio *folio = page_folio(page); | |
6559 | ||
6560 | total_mapped += folio_mapped(folio) * | |
6561 | folio_nr_pages(folio); | |
6562 | } | |
6563 | } | |
6564 | ||
6565 | ret = migrate_pages(&cc->migratepages, alloc_migration_target, | |
6566 | NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); | |
6567 | ||
6568 | if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) | |
6569 | total_migrated += cc->nr_migratepages; | |
6570 | ||
6571 | /* | |
6572 | * On -ENOMEM, migrate_pages() bails out right away. It is pointless | |
6573 | * to retry again over this error, so do the same here. | |
6574 | */ | |
6575 | if (ret == -ENOMEM) | |
6576 | break; | |
6577 | } | |
6578 | ||
6579 | lru_cache_enable(); | |
6580 | if (ret < 0) { | |
6581 | if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) | |
6582 | alloc_contig_dump_pages(&cc->migratepages); | |
6583 | putback_movable_pages(&cc->migratepages); | |
6584 | } | |
6585 | ||
6586 | trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, | |
6587 | total_migrated, | |
6588 | total_reclaimed, | |
6589 | total_mapped); | |
6590 | return (ret < 0) ? ret : 0; | |
6591 | } | |
6592 | ||
6593 | static void split_free_pages(struct list_head *list, gfp_t gfp_mask) | |
6594 | { | |
6595 | int order; | |
6596 | ||
6597 | for (order = 0; order < NR_PAGE_ORDERS; order++) { | |
6598 | struct page *page, *next; | |
6599 | int nr_pages = 1 << order; | |
6600 | ||
6601 | list_for_each_entry_safe(page, next, &list[order], lru) { | |
6602 | int i; | |
6603 | ||
6604 | post_alloc_hook(page, order, gfp_mask); | |
6605 | set_page_refcounted(page); | |
6606 | if (!order) | |
6607 | continue; | |
6608 | ||
6609 | split_page(page, order); | |
6610 | ||
6611 | /* Add all subpages to the order-0 head, in sequence. */ | |
6612 | list_del(&page->lru); | |
6613 | for (i = 0; i < nr_pages; i++) | |
6614 | list_add_tail(&page[i].lru, &list[0]); | |
6615 | } | |
6616 | } | |
6617 | } | |
6618 | ||
6619 | static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) | |
6620 | { | |
6621 | const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; | |
6622 | const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | | |
6623 | __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; | |
6624 | const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; | |
6625 | ||
6626 | /* | |
6627 | * We are given the range to allocate; node, mobility and placement | |
6628 | * hints are irrelevant at this point. We'll simply ignore them. | |
6629 | */ | |
6630 | gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | | |
6631 | __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); | |
6632 | ||
6633 | /* | |
6634 | * We only support most reclaim flags (but not NOFAIL/NORETRY), and | |
6635 | * selected action flags. | |
6636 | */ | |
6637 | if (gfp_mask & ~(reclaim_mask | action_mask)) | |
6638 | return -EINVAL; | |
6639 | ||
6640 | /* | |
6641 | * Flags to control page compaction/migration/reclaim, to free up our | |
6642 | * page range. Migratable pages are movable, __GFP_MOVABLE is implied | |
6643 | * for them. | |
6644 | * | |
6645 | * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that | |
6646 | * to not degrade callers. | |
6647 | */ | |
6648 | *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | | |
6649 | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; | |
6650 | return 0; | |
6651 | } | |
6652 | ||
6653 | /** | |
6654 | * alloc_contig_range() -- tries to allocate given range of pages | |
6655 | * @start: start PFN to allocate | |
6656 | * @end: one-past-the-last PFN to allocate | |
6657 | * @migratetype: migratetype of the underlying pageblocks (either | |
6658 | * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks | |
6659 | * in range must have the same migratetype and it must | |
6660 | * be either of the two. | |
6661 | * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some | |
6662 | * action and reclaim modifiers are supported. Reclaim modifiers | |
6663 | * control allocation behavior during compaction/migration/reclaim. | |
6664 | * | |
6665 | * The PFN range does not have to be pageblock aligned. The PFN range must | |
6666 | * belong to a single zone. | |
6667 | * | |
6668 | * The first thing this routine does is attempt to MIGRATE_ISOLATE all | |
6669 | * pageblocks in the range. Once isolated, the pageblocks should not | |
6670 | * be modified by others. | |
6671 | * | |
6672 | * Return: zero on success or negative error code. On success all | |
6673 | * pages which PFN is in [start, end) are allocated for the caller and | |
6674 | * need to be freed with free_contig_range(). | |
6675 | */ | |
6676 | int alloc_contig_range_noprof(unsigned long start, unsigned long end, | |
6677 | unsigned migratetype, gfp_t gfp_mask) | |
6678 | { | |
6679 | unsigned long outer_start, outer_end; | |
6680 | int ret = 0; | |
6681 | ||
6682 | struct compact_control cc = { | |
6683 | .nr_migratepages = 0, | |
6684 | .order = -1, | |
6685 | .zone = page_zone(pfn_to_page(start)), | |
6686 | .mode = MIGRATE_SYNC, | |
6687 | .ignore_skip_hint = true, | |
6688 | .no_set_skip_hint = true, | |
6689 | .alloc_contig = true, | |
6690 | }; | |
6691 | INIT_LIST_HEAD(&cc.migratepages); | |
6692 | ||
6693 | gfp_mask = current_gfp_context(gfp_mask); | |
6694 | if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) | |
6695 | return -EINVAL; | |
6696 | ||
6697 | /* | |
6698 | * What we do here is we mark all pageblocks in range as | |
6699 | * MIGRATE_ISOLATE. Because pageblock and max order pages may | |
6700 | * have different sizes, and due to the way page allocator | |
6701 | * work, start_isolate_page_range() has special handlings for this. | |
6702 | * | |
6703 | * Once the pageblocks are marked as MIGRATE_ISOLATE, we | |
6704 | * migrate the pages from an unaligned range (ie. pages that | |
6705 | * we are interested in). This will put all the pages in | |
6706 | * range back to page allocator as MIGRATE_ISOLATE. | |
6707 | * | |
6708 | * When this is done, we take the pages in range from page | |
6709 | * allocator removing them from the buddy system. This way | |
6710 | * page allocator will never consider using them. | |
6711 | * | |
6712 | * This lets us mark the pageblocks back as | |
6713 | * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the | |
6714 | * aligned range but not in the unaligned, original range are | |
6715 | * put back to page allocator so that buddy can use them. | |
6716 | */ | |
6717 | ||
6718 | ret = start_isolate_page_range(start, end, migratetype, 0); | |
6719 | if (ret) | |
6720 | goto done; | |
6721 | ||
6722 | drain_all_pages(cc.zone); | |
6723 | ||
6724 | /* | |
6725 | * In case of -EBUSY, we'd like to know which page causes problem. | |
6726 | * So, just fall through. test_pages_isolated() has a tracepoint | |
6727 | * which will report the busy page. | |
6728 | * | |
6729 | * It is possible that busy pages could become available before | |
6730 | * the call to test_pages_isolated, and the range will actually be | |
6731 | * allocated. So, if we fall through be sure to clear ret so that | |
6732 | * -EBUSY is not accidentally used or returned to caller. | |
6733 | */ | |
6734 | ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); | |
6735 | if (ret && ret != -EBUSY) | |
6736 | goto done; | |
6737 | ||
6738 | /* | |
6739 | * When in-use hugetlb pages are migrated, they may simply be released | |
6740 | * back into the free hugepage pool instead of being returned to the | |
6741 | * buddy system. After the migration of in-use huge pages is completed, | |
6742 | * we will invoke replace_free_hugepage_folios() to ensure that these | |
6743 | * hugepages are properly released to the buddy system. | |
6744 | */ | |
6745 | ret = replace_free_hugepage_folios(start, end); | |
6746 | if (ret) | |
6747 | goto done; | |
6748 | ||
6749 | /* | |
6750 | * Pages from [start, end) are within a pageblock_nr_pages | |
6751 | * aligned blocks that are marked as MIGRATE_ISOLATE. What's | |
6752 | * more, all pages in [start, end) are free in page allocator. | |
6753 | * What we are going to do is to allocate all pages from | |
6754 | * [start, end) (that is remove them from page allocator). | |
6755 | * | |
6756 | * The only problem is that pages at the beginning and at the | |
6757 | * end of interesting range may be not aligned with pages that | |
6758 | * page allocator holds, ie. they can be part of higher order | |
6759 | * pages. Because of this, we reserve the bigger range and | |
6760 | * once this is done free the pages we are not interested in. | |
6761 | * | |
6762 | * We don't have to hold zone->lock here because the pages are | |
6763 | * isolated thus they won't get removed from buddy. | |
6764 | */ | |
6765 | outer_start = find_large_buddy(start); | |
6766 | ||
6767 | /* Make sure the range is really isolated. */ | |
6768 | if (test_pages_isolated(outer_start, end, 0)) { | |
6769 | ret = -EBUSY; | |
6770 | goto done; | |
6771 | } | |
6772 | ||
6773 | /* Grab isolated pages from freelists. */ | |
6774 | outer_end = isolate_freepages_range(&cc, outer_start, end); | |
6775 | if (!outer_end) { | |
6776 | ret = -EBUSY; | |
6777 | goto done; | |
6778 | } | |
6779 | ||
6780 | if (!(gfp_mask & __GFP_COMP)) { | |
6781 | split_free_pages(cc.freepages, gfp_mask); | |
6782 | ||
6783 | /* Free head and tail (if any) */ | |
6784 | if (start != outer_start) | |
6785 | free_contig_range(outer_start, start - outer_start); | |
6786 | if (end != outer_end) | |
6787 | free_contig_range(end, outer_end - end); | |
6788 | } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { | |
6789 | struct page *head = pfn_to_page(start); | |
6790 | int order = ilog2(end - start); | |
6791 | ||
6792 | check_new_pages(head, order); | |
6793 | prep_new_page(head, order, gfp_mask, 0); | |
6794 | set_page_refcounted(head); | |
6795 | } else { | |
6796 | ret = -EINVAL; | |
6797 | WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", | |
6798 | start, end, outer_start, outer_end); | |
6799 | } | |
6800 | done: | |
6801 | undo_isolate_page_range(start, end, migratetype); | |
6802 | return ret; | |
6803 | } | |
6804 | EXPORT_SYMBOL(alloc_contig_range_noprof); | |
6805 | ||
6806 | static int __alloc_contig_pages(unsigned long start_pfn, | |
6807 | unsigned long nr_pages, gfp_t gfp_mask) | |
6808 | { | |
6809 | unsigned long end_pfn = start_pfn + nr_pages; | |
6810 | ||
6811 | return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, | |
6812 | gfp_mask); | |
6813 | } | |
6814 | ||
6815 | static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, | |
6816 | unsigned long nr_pages) | |
6817 | { | |
6818 | unsigned long i, end_pfn = start_pfn + nr_pages; | |
6819 | struct page *page; | |
6820 | ||
6821 | for (i = start_pfn; i < end_pfn; i++) { | |
6822 | page = pfn_to_online_page(i); | |
6823 | if (!page) | |
6824 | return false; | |
6825 | ||
6826 | if (page_zone(page) != z) | |
6827 | return false; | |
6828 | ||
6829 | if (PageReserved(page)) | |
6830 | return false; | |
6831 | ||
6832 | if (PageHuge(page)) | |
6833 | return false; | |
6834 | } | |
6835 | return true; | |
6836 | } | |
6837 | ||
6838 | static bool zone_spans_last_pfn(const struct zone *zone, | |
6839 | unsigned long start_pfn, unsigned long nr_pages) | |
6840 | { | |
6841 | unsigned long last_pfn = start_pfn + nr_pages - 1; | |
6842 | ||
6843 | return zone_spans_pfn(zone, last_pfn); | |
6844 | } | |
6845 | ||
6846 | /** | |
6847 | * alloc_contig_pages() -- tries to find and allocate contiguous range of pages | |
6848 | * @nr_pages: Number of contiguous pages to allocate | |
6849 | * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some | |
6850 | * action and reclaim modifiers are supported. Reclaim modifiers | |
6851 | * control allocation behavior during compaction/migration/reclaim. | |
6852 | * @nid: Target node | |
6853 | * @nodemask: Mask for other possible nodes | |
6854 | * | |
6855 | * This routine is a wrapper around alloc_contig_range(). It scans over zones | |
6856 | * on an applicable zonelist to find a contiguous pfn range which can then be | |
6857 | * tried for allocation with alloc_contig_range(). This routine is intended | |
6858 | * for allocation requests which can not be fulfilled with the buddy allocator. | |
6859 | * | |
6860 | * The allocated memory is always aligned to a page boundary. If nr_pages is a | |
6861 | * power of two, then allocated range is also guaranteed to be aligned to same | |
6862 | * nr_pages (e.g. 1GB request would be aligned to 1GB). | |
6863 | * | |
6864 | * Allocated pages can be freed with free_contig_range() or by manually calling | |
6865 | * __free_page() on each allocated page. | |
6866 | * | |
6867 | * Return: pointer to contiguous pages on success, or NULL if not successful. | |
6868 | */ | |
6869 | struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, | |
6870 | int nid, nodemask_t *nodemask) | |
6871 | { | |
6872 | unsigned long ret, pfn, flags; | |
6873 | struct zonelist *zonelist; | |
6874 | struct zone *zone; | |
6875 | struct zoneref *z; | |
6876 | ||
6877 | zonelist = node_zonelist(nid, gfp_mask); | |
6878 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | |
6879 | gfp_zone(gfp_mask), nodemask) { | |
6880 | spin_lock_irqsave(&zone->lock, flags); | |
6881 | ||
6882 | pfn = ALIGN(zone->zone_start_pfn, nr_pages); | |
6883 | while (zone_spans_last_pfn(zone, pfn, nr_pages)) { | |
6884 | if (pfn_range_valid_contig(zone, pfn, nr_pages)) { | |
6885 | /* | |
6886 | * We release the zone lock here because | |
6887 | * alloc_contig_range() will also lock the zone | |
6888 | * at some point. If there's an allocation | |
6889 | * spinning on this lock, it may win the race | |
6890 | * and cause alloc_contig_range() to fail... | |
6891 | */ | |
6892 | spin_unlock_irqrestore(&zone->lock, flags); | |
6893 | ret = __alloc_contig_pages(pfn, nr_pages, | |
6894 | gfp_mask); | |
6895 | if (!ret) | |
6896 | return pfn_to_page(pfn); | |
6897 | spin_lock_irqsave(&zone->lock, flags); | |
6898 | } | |
6899 | pfn += nr_pages; | |
6900 | } | |
6901 | spin_unlock_irqrestore(&zone->lock, flags); | |
6902 | } | |
6903 | return NULL; | |
6904 | } | |
6905 | #endif /* CONFIG_CONTIG_ALLOC */ | |
6906 | ||
6907 | void free_contig_range(unsigned long pfn, unsigned long nr_pages) | |
6908 | { | |
6909 | unsigned long count = 0; | |
6910 | struct folio *folio = pfn_folio(pfn); | |
6911 | ||
6912 | if (folio_test_large(folio)) { | |
6913 | int expected = folio_nr_pages(folio); | |
6914 | ||
6915 | if (nr_pages == expected) | |
6916 | folio_put(folio); | |
6917 | else | |
6918 | WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", | |
6919 | pfn, nr_pages, expected); | |
6920 | return; | |
6921 | } | |
6922 | ||
6923 | for (; nr_pages--; pfn++) { | |
6924 | struct page *page = pfn_to_page(pfn); | |
6925 | ||
6926 | count += page_count(page) != 1; | |
6927 | __free_page(page); | |
6928 | } | |
6929 | WARN(count != 0, "%lu pages are still in use!\n", count); | |
6930 | } | |
6931 | EXPORT_SYMBOL(free_contig_range); | |
6932 | ||
6933 | /* | |
6934 | * Effectively disable pcplists for the zone by setting the high limit to 0 | |
6935 | * and draining all cpus. A concurrent page freeing on another CPU that's about | |
6936 | * to put the page on pcplist will either finish before the drain and the page | |
6937 | * will be drained, or observe the new high limit and skip the pcplist. | |
6938 | * | |
6939 | * Must be paired with a call to zone_pcp_enable(). | |
6940 | */ | |
6941 | void zone_pcp_disable(struct zone *zone) | |
6942 | { | |
6943 | mutex_lock(&pcp_batch_high_lock); | |
6944 | __zone_set_pageset_high_and_batch(zone, 0, 0, 1); | |
6945 | __drain_all_pages(zone, true); | |
6946 | } | |
6947 | ||
6948 | void zone_pcp_enable(struct zone *zone) | |
6949 | { | |
6950 | __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, | |
6951 | zone->pageset_high_max, zone->pageset_batch); | |
6952 | mutex_unlock(&pcp_batch_high_lock); | |
6953 | } | |
6954 | ||
6955 | void zone_pcp_reset(struct zone *zone) | |
6956 | { | |
6957 | int cpu; | |
6958 | struct per_cpu_zonestat *pzstats; | |
6959 | ||
6960 | if (zone->per_cpu_pageset != &boot_pageset) { | |
6961 | for_each_online_cpu(cpu) { | |
6962 | pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); | |
6963 | drain_zonestat(zone, pzstats); | |
6964 | } | |
6965 | free_percpu(zone->per_cpu_pageset); | |
6966 | zone->per_cpu_pageset = &boot_pageset; | |
6967 | if (zone->per_cpu_zonestats != &boot_zonestats) { | |
6968 | free_percpu(zone->per_cpu_zonestats); | |
6969 | zone->per_cpu_zonestats = &boot_zonestats; | |
6970 | } | |
6971 | } | |
6972 | } | |
6973 | ||
6974 | #ifdef CONFIG_MEMORY_HOTREMOVE | |
6975 | /* | |
6976 | * All pages in the range must be in a single zone, must not contain holes, | |
6977 | * must span full sections, and must be isolated before calling this function. | |
6978 | * | |
6979 | * Returns the number of managed (non-PageOffline()) pages in the range: the | |
6980 | * number of pages for which memory offlining code must adjust managed page | |
6981 | * counters using adjust_managed_page_count(). | |
6982 | */ | |
6983 | unsigned long __offline_isolated_pages(unsigned long start_pfn, | |
6984 | unsigned long end_pfn) | |
6985 | { | |
6986 | unsigned long already_offline = 0, flags; | |
6987 | unsigned long pfn = start_pfn; | |
6988 | struct page *page; | |
6989 | struct zone *zone; | |
6990 | unsigned int order; | |
6991 | ||
6992 | offline_mem_sections(pfn, end_pfn); | |
6993 | zone = page_zone(pfn_to_page(pfn)); | |
6994 | spin_lock_irqsave(&zone->lock, flags); | |
6995 | while (pfn < end_pfn) { | |
6996 | page = pfn_to_page(pfn); | |
6997 | /* | |
6998 | * The HWPoisoned page may be not in buddy system, and | |
6999 | * page_count() is not 0. | |
7000 | */ | |
7001 | if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { | |
7002 | pfn++; | |
7003 | continue; | |
7004 | } | |
7005 | /* | |
7006 | * At this point all remaining PageOffline() pages have a | |
7007 | * reference count of 0 and can simply be skipped. | |
7008 | */ | |
7009 | if (PageOffline(page)) { | |
7010 | BUG_ON(page_count(page)); | |
7011 | BUG_ON(PageBuddy(page)); | |
7012 | already_offline++; | |
7013 | pfn++; | |
7014 | continue; | |
7015 | } | |
7016 | ||
7017 | BUG_ON(page_count(page)); | |
7018 | BUG_ON(!PageBuddy(page)); | |
7019 | VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); | |
7020 | order = buddy_order(page); | |
7021 | del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); | |
7022 | pfn += (1 << order); | |
7023 | } | |
7024 | spin_unlock_irqrestore(&zone->lock, flags); | |
7025 | ||
7026 | return end_pfn - start_pfn - already_offline; | |
7027 | } | |
7028 | #endif | |
7029 | ||
7030 | /* | |
7031 | * This function returns a stable result only if called under zone lock. | |
7032 | */ | |
7033 | bool is_free_buddy_page(const struct page *page) | |
7034 | { | |
7035 | unsigned long pfn = page_to_pfn(page); | |
7036 | unsigned int order; | |
7037 | ||
7038 | for (order = 0; order < NR_PAGE_ORDERS; order++) { | |
7039 | const struct page *head = page - (pfn & ((1 << order) - 1)); | |
7040 | ||
7041 | if (PageBuddy(head) && | |
7042 | buddy_order_unsafe(head) >= order) | |
7043 | break; | |
7044 | } | |
7045 | ||
7046 | return order <= MAX_PAGE_ORDER; | |
7047 | } | |
7048 | EXPORT_SYMBOL(is_free_buddy_page); | |
7049 | ||
7050 | #ifdef CONFIG_MEMORY_FAILURE | |
7051 | static inline void add_to_free_list(struct page *page, struct zone *zone, | |
7052 | unsigned int order, int migratetype, | |
7053 | bool tail) | |
7054 | { | |
7055 | __add_to_free_list(page, zone, order, migratetype, tail); | |
7056 | account_freepages(zone, 1 << order, migratetype); | |
7057 | } | |
7058 | ||
7059 | /* | |
7060 | * Break down a higher-order page in sub-pages, and keep our target out of | |
7061 | * buddy allocator. | |
7062 | */ | |
7063 | static void break_down_buddy_pages(struct zone *zone, struct page *page, | |
7064 | struct page *target, int low, int high, | |
7065 | int migratetype) | |
7066 | { | |
7067 | unsigned long size = 1 << high; | |
7068 | struct page *current_buddy; | |
7069 | ||
7070 | while (high > low) { | |
7071 | high--; | |
7072 | size >>= 1; | |
7073 | ||
7074 | if (target >= &page[size]) { | |
7075 | current_buddy = page; | |
7076 | page = page + size; | |
7077 | } else { | |
7078 | current_buddy = page + size; | |
7079 | } | |
7080 | ||
7081 | if (set_page_guard(zone, current_buddy, high)) | |
7082 | continue; | |
7083 | ||
7084 | add_to_free_list(current_buddy, zone, high, migratetype, false); | |
7085 | set_buddy_order(current_buddy, high); | |
7086 | } | |
7087 | } | |
7088 | ||
7089 | /* | |
7090 | * Take a page that will be marked as poisoned off the buddy allocator. | |
7091 | */ | |
7092 | bool take_page_off_buddy(struct page *page) | |
7093 | { | |
7094 | struct zone *zone = page_zone(page); | |
7095 | unsigned long pfn = page_to_pfn(page); | |
7096 | unsigned long flags; | |
7097 | unsigned int order; | |
7098 | bool ret = false; | |
7099 | ||
7100 | spin_lock_irqsave(&zone->lock, flags); | |
7101 | for (order = 0; order < NR_PAGE_ORDERS; order++) { | |
7102 | struct page *page_head = page - (pfn & ((1 << order) - 1)); | |
7103 | int page_order = buddy_order(page_head); | |
7104 | ||
7105 | if (PageBuddy(page_head) && page_order >= order) { | |
7106 | unsigned long pfn_head = page_to_pfn(page_head); | |
7107 | int migratetype = get_pfnblock_migratetype(page_head, | |
7108 | pfn_head); | |
7109 | ||
7110 | del_page_from_free_list(page_head, zone, page_order, | |
7111 | migratetype); | |
7112 | break_down_buddy_pages(zone, page_head, page, 0, | |
7113 | page_order, migratetype); | |
7114 | SetPageHWPoisonTakenOff(page); | |
7115 | ret = true; | |
7116 | break; | |
7117 | } | |
7118 | if (page_count(page_head) > 0) | |
7119 | break; | |
7120 | } | |
7121 | spin_unlock_irqrestore(&zone->lock, flags); | |
7122 | return ret; | |
7123 | } | |
7124 | ||
7125 | /* | |
7126 | * Cancel takeoff done by take_page_off_buddy(). | |
7127 | */ | |
7128 | bool put_page_back_buddy(struct page *page) | |
7129 | { | |
7130 | struct zone *zone = page_zone(page); | |
7131 | unsigned long flags; | |
7132 | bool ret = false; | |
7133 | ||
7134 | spin_lock_irqsave(&zone->lock, flags); | |
7135 | if (put_page_testzero(page)) { | |
7136 | unsigned long pfn = page_to_pfn(page); | |
7137 | int migratetype = get_pfnblock_migratetype(page, pfn); | |
7138 | ||
7139 | ClearPageHWPoisonTakenOff(page); | |
7140 | __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); | |
7141 | if (TestClearPageHWPoison(page)) { | |
7142 | ret = true; | |
7143 | } | |
7144 | } | |
7145 | spin_unlock_irqrestore(&zone->lock, flags); | |
7146 | ||
7147 | return ret; | |
7148 | } | |
7149 | #endif | |
7150 | ||
7151 | #ifdef CONFIG_ZONE_DMA | |
7152 | bool has_managed_dma(void) | |
7153 | { | |
7154 | struct pglist_data *pgdat; | |
7155 | ||
7156 | for_each_online_pgdat(pgdat) { | |
7157 | struct zone *zone = &pgdat->node_zones[ZONE_DMA]; | |
7158 | ||
7159 | if (managed_zone(zone)) | |
7160 | return true; | |
7161 | } | |
7162 | return false; | |
7163 | } | |
7164 | #endif /* CONFIG_ZONE_DMA */ | |
7165 | ||
7166 | #ifdef CONFIG_UNACCEPTED_MEMORY | |
7167 | ||
7168 | static bool lazy_accept = true; | |
7169 | ||
7170 | static int __init accept_memory_parse(char *p) | |
7171 | { | |
7172 | if (!strcmp(p, "lazy")) { | |
7173 | lazy_accept = true; | |
7174 | return 0; | |
7175 | } else if (!strcmp(p, "eager")) { | |
7176 | lazy_accept = false; | |
7177 | return 0; | |
7178 | } else { | |
7179 | return -EINVAL; | |
7180 | } | |
7181 | } | |
7182 | early_param("accept_memory", accept_memory_parse); | |
7183 | ||
7184 | static bool page_contains_unaccepted(struct page *page, unsigned int order) | |
7185 | { | |
7186 | phys_addr_t start = page_to_phys(page); | |
7187 | ||
7188 | return range_contains_unaccepted_memory(start, PAGE_SIZE << order); | |
7189 | } | |
7190 | ||
7191 | static void __accept_page(struct zone *zone, unsigned long *flags, | |
7192 | struct page *page) | |
7193 | { | |
7194 | list_del(&page->lru); | |
7195 | account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); | |
7196 | __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); | |
7197 | __ClearPageUnaccepted(page); | |
7198 | spin_unlock_irqrestore(&zone->lock, *flags); | |
7199 | ||
7200 | accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); | |
7201 | ||
7202 | __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); | |
7203 | } | |
7204 | ||
7205 | void accept_page(struct page *page) | |
7206 | { | |
7207 | struct zone *zone = page_zone(page); | |
7208 | unsigned long flags; | |
7209 | ||
7210 | spin_lock_irqsave(&zone->lock, flags); | |
7211 | if (!PageUnaccepted(page)) { | |
7212 | spin_unlock_irqrestore(&zone->lock, flags); | |
7213 | return; | |
7214 | } | |
7215 | ||
7216 | /* Unlocks zone->lock */ | |
7217 | __accept_page(zone, &flags, page); | |
7218 | } | |
7219 | ||
7220 | static bool try_to_accept_memory_one(struct zone *zone) | |
7221 | { | |
7222 | unsigned long flags; | |
7223 | struct page *page; | |
7224 | ||
7225 | spin_lock_irqsave(&zone->lock, flags); | |
7226 | page = list_first_entry_or_null(&zone->unaccepted_pages, | |
7227 | struct page, lru); | |
7228 | if (!page) { | |
7229 | spin_unlock_irqrestore(&zone->lock, flags); | |
7230 | return false; | |
7231 | } | |
7232 | ||
7233 | /* Unlocks zone->lock */ | |
7234 | __accept_page(zone, &flags, page); | |
7235 | ||
7236 | return true; | |
7237 | } | |
7238 | ||
7239 | static bool cond_accept_memory(struct zone *zone, unsigned int order, | |
7240 | int alloc_flags) | |
7241 | { | |
7242 | long to_accept, wmark; | |
7243 | bool ret = false; | |
7244 | ||
7245 | if (list_empty(&zone->unaccepted_pages)) | |
7246 | return false; | |
7247 | ||
7248 | /* Bailout, since try_to_accept_memory_one() needs to take a lock */ | |
7249 | if (alloc_flags & ALLOC_TRYLOCK) | |
7250 | return false; | |
7251 | ||
7252 | wmark = promo_wmark_pages(zone); | |
7253 | ||
7254 | /* | |
7255 | * Watermarks have not been initialized yet. | |
7256 | * | |
7257 | * Accepting one MAX_ORDER page to ensure progress. | |
7258 | */ | |
7259 | if (!wmark) | |
7260 | return try_to_accept_memory_one(zone); | |
7261 | ||
7262 | /* How much to accept to get to promo watermark? */ | |
7263 | to_accept = wmark - | |
7264 | (zone_page_state(zone, NR_FREE_PAGES) - | |
7265 | __zone_watermark_unusable_free(zone, order, 0) - | |
7266 | zone_page_state(zone, NR_UNACCEPTED)); | |
7267 | ||
7268 | while (to_accept > 0) { | |
7269 | if (!try_to_accept_memory_one(zone)) | |
7270 | break; | |
7271 | ret = true; | |
7272 | to_accept -= MAX_ORDER_NR_PAGES; | |
7273 | } | |
7274 | ||
7275 | return ret; | |
7276 | } | |
7277 | ||
7278 | static bool __free_unaccepted(struct page *page) | |
7279 | { | |
7280 | struct zone *zone = page_zone(page); | |
7281 | unsigned long flags; | |
7282 | ||
7283 | if (!lazy_accept) | |
7284 | return false; | |
7285 | ||
7286 | spin_lock_irqsave(&zone->lock, flags); | |
7287 | list_add_tail(&page->lru, &zone->unaccepted_pages); | |
7288 | account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); | |
7289 | __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); | |
7290 | __SetPageUnaccepted(page); | |
7291 | spin_unlock_irqrestore(&zone->lock, flags); | |
7292 | ||
7293 | return true; | |
7294 | } | |
7295 | ||
7296 | #else | |
7297 | ||
7298 | static bool page_contains_unaccepted(struct page *page, unsigned int order) | |
7299 | { | |
7300 | return false; | |
7301 | } | |
7302 | ||
7303 | static bool cond_accept_memory(struct zone *zone, unsigned int order, | |
7304 | int alloc_flags) | |
7305 | { | |
7306 | return false; | |
7307 | } | |
7308 | ||
7309 | static bool __free_unaccepted(struct page *page) | |
7310 | { | |
7311 | BUILD_BUG(); | |
7312 | return false; | |
7313 | } | |
7314 | ||
7315 | #endif /* CONFIG_UNACCEPTED_MEMORY */ | |
7316 | ||
7317 | /** | |
7318 | * alloc_pages_nolock - opportunistic reentrant allocation from any context | |
7319 | * @nid: node to allocate from | |
7320 | * @order: allocation order size | |
7321 | * | |
7322 | * Allocates pages of a given order from the given node. This is safe to | |
7323 | * call from any context (from atomic, NMI, and also reentrant | |
7324 | * allocator -> tracepoint -> alloc_pages_nolock_noprof). | |
7325 | * Allocation is best effort and to be expected to fail easily so nobody should | |
7326 | * rely on the success. Failures are not reported via warn_alloc(). | |
7327 | * See always fail conditions below. | |
7328 | * | |
7329 | * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN. | |
7330 | * It means ENOMEM. There is no reason to call it again and expect !NULL. | |
7331 | */ | |
7332 | struct page *alloc_pages_nolock_noprof(int nid, unsigned int order) | |
7333 | { | |
7334 | /* | |
7335 | * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed. | |
7336 | * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd | |
7337 | * is not safe in arbitrary context. | |
7338 | * | |
7339 | * These two are the conditions for gfpflags_allow_spinning() being true. | |
7340 | * | |
7341 | * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason | |
7342 | * to warn. Also warn would trigger printk() which is unsafe from | |
7343 | * various contexts. We cannot use printk_deferred_enter() to mitigate, | |
7344 | * since the running context is unknown. | |
7345 | * | |
7346 | * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below | |
7347 | * is safe in any context. Also zeroing the page is mandatory for | |
7348 | * BPF use cases. | |
7349 | * | |
7350 | * Though __GFP_NOMEMALLOC is not checked in the code path below, | |
7351 | * specify it here to highlight that alloc_pages_nolock() | |
7352 | * doesn't want to deplete reserves. | |
7353 | */ | |
7354 | gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC | |
7355 | | __GFP_ACCOUNT; | |
7356 | unsigned int alloc_flags = ALLOC_TRYLOCK; | |
7357 | struct alloc_context ac = { }; | |
7358 | struct page *page; | |
7359 | ||
7360 | /* | |
7361 | * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is | |
7362 | * unsafe in NMI. If spin_trylock() is called from hard IRQ the current | |
7363 | * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will | |
7364 | * mark the task as the owner of another rt_spin_lock which will | |
7365 | * confuse PI logic, so return immediately if called form hard IRQ or | |
7366 | * NMI. | |
7367 | * | |
7368 | * Note, irqs_disabled() case is ok. This function can be called | |
7369 | * from raw_spin_lock_irqsave region. | |
7370 | */ | |
7371 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) | |
7372 | return NULL; | |
7373 | if (!pcp_allowed_order(order)) | |
7374 | return NULL; | |
7375 | ||
7376 | /* Bailout, since _deferred_grow_zone() needs to take a lock */ | |
7377 | if (deferred_pages_enabled()) | |
7378 | return NULL; | |
7379 | ||
7380 | if (nid == NUMA_NO_NODE) | |
7381 | nid = numa_node_id(); | |
7382 | ||
7383 | prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac, | |
7384 | &alloc_gfp, &alloc_flags); | |
7385 | ||
7386 | /* | |
7387 | * Best effort allocation from percpu free list. | |
7388 | * If it's empty attempt to spin_trylock zone->lock. | |
7389 | */ | |
7390 | page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); | |
7391 | ||
7392 | /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */ | |
7393 | ||
7394 | if (page) | |
7395 | set_page_refcounted(page); | |
7396 | ||
7397 | if (memcg_kmem_online() && page && | |
7398 | unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) { | |
7399 | free_pages_nolock(page, order); | |
7400 | page = NULL; | |
7401 | } | |
7402 | trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); | |
7403 | kmsan_alloc_page(page, order, alloc_gfp); | |
7404 | return page; | |
7405 | } |